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ABSTRACT
Existing learning-based methods require a large number of labeled
data to produce accurate part segmentation labels. However, acquir-
ing ground truth labels is costly, giving rise to a need for methods
that either require fewer labels or can utilize other currently avail-
able labels as a form of weak supervision for training. In this paper,
in order to mitigate the burden of labeled-data acquisition, we pro-
pose a data-driven method for hand part segmentation on depth
maps without any need for extra effort to obtain segmentation
labels. The proposed method uses the labels already provided by
public datasets in terms of major 3D hand joint locations to learn
to estimate the hand shape and pose given a depth map. Given
the pose and shape of a hand, the corresponding 3D hand mesh is
generated using a deformable hand model and then rendered to a
color image using a texture based on Linear Blend Skinning (LBS)
weights of the hand model. The segmentation labels are then com-
puted from the rendered color image. Since segmentation labels are
not provided with current public datasets, we manually annotate
a subset of the NYU dataset to perform quantitative evaluation of
our method and show that a mIoU of 42% can be achieved with
a model trained without using segmentation-based labels. Both
qualitative and quantitative results confirm the effectiveness of our
method. The code is publicly available for research purposes at:
https://git.io/JmCBS.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); • Hand pose estimation → hand joint localiza-
tion; • Hand shape estimation→ hand part segmentation.

KEYWORDS
3D hand pose estimation, 3D hand shape estimation, semantic seg-
mentation, hand part segmentation, human-computer interaction,
Deep Learning, Computer Vision
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1 INTRODUCTION
The hand is a crucial human body part that enables numerous daily
activities. As such, hand part segmentation using vision systems is
necessary for interaction between people and digital devices and
thus is crucial in many applications relating to computer vision
and human computer interaction (HCI), such as augmented reality
(AR), virtual reality (VR) and gesture recognition, which could have
numerous downstream applications including assisting people with
disabilities [14, 39]. Hand part segmentation is a very challeng-
ing task due to the large degree of variation in hand appearance,
heavy self-occlusion, large variability in global orientation and
self-similarity between hand parts.

As depth cameras become more accurate, more affordable, and
more widely used, significant advancements have been made in
depth-based hand pose estimation [4, 11, 12, 18, 31, 50, 51, 53] and
segmentation [8, 47]. Nonetheless, hand part segmentation has
received little attention. In this paper, we propose the first data-
driven method to perform hand part segmentation. Our method
differs from existing depth-based hand segmentation methods in
that they consider the whole hand as one semantic entity and
attempt to segment out the hand from the background [8, 47]. In
contrast, we divide the hand into six semantic parts, namely five
fingers as well as the palm and attempt to assign pixel-wise labels
to the input depth image.

It is widely recognized that deep learning-based methods are
data intensive and thus require a large amount of annotated data
to learn to carry out their respective tasks. However, acquiring
segmentation labels for depth images is costly and labor intensive.
To mitigate the burden of labeled data acquisition, our method uses
the 3D hand pose labels, already provided with most public datasets,
as a form of weak supervision. More specifically, a deep model is
first trained to perform both 3D hand pose and shape estimation
similar to [9]. The hand shape is represented as a triangular mesh
parameterized by pose coefficients of a deformable hand model
[40]. As a preprocessing step, we use LBS weights to assign each
triangular face of the mesh a semantic label that determines which
hand part it belongs to. Each hand part is given a pre-defined color.
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Figure 1: The outline of the the proposed method

Based on this color map, we create a texture by which the mesh
is rendered to a color image. We can simply obtain each pixel’s
semantic label according to their color. Finally, the color image is
refined to ensure that the segmentation labels are aligned with the
input depth map (see Fig 1).

Despite some similarities, our method differs from [9] in that
their goal is to estimate hand shape and pose while our method is
aimed at performing hand part segmentation. Our method also esti-
mates hand shape and pose as a by-product. We conduct extensive
experiments to evaluate the proposed method both qualitatively
and quantitatively. Since there is no public depth dataset that pro-
vides both hand part segmentation labels and 3D joint locations
as ground-truth, we manually label a subset of the NYU dataset to
perform quantitative evaluation.

