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ABSTRACT 

 

A WAY TO ASSESS THE IMPAIRMENT OF CEREBRAL  

AUTOREGULATION IN PEDIATRIC PATIENTS  

UNDER ECMO WITH NEUROIMAGING  

ABNORMALITIES 

 

Sylvine Ineza, B.S. Biomedical Engineering 

 

The University of Texas at Arlington, 2023 

 

Faculty Mentor:  Hanli Liu 

Cerebral autoregulation protects the healthy brain by maintaining an adequate 

cerebral blood flow in case of blood pressure changes. Cannulation of great blood vessels 

and alterations of pulsatile flow patterns during ECMO (Extracorporeal membrane 

oxygenation) alters cerebral autoregulation. This project provides a reliable methodology 

that can assess the degree of cerebral autoregulation impairment of ECMO patients and 

examine if it can be correlated or predictive of neuroimaging abnormalities. Initially, we 

used the normal WTC MATLAB code to obtain a time-frequency map. Then we calculated 

the in-phase percent significance and used the resultant values to determine the Scale 

Averaged Percent Significance of Coherence (SASC) specifically in ranges 0-2.5-hour 

scale. The results showed that the lower the new SASC (as a Cerebral Autoregulation 



 v 

index), the better the brain is. Comparing SASC to the MRI consensus, the average 

autoregulation index is >10% which is consistent with the ECMO outcome indicating mild 

neurological injury, meaning SASC can be predicative for ECMO patients. WTC during 

the total ECMO duration would show a clearer correlation with clinical outcome, thus 

further studies are needed to analyze that along with taking more patients into consideration 

(in addition to the current fourteen). 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Cerebrovascular impairment can result in hemorrhagic and ischemic complications 

commonly seen in patients supported on ECMO. Extracorporeal membrane oxygenation 

(ECMO), also called a heart-lung machine, is a life-supporting therapy for critically ill 

patients with severe respiratory and/or cardiovascular failure (Tsuji et al., 2000). It was 

developed in the late 1960s by a team led by Robert H. Bartlett and first used successfully 

in 1971. It was a groundbreaking technology that quickly spread so much so that by 2009, 

ECMO was used worldwide in the treatment of severe lung failure (Modic, 2021). Despite 

the advancement and fame, ECMO is still posed with limitations such as inconsistent blood 

flow and pressure that call for urgent solutions. Studies showed an increased chance of 

stroke (part of the brain is damaged by loss of blood or by a blood vessel that bursts) mostly 

in ECMO survivors (Rossong et al., 2022). Further studies by Rossong et al. also provided 

evidence that cerebral autoregulation impairment during ECMO was related to the patients’ 

neurological outcomes. A study on the long-term survival and quality of life after ECMO 

showed that 5-year survival is favorable for patients who endure the initial 30 days post 

cannulation, and survivors suffer from long term variable health related quality of life 

impairments (Rossong et al., 2022). Therefore, long term follow-up after discharge is 

required.
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A better understanding of poor autoregulation-related physiological mechanisms is 

essential for developing new effective interventions to improve clinical outcomes. In 

addition, there is a lack of methodology that can quantify cerebral autoregulation non-

invasively and reliably at the bedside. In the last decade, significant progress has been made 

in developing methods to assess cerebral autoregulation based on spontaneous oscillations 

in blood pressure, CBF, and cerebral oxygenation (Panerai, 1998).  

Transfer function and other analysis methods for dynamic systems have been 

developed to assess cerebral autoregulation in the face of dynamic changes in blood 

pressure, referred to as dynamic cerebral autoregulation (Liu et al., 2015). These methods 

are often based on an assumption that changes in blood pressure and cerebral 

hemodynamics are stationary (i.e., do not change with time) while, in reality, the latter are 

non-stationary, particularly under pathophysiological conditions (Panerai, 2014). This 

highlights the need for better tools to characterize the non-stationary aspects of cerebral 

autoregulation hence the WTC method.  

Wavelet transform coherence (WTC) is a time-frequency domain analysis that 

characterizes the cross correlation and relative phase between two signals without a priori 

assumptions of linearity and stationarity (Tian et al., 2016). 

1.2 Significance and Objective of the Project 

This research is critical in the advancement of the biomedical field, especially 

research, since it provides a reliable methodology that can determine the status of cerebral 

autoregulation during ECMO therapy. This would also serve as a biomarker that may 

predict early indications of neurological injury in pediatric ECMO patients which is 

paramount for optimization of bedside management to improve clinical outcomes. That 
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way the caretakers would perceive the degree of brain damage before it is too late. It would 

eventually help answer the questions: “does cannulation cause cerebral autoregulation 

impairment?” Or is the opposite true that “cerebral autoregulation impairment causes 

patients to have to undergo the ECMO therapy.” 

1.3 Summary of Peer-Reviewed Scholarship [Literature Review] 

Continuous wavelet transform (CWT) is a powerful mathematical tool for time-

frequency domain analysis of stationary and nonstationary time series (Torrence and 

Compo, 1998; Mallat, 1999). Wavelet coherence analysis, based on CWT, characterizes 

intermittent cross-correlations between two time series at multiple time scales (Grinsted et 

al., 2004), which makes no assumption about the stationarity of input signals. In their 2015 

article on the matter, Liu et al. discussed how “the healthy brain is protected by cerebral 

autoregulation, which maintains an adequate cerebral blood flow (CBF) in face of blood 

pressure changes” (Tian et al., 2017). They continued by explaining that “cannulation of 

great blood vessels and alterations of pulsatile flow patterns during ECMO also play a role 

in altered cerebral autoregulation” (Tian et al., 2017). They demonstrated how they 

implemented WTC to assess the degree of cerebral autoregulation impairment in neonatal 

and pediatric ECMO and evaluated its usefulness as an early predictor of acute neurological 

complications. They did so by continuously monitoring cerebral autoregulation throughout 

the course of ECMO therapy. Surprisingly, they found intra-ECMO autoregulation 

impairment was apparent even before clinically observable changes occur at the bedside. 

