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ABSTRACT: 

Evaluating Usage, Acceptance, Integration, and Safety Impacts of Demand Responsive 
Transportation (DRT) Services 

Muhammad Arif Khan 

The University of Texas at Arlington, 2022 

Supervising Professor: Dr. Qisheng Pan, PhD 

 

Transportation systems are vital in providing accessibility and mobility to city residents. Auto-

oriented transportation systems have faced several challenges, including traffic congestion, 

crashes, and environmental pollution. Proponents of mass transit systems present them as a 

sustainable alternative to private automobiles. Although mass transit offers several benefits, these 

benefits are not very significant in rural, midsized, and low-density cities due to low public transit 

ridership. New modes of public transit, such as demand-responsive transport (DRT), also called 

on-demand public transport, have recently gained popularity across the United States.  DRT 

systems are used in several mid-sized cities, either as an alternative to fixed route transit systems 

or in support of them by providing first and last-mile connections.  

This dissertation explores three questions about the DRT systems, including their usage, 

acceptance, integration, and safety impacts, using a wide range of data and methodologies.  

The first chapter introduces the topic, the broad research background, and the research questions. 

An outline of the dissertation is also presented.   

The second chapter investigates the usage and adoption of Shared Autonomous Vehicles (SAVs) 

– a demand-responsive transport system using an SAV pilot project in Arlington, TX, as a case 

study. The project is named RAPID (Rideshare, Automation, and Payment Integration 

Demonstration), which started operations in March 2021. This study used real-time trip-level 
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ridership data from the RAPID project, surveyed the SAV riders, and developed a study based on 

ordered logistic regression to estimate the determinants of ridership frequency. The data analysis 

of real-time ridership data revealed that the spatial distribution of activities and service 

accessibility are important factors in forming current users’ travel patterns. The findings from the 

Order Logistic Regression showed that users from higher-income households are less likely to be 

frequent riders of the RAPID service. The impact of the usual mode of transportation on RAPID 

usage showed that those who usually walk, bike, or utilize the on-demand ridesharing services are 

likely to use SAVs more frequently than private vehicle users. The users with higher levels of 

safety perception are also more likely to be frequent users of the service. The findings of this study 

could provide planners with a better understanding of the SAV ridership patterns and guide 

decision-makers in establishing and adopting the appropriate policies for future SAV 

implementation projects. 

The third and fourth chapters of this dissertation aim to analyze the impacts of ridesharing services 

on the number of traffic crashes and injuries using two DRT services, RideAustin in Austin, TX, 

and Via Arlington in Arlington, TX, as the case studies. We used an Interrupted Time Series 

Analysis (ITSA) and the Difference-in-Difference (diff-in-diff) analysis approach to investigate 

how these services were related to the number of traffic crashes and injuries in Austin and 

Arlington, respectively. The findings from both studies showed that the DRT systems were related 

to fewer traffic crashes and severe injuries. In the case of Austin, TX, these impacts would be more 

significant if the number of trips per block group was relatively higher. Via Arlington's availability 

was associated with fewer weekly traffic crashes and injuries in Arlington. 

The fifth chapter investigates the potential benefits of integrated DRT services by examining the 

three DRT services in Arlington, TX. We first identified the spatial patterns of the ridership on a 
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localized scale by adopting the geographically weighted regression (GWR) for existing paratransit 

service, i.e., Handitran. Then, assuming that the existing ridership will be combined in the future 

with the shared autonomous vehicles, we looked at integration options based on the spatial patterns 

of supply and demand and payment options for the riders. The analysis results of the trip data 

suggest that the paratransit service, Handitran, is currently used by a small proportion of the 

eligible population, whose travel patterns vary in terms of age. The results of the GWR model 

indicate that the significant determinants of Handitran usage are the percentage of older adults, 

racial distribution, and household vehicle ownership; the coefficients of these factors vary across 

the city. The results of hot-spot analyses reveal that the integration of the services will improve 

the efficiency of the existing transportation system by responding to the excess rider demand, 

particularly in the downtown area. Finally, the study describes the policy implications of AV 

integration for government agencies, service providers, and other stakeholders. It also suggests 

future research topics. 

The final chapter summarizes the policy implications based on the research findings in this study 

and discusses some future research opportunities.  

 

 

Keywords: Shared Autonomous Vehicles; On-demand ridesharing; Demand Responsive 

Transport Services; Mobility on Demand; Traffic Safety; Time Series Analysis; Ordered Logistic 

Regression  
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Chapter 1:  INTRODUCTION 

Transportation advancements, such as the advent of automobiles, entirely changed how humans 

live and cities function. Although automobiles play a key role in economic development, 

improvement of accessibility, and urban mobility, they have created several challenges, including 

traffic crashes, congestion, and environmental pollution (Bao et al., 2021; Jamal et al., 2021; Sohail 

et al., 2021; Umar et al., 2021; Wang & Debbage, 2021; Yang et al., 2022). For example, according 

to the National Highway Traffic Safety Authority (NHTSA, 2022), on average, 90 people die due 

to traffic crashes every day in the United States, and only in the first six months of 2021, there 

were more than 20,000 traffic-related deaths in the country. Texas, as one of the states with the 

highest crash rates, had its last fatality-free day in November 2000. According to the CDC, traffic 

fatalities have been the leading cause of death in American’s lives in the first three decades. 

Meanwhile, there has been a significant increase in vehicle ownership. From 1960 to 2017, 

households without cars decreased from 22% to 9%, and multivehicle households increased from 

22% to 58%. This resulted in an increase in traffic congestion. According to the traffic data 

analytical service, i.e. INRIX, Americans lose 97 hours to congestion every year, which is 

equivalent to a total cost of approx. $87 billion. Texas also follows the national trends in traffic 

congestion. A study by Texas Transportation Institute (TTI) revealed that the number of registered 

vehicles in Texas increased by 172% in the past four decades. However, there has been a meager 

increase of only 19% in the road capacity.    

Public transit is expected to alleviate these challenges and make transportation systems more 

efficient, equitable, and sustainable (Etminani-Ghasrodashti et al., 2021). However, public 

transportation has also faced several challenges in recent years. Public transit ridership decreased 

by 3.8% from 2010 to 2018, even before the COVID-19 pandemic had any impact on transit 
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ridership. It got even worse during the pandemic (Olayode et al., 2022). Transit ridership decreased 

by 79% from 2019 to 2020, and the numbers stayed significantly low. Due to the highly dynamic 

environment during the pandemic, operating costs of transit systems have increased manifolds. 

The public transit sector faces a shortage of $39.3 billion, which is expected to last until 2023.  

The era of digital advancement is called the 'fourth' industrial revolution. The rapid development 

of digital technologies and their widespread availability are enabling new ways of delivery, utility, 

and access to transportation services. It has resulted in the emergence of new and innovative 

modes, such as ride-hailing ridesharing services, also known as Transportation Network 

Companies (TNCs), reshaping the urban mobility landscape (Diao et al., 2021). Technological 

advancements have paved the way for implementing Shared Autonomous Vehicles (SAVs) as an 

alternative mode in many cities around the world (Ohnemus & Perl, 2016). Demand  Responsive 

Transport (DRT), historically provided transportation services to elderly and disabled populations, 

also evolved and expanded their scope to supplement other public transit services in low-density 

rural areas and places with lower travel demand. Several transit systems adopt the DRT services 

for first- and last-mile connections to improve transit accessibility.  

Digital technologies like smartphones, the internet of things, and big data analytics, coupled with 

demographic change, are leading transportation to a new future by satisfying the new service 

expectations of commuters and opening a variety of ramifications for stakeholders, especially the 

operators and the regulators of the transportation system. This transformation has enabled, as a 

pre-condition, the evolution of ridesharing or DRT services and facilitated the demands for deeper 

research about how to gain maximum benefits from these services.  

In terms of transport policy, DRT systems are likely to play a vital role in future collaborative and 

connected mobility in the presence of both driver-operated and driverless vehicles, Shared 
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Autonomous Vehicles (SAVs). They are expected to reduce car ownership and other negative 

externalities by enabling commuters to satisfy their mobility needs without owning the assets such 

as private automobiles. DRT services within the context of the evolving transportation ecosystem 

have not received much attention in the past due to their limited scope.  

Therefore, this dissertation is a combination of three related topics, each tackling a different but 

related research question using different types of DRT services and exploring the impacts of DRT 

services using several existing DRT systems as empirical studies. First, this study focuses on the 

SAVs, particularly exploring the patterns and the determinants of ridership using an SAV project 

in Arlington, TX, as an empirical case. Second, the impacts of DRT services on traffic safety are 

explored in terms of traffic crashes and injuries, using two DRT services as case studies. Third, 

the possibility of integrating multiple DRT services is explored by employing a DRT service for 

transportation-dependent populations (older adults or people with disabilities)  in a case study. 

DISSERTATION OUTLINE  

As described above, this dissertation consists of three related but independent essays. Each essay 

is a stand-alone research paper with an independent structure, but all focus on different aspects of 

Demand Responsive Transport (DRT) systems. For each research paper, the introduction, 

literature review, data, methodology, and results sections are included relevant to the research 

questions addressed by the individual paper.  

The dissertation begins with chapter 2, which is a ridership evaluation analysis that explores the 

characteristics of Shared Autonomous vehicle riders and the contributing factors for the ridership 

frequency of the service. The findings from the logistic regression demonstrated that those with 

higher household incomes are less likely to be frequent riders of RAPID, while those usually 

walking, biking, or utilizing the on-demand ridesharing services are likely to use SAVs more often. 
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Commuters with higher levels of safety perception are also more likely to be frequent users of the 

service. The findings of this study will provide planners with a better understanding of the SAV’ 

ridership patterns and will guide the decision-makers nationwide to establish and adopt the policies 

appropriate for future SAV implementations. 