To the best of our knowledge, this is the first data-driven method
to perform hand part segmentation on depth images. Both quantita-
tive and qualitative results confirm that our method achieves a good
performance despite the fact that it has not been trained with a sin-
gle segmentation-labeled data. This paper is organized as follows:
Section 2 provides a literature review of works related to the pro-
posed method, Section 3 lays out in detail how the method works,
and finally the quantitative and qualitative results are presented in
Section 4.

2 RELATEDWORK
2.1 3D Hand Pose Estimation
Hand pose estimation remains a challenging problem that has
brought about novel advancements in both Computer Vision and
Machine Learning. Before the widespread adoption of deep learn-
ing techniques, many approaches relied on hand crafted features,
optimization methods, and distance metrics. Athitsos et al. used
edge maps and Chamfer matching to perform 3D hand pose esti-
mation [3]. Other works leveraged pose estimation for tracking
using optimization methods such as Particle Swarm Optimization
(PSO) [36, 41]. After the rise of deep learning and with the advent
of low cost consumer depth cameras, several methods have been
proposed to perform 3D hand pose estimation based on depth maps
[4, 11, 12, 18, 31, 50, 51]. Zimmermann in [57] proposed the first
data-driven method to estimate 3D hand pose using a single RGB
image. Several methods have since been introduced to perform
monocular hand pose estimation [5, 6, 9, 17, 33, 52, 56].

In recent years, data efficient methods have gained popularity as
models have grown larger and more complicated, resulting in the
significantly increased need for labeled training data. Authors in

[10, 43] use different data modalities to compensate for the lack of
available annotated data. In [28], 2D annotations are used as weak
supervision to train a 3D pose estimator. Wan in [49] proposed a
data-driven self-supervised method for the task of depth-based 3D
hand pose estimation to eliminate the need for any real data label.
Our method is similar in spirit to these methods as it is aimed at
mitigating the need for explicit labeled data which could be hard
to acquire.

2.2 Hand Segmentation
Most existingmethods cast hand segmentation as a dense prediction
problem for every pixel in the image, where the task is to assign
every pixel a label to determine whether it belongs to hand or
not (binary classification). Hand segmentation from color images
can be broadly categorized into two groups: 1). methods that take
their visual clue from and are based on skin [2, 7, 20, 48]. One can
refer to [22] for more details. 2). methods that are based on motion
[1, 15, 27, 29, 42].

However, it is notoriously challenging to accurately detect skin
in unconstrained settings due to severe light condition variations
and complex effects like subsurface scattering, making it difficult
to develop segmentation methods that could work well on images
in the wild. Unlike color images, hand segmentation from depth
images does not suffer from these problems. This line of research
was pioneered by [47]. [8] provided a dataset for hand segmentation
on depth images featuring multiple hands. In [23], they proposed a
method to perform hand segmentation for hand-object interaction.

In contrast to these methods, we formulate our problem as a
semantic segmentation task where the goal is to assign one label
from a predefined set of class labels (one label per part) to each pixel
[37]. In other words, we are interested in determining for every
pixel what hand part they belong to.

In [41, 45], they perform hand part segmentation as part of their
experiment and use its performance as a proxy for the accuracy
of 3D pose estimation. [21] reports hand part segmentation per-
formance as a proxy for detailed surface registration. However,
our method is fundamentally different from them in that their ap-
proach is not data-driven, meaning that these methods perform
optimization on each test data individually, while our method is
data-driven and accumulates knowledge over the course of training.
Another clear advantage of our data-driven approach is that unlike
these methods, it does not require to do computationally expensive
optimization at inference time and the inference can be done by a
single forward pass of the network, which only takes around 100
ms on average on a single Nvidia GTX 1080 Ti GPU.

2.3 Hand Models
In order to represent the hand, many hand models have been pro-
posed in recent years. Some early works modeled the hand us-
ing geometric primitives [36]. Subsequent researches used various
methods such as sphere meshes [46], sum of Gaussians [44], or
loop subdivision of a control mesh [26]. In this work, we use the
hand model proposed in [40] referred to as MANO. The MANO
hand model has a high representation power and has made many
improvements on previous hand models including learning pose
dependent corrective blend shapes, first proposed in [30], to correct
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Figure 2: The hand divided into six semantic parts, which
are five fingers as well as the palm

some limitations of the standard Linear Blend Skinning that lead
to unnatural results. It is used as a fully differentiable layer in our
network to allow for end-to-end training of the whole pipeline.