Furthermore, the degrees of cerebral autoregulation impairment derived from WTC 

correlated with the patients’ neuroimaging abnormalities (Tian et al., 2017). When 

neuroimaging was conducted during and/or after ECMO as a standard of care, the 
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abnormalities were evaluated based on a scoring system that had been previously validated 

among ECMO patients. The results showed that of the 25 patients that they had, 8 (32%) 

had normal neuroimaging, 7 (28%) had mild to moderate neuroimaging abnormalities, and 

the other 10 (40%) had severe neuroimaging abnormalities (Tian et al., 2017).  

In addition, the degrees of cerebral autoregulation impairment quantified based on 

WTC showed significant correlations with the neuroimaging scores (R=0.66; p < 0.0001) 

where R^2 is the statistical significance between the two paired signals, which were the 

spontaneous MAP and SctO2 fluctuations in their study. Due to these results and based on 

their observation, evidence that cerebral autoregulation impairment during ECMO was 

related to the patients’ neurological outcomes was provided.  

This is confirmed by a 2016 study similarly conducted by Tian et al. still examining 

the wavelet coherence analysis. They stated that: 

We introduced wavelet coherence analysis (WCA) to assess dynamic cerebral 

autoregulation in newborns with hypoxic-ischemic encephalopathy (HIE). All 

hemodynamic data, including mean arterial pressure (MAP) and SctO2, were 

recorded continuously during the first 72 h of life under hypothermic therapy, then 

WCA was performed to quantify the spectral power and the dynamic relationship 

between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of 

phase, coherence and gain were derived for quantitative evaluation of cerebral 

autoregulation. (p.2 para.2, Tian et al., 2016).  

Their results were comparing these metrics (i.e., wavelet-based metrics of phase, 

coherence, and gain) for clinical magnetic resonance imaging (MRI) and 
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neurodevelopmental outcomes to reveal short- and long-term neurologic complications in 

HIE patients.  

In this project, I am building off of Tian et al.’s 2016 findings, still using their 

Montecarlo method. I will incorporate the pressure-passive state of cerebral autoregulation 

(i.e., the patient’s changes in blood pressure cause simultaneous changes in cerebral 

oxygenation in the same directions). This is a vital sign of an impaired autoregulation 

system and results in significant in-phase coherence between the MAP and SctO2 signals 

(Soul et al., 2007). My contribution to this ongoing research is looking at the coherence 

between mean arterial pressure and cerebral oxygen saturation before and after cannulation 

and comparing it to the clinical outcomes. The hope is to devise a methodology that can be 

automated to generate prognostic values for improved bedside management of ECMO 

patients.
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CHAPTER 2 

METHODOLOGY 

2.1 Subject and Data Preprocessing 

The study was approved by the institutional review board at the University of Texas 

Southwestern Medical Center (UT-SW), Dallas, and informed consent was waived. The 

patients’ spontaneous fluctuations of mean arterial pressure (MAP) and cerebral tissue 

oxygen saturation (SctO2) were continuously measured during the ECMO run and 

recorded in a patient list to indicate the patient ID, gender (for some), cannulation and 

decannulation date and time as shown in Table 2.1.
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Table 2.1: Patient list collected by at the University of Texas Southwestern Medical 
Center, Dallas 

 
Pati
ent 
ID 

Rec
ord 
ID 

A
ge 

M
/F 

Pre-
EC
MO 
(ho
urs) 

Cannu
lation 
Date  

Cannu
lation 
time  

Decann
ulation 
date 

Decann
ulation 
time  

EC
MO 
dura
tion 
(hou
rs)  

EC
MO 
typ
e 

Neuro 
Imagi
ng 

Neuroi
maging 
date  

1 
  

F 
 

1/28/2
021 

17:05 2/28/20
21 

7:25 
  

CTH 2/18/20
21 

2 
  

F 
 

6/3/20
21 

13:41 6/7/202
1 

12:35 
  

MRI 6/24/20
21 

3 
  

M 
 

6/7/20
21 

6:20 6/10/20
21 

11:30 
  

MRI 6/14/20
21 

4 
  

M 
 

7/17/2
021 

21:49 7/22/20
21 

14:20 
  

CTH 7/29/20
21 

5 
  

M 
 

7/30/2
021 

8:30 8/4/202
1 

12:15 
  

MRI 8/6/202
1 

6 
    

2/1/20
21 

8:45 2/7/202
1 

12:07 
  

CTH 2/5/202
1 

7 
    

4/11/2
021 

11:22 4/15/20
21 

15:31 
  

CTH 4/14/20
21 

8 
    

10/1/2
020 

13:42 10/4/20
20 

10:00 
  

head 
ultras
ound 

10/1/20
-
10/7/20 

9 
    

5/13/2
021 

10:15 5/16/20
21 

8:55 
  

MRI 5/19/20
21 

10 
    

5/20/2
021 

11:08 5/24/20
21 

11:13 
  

MRI 6/11/20
21 

11 
    

6/29/2
021 

23:30 7/3/202
1 

8:45 
  

MRI 7/12/20
21 

12 
    

7/1/20
21 

20:25 7/5/202
1 

9:30 
  

MRI 8/4/202
1 

13 
    

7/2/20
21 

10:00 7/16/20
21 

12:50 
  

MRI 9/2/202
1 

14 
    

7/10/2
021 

14:14 7/12/20
21 

12:15 
  

Ultras
ound 

 