Chapters 3 and 4 explore the impact of demand-responsive transport services on traffic safety in 

terms of traffic crashes and fatalities. Based on the crash data from Arlington, TX, I adopt the time 

series analysis to study the trends of traffic crashes. A similar study is completed based on the 

crash data from Austin, TX using a difference-in-difference analysis approach. The results show 

that the DRT services have statistically significant relationship with the reduced number of traffic 

crashes in their service areas.  

Chapter 4 explores the potential of integrating shared autonomous vehicles in urban public transit 

systems by employing Arlington, TX as an empirical case. It analyzes the ridership of several 

services, the intersection of their services areas, and the likely shift of riders from one service to 

another. The analysis is conducted using Geographically Weighted Regression (GWR) models 

followed by hotspot analysis of the ridership frequency. The results from spatial analysis show 

that there is a great potential of integrating the shared autonomous vehicles with existing public 

transit services to enhance the overall mobility of commuters. This study evaluates the integration 

of Handitran (a service for disabled and senior citizens), Via-Arlington (an on-demand rideshare 

service) and RAPID (a shared ride service that uses a fleet of Autonomous Vans) in an empirical 

study.  

 

Chapter 5 marks the end of the dissertation, which discusses several policy implications on the 

base of research findings and makes some suggestions on future research directions.   
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Chapter 2:  A Ridership Evaluation Study of Shared Autonomous Vehicles 

ABSTRACT 

Cities around the world are piloting projects to evaluate the feasibility and benefits of shared 

autonomous vehicles (SAVs), as their large-scale implementation and integration into public 

transit systems have the potential to improve individuals’ accessibility and transportation equity. 

To understand the full potential of SAVs and their likely adoption, it is important to identify how 

the services can be utilized most effectively and what determines the composition of the ridership. 

This research aims to explore the usage and adoption of SAVs, focusing on a project called RAPID 

(Rideshare, Automation, and Payment Integration Demonstration) that was launched in Arlington, 

TX. We used real-time trip-level ridership data from the SAV platform, conducted a survey of 

SAV riders and developed a study based on ordered logistic regression to estimate the determinants 

of ridership frequency. Data analysis of real-time ridership data revealed that spatial distribution 

of activities and service accessibility have crucial roles in forming the current users’ travel patterns. 

The findings from the logistic regression demonstrated that those with higher household incomes 

are less likely to be frequent riders of RAPID, while those who usually walk, bike, or utilize on-

demand ridesharing services are likely to use SAVs often. Users with higher levels of safety 

perception are also more likely to be frequent users of the service. The findings of this study will 

provide planners with a better understanding of SAV ridership patterns and will guide decision-

makers nationwide in establishing and adopting policies that will be appropriate for future SAV 

implementation projects. 

Keywords: Shared Autonomous Vehicles; On-demand ridesharing; Transportation 
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INTRODUCTION 

Autonomous vehicles (AVs) or self-driving cars are an emerging technology that uses a 

combination of sensors, computer processors, and repositories to take over tasks or responsibilities 

otherwise assumed by human operators. The technology promises to alter the fundamentals of 

human travel behavior and lead to significant social and infrastructural changes (Zhang et al., 

2019). 

The evolution of autonomous vehicle technologies will also develop some new ridesharing modes 

like shared autonomous vehicles, and will provide low-cost mobility to underserved and 

disadvantaged populations  (Krueger et al., 2016). SAVs are self-driving shuttles that potential 

riders can request via a mobile application (Bansal et al., 2016; Fagnant & Kockelman, 2014). 

They could become an attractive mobility option for elderly adults, people with disabilities, and 

low-income people who have limited access to private vehicles and reside in suburban areas with 

few public transit options (Krueger et al., 2016). They could also provide first- and last-mile 

solutions for commuting to work by offering riders on lower-demand bus and rail-transit routes 

and complementing the existing public transit services. One of the benefits for riders is that they 

are free to relax or work while being taken to their destination (Krueger et al., 2016). The potential 

SAV’s user attributes and travel-related behavior need to be identified to predict the short-term 

adoption of AV technology and promote the acceptance of SAVs in the long term (Bansal et al., 

2016). Accordingly, understanding the public’s acceptance and potential adoption of SAVs is 

fundamental. Several studies have explored the potential users and riders of AVs by modeling their  

willingness to use and pay for this technology (Acheampong & Cugurullo, 2019; Etzioni et al., 

2021; Nazari et al., 2019; Shabanpour et al., 2018; Wang & Akar, 2019; Yuen et al., 2020); 

however, the extent to which the research findings will coincide with reality when self-driving 
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vehicles are on the road is still unclear. This study employs a non-simulated, real-world 

environment based on an SAV pilot project called RAPID (Rideshare, Automation, and Payment 

Integration Demonstration) in the city of Arlington, Texas, which is a unique case study, as it is 

one of the largest cities in the United States without access to a fixed-route mass transit service 

(Harrington, 2018). It does, however, have access to app-based, on-demand ridesharing services 

and SAV technologies that are available throughout the city and provide connections to the 

Dallas/Fort Worth (DFW) region. Our research focuses on the SAV ridership dataset and identifies 

the trip trends and patterns of actual SAV users. To better understand ridership, we used data 

collected from the SAV customer’s survey and explored the main factors affecting the self-driving 

shuttles as a new mobility mode by considering two data sources: an SAV riders’ survey and an 

actual trip dataset. The SAV ridership platform data provides objective data, and the results of the 

rider’s survey provides data and information regarding self-driving usage.  

This study aims to (1) assess SAV ridership patterns, (2) identify the most frequent users of SAV 

services, and (3) evaluate the determinant factors of the SAV ridership frequency. The findings 

from this study will provide guidance to transportation planners as they strategize and make 

decisions relative to implementing a similar service in their cities. 

LITERATURE REVIEW 

Several studies have been conducted to identify the public’s willingness to use and pay for SAVs 

(Acheampong & Cugurullo, 2019; Etzioni et al., 2021; Nazari et al., 2019; Shabanpour et al., 2018; 

Wang & Akar, 2019; Yuen et al., 2020), and sociodemographic characteristics have been 

suggested as one of the main factors that shapes individuals’ views and inclinations to avail 

themselves of self-driving technology. For example, females and older people are less likely to use 

driverless buses with onboard assistance operators than well-educated males between the ages of 
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18 and 34 years old who earn above-average incomes and live in dense urban areas (Bansal et al., 

2016; Lavieri et al., 2017; Lu et al., 2017; Wang & Akar, 2019). 

Individuals' attitudes, preferences, concerns, and perceptions towards automated technology are 

constantly explored through AV and SAV literature, which has revealed that technically savvy 

people are more likely to have a positive attitude towards using an AV service that has been 

integrated into an existing public transit system (Song & Noyce, 2019). On the other hand, AV 

safety concerns can negatively influence its adoption (Nazari et al., 2019), as people who feel 

unsafe and uncomfortable riding transit are less likely to choose automated transit. Organized 

people who enjoy multi-tasking are more likely to choose automated transit over private vehicles 

(Etzioni et al., 2021), as are risk-takers, who are more likely to utilize them than older individuals 

with risk-averse attitudes (Hulse et al., 2018).  

Travel behavior and daily trip patterns also can predict the extent to which an individual will accept 

and use SAVs. Considering the current driving habits of an individual is important in choosing the 

type of self-driving vehicle (Haboucha et al., 2017). Research shows that regular public transit 

users are more likely to use an autonomous bus service, while those who ride public transit 

infrequently are less interested in using an AV transit service (Kassens-Noor et al., 2020). Public 

transit users are more inclined to share a ride in an SAV than non-users, and those who use 

ridesharing services are more likely to accept riding in SAVs (Wang & Akar, 2019). Individuals 

with multimodal travel patterns are reported to be more interested in experiencing novel 

transportation modes (Krueger et al., 2016).  

Although the literature on individuals’ decision-making regarding self-driving technology helps 

predict the potential determinants of SAV acceptance, some dimensions require deeper 

investigation. First, the results of the past studies indicate some general similarities concerning the 
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acceptance and usage of AVs and SAVs; however, the detailed findings are not consistent due to 

the different sample sizes, variety of socioeconomic attributes, and variations in geographical 

locations (Asgari & Jin, 2019). Second, the literature concentrates on potential riders who have no 

actual ridership experience and provides no insight into the actual riders' evaluation and perception 

towards SAV fleet attributes and SAV trip features that affect the acceptance of self-driving shuttles 

after experiencing the technology. Third, although the literature explores public interest, perception, 

willingness, adoption, and acceptance of AV and SAV technology (Acheampong & Cugurullo, 

2019; Bansal et al., 2016; Etzioni et al., 2021; Haboucha et al., 2017; Krueger et al., 2016; Nazari 

et al., 2019; Shabanpour et al., 2018; Wang & Akar, 2019; Yuen et al., 2020), the majority of the 

studies are based on surveys and agent-based simulation methods of hypothetical scenarios rather 

than real-time ridership data. There is no empirical evidence indicating the characteristics of early 

adopters of self-driving shuttles.  