3 METHOD OVERVIEW
As illustrated in Fig 3, our method includes two general stages. The
first stage essentially follows the standard training paradigm of
3D pose estimation methods [9]. The 3D pose and shape estimator
network is trained using weak labels in terms of 3D joint locations
of the hand. The network takes as input a depthmap of size 128×128
and regresses the hand shape

−→
β and pose

−→
θ parameters, scale S

and the translation vectorT . The hand parameters are passed on to
the differentiable articulated mesh deformation hand model that
generates a triangulated 3D mesh. The 3D mesh is scaled by S
and then translated by T , which is in turn fed to the regressor to
compute the underlying 3D skeleton. The supervision is applied
to the predicted 3D skeleton to minimize its deviation from the
ground-truth 3D skeleton. The regressor is a single linear layer
trained prior to this stage and kept fixed over the course of training
at this stage. The hand model is also kept fixed during training.
At inference time, the network takes a depth image as input and
estimates the hand model parameters to generate its corresponding
3D mesh. The 3D mesh is then rendered to a color image using
Neural Renderer [24]. The color of each mesh triangular face is
chosen according to the hand part it belongs to, which is derived
from LBS skinning weights provided by the MANO hand model.
Thus the semantic label for each pixel can simply be computed
based on its color in the rendered color image. Finally, the rendered
color image is aligned with the input depth map to ensure that no
background pixel is assigned a label as a hand part.

3.1 Hand Model
Our model attempts to fit the MANO hand model [40] to the input
depth image. The MANO hand model parametrizes a hand using
pose parameters

−→
θ , which represent the relative rotation between

pre-defined joints and their parent joints in the kinematic tree, and
hand shape parameters

−→
β , which denote the linear shape coeffi-

cients that represent offsets from the template mesh T̄ . Given hand

shape
−→
β and pose

−→
θ vectors, the template mesh T̄ is first sculpted

as follows [40]:

TP (
−→
β ,

−→
θ ) = T̄ +

|
−→
β |∑

n=1
βnSn +

9K∑
n=1

(Rn (
−→
θ ) − Rn (

−→
θ∗))Pn (1)

where Sn is the n-th principal component of shape displacement,
|
−→
β | is the number of linear shape coefficients, Rn denotes the part
relative rotation matrix for the n-th joint in the kinematic tree,

−→
θ∗

represents the rest pose, and Pn is the n-th element in the matrix
of pose blend shapes. The sculpted mesh is then deformed using
Linear Blend Skinning [25] to generate the 3D mesh as follows [40]:

M(
−→
β ,

−→
θ ) =W (TP (

−→
β ,

−→
θ ), J (

−→
β ),

−→
θ ,W̃ ) (2)

whereW is a linear blend skinning [25] function applied to sculpted
meshT riggedwith a kinematic tree of 16 joints. J is a joint regressor
that takes the template mesh sculpted only by shape blend shapes
(before applying pose blend shapes) and regresses the 3D joint
locations, andW̃ is the matrix of the LBS weights. The MANO hand
model parameters T̄ ,S ,P ,J and W̃ are learned using registered hand
scans by the training procedure detailed in [40]. These parameters
are kept fixed during our training process.

In order to reduce the space of pose parameters and thus the
possibility of generating unnatural meshes, instead of directly using
pose parameters that represent angles between joints and their
parents, we use coefficients of Principal Component Analysis (PCA),
as in [40], which are computed on angle-axis representation of the
respective joints in the data collected to build the model [40]. We
use 26 PCA coefficients to represent the hand pose concatenated
by a vector of size 3 representing the hand global orientation in
axis-angle representation to form the pose vector

−→
θ ∈ R29. We use

10 coefficients for the shape
−→
β ∈ R10.

Given the shape
−→
β and pose

−→
θ parameters, the MANO layer

generates a hand mesh through the functionM(
−→
β ,

−→
θ ) of N = 778

vertices and 1538 faces.

