
Optimal Aggressive Constrained Trajectory Synthesis and Control for Multi-Copters

by

TSUNG-LIANG LIU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023

Copyright © by Tsung-Liang Liu 2023

All Rights Reserved

To

my father Chin-Shen Liu, my mother Chiu-Kuei Hung,

my elder sisters Alice and Grace Liu, my elder brother Jimmy Liu,

and my beloved wife Ashley Ting

This work would not be possible without all your love and support.

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my advisor,

Dr. Kamesh Subbarao, for allowing me to be a part of his dedicated group of engineers,

guiding me throughout my Ph.D. studies, and believing in my ability to conduct research

at my own pace. It is a privilege to learn from him, as he possesses excellent knowledge

and a great passion for engineering research and teaching. I am also extremely grateful to

my committee members, Dr. Alan P. Bowling, Dr. Animesh Chakravarthy, Dr. Bo P Wang,

and Dr. Yijing Xie, for generously providing their knowledge and expertise to enrich this

dissertation.

I am deeply indebted to the National Chung-Shan Institute of Science and Tech-

nology in Taiwan for supporting my Ph.D. program. Additionally, this research has been

supported by the Office of Naval Research under grant number N00014-18-1-2215 and the

National Science Foundation (S&AS) under grant number 1724248.

Special thanks go to Dr. Animesh Chakravarthy for kindly providing access to the

Vicon motion capture system in the Guidance and Controls of Autonomous Systems Lab-

oratory (GCASL) for quadcopter flight experiments, Abhishek Kashyap for helping with

the Vicon system setup and integration, Uluhan Cem Kaya for sharing extensive knowl-

edge and working experience in PX4 and ROS programming, Kashish Dhal for getting me

started with RotorS simulation, Suguru Sato for assisting with quadcopter 3D modeling and

mass property analysis in Solidworks, Abel Martinez Martinez for aiding in the rotor sys-

tem tests, and Baris Taner for helping with subsystem integration and tests. This research

would not have been successful without their generous support.

iv

I would like to extend my sincere thanks to all my teachers at the University of Texas

at Arlington for their guidance and advice. Moreover, I am grateful to the administrative

staff of the Mechanical and Aerospace Engineering Department, especially Lanie Gordon,

Wendy Ryan, and Ayesha Fatima, for their support and dedication. I would also like to

thank my colleagues, Baris, Cem, Kashish, Saina, Suguru, Jinay, Rajnish, Diganta, Kamal,

and all my past and present lab-mates at the Aerospace Systems Laboratory (ASL) for their

friendship, constant support, and knowledge/culture/food sharing.

Words cannot express my gratitude to my incredible parents, Chin-Shen Liu and

Chiu-Kuei Hung, and my supportive siblings, Alice, Grace, and Jimmy Liu. Their uncon-

ditional support, encouragement, and belief in me have been instrumental in completing

this demanding endeavor. Lastly and most importantly, I am extremely grateful to my lov-

ing wife, Ashley Ting, and our wonderful children, Howard and Ellie Liu. Throughout this

demanding journey of completing my dissertation, their unwavering love, understanding,

and patience have been invaluable. Ashley has been my best life partner and the founda-

tion that helped me persevere. She provides endless encouragement, belief in my abilities,

and a comforting presence during both the triumphs and challenges I faced. Howard and

Ellie have been a constant source of inspiration and motivation. Their laughter, hugs, and

moments of respite have provided the necessary life balance during my Ph.D. studies, re-

minding me of what truly matters.

July 17, 2023

v

Abstract

Optimal Aggressive Constrained Trajectory Synthesis and Control for Multi-Copters

Tsung-Liang Liu, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Kamesh Subbarao

Multi-copters have become increasingly popular in recent years due to their availabil-

ity, mobility, agility, and flexibility. They serve as excellent platforms for control experi-

ments and various applications. Their characteristics also make them an attractive choice

for high-speed aerial navigation in complex environments. Numerous studies have been

conducted on aggressive trajectory generation and maneuver tracking. However, the level

of aggressiveness achievable depends on the optimality of the trajectory plan and the dy-

namic capabilities of the vehicle. It would be valuable if one can generate a trajectory

that fully utilizes the dynamic capabilities of the multi-copter while accommodating spe-

cific maneuvers at predetermined locations. Therefore, in this research we assume that the

multi-copter’s dynamic capability is limited by its maximum rotor thrust and address the

problem as “Given waypoint coordinates, heading angles, and certain vehicle velocity

and attitude constraints at these waypoints, how to find a feasible trajectory that fully

utilizes the dynamic capabilities of a multi-copter to achieve optimal aggressiveness

and perform precise trajectory tracking control?”. We divide this research into three

phases. In the first phase, we adopt a simplified quadcopter dynamic model and develop a

synthesis framework that fully utilizes the available dynamic capability of the quadcopter

vi

when performing the most aggressive maneuver. Next to be more realistic, we further con-

sider rotor aerodynamic, gyroscopic, and rolling effects in phase two and perform high

fidelity Gazebo/RotorS simulation. In the final phase, we perform real quadcopter flight

experiments to verify all the theories we developed. The summary of the three research

phases is provided below.

1. First phase of the research focuses on developing a synthetic architecture to find the

most aggressive trajectory based on the waypoints, the requirement on vehicle head-

ing and maneuver at waypoints, and the full usage of rotor thrust for a multi-coper.

We use multi-segment polynomials to generate the trajectory and ensure its smooth-

ness by maintaining continuity in trajectory derivatives. To optimize the polynomial

coefficients, we form the quadratic problem with the cost on the trajectory deriva-

tive which is related to the actuator input of the vehicle. We incorporate waypoint

velocity and attitude requirements as equality constraints in the optimization prob-

lem. To optimize the segment time between waypoints, we introduce an augmented

cost on both trajectory derivative and total time. We connect the polynomial trajec-

tory with the actual quadcopter dynamics and rotor inputs through inverse dynamics

analysis. We finally define aggressiveness and find the optimal trajectory with the

desired aggressiveness by tracking the maximum rotor thrust required for the op-

timized trajectory. As the optimized aggressive trajectory is obtained, a geometric

controller is used to perform the polynomial trajectory tracking and verify the feasi-

bility of the trajectory and the accuracy of the inverse dynamics analysis. Further, a

novel method for yaw trajectory optimization is also proposed to further improve the

aggressive performance in the case when there are no specific requirements on the

vehicle heading.

2. Many aggressive trajectory studies have employed a simplified multi-copter dynamic

model that neglects factors such as aerodynamic, gyroscopic, and rotor rolling ef-

vii

fects. However, these effects could be significant, especially during aggressive flights.

Therefore, in the second phase of the research we further incorporate these additional

effects into the dynamic model, examine how they could affect the vehicle dynamics,

and propose compensatory measures in both optimal constrained trajectory planning

and geometric control trajectory tracking. We integrate the compensations for these

effects into the optimal aggressive constrained trajectory synthesis proposed in the

phase one. Firstly we integrate all these effects into the inverse dynamics analysis

and solve for the vehicle states, control inputs, and rotor speeds in an iterative fashion.

Then, we integrate the aerodynamic drag into the trajectory derivative constraints for

window passing to compensate for attitude changes caused by drag forces. This is

also an iterative process, and the modified inverse dynamics analysis is utilized to

solve for rotor speeds at each window waypoint iteratively. In trajectory planning,

we observe how the compensation for aerodynamic drag could significantly change

the resultant optimized trajectory. In trajectory tracking simulations, we observe how

the compensations for the additional effects could improve the tracking performance.

3. In the final phase, we verify the aggressive trajectory optimization and the trajec-

tory tracking control through real flight experiments. The DJI F450 quadcopter is

used to conduct the flight tests in the Vicon motion capture environment. The SITL

(Software in the Loop) test environment has been built up as well as the actual flight

system. We obtain inertia properties of the vehicle through detailed SolidWorks CAD

modeling. A series of static, and flight tests are conducted to identify all the parame-

ters in our quadcopter dynamic model through maximum likelihood estimation. The

trajectory optimization framework is modified according to the actual quadcopter

actuator configuration, the identified parameters, and additional dynamic model ad-

justments found necessary during flight tests. The trajectory tracking control is based

on the native PX4 flight controller and one companion trajectory controller running

viii

on the on-board computer to offer trajectory information and additional feedforward

and compensation terms that were proposed in the second phase of this research to

the flight controller. We tuned the rate and attitude controller gains for fast track-

ing. We overcome the issue of conservative attitude set-point mapping and attitude

tracking delay caused by rotor time constant by pre-sending scaled feedforward ac-

celeration commands with a fixed lead time. Finally, the precise trajectory tracking

is achieved, and the feasibility of the optimal aggressive constrained trajectory is

confirmed through actual narrow window passing flight tests.

ix

Table of Contents

Acknowledgements . iv

Abstract . vi

List of Illustrations . xiii

List of Tables . xix

Chapter Page Chapter

1. Introduction . 1

1.1 Motivation and Background . 1

1.2 Objectives . 6

1.3 Summary of Contributions . 7

1.4 Dissertation Outline . 9

2. Multi-Copter Aggressive Constrained Trajectory Optimization Framework and

Tracking Control . 11

2.1 Mathematical Model Description . 11

2.2 Solution Methodology . 14

2.2.1 Multi-Segment Polynomial Trajectory Optimization 15

2.2.2 Constraints on Vehicle Velocity and Attitude at Waypoints 19

2.2.3 Segment Time Optimization . 22

2.2.4 Inverse Dynamics . 25

2.2.5 Max Force Tracking and Aggressiveness Defined 28

2.3 Numerical Results . 30

2.4 Geometric Control and Simulation Result 35

2.5 Yaw Trajectory Optimization . 39

x

2.6 Conclusions . 44

3. Compensation for Aerodynamic, Gyroscopic and Rotor Rolling Effects in the

Synthesis . 46

3.1 Mathematical Model Description . 46

3.2 Solution Methodology . 51

3.2.1 Inverse Dynamics Analysis . 52

3.2.2 Drag Compensation in Waypoint Attitude Constraint 64

3.3 Numerical Results . 68

3.3.1 Drag Induced, Gyroscopic and Rotor Rolling Torques 68

3.3.2 Window Passing Trajectory Planning 72

3.4 Trajectory Tracking Control and Simulation Result 76

3.5 Conclusions . 85

4. Flight Test Environment Setup . 86

4.1 Aerial System . 87

4.2 Ground Control System . 93

4.3 Vicon Motion Capture System . 95

5. High Fidelity Simulations . 98

5.1 RotorS/Gazebo Simulation . 98

5.1.1 1-D Minimum Snap Trajectory Tracking Test 101

5.1.2 Window Passing Trajectory Tracking Test 104

5.2 PX4 SITL Simulation . 107

5.2.1 Simulation System Architecture 108

5.2.2 Flight Test Data Comparison . 110

6. System Model Parameter Identification . 114

6.1 SolidWorks CAD modeling . 115

6.2 Static Rotor Test . 119

xi

6.3 Flight Experiments . 124

6.3.1 Experimental Design . 125

6.3.2 Maximum Likelihood Estimation 126

6.3.3 Fixed Position Hovering Test . 128

6.3.4 Climbing and Descending Test . 130

6.3.5 Fixed Roll Angle Level Flight Test 134

6.3.6 Fixed Position Turning Test . 141

7. Trajectory Tracking Flight Test . 147

7.1 Dynamic Model Modification . 147

7.2 Trajectory Tracking Control . 148

7.3 Controller Tuning . 151

7.4 Multi-segment Aggressive Trajectory Tracking and Trajectory Aggressive-

ness Verification . 160

7.5 Narrow Window Passing Verification . 164

8. Summary and Closing Remarks . 171

Appendix

A. PX4 Parameters Used in This Research . 175

References . 184

Biographical Statement . 190

xii

List of Illustrations

Figure Page

2.1 Reference frames and quadcopter forces/moments 12

2.2 Methodology of the aggressive trajectory optimization 15

2.3 Relevant frames for quadcopter and window constrains 22

2.4 Comparison of trajectories optimized with different cT 25

2.5 Comparison of maximum rotor force and total time for trajectories optimized

with different cT . 29

2.6 Plot of the test scenario and the optimal trajectory 31

2.7 Vehicle Euler angles along the trajectory flight 32

2.8 Vehicle body angular rate along the trajectory flight 32

2.9 Vehicle body angular acceleration along the trajectory flight 33

2.10 Control input along the trajectory flight . 33

2.11 Rotor thrust along the trajectory flight . 34

2.12 Plot of the quadcopter along the trajectory flight 35

2.13 Trajectory tracking result . 37

2.14 Vehicle Euler angle comparison . 38

2.15 Vehicle linear acceleration tracking . 38

2.16 Vehicle angular acceleration comparison 38

2.17 Control input comparison . 39

2.18 Rotor force comparison . 39

2.19 Simple 4-waypoint aggressive trajectory . 41

2.20 Optimal yaw trajectory for the trajectory 41

xiii

2.21 Simulation result of control input with geometric controller 42

2.22 Rotor force comparison . 42

2.23 Maximum rotor force required for trajectories optimized with cost on differ-

ent order of derivative . 43

2.24 Comparison of trajectories optimized with cost on different order of derivative 44

3.1 Reference frames and quadcopter forces/moments 47

3.2 Drag and drag induced torque acting on a quadcopter 49

3.3 Rotor rolling torque acting on a forward moving rotor 50

3.4 Solution methodology and procedure of the aggressive trajectory optimization 52

3.5 Schematic of drag force compensation in u1 and zB direction 54

3.6 Simple 4-waypoint aggressive trajectory . 63

3.7 Iterations taken and resultant ωs in the inverse dynamics analysis 63

3.8 Plot of vehicle attitude at waypoints – drag force not considered in planning . 64

3.9 Schematic of a quadcopter flying through a narrow window 65

3.10 Simple 4-waypoint aggressive trajectory with counter-clockwise turning . . . 69

3.11 Drag induced torque and control moment along the trajectory flight 70

3.12 Gyroscopic torque and control moment along the trajectory flight 70

3.13 Rotor rolling torque and control moment along the trajectory flight 71

3.14 Combined torque effect and control moment along the trajectory flight 71

3.15 Comparison between the new trajectory and the original one 73

3.16 Comparison between the trajectories for the modified scenario 74

3.17 Individual rotor thrusts along the trajectory flight 75

3.18 Vehicle Euler angles along the trajectory flight 75

3.19 Plot of vehicle attitude at waypoints – drag force compensated in planning . 76

3.20 Trajectory tracking comparison for compensations added step by step 79

3.21 X-axis tracking error comparison . 81

xiv

3.22 Y-axis tracking error comparison . 81

3.23 Z-axis tracking error comparison . 82

3.24 Comparison between simulation and estimation – vehicle attitude 83

3.25 Comparison between simulation and estimation – angular velocity and ac-

celeration . 83

3.26 Comparison between simulation and estimation – control input 84

3.27 Comparison between simulation and estimation – rotor thrust 85

4.1 DJI F-450 quadcopter . 86

4.2 Flight test system architecture . 87

4.3 DJI F450 Airframe . 88

4.4 DJI E305 propulsion suit . 88

4.5 FrSky X4R-SB RC Receiver . 89

4.6 Holybro SiK 915MHz telemetry radio . 89

4.7 ThunderFly TFRPM01 RPM sensor (left) and TFI2CADT01 address trans-

lator (right) . 90

4.8 RPM tachometer installation . 91

4.9 Holybro Pixhawk 4 Mini autopilot device 92

4.10 Raspberry Pi 3B on-board computer . 93

4.11 The ground station laptop . 94

4.12 FrSky Taranis Q X7 RC transmitter . 95

4.13 Vicon Motion Capture System . 96

4.14 Vicon computer screen and the flight test 96

5.1 Gazebo screen of an AscTec Firefly hexacopter flight simulated with RotorS 99

5.2 Rotor configuration of the hexacopter . 100

5.3 1-D minimum snap trajectory tracking in RotorS simulation 101

5.4 1-D trajectory tracking with only position commands 102

xv

5.5 1-D trajectory tracking with up to acceleration commands 102

5.6 1-D trajectory tracking with rotational feedforward terms 103

5.7 1-D trajectory tracking with rotor drag compensation 104

5.8 2-window passing trajectory tracking in RotorS simulation 105

5.9 Position tracking in the 2-window passing flight 106

5.10 Velocity tracking in the 2-window passing flight 106

5.11 Vehicle attitude in the 2-window passing flight 107

5.12 Gazebo and GCS display in SITL simulation 109

5.13 SITL simulation system architecture . 110

5.14 1-D minimum snap trajectory tracking in actual flight 111

5.15 1-D minimum snap trajectory tracking in SITL simulation 111

5.16 Trajectory tracking comparison with only position commands 112

5.17 Trajectory tracking comparison with up to velocity commands 112

5.18 Trajectory tracking comparison with up to acceleration commands 113

6.1 Finalized quadrotor CAD model; (a): Top view, (b): Isometric View, (c):

Front view, (d): Side view . 116

6.2 Vehicle CG location and measurements from the reference point 117

6.3 Power unit disassembly . 117

6.4 CAD model assembly of the power unit rotating part 118

6.5 Measurement of the propeller from vehicle CG 119

6.6 Rotor test bench . 120

6.7 Thrust vs PPM test data plot . 121

6.8 RPM vs PPM test data plot . 121

6.9 Thrust vs RPM2 test data plot . 122

6.10 Thrust vs PPM and voltage surface fitting 123

6.11 RPM vs PPM and voltage surface fitting . 124

xvi

6.12 Position data in hovering test . 128

6.13 RPM data in hovering test . 129

6.14 Rotor configuration of the quadcopter . 129

6.15 kω calculation result from hovering test data 130

6.16 Z-axis response in climbing and descending test 131

6.17 RPM data in climbing and descending test 131

6.18 Quadcopter force diagram in climbing and descending test 132

6.19 Climbing test data and estimation result . 133

6.20 Descending test data and estimation result 134

6.21 Flight data in -4 degree roll test . 136

6.22 RPM data in -4 degree roll test . 136

6.23 Quadcopter force diagram in fixed roll test 137

6.24 -4-degree roll test data and Y-axis estimation result 139

6.25 -4-degree roll test data and Z-axis and pitching estimation result 140

6.26 Yawing response in fixed position turning test 142

6.27 RPM data in fixed position turning test . 142

6.28 Quadcopter force and moment diagram in fixed position turning test 143

6.29 Fixed position turning test data and estimation result 145

7.1 Plus and cross configuration for quadcopters 148

7.2 1-D minimum snap trajectory tracking with native PX4 controller 149

7.3 Trajectory tracking control architecture . 151

7.4 Roll rate controller gain tuning . 152

7.5 Actual data and filtered data in roll rate tracking 152

7.6 Roll controller gain tuning . 153

7.7 Rotor response example . 153

7.8 Trajectory tracking comparison in attitude control gain tuning 154

xvii

7.9 Roll tracking before the attitude control gain tuning 155

7.10 Roll tracking after the attitude control gain tuning 155

7.11 Trajectory tracking comparison in acceleration command pre-sending 156

7.12 Roll tracking comparison in acceleration command pre-sending 157

7.13 Roll tracking comparison in acceleration command scaling 158

7.14 Position tracking comparison in acceleration command scaling 158

7.15 Velocity tracking comparison in acceleration command scaling 159

7.16 Final position tracking result . 159

7.17 Final velocity tracking result . 160

7.18 Final roll angle tracking result and comparison 160

7.19 The 2-segment trajectory and MATLAB/Simulink simulation 161

7.20 The 2-segment trajectory tracking flight . 162

7.21 Position tracking result in 4.8N max-thrust test 162

7.22 Velocity tracking result in 4.8N max-thrust test 163

7.23 Attitude data comparison in 4.8N max-thrust test 163

7.24 20-degree tilted narrow window geometry 165

7.25 The window passing trajectory and MATLAB/Simulink simulation 165

7.26 The 20-degree window passing flight . 166

7.27 Position tracking result in 20-degree window passing flight 166

7.28 Attitude data comparison in 20-degree window passing flight 167

7.29 The 20-degree window passing flight . 167

7.30 Position tracking result in 20-degree window passing flight 168

7.31 Attitude data comparison in 20-degree window passing flight 168

7.32 Comparison of window passing trajectories 169

xviii

List of Tables

Table Page

2.1 Quadcopter parameters . 30

2.2 Waypoint settings in the scenario. 30

2.3 Window (WDW) settings in the scenario. 31

3.1 Quadcopter parameters. 68

3.2 Waypoint settings in the scenario. 72

3.3 Window (WDW) settings in the scenario. 72

3.4 The RMS Tracking Errors . 80

5.1 Quadcopter parameters. 100

6.1 Main Parameters to be identified . 114

6.2 Coefficients for the thrust function . 122

6.3 Coefficients for the RPM function . 124

6.4 Parameters to be identified in flight experiments 125

6.5 Estimation results in climbing and descending tests 135

6.6 Estimation results in fixed roll angle tests 141

6.7 Estimation results in fixed position turning tests 146

7.1 Waypoint settings in the scenario . 161

7.2 Trajectory aggressiveness test results . 164

7.3 Window passing test results . 169

A.1 PX4 EKF2 parameter settings . 176

A.2 PX4 sensor parameter settings . 179

A.3 PX4 controller parameter settings . 181

xix

Chapter 1

Introduction

1.1 Motivation and Background

Phase 1 – Aggressive Constrained Trajectory Optimization

Multi-copters, such as quadcopters, hexacopters, octocopters, and others have been very

popular in recent years mainly because of their availability, mobility, agility, and flexibility.

They are a great platform for control experiments and various applications. Their character-

istics also make them an attractive choice for high-speed aerial navigation through complex

environments. Various researches related to aggressive trajectory generation and aggres-

sive maneuver tracking have been conducted. Some recent examples include [1], in which

the authors proposed a novel control law for accurate tracking of aggressive quadcopter

trajectories. In [2] the authors presented a framework to do optimal time allocation for

quadcopter trajectory generation. In [3] the authors addressed the problem of performing

aggressive quadcopter maneuvers that are attitude-constrained. We pursue aggressiveness

because time is a critical issue in the given scenario. We adopt aggressive maneuvers be-

cause the environment is complicated and sometimes very specific maneuvers are needed

in order to satisfy path and vehicle state constraints, given the environment model. How-

ever, the level of aggressiveness one can achieve depends on the optimality of the trajectory

plan and the dynamic capability of the vehicle. It will be valuable if one can generate a tra-

jectory that fully utilizes the dynamic capability of the vehicle while accommodating the

maneuvers required at specific locations.

Firstly regarding trajectory optimization, in [4] the authors proposed an effective and

efficient method to jointly optimizing spatial and temporal parameters of a trajectory. In

1

this method, the actuator constraints are only enforced by restricting norms on trajectory

velocity and acceleration. However, these variables only have loosely connection to the

maximum rotor thrust needed in the trajectory especially in aggressive maneuvers. In [5]

the authors proposed a multi-fidelity Bayesian optimization framework to find time-optimal

quadrotor trajectory. This method involves machine learning and simulation/experiment

samples which are scenario dependent. Moreover, the maximum rotor thrust can hardly

be specified with this method. In [6] the authors found time-optimal trajectory through

discrete state space model optimization which is highly computational demanding. The

result discrete non-analytical state trajectory could make it difficult to be tracked accu-

rately. In [7] the authors proposed an optimization-based framework to find minimum con-

trol effort trajectory subject to geometrical spatial constraints and user-defined dynamic

constraints. This method is not trivial because all the objective function, user-defined con-

straints and vehicle dynamics must be expressed in differential flat output space with spatial

and temporal gradients available. In this method, the rotational dynamics is neglected, the

dynamic constraint is on collective thrust rather than individual rotor thrust, and the full

usage of thrust capability is not pursued. For methods in [4–6], constraints on vehicle ma-

neuver at waypoints can hardly be implemented. For methods in [6] and [7], it could be

difficult to adopt realistic vehicle dynamics. Secondly regarding vehicle maneuver con-

straint at waypoints, in [8] the authors proposed a trajectory planning method for quadrotor

to fly through narrow gaps. This method is to approach an initial point and stay on the plane

orthogonal to the gap with constant collective thrust forming a ballistic trajectory passing

through the center of the gap until reaching the final point. It would be hard to incorpo-

rate this approach into a trajectory optimization framework. In [9] and [10], the authors

proposed a safe-passage cone-based guidance strategy for robots to pass through fixed and

moving narrow orifices. They did not use this guidance strategy in trajectory optimization.

In [11] the authors posed the narrow gap passing requirement as a constraint on trajectory

2

acceleration at the waypoint. The proposed method is yaw angle dependent and the vertical

acceleration is user specified. To optimize the trajectory as a whole, the narrow gap passing

method should be independent of yaw angle and the vertical acceleration should also be a

variable which is optimized in the framework.

For multi-copter trajectory generation and motion control, ideas such as multi-segment

polynomial, minimum derivative optimization, and differential flatness inverse dynamics

analysis are widely adopted [12–14]. To achieve an aggressive trajectory, methods such as

segment time allocation [15] and spatial-temporal trajectory optimization [2,4,7] have been

proposed. However, we do not yet have a synthetic architecture to find the most aggressive

trajectory based on the waypoints, the requirement for vehicle heading and maneuvering at

waypoints, and the full usage of rotor thrust for a multi-coper. Therefore in the first phase

of this research, we would like to develop a complete synthesis to fill this gap. We adopt

a simplified quadcopter dynamic model and develop a optimization framework that fully

utilizes the available rotor thrust of the quadcopter when performing the most aggressive

maneuver. The constraint on vehicle maneuvering at waypoints is posed as a window pass-

ing through problem and solved through the trajectory optimization as trajectory derivative

constraints. The maximum rotor thrust for the trajectory is obtained through the inverse

dynamics analysis. As the optimized aggressive trajectory is obtained, a geometric con-

troller [16] is used to perform the polynomial trajectory tracking and verify the feasibility

of the trajectory and the accuracy of the inverse dynamics analysis.