METHODOLOGY 

We used the ridership and survey data to perform descriptive statistics and ordered logistic 

regression to analyze the patterns and determinants of ridership. First, we explain the RAPID SAV 

service and its characteristics, then describe in detail the ridership and survey data, including the 

variables used for the analysis. The results, based on each source of data, are presented in the 

following paragraphs.  

RAPID SAV Service 

This study focuses on a rideshare, automation, and payment integration (RAPID) pilot project that 

began deploying self-driving shuttles in the city of Arlington, Texas in March 2021. The Federal 

Transit Administration  (FTA) of the U.S. Department of Transportation (DOT) awarded the 

https://www.transit.dot.gov/IMI
https://www.transit.dot.gov/IMI
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project funds, as part of an Integrated Mobility Innovation (IMI) grant, to integrate an existing on-

demand rideshare service (Via) with AV technology (Khan et al., 2022). RAPID, as a mobility on 

demand (MOD) project, employs advanced technologies to improve the efficiency and equity of 

trips, particularly for the low-income people without access to a private vehicle, and people with 

disabilities (Patel et al., 2022). Prior to the pilot project, Arlington had an app-based on-demand 

rideshare service that provided the entire city with rides in six-passenger vans anywhere within the 

service boundary (City of Arlington, 2020). The RAPID SAV pilot project is a partnership among 

Via Transportation, May Mobility, UTA, and the City of Arlington. It offers self-driving shuttles 

in downtown Arlington and on the University of Texas at Arlington (UTA) campus that  integrate 

the rides using the Via platform. The service is fully on-demand and provides rides from 7:00 a.m. 

to 7:00 p.m., Monday through Friday. To achieve the equity goals of the pilot project, RAPID 

provides university students free rides and includes a wheelchair-accessible vehicle (City of 

Arlington, 2019). The City’s RAPID fleet has four hybrid-electric Lexus vehicles and one fully 

electric Polaris GEM vehicle that is equipped to carry wheelchairs. All RAPID vehicles are 

autonomous, meaning that the vehicle can sense its environment and operate without human 

involvement, but fleet attendants continuously monitor them to ensure a safe and enjoyable 

passenger experience. The May Mobility, partnering with the city, Via, and UTA for the one-year 

pilot, owns and operates the fleet of autonomous vehicles. The City of Arlington is piloting RAPID 

to recognize the potential uses of autonomous transportation technology as a part of its existing 

public transportation strategy. This pilot program started in March 2021 and continued to operate 

to date (April 2022). The service area for RAPID and Via (2020 service area) and boundaries of 

city of Arlington are shown in Figure 1. Via service area boundaries were obtained from the City 

of Arlington’s open data portal (City of Arlington, 2020) and the city boundaries data was collected 

https://ridewithvia.com/
https://maymobility.com/
https://www.uta.edu/
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from the Nahtion Historic GIS (NHGIS) database (Manson et al., 2022).  The map was created 

using Maptitude 1, a mapping software by Caliper corporation. Google Map’s (Google, n.d.) 

basemap was utilized as the background map using the imagery feature of  the Maptitude software. 

RAPID service area mainly includes the University of Texas at Arlington (UT Arlington) campus 

and the downtown area of Arlington, TX.  

Anyone with access to the Via-Arlington app can request a RAPID ride regardless of their student 

status; however, UTA students are eligible for free rides through RAPID.  The data indicates that 

the RAPID service usage is mostly by UTA students, who account for 98.49% of all RAPID trips, 

while less than 2% of the total trips are taken by non-UTA students . This could be attributed to 

the service area of RAPID and the free rides available to the UTA students. Via does not collect 

information about the trip purposes but based on the land uses in the service area, it is likely that 

most of the trips are related to the commuting of student to UTA campus and professionals to 

downtown Arlington’s business/offices.   

Monthly ridership for RAPID has been progressively increasing since the start of the service. 

Figure 2 shows the number of total monthly trips since March 2021. The total number of rides per 

month ranges from 769 in April 2021 to 3547 in November 2021, over the course of March 2021 

to February 2022. Since the service is only available in the UTA and downtown area, the impact 

of university classes scheduling is evident in the ridership. The ridership numbers are higher during 

the fall and spring semesters than in other months. For example, the ridership in August 2021 is 

almost double compared to July 2021, more likely due to the start of the Fall semester in August.  

Data and Variables  

 
1 https://www.caliper.com/maptovu.htm 
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The real time ridership data for the RAPID service was provided by Via-on demand, the service 

with which RAPID has been integrated. .  

SAV Ridership Data 

The RAPID SAV ridership data describes the users’ travel behavior and the service’s performance. 

The dataset encompasses 10,379 rides that were requested from March to September 2021. The 

variables are defined below.  

• Number of passengers:  Number of seats booked in a single ride request 

• Average Trip Distance: Average distance of all trips requested in miles  

• Average Trip Duration: Average duration in minutes for all rides requested 

• Pickup Date and Day: Date and day a rider was picked up from the requested location 

• Pickup Time: Via does not share exact pickup times for privacy reasons, but the data is 

aggregated in timeslots given below: 

o Early morning: 7 am to 8:59 am Morning: 9 am to 11:59 pm     

o Early afternoon: 12 pm to 2:59 pm Late afternoon: 3 pm to 5:59 pm    

o Evening: 6 pm to 6:59 pm        Out-of-Operation Hours: 7 pm to 6:59 am  

SAV Survey Data 

In addition to the data from the SAV platforms, two surveys (one short and one long) were 

administrated to collect data from actual and potential users during the deployment of the RAPID 

pilot project for the purpose of measuring their perceptions of the service's flexibility, reliability, 

and efficiency. The short survey used for this study explores the SAV users' perceptions and 

experiences of different features of the service.  
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The questionnaire was designed to collect data from those who had experienced at least one SAV 

ride and targeted all the individuals who reside, work, and/or study in Arlington, TX. Most of the 

questions were asked at an ordinal scale ranging from 1 to 7, based on the question. It was reviewed 

and approved by the UTA Institutional Review Board (IRB), then was put online, using the 

QuestionPro platform to create a link. A flyer containing the link was designed and sent to the 

targeted population, and the survey was distributed through various outlets, including 

Questionnaire URLs; emails to university students, faculty, staff; and the community. To increase 

the participation rate, the City of Arlington and Via assisted in distributing the survey link and 

recruited potential RAPID riders from the public via email and on social media. The survey had 

several parts, including SAV ridership characteristics, attitudes towards SAVs, individuals’ travel 

behavior, residential attributes, and sociodemographic information. It was conducted based on the 

real-time SAV platform data and a self-reported survey of RAPID SAV users. A total of 402 

individuals began the survey, and 261 actually completed it by answering at least all the questions 

that were marked as mandatory. Most respondents also answered the questions that were marked 

as optional.  

The present study is developed based on the following data derived from the survey: 

• Sociodemographic characteristics of the respondents: To identify the demographics of 

riders, the survey asked the respondent’s age, gender, and household income. Responses 

were provided based on categorical options. 

• SAV trip purpose: Respondents were asked to provide the purpose of most of their trips on 

RAPID SAVs. Options include work, school, shopping, medical, social, and home 

destinations. 
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• SAV ridership frequency: To understand the trip patterns of the SAV riders, the survey 

asked respondents how frequently they have used the service since its implementation. The 

responses were provided by a six-point Likert-type scale from 1 to 6 (“this is my first trip” 

to “more than two times per week”).  

• Usual transportation mode: Respondents were also asked about their usual transportation 

mode. The answers were given through categorical options that reflected the available 

transportation modes in Arlington, TX, including private vehicles; private app-based ride 

services, such as Uber or Lyft; Via, Handitran (a paratransit service provided by the city of 

Arlington), UTA transportation, walking/biking, and RAPID service. 

• Safety perception:  Users were asked if they felt safe sharing a ride in an SAV that they 

had to respond at a scale of strongly disagree to strongly agree based on their perception of 

safety during a shared ride in SAVs.  

• Ethnicity: This variable represents the ethnicity with which a respondent is identified. The 

survey respondents were asked about the ethnicity with which they are identified, and they 

were to choose from two options, Hispanic or Non-Hispanic. 

DATA ANALYSIS & RESULTS  

This section analyzes the data collected from the SAV ridership platform and riders’ survey. It 

identifies the trends of the RAPID ridership and the key features of the SAV ridership data, based 

on the trip time, day, distance, and duration. The determinant factors of SAV ridership frequency 

were investigated through ordinal regression analysis.  

SAV Ridership Features: Platform Data  
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The RAPID SAV platform provides detailed trip information for each requested and completed 

trip. Table 1 indicates the descriptive statistics of numeric variables in this dataset.  

Ridership Day and Time 

The SAV pilot project provides rides Monday through Friday. Although the dataset displays a 

moderate distribution of rides during the week, more rides are requested on Wednesdays and 

Thursdays (see Fig. 3a). The comparison of ridership during different times of the day indicates 

that the demand for SAV services is at the lowest point in the early morning and rises throughout 

the day, with the number of riders being the highest in the early and late afternoons (see Fig.3b).  

Ridership Duration and Distance 

Figures 4a and 4b show the average duration and the distance of trips in minutes by the time of 

day. Ridership duration is at its peak in the late afternoons and is comparatively low in the early 

mornings and evenings. Average trip distance is longer in the morning and is the lowest in the 

early morning and the evening. These patterns could be attributed to class schedules and the 

amount of traffic on the streets that could impact the speed of the SAVs.  

Figures 5a and 5b show the distribution of trip durations in minutes and trip distances in miles. 