15 
    

7/14/2
021 

8:47 7/17/20
21 

9:22 
  

Ultras
ound 

 

16 
    

8/6/20
21 

9:18 8/10/20
21 

7:31 
  

CTH  8/15/20
21 

17 
    

9/28/2
021 

12:50 10/9/20
21 

10:47 
  

MRI 10/19/2
021 

18 
    

10/9/2
021 

11:41 10/24/2
021 

11:45 
  

MRI 10/26/2
021 

19 
    

10/11/
2021 

21:34 10/15/2
021 

8:00 
  

MRI 11/2/20
21 

 

Next, we obtained Excel data files of those patients from UT-SW in an .xls format 

as shown in Figure 2.1. To facilitate our analysis, we extracted columns A, I,J (i.e., the 
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time stamp, ARTm (mmHg) and rSO2-1 (%)) to create a new Excel file comprising of 6 

columns only. The three other columns were manually input as seconds, minutes, hours, 

days, and automatically calculated using the formula bar; the frequency was kept as 1 in 5 

seconds as shown in Figure 2.1.  

 
Figure 2.1: Patient 3 Excel data file of the full ECMO run only showing 51 rows out of 

221,074.

timestamp NBPs (mmNBPd (mmNBPm (mmModel (n/ Temp (ï¿½etCO2 (mmawRR (rpmsMode (n/RR (rpm) SpO2 (%) Perf (n/a) Pulse (SpO  RhySta (n/HR (bpm) PVC (bpm)EctSta (n/aARTm (mmARTs (mm ARTd (mmPPV (%) rSO2-2 (%)rSO2-1 (%)BL-1 (%) BL-2 (%) AUC-1 (%) AUC-2 (%) PCTBL1 (%PCTBL2 (%TYPE (n/a)Temp_2 (ï¿Tvesic (ï¿½Pulse (bpm
6/6/2021 18:07 158 99 117 Monitorin  35.3 27 26 MONITOR 26 79 0.56 134 Learning ECG
6/6/2021 18:07 35.3 28 26 MONITOR 26 79 0.56 134 Learning E 134
6/6/2021 18:07 35.3 28 26 MONITOR 26 80 0.56 134 Learning E 135
6/6/2021 18:07 35.3 29 28 MONITOR 26 80 0.57 134 Learning R 135 0
6/6/2021 18:07 35.3 29 28 MONITOR 26 78 0.61 134 SV Rhythm 133 0
6/6/2021 18:07 35.3 28 26 MONITOR 27 76 0.64 132 Sinus Rhyt 122 1
6/6/2021 18:07 35.3 28 27 MONITOR 26 75 0.65 132 Sinus Rhyt 132 1
6/6/2021 18:07 35.3 28 27 MONITOR 25 76 0.65 132 Sinus Rhyt 133 1
6/6/2021 18:07 35.3 28 27 MONITOR 26 77 0.65 133 Sinus Rhyt 134 1
6/6/2021 18:07 35.3 27 26 MONITOR 26 78 0.65 133 Sinus Rhyt 134 1
6/6/2021 18:07 35.3 28 26 MONITOR 27 78 0.65 132 Sinus Rhyt 131 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 76 0.63 127 Sinus Rhyt 126 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 76 0.63 124 Sinus Rhyt 123 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 77 0.63 121 Sinus Rhyt 120 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 76 0.63 119 Sinus Rhyt 118 1
6/6/2021 18:08 35.3 28 26 MONITOR 26 76 0.63 116 Sinus Rhyt 116 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 77 0.63 119 Sinus Rhyt 123 1
6/6/2021 18:08 35.3 27 26 MONITOR 26 77 0.61 131 Sinus Rhyt 133 0
6/6/2021 18:08 35.3 27 26 MONITOR 26 77 0.56 135 Sinus Rhyt 136 0
6/6/2021 18:08 35.3 28 26 MONITOR 26 77 0.53 136 SV Rhythm 136 0
6/6/2021 18:08 35.3 28 26 MONITOR 26 76 0.54 136 SV Rhythm 136 0
6/6/2021 18:08 156 97 116 35.3 27 26 MONITOR 26 74 0.57 137 SV Rhythm 138 0
6/6/2021 18:08 35.3 27 26 MONITOR 27 73 0.59 139 SV Rhythm 139 0
6/6/2021 18:09 35.3 27 26 MONITOR 26 73 0.63 140 SV Rhythm 140 0
6/6/2021 18:09 35.3 27 26 MONITOR 26 73 0.72 140 SV Rhythm 141 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 73 0.82 141 SV Rhythm 141 0
6/6/2021 18:09 35.3 28 26 MONITOR 25 73 0.9 141 SV Rhythm 142 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 0.96 142 SV Rhythm 142 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1.01 142 SV Rhythm 142 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1.07 141 SV Rhythm 141 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1.08 141 SV Rhythm 141 0
6/6/2021 18:09 35.3 29 26 MONITOR 26 74 1.08 141 SV Rhythm 141 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1.06 142 SV Rhythm 143 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1.04 143 SV Rhythm 143 0
6/6/2021 18:09 35.3 28 26 MONITOR 26 74 1 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 28 26 MONITOR 26 74 0.99 142 SV Rhythm 143 0
6/6/2021 18:10 35.3 29 26 MONITOR 26 74 0.98 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 28 26 MONITOR 26 75 0.95 142 SV Rhythm 143 0
6/6/2021 18:10 35.3 28 26 MONITOR 26 76 0.91 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 28 26 MONITOR 27 76 0.88 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 27 26 MONITOR 26 75 0.84 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 29 27 MONITOR 27 76 0.8 142 SV Rhythm 142 0
6/6/2021 18:10 35.3 27 27 MONITOR 26 76 0.78 143 SV Rhythm 143 0
6/6/2021 18:10 35.3 29 27 MONITOR 25 75 0.76 144 SV Rhythm 145 0
6/6/2021 18:10 35.3 28 26 MONITOR 26 76 0.74 144 SV Rhythm 144 0
6/6/2021 18:10 35.3 28 26 MONITOR 25 76 0.72 143 SV Rhythm 144 0
6/6/2021 18:10 35.3 28 26 MONITOR 26 76 0.69 142 SV Rhythm 142 0
6/6/2021 18:11 35.3 28 26 MONITOR 26 76 0.68 141 SV Rhythm 140 0
6/6/2021 18:11 35.3 28 26 MONITOR 26 76 0.68 141 SV Rhythm 138 0
6/6/2021 18:11 35.3 28 26 MONITOR 26 76 0.68 140 SV Rhythm 139 0
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Some patients’ files (except patients 1,2,3,5) that were sent as MATLAB files were 