Phase 2 – Compensation for Additional Effects

Over the past decade multi-copter aggressive trajectory planning and accurate tracking con-

trol has been a popular research topic. For example in [17] the authors proposed the poly-

nomial trajectory planning for quadrotors to fly aggressively through cluttered indoor envi-

ronments, in [18] the authors proposed an optimization-based framework to find minimum

3

control effort trajectory subject to geometrical spatial constraints and user-defined dynamic

constraints, and in [19] the authors proposed a novel control law for accurate tracking of

aggressive quadcopter trajectories. In the majority of these works, a standard simplified

multi-copter dynamic model had been used in which many factors such as aerodynamic,

gyroscopic and rotor rolling effects are simply neglected. However, these effects could

be significant in aggressive flights while it is reasonable to neglect them in mild flights.

Recently, some works also took aerodynamic drag into account for example in [20] the au-

thors proposed a drag-utilization scheme to improve the tracking performance, in [21] the

authors developed a reachability control strategy with drag force considered, and in [22] the

authors derived an accurate mathematical model for quadrotor UAVs based on the Euler-

Lagrange formulation which also includes gyroscopic effects and aerodynamic drag. In the

first phase of this research, we adopted the simplified dynamic model and proposed an op-

timal aggressive constrained trajectory synthesis to address the problem of how to generate

an optimal aggressive trajectory subject to waypoint maneuver constraint and individual

rotor thrust limitation. Therefore, in this next phase we would like to further incorporate

these additional effects into the dynamic model, examine how they could affect the vehicle

dynamics, and propose the way to compensate these effects both in the optimal constrained

trajectory planning and in the geometric control trajectory tracking.

Regarding those additional effects, in [23] the authors proposed a way to prove that

the dynamical model of a quadrotor subject to linear rotor drag effects is differentially flat

in its position and heading. However, while it makes the inverse dynamics derivation easier,

the simple linear drag model is somewhat impractical because the variation in rotor speed

is not taken into account. As a result, they have to experimentally find different approxi-

mate value of the drag coefficient for different flight trajectory. For aerodynamic effects,

the rotor drag model based on momentum and blade element theories is widely discussed

for example in [24] and [25]. In [26], the authors proposed aerodynamic effect models

4

for induced drag and refined thrust, accurately identified the parameters experimentally,

and improved the flight tracking error by compensating these effects. However, they only

compensated the induced drag for the collective thrust and desired attitude in the trajectory

tracking control, not further considering its effect on the rotational dynamics. Gyroscopic

and rotor rolling effects are commonly considered secondary effects and often neglected as

discussed in [27] and [28]. In general multi-copter configurations, there is usually equal

number of clockwise and counter clockwise spinning identical rotors, and the gyroscopic

and rotor rolling torques from one group of rotors tend to cancel out those from the other

group especially in near-hover situation. However, in aggressive flight when the vehicle

is in high dynamic motion (edgewise velocity and rolling/pitching rate) with significant

yawing control effort applied, these two effects could become significant. For gyroscopic

effect, the standard model is widely used as in [29] and [30]. For rotor rolling effect,

in [31] and [32] the authors proposed a similar model which is proportional to the rotor

speed and the edgewise velocity, and the experimental data in [33] is found supportive to

this model. Some studies indicate that the flexibility of the propeller could partially turns

the gyroscopic and rotor rolling effects into the blade flapping phenomenon [32,34]. In this

research, we only consider relatively stiff propellers for small multi-copters and develop the

compensation framework accordingly.

We adopted the models for aerodynamic effects proposed in [26], the standard gy-

roscopic torque model, and the rotor rolling model in [31] into our previous framework of

optimal aggressive constrained trajectory synthesis [35]. Besides the full inverse dynamics

derivation, the challenge also lies in the dependence of all the additional effects on indi-

vidual rotor speeds. However, the resultant rotor speeds can only be obtained in the end of

the analysis when all the additional effects are compensated and the individual rotor thrusts

are determined. Likewise, in the attempt to compensate rotor drag in the trajectory deriva-

tive constraint for waypoint maneuver, the rotor speeds and vehicle velocity that decide the

5

rotor drag can only be determined when the trajectory polynomials are obtained after the

optimization process. To address this problem, we utilize the refined thrust model in [26]

and propose an iterative method which was proved practical and efficient in all of our test

cases.

1.2 Objectives

In this research we assume that the dynamic capability of the multi-copter is limited

by its maximum rotor thrust and address the problem as “Given waypoint coordinates,

heading and vehicle velocity and attitude constraints at these waypoints, how to find

a feasible trajectory that fully utilizes the dynamic capability of a multi-copter to

achieve the optimal aggressiveness and perform precise trajectory tracking control?”.

The research objectives are listed as:

1. Synthesize optimal aggressive trajectories for a multi-copter with state, path and con-

trol constraints.

2. Synthesize inverse dynamics based trajectories that accommodate aerodynamic, gy-

roscopic, and rolling effects.

3. Estimate key vehicle mass-inertia-drag-rotor parameters using controlled flight ex-

periments.

4. Verify synthesis methodology using high fidelity RotorS/PX4 SITL/Gazebo simula-

tions with estimated vehicle parameters.

5. Verify synthesis methodology and perform trajectory and maneuver tracking using

quadcopter flights.

6

1.3 Summary of Contributions

Phase 1 – Aggressive Constrained Trajectory Optimization

Our main contribution in this phase is the development of a complete synthesis framework

to find the most aggressive trajectory that fully utilizes the available dynamic capability

(maximum thrust) of the multi-copter and satisfies the constraints on the waypoints and

the requirement for vehicle heading and maneuver at waypoints. This is achieved by in-

tegrating the constrained minimum snap quadratic program and the differential flatness

based inverse dynamics analysis into a whole optimization framework. With this frame-

work we can find the optimal polynomial trajectory and the corresponding segment time

allocation for a given multi-copter model, a specified scenario, and a desired aggressive-

ness. Unlike other methods, we actually track the maximum individual rotor thrust required

during trajectory optimization. This approach allows us to precisely manage the level of

aggressiveness, ensuring it is not overly risky while still pursuing aggressiveness and, at

the same time, avoiding excessive conservatism. We can also tell if the given scenario is

beyond the capability of the given multi-copter by examining whether the solution exists.

Additionally, a yaw trajectory optimization method based on our framework is proposed to

improve the aggressive performance in the case of no requirement on heading angle. In this

research we also compared and confirmed that minimum snap optimization is indeed the

optimal choice for this approach of multi-copter aggressive trajectory optimization. This

has not previously shown in the literature, though minimum snap or jerk trajectories are so

commonly used by researchers.

Phase 2 – Compensation for Additional Effects

The main contribution in this phase is in the development of the complete framework to

compensate the aerodynamic, gyroscopic and rotor rolling effects in the inverse dynamics

analysis. This framework shows how the differential flatness property can be preserved

while introducing all these additional effects. This method benefits both the precise es-

7

timation of the vehicle state and control input in the trajectory planning phase and the

accurate computation of feedforward terms in the trajectory tracking phase. For trajectory

planning, this method can be adopted for realistic flight estimation regardless the planning

or optimization method used as long as the resultant timed trajectory is analytical. Based

on this capability, we are also able to compensate the aerodynamic drag in the waypoint

maneuver constraint and find optimal trajectories that are more precise and realistic. And

for trajectory tracking, the compensation in feedforward terms improves the tracking per-

formance. Without the compensation, the tracking accuracy and the controller flexibility

could be sacrificed.

Phase 3 – High Fidelity Simulation, System Identification and Flight Test

In the high fidelity simulation, we verify our aggressive trajectory synthesis in a more real-

istic virtual environment. We also share our experience in establishing the comprehensive

Software-in-the-Loop (SITL) simulation environment. Such a simulation is valuable be-

cause it allows for thorough testing of system integration, data communication, controller

implementation, and even the detailed flight test procedure before conducting actual flights.

Additionally, we present a comparison between the simulation results and the data obtained

from actual flight tests to validate the degree of similarity.

During the system identification process, we have successfully developed a com-

prehensive approach to obtain all the parameters necessary for our quadcopter’s dynamic

model. The accurate identification of these parameters holds significant value for our cur-

rent research and serves as a valuable reference for further study. Additionally, the flight

test procedure used for identification, along with the data analysis and parameter estima-

tion techniques employed, provides a helpful guideline for researchers undertaking similar

investigations in the field.

During actual flight tests, we successfully achieved precise trajectory tracking by in-

tegrating our proposed trajectory tracking control and effects’ compensation with the PX4

8

flight controller. This provides a hybrid approach to benefit from the robustness and stabil-

ity of the PX4 flight controller while incorporating the inverse dynamics based trajectory

tracking control. The feasibility of the optimal aggressive constrained trajectory synthesis

is confirmed through actual narrow window passing flight tests. The actual RPM data in

the flight tests also verifies the specification of maximum rotor thrust in our framework and

proves the practical value of our trajectory optimization framework and inverse dynamics

analysis.

List of Publications

• Published: Tsung-Liang Liu and Kamesh Subbarao, “Optimal aggressive constrained

trajectory synthesis and control for multi-copters,” Aerospace, vol. 9, no. 6, 2022,

https://www.mdpi.com/2226-4310/9/6/281

• Under review: Tsung-Liang Liu and Kamesh Subbarao, “Inverse Dynamics based

Aerodynamic, Gyroscopic, and Rotor Effects’ Compensation in Constrained Trajec-

tory Synthesis for Multi-Copters,” Part G: Journal of Aerospace Engineering, 2023

• To be submitted: Tsung-Liang Liu and Kamesh Subbarao, “Parameter Identification,

Modeling, and Control of Multicopters: Simulation and Experiments,” ASME Journal

of Autonomous Vehicles and Systems, 2023

1.4 Dissertation Outline

This dissertation is divided into 8 chapters. Chapter 2 presents the development

of the complete aggressive constrained trajectory optimization framework which is based

on a simplified quadcopter dynamic model. The geometric controller is used in MAT-

LAB/Simulink simulations to verify the resultant optimized trajectory and the estimated

vehicle dynamics. In Chapter 3, aerodynamic, gyroscopic and rotor rolling effects are in-

corporated into the dynamic model and the trajectory synthesis. The compensations for

9

these effects are proposed both in the trajectory optimization and the trajectory tracking

control. Then we introduce the flight test environment. Key components/devices in the

flight test system and important hardware/software integration setup are described in Chap-

ter 4. Chapter 5 introduces two high fidelity simulations used in this research. Trajectory

tracking control test is described, and comparison between simulation and actual flight data

is provided. Chapter 6 discusses the quadcopter dynamic model parameter identification

through CAD modeling, static rotor tests, and a series of flight tests. Chapter 7 carries out

the actual aggressive trajectory tracking flight. We introduce the actual trajectory tracking

control implementation, the controller tuning, the trajectory aggressiveness verification,

and finally the narrow window passing flight verification. Lastly, the concluding remarks

of this dissertation are presented in Chapter 8.

10

Chapter 2

Multi-Copter Aggressive Constrained Trajectory Optimization Framework and Tracking

Control

While aggressive flight using multi-copters is widely discussed/mentioned, there is

not much effort put toward defining aggressiveness and finding the most aggressive trajec-

tory with complex maneuver requirements for a given vehicle model. Therefore, in this

research, the problem is addressed as: Given waypoint coordinates, heading angles, and

some vehicle velocity and attitude constraints at these waypoints, how can we find a fea-

sible trajectory that fully utilizes the dynamic capability of a multi-copter to achieve the

optimal aggressiveness? In this chapter we adopt a simplified quadcopter dynamic model

and develop a synthesis framework that fully utilizes the available dynamic capability of

the quadcopter when performing the most aggressive maneuver. A formal definition of ag-

gressiveness will be provided in the latter sections. As the optimized aggressive trajectory

is obtained, a geometric controller is used to perform the polynomial trajectory tracking and

verify the feasibility of the trajectory and the accuracy of the inverse dynamics analysis.

2.1 Mathematical Model Description

A generic model for quadcopters is used in this phase. Note that the proposed ap-

proach can be applied to different configurations of multi-copters by modifying the vehicle

force and moment model according to the desired rotor configuration and control alloca-

tion method. The coordinate systems and forces and moments generated by the rotors are

shown in Figure 2.1.

11

Figure 2.1. Reference frames and quadcopter forces/moments.

The body frame, B, is attached to the center of mass of the quadcopter and rotor 1

is on the positive XB-axis. The gravitational acceleration g is in the −ZI direction of the

inertial frame, I . Euler angles roll φ, pitch θ, and yaw ψ are used to define orientation from

inertial frame to body frame. Note, Z −X − Y rotation order is used here, and therefore

the rotation matrix for transforming coordinates from B to I is given by:

RIB =


cosψ cos θ − sinφ sinψ sin θ − cosφ sinψ cosψ sin θ + cos θ sinφ sinψ

cos θ sinψ + cosψ sinφ sin θ cosφ cosψ sinψ sin θ − cosψ cos θ sinφ

− cosφ sin θ sinφ cosφ cos θ

 (2.1)

The position vector of the quadcopter in the inertial frame is denoted by r. With

the gravity force acting in the −ZI direction and the forces of the rotors acting in the ZB

12

direction, the equation governing the acceleration of the quadcopter with respect to inertial

frame is given by:

mr̈ =


0

0

−mg

+RIB


0

0

F1 + F2 + F3 + F4

 (2.2)

With p, q, and r denoting the components of angular velocity of the quadcopter in

the body frame, the rotational kinematics equation is given by:


p

q

r

 =


cos θ 0 − cosφ sin θ

0 1 sinφ

sin θ 0 cosφ cos θ



φ̇

θ̇

ψ̇

 (2.3)

Assuming rotors 1 and 3 rotate in the −ZB direction while 2 and 4 rotate in the ZB

direction, M1 and M3 act in the ZB direction while M2 and M4 act in the −ZB direction

since the moment produced by the rotor is opposite to the direction of rotation of the blade.

With I denoting the moment of inertia of the quadcopter referenced to the center of mass

and L denoting the distance from the axis of rotation of the rotors to the center of the

quadcopter, the rotational dynamics equation is given by:

I


ṗ

q̇

ṙ

 =


L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4

−

p

q

r

× I

p

q

r

 (2.4)

Define the input u = [u1 u2 u3 u4]T wherein u1 is the total force from the rotors

and u2, u3 and u4 are the moments about XB, YB and ZB axes. Following [14], we assume

that the force and moment produced by the ith rotor are proportional to the square of its

rotational speed as:

Fi = kfω
2
i , Mi = kmω

2
i (2.5)

13

The relationship between the input and the angular speed of the rotors can be repre-

sented as:

u1

u2

u3

u4


=



F1 + F2 + F3 + F4

L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4


=



kf kf kf kf

0 kfL 0 −kfL

−kfL 0 kfL 0

km −km km −km





ω2
1

ω2
2

ω2
3

ω2
4


(2.6)

2.2 Solution Methodology

We use multi-segment polynomials to generate the trajectory and assure its smooth-

ness by having trajectory derivative continuities. To optimize the polynomial coefficients,

we form the quadratic problem with the cost on the trajectory derivative which is related

to the actuator input of the vehicle. We accommodate waypoint velocity and attitude re-

quirements in the optimization problem as equality constraints. To optimize the segment

time between waypoints, we introduce an augmented cost on both trajectory derivative and

total time. We connect the polynomial trajectory and actual quadcopter dynamics and ro-

tor inputs by performing inverse dynamics analysis. We finally define aggressiveness and

find the optimal trajectory with desired aggressiveness by tracking the desired maximum

rotor force needed for the optimized trajectory. The whole methodology and the solution

procedure are illustrated below in Figure 2.2.

14

Figure 2.2. Methodology of the aggressive trajectory optimization.

2.2.1 Multi-Segment Polynomial Trajectory Optimization

Multi-segment polynomials are used to generate the trajectory. For each segment

connecting one and the subsequent waypoint, independent polynomials Px(t), Py(t), Pz(t),

and Pψ(t) are used to represent the quadcopter states x, y, z, and ψ (yaw angle). Since the

15

polynomial framework is identical to the four vehicle states, we show the general procedure

here. Each polynomial segment is represented as:

P (t) = p0 + p1t+ · · ·+ pN−1t
N−1 + pN t

N =
N∑
i=0

pit
i (2.7)

Similarly, four independent costs Jx, Jy, Jz, and Jψ are used to represent the cost

on each vehicle states, and we show the general procedure here. The cost function on the

integral of the quadratic of the trajectory derivatives is:

J =

∫ T

0

[c0P (t)2 + c1P
′(t)2 + c2P

′′(t)2 + · · ·+ cNP
(N)(t)2]dt (2.8)

where T is the flight time for the trajectory segment and cr is user-specified penalty on the

rth derivative of the trajectory. This function can be written in matrix form as:

J = p̄TQp̄ (2.9)

where p̄ = [p0 p1 · · · pN]T and Q is the cost matrix. Following the formulation

in [12],Q can be constructed as:

for r = 0, 1, · · ·N , i = 0, 1, · · ·N , l = 0, 1, · · ·N

Qr(i+ 1, l + 1) =


[
∏r−1

m=0(i−m)(l −m)]T
i+l−2r+1

i+l−2r+1
if i ≥ r ∧ l ≥ r

0 if i < r ∨ l < r

(2.10)

Q =
N∑
r=0

crQr (2.11)

In this research, to minimize the input needed to achieve optimal aggressiveness, we

adopted the choice in [13] which is to minimize the snap (4th derivative) in trajectory x, y,

and z while minimizing the acceleration (2nd derivative) in trajectory ψ. Therefore, we use

c4 = 1 while all other coefficients are set to zero for x, y, and z polynomial, and only c2 = 1

16

for yaw polynomial. The constraints on the derivatives on the endpoints of a polynomial

segment can be imposed as a linear function of the coefficients:

Ap̄ = b

A =

A0

AT

 , b =

b0

bT

 (2.12)

where A is constructed by evaluating the components in the derivative formulations of the

polynomial at t = 0 and t = T corresponding to the appropriate coefficients as:

A0rn =


∏r−1

m=0(n−m) if r = n

0 if r 6= n

(2.13)

ATrn =


[
∏r−1

m=0(n−m)]T n−r if r ≤ n

0 if r > n

(2.14)

We use the 0th order derivative constraint to specify the waypoint position. Higher

order derivatives can be used to specify desired waypoint velocity, acceleration, etc., e.g., to

enforce that the quadcopter starts from rest at the beginning of a trajectory. If not specified,

these derivatives are subject to minimization of the cost function. Having assembled Q,

A, and b, the quadratic problem can be written below. There are methods to solve such a

standard equality constrained QP [36]. In this research, the MATLAB solver “quadprog”

is used.
min
p̄

p̄TQp̄

s.t. Ap̄− b = 0

(2.15)

17

For M polynomial segments, the joint optimization can be composed by concatenat-

ing their cost matrices in a block-diagonal fashion as:

Jjoint =


p̄1

...

p̄M


T 
Q1(T1) 0 0

0
. . . 0

0 0 QM(TM)



p̄1

...

p̄M

 (2.16)

The derivative constraints can also be concatenated in a block-diagonal fashion as:
A1(T1) 0 0

0
. . . 0

0 0 AM(TM)



p̄1

...

p̄M

 = Ader


p̄1

...

p̄M

 =


b1

...

bM

 (2.17)

To have a feasible smooth trajectory, the derivatives should be continuous between

segments. The continuity constraints must be imposed to ensure that the derivatives at the

end of the ith segment match the derivatives at the beginning of the (i+ 1)th segment:

AT,ip̄i = A0,i+1p̄i+1 (2.18)



AT,1 −A0,2 0 0 · · · 0 0

0 AT,2 −A0,3 0 · · · 0 0

...
...

...
...

...

0 0 0 0 · · · AT,M−1 −A0,M





p̄1

p̄2

p̄3

...

p̄M−1

p̄M


= Acon



p̄1

p̄2

p̄3

...

p̄M−1

p̄M


=



0

0

0

...

0

0


(2.19)

18

These constraints can be compiled into a single set of linear equality constraints for

the joint optimization problem:

Ader

Acon



p̄1

...

p̄M

 =



b1

...

bM

0

...

0


(2.20)

2.2.2 Constraints on Vehicle Velocity and Attitude at Waypoints

In scenarios such that the quadcopter needs to pass through some narrow gap (e.g.,

a window) as shown in Figure 2.3, we can utilize the derivative constraints to achieve

the objective.

Assume a waypoint at the center of the window and the window orientation is defined

with Z − X − Y Euler angles roll φ, pitch θ, and yaw ψ. The window forward vector in

inertial frame can be obtained as:

wF = RIB


1

0

0

 =


cosψ cos θ − sinφ sinψ sin θ

cos θ sinψ + cosψ sinφ sin θ

− cosφ sin θ

 =


WFx

WFy

WFz

 (2.21)

The window upward vector in inertial frame can be obtained as:

wU = RIB


0

0

1

 =


cosψ sin θ + cos θ sinφ sinψ

sinψ sin θ − cosψ cos θ sinφ

cosφ cos θ

 =


WUx

WUy

WUz

 (2.22)

19

To fly through the window safely, the velocity vector at the waypoint should be

aligned with the window forward vector. Therefore, the cross product of the vectors should

be zero, and the constraints for the waypoint 1st order derivatives can be composed as:

v ×wF =


ẋ

ẏ

ż

×

WFx

WFy

WFz

 =


ẏWFz − żWFy

żWFx − ẋWFz

ẋWFy − ẏWFx

 =


0

0

0

 (2.23)

From the equation of acceleration, we can deduce that zB in inertial frame is in the

direction of the vector [ẍ ÿ z̈ + g]T :

m


ẍ

ÿ

z̈

 =


0

0

−mg

+RIB


0

0

1


∑

F ⇒ m


ẍ

ÿ

z̈ + g

 = zB ·
∑

F (2.24)

For safely flying through the window, the zB vector of the quadcopter should be

aligned with the window upward vector. Therefore, the constraints for the waypoint 2nd

order derivatives can be composed as:
ẍ

ÿ

z̈ + g

×

WUx

WUy

WUz

 =


ÿWUz − (z̈ + g)WUy

(z̈ + g)WUx − ẍWUz

ẍWUy − ÿWUx

 =


0

0

0

 (2.25)

⇒


ÿWUz − z̈WUy

z̈WUx − ẍWUz

ẍWUy − ÿWUx

 =


gWUy

−gWUx

0

 (2.26)

20

For these constraints, the relationship between x, y, and z derivatives needs to be

specified. Therefore, the joint optimization of x, y, and z should be composed by concate-

nating their cost and constraint matrices in a block-diagonal fashion as:

Jxyz =


¯̄px

¯̄py

¯̄pz


T 
Qx 0 0

0 Qy 0

0 0 Qz




¯̄px

¯̄py

¯̄pz

 (2.27)


Ax 0 0

0 Ay 0

0 0 Az




¯̄px

¯̄py

¯̄pz

 =


bx

by

bz

 (2.28)

where ¯̄px = [p̄x1 · · · p̄xM]T , ¯̄py = [p̄y1 · · · p̄yM]T and ¯̄pz = [p̄z1 · · · p̄zM]T . With this joint

optimization setup, the constraints for a window passage on waypoint s in an M -segment

trajectory can be implemented as:

0 WFzv0,s −WFyv0,s

−WFzv0,s 0 WFxv0,s

WFyv0,s −WFxv0,s 0

0 WUza0,s −WUya0,s

−WUza0,s 0 WUxa0,s

WUya0,s −WUxa0,s 0




¯̄px

¯̄py

¯̄pz

 =



0

0

0

gWUy

−gWUx

0


(2.29)


v0,s =

[
[0×(n+1)]×(s−1) v0 [0×(n+1)]×(M−s)

]
a0,s =

[
[0×(n+1)]×(s−1) a0 [0×(n+1)]×(M−s)

] (2.30)

For a segment polynomial P (t) = p0 +p1t
1 +p2t

2 +p3t
3 + · · ·+pN t

N , the 1st order

derivative (velocity) at t = 0 is v0p̄ and v0 = [0 1 0 0 · · · 0]. The 2nd order derivative

(acceleration) at t = 0 is a0p̄ and a0 = [0 0 2 0 · · · 0].

21

Figure 2.3. Relevant frames for quadcopter and window constrains.

2.2.3 Segment Time Optimization

The above optimization finds the optimal trajectory polynomials for the given seg-

ment times. However, in general cases, we do not specify segment times, and instead, we

would like to also optimize them to achieve better aggressiveness. To optimize segment

times, we modify the cost function in the form:

JT = Jorg + cT

M∑
i=1

Ti (2.31)

where Jorg combines the original cost on x, y, z, and ψ while cT is a penalty on total

time. The cost on x, y, z is the integral of square of derivatives on distance while the

cost on ψ is on angle. To combine the costs, two coefficients µr and µψ are introduced to

non-dimensionalize the costs.

Jorg = µrJxyz + µψJψ (2.32)

22

In this research, we minimize the 4th derivative in trajectory x, y, and z while min-

imizing the 2nd derivative in trajectory yaw angle. Therefore, the above equation can be

represented as:

Jorg =µr

∫ Tf

0

[(
d4x

dt4

)2

+

(
d4y

dt4

)2

+

(
d4z

dt4

)2
]
dt

+ µψ

∫ Tf

0

(
d2ψ

dt2

)2

dt

(2.33)

where µr and µψ are defined as:

µr =

 1

max
(∣∣d4x

dt4

∣∣ , ∣∣∣d4ydt4 ∣∣∣ , ∣∣d4zdt4 ∣∣)
2

(2.34)

µψ =

 1

max
(∣∣∣d2ψdt2 ∣∣∣)

2

(2.35)

We find µr and µψ in the first iteration with initial segment times and then use them

as constants throughout the optimization process. Otherwise, the variation of these two

parameters will affect the convergence of the optimization. With the cost function defined,

we perturb each segment time by some δt to obtain the gradient of the cost function with

respect to each segment time. This is then used in a gradient descent method to find the

time allocation for the minimum cost iteratively.

T̄ =

[
T1 · · · TM

]T
(2.36)

∇iJT =

JT

[
T1 · · · Ti + δt · · · TM

]T
− JT (T̄)

δt
(2.37)

T newi = Ti + α∆Ti , ∆Ti = − ∇iJT
‖∇iJT‖

(2.38)

Since this is a high-dimensional problem with a complex cost function, the step size

α can easily become too small or too large during the iterations and lead to slow conver-

23

gence or even divergence. For numerical efficiency, stability, and convergence, we use the

backtracking line search method [37] to find a suitable step size α in every iteration.

while J(T̄ + α∆T̄) > J(T̄) + εα∇JTT ∆T̄ , α := βα (2.39)

With β = 0.5 and ε = 0.0001, we have fast and stable convergence in our test cases.