3.2 Regressor
In order to extract joints that are compatible with the 14 stan-
dard joints in the NYU dataset, we pretrain a single-layer feed
forward network without activation layer R̄ that takes as input a
3D hand mesh and outputs 14 3D joint locations of the hand. We
train the regressor R̄ using manually annotated randomly generated
meshes by sampling from the pose

−→
θ ∈ [−1.3,+1.3]29 and shape

−→
β ∈ [−0.01,+0.01]10 of the MANO hand model. The regression is
essentially a matrix multiplication and is therefore fully differen-
tiable and can be integrated into our end-to-end trainable pipeline.
After pre-training, the parameters of the regressor are kept fixed for
the subsequent training of our pose and shape estimator network.

3.3 Pose and Shape Estimator Network
The pose estimator takes as input the depth image and estimates
hand pose

−→
θ and shape

−→
β parameters as well as translation T =

(Tx ,Ty ,Tz ) and scale S . The backbone is a ResNet-50 network [19].
Its last fully connected layer is replaced with a fully connected layer
of size 256 to encode the hand features into a latent space, followed
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Figure 3: The general overview of the method. (a) At training time, the pose and shape estimator network takes a depth image
as input and estimates the hand pose, shape, scale and translation, which are used to generate, scale and then translate the
corresponding 3D mesh. The 3D mesh serves as input to the Regressor to compute the 3D hand joints. The weak supervision
is applied to the estimated 3D joints using the ground-truth provided by the dataset. (b) At inference time, given a depth map,
the model estimates the corresponding hand mesh and uses a renderer to obtain a color image. The segmentation labels are
then computed based on the color of pixels in the rendered image.

by four separate branches to estimate the hand pose
−→
θ ∈ R29, hand

shape
−→
β ∈ R10, translation T ∈ R3 and scale S ∈ R respectively

(see Fig 3).

3.4 Renderer
At inference time, we use the estimated mesh generated by the
model to render it to a color image I ′ using the renderer proposed
in [24]. We use a simple texture for rendering which is computed as
follows. We determine for each vertex in the mesh what hand part
it belongs to based on LBS skinning weights W̃ provided by the
MANO hand model. Using this information, we determine for each
triangular face of the mesh what hand part it belongs to by doing
majority voting among its three vertices. Finally we assign each
face a pre-defined color based on what hand part it belongs to (see
Fig 2). This process is done offline and needs to be done only once.
The segmentation label for each pixel is then easily computed based
on the color of each pixel in the rendered color image. Orthographic
projection is used for rendering the mesh.

3.5 Alignment
When the mesh is rendered to a color image, it may not be fit to
the input depth map due to inaccuracies in the estimation of the
pose and shape estimator network. This may result in some false
positives. For example, some background pixels in the input depth
image may be assigned a label as a hand part. In order to prevent
this issue, we first compute the foreground mask for both input
depth map I and the rendered color image I ′ as follows:

I ′Mask (P) =

{
1, if Pc , BC

0, otherwise
(3)

IMask (P) =

{
1, if Pc , BD

0, otherwise
(4)

MASKr ef (P) = IMask (P) ∧ I ′Mask (P) (5)
where P denotes pixel, Pc is the value of the pixel P , BC denotes the
background color in I ′ and BD denotes the background depth in the
input depth map I .∧ denotes the logical AND operation. Finally, the
rendered color image I ′ is aligned by multiplying I ′ byMASKr ef
to exclude the pixels in I ′ that correspond to the background pixels
in the input depth map:

I ′aliдned (P) = I ′(P) ∧MASKr ef (P) (6)

3.6 Training
Since there is no segmentation label at training time, our method
uses the 3D joint locations of the hand already provided with most
depth-based public datasets to learn the task of hand pose and shape
estimation. The pose and shape estimator network is trained by
minimizing the following loss:

L = α jointLjoint + αposeLpose + αshapeLshape (7)

Ljoint is aimed at minimizing the difference between the estimated
joints and the ground-truth joints and is computed as follows:

Ljoint = |J − J ′ |2 (8)

where J , J ′ ∈ R14×3 are the ground-truth and estimated 3D loca-
tions of the standard 14 joints respectively. The estimated joint J ′
is computed as follows:

J ′ = R̄(SM(
−→
β ,

−→
θ ) +T ) (9)
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where
−→
β ,
−→
θ , T and S are shape, pose, translation vector and scale

respectively, which are estimated by the pose and shape estimator.
Lpose and Lshape are defined as follows:

Lpose = ∥
−→
θ ∥ (10)

Lshape = ∥
−→
β ∥ (11)

where ∥.∥ denotes Frobenius Norm. Lpose and Lshape are used to
regularize the space of pose and shape parameters to push them
to be close to the mean shape and pose, and in doing so encourage
generating more physically plausible meshes. To apply sutiable
balance between the loss terms, we set α joint = 10, αpose = 1 and
αshape = 1000.

4 EXPERIMENTS AND DISCUSSION
In this section, we present both quantitative and qualitative results
of the proposed method. To evaluate the proposed method, we need
a dataset that provides 3D joint locations (for training) and segmen-
tation labels (for testing). However, to the best of our knowledge,
there is no such dataset. The only public depth dataset that pro-
vides segmentation labels for hand parts is the FingerPaint dataset
[41]. However, it does not provide 3D joint locations required for
training our method.

Because of the above-mentioned reasons, we chose to train our
model on the NYU pose dataset [47], which is one of the most com-
monly used public benchmarks for hand pose estimation methods.
This dataset, captured by 3 calibrated and synchronized PrimeSense
depth cameras, consists of 72757 depth images for training and 8252
depth images for testing. NYU is a challenging dataset featuring
hands that cover a wide range of hand poses. It provides the la-
bels for depth images in terms of 3D joint locations of the hand,
which are used by the proposed method to train the pose and shape
estimator. Our network is implemented by PyTorch [38] and the
Nvidia GTX 1080 Ti GPU is used for training. The model is trained
end-to-end for 40 epochs using Adam optimizer with a learning
rate of 10−4 and a learning decay of 10−1 every 20 epochs.

The NYU dataset provides about 7k annotations for hand segmen-
tation. However, they are not suitable for our evaluation since they
provide binary labels (hand or none-hand), whereas our method
needs part-based segmentation labels. Thus, we manually label a
subset of size 500 from the NYU test set for quantitative evaluation.

Table 1: Performance in terms of 2D Keypoint localization
on the NYU dataset (Finger joints only). Mask R-CNN key-
point refers to the case where joint positions are localized
by finding the positions of joint confidence maps with max-
imum probabilities. Mask R-CNN keypoint and mask re-
stricts keypoints lying on estimated masks

Methods Mean Keypoint error (Pixels)
Ours 10.24

Duan-KNN[13] 10.32
Mask RCNN(kpt and mask)[13] 15.7

Mask RCNN(kpt only)[13] 20.97

Table 2: Hand part segmentation performance

Hand Part mIoU
Pinky Finger 0.38
Ring Finger 0.41
Middle Finger 0.41
Index Finger 0.37

Thumb 0.39
Palm 0.53

Average 0.42

4.1 Quantitative Evaluation
We begin the evaluation by reporting the performance of the pro-
posed method in terms of 2D keypoint localization and 3D hand
pose estimation. In order to generate accurate segmentation maps,
it is crucial for the model to detect hand parts accurately. Thus,
the ability of the proposed method to accurately localize 2D hand
joints is strongly correlated with the performance of the method
in terms of hand part segmentation. As can be seen in Table 1,
despite the fact that our method’s original goal is not to perform 2D
keypoint localization, our method outperforms the state-of-the-art
methods that were originally used to do 2D joint localization. Since
[13] reports the results for only finger joints, in order to have a
fair comparison, we select only finger joints out of the standard
14 joints estimated by our method. The numbers reported in Table
1 are computed by taking average across the selected joints. The
localization accuracy for individual joints can be seen in Fig 6.

The performance of our method in terms of 3D hand pose esti-
mation is reported in Table 3. As can be seen, our method compares
with state-of-the-art methods in 3D pose estimation despite the fact
that it has not been specialized for this task. A commonly used met-
ric for reporting 3D results is mean 3D error, which is the average
distance between the predicted joint location and its corresponding
ground-truth in 3D space. Table 3 reports the average across all 14
joints for each method.