The data suggests that majority of trips (68.47%) are between 3 and 8 minutes long, and most of 

them (74.43%) are between 0.5 to 1.5 miles long. The short trip distance can be attributed to the 

SAV’s small service area, as it covers only 18 miles of city streets (City of Arlington in Texas). 

Determinants of SAV Ridership Frequency  

To evaluate the determinant factors of the SAV ridership frequency, we discuss the results from 

the analysis of the service users' survey in this section. SAV ridership frequency was defined as 

an ordinal variable in six categories. Table 2 depicts the descriptive statistics of the ridership 

frequency for 261 survey respondents. Around 45% of the respondents reported that they only had 



12 
 

used the service once to twice since its deployment. Nevertheless, around 43% of the users 

frequently used the RAPID service and had at least one SAV trip per week.  

Ordered Logistics Regression Model 

In this section, we analyze how the key variables affect SAV ridership frequency. Due to the 

ordinal nature of the variables, the authors employed an ordered logistic regression (OLR) model 

to identify the probability that a respondent would belong to one of the six user groups. Ordered 

logistic regression is a type of binary logistic regression model, where the dependent variable is 

an ordered scale variable (Fullerton, 2009) and the model can be expressed as an mathematical 

equation (Greene & Hensher, 2009): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 ≤ j)] = log 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖≤𝑗𝑗 |𝑥𝑥𝑖𝑖)
1− 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖≤𝑗𝑗 |𝑥𝑥𝑖𝑖)

                   (1) 

Where,  

y = outcome variable  

x = the independent variables  

j = the number of possible categories (six in this study) 

In the equation for this analysis, the probability of the outcome is the probability of a respondent 

being part of one of the six SAV user groups, based on usage frequency. Independent variables 

include the respondent’s household income, gender, usual mode of transportation to work, trip 

purpose, and perception of safety.  

Results of the Ordered Logistics Regression Model 

Table 3 shows a summary of the ordered logistics. We used Stata, Version 15 (StataCorp- 

https://www.stata.com/) to develop the ordered logistic regression. The results indicated that the 



13 
 

overall model was statistically significant at 0.05 levels, with a probability (Chi2) of 0.0000. The 

Pseudo R2 of the model was 0.083. (See Table 3). 

Table 4 shows the results of the ordered logistic regression model with SAV ridership frequency 

as the outcome variable. Threshold parameters or cut points for each category are given at the end 

of the table. Household income is negatively associated with SAV ridership frequency but is not 

statistically significant (p-value = 0.793). Males are less likely to be frequent riders than females, 

but this is also statistically insignificant (p-value = 0.290). The association of usual mode of 

transportation with SAV usage frequency is different for each mode. Compared to those who drive 

private vehicles, those who ride Uber or Lyft, Via on-demand ridesharing service, or UTA 

transportation, walk or bike as their usual mode of transit are more likely to be frequent users of 

SAV; the results are statistically significant at 0.05 levels.  

Feeling safe while sharing a ride on SAV is positively and significantly associated with frequent 

ridership (p value= 0.000). This shows that riders with a higher level of safety perception are more 

likely to be frequent users. Ethnicity is also related to being a frequent rider and is found to be 

statistically significant. Non-Hispanic users are more likely to be frequent users than the Hispanic 

users.  

Different from the traditional linear regression, the coefficient of the output of a logistic regression 

does not give an intuitive estimate of the coefficient’s value. Therefore, this study calculated the 

marginal effects of each variable, using the “margins” command in STATA. Margins values for 

the dependent variables are shown in percentage points in relation to the outcome variables. 

Results for each variable are explained in Tables 5 - 10 below.  

The first column shows the six categories of usage frequency of RAPID SAV, where the first 

category represents a first-time rider, the second category represents a second-time rider, the third 
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represents the users that ride at least once a month, the fourth represents users that use the service 

at least a twice a month, the fifth represents the users who make at least one trip a week, and the 

sixth represents the riders who use the service more than twice a week. The second column (dy/dx) 

shows the marginal effects in percentage points. Positive signs indicate that a user is more likely 

to be in a category with a one-unit increase in a respective variable, while negative signs indicate 

less likelihood.  

Table 5 shows the relationship between household income and ridership frequency. Those at the 

lowest income level are 0.4% more likely to be in the least frequent category, and as the income 

increases, the likelihood to be in the most frequent group decreases because higher income 

respondents are less likely to be in the most frequent category. A user from the highest income 

group is 0.4% less likely to be in the most frequent category. This indicates that an increase in 

household income is negatively associated with the frequency of SAV ridership.  

Feeling safe in an autonomous vehicle may be a decisive factor for users to demand such a service. 

The results shown in Table 6 indicate that the users who feel safer sharing a ride in an SAV are 

more likely to use the service. The users with the lowest perception of safety are 4.5% less likely 

to be frequent users, while users with the highest perception of safety are 4.7% more likely to be 

frequent riders.  

The marginal coefficient values of the categorical variables are given with respect to the reference 

category. For example, in gender, female is taken as the reference category, and the results in Table 

7 show that males are 5.3% more likely than females to be in the least frequent group and 5.8% 

less likely to be in the most frequent group. These results indicate that females are more likely to 

be frequent users of the RAPID service as compared to males.  
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The usual mode of transportation before the implementation of this service is also an important 

factor in determining whether a person will be a frequent user of the SAV service. Users of certain 

transportation modes are more likely to be frequent users as compared to others. The results in 

Table 8 show that the users of Via, Uber, or Lyft, and University transportation services, and those 

who walk and bike as their usual mode of transportation show a statistically significant positive 

association with RAPID usage frequency. The coefficient values are given against the reference 

level of “private vehicle” as the usual mode of transportation. For example, regular users of private 

app-based ride services such as Uber or Lyft are 15.7% more likely to be frequent users of RAPID. 

Users of Via on-demand ridesharing service, UTA transportation, or RAPID SAV, or those who 

walk or bike as their usual mode of transportation are 25.3%, 25.9%, 23.1%, and 20.9% more 

likely to be more frequent users of SAV service than those who use private vehicles as their usual 

mode of transportation. Coefficients for Uber and Lyft, Via on-demand ridesharing service, and 

walking/biking are statistically significant at 0.05 levels. This shows the tendency of users who do 

not own private vehicles to use such services more frequently than private vehicle owners.  

The results of trip purposes by SAV users in Table 9 indicate that commuters are most likely to 

use the service for work-related trips. In comparison to work-related trips, users are 9.4%, 20.5%, 

7.3%, 23.4%, 21.9% less likely to use SAVs for trips for going to school, shopping, medical, social 

activities, and returning home, respectively as compared to using SAV for work trips.  

Table 10 shows the marginal coefficients for ethnicity of the respondents. Out of the two available 

options, Hispanic is used as the reference value and the results show non-Hispanic users are 19.8% 

more likely to be frequent users of SAVs as compared to non-Hispanic users.  
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DISCUSSION & CONCLUSION 

This paper introduces an SAV project that provides rideshares to people in Arlington, Texas. It 

identifies the users' travel patterns and the ridership trends of the new mobility service, the 

frequency with which the service is used, and the determinant factors affecting the service usage. 

Users' ridership datasets extracted from the RAPID SAV platform and the SAV users’ survey were 

the basis of the study. The research questions were answered through descriptive statistics of data 

and an ordinal logistic regression model.  

The analysis of the SAV real-time data revealed that Wednesdays and Thursdays are the busiest 

days of the week, while early and late afternoons are the busiest times of day. This temporal pattern 

can be the result of users’ going to school and returning home. These results indicate that temporal 

and spatial distribution of activities have crucial roles in forming the SAV travel patterns of its 

current users. This finding confirms the pre-evaluation of the SAV service that identifies 

geographic area and accessibility as the primary concerns of potential service users (Etminani-

Ghasrodashti et al., 2021). We used ordinal logistic regression analysis to understand the factors 

that differentiate frequent users from non-frequent users of the service. The results suggest that an 

individual’s routine transportation mode plays a significant role in whether or not they are a 

frequent user. Users who ride with Via on-demand ridesharing service, app-based private on-

demand services such as Uber or Lyft, walk/bike, or ride UTA transportation services are more 

likely to ride shared self-driving shuttles frequently. This result supports findings from past studies 

that suggest that the current commute mode can significantly influence the adoption and usage of 

commuting by SAVs (Wang & Akar, 2019). Accordingly, the integration of the SAV technology 

into the existing transportation services can be more efficient and successful in the areas with 

higher ridership in transit and on-demand ridesharing services. This is particularly true if the new 
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SAV service operates as frequently as the shared mobility services (Chee et al., 2020). Another 

explanation for this result can be adjusted by a recent empirical study. The study indicates that 

approximately 80% of individuals are not likely to use SAVs if they cost more than the available 

carsharing option (Kontar et al., 2021). Since the cost of riding RAPID SAV in this study is very 

close to that of Via on-demand ridesharing, the frequent users of Via potentially use the new SAV 

more frequently. Furthermore, this finding confirms that SAV can complement on-demand 

ridesharing services on the short and low demand routes.  

Our results also show that respondents are more likely to use the SAV services frequently if they 

have a higher perception of safety toward sharing rides through the SAV services. This result is 

supported by a study that explored Americans' willingness to pay (WTP) to ride with a stranger in 

a shared AV fleet vehicle on various types of trips. This finding is in agreement with the literature 

that the perception of safety is positively related to the usage of public transit (van Lierop & El-

Geneidy, 2017).  