Figure 2.4 shows the result of segment time optimization for a simple 2D 4-waypoint sce-

nario. The initial segment time is T̄ = [1 3 1]T s, and we optimize it with two different

cT values, 50 and 5000. The result trajectories look identical because they have similar

segment time distribution while the total time turned out to be 6.28 and 3.53 seconds, re-

spectively. It is observed that, with this segment time optimization process, the optimal

segment time distribution will be found to minimize the cost on integral of the square of

trajectory derivatives, while the optimal total time is found based on the value of cT . The

larger cT used, the smaller the total time will be, which makes the trajectory more aggres-

sive.

24

Figure 2.4. Comparison of trajectories optimized with different cT .

2.2.4 Inverse Dynamics

To connect the polynomial trajectory optimization framework and actual quadcopter

dynamics, we perform the inverse dynamics analysis. The differential flatness method is

widely adopted in inverse dynamics analysis for multi-copters [14]. In this process, we will

find all the states and inputs of the quadcopter according to the trajectory x, y, z, ψ, and

their derivatives. For orientation φ and θ, first from the equation of acceleration we have:

zB =

[
ẍ ÿ z̈ + g

]T
‖
[
ẍ ÿ z̈ + g

]
‖
, u1 = m‖

[
ẍ ÿ z̈ + g

]
‖ (2.40)

Assume xC is the vector obtained by rotating xI around zI by yaw angle ψ:

25

xC =

[
cosψ sinψ 0

]T
(2.41)

We can determine xB and yB by:

yB =
zB × xC
‖zB × xC‖

, xB = yB × zB (2.42)

With vehicle body frame defined, we can determine the rotation matrix and roll and

pitch angles by:

RIB =

[
xB yB zB

]
(2.43)

φ = arcsin [RIB(3, 2)] , θ = arctan

[
−RIB(3, 1)

RIB(3, 3)

]
(2.44)

For angular velocity p, q, and r, first we take the 1st derivative of the equation

of acceleration:

mȧ = u̇1zB + ωB × u1zB (2.45)

Substituting u̇1 = zB ·mȧ we have:

ωB × zB =
m

u1

[ȧ− (zB · ȧ)zB] (2.46)

With ȧ = [
...
x

...
y

...
z], the RHS is known. With xB, yB, and zB being unit vectors,

ωB × zB can be considered as the projection of ωB onto the xB − yB plane with 90◦ shift.

Therefore, the body angular velocities p and q can be determined as:

p = −(ωB × zB) · yB , q = (ωB × zB) · xB (2.47)

From the rotational kinematics equation, we have:

ψ̇ = − sin θ

cosφ
p+

cos θ

cosφ
r

⇒ r =

(
ψ̇ +

sin θ

cosφ
p

)
cosφ

cos θ

(2.48)

26

With p, q, and r solved, we haveωB = RIB[p q r]T , and θ̇ and φ̇ can also be obtained

from the inversion of the rotational kinematics equation. For angular acceleration ṗ, q̇ and

ṙ, first we take the 2nd derivative of the equation of acceleration:

mä = ü1zB + 2ωB × u̇1zB + ωB × ωB × u1zB + ω̇B × u1zB

⇒ ω̇B × zB = (mä− ü1zB − 2ωB × u̇1zB − ωB × ωB × u1zB)/u1

(2.49)

With ä = [
....
x

....
y

....
z], ü1 = zB · (mä− ωB × ωB × u1zB) and u̇1 = zB ·mȧ,

the RHS is known and the body angular accelerations ṗ and q̇ can be determined as:

ṗ = −(ω̇B × zB) · yB , q̇ = (ω̇B × zB) · xB (2.50)

Taking derivative of previous ψ̇ equation, we have:

ψ̈ = − sin θ

cosφ
ṗ+

cos θ

cosφ
ṙ − p d

dt

(
sin θ

cosφ

)
+ r

d

dt

(
cos θ

cosφ

)
⇒ ṙ =

cosφ

cos θ

[
ψ̈ +

sin θ

cosφ
ṗ+ p

(
cos θ cosφθ̇ + sin θ sinφφ̇

cos2 φ

)

−r

(
cos θ sinφφ̇− sin θ cosφθ̇

cos2 φ

)] (2.51)

Next we determine the moment inputs from obtained angular velocity and accelera-

tion by the rotational dynamics equation:
u2

u3

u4

 = I


ṗ

q̇

ṙ

+


p

q

r

× I

p

q

r

 (2.52)

27

Now we have found all the states and inputs of the quadcopter derived from the

trajectory x, y, z, ψ, and their derivatives. We can further determine the angular speed and

force produced of each rotor by:

ω2
1

ω2
2

ω2
3

ω2
4


=



kf kf kf kf

0 kfL 0 −kfL

−kfL 0 kfL 0

km −km km −km



−1 

u1

u2

u3

u4


, Fi = kfω

2
i (2.53)

2.2.5 Max Force Tracking and Aggressiveness Defined

We find the maximum rotor force needed for the trajectory by the inverse dynamics

analysis throughout the whole trajectory and observe how the maximum force and the

trajectory total time vary with different cT values. Figure 2.5 shows the analysis result

for a 3D 4-waypoint scenario. It is observed that, with the increment in cT , the total time

decreases smoothly while the maximum force rises smoothly with increasing slope. With

this relationship, we can track a particular total time or maximum force for a given scenario

by finding a corresponding cT . This is done with gradient decent method from an initial cT

by making a small perturbation on cT and finding the gradient. Because the rotor cannot

generate negative thrust, we should also track the minimum thrust during the process. If the

minimum thrust reaches zero before the maximum thrust reaches desired value, we should

stop the process and call this maximum thrust (corresponding to zero minimum thrust) a

limitation due to the scenario setting.

28

Figure 2.5. Comparison of maximum rotor force and total time for trajectories optimized
with different cT .

With optimal aggressiveness, the quadcopter should finish the tasks in the shortest

time possible by means of its dynamic capability. Generally speaking, the dynamic capa-

bility of a quadcopter is restricted by the maximum thrust of its rotors. Therefore, we define

aggressiveness as the percentage of excess thrust required for the time optimized minimum

snap trajectory.

Aggressiveness =
Fmax req − Fhover
Fmax − Fhover

· 100% (2.54)

where Fmax req is the maximum rotor force required for the trajectory, Fhover is the rotor

force for steady hover, and Fmax is the maximum thrust of the rotor. One might conserve

the aggressiveness for safety reasons. Given waypoints x, y, z, ψ, and the desired aggres-

siveness, the whole methodology to find the optimal trajectory and segment time allocation

for a given quadcopter model is summarized in Figure 2.2.

29

2.3 Numerical Results

The quadcopter parameters we use in this research are from [38] and tabulated below

in Table 2.1.

Table 2.1. Quadcopter parameters

m 1.023 kg g 9.81 m/s2

L 0.2223 m Ixx 0.0095 kg ·m2

kf 1.4865 · 10−7 N/RPM2 Iyy 0.0095 kg ·m2

km 2.9250 · 10−9 N ·m/RPM2 Izz 0.0186 kg ·m2

We test the optimization framework with a four-waypoint scenario. The waypoint

settings are tabulated below (yaw angles at waypoints 2 and 3 are not specified) in Table

2.2.

Table 2.2. Waypoint settings in the scenario.

WPT Setting x (m) y (m) z (m) ψ

Waypoint 1 0 2 0 0
Waypoint 2 1 2 0 -
Waypoint 3 1 0 0.5 -
Waypoint 4 0 0 0.5 −180◦

We specify the mission to be from rest to rest, therefore the velocity and acceleration

at the first and the last waypoint are constrained to be zero. There are two narrow windows

to pass through in this scenario. The window settings are tabulated below in Table 2.3.

30

Table 2.3. Window (WDW) settings in the scenario.

WDW Setting φ θ ψ Location

Window 1 0◦ 15◦ 0◦ Waypoint 2
Window 2 −30◦ 0◦ −20◦ Waypoint 3

We specify the aggressiveness to be 80%. For this quadcopter model the rotor force

for steady hover is Fhover = 2.5 N. Assuming Fmax = 3.75 N, we have the maximum

rotor force we can use for the trajectory as Fmax req = 3.5 N. With initial guess of T̄ =

[5 5 5]T s and cT = 100, we use 10th order segment polynomials and have derivative

continuity constraints on up to 6th order derivative (Pop). Figure 2.6 shows the scenario

and the optimal trajectory.

Figure 2.6. Plot of the test scenario and the optimal trajectory.

31

Figures 2.7–2.9 show the result of the inverse dynamics analysis from the trajectory

with respect to the particular quadcopter model. The magenta dashed lines mark the times

of waypoint passages. It can be noticed that the quadcopter had a spike in angular accel-

eration and angular rate around waypoint 3 because it was making the maneuver to pass

through the highly tilted window 2.

Figure 2.7. Vehicle Euler angles along the trajectory flight.

Figure 2.8. Vehicle body angular rate along the trajectory flight.

32

Figure 2.9. Vehicle body angular acceleration along the trajectory flight.

Figures 2.10 and 2.11 show the control input and the rotor thrust along the trajectory.

From the plot, we confirmed that the maximum rotor thrust used is 3.5 N as expected.

Figure 2.10. Control input along the trajectory flight.

33

Figure 2.11. Rotor thrust along the trajectory flight.

Figure 2.12 shows the quadcopter on the trajectory with a fixed time interval of

0.33 s. It can be observed that the quadcopter had the highest speed in segment 2 so it

can maneuver through the highly tilted window 2. The successful passage through the

narrow windows can be visually confirmed. If we further check the data at waypoint 3,

we have the window forward and upward vectors as wF = [0.939 − 0.342 0]T and

wF = [0.171 0.469 0.866]T . Additionally, the quadcopter velocity and thrust vectors

(aligned with zB) are v = [−1.777 0.6470 0]T and f = [1.454 3.995 7.364]T . The

velocity and thrust vectors are confirmed to be aligned with the window forward and up-

ward vectors. Finally, the optimal time allocation was found as T̄opt = [1.29 2.29 2.62]T s.

34

Figure 2.12. Plot of the quadcopter along the trajectory flight.

2.4 Geometric Control and Simulation Result

To perform the polynomial trajectory tracking and verify the result of the aggressive

trajectory optimization, we adopted the geometric controller proposed by Lee et al. in [16]

and implemented it in MATLAB/Simulink. The controller is constructed in two parts,

trajectory tracking and attitude tracking. The control input of total force f is obtained by

the trajectory tracking part with:

f = −(−kxex − kvev −mge3 +mẍd) ·Re3 (2.55)

The control input of the moments is obtained by the attitude tracking part with:

M = −kReR − kωeω + ω × Iω − I(ω̂RTRdωd −RTRdω̇d) (2.56)

35

where vector e3 defines the direction of gravity and R is the rotation matrix from body to

inertial frame. The tracking errors for position ex, velocity ev, attitude eR, and angular

velocity eω are defined as:

ex = x− xd

ev = v − vd
(2.57)

eR =
1

2
(RT

dR−RTRd)
∨

eω = ω −RTRdωd

(2.58)

where the hat mapˆ : R3 → SO(3) is defined by the condition that x̂y = x × y for all

x,y ∈ R3. Additionally, the vee map ∨ : SO(3) → R3 is the inverse of the hat map. At a

given moment, x, v,ω, andR represent the position, linear velocity, body angular velocity,

and rotation matrix of the vehicle. The corresponding desired position xd and velocity vd

are captured from the polynomial trajectory. The desired body z axis can be obtained as:

zd = − −kxex − kvev −mge3 +mẍd
‖ − kxex − kvev −mge3 +mẍd‖

(2.59)

With the desired body z axis, yaw angle, and derivatives of the polynomial trajectory

available, we can find the desired rotation matrix Rd, angular velocity ωd, and angular

acceleration ω̇d by following the process discussed previously in inverse dynamics. The

simulation is implemented with the following equations of motion:

ẋ = v

mv̇ = mge3 − fRe3

(2.60)

Ṙ = Rω̂

Iω̇ + ω × Iω = M

(2.61)

With 10% error in estimated inertia, ±1 N noise added to f and ±0.003 Nm noise

added to M (around 10% of the maximum input used) as control input disturbance, we

have the simulation result shown in figures below.
36

From the simulation result we can see that, despite the existence of inertia estima-

tion error and control input disturbance, the geometric control had a good performance in

tracking the polynomial trajectory. Position and yaw angle are well tracked and roll and

pitch angles turned out to be very close to the inverse dynamics estimation as shown in

Figures 2.13 and 2.14. Therefore, the successful passage through the narrow windows is

confirmed. Figures 2.15 and 2.16 show that the linear acceleration is well tracked and the

angular acceleration is very close to the estimation. From Figure 2.17, the control input

used to track this polynomial trajectory is verified to be very close to the inverse dynamics

estimation. The maximum rotor thrust used in the simulation is also confirmed to be around

the maximum rotor force (3.5 N) requirement we specified in the trajectory generation as

shown in Figure 2.18.

Figure 2.13. Trajectory tracking result.

37

Figure 2.14. Vehicle Euler angle comparison.

Figure 2.15. Vehicle linear acceleration tracking.

Figure 2.16. Vehicle angular acceleration comparison.

38

Figure 2.17. Control input comparison.

Figure 2.18. Rotor force comparison.

2.5 Yaw Trajectory Optimization

If we do not have a specific requirement on yaw angle, can we optimize the yaw

trajectory to achieve better aggressive performance? In other words, by finding the yaw

trajectory such that no Mz control moment input is required to track the aggressive polyno-

mial trajectory, we can further reduce the maximum rotor force needed and thereby track

39

the aggressive trajectory with less motor force or achieve a faster trajectory with the same

aggressiveness specified. From the equations of motion:
Mx

My

Mz

 = I


ṗ

q̇

ṙ

+


p

q

r

× I

p

q

r

 (2.62)

Because of the symmetry, the moment of inertia of the quadcopter is assumed as:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , and Ixx = Iyy (2.63)

Mz = Izz ṙ + pq(Iyy − Ixx) = Izz ṙ (2.64)

Therefore, to make Mz = 0, we need ṙ = 0. Assuming the initial state r0 = 0,

this means ṙ = r = 0 for the whole trajectory. Based on this, we can modify the inverse

dynamics analysis to solve for ψ̇ and ψ̈ as:

r =

(
ψ̇ +

sin θ

cosφ
p

)
cosφ

cos θ
= 0

⇒ ψ̇ = − sin θ

cosφ
p

(2.65)

ṙ =
cosφ

cos θ

[
ψ̈ +

sin θ

cosφ
ṗ+ p

(
cos θ cosφθ̇ + sin θ sinφφ̇

cos2 φ

)

−r

(
cos θ sinφφ̇− sin θ cosφθ̇

cos2 φ

)]
= 0

⇒ ψ̈ = − sin θ

cosφ
ṗ− p

(
cos θ cosφθ̇ + sin θ sinφφ̇

cos2 φ

) (2.66)

Having ψ̇ and ψ̈ at each moment in the trajectory, we can integrate ψ iteratively

throughout the inverse dynamics analysis by ψn+1 = ψn + ψ̇∆t + 1
2
ψ̈∆t2. Figures 2.19

and 2.20 show a simple four-waypoint aggressive trajectory and the corresponding optimal

yaw trajectory obtained by this method.
40

Figure 2.19. Simple 4-waypoint aggressive trajectory.

Figure 2.20. Optimal yaw trajectory for the trajectory.

We converted this optimal yaw trajectory into a polynomial form and used the geo-

metric controller to track this aggressive polynomial trajectory. Figure 2.21 shows that, by

tracking this optimal yaw trajectory, the Mz control input will be indeed close to zero.

41

Figure 2.21. Simulation result of control input with geometric controller.

Figure 2.22 shows the comparison of rotor thrust used to track the aggressive trajec-

tory between constant zero yaw and the optimal yaw trajectory. The additional yaw control

effort Mz in the constant zero yaw case pulls the F1 and F3 rotor forces away from the

F2 and F4 rotor forces and thereby increases the maximum rotor force needed. From the

result, we can see that, by tracking the optimal yaw trajectory, the maximum rotor force is

reduced significantly by 17.5% (from 4 N to 3.3 N).

Figure 2.22. Rotor force comparison.

Remark:

With the optimization and analysis framework developed, we review the choice of min-

42

imum snap trajectory. For the same four-waypoint scenario and the same total time, we

compare the optimal trajectory and the maximum rotor force required with the cost of dif-

ferent orders of trajectory derivatives to minimize. Figure 2.24 shows the geometry of the

trajectories. As shown in Figure 2.23, the trajectory that minimizes the cost on the fourth

derivative has the minimum force required. Therefore, we conclude that minimum snap

is indeed the optimal choice for this approach of multi-copter aggressive trajectory opti-

mization. This kind of analysis is rarely seen in literatures though minimum snap or jerk

trajectories are so commonly used by researchers.

Figure 2.23. Maximum rotor force required for trajectories optimized with cost on different
order of derivative.

43

Figure 2.24. Comparison of trajectories optimized with cost on different order of derivative.

2.6 Conclusions

With the framework developed in this research, we can find the optimal polynomial

trajectory and the corresponding segment time allocation for a given quadcopter model, a

specified scenario, and a desired aggressiveness. We can also tell if the given scenario is

beyond the capability of the given quadcopter by examining whether the solution exists.

Furthermore, we can use the algorithm to evaluate the minimum required rotor thrust to

44

achieve the scenario. Instead of tracking the maximum force, we can also use the algo-

rithm to track the total time. That is, given a desired flight time, we can find the optimal

trajectory that has the minimum required rotor thrust. Though the quadcopter model is

used in this paper, the inverse dynamics analysis for control input (collective force and

three-axis moment) applies to generic multi-copters. Therefore, the method developed in

this research can be applied to multi-copters with minor modifications to the vehicle control

allocation model. The geometric controller used in this research showed the capability of

tracking the optimized aggressive trajectory. The tracking result verified the feasibility of

the optimized trajectory and the credibility of the inverse dynamics analysis. In addition,

the yaw trajectory optimization method is capable of improving the aggressive performance

in the case of no requirement on heading angle.

45

Chapter 3

Compensation for Aerodynamic, Gyroscopic and Rotor Rolling Effects in the Synthesis

In Chapter 2, a complete framework had been developed to find the optimal ag-

gressive trajectory that fully utilizes the thrust capability of the rotor for given waypoint

coordinates, corresponding heading angles, and vehicle velocity and attitude constraints at

the waypoints. For clarity and simplicity, we adopted a commonly used simplified quad-

copter dynamic model as in [39]. However, in aggressive flight some ignored effects could

become significant, and it could be unrealistic to find the optimal trajectory based on the

simplified dynamic model. Therefore, in this chapter the problem is addressed as: how to

incorporate aerodynamic, gyroscopic and rotor rolling effects into the multi-copter aggres-

sive constrained trajectory synthesis and the tracking control for more realistic trajectory

planning and more accurate trajectory tracking.

3.1 Mathematical Model Description

We start from the general model for quadcopters used in Chapter 2. The coordinate

systems and forces and moments generated by the rotors are shown in figure 3.1.

46

Figure 3.1. Reference frames and quadcopter forces/moments.

The body frame, B, is attached to the center of mass of the quadcopter and rotor 1

is on the positive XB-axis. The gravitational acceleration g is in the −ZI direction of the

inertial frame, I . Euler angles roll φ, pitch θ and yaw ψ are used to define orientation from

inertial frame to body frame. Note, Z − X − Y rotation order is used here and therefore

the rotation matrix for transforming coordinates from B to I is given by:

RIB =


cosψ cos θ − sinφ sinψ sin θ − cosφ sinψ cosψ sin θ + cos θ sinφ sinψ

cos θ sinψ + cosψ sinφ sin θ cosφ cosψ sinψ sin θ − cosψ cos θ sinφ

− cosφ sin θ sinφ cosφ cos θ

 (3.1)

With p, q and r denoting the components of angular velocity of the quadcopter in the

body frame, the rotational kinematics equation is given by:


p

q

r

 =


cos θ 0 − cosφ sin θ

0 1 sinφ

sin θ 0 cosφ cos θ



φ̇

θ̇

ψ̇

 (3.2)

47

Assuming rotor 1 and 3 rotate in the −ZB direction while 2 and 4 rotate in the ZB

direction, M1 and M3 act in the ZB direction while M2 and M4 act in the −ZB direction

since the moment produced by the rotor is opposite to the direction of rotation of the blade.

Define the input u = [u1 u2 u3 u4]T wherein u1 is the total force from the rotors and

u2, u3 and u4 are the moments about XB, YB and ZB axes.

From here, we modify the model to add additional effects. Following [26], we as-

sume that the counter-momentMi of the ith rotor is proportional to the thrust Fi by constant

kM :

Mi = kMFi (3.3)

The relationship between the input and the rotor thrust can be represented as:



u1

u2

u3

u4


=



F1 + F2 + F3 + F4

L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4


=



1 1 1 1

0 L 0 −L

−L 0 L 0

kM −kM kM −kM





F1

F2

F3

F4


(3.4)

For the aerodynamic effects, we adopted the well-defined models used in [26]. It is

found reasonable and practical because the authors showed in [26] how the models can be

verified and the coefficients can be accurately obtained through experiments. Assuming the

minor parasitic drag negligible in the flight regime, the aerodynamic effects are modelled

into three parts, a drag force D on the propeller plane, a torque τD induced by the drag

force, and a refined thrust model to accommodate the vertical effect along the body z-axis.

D = −kdωsvh = −kdωsRIBPR
T
IBv (3.5)

τD = −(kdωsRIBPR
T
IBv)× he3 (3.6)

48

Fi = kωω
2
i − kzvzωi + khv

2
h (3.7)

Where kd is the drag constant, ωs =
∑4

i=1 ωi is the sum of the rotor speeds ωi, P is

the projection matrix P =


1 0 0

0 1 0

0 0 0

, e3 =

[
0 0 1

]T
is the third standard basis vector,

h is the height of the propeller plane above the center of mass, and kω, kz and kh are thrust

constants for rotor speed, vertical and horizontal vehicle velocity. Figure 3.2 shows the

drag force the induced torque acting on a quadcopter.

Figure 3.2. Drag and drag induced torque acting on a quadcopter.

Because the rotor is spinning fast about the z-axis, the existence of vehicle pitching

or rolling rate will cause the gyro effect. This gyroscopic torque for an individual rotor is

modeled as:

τGi = Ir


0

0

εiωi

× ωc (3.8)

Where Ir is the moment of inertia of the rotor, ωi is the rotary speed of the ith

rotor, ωc is the angular rate of the quadcopter, and εi denotes the turning direction of the

49

rotor, namely +1 (clockwise) or -1 (counter clockwise). The total gyroscopic torque for the

quadcopter is accumulated as:

τG =
4∑
i=1

Ir


0

0

εiωi

× ωc = Ir


0

0

ωp

× ωc (3.9)

Where the difference of the motor speeds ωp = (ω1+ω3−ω2−ω4). For a rotor during

forward flight, the advancing blade encounters higher wind speed and generates more lift

than the retreating blade does, and thus a rolling torque is generated as shown in figure 3.3.

Following [31] with additional εi for rotor turning direction, this rotor rolling torque for an

individual rotor is modelled as:

τRi = εiωiCRvh (3.10)

Where CR is the rolling torque constant. The total rotor rolling torque for the quad-

copter is accumulated as:

τR =
4∑
i=1

εiωiCRvh = ωpCRvh (3.11)

Figure 3.3. Rotor rolling torque acting on a forward moving rotor.

50

3.2 Solution Methodology

We integrate the compensations for aerodynamic, gyroscopic and rotor rolling effects

into the optimal aggressive constrained trajectory synthesis proposed in Chapter 2. Figure

3.4 shows the whole methodology with the modified parts highlighted in red. First we

integrate all those effects into the inverse dynamics analysis and solve for the vehicle states,

control inputs and rotor speeds in an iterative fashion. Then, we integrate the aerodynamic

drag into the trajectory derivative constraints for window passing to compensate the attitude

change due to the drag force. This is also an iterative process and the modified inverse

dynamics analysis is utilized to solve ωs at each window waypoint iteratively.

51

Figure 3.4. Solution methodology and procedure of the aggressive trajectory optimization.

3.2.1 Inverse Dynamics Analysis

The differential flatness property [39] is an essential part in our constrained trajec-

tory optimization to connect the polynomial trajectory to the actual vehicle dynamics and

control inputs. In this section we show how the differential flatness can be preserved in the

inverse dynamics analysis while introducing all the additional effects. One dilemma we

have here is that we need ωs and ωp in the additional effect models to start the process but

the actual rotor speeds can only be obtained in the end of the analysis when all the addi-

tional effects are compensated and the individual rotor thrusts are determined. To address

52

this problem, we propose an iterative method to solve ωs and ωp as well as the vehicle state

and control inputs for a given moment t through the trajectory position and its derivatives.

Firstly, we make the initial guess on ωs and ωp as in steady hovering condition as:

ωs = 4

√
mg

4kF
, ωp = 0 (3.12)

3.2.1.1 Drag Compensation in Attitude and Collective Force

Let X = [x y z]T denote the trajectory position at a given moment t, we have

the following relationship among desired collective rotor force Fd, aerodynamic drag D,

trajectory velocity Ẋ and acceleration Ẍ , and gravity force:

Fd +D = u1RIBe3 − kdωsRIBPR
T
IBẊ = mẌ +mge3 (3.13)

To solve for vehicle attitude (rotation matrix RIB) and collective rotor force input

u1, we project the equation onto body frame by left-multiplyRT
IB:


0

0

u1

− kdωsPRT
IBẊ = RT

IB(mẌ +mge3) (3.14)

WithRT
IB = [xB yB zB]T , we have:


0

0

u1

− kdωs


1 0 0

0 1 0

0 0 0



xTB

yTB

zTB

 Ẋ =


xTB

yTB

zTB

 (mẌ +mge3) (3.15)

53


−kdωsxTBẊ = xTBm(Ẍ + ge3)⇒ xTB[kdωsẊ +m(Ẍ + ge3)] = 0

−kdωsyTBẊ = yTBm(Ẍ + ge3)⇒ yTB[kdωsẊ +m(Ẍ + ge3)] = 0

u1 = zTBm(Ẍ + ge3)

(3.16)

Since the rotor cannot generate negative thrust, Fd is always in the direction of zB in

our case, we have the solution:


zB = kdωsẊ+m(Ẍ+ge3)

‖kdωsẊ+m(Ẍ+ge3)‖

u1 = m(Ẍ + ge3) · zB
(3.17)

Figure 3.5 illustrates the physical meaning of this solution and how we can find the

unique zB from kdωsẊ and m(Ẍ + ge3) vectors.