directly converted to the 7 columns Excel file like the one shown in Table 2.2. We 

proceeded to sort through the columns to filter out the empty cells making sure that the 

beginning and end cells have values and are of the same length (hence why patient 3’s 

columns were reduced from 221,074 as shown in Table 2.1 to 93,091 columns as shown in 

Table 2.2.
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Table 2.2: Patient 3 downsized to 7 columns (after extracting columns A, I, J) from the 
full Excel file. Only 38/93091 are shown here. 

 
timestamp second minutes hours days ARTm rSO2_1 
6/7/2021 2:18 0 0 0 0 73 57 
6/7/2021 2:18 5 0.083333 0.001389 0 75 58 
6/7/2021 2:18 10 0.166667 0.002778 0 75 59 
6/7/2021 2:18 15 0.25 0.004167 0 72 57 
6/7/2021 2:18 20 0.333333 0.005556 0 69 57 
6/7/2021 2:18 25 0.416667 0.006944 0 70 57 
6/7/2021 2:18 30 0.5 0.008333 0 73 57 
6/7/2021 2:18 35 0.583333 0.009722 0 74 58 
6/7/2021 2:18 40 0.666667 0.011111 0 76 59 
6/7/2021 2:18 45 0.75 0.0125 0 75 58 
6/7/2021 2:18 50 0.833333 0.013889 0 72 57 
6/7/2021 2:18 55 0.916667 0.015278 0 72 57 
6/7/2021 2:19 60 1 0.016667 0 74 58 
6/7/2021 2:19 65 1.083333 0.018056 0 76 58 
6/7/2021 2:19 70 1.166667 0.019444 0 76 58 
6/7/2021 2:19 75 1.25 0.020833 0 74 57 
6/7/2021 2:19 80 1.333333 0.022222 0 73 57 
6/7/2021 2:19 85 1.416667 0.023611 0 72 57 
6/7/2021 2:19 90 1.5 0.025 0 73 57 
6/7/2021 2:19 95 1.583333 0.026389 0 72 58 
6/7/2021 2:19 100 1.666667 0.027778 0 71 57 
6/7/2021 2:19 105 1.75 0.029167 0 71 57 
6/7/2021 2:19 110 1.833333 0.030556 0 71 57 
6/7/2021 2:19 115 1.916667 0.031944 0 76 57 
6/7/2021 2:20 120 2 0.033333 0 82 57 
6/7/2021 2:20 125 2.083333 0.034722 0 84 57 
6/7/2021 2:20 130 2.166667 0.036111 0 85 58 
6/7/2021 2:20 135 2.25 0.0375 0 84 58 
6/7/2021 2:20 140 2.333333 0.038889 0 82 58 
6/7/2021 2:20 145 2.416667 0.040278 0 87 59 
6/7/2021 2:20 150 2.5 0.041667 0 95 60 
6/7/2021 2:20 155 2.583333 0.043056 0 95 60 
6/7/2021 2:20 160 2.666667 0.044444 0 88 59 
6/7/2021 2:20 165 2.75 0.045833 0 85 58 
6/7/2021 2:20 170 2.833333 0.047222 0 86 58 
6/7/2021 2:20 175 2.916667 0.048611 0 88 58 
6/7/2021 2:21 180 3 0.05 0 88 57 
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Afterwards, we loaded the files in MATLAB and first specified the filtering 

parameters by replacing any middle NAN values (empty cells) to zero and indicated the 

start and end arrays. Also, we specified the parameter requirements by setting the arterial 

mean blood pressure between 30-100 such that anything out of that range is replaced by 

the previous value. Then, we used the movmean (A,12) method which returns an array of 

local 12-point mean values, where each mean is calculated over a sliding window of length 

12 across neighboring elements of A to reduce the noise. After that, the mean (A) was used 

to calculate the normal average of 12 data points to reduce the data length. 

2.2 Wavelet Coherence Analysis 

The Wavelet coherence analysis decomposes a time series in time-frequency 

domain by successively convolving the time series with the scaled and translated versions 

of a mother wavelet function (Mallat, 1999). In analogy to Fourier analysis, a wavelet 

power spectrum of x(n) can be defined as the wavelet transformation of its autocorrelation 

function. In this study, we used a MATLAB-based software package for wavelet coherence 

analysis between the spontaneous oscillations of MAP (mean arterial blood pressure) and 

SctO2 (cerebral oxygen saturation). This software package employs a Morlet wavelet as 

the mother wavelet, which provides a good trade-off between time and frequency 

localization (Grinsted et al., 2004). 