Although the literature suggests that men are more likely to have a positive attitude toward 

automated vehicles than females (Liljamo et al., 2018), the actual evidence from our study seems 

to be the reverse: males are less likely to be the frequent users of the SAV. This could be attributed 

to the demographics of the users’ population in the service area, the majority of them are students.  

Our regression results show that income has a negative association with being an SAV frequent 

user, which is also in contrast with the literature that the higher-income individuals living in 

metropolitan areas are more likely to adopt AVs (Shabanpour et al., 2018). The low-income 

individuals with less access to a private vehicle can also be the early adopters of new shared AVs, 

however (Krueger et al., 2016).  
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CONCLUSION 

This study uses real-time data in a survey to understand the patterns of usage and determinants of 

frequency of usage of an SAV service in Arlington, Texas. Although multiple studies have been 

conducted to predict the early users of AV and SAV in the near future, the actual adoption of this 

technology can be determined only after the introduction of SAVs in the market and the operation 

of the vehicles on the roads. Accordingly, SAV pilot projects can be an excellent opportunity for 

decision-makers to comprehend the demand for SAVs and learn what factors will shape SAV 

ridership. Moreover, understanding the ridership trends of pilot SAVs can help planners and 

policymakers to accommodate related policies before the widespread demonstration of this new 

mobility option. While the data analysis of this study is specific to Arlington, Texas, several key 

results, and policy recommendations can be made. First, the temporal distribution of the platform 

dataset indicated that the SAV usage is predicted to show a difference in ridership during weekdays 

and daytime. This temporal pattern is shown due to the concentration of SAV demand at specific 

times and the trip features such as trip purpose and trip waiting time (Etminani-Ghasrodashti et 

al., 2022). However, the temporal demand over time contributes to an additional increase in trip 

waiting time and frustrates users from riding the service in the long term. (Sanaullah et al., 2021). 

Consequently, SAV projects should be able to improve and adjust their performance features such 

as fleet size and the service schedule to address the actual real-time spatiotemporal demand, 

particularly at the early demonstration of the technology. This strategy will help improve the 

service reliability and accessibility, help attract users, and stimulate the SAV occasional users into 

becoming frequent users. Second, improving the safety perception of self-driving vehicles is an 

important factor in the acceptance and adoption of the technology by people. Therefore, 

policymakers should pay enough attention to the safety concerns of the riders in pilot 
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demonstrations, use pilots as an opportunity, and improve public trust through the real-life 

experience of the technology. Users stated preference surveys and focus group interviews with 

riders during the SAV pilots can be a reliable data source for service operators to know more about 

the actual preferences and concerns of SAV riders.    

Third, our results indicate that individual’s usual mode of transport as their current travel pattern 

is associated with the SAV usage. Accordingly, policies and strategies that motivate people to 

integrate their on-demand ridesharing, public transit, and walking/cycling modes into the SAV 

service usage are suggested as the most beneficial approach for engaging automated technology in 

transportation systems. This can happen through trip planning and fare integration in order to 

combine travel choices into a single user interface and therefore decrease the travel barriers 

multimodal travelers typically face.  In addition, at the early stage of the SAV demonstration, users 

are more interested in adopting the service to experience the technology for its own sake, rather 

than a derived demand to arrive at a destination (work/school/home).  

As we move forward to public demonstrations of SAVs, there will be an increasing need to apply 

effective policies to improve the performance of the service while considering the population that 

is more likely to use it and the patterns in which people travel.  

Since this study's primary goal is to understand the SAV travel pattern and the ridership trends, we 

only modeled the data analysis of individuals who have taken the SAV service. Consequently, the 

study results do not include the potential users who did not have any SAV ridership experience. 

Further studies are needed to identify the factors affecting the ridership of the potential users of 

SAVs.  In addition, students took over 98% of the rides, and as part of the pilot project, UTA 

students were offered free rides. Therefore, this study could not include a cost variable in our 
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analysis. However, the free rides offer expired in March 2022, so further studies are needed to 

evaluate the impacts of trip cost on SAV ridership trends in future analysis when cost-related data 

are available. 
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TABLES 

Table 1. Descriptive Statistics of SAV 

 
 

Table 2. SAV RAPID ridership frequency (n = 261) 

Dependent variable 
(SAV ridership frequency) 

Frequency Percent 
  

This is my first time  84 32.2 
This is my second time  34 13.0 
About once per month  11 4.2 
About twice per month  21 8.0 
About once per week    25 9.6 
More than two times per week 86 33 

 
 
Table 3. Summary of Ordered Logistics Regression Model 

Number of observations (n) Prob > chi2 Log likelihood Pseudo R2 
234 0.0000 -332.621 0.083 

 
 

Table 4. Summary of Results for Ordered Logistics Regression Model 

SAV Ridership Frequency 
(Outcome Variable) 

Coef  Std. 
Err. 

z P>|z| [95% Conf. Interval] 

Household income -0.024 0.091 -0.260 0.793 -0.201 0.154 
Gender  
 Female (Base value) 
 Male -0.308 0.291 -1.060 0.290 -0.879 0.263 

Trip Characteristics  Mean 
Average number of passengers per requested ride   1.013 
Average travel distance (mile) 1.19 
Average travel time (minute) 6.91 
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Usual transportation mode   
 Private vehicle (Base value) 
 Uber/ Lyft 0.963 0.434 2.220 0.026 0.113 1.814 
 Via on-demand ride service  1.461 0.370 3.940 0.000 0.735 2.186 
 Handitran service  1.327 1.316 1.010 0.314 -1.253 3.906 
 UTA transportation   1.201 0.485 2.480 0.013 0.252 2.151 
 Walking/biking 1.128 0.387 2.910 0.004 0.369 1.888 
 RAPID SAV service 2.912 1.199 2.430 0.015 0.562 5.262 
 Others 1.766 0.900 1.960 0.050 0.003 3.530 
Trip Purpose  

 

 Work (Base value) 
 School -0.447 0.383 -1.170 0.243 -1.197 0.304 
 Shopping -1.021 0.546 -1.870 0.061 -2.091 0.048 
 Medical -0.349 0.857 -0.410 0.684 -2.028 1.331 
 Social/recreational activity -1.189 0.602 -1.970 0.048 -2.369 -0.008 
 Returning home -1.099 0.419 -2.630 0.009 -1.920 -0.279 
 Others -2.287 0.555 -4.120 0.000 -3.376 -1.199 
Safety Perception  0.254 0.070 3.610 0.000 0.116 0.392 
Ethnicity       
 Hispanic   (Base value)  
 Non-Hispanic 1.225 0.396 3.090 0.002 0.448 2.001 

/cut1 1.155 0.685 
  

-0.188 2.498 
/cut2 1.803 0.690 

  
0.450 3.156 

/cut3 2.016 0.693 
  

0.657 3.374 
/cut4 2.443 0.698 

  
1.074 3.812 

/cut5 2.906 0.705 
  

1.524 4.289 
 

Table 5. Marginal Effects of Household Income Level 

Ride Frequency dy/dx Std. Err. Z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

First ride 0.004 0.016 0.260 0.792 -0.027 0.036 
Second ride  0.001 0.002 0.260 0.794 -0.003 0.005 
Once a month 0.000 0.000 0.250 0.799 0.000 0.001 
Twice a month 0.000 0.000 -0.250 0.803 0.000 0.000 
Once a week 0.000 0.001 -0.260 0.793 -0.003 0.002 
More than twice a week  -0.004 0.017 -0.260 0.793 -0.037 0.029 
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Table 6. Marginal Effects for Safety Perception 

Ride Frequency dy/dx Std. Err. z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

First ride -0.045 0.012 -3.770 0.000 -0.068 -0.022 
Second ride  -0.006 0.002 -2.890 0.004 -0.010 -0.002 
Once a month -0.001 0.001 -1.360 0.172 -0.002 0.000 
Twice a month 0.001 0.001 0.610 0.544 -0.001 0.002 
Once a week 0.004 0.001 2.420 0.016 0.001 0.006 
More than twice a week  0.047 0.012 3.850 0.000 0.023 0.071 

 
 
Table 7. Marginal Effects for Gender 

Ride Frequency dy/dx Std. 
Err. 