Figure 3.5. Schematic of drag force compensation in u1 and zB direction.

54

With zB obtained, we can then solve xB and yB by assuming xc as the vector ob-

tained by rotating xW around zW by trajectory yaw angle ψ:

xC =

[
cosψ sinψ 0

]T
(3.18)

Assuming zB not parallel to xc, we can determine xB and yB by:

yB =
zB × xC
‖zB × xC‖

, xB = yB × zB (3.19)

Notice that in some extreme cases when θ = ±π/2 and φ = 0 or ± π, zB could

be parallel to xc and a singularity would happen in this method. Some further fix will be

needed if such extreme cases are expected in the flight. Finally, the rotation matrix RIB is

then obtained as:

RIB =

[
xB yB zB

]
(3.20)

3.2.1.2 Drag Compensation in Angular Velocity

To solve for vehicle body angular velocity p, q and r, we start from the equation of

acceleration with drag force added as:

mẌ = −mge3 + u1RIBe3 − kdωsRIBPR
T
IBẊ (3.21)

Take the time derivative of the equation we have:

m
...
X =u̇1RIBe3 + u1ṘIBe3

− kdωs[ṘIBPR
T
IBẊ +RIBP Ṙ

T
IBẊ +RIBPR

T
IBẌ]

(3.22)

Express the time derivative of the rotation matrix as ṘIB = ω̂BRIB:

55



ṘIBe3 = ωB ×RIBe3 = ωB × zB

ṘIBPR
T
IBẊ = ω̂BRIBPR

T
IBẊ = ωB ×RIBPR

T
IBẊ

RIBP Ṙ
T
IBẊ =RIBP (ω̂BRIB)TẊ

=RIBPR
T
IB(−ω̂B)Ẋ = −RIBPR

T
IB(ωB × Ẋ)

(3.23)

We can rewrite the above equation (3.22) as:

m
...
X =u̇1zB + ωB × u1zB − kdωs[ωB ×RIBPR

T
IBẊ

−RIBPR
T
IB(ωB × Ẋ) +RIBPR

T
IBẌ]

(3.24)

Neglecting terms perpendicular to zB, we have u̇1 = zB ·m
...
X + kdωs[zB · (ωB ×

RIBPR
T
IBẊ)]. Substituting u̇1 back we can rewrite the equation as:

m
...
X =(zB ·m

...
X)zB + ωB × u1zB − kdωs{RIBPR

T
IBẌ

+ ωB ×RIBPR
T
IBẊ − [zB · (ωB ×RIBPR

T
IBẊ)]zB

−RIBPR
T
IB(ωB × Ẋ)}

(3.25)

Now we further express the rotation matrix RIB and angular rate ωB terms with

body axes unit vectors [xB yB zB] and body angular velocity p, q and r:

56



RIBPR
T
IBẊ = (Ẋ · xB)xB + (Ẋ · yB)yB

ωB × xB =(RIB
BωB)× xB

=


[
xB yB zB

]

p

q

r



× xB = ryB − qzB

ωB × yB = −rxB + pzB

ωB × zB = qxB − pyB

(3.26)

We can rewrite ωB ×RIBPR
T
IBẊ − [zB · (ωB ×RIBPR

T
IBẊ)]zB as:

(Ẋ · xB)[ωB × xB]xByB
+ (Ẋ · yB)[ωB × yB]xByB

= (Ẋ · xB)ryB − (Ẋ · yB)rxB

(3.27)

And rewriteRIBPR
T
IB(ωB × Ẋ) as:

[xB · (ωB × Ẋ)]xB+[yB · (ωB × Ẋ)]yB

= {Ẋ · [xB × (pxB + qyB + rzB)]}xB+{Ẋ · [yB × (pxB + qyB + rzB)]}yB

= [q(Ẋ · zB)− r(Ẋ · yB)]xB+[−p(Ẋ · zB) + r(Ẋ · xB)]yB

(3.28)

Now the previous equation (3.25) can be rewritten and simplified as:

m
...
X =(zB ·m

...
X)zB + u1(qxB − pyB)

− kdωs[RIBPR
T
IBẌ − q(Ẋ · zB)xB + p(Ẋ · zB)yB]

(3.29)

Collect known terms and let A = m
...
X − (zB · m

...
X)zB + kdωsRIBPR

T
IBẌ , we

have:

57

u1(qxB − pyB) + kdωsq(Ẋ · zB)xB − kdωsp(Ẋ · zB)yB = A (3.30)

Project this equation on xB and yB, we have the equations to solve p and q:


u1q + kdωsq(Ẋ · zB) = A · xB

−u1p− kdωsp(Ẋ · zB) = A · yB
(3.31)

The solution for p and q is:


q = A·xB

u1+kdωs(Ẋ·zB)

p = −A·yB

u1+kdωs(Ẋ·zB)

(3.32)

Finally we can solve r through the rotational kinematics equation:

ψ̇ =− sin θ

cosφ
p+

cos θ

cosφ
r

⇒ r =

(
ψ̇ +

sin θ

cosφ
p

)
cosφ

cos θ

(3.33)

Where Euler angles φ = arcsin [RIB(3, 2)], θ = arctan
[
RIB(3,1)
−cosφ

]
, and ψ̇ is trajec-

tory yaw rate.

3.2.1.3 Drag Compensation in Angular Acceleration

With p, q and r solved, we have ωB = RIB[p q r)]T . φ̇ and θ̇ can be obtained

from the inversion of the rotational kinematics equation (3.2). We also have u̇1 = zB ·

m
...
X + kdωs[zB · (ωB × RIBPR

T
IBẊ)]. Now take the 2nd time derivative of equation

(3.21):

58

m
....
X =(ü1zB + ωB × u̇1zB + ωB × ωB × u1zB + ω̇B × u1zB + ωB × u̇1zB)− kdωs{RIBPR

T
IB

...
X

+ ωB ×RIBPR
T
IBẌ −RIBPR

T
IB(ωB × Ẍ) + ω̇B ×RIBPR

T
IBẊ + ωB × [RIBPR

T
IBẌ

+ ωB ×RIBPR
T
IBẊ −RIBPR

T
IB(ωB × Ẋ)]− [RIBPR

T
IB(ω̇B × Ẋ) +RIBPR

T
IB(ωB × Ẍ)

+ ωB ×RIBPR
T
IB(ωB × Ẋ)−RIBPR

T
IB(ωB × ωB × Ẋ)]}

=(ü1zB + 2ωB × u̇1zB + ωB × ωB × u1zB + ω̇B × u1zB)− kdωs{RIBPR
T
IB

...
X

− 2RIBPR
T
IB(ωB × Ẍ) + ω̇B ×RIBPR

T
IBẊ −RIBPR

T
IB(ω̇B × Ẋ) + ωB × [2RIBPR

T
IBẌ

+ ωB ×RIBPR
T
IBẊ − 2RIBPR

T
IB(ωB × Ẋ)] +RIBPR

T
IB(ωB × ωB × Ẋ)}

(3.34)

Collect known terms perpendicular to zB:

T1 =2ωB × u̇1zB − kdωs[RIBPR
T
IB

...
X

− 2RIBPR
T
IB(ωB × Ẍ) +RIBPR

T
IB(ωB × ωB × Ẋ)]

(3.35)

Collect known terms with zB component:

T2 =ωB × ωB × u1zB − kdωsωB × [2RIBPR
T
IBẌ

+ ωB ×RIBPR
T
IBẊ − 2RIBPR

T
IB(ωB × Ẋ)]

(3.36)

Neglecting terms perpendicular to zB, we have:

ü1 = zB · [m
....
X − T2 + kdωsω̇B ×RIBPR

T
IBẊ] (3.37)

Substituting ü1 back we have:

m
....
X =(zB ·m

....
X)zB + T1 + T2 − (zB · T2)zB + ω̇B × u1zB

− kdωs{ω̇B ×RIBPR
T
IBẊ − [zB · (ω̇B ×RIBPR

T
IBẊ)]zB

−RIBPR
T
IB(ω̇B × Ẋ)}

(3.38)

Now collect known terms again and define B as:

59

B =m
....
X − (zB ·m

....
X)zB − T1 − T2 + (zB · T2)zB

=ω̇B × u1zB − kdωs{ω̇B ×RIBPR
T
IBẊ

− [zB · (ω̇B ×RIBPR
T
IBẊ)]zB −RIBPR

T
IB(ω̇B × Ẋ)}

(3.39)

Similar to the process in previous section, we express some rotation matrix RIB

and angular acceleration ω̇B terms with body axis unit vectors [xB yB zB] and body

angular acceleration ṗ, q̇ and ṙ:



ω̇B × xB =(RIB
Bω̇B)× xB

=


[
xB yB zB

]

ṗ

q̇

ṙ



× xB = ṙyB − q̇zB

ω̇B × yB = −ṙxB + ṗzB

ω̇B × zB = q̇xB − ṗyB

(3.40)

Now we have:

B = u1(q̇xB − ṗyB) + kdωsq̇(Ẋ · zB)xB − kdωsṗ(Ẋ · zB)yB (3.41)

Project this equation on xB and yB, we have the equations to solve ṗ and q̇:


u1q̇ + kdωsq̇(Ẋ · zB) = B · xB

−u1ṗ− kdωsṗ(Ẋ · zB) = B · yB
(3.42)

And we have the solution as:


q̇ = B·xB

u1+kdωs(Ẋ·zB)

ṗ = −B·yB

u1+kdωs(Ẋ·zB)

(3.43)

60

Finally we solve ṙ by taking the time derivative of equation (3.33):

ψ̈ =− sin θ

cosφ
ṗ+

cos θ

cosφ
ṙ − p d

dt

(
sin θ

cosφ

)
+ r

d

dt

(
cos θ

cosφ

)
⇒ ṙ =

cosφ

cos θ

[
ψ̈ +

sin θ

cosφ
ṗ+ p

(
cos θ cosφθ̇ + sin θ sinφφ̇

cos2 φ

)

−r

(
cos θ sinφφ̇− sin θ cosφθ̇

cos2 φ

)] (3.44)

3.2.1.4 Torque Compensation in Control Moment Input

With vehicle angular velocity and acceleration obtained, next we determine the con-

trol moment input Mc through the rotational dynamics equation and compensate the drag

induced, gyroscopic, and rotor rolling torques here. We write the rotational dynamics equa-

tion as:

Iω̇ + ω × Iω = Mc + τD + τG + τR (3.45)

Solving for the control moment input and expanding the additional torques we have:

Mc =


u2

u3

u4

 = I


ṗ

q̇

ṙ

+


p

q

r

× I

p

q

r

+ (kdωsRIBPR
T
IBẊ)× he3

− Ir


0

0

ωp

×

p

q

r

− ωpCRRIBPR
T
IBẊ

(3.46)

61

3.2.1.5 Thrust Compensation and Rotor Speeds Update

Now we have found all the states and control inputs of the quadcopter derived from

the trajectory x, y, z, ψ and their derivatives. We can further determine the individual rotor

thrusts by:



F1

F2

F3

F4


=



1 1 1 1

0 L 0 −L

−L 0 L 0

kM −kM kM −kM



−1 

u1

u2

u3

u4


(3.47)

We obtain each rotor speed by solving the refined thrust equation. Because kω, kz

and kh are small positive constants [26] and rotor speed is never negative, we have the

solution:

Fi =kωω
2
i − kzvzωi + khv

2
h

⇒ ωi =
kzvz +

√
(kzvz)2 − 4kω(khv2

h − Fi)
2kω

(3.48)

Where vz = (RT
IBẊ) · e3 and vh = ‖RIBPR

T
IBẊ‖. Then we update ωs,new =

(ω1 + ω2 + ω3 + ω4) and ωp,new = (ω1 − ω2 + ω3 − ω4) and compare them with the initial

guess. If |ωs,new − ωs| > σ or |ωp,new − ωp| > σ, we update the sum and difference of

rotor speeds as ωs = ωs,new and ωp = ωp,new and go through the inverse dynamics analysis

process again until the tolerance is satisfied. Here σ is a user defined tolerance and in this

research we use σ = 1(rpm). From figure 3.6 and figure 3.7 we can see that this iterative

method is practical and only takes 2 to 3 iterations to converge for this example 4-waypoit

aggressive trajectory.

62

Figure 3.6. Simple 4-waypoint aggressive trajectory.

Figure 3.7. Iterations taken and resultant ωs in the inverse dynamics analysis.

63

3.2.2 Drag Compensation in Waypoint Attitude Constraint

In our previous work [35], we posed the requirement to pass through narrow win-

dows as trajectory derivative constraints in the polynomial trajectory optimization prob-

lem. However, the presence of aerodynamic drag force changes the vehicle attitude along

the trajectory. We take the resultant window passing trajectory in [35] for example. Figure

3.8 shows the vehicle attitude and body z-axis (zB) at each waypoint in the case of accu-

rately tracking the trajectory with drag force simulated. We can see that, at waypoint 2 and

3, the zB vector is no longer aligned with the window upward vector WU . Therefore, the

safely passage through the narrow window is no longer guaranteed.

Figure 3.8. Plot of vehicle attitude at waypoints – drag force not considered in planning.

64

To solve this problem, we used iterative method again. First we make the initial

guess on the sum of rotor speeds:

ωs = 4

√
mg

4kF
(3.49)

Add the drag term into the equation of acceleration:

m


ẍ

ÿ

z̈

 =


0

0

−mg

+RIB


0

0

1


∑

F − kdωsRIBPR
T
IBv (3.50)

Since we specify that, at the specific waypoint, the velocity is along the window

forward vector WF and the quadcopter body z-axis zB is aligned with the window upward

vector WU [35] as shown in figure 3.9, the drag term can be simplified as:

kdωsRIBPR
T
IBv = kdωsv (3.51)

Figure 3.9. Schematic of a quadcopter flying through a narrow window.

65

The equation of acceleration can be rewritten as:

m


ẍ

ÿ

z̈

+


0

0

mg

+ kdωs


ẋ

ẏ

ż

 =


mẍ+ kdωsẋ

mÿ + kdωsẏ

m(z̈ + g) + kdωsż

 = zB ·
∑

F (3.52)

To have zB aligned with WU , the constraints for the waypoint 1st and 2nd order

derivatives can be composed as:


mẍ+ kdωsẋ

mÿ + kdωsẏ

m(z̈ + g) + kdωsż

×

WUx

WUy

WUz

 =


0

0

0

 (3.53)

⇒


(mÿ + kdωsẏ)WUz − (mz̈ + kdωsż)WUy

(mz̈ + kdωsż)WUx − (mẍ+ kdωsẋ)WUz

(mẍ+ kdωsẋ)WUy − (mÿ + kdωsẏ)WUx

 =


mgWUy

−mgWUx

0

 (3.54)

Notice that in our previous method proposed in [35] with simple dynamic model,

this part only involves the trajectory acceleration and the window upward vector. How-

ever, here the trajectory velocity and the vehicle mass are also involved because additional

aerodynamic drag is introduced. For these constraints, the relationship between x, y and z

derivatives needs to be specified. Therefore, the joint optimization of x, y and z should be

composed by concatenating their cost and constraint matrices in a block-diagonal fashion

as:

Jxyz =


¯̄px

¯̄py

¯̄pz


T 
Qx 0 0

0 Qy 0

0 0 Qz




¯̄px

¯̄py

¯̄pz

 (3.55)

66


Ax 0 0

0 Ay 0

0 0 Az




¯̄px

¯̄py

¯̄pz

 =


bx

by

bz

 (3.56)

Where ¯̄px = [p̄x1 · · · p̄xM]T , ¯̄py = [p̄y1 · · · p̄yM]T and ¯̄pz = [p̄z1 · · · p̄zM]T . With

this joint optimization setup, the constraints for a window passage on waypoint s in an

M -segment trajectory can be implemented as:



0 WFzv0,s −WFyv0,s

−WFzv0,s 0 WFxv0,s

WFyv0,s −WFxv0,s 0

0 WUz(ma0,s + kdωsv0,s) −WUy(ma0,s + kdωsv0,s)

−WUz(ma0,s + kdωsv0,s) 0 WUx(ma0,s + kdωsv0,s)

WUy(ma0,s + kdωsv0,s) −WUx(ma0,s + kdωsv0,s) 0




¯̄px

¯̄py

¯̄pz

 =



0

0

0

mgWUy

−mgWUx

0


(3.57)


v0,s =

[
[0×(n+1)]×(s−1) v0 [0×(n+1)]×(M−s)

]
a0,s =

[
[0×(n+1)]×(s−1) a0 [0×(n+1)]×(M−s)

] (3.58)

For a segment polynomial P (t) = p0 + p1t
1 + p2t

2 + p3t
3 + · · ·+ pnt

n, the 1st order

derivative (velocity) at t = 0 is v0p̄ and v0 = [0 1 0 0 · · · 0]. The 2nd order derivative

(acceleration) at t = 0 is a0p̄ and a0 = [0 0 2 0 · · · 0].

We obtain the minimum snap polynomial trajectory ¯̄p through the optimization pro-

cess as in [35] with these additional constraints. Then we conduct the inverse dynamics

analysis on each of the window waypoints with ¯̄p and find the actual sum of rotor speeds

ωs,act = (ω1 + ω2 + ω3 + ω4). If |ωs,act − ωs| > δ, we update the sum of rotor speeds as

ωs = ωs,act and go through the whole process again until the tolerance is satisfied. Here δ

is a user defined tolerance and in this research we use δ = 1(rpm).

67

3.3 Numerical Results

The quadcopter parameters we use in this research are from [40], [26] and Gazebo

RotorS module [31] and tabulated in Table 3.1.

Table 3.1. Quadcopter parameters.

m 1.023 kg g 9.81 m/s2

L 0.2223 m Ixx 0.0095 kg ·m2

h 0.023 m Iyy 0.0095 kg ·m2

kM 0.0197 m Izz 0.0186 kg ·m2

kω 1.4865× 10−7 N/RPM2 kd 1.314× 10−5 N · s/m/RPM
kz 2.55× 10−5 N · s/m/RPM Ir 5.0× 10−5 kg ·m2

kh 3.39× 10−3 N · s2/m2 CR 1× 10−6 N · s/RPM

3.3.1 Drag Induced, Gyroscopic and Rotor Rolling Torques

We simulated the drag induced, gyroscopic and rotor rolling torques in a simple 4-

waypoint aggressive trajectory as shown in figure 3.10. The waypoint coordinates are as

those listed in Table 3.2 and we specified a counter clockwise yaw trajectory from 0◦ to

+180◦. This is not an extreme case but the counter clockwise turning increased the yawing

control effort and thereby enhanced the gyroscopic and rotor rolling effects.

68

Figure 3.10. Simple 4-waypoint aggressive trajectory with counter-clockwise turning.

Figure 3.11∼3.13 show the magnitude of drag induced, gyroscopic and rotor rolling

torque comparing to the control moment inputs in this scenario. From this result we learned

that these effects could be significant in quadcopter aggressive flight and should not be

neglected. They should be estimated and compensated in both trajectory planning and

flight control for accurate flight condition prediction and trajectory tracking. From the

figures we can also find that gyroscopic and rotor rolling effects take place when there is

effort in yawing control. Besides the compensation, one alternative way to avoid these

two effects is to take the optimal yaw trajectory proposed in [35] which eliminates yawing

control effort.

69

Figure 3.11. Drag induced torque and control moment along the trajectory flight.

Figure 3.12. Gyroscopic torque and control moment along the trajectory flight.

70

Figure 3.13. Rotor rolling torque and control moment along the trajectory flight.

Figure 3.14 shows the combined effect of all the three torques. In this test case, the

combined torque can be as high as 22.7% about the x-axis and 19.9% about the y-axis

comparing to the control moment.

Figure 3.14. Combined torque effect and control moment along the trajectory flight.

71

3.3.2 Window Passing Trajectory Planning

We test the optimization framework with a 4-waypoint scenario as in Section 2.3.

The waypoint settings are tabulated in Table 3.2 (yaw angle at waypoint 2 and 3 are not

specified).

Table 3.2. Waypoint settings in the scenario.

WPT Setting x (m) y (m) z (m) ψ (deg)
Waypoint 1 0 2 0 0
Waypoint 2 1 2 0 -
Waypoint 3 1 0 0.5 -
Waypoint 4 0 0 0.5 180

We specify the mission to be from rest to rest, therefore the velocity and acceleration

at the first and the last waypoint are constrained to be zero. There are two narrow windows

to pass through in this scenario. The window settings are tabulated in Table 3.3. We also

specify the Aggressiveness to be 80%. For this quadcopter model the rotor force for steady

hover is Fhover = 2.5(N). Assuming Fmax = 3.75(N), we have the maximum rotor force

we can use for the trajectory as Fmax req = 3.5(N).

Table 3.3. Window (WDW) settings in the scenario.

WDW Setting φ θ ψ Location
Window 1 0◦ 15◦ 0◦ Waypoint 2
Window 2 −30◦ 0◦ −20◦ Waypoint 3

Figure 3.15 shows the comparison of the original trajectory with simple model used

in [35] and the new trajectory with aerodynamic, gyroscopic and rotor rolling effects es-

timated and compensated. We can see that the presence of aerodynamic drag changes the

72

optimal trajectory to a considerable extent. It is also interesting to see that, for the same

maximum rotor thrust, the case with aerodynamic drag leads to a shorter and faster trajec-

tory. The original trajectory takes 6.2 seconds while the new one only takes 5.74 seconds.

This counterintuitive result indicates that the aerodynamic drag somehow benefits the ag-

gressive maneuver. The main reason we found behind this is that the consideration of drag

force changes the trajectory derivative constraints at the window waypoints and thus affects

the trajectory acceleration direction on those waypoints. And in this particular scenario set-

ting, this change happens to be in favor of the aggressive maneuver and makes the resultant

trajectory more “natural” with less maximum rotor thrust required at the sharp turn between

waypoint 2 and waypoint 3. As a result, the new case allows a faster trajectory with the

same maximum thrust though the aerodynamic drag is applied.

Figure 3.15. Comparison between the new trajectory and the original one.

To further explain this phenomenon, we change the scenario slightly by modifying

the pitch angle of window 1 and the roll angle of window 2 both to 0◦. Figure 3.16 shows

73

the comparison of the trajectories generated with and without the consideration of aero-

dynamic drag for this modified scenario. In this case, the two optimal trajectories have

a similar traverse time as 4.1 seconds. We can see that the shapes of the two trajectories

are still different. However, the change of the trajectory derivative constraints at window

waypoints did not make obvious advantage or disadvantage for the aggressive maneuver in

this modified scenario.

Figure 3.16. Comparison between the trajectories for the modified scenario.

Next we focus on the inverse dynamics analysis result for the new trajectory shown

in figure 3.15. After all the compensations for aerodynamic drag, refined thrust model,

gyroscopic and rotor rolling effects, we check whether the scenario requirements are all

fulfilled. From Figure 3.17 we can see that the estimated maximum rotor thrust is indeed

3.5 N as specified and this maximum thrust happens at the sharp turn between waypoint 2

and waypoint 3.

74

Figure 3.17. Individual rotor thrusts along the trajectory flight.

Figure 3.18 shows the track of vehicle orientation along the trajectory. And from

figure 3.19 we can see that, at waypoint 2 and 3, the vehicle zB vector is indeed aligned

with the window upward vector WU . This ensures the safely passage through the windows

with aerodynamic drag considered. More detailed inverse dynamics analysis estimations

can be seen in the trajectory tracking flight simulation comparison plots in the next section.

Figure 3.18. Vehicle Euler angles along the trajectory flight.

75

Figure 3.19. Plot of vehicle attitude at waypoints – drag force compensated in planning.

3.4 Trajectory Tracking Control and Simulation Result

To perform the polynomial trajectory tracking and verify the result of the aggressive

trajectory optimization with aerodynamic, gyroscopic and rotor rolling effects, we adopted

the geometric controller proposed by Lee et al. in [41] , modified it with our compensations

and implemented it in MATLAB/Simulink. Utilizing the derivations in Section 3.2.1.1, we

have the control input of total force f and desired rotation matrix Rd obtained for the

trajectory tracking part with position error ex and velocity ev:

76

ex = x−X

ev = v − Ẋ
(3.59)

Fd +D = fRde3 − kdωsRdPR
T
d Ẋ = mẌ +mge3 − kxex − kvev (3.60)

⇒


zB = kdωsẊ+m(Ẍ+ge3)−kxex−kvev

‖kdωsẊ+m(Ẍ+ge3)−kxex−kvev‖

f = mzTB(Ẍ + ge3)

(3.61)



xC =

[
cosψ sinψ 0

]T
yB = zB×xC

‖zB×xC‖

xB = yB × zB

Rd =

[
xB yB zB

]
(3.62)

With the desired rotation matrix Rd and derivatives of the polynomial trajectory

available, we can find the desired angular velocity ωd = [p q r]T by following Section

3.2.1.2, and find the desired angular acceleration ω̇d = [ṗ q̇ ṙ]T by following Section

3.2.1.3. Then we find attitude error eR and angular velocity error eω and add torque com-

pensations to the control input of the moments M for the attitude tracking part as:

eR =
1

2
(RT

dR−RTRd)
∨

eω = ω −RTRdωd

(3.63)

77

M =− kReR − kωeω + ω × Iω − I(ω̂RTRdωd −RTRdω̇d)− τD − τG + τR

=− kReR − kωeω + ω × Iω − I(ω̂RTRdωd −RTRdω̇d)

+ (kdωsRPR
Tv)× he3 − Ir


0

0

ωp

× ω − ωpCRRPRTv

(3.64)

The simulation is implemented in MATLAB/Simulink with the following equations

of motion:

ẋ = v

mv̇ = −mge3 + fRe3 − kdωsRPRTv

(3.65)

Ṙ = Rω̂

Iω̇ + ω × Iω = M − (kdωsRPR
Tv)× he3 + Ir


0

0

ωp

× ω + ωpCRRPR
Tv

(3.66)

And we simulate rotor speeds with the model below:



F1

F2

F3

F4


=



1 1 1 1

0 L 0 −L

−L 0 L 0

kM −kM kM −kM



−1 

f

Mx

My

Mz


ωi =

kzvz +
√

(kzvz)2 − 4kω(khv2
h − Fi)

2kω

(3.67)

Simulation results for tracking the new trajectory obtained in Section 3.3.2 are shown

in figure 3.20. First we compare the effect of the compensations by using the same con-

troller gains and adding the compensations successively. When using the original geometric
78

controller, we had significant tracking error as shown in the green line due to the presence

of aerodynamic, gyroscopic and rotor rolling effects. Then we added the compensation of

aerodynamic drag to the total force f and the desired rotation matrix Rd in the trajectory

tracking part and the result turned out to be the blue line. The tracking performance is sig-

nificantly improved but the tracking error is still quite noticeable. Then we further added

the drag force compensation to the desired angular velocity ωd and angular acceleration

ω̇d in the attitude tracking part. The result is shown in the purple line which is already

very close to the desired trajectory. Finally we added the gyroscopic, rotor rolling and drag

induced torque compensations to the control moment input and this further improved the

trajectory tracking as shown in the red line.