The sampling frequency used was 1/60 HZ, and the dynamic relationship between 

the MAP and SctO2 fluctuations was assessed based on the wavelet transform coherence 

(WTC) code that was run, generating a time frequency map. The x-axis gives the time 

whereas the y-axis gives the frequency which has been converted to the logarithmic scale 

(in units of hours) by inversing it. The color bar of the scale represents coherence between 
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0-1 whereby higher coherence between SO2 and ARTm implies abnormal/worse blood 

autoregulation.  

2.3 Developing SASC 

Next, we took a 1-hour window width of time (out of the full-time interval of the 

time-frequency map) from the x-axis to calculate the in-phase percent significance. Then 

we used a moving window of 1hour across the whole x-axis time frame which gave us the 

in-phase percent significance value of each specific frequency in that particular window. 

After running the 1-hour moving window over the full-time interval, it yielded a set of 

frequencies with percent significance for every window. Thus, the percentage significance 

for 24 one hour-windows before cannulation (which was set as the reference point) and 24 

one-hour windows after cannulation was quantified. 

For each window, we had the percentage significance for each y-axis value as a 

long scale (in hours) column that was initially plotted in categories of 0-0.5 hours, 0.5-2.5 

hours, 2.5-10 hours, and 0-10 hours. We decided to only focus on the 0-2.5 scale region as 

it was most representative of coherence in the region of interest. This range is also an area 

outside the cone of influence (COI) hence omits any edge effect (unwanted data). 

Therefore, we averaged the percentage significance values from 0-2.5-hour scale for each 

1-hour window and plotted it. The graph was one for the scale averaged percent 

significance of coherence (SASC) versus the window graphs.
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2.4 Data Analysis 

Different moving window ranges were used to see if a faster run-time would affect 

the results in terms of SASC values obtained. In addition to the aforementioned 1-hour 

window, we tried the 4-hour, 6-hour, and 8-hour window. The larger hour-window was 

used for patients with longer ECMO run times such as patient 7 who had 1457 hours (~61 

days), but the end results were all computed at a 1-hour window time for consistency. 

The time dependent SASC was obtained for each patient 24 hours prior to 

cannulation (PRE) and 24 hours after cannulation (POST) in a step of 1 hour. The different 

patients were studied at a similar SASC and time scale (i.e., same-length x and y axes) to 

analyze any similar pattern before and after cannulation. Both the PRE and POST values 

were averaged separately to analyze the ratio of difference between them. Finally, a two-

tail t-test was computed in Excel to analyze the significance of the difference observed. 

Further analysis was done to compare the relationship between SASC and ARTm, 

ARTm and RSO2 and finally SASC and the MRI consensus (which is a general agreement 

or set of guidelines developed by experts in the field of magnetic resonance imaging 

(MRI)). 
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CHAPTER 3 

RESULTS AND FINDINGS 

Twenty-six children were under ECMO therapy for days to months for moderate 

and severe neuroimaging abnormalities during the study period. Exclusions were made 

according to the viability of the data collected for WTC analysis (e.g., cannulation time 

was indicated, availability of data before or after cannulation and ARTm and rSo2 

recorded). Thus, fourteen children had complete monitoring data and were analyzed in this 

report. Individual characteristics and clinical outcomes of these neonates are summarized 

in the figure below. 

 
Figure 3.1: Information table of all patients with viable data, and number of 

  windows calculated for. AUC (mentioned in column 6) represents 
  the “area under the curve” (which is the integrated/summed 
percent significance of coherence, calculated before averaging for 
SASC). 

 
The dynamic relationship between the MAP and SctO2 fluctuations was assessed 

based on the wavelet transform coherence (WTC) code that was run, generating a time 

frequency map.
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Figure 3.2: Time-Frequency map whereby the x-axis represents time (in days), 

and the y-axis represents scale (which has been converted to the 
equivalent Fourier period). The black line contours designate areas 
of significant coherence, and the arrows designate the relative phase 
between MAP and SctO2 (a rightward pointing arrow indicates in-
phase coherence between the two signals). The color bar of the scale 
represents coherence between 0-1 whereby higher coherence 
between SO2 and ARTm implies abnormal/worse blood 
autoregulation. 
 

To better see and analyze the trend of coherence before and after cannulation, we 

plotted an all-patients graph showing their cannulation at the same time. This was done by 

subtracting each one’s cannulation hour from the total hours recorded to make cannulation 

fall at hour zero so everything before it is negative while all after is positive.
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Figure 3.3: Combined scale averaged percent significance of coherence of 14 

patients just looking at the range of 0-2.5 hrs. 
 

Furthermore, still trying to analyze and spot a commonly re-occurring trend, we 

put two by two patients per page and ensured they were of the same y-axis scale and marked 

their cannulation points with a red line on all graphs for comparison purposes. Figures 4 

and 5 below show the results. Although it was not the case for all, a clear trend to notice is 

the downward dip of the SASC curves right after cannulation but it would spring up again 

in the following hours.
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Figure 3.4: An individual graph of patient 3’s SASC vs time comparison; a comparison 

graphs of patients 2,3 and 4,5 looking at their SASC vs time graph to analyze 
any common pattern before/after cannulation. 

 
Furthermore, we plotted the arterial mean blood pressure (ARTm) against that 

SASC graphs for all patients individually as well as their ARTm versus rSo2 (oxygen 

saturation). This was done in a bid to analyze and compare their patterns while looking for 

any similarities. For better comparison, the characteristic variables were plotted on the 

same x-axis scale and double y-axis (of hours/days) with ARTm being the secondary axis.  