Z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

Male        
First ride 0.053 0.049 1.080 0.278 -0.043 0.150 
Second ride  0.007 0.008 0.970 0.330 -0.007 0.022 
Once a month 0.001 0.001 0.790 0.429 -0.002 0.004 
Twice a month 0.000 0.001 -0.170 0.864 -0.002 0.002 
Once a week -0.004 0.003 -1.120 0.265 -0.010 0.003 
More than twice a week  -0.058 0.055 -1.050 0.292 -0.166 0.050 
       

Note: Gender (Female) is used as the base category  
 
 
Table 8. Marginal Effects for Usual Transportation Mode  

Ride Frequency dy/dx Std. Err. Z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

Uber or Lyft  
First ride -0.201 0.088 -2.280 0.022 -0.373 -0.028 
Second ride  -0.006 0.010 -0.540 0.588 -0.026 0.015 
Once a month 0.004 0.004 1.220 0.222 -0.003 0.012 
Twice a month 0.017 0.009 1.860 0.062 -0.001 0.035 
Once a week 0.028 0.014 2.060 0.040 0.001 0.054 
More than twice a week  0.157 0.074 2.120 0.034 0.012 0.302 
Via On-demand Ride Service      
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First tide -0.300 0.084 -3.580 0.000 -0.464 -0.136 
Second ride  -0.018 0.014 -1.260 0.208 -0.046 0.010 
Once a month 0.003 0.005 0.680 0.495 -0.006 0.013 
Twice a month 0.026 0.014 1.790 0.073 -0.002 0.053 
Once a week 0.036 0.015 2.390 0.017 0.006 0.065 
More than twice a week  0.253 0.069 3.690 0.000 0.119 0.388 
 Handitran        
First ride -0.286 0.071 -4.050 0.000 -0.425 -0.148 
Second ride  -0.023 0.012 -1.860 0.063 -0.047 0.001 
Once a month 0.001 0.004 0.290 0.774 -0.007 0.009 
Twice a month 0.016 0.009 1.640 0.100 -0.003 0.034 
Once a week 0.034 0.013 2.640 0.008 0.009 0.058 
More than twice a week  0.259 0.063 4.110 0.000 0.136 0.383 
 UTA Transportation      
First ride -0.265 0.221 -1.200 0.231 -0.698 0.169 
Second ride  -0.018 0.050 -0.350 0.723 -0.115 0.080 
Once a month 0.002 0.011 0.220 0.826 -0.019 0.024 
Twice a month 0.017 0.013 1.330 0.185 -0.008 0.042 
Once a week 0.033 0.016 2.030 0.042 0.001 0.064 
More than twice a week  0.231 0.273 0.840 0.399 -0.305 0.766 
Walking/Biking       
First ride -0.244 0.091 -2.680 0.007 -0.422 -0.066 
Second ride  -0.013 0.015 -0.860 0.388 -0.043 0.017 
Once a month 0.003 0.004 0.770 0.442 -0.005 0.012 
Twice a month 0.017 0.009 1.880 0.060 -0.001 0.036 
Once a week 0.032 0.013 2.430 0.015 0.006 0.057 
More than twice a week  0.205 0.089 2.290 0.022 0.030 0.379 

Note: Mode (Private vehicle ) is used as the base category  
 

 

Table 9. Marginal Effects Trip Purposes 

Ride Frequency dy/dx Std. Err. Z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

Going to school      
First ride 0.067 0.055 1.210 0.227 -0.042 0.175 
Second ride  0.017 0.016 1.100 0.272 -0.013 0.048 
Once a month 0.004 0.004 1.000 0.316 -0.004 0.013 
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 Note: Trip purpose (Going to work) is used as the base category  

 

 

 

 
 

Twice a month 0.005 0.006 0.920 0.357 -0.006 0.017 
Once a week 0.000 0.003 0.030 0.977 -0.005 0.006 
More than twice a week  -0.094 0.081 -1.160 0.244 -0.252 0.064 
Going shopping      
First ride 0.170 0.096 1.780 0.074 -0.017 0.358 
Second ride  0.032 0.017 1.940 0.052 0.000 0.065 
Once a month 0.006 0.004 1.470 0.143 -0.002 0.015 
Twice a month 0.004 0.007 0.620 0.532 -0.010 0.018 
Once a week -0.009 0.010 -0.840 0.403 -0.029 0.011 
More than twice a week  -0.205 0.104 -1.970 0.048 -0.409 -0.001 
Going to a medical facility      
First ride 0.051 0.133 0.380 0.701 -0.209 0.311 
Second ride  0.014 0.032 0.430 0.669 -0.049 0.077 
Once a month 0.004 0.008 0.460 0.649 -0.012 0.019 
Twice a month 0.005 0.009 0.510 0.611 -0.013 0.023 
Once a week 0.001 0.004 0.160 0.876 -0.007 0.008 
More than twice a week  -0.073 0.179 -0.410 0.681 -0.424 0.277 
Going to social and/or recreational activities 
First ride 0.204 0.111 1.830 0.067 -0.014 0.421 

  Second ride  0.034 0.016 2.170 0.030 0.003 0.066 
Once a month 0.006 0.005 1.330 0.185 -0.003 0.015 
Twice a month 0.002 0.009 0.260 0.798 -0.016 0.021 
Once a week -0.013 0.014 -0.900 0.369 -0.040 0.015 
More than twice a week  -0.234 0.108 -2.160 0.031 -0.446 -0.022 
Returning home     
First ride 0.186 0.068 2.740 0.006 0.053 0.319 
Second ride  0.033 0.016 2.140 0.033 0.003 0.064 
Once a month 0.006 0.004 1.440 0.149 -0.002 0.015 
Twice a month 0.004 0.007 0.550 0.586 -0.009 0.017 
Once a week -0.010 0.008 -1.360 0.174 -0.025 0.005 
More than twice a week  -0.219 0.082 -2.660 0.008 -0.380 -0.058 
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Table 10. Marginal Effects for Ethnicity 

Ride Frequency dy/dx Std. Err. Z P>|z| 95% CI 
(Lower) 

95% CI 
(Upper) 

Non-Hispanic        
First ride -0.236 0.077 -3.070 0.002 -0.387 -0.086 
Second ride  -0.009 0.008 -1.150 0.250 -0.024 0.006 
Once a month 0.003 0.004 0.880 0.377 -0.004 0.011 
Twice a month 0.016 0.010 1.640 0.101 -0.003 0.034 
Once a week 0.028 0.013 2.200 0.028 0.003 0.052 
More than twice a week  0.198 0.052 3.790 0.000 0.096 0.301 

Note: Ethnicity (Hispanic) is used as the base outcome  
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Chapter 3:  Do Ridesharing Transportation Services Alleviate Traffic Crashes? A Time 

Series Analysis 

ABSTRACT 

On-demand ridesharing services are considered to provide several benefits, such as improving 

accessibility and mobility and reducing drive-alone trips and greenhouse gas emissions. However, 

the impacts of these services on traffic crashes are not completely clear. This paper investigates 

the availability of Via- an on-demand ridesharing service in Arlington, TX, to identify the effects 

of this service on traffic crashes. We hypothesize that the launch of Via would result in more shared 

rides, fewer drive-alone trips, and fewer traffic crashes.  

We implement an Interrupted Time Series Analysis (ITSA) approach to study the impact of Via 

service availability on traffic crashes using weekly counts of all traffic crashes, the number of 

injuries, and serious injuries that occurred in Arlington from 2014 to 2021.  

The results show a statistically significant reduction in the weekly number of total crashes and 

total injuries but do not show any significant impact on the number of serious injuries. Shared 

Autonomous Vehicles have the potential to reduce traffic crashes caused by driver's fault.   

This study reveals the potential impacts ridesharing services can have on traffic crashes and 

injuries in a mid-sized city. The results of this study can help decision and policymakers to 

understand the full potential of ridesharing services that can contribute to making relevant 

decisions toward the creation of sustainable and safer transportation systems in cities.  

Key Words: On-demand ridesharing; Vehicle Crashes; Shared Autonomous Vehicles; Time 

Series Analysis; Traffic Safety   
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INTRODUCTION  

The emergence of on-demand ridesharing services has considerably overcome conventional travel 

barriers and improved personal mobility options 3. On-demand ridesharing services can impact 

mobility efficiency, equity, and sustainability 14. These services enable users to share a ride to the 

same destinations and improve trip reliability by reducing point-to-point travel time. Advocates of 

on-demand ridesharing services argue that flexible transit can contribute to the sustainability of 

public transport networks by improving the performance of conventional fixed-route services in 

the cities 24. While ridesharing services are described as a mobility mode complementing the 

operation of public transit in low-demand periods in metropolitan areas, it may also be a substitute 

for fixed-route transit in small cities and rural areas 22.  

Controversial views exist regarding the ultimate advantages of on-demand ride services on urban 

traffic congestion and motor vehicle crashes. Some studies debate that the introduction of 

Transportation Network Companies (TNCs) (e.g., Uber and Lyft) into the urban mobility market 

in the U.S., has intensified road congestion in large cities 4.On-demand ride services that provide 

real-time shared rides to users can be game-changers, decreasing traffic congestion by increasing 

the level of vehicle occupancy 16. In addition, some studies suggest the positive effects of 

ridesharing services on crash reduction in motor vehicle crashes. On-demand ridesharing services 

are perceived as a more convenient, accessible, and cheaper travel mode than taxies and thus a 

preferred mode of travelling for individuals after alcohol consumption. Consequently, and 

therefore they can reduce the probability of alcohol-involved crashes 18. Comparing crash 

incidences in 155 US cities with Uber operations reveals fewer overall fatalities and arrests for 

driving under the influence of alcohol over time 5. UberX is suggested as a factor that has reduced 

the number of alcohol-involved crash fatalities by 3.6%–5.6% in California (Greenwood and 
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Wattal 2015). In some studies, Ubers' demonstration has been reported as the factor that can lower 

the driving rate under the influence (DUI), fatal accidents, arrests for assault, and disorderly 

conduct 5.  

However, the results from different geographical areas are mixed; while some studies show no 

association, others even observe an increase in fatalities. Evidence from 100 heavily populated 

U.S. counties reveals no difference in fatal crashes due to the availability of Uber operations 2. A 

recent study explores the injury crash data for New York City (NYC) from 2017 and 2018 and 

proposes that ridesharing can raise any motor vehicle injury crash 19. Examining the relationship 

between Uber availability and traffic fatalities in the 100 most populated metropolitan areas in the 

United States indicates no association between Uber availability and changes in total, alcohol-

involved, and weekend and holiday-specific traffic fatalities. However, Uber availability can 

increase traffic fatalities in dense areas 1. Some studies found that since Uber can be substituted 

with public transit, cities with higher demand for Uber encounter more significant traffic 

congestion and risk of accidents 12. Since the results of different geographical contexts are 

inconsistent and controversial, there is a vital need to explore the relationships between the 

presence of on-demand ridesharing services and the changes in traffic crashes.  