Figure 3.20. Trajectory tracking comparison for compensations added step by step.

From the 3 axes tracking error comparison in figure 3.21∼3.23 we can see more

clearly how the compensations improved the tracking performance step by step. The cor-

79

responding RMS tracking errors are tabulated in Table 3.4. The drag compensation in f

and Rd improved the x-axis and y-axis peak tracking error by around 78% but made the

altitude tracking worse. This phenomenon is very close to the experimental result in [26]

(x error improved by 75% from 26.0 to 6.6 cm, but z error got worse from 3.0 to 4.7 cm).

Although the x and y tracking errors are much improved with this method, the overall track-

ing accuracy is not enough for our objective of precise narrow window passing and inverse

dynamics analysis verification. Next coupled with our method of the drag compensation

in ωd and ω̇d, the tracking error is further improved by 75% in x-axis, 63% in y-axis, and

91% in z-axis. Finally the torque compensations gave additional improvement of 6.5% in

x-axis, 46% in y-axis and 65% in z-axis. With the full compensation, we had the RMS

tracking error as 0.85 cm in x-axis, 0.53 cm in y-axis, and 0.12 cm in z-axis.

Table 3.4. The RMS Tracking Errors

X-axis RMS
Error (cm)

Y-axis RMS
Error (cm)

Z-axis RMS
Error (cm)

Original Geometric Control 16.83 12.21 2.22
Drag Compensation in f andRd

(Method in [8]) 3.63 2.65 3.99

Drag Compensation in f ,Rd,
ωd and ω̇d

0.91 0.99 0.34

Full Compensation
(Drag + Torque) 0.85 0.53 0.12

80

Figure 3.21. X-axis tracking error comparison.

Figure 3.22. Y-axis tracking error comparison.

81

Figure 3.23. Z-axis tracking error comparison.

Having a good trajectory tracking performance with all the compensations, we then

verify the inverse dynamics analysis estimation with the fully compensated controller track-

ing simulation result. First we check the rotational dynamics in figure 3.24 and 3.25. It can

be seen that the angular velocity and angular acceleration being used to track the trajectory

match our estimation very well. As a result, the body orientation in the simulation also

turned out to be very close to the estimation. Having the trajectory well tracked and the

vehicle orientation as expected, the requirement for narrow window passing is verified to

be satisfied.

82

Figure 3.24. Comparison between simulation and estimation – vehicle attitude.

Figure 3.25. Comparison between simulation and estimation – angular velocity and accel-
eration.

83

Then we check the control input and actual rotor thrust in figure 3.26 and 3.27. From

figure 3.27 we can see that the collective thrust and the 3-axis control moment being used to

track the trajectory match our estimation very well. As a result, the individual rotor thrust

in the simulation also turned out to be very close to our estimation and the requirement for

maximum rotor thrust is satisfied.

Figure 3.26. Comparison between simulation and estimation – control input.

84

Figure 3.27. Comparison between simulation and estimation – rotor thrust.

3.5 Conclusions

The full compensation for aerodynamic, gyroscopic and rotor rolling effects has been

achieved in this research both in optimal constrained trajectory planning and in geometric

control trajectory tracking. In all of our test cases, the iterative method practically solved

the rotor speeds which are essential for the estimation of all the additional effects. The case

study provided in this chapter shows how the drag induced, gyroscopic and rotor rolling

torques could be significant in a general aggressive trajectory flight and should not simply

be neglected. In the window passing trajectory planning, we observed how the compen-

sation for aerodynamic drag could significantly change the resultant aggressive trajectory

and this change does not necessarily lead to disadvantage in constrained aggressive flight.

In the geometric control trajectory tracking simulations, we observed how the compen-

sations improved the tracking performance step by step and that these compensations are

all important for the accurate aggressive trajectory tracking. From the full compensation

tracking result, the resultant aggressive trajectory is verified to be feasible; the requirement

for maximum rotor thrust and waypoint maneuver is verified to be reached; and the inverse

dynamics analysis estimation is verified to fit the simulation result.

85

Chapter 4

Flight Test Environment Setup

The DJI F450 quadcopter equipped with Pixhawk autopilot and Raspberry Pi on-

board computer shown in Figure 4.1 is used to conduct flight tests in this research. For

accurate and real-time vehicle position/orientation information, we fly the quadcopter in a

Vicon motion capture system equipped environment. To monitor the vehicle states and give

control commands, we use a laptop running GCS (ground control station) software and a

RC (remote control) transmitter. The overall system architecture and the data/signal flow

are illustrated in Figure 4.2. Next in this chapter we divide the flight test environment into

three parts, aerial system, ground control system, and Vicon motion capture system and

discuss their major components and integration setup.

Figure 4.1. DJI F-450 quadcopter.

86

Figure 4.2. Flight test system architecture.

4.1 Aerial System

The main components used in the aerial system which is the quadcopter are listed

and introduced below:

• Airframe – DJI F450:

The DJI F450 shown in Figure 4.3 is a popular drone frame designed for aerial pho-

tography, FPV and other aero-modeling activities. It has a 450mm scale diagonal

wheelbase. The F450 is part of DJI’s FlameWheel series [42], which is known for its

sturdy build and versatility.

87

Figure 4.3. DJI F450 Airframe.

• Propulsion Suit – DJI E305:

The DJI E305 [43] propulsion suit shown in Figure 4.4 is combined with the DJI-430

Lite electronic speed controller (ESC) with maximum allowable continuous current

as 30A, the DJI-2312E brushless motors with velocity constant as 800 Kv, and the

DJI-9450 ABS self-locking propellers.

Figure 4.4. DJI E305 propulsion suit.

88

• RC Receiver – FrSky X4R-SB

The FrSky X4R-SB [44] shown in Figure 4.5 is a 2.4G RC receiver which supports

FrSky ACCST protocol and features 3 PWM outputs and 1 SBUS port that carries all

16 channels. We use the SBUS to send control commands to the autopilot device.

Figure 4.5. FrSky X4R-SB RC Receiver.

• Telemetry Radio – Holybro SiK 915MHz

The Holybro SiK telemetry radio [45] shown in Figure 4.6 is a small, light and open

source radio platform that typically allows ranges of better than 300m. This radio is

plug-n-play all Pixhawk Standard and other flight controllers. We use this 915MHz

100mW telemetry radio to setup the telemetry connection between the autopilot de-

vice and the ground station.

Figure 4.6. Holybro SiK 915MHz telemetry radio.

89

• RPM Tachometer – ThunderFly TFRPM01

The ThunderFly TFRPM01 [46] shown in Figure 4.7 is an open-source frequency

sensor tachometer intended for the measurement of rotational actuators on drones.

We use this tachometer with IR reflective optical probe to measure the rotor RPM

and send out the readings through I2C. Because four tachometers with the same

I2C address are used, we also add a TFI2CADT01 I2C address translator to collect

the four signals and send all the readings to the autopilot device. The ThunderFly

TFI2CADT01 [47] is a device translating addresses of I2C devices on a bus. As a

result, multiple I2C slave devices with the same address can be connected to one

master device.

Figure 4.7. ThunderFly TFRPM01 RPM sensor (left) and TFI2CADT01 address translator
(right).

Figure 4.8 shows our installation of the RPM Tachometer. Note that we attached 20

stripes on the motor shell to be detected by the IR reflective probe. This way, we

can improve the high sampling rate RPM measurement resolution to 30 RPM at 10

Hz. The corresponding PX4 parameter settings are: PCF8583 MAGNET=20 and

PCF8583 POOL=100000. Also note that the PX4 driver for this RPM tachometer is

90

not started automatically. We add the driver to the startup script on the SD card as

suggested in [48].

Figure 4.8. RPM tachometer installation.

• Autopilot Device – Holybro Pixhawk 4 Mini

The Holybro Pixhawk 4 Mini [49] shown in Figure 4.9 is a small and versatile autopi-

lot system designed for unmanned aerial vehicles (UAVs) or drones. It is a compact

version of the popular Pixhawk 4 flight controller and is developed by Holybro, in

collaboration with the Pixhawk team. The Pixhawk series is widely used in the drone

industry for its robustness and reliability. Pixhawk 4 Mini features a powerful 32-bit

ARM Cortex-M4F processor running at 168 MHz, along with a floating-point unit

(FPU). It is equipped with on-board sensors such as two accelerometer and gyroscope

sets, one magnetometer, and one barometer. It supports various communication in-

terfaces, including UART, I2C, SPI, and CAN, allowing it to connect with a wide

range of peripherals and sensors. It also has a microSD card slot for data logging.

We run PX4 flight stack on the Pixhawk 4 Mini. The PX4 flight stack [50] is an open-

source flight control software stack specifically designed for autonomous unmanned

aerial vehicles (UAVs) and drones. It provides the core software components and

91

algorithms necessary for controlling the flight of a drone, including stabilization,

navigation, and mission execution. It also provides flexible set of tools for drone

developers to create tailored solutions for drone applications. For detailed description

about our PX4 settings regarding system integration please refer to [51].

Figure 4.9. Holybro Pixhawk 4 Mini autopilot device.

• On-board Computer – Raspberry Pi 3B

The Raspberry Pi 3B [52] shown in Figure 4.10 is a single-board computer developed

by the Raspberry Pi Foundation. It is powered by a 1.2 GHz 64-bit quad-core ARM

Cortex-A53 processor and includes 1GB of RAM, allowing for smoother multitask-

ing and performance. The board features built-in Wi-Fi (802.11n) and Bluetooth

4.2, enabling wireless connectivity for internet access, wireless communication, and

peripheral devices.

We run Ubuntu MATE 18.04 operating system on the Raspberry Pi 3B and install

ROS Melodic robotic system and MAVROS package. We use this on-board com-

puter to make Wi-Fi connection to the Vicon MAVROS network. We also make serial

connection to the autopilot device through an FTDI-cable. The MAVLink communi-

cation with PX4 flight stack is established by executing the launch file “px4.launch”

in the MAVROS package [53]. We run programs to relay the vehicle position/attitude

92

information from Vicon system to the autopilot, receive vehicle information from the

autopilot, and send control commands to the autopilot through MAVROS interface.

Figure 4.10. Raspberry Pi 3B on-board computer.

4.2 Ground Control System

The main purpose of the ground control system is to monitor the vehicle states and

give control commands during the flight tests. Two major components are listed and intro-

duced below:

• Ground Station – Acer Laptop

One Acer laptop running QGroundControl software shown in Figure 4.11 serves as

a ground station to monitor all the quadcopter state information during flight tests

through the Holybro SiK 915MHz telemetry radio which is paired to the other one

on the quadcopter. Besides flight tests, we also use this ground station to connect to

the autopilot device to perform system integration test and parameter setting.

QGroundControl [54] is an open-source ground control station (GCS) software de-

signed for autonomous vehicles, particularly unmanned aerial vehicles (UAVs) and

drones. It provides a user-friendly interface to control and monitor the flight of

drones, plan missions, and access telemetry and flight data. It also offers firmware

management capabilities, allowing users to update the firmware of their drones and

connected flight controllers. QGroundControl also allows users to configure various

93

parameters and settings of their drones and flight controllers. This includes configur-

ing flight modes, adjusting control parameters, setting up communication protocols,

and calibrating sensors.

Figure 4.11. The ground station laptop.

• RC Transmitter – FrSky Taranis Q X7

The FrSky Taranis Q X7 [55] shown in Figure 4.12 is a popular radio transmitter

designed for remote control of RC (radio-controlled) models. The transmitter sup-

ports up to 16 channels, allowing control over various functions and features of RC

models. It operates on the 2.4GHz frequency band and is compatible with FrSky’s

ACCST (Advanced Continuous Channel Shifting Technology) protocol, ensuring re-

liable and interference-free communication.

We use this RC transmitter to send manual commands to the autopilot to perform

takeoff and landing, check vehicle flight response, switch between control modes,

and execute the kill switch to stop the rotors immediately in any dangerous case to

ensure safety. We also use some additional switches and knobs on the transmitter to

give commands to our vehicle control program running on the on-board computer to

94

help the proceeding of some flight experiments. This is done by coding the program

to subscribe to MAVROS topic “/mavros/rc/in”.

Figure 4.12. FrSky Taranis Q X7 RC transmitter.

4.3 Vicon Motion Capture System

Accurate and real-time vehicle position and orientation information is crucial to our

flight experiments because we are performing precise aggressive trajectory tracking in this

research. To acquire the crucial information in our flight tests, we utilize the Vicon motion

capture system in the Guidance & Controls of Autonomous Systems Laboratory (GCASL)

at The University of Texas at Arlington. This lab group also has some great endeavors on

robot guidance control through fixed and moving orifices such as in [9] and [10].

Figure 4.13 shows the Vicon motion capture system setup. The Vicon system [56]

utilizes a combination of specialized cameras and reflective markers to track the position

and orientation of objects in real-time. The cameras are strategically placed around the

capture area to provide optimal coverage. The markers, typically small retro-reflective

spheres, are attached to the object being tracked. Vicon uses high-resolution cameras with

high-speed image capture capabilities. These cameras capture the movement of the reflec-

tive markers in the capture volume at a high frame rate. The Vicon software analyzes the

captured images from multiple cameras to reconstruct the 3D position and orientation of the

95

markers. By triangulating the position of each marker in 3D space using the known camera

geometry, the system can precisely track the movement of objects. Figure 4.14 shows the

Vicon computer screen displaying the captured marker locations and the quadcopter with

retro-reflective markers flying under the Vicon infrared cameras.

Figure 4.13. Vicon Motion Capture System.

Figure 4.14. Vicon computer screen and the flight test.

In our application, one additional computer runs the “vicon bridge” driver [57] through

launch file “vicon.launch” to obtain vehicle position and orientation information from the

Vicon computer and publish the information to MAVROS network. Then on the quadcopter

96

on-board computer, one program is coded to subscribe the vehicle information and publish

it to MAVROS topic “mavros/vision pose/pose”. Once the MAVLink communication be-

tween the on-board computer and PX4 flight stack is established, PX4 will obtain the Vicon

vehicle information automatically. We run this Vicon feed at 50 Hz.

To add this Vicon information to PX4 sensor fusion, we need to set up EKF2 parame-

ters. EKF2 AID MASK is set as vision position fusion and vision yaw fusion. EKF2 HGT MODE

is set to use the vision as a primary source for altitude estimation. And we set EKF2 EV DELAY=5.

Throughout this research, all the vehicle dynamic states are obtained from the PX4 EKF2

estimator. For detail parameter settings of the EKF2 estimator we use in this research,

please refer to APPENDIX A.

97

Chapter 5

High Fidelity Simulations

To conduct the polynomial trajectory tracking and verify the result of the aggressive

trajectory optimization, we perform the simulation in MATLAB/Simulink with the pro-

posed quadcopter dynamic model and trajectory tracking controller in Chapter 2 and 3.

But to be more realistic and prepare for the actual flight test, we set up two high fidelity

simulation environments. In RotorS/Gazebo simulation, realistic sensor, actuator and con-

troller implementations are included. Experience on working in the ROS (Robot Operating

System) environment is also gained in this practice and found very helpful for subsequent

works towards the actual flight test. In PX4 SITL simulation, we simulate the whole flight

test system. We can test the planned flight experimental procedure as well as the programs

we develop in Pixhawk autopilot and Raspberry Pi on-board computer.

5.1 RotorS/Gazebo Simulation

RotorS is a MAV (Micro Aerial Vehicle) gazebo simulator developed by the Au-

tonomous Systems Lab at ETH Zurich [31,58]. It provides some multirotor models such as

the AscTec Hummingbird, the AscTec Pelican, or the AscTec Firefly, but the simulator is

not limited for the use with these multi-copters. There are simulated sensors coming with

the simulator such as an IMU, a generic odometry sensor, and the VI-Sensor, which can be

mounted on the multirotor. We chose RotorS because it is open-source, instantly ready for

high fidelity and comprehensive MAV flight simulation, and widely used by researchers in

the field of MAV control. We installed RotorS on Ubuntu 18.04 operating system with ROS

Melodic robotic system environment and Gazebo 9.19.0 multi-robot simulator. Figure 5.1

98

shows a Gazebo screen displaying an AscTec Firefly hexacopter automatic flight simulated

with RotorS.

Figure 5.1. Gazebo screen of an AscTec Firefly hexacopter flight simulated with RotorS.

We use the built-in AscTec Firefly hexacopter model to verify the modified geometric

controller proposed in Chapter 3 and also to show that our trajectory synthesis can be

applied to generic multi-copters with minor modifications to the vehicle control allocation

model. In this case, we consider six rotor outputs as shown in Figure 5.2 and modify

equation (3.4) as:



u1

u2

u3

u4


=



1 1 1 1 1 1

L sin π
6

L L sin π
6
−L sin π

6
−L −L sin π

6

−L cos π
6

0 L cos π
6

L cos π
6

0 −L cos π
6

−kM kM −kM kM −kM kM





F1

F2

F3

F4

F5

F6


(5.1)

99

Figure 5.2. Rotor configuration of the hexacopter.

The parameters of the AscTec Firefly model in RotorS we use in the aggressive

trajectory synthesis are tabulated in Table 5.1.

Table 5.1. Quadcopter parameters.

m 1.5 kg Ixx 0.0347563 kg ·m2

L 0.215 m Iyy 0.0458929 kg ·m2

h 0.037 m Izz 0.0977 kg ·m2

kM 0.016 m kd 8.06428× 10−5 N · s/m/(rad/s)
kf 1.4865× 10−6 N/(rad/s)2

For trajectory tracking control, the built-in “lee position controller.cpp” in rotors control

module already has the basic structure of the geometric controller [16] except for the rota-

tional feedforward terms ωd and I(ω̂RTRdωd −RTRdω̇d) in equation (3.64). We mod-

ified this controller to fully implement the trajectory tracking controller with rotor drag

compensation as proposed in Chapter 3.

For trajectory command assignment, we modified the built-in “waypoint publisher.cpp”

in rotors gazebo module so that it reads multi-segment trajectory polynomial coefficients

100

from a data file and publishes trajectory position, velocity, acceleration, jerk, and snap

commands through mav msgs topic COMMAND TRAJECTORY at 50 Hz.

5.1.1 1-D Minimum Snap Trajectory Tracking Test

We start the trajectory tracking test with a simple 1-segment 1-D minimum snap

trajectory that goes from x = 0 to x = 2 in 3 seconds. Figure 5.3 shows the sequence stock

image of the flight.

Figure 5.3. 1-D minimum snap trajectory tracking in RotorS simulation.

Using the same geometric controller gains, we conduct a series of tests. With the

built-in position controller, we first test the trajectory tracking with only trajectory position

command. Figure 5.4 shows the X-axis position and velocity tracking result. The blue

line shows the odometry data actually used by the controller which is the simulated state

measurement with measuring noise. The red line is the actual data from Gazebo, and the

yellow line is the desired trajectory. In this case, we can see a significant tracking lag

because only trajectory position has been tracked.

101

Figure 5.4. 1-D trajectory tracking with only position commands.

Next we add the trajectory velocity and acceleration commands to the controller and

obtain the tracking result as shown in Figure 5.5. The trajectory tracking is much improved,

but the lag in the beginning and the subsequent overshoot is obvious.

Figure 5.5. 1-D trajectory tracking with up to acceleration commands.

Next we add the trajectory jerk and snap commands, the inverse dynamics calculation

proposed in Section 2.2.4, and the feedforward terms ωd and I(ω̂RTRdωd −RTRdω̇d)

102

to the controller. From the tracking result shown in Figure 5.6, we can see that the trajec-

tory tracking in the first half is already good, but in the second half the sustained velocity

tracking error still cause position error.

Figure 5.6. 1-D trajectory tracking with rotational feedforward terms.

The rotor drag is included in the RotorS simulation. Therefore, next we add the rotor

drag compensation proposed in Chapter 3 to the controller. From the tracking result shown

in Figure 5.7, we can see that the precise trajectory tracking is finally achieved. From this

series of tests, we observe how the rotational feedforward terms and the full compensation

for rotor drag plays their part to improve the trajectory tracking performance.

103

Figure 5.7. 1-D trajectory tracking with rotor drag compensation.

5.1.2 Window Passing Trajectory Tracking Test

With the precise trajectory tracking, we then test the narrow window passing trajec-

tory. We use the same 2-window scenario settings as in Section 3.3.2 and also specify the

maximum rotor thrust as 3.5 N. The optimized trajectory in this case is different from the

one in Section 3.3.2 because the vehicle model parameters are different. Figure 5.8 shows

the sequence stock image of the successful 2-window passing flight.

104

Figure 5.8. 2-window passing trajectory tracking in RotorS simulation.

Figure 5.9 and Figure 5.10 show the trajectory position and velocity tracking result

in this simulation. From these 3-axis tracking comparisons, we can see that the trajectory

tracking controller still works well with this complicated aggressive multi-segment trajec-

tory. The hexacopter passed the two narrow windows at expected times with very small

position and velocity tracking error.

105

Figure 5.9. Position tracking in the 2-window passing flight.

Figure 5.10. Velocity tracking in the 2-window passing flight.

Figure 5.11 shows the comparison of the actual vehicle attitude and the estimation

from the inverse dynamics analysis in the trajectory planning. Note that the trajectory

tracking controller does not track the estimated roll and pitch angle directly. The good

match comes from the precise trajectory tracking and vehicle dynamic model estimating.

From Figure 5.11 we can see that, at each window passing time, the vehicle attitude is as

expected. Thus the successful narrow window passing is achieved.

106

Figure 5.11. Vehicle attitude in the 2-window passing flight.

The video of this narrow window passing flight simulation is available at

https://youtu.be/4g 2kYad4cA. The window passing would be failing if the rotor drag com-

pensation is not applied. Another video showing this comparison is available at

https://youtu.be/5-DZhND3Eq4.

5.2 PX4 SITL Simulation

It is important at this stage to have a high fidelity simulation environment to test the

system integration, the aggressive polynomial trajectory implementation, the algorithms

and controller code, and even the flight test procedures before the real flight. PX4 is the

open source autopilot platform we use on the Pixhawk flight control hardware to implement

the quadcopter control. One of the great features of PX4 is that it supports SITL (Software

in the Loop) simulation. This allows PX4 flight code to control a computer modeled vehicle

in a simulated “world”. PX4 SITL supports several popular simulators such as Gazebo,

FlightGear and JSBSim [59]. We choose Gazebo because it is widely used by researchers

in this field and also highly recommended by PX4.

107

5.2.1 Simulation System Architecture

We set up this SITL simulation on Ubuntu 18.04 operating system and ROS Melodic

robotic system environment. PX4 SITL runs the on-board autopilot program in this simu-

lation environment, and Gazebo 9.19.0 is used as the 3D dynamic simulation and display

engine. As in actual flight experiments, we use the QGroundControl as GCS software. One

computer joystick is used to replace the RC transmitter to control the quadcopter manually

during takeoff and landing.

We create a gazebo world file to represent the Vicon lab where we conduct actual

flight tests. We make a detailed DJI F450 quadcopter model for visualization and colli-

sion detection. To simulate the rotors and sensors such as magnetometers, barometers, ac-

celerometers, and gyros on the quadcopter, the simulation model is equipped with gazebo

plug-ins including “libgazebo motor model.so”, “libgazebo magnetometer plugin.so”,

“libgazebo barometer plugin.so”, and “libgazebo imu plugin.so”.

Figure 5.12 shows the Gazebo and GCS display during the actual SITL simulation.

The “world” in the simulation represents the environment of the Vicon lab. During the

simulation, the QGroundControl GCS software functions identically as it would do in the

actual flight test.

108

Figure 5.12. Gazebo and GCS display in SITL simulation.

The actual I/O connections for the autopilot program are replaced in this SITL sim-

ulation. The serial connection to GCS software through telemetry device is replaced by

UDP connection with MAVlink communication. The I/O interface to on-board sensors is

replaced by program API. The PWM output to motor ESC is also replace by program API.

The serial connection to on-board computer is replaced by UDP connection with MAVROS

(MAVlink based) communication. The PPM (or SBUS) control input from RC transmit-

ter through RC radio receiver is replaced by joystick input through QGroundControl GCS

software MAVlink communication.

We also run our flight control programs on the on-board computer here. The MAVROS

communication to the autopilot program is established by executing the launch file

“px4.launch” provided in the MAVROS package with local host port 14540 designated as

“fcu url”. One additional program is created to simulate the Vicon system by obtaining

the quadcopter position and attitude from Gazebo through Gazebo transport API and feed-

ing the information to autopilot software through MAVROS interface. The overall SITL

simulation system architecture and the data flow are illustrated in Figure 5.13.

109

Figure 5.13. SITL simulation system architecture.