0

10

20

30

40

50

0 5 10 15 20 25 30

SA
SC

 (%
)

Time with respect to Cannulation (hour)

Patient 3- Graph of SASC VS Time

SASC (Average)[0-2.5] SASC (Average)[0.5-2.5]



 

 18 

 
Figure 3.5: Comparison graph of ARTm vs Rso2 and SASC vs ARTm  

for patient 3 
 
 

 
Figure 3.6: Comparing the variables to the time-frequency map to analyze the 

causes of sudden and extreme peaks and troughs. 
 

The time dependent SASC was obtained for each patient 24 hours prior to 

cannulation (PRE) and 24 hours after cannulation (POST) in a step of 1 hour. Both the PRE 

and POST values were averaged separately to analyze the ratio of difference between them. 

A two-tail t-test was computed in Excel to analyze the significance of the difference 

observed. 
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Figure 3.7: Combined bar plots of all 14 patients’ PRE and POST cannulation 

          SASC averages over 24 hours showing their ratio differences as 
          well as the t-test results. * Indicates averages of significant 
          difference. Patients 12 had an error since it only had one value 

                      pre-cannulation. 
 

Finally, still in the comparative section, all patients SASC averages 24 hours prior 

to cannulation and the same post cannulation were averaged and compared to the clinical 

MRI consensus. The trendlines and R-values of the respective graphs were also computed 

for better analysis hence conclusion drawing. 
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Figure 3.8: MRI consensus vs SASC averages over 24 hours during Pre and Post 

cannulation. (Central bottom) single point plot of the average SASC 
vs average MRI consensus post cannulation with SEM (standard error 
of mean) bars. 

 
Finally, different moving window ranges were used to see if a faster run-time 

would affect the results in terms of SASC values obtained. In addition to the previously 

mentioned 1-hour window, we also tried the 4-hour, 6-hour, and 8-hour window. 
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Figure 3.9: Comparative graph of SASC averaged at different window lengths 

      (showing ratio differences). (Top) 1-hour vs 4-hour window.  
(MIDDLE) 4hour vs 6hour window. (BOTTOM) 4hour vs  
8-hour window. 
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CHAPTER 4 

DISCUSSION 

The current study assessed cerebral autoregulation in pediatric patients during 

ECMO therapy by using a novel wavelet coherence analysis to characterize the dynamic 

relationship between the spontaneous mean arterial blood pressure (MAP) and cerebral 

oxygen saturation (SctO2) oscillations, considering 24 hours before cannulation and 24 

hours after. The wavelet-derived metrics of phase and coherence for quantitative evaluation 

of cerebral autoregulation indicate a potential to use this methodology to predict clinical 

outcomes during early phase of neonatal care at the bedside (Tian et al., 2016). 

In a similar research study evaluating the dynamic cerebral autoregulation in 

neonatal hypoxic–ischemic encephalopathy, Tian et al. explained how using SctO2 as an 

index of cerebral blood flow dynamics gives more accurate data as it is less sensitive to 

movement artifact and therefore more suitable for the purpose of long-time scale recording 

(Tian et al., 2016). They also added that SctO2 has been validated to correlate well with 

MRI arterial spin label cerebral blood flow in the setting of encephalopathy (Wintermark 

et al., 2014). The significant, intermittent in-phase coherence between the MAP and SctO2 

changes indicated that the patient's cerebral oxygenation was passive to the blood pressure 

changes during hypothermia, a vital sign of an impaired autoregulation system (Tian et al., 

2016). This supports the results obtained above that showed autoregulation disruption 

noticed a stronger coherence between the ARTm and Rso2. 
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All patients showed an oscillating trend of the scale averaged percent significance 

of coherence with time, and when put together to compare the pre-cannulation and post 

cannulation trends, the t-test showed that 31% of them (i.e., 4 out of 13) had a significant 

difference. Their relative average changes between the PRE and POST values of all 

patients further support this conclusion as we see that half of them had a higher pre-

cannulation average while the remaining half had a higher post cannulation average. This 

non-stationarity of the input signals over multiple time scales is evidence of autoregulation. 

This was confirmed in a past study by Latka et al. (2005) demonstrating that the phase 

dynamics between the spontaneous changes in MAP and CBF velocity measured in the 

middle cerebral artery (MCA), which was based on wavelet analysis, accounted for most 

of the nonlinear and non-stationary properties of cerebral autoregulation. Thus, assessment 

of dynamic cerebral autoregulation using wavelet coherence makes no assumption about 

the stationarity of input signals (Tian et al., 2016).  

Moreover, our findings give a clear indication that time-dependent coherence 

calculations are insensitive to the selection of window length. Here we started off by using 

a window length of 4 hours but reverted to using 1-hour to accommodate patients that had 

very little data pre-cannulation e.g., patient 12 whose data only had one hour PRE. We also 

tried using an 8-hour window length to quicken the computation time for patients whose 

data goes on for about a month. In the end, the comparison between graphs at 1-h, 4-h, 6-

h, and 8-h window lengths gave relatively similar results with the only difference being the 

amount of datapoints generated. The summation of the 4-h data per patient yielded four 

times that of 1-h window length of the same patient while their data averages appeared to 

be the same. This was also the case for the 6-h and 8-h comparisons. These results can be 
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explained by the fact that cerebral autoregulation is a time-scale dependent phenomenon. 

In their 2016 study on the matter, Tian et al.’s main findings indicated that Significant in-

phase coherence between the MAP and SctO2 oscillations occurred mostly in shorter time 

scales of ≤80 min with a peak of around 7.5 min. Thus, our finding of the in-phase 

coherence between MAP and SctO2 is in line with the previous findings of a pressure-

passive status of impaired cerebral autoregulation that corresponded to changes occurring 

over several minutes that is more apparent when run at a smaller window length to account 

for every minute rather than a larger window length that shows the overall pattern. This 

finding can be used for further engineering advancements to automate our methodology to 

a faster computation time that yields real-time SASC values for bedside clinical 

improvements.  