Most of the previous studies were done in big cities with multiple transit systems. Contrary to these 

previous studies, we focus on Arlington, TX, a mid-size city, with no fixed route transit, to 

contribute to the knowledge by testing the changes in crashes over time. Evaluating the 

performance of the Via on-demand ridesharing service in Arlington and assessing its safety 

impacts can provide city planners with valuable insights into implementing similar projects. 
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We hypothesize that the implementation of Via on-demand ridesharing in Arlington would be 

associated with lower crash incidents. To test this assumption, we answer the following question, 

Does the deployment of an on-demand ridesharing service impact the number of crashes and 

injuries in its service area?  

In addition to answering this research question we also discuss how the relationships between on-

demand services and traffic crashes provide an opportunity to implement alternative transit 

services such as shared autonomous vehicles in a city and the potential of an SAV service to reduce 

crashes caused by driver’s faults. 

DATA AND METHODOLOGY 

This study aims to evaluate the impact of on-demand ridesharing services and shared autonomous 

vehicles (SAVs) on traffic crashes of different severity levels in Arlington, TX. First, an 

Interrupted Time Series Analysis (ITSA) is conducted on the weekly number of crashes, the total 

number of injuries, and the number of serious injuries to analyze the crash patterns before and after 

deploying the on-demand ridesharing service, Via. Second, a descriptive statistical analysis using 

spatial mapping and frequency of crashes in downtown Arlington is developed to hypothesize the 

likely impacts of Shared Autonomous Vehicles on traffic crashes caused by human errors.  

Study Area and existing transportation services 

This study is conducted in the City of Arlington, TX - a mid-sized city located in the Dallas-Fort 

Worth metroplex with a population of 395,477 (American Community Survey, 2019). The City is 

highly dependent upon private cars as 82% of workers use private cars as the primary mode of 

transportation. Car ownership rates are also high, only 4% of households do not have any vehicle, 
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while 33% of households have at least one vehicle, 40% own at least two vehicles, and 22% have 

three or more vehicles (American Community Survey, 2019). The city does not have traditional 

fixed-route public transit and is the largest City in the U.S. without a mass transit system (Khan et 

al., 2022). Still, it provides multiple, flexible, on-demand transportation options such as Via, 

Handitran (a dial-a-ride service for senior citizens and people with disabilities), and RAPID (an 

on-demand ridesharing service that uses a dynamically routed Level 4 AV fleet within an existing 

public rideshare transit system). 

Via is a flexible on-demand ridesharing service that has been providing rides to Arlington residents 

since December 11, 2017, to the present (City of Arlington website). According to the 2019 data, 

Via offered 160,914 trips running 968,281 revenue miles, and more than one passenger was shared 

in 69.76% of all rides offered during 2019 (City of Arlington). With so many shared rides, Via 

likely replaced several drive-alone trips. Thus, this study hypothesize that it could also reduce 

traffic crashes in the city, which was tested in this analysis.  

Data  

The data for this study were collected from two primary sources: the City of Arlington and the 

Texas Department of Transportation (TxDOT). Data for traffic crashes were extracted from the 

Crash Record Information System (CRIS) database by the TxDOT. The dataset contains details of 

all traffic crashes reported to the police 23. The information included in the database is the time 

and date of a crash, casualties such as number of deaths, number of total, and severe injuries. For 

this study, we extracted data from January 1, 2014, to June 25, 2021, for all crashes in the City of 

Arlington, TX. Figure 1 shows the spatial distribution of crashes that occurred in Arlington. We 

only included the crashes that took place within the Via service area. 
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Analytical Approach  

Interrupted Time Series Analysis (ITSA)  

Considering Via services as a natural experiment, we used an interrupted time-series analysis 

(ITSA) design by comparing the patterns of traffic crashes before and after Via on-demand 

ridesharing deployment to see if there was a statistically significant change in the weekly frequency 

of traffic crashes. In an ITSA model, an outcome variable is tested over multiple equal time periods 

before and after an intervention. The trend over time for the outcome variable is likely to be 

impacted by the intervention 17. An ITSA model compares the predictions of intervention vs. no-

interventions scenarios. Compared to simple before and after tests, the ITSA model provides (1) 

trends over time and (2) simple and intuitive visualizations to interpret the changes happening over 

time.  

Interrupted time-series analysis (ITSA) is a study method broadly employed in public health and 

policy to recognize the longitudinal variations in a process and evaluate the performance and 

effectiveness. However, only a few studies have applied this technique in traffic safety studies 

6,10,21.  

In this analysis, the crash dataset contains observations for three years before and three years after 

the intervention, i.e., the launching of Via services in the Arlington, TX. Since crashes are rare 

incidents, we aggregated the frequency of crashes on weekly basis to avoid multiple zero 

observations and have enough data points to run a time series analysis. Then a single-group ITSA 

was carried out to measure the impacts of the Via service on traffic crashes measured in three 

different variables: the total number of crashes per week, the number of total injuries per week, 

and the number of serious injuries per week. The analysis of the number of deaths was impossible 
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due to very small number of observations. In this study, we used autoregressive time series 

interventions models for ITSA.  

The model form used for the ITSA regression is shown in eq. 1,  

Y= b0 + b1Time + b2ViaAvailability + b3TimeSinceViaAvailability + ϵ    (1)      

Where; 

Y = Number of crashes/injuries per week  

Time = time (week) since the start of the analysis period (first week of 2014)  

ViaAvailability = Dummy variable showing if the period was before or after Via (0   or 1)  

TimeSinceViaAvailability = time since the launching of Via service in the city  

ϵ     = Error term  

Coefficients associated with each variable to measure the impact of Via availability on crashes are:  

b0 = intercept  

b1 = slope of the dependent variable since the start of the study period 

b2 = change observed immediately after the intervention   

b3 = effect of the treatment over time  

We used three time-series models to analyze the impact of various aspects of the Via ridesharing 

services on traffic crashes. Details of the dependent and independent variables for each of the three 

models are given below. 

Dependent Variables for the ITSA Model  

In the first model, the dependent variable is the weekly number of traffic crashes. This includes all 

crashes reported to the police and those included in the CRIS database. The dataset comprises data 

for 396 weeks, where 214 weeks are before and 182 weeks after the deployment of via services in 
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Arlington. On average, there were 40.24 crashes recorded per week ranging from a minimum of 3 

to a maximum of 68 crashes in a single week.  

The dependent variable for the second model is the total number of injuries per week with a mean 

value of 24.96 and ranges from 2 to a maximum of 60 injuries per week. Total injuries include all 

types of injuries- minor, major, serious, and possible injuries.  

For the third model, the dependent variable is the total number of serious injuries per week. The 

average number of weekly serious injuries is 1.14 and ranges from 0 to a maximum of 7 in a single 

week. 

Independent Variables for the ITSA Model 

Via Availability   The availability of Via service is used as a dummy variable showing the 

availability of via services for a specific period. The variable has a value of 0 before the launching 

of Via service and a value of 1 after the launch. The coefficient values for this variable indicate 

the impacts of the intervention immediately after its implementation.   

Time   This variable shows the time for the entire study period with a value of 0 at the start of the 

study (first week) and the study period and 396 for the last week of the study duration.  

Time Since Via Availability   This variable accounts for the time since the deployment of via 

services. The values are 0 before deployment and get an increment of 1 every week after Via's 

deployment.  

Descriptive statistics for all variables (dependent and independent) are given in table 1. 
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Hotspot and Frequency Analysis (Alcohol Related Crashes) 

To hypothesize the potential effects of alternative ridesharing transportation services on reducing 

traffic crashes in the case study, this study focuses on the implementation of an SAV services. A 

self-driving shuttle service called RAPID (Rideshare, Automation, and Payment Integration 

Demonstration) started in downtown and the campus of the University of Texas at Arlington in 

March 2021. SAVs are a relatively new mobility service and have only been launched in a few 

cities in the world, therefore, there is little research on the safety impacts of these services. This 

study was conducted in a short time after the implementation of the of RAPID service, hence, we 

did not analyze the impacts of RAPID on traffic crashes. Since the environmental impacts of a 

transportation project are typically long-term in nature, evaluating the measures of effectiveness 

(MOEs) for the SAV project, such as the safety impacts, can be performed in the long run. Instead, 

this study evaluated the hotspots of crashes caused by human error that could potentially be 

avoided if enough SAVs operate in those areas in the future. Therefore, we analyzed the hotspots 

and frequency of crashes caused by a driver’s physical condition within the RAPID service area, 

to evaluate the likely impacts of SAVs on crashes, assuming those crashes could be avoided by 

self-driving vehicles.  

RESULTS 

ITSA Model Results 

The visual representation of the results for total crashes and the likely impacts of the intervention 

are shown in figure 2. On the x-axis are the week numbers for the entire study period (1-393), and 

on the y-axis are the number of total weekly crashes. The dotted red vertical lines show the 

intervention point (week 214) when Via service was launched. The solid blue line shows the 

predicted trend line from the data, while the dotted orange line depicts the counterfactual trend. 



40 
 

The counterfactual trend assumes that there was no change in the trend line before or after the 

intervention.  

Table 2 shows the results of the time series model for the weekly frequency of traffic crashes in 

Arlington. The positive coefficient (0.077) of the time variable indicates a statistically significant 

increase in the frequency of traffic crashes for the entire study period. Availability of Via (trend 

soon after launching the service shows a negative trend (-3.12) on the frequency of crashes but is 

not statistically significant. This result reveals that since the deployment of Via service, there was 

a statistically significant negative trend in traffic crashes (-0.10). 