5.2.2 Flight Test Data Comparison

We apply the quadcopter parameters identified in Chapter 6 to the simulation model

and test the simulation system with a simple 1-segment 1-D minimum snap trajectory that

goes from y = −1 to y = 1 in 5 seconds. We conduct the tracking with the native PX4

controller (firmware version: 1.13.0) and compare the simulation result with actual flight

test data. Figure 5.14 and Figure 5.15 show the sequence stock image of the trajectory

tracking in actual flight and in SITL simulation. The quadcopter flies from right to left.

From the sequence stock image comparison, we can already see the similarity between the

flight test and the simulation.

110

Figure 5.14. 1-D minimum snap trajectory tracking in actual flight.

Figure 5.15. 1-D minimum snap trajectory tracking in SITL simulation.

We conduct the trajectory tracking by sending “PositionTarget” message to MAVROS

“/mavros/setpoint raw/local” topic at 50 Hz. In the first test, we only send the position

tracking command. Figure 5.16 shows the comparison of desired trajectory, SITL simula-

tion result, and actual flight test data. The tracking is not good with a significant lag because

only position has been tracked, but the quadcopter response in flight test and simulation is

quite similar.

111

Figure 5.16. Trajectory tracking comparison with only position commands.

Next we send both position and velocity commands. From Figure 5.17 we can see

that the tracking lag is improved because the trajectory velocity is also tracked, but the over-

shoot is increased because of the built-up velocity tracking error. However, the similarity

in the quadcopter response in the flight test and in the simulation is still observed.

Figure 5.17. Trajectory tracking comparison with up to velocity commands.

Next we send position, velocity and acceleration commands. From Figure 5.18 we

can see that the trajectory tracking is much improved because the desired attitude is now

112

also generated directly from the trajectory acceleration. In this case, we can still see that

the quadcopter response in flight test is very close to that in the SITL simulation.

Figure 5.18. Trajectory tracking comparison with up to acceleration commands.

From this series of test we conclude that, although the trajectory tracking is not pre-

cise yet, the SITL simulation can already fairly reflect the actual quadcopter dynamic re-

sponse in different control modes and effectively support our following quadcopter control

development and flight test. Also, because of the entirety of this simulation environment,

we can simulate the flight test with exactly the same test procedure and on-board/off-board

programming.

113

Chapter 6

System Model Parameter Identification

Precise identification of system model parameters is crucial for both the trajectory

optimization and the trajectory tracking control. Main parameters we need to identify in

the quadcopter model are tabulated in Table 6.1 below.

Table 6.1. Main Parameters to be identified

Symbol Meaning Unit
m Mass of the quadcopter kg
L Rotor arm length m
h Height of propeller plane above cg. m
Ixx Moment of inertia about x-axis kg ·m2

Iyy Moment of inertia about y-axis kg ·m2

Izz Moment of inertia about z-axis kg ·m2

Ir Moment of inertia of the rotor kg ·m2

kM Rotor counter-moment constant m
kω Thrust constant for rotor speed N/RPM2

kz Thrust constant for vertical velocity N · s/m/RPM
kh Thrust constant for horizontal velocity N · s2/m2

kd Rotor drag constant N · s/m/RPM
CR Rolling torque constant N · s/RPM

The mass and the rotor arm length are measured directly as m = 1.412 kg and

L = 0.2275 m. Firstly we obtain precise mass properties of the vehicle through detailed

SolidWorks CAD modeling. Then we find rotor properties through static rotor tests. Lastly,

a series of flight test is conducted to identify the quadcopter dynamic model coefficients

through the maximum likelihood estimation technique.

114

6.1 SolidWorks CAD modeling

When developing dynamic model of the quadrotor, fairly accurate estimation of

moment of inertia becomes very important. To obtain accurate moment of inertia of the

quadrotor, we utilized SolidWorks and developed CAD model. Firstly, the baseline model

of the vehicle was created by using CAD components available online [60]. After the

baseline model was developed, the actual quadrotor was disassembled into components to

measure their individual masses. Then, the component masses in the CAD model were up-

dated to the actual measurements. Dimensions as well as masses of additional components

such as Pixhawk, Raspberry pi, LiPo battery, RPM sensor and etc. were also measured, and

3D models of these components were created and added into the baseline model assembly.

This process was repeated as components are added or removed from the actual quadrotor.

After the CAD model was developed, there was a slight total mass difference between the

3D model and the actual vehicle due to miscellaneous parts such as wiring, fastening and

gluing which are hard to be 3D modeled. These additional masses were distributed equally

to the components which have the majority of these elements. As a result, the following

CAD model shown in Figure 6.1 was developed and finalized.

115

Figure 6.1. Finalized quadrotor CAD model; (a): Top view, (b): Isometric View, (c): Front
view, (d): Side view.

By using mass property measuring feature in SolidWorks, the following inertia tensor

was obtained.

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =


0.013020313 −0.000087965 −0.000065616

−0.000087965 0.012897730 0.000039814

−0.000065616 0.000039814 0.02362329

 kg ·m2

(6.1)

From the CAD model assembly, location of the vehicle center of gravity was mea-

sured with respect to the center of the top plate (reference point) which is the location

where the Pixhawk autopilot is attached. Figure 6.2 shows the CG location and 3-axis

measurements.

116

Figure 6.2. Vehicle CG location and measurements from the reference point.

The position of vehicle CG with respect to the reference point is found as follows.

Note that the measurement was done in the body fixed reference frame.

rcg,r =

[
0.00064165 −0.00246455 −0.01828377

]T
m (6.2)

To estimate the gyroscopic effect generated by the fast spinning rotor, we also need

the estimation of the moment of inertia of the rotating parts about the spinning axis. Figure

6.3 shows the power unit disassembled into rotating and stationary parts.

Figure 6.3. Power unit disassembly.

117

We create a CAD model assembly of the power unit rotating part which is composed

of the propeller, the motor rotor, and the motor shaft as shown in Figure 6.4

Figure 6.4. CAD model assembly of the power unit rotating part.

After carefully measuring and updating the mass of each component, the moment of

inertia of the rotor about its spinning axis was estimated by utilizing SolidWorks “Mass

Properties” feature as:

Ir = 0.00004958668 kg ·m2 (6.3)

To estimate the rotor drag induced torque, we also need the geometry from vehicle

CG to the propellers. Figure 6.5 shows the measurement in the CAD model, and the height

of propeller plane above CG is estimated as:

h = 0.05012212 m (6.4)

118

Figure 6.5. Measurement of the propeller from vehicle CG.

6.2 Static Rotor Test

To obtain the rotor properties, a rotor test bench shown in Figure 6.6 developed at the

Aerospace Systems Laboratory at The University of Texas at Arlington was used [61]. The

test bench consists of a motor mount with a load cell which measures the thrust produced

by the propeller. Along with the load cell there are additional sensors to record various

quantities like the battery voltage, the current drawn by the motor, infra-red temperature

sensor to measure the temperature of the motor and an optical sensor to measure the RPM

of the motor. These sensors are connected to an Arduino microcontroller which sends the

data to MATLAB through serial communication.

119

Figure 6.6. Rotor test bench.

The rotor system to be tested is combined with the DJI-430 Lite ESC, the DJI-2312E

brushless motor and the DJI-9450 propeller. We test the rotor system with various power

supply voltage within the actual flight test usage range from 10.5 V to 12.6 V with 0.3

V intervals. Under each voltage, we send various PPM commands from 1200 µs to 1900

µs with 5 µs intervals and collect measurement including thrust, RPM, current and etc.

With the same PPM command, the rotor would reach different RPM and thrust under dif-

ferent power supply voltage. Figure 6.7 and Figure 6.8 show the thrust and RPM curve

comparisons between 10.5 V and 12.6 V.

120

Figure 6.7. Thrust vs PPM test data plot.

Figure 6.8. RPM vs PPM test data plot.

In the data analysis, first we combine all the thrust and RPM test data and identify

the relationship between them. In Chapter 2 and Chapter 3, we assume that the thrust is

proportional to the square of RPM. By making the thrust vs RPM2 plot as shown in Figure

6.9, this assumption is verified to be very reasonable in our usage range. The coefficient kf

in Chapter 2, equivalent to kω in Chapter 3, is identified as 1.2×10−7 N/RPM2.

121

Figure 6.9. Thrust vs RPM2 test data plot.

Then for precise rotor thrust control, we identify the thrust as a function of the battery

voltage and the PPM signal by a 3rd order surface fitting as shown in Figure 6.10 in the

form:

T (s, V) = pT00+pT10s+pT01V +pT20s
2+pT11sV +pT02V

2+pT30s
3+pT21s

2V +pT12sV
2

(6.5)

where T is the thrust measured in grams, s is the PPM signal in µs, and V is the

battery voltage in volts. The coefficients are tabulated in Table 6.2.

Table 6.2. Coefficients for the thrust function

Coefficient Value Coefficient Value
pT00 6771 pT02 -1.075
pT10 -11.65 pT30 -1.176×10−6

pT01 -242.2 pT21 -6.111×10−5

pT20 0.006503 pT12 0.00152
pT11 0.2608

122

Figure 6.10. Thrust vs PPM and voltage surface fitting.

Lastly for rotor RPM estimation in the on-board computer trajectory controller, we

also identify the RPM as a function of the battery voltage and the PPM signal by a 3rd

order surface fitting as shown in Figure 6.11 in the form:

Ω(s, V) = pR00+pR10s+pR01V +pR20s
2+pR11sV +pR02V

2+pR30s
3+pR21s

2V +pR12sV
2

(6.6)

where Ω is the rotor RPM, s is the PPM signal in µs, and V is the battery voltage in

volts. The coefficients are tabulated in Table 6.3.

123

Table 6.3. Coefficients for the RPM function

Coefficient Value Coefficient Value
pR00 1.486×104 pR02 52.65
pR10 -20.31 pR30 -1.034×10−6

pR01 -3150 pR21 -0.0007157
pR20 0.008793 pR12 -0.03583
pR11 3.408

Figure 6.11. RPM vs PPM and voltage surface fitting.

6.3 Flight Experiments

With those parameters already estimated, next we try to identify the rest dynamic

model parameters through flight experiments and data analysis technics such as maximum

likelihood estimation.

124

6.3.1 Experimental Design

The goal of these flight experiments is to identify the rest model parameters as tabu-

lated in Table 6.4. kω, kz and kh are used in the rotor thrust estimation as in equation (3.7).

kd is used in the rotor drag estimation as in equation (3.5). CR is used in the rotor rolling

effect estimation as in equation (3.11). And kM is used in rotor counter-moment estimation

as in equation (3.3).

Table 6.4. Parameters to be identified in flight experiments

Symbol Meaning Unit
kM Rotor counter-moment constant m
kω Thrust constant for rotor speed N/RPM2

kz Thrust constant for vertical velocity N · s/m/RPM
kh Thrust constant for horizontal velocity N · s2/m2

kd Rotor drag constant N · s/m/RPM
CR Rolling torque constant N · s/RPM

The main idea in the experimental design is to start from identifying the minimal

number of parameters through simple flight motion to eliminate the influence from other

dynamic coupling. The Ideal case is to perform one simple flight motion in which only one

dynamic equation is involved and only one parameter in the dynamic equation is unknown

and to be identified. When some parameters are isolated and identified through simple

experiments, we then conduct more complex experiments to identify other parameters in

more involved dynamic equations.

First we conduct fixed position hovering test. The objective is to identify the thrust

constant for rotor speed kω. Although kω has already been identified previously in the

static rotor test, we still need to verify its value again in actual flight because the situation

is different when the rotor is installed on the quadcopter than on the test bench.

125

Then we conduct climbing and descending test. The objective in this experiment is to

identify the thrust constant for vertical velocity kz in different Z-axis only vertical motions

given known kω.

Next we conduct fixed roll angle level flight test. In different horizontal motions, we

identify the rotor drag constant kd mainly in Y-axis response, identify the rolling torque

constant CR mainly in pitching response, and identify the thrust constant for horizontal

velocity kh mainly in Z-axis response given known kω and kz.

Lastly we conduct fixed position turning test. The objective in this experiment is to

identify the rotor counter-moment constant kM in yawing response given known kd.

6.3.2 Maximum Likelihood Estimation

Maximum likelihood yields estimates for the unknown quantities which maximize

the probability of obtaining the observed set of data. The desirable attributes of this tech-

nique, such as asymptotically unbiased and consistent estimates, are especially useful for

the estimation of aircraft coefficients in the presence of measurement errors associated with

flight data. The maximum likelihood estimation approach introduced in [62] is used here

to estimate the unknown dynamic model parameters. Assume that p is the q × 1 vector of

quadcopter coefficients to be determined, y is the m× 1 measurement vector, and R is the

measurement error covariance. The goal is to find the best estimation to minimize the loss

function:

J(p̂) =
1

2

N∑
k=1

(ỹk − ŷk)
TR−1(ỹk − ŷk) (6.7)

where ỹk is the actual measurement at time tk, ŷk is the estimated response of y at

time tk for a given value of the unknown parameter vector p, and N is the total number of

measurements.

126

Newton-Raphson method is used to update the estimation of p iteratively. Assume

that i is the iteration number, then the i + 1 estimate of p, denoted by p̂, is obtained from

the ith estimate as [63]:

p̂i+1 = p̂i − [∇2
p̂J(p̂)]−1[∇p̂J(p̂)] (6.8)

where the first and second gradients are defined as:

[∇p̂J(p̂)] = −
N∑
k=1

[∇p̂ŷk]
TR−1(ỹk − ŷk) (6.9)

[∇2
p̂J(p̂)] =

N∑
k=1

[∇p̂ŷk]
TR−1[∇p̂ŷk]−

N∑
k=1

[∇2
p̂ŷk]

TR−1(ỹk − ŷk) (6.10)

The Gauss-Newton approximation to the second gradient is given by:

[∇2
p̂J(p̂)] ≈

N∑
k=1

[∇p̂ŷk]
TR−1[∇p̂ŷk] (6.11)

where the estimation gradient is defined as:

[∇p̂ŷ] =



∂ŷ1

∂p̂1

∂ŷ1

∂p̂2
· · · ∂ŷ1

∂p̂q

∂ŷ2

∂p̂1

. . . · · · ∂ŷ2

∂p̂q

...
...

∂ŷm

∂p̂1

∂ŷm

∂p̂2
· · · ∂ŷm

∂p̂q


(6.12)

And the partial derivatives used in the Gauss-Newton algorithms are computed using

the small perturbation method and a simple first-order numerical derivative, for example:

∂ŷ1

∂p̂1

=
ŷ1|p̂1+δp1 − ŷ1|p̂1

δp1

(6.13)

127

6.3.3 Fixed Position Hovering Test

In this test, we simply send fixed position command (0, 0, 1) to Pixhawk in “Off-

board” mode through MAVROS “/mavros/setpoint raw/local” topic via “PositionTarget”

message and collect the flight data during stable hovering. The position and RPM data in

this 2-minute test are shown in 6.12 and 6.13. The position holding is good, but a certain

degree of air disturbance is noticed during the flight test and caused the small fluctuation in

rotor RPMs. From the RPM data, we also noticed that there is a constant speed difference

between rotors 1, 2 and rotors 3, 4. From the rotor configuration shown in Figure 6.14, we

can see that the constant rotor speed difference is between the counter-clockwise rotating

rotors and the clockwise rotating rotors. This indicates a constant yawing control effort,

and we will address this phenomenon later in Section 6.3.6.

Figure 6.12. Position data in hovering test.

128

Figure 6.13. RPM data in hovering test.

Figure 6.14. Rotor configuration of the quadcopter.

Because there is no vertical or horizontal velocity, we simplify equation (3.7) and

calculated the thrust constant for rotor speed kω using the RPM data as:

kω =
mg

ω2
1 + ω2

2 + ω2
3 + ω2

4

(6.14)

From the calculation result shown in Figure 6.15, we can observe the small fluctu-

ation on kω of around ±3% in magnitude caused by air disturbance. And the thrust

constant for rotor speed kω is identified as the average value:

129

kω = 1.1513× 10−7 N/RPM2 (6.15)

Compare this value to the result from the static rotor bench test as shown in the cyan

line in Figure 6.15, this equates to a 4.1% thrust loss. This is reasonable because, like the

“download penalty” in a helicopter, the structure situated in the downwash field below the

rotor suffers an additional vertical drag, and thereby the net thrust is reduced.

Figure 6.15. kω calculation result from hovering test data.

6.3.4 Climbing and Descending Test

In this test, we perform vehicle climbing and descending by sending (0, 0, 1) and (0,

0, 2) position commands back and forth to Pixhawk. The Z-axis response and RPM data in

one test are shown in Figure 6.16 and Figure 6.17.

130

Figure 6.16. Z-axis response in climbing and descending test.

Figure 6.17. RPM data in climbing and descending test.

For maximum likelihood estimation, we use Z-axis position z and velocity ż as mea-

surement, and the thrust constant for vertical velocity kz is the main parameter to be iden-

tified. Additionally, knowing that kω fluctuates during the flight due to air disturbance, we

also identify kω in each relatively short test section and use previously identified average

value as the initial guess. The identification and measurement vectors are:

p =

[
kz kω

]
, y =

[
z ż

]T
(6.16)

131

The forces acting on the quadcopter in this Z-axis motion are illustrated in Figure

6.18. We use the measured states as system states, and the equations of motion for the

states are:

ẏ = f(t,y, kz, kω,ωk) (6.17)

where ωk is the RPM measurement [ω1 ω2 ω3 ω4] at time tk.

Figure 6.18. Quadcopter force diagram in climbing and descending test.

Without horizontal velocity, the individual rotor thrust is estimated as:

Ti = kωω
2
i − kzvzωi (6.18)

The final ODE is formed below and the 4th-order Runge-Kutta method is used for

the integration with initial condition ŷ0 = ỹ0 = [z̃0
˜̇z0]T .

ẏ =

 ż

z̈ = T−mg
m

 (6.19)

We take a 2.5-second section of the flight data for analysis in each climbing and

descending action. Figure 6.19 and Figure 6.20 show example test data and estimation re-

sults for climbing and descending tests. In both cases, kz converged very fast, and the final
132

estimation of the states fitted the measurement well. Comparing to the state estimations

without kz as shown in blue dashed lines, we can clearly see the effect of this parameter on

the system response.

Figure 6.19. Climbing test data and estimation result.

133

Figure 6.20. Descending test data and estimation result.

The analysis results for 10 individual tests are summarized in Table 6.5. The iden-

tified kω values for the short test sections are within a reasonable range as we observed in

the previous hover test. And the thrust constant for vertical velocity kz is identified as the

average value:

kz = 6.2062× 10−5 N · s/m/RPM2 (6.20)

6.3.5 Fixed Roll Angle Level Flight Test

In this test, we send fixed roll angle command to Pixhawk in “Offboard” mode

through MAVROS “/mavros/setpoint raw/attitude” topic via “AttitudeTarget” message. In

order to keep the altitude, the “thrust” command (normalized value between 0 and 1) in
134

Table 6.5. Estimation results in climbing and descending tests

Test No. Action kω kω Diff (%) kz
1 Climb 1.1759×10−7 2.1 6.8369×10−5

2 Descend 1.1103×10−7 -3.6 5.3987×10−5

3 Climb 1.1682×10−7 1.5 6.1010×10−5

4 Descend 1.1298×10−7 -1.9 6.5358×10−5

5 Climb 1.1659×10−7 1.3 6.3535×10−5

6 Descend 1.1324×10−7 -1.6 5.6426×10−5

7 Climb 1.1467×10−7 -0.4 5.9170×10−5

8 Descend 1.1217×10−7 -2.6 5.6462×10−5

9 Climb 1.1806×10−7 2.5 6.8423×10−5

10 Descend 1.1190×10−7 -2.8 6.7876×10−5

the AttitudeTarget message also has to be specified. We obtain 20-second average value of

the “thrust” setpoint from “/mavros/setpoint raw/target attitude” topic during fixed posi-

tion hovering before every test. Using this hover average value as a baseline T0, we adjust

the thrust command Tcmd during the fixed roll flight test according to the actual roll angle

φ as:

Tcmd =
T0

cosφ
(6.21)

The system response and RPM data in one -4-degree test are shown in Figure 6.21

and Figure 6.22.

135

Figure 6.21. Flight data in -4 degree roll test.

Figure 6.22. RPM data in -4 degree roll test.

For maximum likelihood estimation, we use Y-axis position y and velocity ẏ, Z-axis

position z and velocity ż, and pitch angle θ and rate θ̇ as measurement, and the rotor drag

constant kd, the thrust constant for horizontal velocity kh, and the rolling torque constant

CR are the main parameters to be identified. As in last test, we also identify kω in each

relatively short test section and use previously identified average value as the initial guess.

The identification and measurement vectors are:

136

p =

[
kd kh CR kω

]T
, y =

[
y ẏ z ż θ θ̇

]T
(6.22)

The forces acting on the quadcopter in this Y-Z plane motion are illustrated in Figure

6.23. We use the measured states as system states, and the equations of motion for the

states are:

ẏ = f(t,y, kd, kh, CR, kω,ωk, φk) (6.23)

where φk is the roll angle measurement at time tk.

Figure 6.23. Quadcopter force diagram in fixed roll test.

Given known kz, the individual rotor thrust is estimated as:

Ti = kωω
2
i − kzvzωi + khv

2
h (6.24)

vh = ẏ cosφk + ż sinφk (6.25)

137

vz = −ẏ sinφk + ż cosφk (6.26)

The individual rotor drag is estimated as:

Di = kdωivh (6.27)

And the individual rotor torque caused by rolling effect is estimated as:

τRi = εiωiCRvh (6.28)

where εi denotes the turning direction of the rotor, namely +1 (clockwise) or -1

(counter clockwise). We also calculate the body Y-axis torque generated by rotor thrust

as:

τT = (−T1 + T2 − T3 + T4) cos
π

4
L (6.29)

The final ODE is formed below and the 4th-order Runge-Kutta method is used for

the integration with initial condition ŷ0 = ỹ0 = [ỹ0
˜̇y0 z̃0

˜̇z0 θ̃0
˜̇θ0]T .

ẏ =



ẏ

ÿ = Ty−Dy

m
= −T sinφk−D cosφk

m

ż

z̈ = Tz+Dz−mg
m

= T cosφk−D sinφk−mg
m

θ̇

θ̈ = τT +τR
Iy


(6.30)

We take stable region of the flight data for analysis as the “Analysis Section” shown

in Figure 6.21. To avoid interference, we identify kd, kh and kω from dominant Y-axis and

Z-axis response first, and then identify CR from pitching response using those identified

138

parameters. Figure 6.24 and Figure 6.25 show example test data and estimation results for

one -4-degree roll test. In this analysis, all three parameters to be identified converged very

fast, and the final estimation of the states fitted the measurement well. Comparing to the

state estimations without the parameters as shown in blue dashed lines, we can clearly see

the effect of kd on Y-axis response, kh on Z-axis response, and CR on pitching response.

Figure 6.24. -4-degree roll test data and Y-axis estimation result.

139

Figure 6.25. -4-degree roll test data and Z-axis and pitching estimation result.

The analysis results for 9 individual tests are summarized in Table 6.6. The identified

kω values for the short test sections are within a reasonable range as we observed in the

previous hover test. The rotor drag constant kd, the thrust constant for horizontal velocity

kh, and the rolling torque constant CR are identified as the average values:

kd = 1.0587× 10−5N · s/m/RPM (6.31)

kh = 2.1366× 10−2N · s2/m2 (6.32)

CR = 1.1689× 10−5N · s/RPM (6.33)

140

Table 6.6. Estimation results in fixed roll angle tests

Test
No.

φ
(deg) kω

kω Diff
(%) kd kh CR

1 -4 1.1710×10−7 1.7 9.3210×10−6 5.5964×10−2 1.4180×10−5

2 -4 1.1187×10−7 -2.8 9.6136×10−6 9.7912×10−3 6.8488×10−6

3 -4 1.1124×10−7 -3.4 9.6095×10−6 1.0873×10−2 1.4871×10−5

4 -8 1.1437×10−7 -0.7 1.2812×10−5 2.1167×10−2 1.1145×10−5

5 -8 1.1156×10−7 -3.1 1.1639×10−5 9.5773×10−3 1.5832×10−5

6 -8 1.1289×10−7 -1.9 1.0434×10−5 4.6570×10−3 1.1538×10−5

7 -12 1.1515×10−7 0.0 1.1068×10−5 1.4041×10−2 1.4128×10−5

8 -12 1.1290×10−7 -1.9 1.2405×10−5 3.6166×10−2 6.2805×10−6

9 -12 1.1607×10−7 0.8 8.3839×10−6 3.0062×10−2 1.0382×10−5

6.3.6 Fixed Position Turning Test

In this test, we send various yaw rate commands to Pixhawk in “Offboard” mode

through MAVROS “/mavros/setpoint raw/local” topic via “PositionTarget” message during

fixed position hovering. The yawing response and RPM data in this test are shown in Figure

6.26 and Figure 6.27. From the RPM data, we can observe a constant RPM difference

of around 1000 RPM between CW and CCW rotors which indicates a constant yawing

control effort. The configuration of the quadcopter is quite symmetric, and we do not

observe obvious misalignment of the quadcopter frame or rotors visually. Therefore, we

assume that there is a slight rotor misalignment which causes the yawing moment and try

to estimate the misalignment angle in the data analysis.

141

Figure 6.26. Yawing response in fixed position turning test.

Figure 6.27. RPM data in fixed position turning test.

For maximum likelihood estimation, we use yaw angle ψ and yaw rate ψ̇ as mea-

surement, and the rotor counter-moment constant kM and the rotor misalignment angle δr

are the main parameters to be identified. As in last test, we also identify kω with additional

measurement z and ż in each relatively short test section and use previously identified

average value as the initial guess. The identification and measurement vectors are:

p =

[
kM δr kω

]T
, y =

[
z ż ψ ψ̇

]T
(6.34)

142

The forces and moments acting on the quadcopter in this turning motion are illus-

trated in Figure 6.28. We use the measured states as system states, and the equations of

motion for the states are:

ẏ = f(t,y, kM , δr, kω,ωk) (6.35)

Figure 6.28. Quadcopter force and moment diagram in fixed position turning test.