Finally, Wavelet-based metrics of phase, coherence and gain were derived to 

quantify the severity of impaired cerebral autoregulation (Tian et al., 2017). We saw that 

the lower the new SASC (as a Cerebral Autoregulation index), the better the brain is. 

Comparing SASC to the MRI consensus, the average autoregulation index is less than 10% 

which is consistent with the ECMO outcome indicating mild neuro-injury meaning that the 

autoregulation is disrupted a bit but not severely. This is the case for all patients except 

patient 4 because all are below an MRI consensus of 10. A score of 10 or above is for 

severe neurological injury for ECMO. For Tian et al.’s 2017 study their preliminary 

findings suggest that these measures appear to be useful for predicting the short-term and 

long-term clinical outcomes following hypothermic therapy. It is safe to assume the same 

for this study too, especially since the single-point averaging graph of SASC vs MRI 

consensus comes to a point that approximately close considering the current sample size 
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of n=14. That point is at 7.5,4.2 for SASC vs MRI consensus respectively thus confirming 

the predicted trend that poor autoregulation indicates a higher SASC value and a lower 

MRI consensus value (relating to worse clinical outcomes). 

However, this study has several limitations. First, the current data was collected 

from a small sample of patients (n = 14), which limited the ability to address moderate and 

severe neurological injury separately. The findings in the study need to be replicated in 

larger groups of patients. More patients’ data will help confirm the hypothesis for the 

prediction of ECMO patients, and would help stabilize the mean, take out the outliers and 

draw a better conclusion between SASC and MRI. Secondly, WTC during the 24-hour 

cannulation showed good correlation with clinical outcome or MRI consensus but running 

it for the total ECMO duration might surely be a better predictor. Since MRI is a cumulative 

injury indicator, most damage is expected to happen during 24 hours but that is not 

necessarily always the case.
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CHAPTER 5 

CONCLUSION 

Wavelet coherence analysis is a suitable and powerful tool to characterize and 

quantify the dynamic status of cerebral autoregulation during a long-lasting treatment such 

as the ECMO therapy. Based on this method, significant in-phase coherence between 

spontaneous oscillations in MAP and SctO2 were found in the pediatric patients during the 

therapy, and it appeared to be related to worse clinical outcomes. These findings support 

the feasibility of using this method to assess cerebral autoregulation impairment in ECMO 

patients as well as its potential predictive values for short- and long-term clinical measures 

in these patients.
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APPENDIX A 

CONVERTING A .MAT FILE TO .CSV 
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clear all;  clc; close all;  
% load('Patient12_t3_data.mat'); 
load('C:\Users\research\Desktop\Sylvine\UTSW_ECMO_Data\UTSW_ECMO_Data\Pati
ent18_t3_data.mat') 
 
% to find out nan value and convert it to zero 
for i=1:size(ARTm_mmHg,2) 
    if isnan(ARTm_mmHg(i)) 
        ARTm_mmHg(i)=0; 
    end 
end 
for i=1:size(rSO2_1_percent_,2) 
    if isnan(rSO2_1_percent_(i)) 
        rSO2_1_percent_(i)=0; 
    end 
end 
 
%csvwrite('Patient7_t3_data.mat',timestamp); 
 
for ii= 1:length (timestamp) 
    timestamp2 (ii,:)= convertCharsToStrings(timestamp(ii,:)); 
end 
z=[rSO2_1_percent_',ARTm_mmHg']; 
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APPENDIX B 

FILTERING THE DATA, SPECIFYING THE READING PARAMETERS 
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for i=1:size(a.data,1) % from first to size of a.data first row 
    for k=5:6 
        if isnan(a.data(i,k)) 
        a.data(i,k)=0 
        end 
    end 
end 
clear i k 
 
first_day = find(a.data(:,3)<=1457); % 24 hrs - 1, 48 hrs - 2, so on and so fort 
first_strt = first_day(1,:); %first row of first_day 
first_end = first_day(end,:); 
cannulation_point=976469; 
 
so2 = a.data(first_strt:first_end,5); 
artm = a.data(first_strt:first_end,6); 
% time= a.data(first_strt:first_end,3); 
 
% k=1; 
% count=0; 
if artm(1,1)>=30 && artm(1,1)<=100 
    for i=1:size(artm,1) 
       if artm(i,1)>100 || artm(i,1)<30 
           %dataset(k,1)= ARTm(i,1); 
           artm(i,1)=artm(i-1,1); 
%            count=count+1; 
%            k=k+1; 
       end 
    end 
else 
    fprintf("The first number is below 30 or above 100") 
end 
%clear first_end first_strt i 
clear i 
 
% for moving average 
window=12;% for 1 min window take window 12 as each data point is of 5 secs and 12 
datapoints makes a window of 1 min 
so2_avg=(movmean(so2,window)); 
artm_avg=(movmean(artm,window)); 
% time_avg=(movmean(time,window)); 
 
% so2_avg1=so2_avg(60:60:end);%taking average of every 60 points 
% artm_avg1=artm_avg(60:60:end); 
i=1; 
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j=12; 
k=1; 
while(i<=first_end) 
    so2_avg1(k)=mean(so2_avg(i:j)); 
    artm_avg1(k)=mean(artm_avg(i:j)); 
%     time1(k)=mean(time_avg(i:j)); 
%z=[artm_avg1' so2_avg1']; 
    i=i+12; 
    j=j+12; 
    k=k+1;  
end
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APPENDIX C 
 