Next, we perform evaluation of the segmentation performance
of the proposed method. Since we cast our problem as semantic
segmentation with 6 classes (five fingers and the palm), we use
two commonly used metrics for evaluating semantic segmentation
methods. It is worth noting that unlike many RGB-based semantic
segmentation methods that consider the background pixels as a
separate semantic entity and assign a separate label to them, we do
not consider the background pixel label assignment as it is trivial
in depth images to segment out the background pixels using simple
pre-processing steps such as thresholding. The first metric used for
evaluation is Pixel Accuracy, which represents the proportion of
pixels in the image that are labeled correctly. The second metric is
Intersection over Union (IoU), which is calculated separately for
each class, defined follows:

IoU =
|TP |

|TP | + |FP | + |FN |
(12)

Where TP , FP and FN denote true positive, false positive and false
negative respectively. As in [54], to account for class imbalance, we
report class-wise average among classes, that is, mean IoU denoted
by (mIoU). The results in terms of mIoU can be seen in Table 2. It
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Figure 4: Qualitative results of the method given depth images of hands in various poses

Figure 5: Per-joint mean 3D error. T and R denote tip and
root respectively (e.g. Index-T denotes the tip of the index
finger)

should be mentioned that since this is the first data-driven method
proposed to perform depth-based hand part segmentation, there is
no other work to compare against.

The hand palm is arguably easier to segment than other parts
owing to the fact that fingers are more likely to be occluded, and
if they do, the model is likely to mistake one finger for another
since they look similar in many cases, which makes the task of
segmenting fingers more challenging. Fingers also have higher
levels of articulation and motion which leads to 3D joint labels of
fingers being less accurate in comparison to the palm. As can be
seen in Fig 5 and Fig 6, the accuracy of the method to localize the
palm keypoints is higher than that for all the finger joints (except for
Ring-R in the 3D case). As can be seen in Fig 5 and Fig 6, fingertips

Figure 6: Per-joint mean 2D error. T and R denote tip and
root respectively (e.g. Index-T denotes the tip of the index
finger)

are the most difficult keypoints for the model to predict because
they tend to get occluded more frequently than other keypoints. Yet,
our method achieves a mIoU of 0.39 for fingers. It should be kept
in mind that the proposed method achieves a good performance
despite the fact that it has not been trained using segmentation
labels. We also report the IoU averages across all classes and the
Pixel Accuracy to be 0.42 and 92% respectively.
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Table 3: Performance comparison with some of the state-
of-the-art methods in terms of 3D hand pose estimation on
NYU dataset [47]

Methods Mean 3D error (mm)
Ours 17.66

DeepPrior [34] 20.75
DeepPrior-Refine [34] 19.72

DeepModel [55] 17.03
Feedback [35] 15.97
DeepHPS [32] 14.41
3DCNN [16] 14.11

4.2 Qualitative Evaluation
In order to verify the quality of the generated segmentation maps
and the robustness of the proposed method in various cases, we
draw some relatively hard samples from the NYU testing set and
show the result of the proposed method on them as illustrated
in Fig 4. Experiments demonstrate that our method is capable of
generating high-quality hand meshes and as a result accurate part
segmentation , which has many potential applications including
in animation. Furthermore, as can be seen in Fig 4, the proposed
method is robust in estimating hand shape and pose and as a result
the segmentation map accurately even in hard scenarios such as
self-occlusion and exaggerated articulation.

4.3 Conclusion and Future work
In this paper, we presented the first data-driven method to per-
form hand part segmentation on depth images. We investigated
the possibility of taking advantage of weak labels (in this case
3D joint locations) to learn the task of hand part segmentation.
Thus, our method does not impose any additional burden in terms
of requiring extra effort to manually label data, which could be
both expensive and labor intensive. Both quantitative and qual-
itative results demonstrate the effectiveness of our method. The
proposed method could have many potential applications that have
not been investigated in this paper, including but not limited to
shape estimation which is used in animation, gesture recognition
and Augmented/Virtual reality. This work opens new lines for fu-
ture research, including extending the proposed method to RGB
images, which are more widely used in real-world scenarios. The
proposed method also opens up some possibilities in terms of im-
proving the performance of 3D hand pose estimation methods by
incorporating part segmentation labels.
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