Given known kω and kh, the individual rotor thrust is estimated as:

Ti = kωω
2
i − kzvzωi + khv

2
h (6.36)

vh = Lωz , vz = ż (6.37)

Because the quadcopter is flying horizontally in this test, we use yaw rate as Z-axis

angular velocity:

ωz = ψ̇ (6.38)

According to equation (3.3), individual rotor counter moment is estimated as:

143

Mi = εikMTi (6.39)

Given known kd, the individual rotor drag in the yawing motion is estimated as:

Di = kdωivh (6.40)

And the torque caused by individual rotor drag is estimated as:

τDi = −DiL (6.41)

The torque caused by individual rotor thrust because of the rotor misalignment is

estimated as:

MT i = Ti sin δrL (6.42)

The final ODE is formed below and the 4th-order Runge-Kutta method is used for

the integration with initial condition ŷ0 = ỹ0 = [z̃0
˜̇z0 ψ̃0

˜̇ψ0]T .

ẏ =



ż

z̈ = T−mg
m

ψ̇

ψ̈ = M+MT +τD
Iz


(6.43)

We take a 3-second section of the flight data for analysis in each yaw rate command

execution. Figure 6.29shows example test data and estimation results for one -45 deg/s yaw

rate test. In this analysis, both parameters to be identified converged very fast. Comparing

to the state estimations without the rotor drag induced torque τD as shown in blue dashed

lines, we can clearly see the effect of this damping term on the yawing response.

144

Figure 6.29. Fixed position turning test data and estimation result.

The analysis results for 8 individual tests are summarized in Table 6.7. The identified

kω values for the short test sections are within a reasonable range as we observed in the

previous hover test. The rotor counter-moment constant kM and the rotor misalignment

angle δr are identified as the average values:

kM = 0.0112 m (6.44)

δr = 0.51 deg (6.45)

The estimation result of the rotor misalignment angle turned out to be as small as

0.51 deg. This is consistent with our hypothesis of a slight rotor misalignment which is

145

Table 6.7. Estimation results in fixed position turning tests

Test No. Yaw Rate
(deg/s) kω

kω Diff
(%) kM δr (deg)

1 -15 1.1305×10−7 -1.8 0.01145 0.36
2 -30 1.1406×10−7 -0.9 0.011797 0.55
3 +30 1.1524×10−7 0.1 0.011833 0.68
4 -30 1.1369×10−7 -1.3 0.010172 0.29
5 +30 1.1286×10−7 -2.0 0.009425 0.55
6 -45 1.1539×10−7 0.2 0.011462 0.47
7 +45 1.1477×10−7 -0.3 0.013041 0.67
8 -45 1.1348×10−7 -1.4 0.010377 0.53

hard to notice in visual inspection. We will add this additional parameter and its effect into

the quadcopter dynamic model in following research.

In these tests from Section 6.3.4 to Section 6.3.6, the additional identification of kω

in the relatively short test sections is very important because kω is a key factor affecting all

the vehicle response. And as shown in Section 6.3.3, kω fluctuates during the flight tests

due to air disturbance. With a biased kω, all other estimations would be inaccurate and

divergent.

All the vehicle dynamic states used in the system identification flight tests are ob-

tained from the PX4 EKF2 estimator. For detail parameter settings of the EKF2 estimator

please refer to APPENDIX A.

146

Chapter 7

Trajectory Tracking Flight Test

After the flight test environment setup, the high fidelity SITL simulation setup and

the model parameter identification, we move on to the actual trajectory tracking flight test.

We start from the dynamic model modification to ensure that the model in out framework

matches the actual quadcopter. Then we find the way to apply our control strategy based

on the PX4 flight controller architecture. Next we conduct the flight controller tuning and

various effect compensation tests. Finally we verify the trajectory tracking though various

aggressive trajectories and conduct actual narrow window passing flight tests.

7.1 Dynamic Model Modification

We apply all the identified parameters to our dynamic model and SITL simulation

model. Previously in our trajectory optimization framework and trajectory tracking con-

troller development, we used the “plus” quadcopter configuration. However, the PX4 soft-

ware uses the “cross” configuration as the default setting for DJI F450 quadcopter. Figure

7.1 shows a comparison of the two configurations.

147

Figure 7.1. Plus and cross configuration for quadcopters.

While modifying the control allocation model, we also incorporate the slight rotor

misalignment identified in Section 6.3.6 and its effect on Z-axis moment into the dynamic

model. We consider the rotor misalignment angle δr and modify equation (3.4) as:



u1

u2

u3

u4


=



1 1 1 1

−L cos π
4

L cos π
4

L cos π
4

−L cos π
4

−L cos π
4

L cos π
4

−L cos π
4

L cos π
4

−kM + L sin δr −kM + L sin δr kM + L sin δr kM + L sin δr





F1

F2

F3

F4


(7.1)

7.2 Trajectory Tracking Control

So far we can use the native PX4 flight controller on the Pixhawk 4 mini autopilot

module to perform the polynomial trajectory tracking via its offboard mode by feeding

position, velocity, acceleration, yaw and yaw rate set-point from the on-board computer

(Raspberry Pi) through“/mavros/setpoint raw/local” topic via “PositionTarget” message at

50 Hz. However, the trajectory tracking will not be accurate this way. Figure 7.2 shows an
148

example Y-axis minimum snap trajectory tracking result. The tracking lag and overshoot

are obvious even with such a simple and slow trajectory.

Figure 7.2. 1-D minimum snap trajectory tracking with native PX4 controller.

To achieve precise trajectory tracking, we need to tune the controller, check the map-

ping from acceleration commands to attitude set-points, and add the nonlinear feedforward

terms in the quadcopter rotational dynamics and the compensations for rotor drag and other

effects into the controller. Therefore, we plan to both utilize the on-board computer and

modify the PX4 flight controller code to implement the full geometric controller with ef-

fects’ compensation as proposed in Chapter 3 on top of the original PX4 flight controller

architecture.

For trajectory tracking part in the modified geometric controller proposed in equation

(3.61), we leave the position and velocity tracking (kxex and kvev) and the acceleration to

desired attitude mapping part to original PX4 controller. To deal with the rotor drag com-

pensation, we implement the drag estimation in the trajectory control program in on-board

computer. We obtain required vehicle states and rotor speed commands (PPM) through

MAVROS interface. The actual rotor RPM is estimated by the identified function in equa-

tion (6.6). Finally, we convert the estimated rotor drag into an acceleration compensation

149

term and add it to the trajectory acceleration commands to be sent to Pixhawk. The accel-

eration compensation term is formulated as:

AC =
kdωsRPR

Tv

m
(7.2)

For attitude tracking part in the modified geometric controller proposed in equation

(3.64), we leave the angle and angular rate tracking (kReR and kωeω) part to original PX4

controller. We obtain required vehicle states through MAVROS interface and implement

the inverse dynamics analysis in the trajectory control program in on-board computer. We

obtain the trajectory desired angular rate ωd from the inverse dynamics analysis and send

it to Pixhawk to be used as a feedforward angular rate compensation. Then we calculate

the rotational dynamic feedforward terms and effect compensation terms and send it to

Pixhawk to be used as a feedforward control moment compensation. The moment com-

pensation term is formulated as:

MC = ω × Iω − I(ω̂RTRdωd −RTRdω̇d)− τD − τG + τR (7.3)

We utilize available MAVROS topic “/mavros/setpoint raw/attitude” to send these

information and create a unique type mask code for this purpose.

On PX4 side, we create a uORB message that contains global variables for the addi-

tional compensation terms. We modify MAVLink code in “mavlink/mavlink receiver.cpp”

to assign the compensating variable values when the unique type mask is received. We

modify attitude control code in “mc att control/mc att control main.cpp” to add the com-

pensating angular rates to original vehicle rate set-point “vehicle rates setpoint” before it is

published. We also modify rate control code in “mc rate control/MulticopterRateControl.cpp”

to add the compensating moments to original vehicle torque set-point “vehicle torque setpoint”

150

before it is published. Note that this vehicle torque set-point only works when the dynamic

control allocation is enabled through the “SYS CTRL ALLOC” setting.

The trajectory tracking control implementation is illustrated in Figure 7.3.

Figure 7.3. Trajectory tracking control architecture.

7.3 Controller Tuning

Attitude control is the fundamental part in this flight controller. For fast attitude

tracking, we start the tuning from the rate controller which is the inner-most loop with

three independent PID controllers to control the body rates (yaw, pitch, and roll). Figure

7.4 shows the tuning of the roll rate controller with a -5 deg/s step input. Note that the roll

rate data is filtered for clear comparison because the actual flight data is noisy with high

frequency oscillations. Figure 7.5 shows the actual flight data and the filtered result for the

kP = 0.25 test. At kP = 0.3, the system starts to show signs of instability during flight.

151

Therefore, we end up this tuning and choose to set the gains as kpφ̇ = 0.25, kDφ̇ = 0.004,

and kI φ̇ = 0.15.

Figure 7.4. Roll rate controller gain tuning.

Figure 7.5. Actual data and filtered data in roll rate tracking.

Then we move on to roll controller tuning. The outer loop of the attitude control in

PX4 is a simple proportional control. Figure 7.6 shows the tuning of the roll controller with

a -5 deg step input. We finally choose to set the gain as kpφ = 10 because this is already

very close to the upper limit recommended by PX4.

152

Figure 7.6. Roll controller gain tuning.

Although we try to tune the controller for faster response, an obvious delay from the

command to the actual action in both roll and roll rate tracking is observed. This has to do

with the rotor effect time constant. Figure 7.7 shows an example of rotor response during

flight. Although the sampling rate is not high enough to reveal dynamic details, we can still

observe the delay from the PPM command peak to the actual RPM peak.

Figure 7.7. Rotor response example.

As the attitude controller is tuned up, we test the trajectory tracking with a simple

Y-axis 1-segment minimum snap trajectory which goes from y = −1 to y = 1 in 3 seconds.

153

From the comparison shown in Figure 7.8, we can see that the position tracking is slightly

better but not significantly improved after the gain tuning.

Figure 7.8. Trajectory tracking comparison in attitude control gain tuning.

However, the improvement in the roll angle tracking during the trajectory tracking

is obvious. Figure 7.9 shows the roll angle tracking result before the attitude control gain

tuning. The red dashed line shows the roll set-point which is the desired roll angle generated

by the flight controller. From the figure, we can see that the tracking lag is around 0.16

seconds, and the lag time varies with flight condition. Figure 7.10 shows the tracking result

with new control gains. The tracking lag is now around 0.11 seconds which indicates a

31% improvement. More importantly, the lag time in this case is almost like a constant.

It is inferred that, because the attitude controller has been tuned fast enough, the attitude

tracking lag time is now mainly caused by the rotor effect time constant and therefore does

not change much with flight condition. This gives us an edge on the next trial.

154

Figure 7.9. Roll tracking before the attitude control gain tuning.

Figure 7.10. Roll tracking after the attitude control gain tuning.

Knowing that the attitude tracking lag time is almost a constant and the nominal

desired attitude comes from the acceleration commands, we next try to pre-send the tra-

jectory acceleration commands by a fixed lead time equal to the attitude tracking lag time,

0.11 seconds. We also compare the roll set-point generated by the flight controller with

the roll angle estimation obtained from our inverse dynamics analysis. From the position

tracking comparison shown in Figure 7.11, we can see that, by pre-sending acceleration

commands, the tracking lag in the beginning of the trajectory is improved, but the tracking

error accumulated gradually and exceeded the previous case in the late part of the trajec-

155

tory. From the roll tracking comparison shown in Figure 7.12, we can see that, unlike the

previous case, the new roll response matched the estimation very well in the first 0.3 sec-

onds due to the pre-sending of acceleration commands. However, after 0.3 seconds the roll

trajectory gradually deviated from the estimation. It is observed that the slope of the set-

point curve is obviously flatter than that of the estimation throughout the trajectory. In PX4

controller, there are only three factors affect the desired attitude, position tracking error, ve-

locity tracking error, and acceleration command. In the first 0.5 seconds, the position and

velocity tracking are good. All these observations imply that the scaling from acceleration

command to desired attitude in PX4 controller is being conservative.

Figure 7.11. Trajectory tracking comparison in acceleration command pre-sending.

156

Figure 7.12. Roll tracking comparison in acceleration command pre-sending.

Next we try to reasonably match the attitude set-point curve slope in low velocity

region by amplifying the acceleration commands to be sent to PX4 controller by a scaling

factor ka. From the roll tracking comparison shown in Figure 7.13, we can see that, unlike

the previous case shown in the gray dashed line, the new roll response with ka = 1.3

matched the estimation very well in the first 0.9 seconds. In fact, the whole roll trajectory

got significantly closer to the estimation not only due to the acceleration command scaling

but also because of the reduction of position and velocity tracking error. From the position

and velocity comparison shown in Figure 7.14 and Figure 7.15, we can see how the tracking

result got improved gradually as ka being tuned step by step. Now the remaining issue is

that the vehicle velocity cannot catch up with the velocity command in high velocity region,

so that the position tracking also got lagged from the middle of the trajectory. This has to

do with the rotor drag.

157

Figure 7.13. Roll tracking comparison in acceleration command scaling.

Figure 7.14. Position tracking comparison in acceleration command scaling.

158

Figure 7.15. Velocity tracking comparison in acceleration command scaling.

Finally we added the compensations for rotor drag and other effects and achieved

the precise trajectory tracking. Figure 7.16-7.18 shows the final position, velocity, and roll

angle tracking result. The position and velocity tracking are good except for the slight

tracking error in the final phase of the trajectory. The actual roll trajectory to achieve this

precise tracking exactly matches the inverse dynamics estimation. This also confirms the

precision of the inverse dynamics analysis and the rotor drag model. It is learned here that

the test/tuning order is important, and the inverse dynamics estimation is very helpful in

this controller tuning process.

Figure 7.16. Final position tracking result.

159

Figure 7.17. Final velocity tracking result.

Figure 7.18. Final roll angle tracking result and comparison.

7.4 Multi-segment Aggressive Trajectory Tracking and Trajectory Aggressiveness Veri-

fication

After the controller tuning, we applied the finalized roll controller gains to the pitch

controller and verified the tracking performance in X-axis 1-segment minimum snap tra-

jectory tracking tests. The next step is to test actual 3D multi-segment aggressive trajectory

tracking. We conduct the test with a 3-waypoint scenario. The waypoint settings are tabu-

lated in Table 7.1.

160

Table 7.1. Waypoint settings in the scenario

WPT Setting x (m) y (m) z (m) ψ (deg)
Waypoint 1 0.5 -1.5 1 0
Waypoint 2 -0.5 0 1 0
Waypoint 3 0.5 1.5 1 0

First we specify the maximum rotor thrust as 4.8 N in the trajectory planning and

test the 2-segment trajectory tracking. Figure 7.19 shows the 3D plot of the trajectory and

the flight sequence obtained from MATLAB/Simulink simulation. Figure 7.20 shows the

sequence stock image of the actual trajectory tracking flight.

Figure 7.19. The 2-segment trajectory and MATLAB/Simulink simulation.

161

Figure 7.20. The 2-segment trajectory tracking flight.

Figure 7.21-7.23 shows the position and velocity tracking and the vehicle attitude

comparison in this trajectory tracking flight. From the flight data, we can see that the

trajectory tracking is still quite precise, though slightly higher tracking error is observed in

this more complicated and more aggressive trajectory tracking.

Figure 7.21. Position tracking result in 4.8N max-thrust test.

162

Figure 7.22. Velocity tracking result in 4.8N max-thrust test.

Figure 7.23. Attitude data comparison in 4.8N max-thrust test.

Next we use the same waypoint settings and test different aggressive levels by spec-

ifying different maximum rotor thrust. We generate optimized trajectories for 4.2N, 4.5N,

4.8N, and 5.1N maximum thrust and conduct three flight tests for each trajectory. The test

results are tabulated in Table 7.2.

The maximum RPM estimation in our trajectory planning comes from the maximum

thrust required in the trajectory and its corresponding flight condition. The actual maxi-

mum RPM used in a trajectory tracking flight will be affected by trajectory tracking error,

air disturbance, and other factors. However, from the test results we can see that, in our

163

Table 7.2. Trajectory aggressiveness test results

Test
No.

Specified Max
Thrust (N)

Flight
Time (s)

Estimated
Max RPM

Actual
Max RPM

Difference
(%)

1-1 4.2 4.41 6065 6378.2 5.16
1-2 4.2 4.41 6065 6329.7 4.36
1-3 4.2 4.41 6065 6338.4 4.51
2-1 4.5 3.40 6302 6564.0 4.16
2-2 4.5 3.40 6302 6633.8 5.27
2-3 4.5 3.40 6302 6444.7 2.26
3-1 4.8 3.03 6538 6629.7 1.40
3-2 4.8 3.03 6538 6671.9 2.05
3-3 4.8 3.03 6538 6638.6 1.54
4-1 5.1 2.83 6756 6871.3 1.71
4-2 5.1 2.83 6756 6697.2 -0.87
4-3 5.1 2.83 6756 6814.7 0.87

test region, the differences between the actual maximum RPM and the estimation are all

within 5.3%. The estimation would not be as close to actual value if the additional rotor

misalignment identified in Section 6.3.6 is not considered in our dynamic model. This

result verifies the specification of maximum rotor thrust in our aggressive trajectory

synthesis and proves the practical value of our trajectory optimization framework

and inverse dynamics analysis. In fact, based on our framework, we can modify the tra-

jectory optimization to trace maximum individual rotor RPM instead of maximum thrust.

This could be more practical in real application.

7.5 Narrow Window Passing Verification

Having the precise tracking of multi-segment aggressive trajectory achieved, we

move on to the actual narrow window passing test. We still use the 3-waypoint scenario as

in the previous section. One narrow window is added at waypoint 2. The window is sized

to have 10 cm of clearance each side from the quadcopter at the center as shown in Figure

164

7.24. And Figure 7.25 shows the 3D plot of the trajectory and the flight sequence obtained

from MATLAB/Simulink simulation.

Figure 7.24. 20-degree tilted narrow window geometry.

Figure 7.25. The window passing trajectory and MATLAB/Simulink simulation.

165

We test two different window tilted angle, 20 and 30 degrees. Figure 7.26 shows

the sequence stock image of the actual 20-degree tilted narrow window passing flight. The

maximum rotor thrust in this trajectory is specified as 5.0N. Figure 7.27 and Figure 7.28

show the position tracking and the attitude comparison in this flight. The tracking error

at the window position (marked with thick vertical purple dash-dotted line) is very small;

therefore the successful window passing is achieved.

Figure 7.26. The 20-degree window passing flight.

Figure 7.27. Position tracking result in 20-degree window passing flight.

166

Figure 7.28. Attitude data comparison in 20-degree window passing flight.

Figure 7.29 shows the sequence stock image of the 30-degree tilted narrow window

passing flight. The maximum rotor thrust in this trajectory is also specified as 5.0N. From

the position tracking and the attitude comparison shown in Figure 7.30 and Figure 7.31,

we can see that the tracking error and attitude difference are more obvious. However, the

position error at the window passing moment is still within 3 cm, and the angular difference

is with 2.5 deg. Therefore, the window passing is still successful.

Figure 7.29. The 20-degree window passing flight.

167

Figure 7.30. Position tracking result in 20-degree window passing flight.

Figure 7.31. Attitude data comparison in 20-degree window passing flight.

We also generate and test another trajectory for 20-degree window and 4.5N maxi-

mum thrust for comparison. From Figure 7.32 we can see that, comparing between trajec-

tory 1 and trajectory 2, trajectory 2 makes a lower curvature at the window position. This

is because they need the same centrifugal acceleration for the same window angle, and tra-

jectory 2 is faster (more aggressive) because of higher specified maximum thrust. And by

comparing between trajectory 2 and trajectory 3, we can see that trajectory 3 makes higher

curvature at the window position to generate higher centrifugal acceleration to match the

168

higher tilted window given they having similar speed because of the same specified maxi-

mum thrust.

Figure 7.32. Comparison of window passing trajectories.

We conduct three flight tests for each trajectory. The test results are tabulated in

Table 7.3.

Table 7.3. Window passing test results

Test
No.

Window
Angle
(deg)

Specified
Max Thrust

(N)

Seg. 1
Time

(s)

Seg. 2
Time

(s)

Total
Time

(s)

Estimated
Max RPM

Actual
Max RPM

Max RPM
Difference

(%)

1-1 20 4.5 1.69 1.72 3.41 6315 6557.5 3.84
1-2 20 4.5 1.69 1.72 3.41 6315 6524.3 3.31
1-3 20 4.5 1.69 1.72 3.41 6315 6438.1 1.95
2-1 20 5.0 1.48 1.50 2.98 6688 6649.2 -0.58
2-2 20 5.0 1.48 1.50 2.98 6688 6659.6 -0.42
2-3 20 5.0 1.48 1.50 2.98 6688 6652.3 -0.53
3-1 30 5.0 1.55 1.59 3.14 6688 6707.1 0.29
3-2 30 5.0 1.55 1.59 3.14 6688 6720.5 0.49
3-3 30 5.0 1.55 1.59 3.14 6688 6778.8 1.36

169

From the test results we can see that the differences between the actual maximum

RPM and the estimation are all within 4%. This further proves the practical value of our

trajectory optimization framework even in constrained cases such as narrow window

passing. By specifying the same maximum rotor thrust in the trajectory planning, we can

accomplish the passing through narrow windows with different tilted angles using almost

the same actual maximum rotor RPM. For the same scenario, we can decide how ag-

gressive (risky) we are willing to go by specifying corresponding maximum individual

rotor thrust or RPM.

The video of these narrow window passing flights is available at

https://youtu.be/-P Vcn1ulYs.

170

Chapter 8

Summary and Closing Remarks

In the first phase of this research, we successfully developed the complete optimiza-

tion framework to find the most aggressive trajectory for a quadcopter based on the vehi-

cle model, the waypoints, the required vehicle maneuver at waypoints, and the specified

maximum rotor thrust. We achieved this by utilizing multi-segment polynomial trajectory

optimization and differential flatness based inverse dynamics analysis. With this frame-

work, we are able to find the optimal polynomial trajectory and the corresponding segment

time allocation for a specified scenario and a desired aggressiveness level. Unlike other

methods, we actually track the maximum individual rotor thrust required during trajectory

optimization. This approach allows us to precisely manage the level of aggressiveness,

ensuring it is not overly risky while still pursuing aggressiveness and, at the same time,

avoiding excessive conservatism.

With this framework, we can also tell if the given scenario is beyond the capability

of the given quadcopter by examining whether the solution exists. Another possible ap-

plication is that we can use the algorithm to evaluate the minimum required rotor thrust to

achieve the scenario. Instead of tracking the maximum force, we can also use the algorithm

to track the total time. That is, given a desired flight time, we can find the optimal trajectory

that has the minimum required rotor thrust. In the case when there is no vehicle heading

requirement, we also provide a yaw trajectory optimization method in our framework to

further improve the aggressive performance.

For clarity and simplicity, we adopted a commonly used simplified quadcopter dy-

namic model in the first phase. However, in aggressive flight some ignored effects could

171

become significant, and it could be unrealistic to find the optimal trajectory based on the

simplified dynamic model. Therefore, in the second phase we incorporate additional effects

into the quadcopter dynamic model.

During the second phase, we achieved the full compensation for aerodynamic, gy-

roscopic, and rotor rolling effects in both optimal constrained trajectory planning and ge-

ometric control trajectory tracking. Firstly, we integrated all those effects into the inverse

dynamics analysis. We developed the full inverse dynamics derivation to incorporate the

rotor drag and overcome the difficulty of unknown rotor speeds by proposing a numerical

iterative method. Then, we integrate the aerodynamic drag into the trajectory derivative

constraints for window passing to compensate the attitude change due to the drag force.

This is also an iterative process and the modified inverse dynamics analysis is utilized to

solve rotor speeds at each window waypoint iteratively. This framework shows how the dif-

ferential flatness property can be preserved while introducing all these additional effects.

This is important and can be applied to any differential flatness based trajectory planning

or tracking control.

In all of our test cases, the iterative method practically solved the rotor speeds which

are essential for the estimation of all the additional effects. The case study provided in

Chapter 3 shows how the drag induced, gyroscopic and rotor rolling torques could be sig-

nificant in a general aggressive trajectory flight and should not simply be neglected. In the

window passing trajectory planning, we observed how the compensation for aerodynamic

drag could significantly change the resultant aggressive trajectory. In the geometric control

trajectory tracking simulations, we observed how the compensations improved the tracking

performance step by step and that these compensations are all important for the accurate

aggressive trajectory tracking.

Next we moved on to high fidelity simulations. With RotorS/Gazebo simulation, we

successfully implemented the proposed trajectory tracking controller in the realistic virtual

172

environment and achieved precise tracking control. We also verified that our trajectory

synthesis can be applied to generic multi-copters with minor modifications to the vehicle

control allocation model by using the built-in AscTec Firefly hexacopter model. We also

share our experience in establishing the comprehensive PX4 SITL (Software in the Loop)

simulation environment. This a crucial step towards the successful flight tests because

it allows for thorough testing of system integration, data communication, controller im-

plementation, and even the detailed flight test procedure before conducting actual flights.

Additionally, we present a comparison between the simulation results and the data obtained

from actual flight tests to validate the degree of similarity.

Precise identification of system model parameters is crucial for both trajectory opti-

mization and trajectory tracking control. We obtained accurate mass and inertia properties

of the vehicle through detailed SolidWorks CAD modeling. Important rotor properties are

obtained through tests on a rotor test bench. A series of flight tests is designed and con-

ducted to identify all the parameters in our quadcopter dynamic model through maximum

likelihood estimation. Additional yaw control effort has been discovered in these flight

tests and finally inferred to be caused by slight rotor misalignment. We also identified this

misalignment angle through maximum likelihood estimation and added this effect into our

dynamic model. This is an important factor to the trajectory optimization because it affects

individual rotor thrust and RPM.