RSO2 AND ARTM CONVERSION AND AVERAGING CODE
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%before cannulation 
start_of_cannulation=floor(cannulation_point/12); 
%cann_time_in_hour=cannulation_point/(12*60*24); 
x=1;% window length i.e., 6 hours 
fix=x*60; 
no_loop=floor(start_of_cannulation/fix); 
cons=floor(start_of_cannulation-(no_loop*fix)); 
if no_loop>24 
    no_loop=24; 
end 
 
for k=1:no_loop 
    So2_before(k)=mean(so2_avg(cons:cons+fix)); 
    ARTm_before(k)=mean(artm_avg(cons:cons+fix)); 
    cons=cons+fix; 
end 
So2_before=So2_before'; 
ARTm_before=ARTm_before'; 
%% after cannulation 
end_of_cannulation=floor(cannulation_point/(12)); 
x=1;% window length i.e., 6 hours 
fix=x*60; 
cons=end_of_cannulation; 
for f=1:24 
    So2_after(f)=mean(so2_avg(cons:cons+fix)); 
    ARTm_after(f)=mean(artm_avg(cons:cons+fix)); 
    cons=cons+fix; 
end 
So2_after=So2_after'; 
ARTm_after=ARTm_after'; 
% So2_final=[So2_before So2_after]; 
% ARTm_final=[ARTm_before ARTm_after];
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APPENDIX D 

WAVELET TRANSFORM COHERENCE (WTC) MATLAB CODE
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clear artm i j k so2 window first_strt 
so2_avg1=so2_avg1'; 
artm_avg1=artm_avg1'; 
fs = 1/60; %new sampling rate = 1 sample every 300sec (5min) 
[Rsq period sca coi sig95 aWxy freq] = wtc_any_fs(so2_avg1,artm_avg1,fs); 
 
figure; set(gcf,'Position',get(0,'ScreenSize')); % to plot the figure in fullsize. 
wtc_any_fs(so2_avg1,artm_avg1,fs); 
colorbar;  set(gca,'Clim',[0 
0.8],'fontsize',30);colormap('jet');xlabel("Time(days)"),ylabel("Scale(hours)"); 
 
% CONVERTING FREQUENCY IN Y SCALE TO HOUR SCALE 
m=yticklabels; 
m=str2num(m); 
m=1./m % converting to time domain in sec 
m=m./3600; 
m = round(m,2); 
yticklabels(m); 
 
hour=first_end/(12*60); 
day=hour/24; 
diff=day/10; 
hrs=([0:diff:day]); 
xticks([0:diff*3600*24:day*24*3600]);% for day 
 
xticklabels(round(hrs,2)); 
clear artm m hrs diff fs
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APPENDIX E 

SIGNIFICANCE CALCULATION
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%IN HOURS.................. 
clear sig951 freq1 period1 coi1 cone1 sig95_0_NIRS_c_NIRS_a_pre1 aWxy1 i 
sig95_180_NIRS_c_NIRS_a_pre1 pha_0 pha_180 pha_270 pha_90 
cann_time_in_hour=cannulation_point/(12*60); 
 
new_cann_point=round((length(sig95)/hour)*cann_time_in_hour); 
new_window_4_hours=round(length(sig95)/(hour))*1; 
fix=new_window_4_hours; 
freq1=freq'; 
cons=new_cann_point-fix; 
%clear new_cann_point new_window_4_hours cann_time_in_day cannulation_point 
 
% loop to run significance percentage for 1 pre cannulation window and 2 post 
cannulation windows 
for x=1:25 
    sig951=sig95(:,cons:cons+fix);%(1440/24)*6=360 1440 has total time period of 24 
hours, we only need 6 hours 
    sig951(find(sig951< 1)) = 0;       
    sig951(find(sig951>=1)) = 1; 
    aWxy1=aWxy(:,cons:cons+fix); 
    coi1=coi(cons:cons+fix); 
    period1=period; 
    % dividing into 4 quadrants 
    pha_0 = ones(size(aWxy1));               pha_0(find(abs(aWxy1)>pi/4)) = 0; 
    % pha_90 = zeros(size(aWxy));             pha_90(find((aWxy)>=pi/4 & 
(aWxy)<=(3*pi/4) )) = 1; 
    pha_180 = ones(size(aWxy1));             pha_180(find(abs(aWxy1)<pi*3/4)) = 0; 
    % pha_270 = zeros(size(aWxy));            pha_270(find((aWxy)>=-3*pi/4 & 
(aWxy)<=-(pi/4) )) = 1; 
 
    cone1 = ones(size(sig951)); 
    for i = 1:length(coi1) 
        cone1(find(period1>coi1(i)),i) = nan; 
    end 
    % percentage of sig95 
    temp = nanmean(sig951.*pha_0.*cone1,2)./nanmean(cone1,2)*100; 
    sig95_0_NIRS_c_NIRS_a_pre1 = temp;    % wavelet scale <240 mins 
    sub_total(:,:,x)=sig95_0_NIRS_c_NIRS_a_pre1; 
    % temp = nanmean(sig951.*pha_180.*cone1,2)./nanmean(cone1,2)*100; 
    % sig95_180_NIRS_c_NIRS_a_pre1 = temp;  % wavelet scale <240 mins 
    cons=cons+fix; 
    disp(cons); 
end 
 
pre_sig=sub_total(:,:,1); 
pre_sig1=sub_total(:,:,2); 
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pre_sig2=sub_total(:,:,3); 
pre_sig3=sub_total(:,:,4); 
pre_sig4=sub_total(:,:,5); 
pre_sig5=sub_total(:,:,6); 
post_sig1=sub_total(:,:,7); 
post_sig2=sub_total(:,:,8); 
post_sig5=sub_total(:,:,9); 
post_sig6=sub_total(:,:,10); 
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