Finally we conducted actual flight tests in a Vicon motion capture system equipped

environment. The trajectory tracking control is based on the native PX4 flight controller and

one companion trajectory controller running on the on-board computer to offer trajectory

information and additional feedforward and compensation terms that were proposed in

the second phase of this research to the flight controller. We tuned the rate and attitude

controller gains for fast tracking. We overcome the issue of conservative attitude set-point

mapping and attitude tracking delay caused by rotor time constant by pre-sending scaled

173

feedforward acceleration commands with a fixed lead time. Finally, the precise trajectory

tracking is achieved, and the feasibility of the optimal aggressive constrained trajectory is

confirmed through actual narrow window passing flight tests. The actual RPM data in the

flight tests also verifies the specification of maximum rotor thrust in our framework and

proves the practical value of our trajectory optimization framework and inverse dynamics

analysis. The estimated RPM would not be so close to the actual flight data if the additional

rotor misalignment identified is not considered in our dynamic model.

In fact, based on our framework, we can also modify the trajectory optimization to

track maximum individual rotor RPM instead of maximum thrust. This could be more

practical in real applications.

174

APPENDIX A

PX4 Parameters Used in This Research

175

In this research, we use PX4 firmware base version 1.13.0. Detailed parameter set-

tings for EKF2, sensor and controller are tabulated below:

Table A.1: PX4 EKF2 parameter settings

Parameter Value Parameter Value

EKF2 ABIAS INIT 0.200000003 EKF2 MAG E NOISE 0.001

EKF2 ABL ACCLIM 25 EKF2 MAG GATE 3

EKF2 ABL GYRLIM 3 EKF2 MAG NOISE 0.050000001

EKF2 ABL LIM 0.400000006 EKF2 MAG TYPE 0

EKF2 ABL TAU 0.5 EKF2 MAG YAWLIM 0.25

EKF2 ACC B NOISE 0.003 EKF2 MCOEF 0.150000006

EKF2 ACC NOISE 0.349999994 EKF2 MIN RNG 0.100000001

EKF2 AID MASK 24 EKF2 MULTI IMU 2

EKF2 ANGERR INIT 0.100000001 EKF2 MULTI MAG 2

EKF2 ARSP THR 0 EKF2 NOAID NOISE 10

EKF2 ASPD MAX 20 EKF2 NOAID TOUT 5000000

EKF2 ASP DELAY 100 EKF2 OF DELAY 20

EKF2 AVEL DELAY 5 EKF2 OF GATE 3

EKF2 BARO DELAY 0 EKF2 OF N MAX 0.5

EKF2 BARO GATE 5 EKF2 OF N MIN 0.150000006

EKF2 BARO NOISE 3.5 EKF2 OF POS X 0

EKF2 BCOEF X 100 EKF2 OF POS Y 0

EKF2 BCOEF Y 100 EKF2 OF POS Z 0

EKF2 BETA GATE 5 EKF2 OF QMIN 1

Continued on next page...

176

Parameter Value Parameter Value

EKF2 BETA NOISE 0.300000012 EKF2 PCOEF XN 0

EKF2 DECL TYPE 7 EKF2 PCOEF XP 0

EKF2 DRAG NOISE 2.5 EKF2 PCOEF YN 0

EKF2 EAS NOISE 1.399999976 EKF2 PCOEF YP 0

EKF2 EVA NOISE 0.050000001 EKF2 PCOEF Z 0

EKF2 EVP GATE 5 EKF2 PREDICT US 10000

EKF2 EVP NOISE 0.100000001 EKF2 REQ EPH 3

EKF2 EVV GATE 3 EKF2 REQ EPV 5

EKF2 EVV NOISE 0.100000001 EKF2 REQ GPS H 10

EKF2 EV DELAY 5 EKF2 REQ HDRIFT 0.100000001

EKF2 EV NOISE MD 0 EKF2 REQ NSATS 6

EKF2 EV POS X 0 EKF2 REQ PDOP 2.5

EKF2 EV POS Y 0 EKF2 REQ SACC 0.5

EKF2 EV POS Z 0 EKF2 REQ VDRIFT 0.200000003

EKF2 FUSE BETA 0 EKF2 RNG AID 1

EKF2 GBIAS INIT 0.100000001 EKF2 RNG A HMAX 5

EKF2 GND EFF DZ 4 EKF2 RNG A IGATE 1

EKF2 GND MAX HGT 0.5 EKF2 RNG A VMAX 1

EKF2 GPS CHECK 245 EKF2 RNG DELAY 5

EKF2 GPS DELAY 110 EKF2 RNG GATE 5

EKF2 GPS POS X 0 EKF2 RNG K GATE 1

EKF2 GPS POS Y 0 EKF2 RNG NOISE 0.100000001

EKF2 GPS POS Z 0 EKF2 RNG PITCH 0

Continued on next page...

177

Parameter Value Parameter Value

EKF2 GPS P GATE 5 EKF2 RNG POS X 0

EKF2 GPS P NOISE 0.5 EKF2 RNG POS Y 0

EKF2 GPS V GATE 5 EKF2 RNG POS Z 0

EKF2 GPS V NOISE 0.300000012 EKF2 RNG QLTY T 1

EKF2 GSF TAS 15 EKF2 RNG SFE 0.050000001

EKF2 GYR B NOISE 0.001 EKF2 SEL ERR RED 0.200000003

EKF2 GYR NOISE 0.015 EKF2 SEL IMU ACC 1

EKF2 HDG GATE 2.599999905 EKF2 SEL IMU ANG 15

EKF2 HEAD NOISE 0.300000012 EKF2 SEL IMU RAT 7

EKF2 HGT MODE 3 EKF2 SEL IMU VEL 2

EKF2 IMU POS X 0 EKF2 SYNT MAG Z 0

EKF2 IMU POS Y 0 EKF2 TAS GATE 3

EKF2 IMU POS Z 0 EKF2 TAU POS 0.25

EKF2 MAG ACCLIM 0.5 EKF2 TAU VEL 0.25

EKF2 MAG B NOISE 1.00E-04 EKF2 TERR GRAD 0.5

EKF2 MAG CHECK 1 EKF2 TERR MASK 3

EKF2 MAG DECL 0 EKF2 TERR NOISE 5

EKF2 MAG DELAY 0 EKF2 WIND NOISE 0.100000001

178

Table A.2: PX4 sensor parameter settings

Parameter Value Parameter Value

SENS BARO QNH 1013.25 SENS EN SF1XX 0

SENS BARO RATE 20 SENS EN SHT3X 0

SENS BOARD ROT 0 SENS EN SPL06 0

SENS BOARD X OFF 1.35320282 SENS EN THERMAL -1

SENS BOARD Y OFF -0.783595502 SENS EN TRANGER 0

SENS BOARD Z OFF 0 SENS EN VL53L1X 0

SENS CM8JL65 CFG 0 SENS EXT I2C PRB 1

SENS DPRES OFF 0 SENS FLOW MAXHGT 3

SENS EN ADIS164X 0 SENS FLOW MAXR 2.5

SENS EN BATT 0 SENS FLOW MINHGT 0.699999988

SENS EN ETSASPD 0 SENS FLOW ROT 6

SENS EN IRLOCK 0 SENS GPS MASK 0

SENS EN LL40LS 0 SENS GPS PRIME 0

SENS EN MB12XX 0 SENS GPS TAU 10

SENS EN MPDT 0 SENS IMU AUTOCAL 1

SENS EN MS4515 0 SENS IMU MODE 0

SENS EN MS4525DO 0 SENS LEDDAR1 CFG 0

SENS EN MS5525DS 0 SENS MAG AUTOCAL 0

SENS EN PAA3905 0 SENS MAG MODE 0

SENS EN PAW3902 0 SENS MAG RATE 15

SENS EN PCF8583 1 SENS SF0X CFG 0

Continued on next page...

179

Parameter Value Parameter Value

SENS EN PGA460 0 SENS TFLOW CFG 0

SENS EN PMW3901 0 SENS TFMINI CFG 0

SENS EN PX4FLOW 0 SENS ULAND CFG 0

SENS EN SDP3X 0

IMU ACCEL CUTOFF 30 IMU GYRO FFT MAX 150

IMU DGYRO CUTOFF 30 IMU GYRO FFT MIN 30

IMU GYRO CAL EN 1 IMU GYRO FFT SNR 10

IMU GYRO CUTOFF 40 IMU GYRO NF0 BW 20

IMU GYRO DNF BW 15 IMU GYRO NF0 FRQ 0

IMU GYRO DNF EN 0 IMU GYRO NF1 BW 20

IMU GYRO DNF HMC 3 IMU GYRO NF1 FRQ 0

IMU GYRO FFT EN 1 IMU GYRO RATEMAX 800

IMU GYRO FFT LEN 512 IMU INTEG RATE 200

180

Table A.3: PX4 controller parameter settings

Parameter Value Parameter Value

MC ACRO EXPO 0.689999998 MC PITCHRATE P 0.25

MC ACRO EXPO Y 0.689999998 MC PITCH P 10

MC ACRO P MAX 720 MC PR INT LIM 0.300000012

MC ACRO R MAX 720 MC ROLLRATE D 0.004

MC ACRO SUPEXPO 0.699999988 MC ROLLRATE FF 0

MC ACRO SUPEXPOY 0.699999988 MC ROLLRATE I 0.150000006

MC ACRO Y MAX 540 MC ROLLRATE K 1

MC AIRMODE 0 MC ROLLRATE MAX 220

MC AT APPLY 1 MC ROLLRATE P 0.25

MC AT EN 1 MC ROLL P 10

MC AT RISE TIME 0.140000001 MC RR INT LIM 0.300000012

MC AT START 0 MC YAWRATE D 0

MC AT SYSID AMP 0.699999988 MC YAWRATE FF 0

MC BAT SCALE EN 0 MC YAWRATE I 0.100000001

MC MAN TILT TAU 0 MC YAWRATE K 1

MC PITCHRATE D 0.004 MC YAWRATE MAX 200

MC PITCHRATE FF 0 MC YAWRATE P 0.300000012

MC PITCHRATE I 0.150000006 MC YAW P 2.799999952

MC PITCHRATE K 1 MC YAW WEIGHT 0.400000006

MC PITCHRATE MAX 220 MC YR INT LIM 0.300000012

MPC ACC DOWN MAX 3 MPC TKO RAMP T 3

Continued on next page...

181

Parameter Value Parameter Value

MPC ACC HOR 3 MPC TKO SPEED 1.5

MPC ACC HOR MAX 5 MPC USE HTE 1

MPC ACC UP MAX 4 MPC VELD LP 5

MPC ALT MODE 0 MPC VEL MANUAL 10

MPC HOLD DZ 0.100000001 MPC XY CRUISE 5

MPC HOLD MAX XY 0.800000012 MPC XY ERR MAX 2

MPC HOLD MAX Z 0.600000024 MPC XY MAN EXPO 0.600000024

MPC JERK AUTO 4 MPC XY P 0.949999988

MPC JERK MAX 8 MPC XY TRAJ P 0.5

MPC LAND ALT1 10 MPC XY VEL ALL -10

MPC LAND ALT2 5 MPC XY VEL D ACC 0.200000003

MPC LAND ALT3 1 MPC XY VEL I ACC 0.400000006

MPC LAND CRWL 0.300000012 MPC XY VEL MAX 12

MPC LAND RC HELP 0 MPC XY VEL P ACC 1.799999952

MPC LAND SPEED 0.699999988 MPC YAWRAUTO MAX 45

MPC MANTHR MIN 0.079999998 MPC YAW EXPO 0.600000024

MPC MAN TILT MAX 35 MPC YAW MODE 0

MPC MAN Y MAX 150 MPC Z MAN EXPO 0.600000024

MPC MAN Y TAU 0.079999998 MPC Z P 1

MPC POS MODE 4 MPC Z VEL ALL -3

MPC SPOOLUP TIME 1 MPC Z VEL D ACC 0

MPC THR CURVE 0 MPC Z VEL I ACC 2

MPC THR HOVER 0.5 MPC Z VEL MAX DN 1

Continued on next page...

182

Parameter Value Parameter Value

MPC THR MAX 1 MPC Z VEL MAX UP 3

MPC THR MIN 0.119999997 MPC Z VEL P ACC 4

MPC THR XY MARG 0.300000012 MPC Z V AUTO DN 1

MPC TILTMAX AIR 45 MPC Z V AUTO UP 3

MPC TILTMAX LND 12

183

References

[1] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajectories using

incremental nonlinear dynamic inversion and differential flatness,” IEEE Transactions

on Control Systems Technology, 2020.

[2] F. Gao, W. Wu, J. Pan, B. Zhou, and S. Shen, “Optimal time allocation for quadrotor

trajectory generation,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, Madrid, 2018.

[3] G. Yu, D. Cabecinhas, R. Cunha, and C. Silvestre, “Quadrotor trajectory

generation and tracking for aggressive maneuvers with attitude constraints,”

IFAC-PapersOnLine, vol. 52-12, 2019.

[4] Z. Wang, X. Zhou, C. Xu, J. Chu, and F. Gao, “Alternating minimization based tra-

jectory generation for quadrotor aggressive flight,” IEEE Robotics and Automation

Letters, vol. 5, no. 3, p. 4836–4843, 2020.

[5] G. Ryou, E. Tal, and S. Karaman, “Multi-fidelity black-box optimization for time-

optimal quadrotor maneuvers,” The International Journal of Robotics Research, July

2021.

[6] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor way-

point flight,” Science Robotics, vol. 6, no. 56, 2021.

[7] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory opti-

mization for multicopters,” 2021.

[8] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadrotor

flight through narrow gaps with onboard sensing and computing using active vi-

184

sion,” 2017 IEEE International Conference on Robotics and Automation (ICRA), p.

5774–5781, 2017.

[9] A. Chakravarthy and D. Ghose, “Guidance for precision three-dimensional maneu-

vers through orifices using safe-passage cones,” Journal of Guidance, Control, and

Dynamics, vol. 39, no. 6, pp. 1325–1341, 2016.

[10] W. Zuo, K. Dhal, A. Keow, A. Chakravarthy, and Z. Chen, “Model-based control of a

robotic fish to enable 3d maneuvering through a moving orifice,” IEEE Robotics and

Automation Letters, vol. 5, no. 3, pp. 4719–4726, 2020.

[11] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, control, and plan-

ning for aggressive flight with a small quadrotor with a single camera and imu,” IEEE

Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, 2017.

[12] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for quadrotor flight,”

in International Conference on Robotics and Automation, 2013.

[13] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in International Conference on Robotics and Automation. IEEE, 2011.

[14] D. W. Mellinger, “Trajectory generation and control for quadrotors,” Publicly

Accessible Penn Dissertations, vol. 547, 2012.

[15] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive

quadrotor flight in dense indoor environments,” in Robotics Research, M. Inaba and

P. Corke, Eds. Cham: Springer International Publishing, 2016, pp. 649–666.

[16] T. Lee, M. Leok, and N. McClamroch, “Geometric tracking control of a quadrotor

uav on se(3),” 49th IEEE Conference on Decision and Control, 2010.

[17] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive

quadrotor flight in dense indoor environments,” in Robotics research. Springer,

2016, pp. 649–666.

185

[18] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory opti-

mization for multicopters,” arXiv preprint arXiv:2103.00190, 2021.

[19] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajectories using

incremental nonlinear dynamic inversion and differential flatness,” IEEE Transactions

on Control Systems Technology, vol. 29, no. 3, pp. 1203–1218, 2020.

[20] J. Jia, K. Guo, X. Yu, W. Zhao, and L. Guo, “Accurate high-maneuvering trajectory

tracking for quadrotors: A drag utilization method,” IEEE Robotics and Automation

Letters, vol. 7, no. 3, pp. 6966–6973, 2022.

[21] Z. Liu and L. Cai, “Large-angle and high-speed trajectory tracking control of a

quadrotor uav based on reachability,” in 2022 International Conference on Robotics

and Automation (ICRA). IEEE, 2022, pp. 1983–1988.

[22] S. Martini, S. Sönmez, A. Rizzo, M. Stefanovic, M. J. Rutherford, and K. P. Valavanis,

“Euler-lagrange modeling and control of quadrotor uav with aerodynamic compensa-

tion,” in 2022 International Conference on Unmanned Aircraft Systems (ICUAS).

IEEE, 2022, pp. 369–377.

[23] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor dy-

namics subject to rotor drag for accurate tracking of high-speed trajectories,” IEEE

Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2017.

[24] M. Bangura, M. Melega, R. Naldi, and R. Mahony, “Aerodynamics of rotor blades for

quadrotors,” arXiv preprint arXiv:1601.00733, 2016.

[25] P. Martin and E. Salaün, “The true role of accelerometer feedback in quadrotor con-

trol,” in 2010 IEEE international conference on robotics and automation. IEEE,

2010, pp. 1623–1629.

[26] J. Svacha, K. Mohta, and V. Kumar, “Improving quadrotor trajectory tracking by com-

pensating for aerodynamic effects,” in 2017 international conference on unmanned

aircraft systems (ICUAS). IEEE, 2017, pp. 860–866.

186

[27] S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs lq control techniques applied to an

indoor micro quadrotor,” in 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3. IEEE, 2004, pp.

2451–2456.

[28] R. Niemiec and F. Gandhi, “Effects of inflow model on simulated aeromechanics of

a quadrotor helicopter,” in 72nd Annual Forum of the American Helicopter Society

International, 2016.

[29] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007 IEEE/RSJ

international conference on intelligent robots and systems. Ieee, 2007, pp. 153–158.

[30] W. Giernacki, J. Gośliński, J. Goślińska, T. Espinoza-Fraire, and J. Rao, “Mathemat-

ical modeling of the coaxial quadrotor dynamics for its attitude and altitude control,”

Energies, vol. 14, no. 5, p. 1232, 2021.

[31] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular gazebo mav

simulator framework,” in Robot operating system (ROS). Springer, 2016, pp. 595–

625.

[32] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear feedback control of

quadrotors exploiting first-order drag effects,” IFAC-PapersOnLine, vol. 50, no. 1,

pp. 8189–8195, 2017.

[33] A. Kolaei, D. Barcelos, and G. Bramesfeld, “Experimental analysis of a small-scale

rotor at various inflow angles,” International Journal of Aerospace Engineering, vol.

2018, 2018.

[34] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor helicopter flight

dynamics and control: Theory and experiment,” in AIAA guidance, navigation and

control conference and exhibit, 2007, p. 6461.

187

[35] T.-L. Liu and K. Subbarao, “Optimal aggressive constrained trajectory synthesis

and control for multi-copters,” Aerospace, vol. 9, no. 6, 2022. [Online]. Available:

https://www.mdpi.com/2226-4310/9/6/281

[36] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[37] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge Uni-

versity Press, 2004.

[38] Q. Quan, Introduction to Multicopter Design and Control. Singapore: Springer,

2017.

[39] D. Mellinger, Trajectory generation and control for quadrotors. University of Penn-

sylvania, 2012.

[40] Q. Quan, Introduction to multicopter design and control. Springer, 2017.

[41] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a quadrotor

uav on se (3),” in 49th IEEE conference on decision and control (CDC). IEEE, 2010,

pp. 5420–5425.

[42] “Flame wheel arf kit.” [Online]. Available: https://www-v1.dji.com/flame-wheel-arf/

feature.html

[43] “E305 tuned propulsion system.” [Online]. Available: https://www-v1.dji.com/e305.

html

[44] “X4rsb.” [Online]. Available: https://www.frsky-rc.com/product/x4rsb/

[45] “Sik telemetry radio v3.” [Online]. Available: https://holybro.com/products/

sik-telemetry-radio-v3

[46] “Tfrpm01: Drone rpm tachometer sensor.” [Online]. Available: https://www.tindie.

com/products/thunderfly/tfrpm01-drone-rpm-tachometer-sensor/

[47] “Tfi2cadt01: Pixhawk i2c address translator.” [Online]. Available: https:

//www.tindie.com/products/thunderfly/tfi2cadt01-pixhawk-i2c-address-translator/

188

https://www.mdpi.com/2226-4310/9/6/281
https://www-v1.dji.com/flame-wheel-arf/feature.html
https://www-v1.dji.com/flame-wheel-arf/feature.html
https://www-v1.dji.com/e305.html
https://www-v1.dji.com/e305.html
https://www.frsky-rc.com/product/x4rsb/
https://holybro.com/products/sik-telemetry-radio-v3
https://holybro.com/products/sik-telemetry-radio-v3
https://www.tindie.com/products/thunderfly/tfrpm01-drone-rpm-tachometer-sensor/
https://www.tindie.com/products/thunderfly/tfrpm01-drone-rpm-tachometer-sensor/
https://www.tindie.com/products/thunderfly/tfi2cadt01-pixhawk-i2c-address-translator/
https://www.tindie.com/products/thunderfly/tfi2cadt01-pixhawk-i2c-address-translator/

[48] “Thunderfly tfrpm01 revolution counter.” [Online]. Available: https://docs.px4.io/

main/en/sensor/thunderfly tachometer.html

[49] “Holybro pixhawk 4 mini.” [Online]. Available: https://docs.px4.io/main/en/

flight controller/pixhawk4 mini.html

[50] “Get started with drone development.” [Online]. Available: https://px4.io/

[51] A. R. Godbole, “Nonlinear control of unmanned aerial vehicles with cable suspended

payloads,” Ph.D. dissertation, The University of Texas at Arlington, 2019.

[52] “Raspberry pi 3 model b.” [Online]. Available: https://www.raspberrypi.com/

products/raspberry-pi-3-model-b/

[53] “mavros.” [Online]. Available: http://wiki.ros.org/mavros

[54] “Qgroundcontrol.” [Online]. Available: http://qgroundcontrol.com/

[55] “Taranis q x7.” [Online]. Available: https://www.frsky-rc.com/product/

taranis-q-x7-2/

[56] “What is motion capture.” [Online]. Available: https://www.vicon.com/

[57] “vicon bridge.” [Online]. Available: http://wiki.ros.org/vicon bridge

[58] “Rotors simulator.” [Online]. Available: https://github.com/ethz-asl/rotors simulator

[59] “Simulation.” [Online]. Available: https://docs.px4.io/main/en/simulation/

[60] A. Lorente, “Dji f450 quadcopter drone.” [Online]. Available: https://grabcad.com/

library/dji-f450-quadcopter-drone-1

[61] A. M. Martinez, “Onboard payload mass estimation and electric propulsion modeling

for multicopters with application in unmanned aerial systems,” Master’s thesis, The

University of Texas at Arlington, 2019.

[62] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. Chapman

and Hall/CRC, 2004.

[63] K. W. Iliff, “Parameter estimation for flight vehicles,” Journal of Guidance, Control,

and Dynamics, vol. 12, no. 5, pp. 609–622, 1989.

189

https://docs.px4.io/main/en/sensor/thunderfly_tachometer.html
https://docs.px4.io/main/en/sensor/thunderfly_tachometer.html
https://docs.px4.io/main/en/flight_controller/pixhawk4_mini.html
https://docs.px4.io/main/en/flight_controller/pixhawk4_mini.html
https://px4.io/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
http://wiki.ros.org/mavros
http://qgroundcontrol.com/
https://www.frsky-rc.com/product/taranis-q-x7-2/
https://www.frsky-rc.com/product/taranis-q-x7-2/
https://www.vicon.com/
http://wiki.ros.org/vicon_bridge
https://github.com/ethz-asl/rotors_simulator
https://docs.px4.io/main/en/simulation/
https://grabcad.com/library/dji-f450-quadcopter-drone-1
https://grabcad.com/library/dji-f450-quadcopter-drone-1

Biographical Statement

Tsung-Liang Liu was born in Penghu, Taiwan, in 1979. He received his Bachelor of

Engineering degree in Aerospace Engineering from Tamkang University, Taiwan, in 2002.

He earned his Master of Science degree in Aerospace Engineering from National Cheng

Kung University, Taiwan, in 2004. After graduation, Tsung-Liang has been working in

Taiwan National Chung-Shan Institute of Science and Technology (NSCIST) as a simulator

software research and development engineer. In fall 2019, Tsung-Liang started his Ph.D.

program in Aerospace Engineering at the University of Texas at Arlington (UTA) which is

sponsored by NCSIST. He joined the Aerospace Systems Laboratory in UTA in spring 2020

and has been working on multi-copter trajectory optimization, dynamic system modeling

and simulation, and trajectory tracking flight control. After earning his Ph.D., Tsung-Liang

will return to Taiwan and continue serving in NCSIST.

190

	Acknowledgements
	Abstract
	List of Illustrations
	List of Tables
	Introduction
	Motivation and Background
	Objectives
	Summary of Contributions
	Dissertation Outline

	Multi-Copter Aggressive Constrained Trajectory Optimization Framework and Tracking Control
	Mathematical Model Description
	Solution Methodology
	Multi-Segment Polynomial Trajectory Optimization
	Constraints on Vehicle Velocity and Attitude at Waypoints
	Segment Time Optimization
	Inverse Dynamics
	Max Force Tracking and Aggressiveness Defined

	Numerical Results
	Geometric Control and Simulation Result
	Yaw Trajectory Optimization
	Conclusions

	Compensation for Aerodynamic, Gyroscopic and Rotor Rolling Effects in the Synthesis
	Mathematical Model Description
	Solution Methodology
	Inverse Dynamics Analysis
	Drag Compensation in Waypoint Attitude Constraint

	Numerical Results
	Drag Induced, Gyroscopic and Rotor Rolling Torques
	Window Passing Trajectory Planning

	Trajectory Tracking Control and Simulation Result
	Conclusions

	Flight Test Environment Setup
	Aerial System
	Ground Control System
	Vicon Motion Capture System

	High Fidelity Simulations
	RotorS/Gazebo Simulation
	1-D Minimum Snap Trajectory Tracking Test
	Window Passing Trajectory Tracking Test

	PX4 SITL Simulation
	Simulation System Architecture
	Flight Test Data Comparison

	System Model Parameter Identification
	SolidWorks CAD modeling
	Static Rotor Test
	Flight Experiments
	Experimental Design
	Maximum Likelihood Estimation
	Fixed Position Hovering Test
	Climbing and Descending Test
	Fixed Roll Angle Level Flight Test
	Fixed Position Turning Test

	Trajectory Tracking Flight Test
	Dynamic Model Modification
	Trajectory Tracking Control
	Controller Tuning
	Multi-segment Aggressive Trajectory Tracking and Trajectory Aggressiveness Verification
	Narrow Window Passing Verification

	Summary and Closing Remarks
	PX4 Parameters Used in This Research
	References
	Biographical Statement