Table 3 shows the results of the time series model for weekly number of total injuries due to traffic 

crashes. The results for injuries show a similar trend to that of the frequency of total crashes. There 

has been a significant increase in total injuries over the study period (0.04). Availability of Via has 

a statistically significant negative effect on the total number of injuries (-3.33). Conversely, there 

is a statistically significant decrease in total traffic injuries after deployment of Via services (0.05).  

Table 4 shows the results of the time series model for the weekly number of serious injuries and 

associated independent variables. Overall, during the study period, there was a slight decrease in 

the number of total serious injuries, but it is not statistically significant. The results also show that 

the availability of Via has a negative but insignificant association with the number of serious 

injuries. After deployment of Via services, there is a minimal increase in the number of serious 

injuries, but that is also statistically insignificant.  

Likely Impacts on the future Shared Autonomous Vehicles  

To identify the crashes that are resulted from drivers’ physical condition/fault, we focused on 

driving under the influence (DUI) that is one of the main causes of traffic crashes. Every day, about 
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28 people die in the United States due to drunk driving crashes ("Drunk Driving | NHTSA" 2019). 

According to the Center of Disease Control (CDC)  10,497 people died (28% of all deaths) in 

crashes caused by alcohol-impairments in 2016. Other factors of traffic crashes caused by driver 

fault include driving while using a phone, being fatigued, or falling asleep while driving.  

To see the hotspots of crashes caused by drivers' fault, we mapped and created a heat/density map 

of all such crashes where the primary contributing factor is defined as either "fatigued or asleep”, 

“had been drinking", "using cell/mobile phone", "under the influence – alcohol", or "under the 

influence – drug”. There were 2,194 such crashes in Arlington, out of which 66 crashes were within 

the RAPID service area. The spatial distribution of crashes is shown in figure 3. Approximately 

3% of all traffic crashes caused by driver’s fault in Arlington occurred within the RAPID service 

area which is only 1.01% of the city’s total area.  

This study conducted the density analysis of actual crash locations using the mapping software 

called Maptitude2 by Caliper Corporation. The areas with dark spots indicate higher density of 

crashes at the location. As shown in figure 4, most of the hotspots are on the Interstate Highways 

(I-20, I-30 & SH-360) that pass through the city. There are two major hotspots other than 

highways, and one of them is within the RAPID service area. Since the downtown/university area 

is already a hotspot for crashes caused by drivers' fault, there is a great potential to prevent such 

crashes if self-driving cars provide these rides. Figure 4. Density map of crashes caused by drivers' 

fault showing the hotspots of crash sites.  

However, the impact of SAVs on crashes can only be materialized if SAVs take enough trips and 

the number of trips by private cars is reduced significantly. Since safety is reported as the primary 

 
2 https://www.caliper.com/maptitude/mappingsoftware.htm 



42 
 

concern of SAV’s potential users 8, the quantification of the impacts of SAVs on traffic crashes 

could be a research question in future research.  

DISCUSSION  

This study conducts a time-series analysis to identify the effects of the availability of the on-

demand ridesharing service on the frequency of traffic crashes. Since the Via on-demand 

ridesharing service is one of the main transit options that provides shared rides to people in 

Arlington, we proposed that the demonstration of this service can influence on the number of 

crashes.  

We modeled the total number of traffic crashes, the number of injuries, and the number of serious 

injuries per week and to identify the crash trends. The availability of Via on-demand ridesharing 

service was treated as an independent variable of the study. The findings, to some extent, support 

our assumptions. 

Our results from exploring the effects of on-demand ridesharing service in a mid-size city are in 

contrast with the previous studies that show either no effect or negative influence of Uber on traffic 

crash outcomes 1,2. Our findings indicate the availability of Via on-demand ridesharing service 

coincides with a decline in the frequency of traffic crashes and support the earlier findings that 

reported a reduction in traffic crashes after the emergence of Uber 18. It  suggests that the increased 

comfort and convenience, and the decreased cost of traveling with on-demand ridesharing services 

compared to riding in private vehicles can encourage people to use fewer private vehicles and 

alleviate traffic crashes  13.  

We found that the total traffic injuries have significantly decreased after Via’s service deployment 

though there has been a significant increase in the total injuries over time. This result is in contrast 
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with an earlier study's findings that suggested an increase in crash fatalities in urban, densely 

populated areas by Ubers' deployment 1. A possible interpretation for this result is that the Via 

service shares rides between passengers, reducing the dependency on private vehicles, decreasing 

the single trips by vehicle, and subsequently having the potential to decrease traffic injuries 

resulting from traffic congestion.  

The results also demonstrate a negative but not statistically significant relationship between the 

number of serious injuries and the availability of Via in the city over time. To some extent, the 

reduction of traffic crashes and injuries can be derived from the spatial structure of Arlington, TX, 

and the sociodemographic of the city population. Arlington is a mid-sized city with a sprawling 

land use pattern, so the availability of Via on-demand ridesharing would not exacerbate the traffic 

congestion. In addition, unlike the previous studies that suggest the availability of app-based on-

demand services such as Uber in metropolitan areas with high population density is associated 

with additional vehicle trips, traffic congestion, and consequently traffic incidents 1, deployment 

of on-demand ridesharing services such as Via in suburban areas can substitute personal car trips 

and decrease traffic congestion.  

Figures 3 and 4 mapped the hotspot crashes resulting from drivers' faults and indicated the potential 

for self-driving vehicles to reduce traffic crashes and fatalities in the service area. This result is 

supported by the past studies that revealed the integration of the SAVs in the downtown area can 

improve the efficiency and mobility of the current transportation services by feeding the excess 

ridership demand 9,15. Accordingly, SAVs will likely reduce fatality and mortality from traffic 

crashes if they are regulated and designed appropriately 20.  

 



44 
 

Study Limitations 

Although this study attempted to investigate the impact of on-demand ridesharing services on 

traffic crashes, it has some limitations mostly originated from data availability restrictions. First, 

the crash data received from TxDOT is only based on crashes that were reported to the police 

department and included in the "Crash Record Information System" (CRIS). Not all crashes that 

happen on Texas roads are reported to the police and this reporting could potentially create a 

measurement bias in this study.  

Second, the database does not contain complete information for all crashes. Many incidents 

included in the raw dataset did not have latitude and longitude values reported and consequently 

were dropped from the dataset in the study.  

Third, the data used to analyze the trends in traffic crashes this analysis ranges from 2014 to 2021. 

During this analysis period, the COVID-19 Pandemic impacted mobility patterns all over the 

world, including in Arlington. The ITSA analysis provides coefficients for the intervention impacts 

in terms of immediate impact after the intervention and impacts since the intervention represented 

as "Via Availability" and "Time Since Via Availability" variables in the ITSA model respectively. 

Although the results show a negative impact of Via availability on traffic crashes, both 

immediately after the intervention and for the entire period after the intervention, the impacts of 

the Pandemic on traffic crashes could not be ignored. The COVID-19 impacts on traffic 

congestions could be a confounding factor in this analysis, which at the same time provide possible 

avenues for further research. 

Eventually, because this study was conducted a short time after implementation of RAPID SAVs 

and due to the lack of access to crash data related to SAVs, this study did not analyze the impacts 
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of RAPID on traffic crashes. This limitation can be addressed through future research on traffic 

congestion and crashes trends in the case study area in the more extended period after 

implementing the service.    

CONCLUSION  

The demonstration of a reliable on-demand ridesharing service can affect individuals' tendency to 

shift from private cars to ridesharing, reduce individuals' need to own a private vehicle over time, 

and lower the overall vehicular traffic congestion and crashes in urban areas. Increasing the 

possible benefits of on-demand ridesharing and enhancing the efficiency and equity of ridesharing 

can be realized by conforming such services with urban form. Land use and built environment 

characteristics such as population density, employment density, street network design, land use 

diversity, and destination accessibility can moderate the efficiency of on-demand ridesharing 

services. Accordingly, considering the impacts of built environment attributes on traffic and the 

safety of on-demand ridesharing services can assist policymakers and transit agencies to adjust 

and specify the DRT services to the characteristics of the service area. The identification and the 

evaluation of disparities in different urban areas and built environments should be performed 

before demonstrating on-demand ridesharing service platforms.  
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FIGURES  

 
Figure 2. Graphical representation of the of ITSA Model. 
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Figure 1. Spatial Distribution of Traffic crashes in Arlington, TX from 2014-2021. Black lines 
show city boundaries, blue color shows Via services are boundary 



50 
 

 

Figure 4. Hotspots of the crashes caused by a driver’s fault  

Figure 3. Spatial distribution of crashes caused by drivers' faults. The small purple box shows the 
service area of RAPID 
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TABLES 

Table 1. Descriptive statistics of key variables used in all three ITSA models. All variables are 
aggregated at weekly level to avoid missing values and having enough data points. 

 
 
Table 2. Results from the ITSA model representing the association between Via availability and 
other independent variables with the weekly number of traffic crashes. The variable of interest 
(Time Since Via Availability) is shown in bold text 

Number of observations  = 
Prob > chi2 = 

Log likelihood  = 

393 
0.0000 
-1458.235 

 Coef. Std. Err. P>|z| [95% Conf. Interval] 
Total number of crashes per week (Dependent Variable)   
Time 0.07 0.01 0.00 0.05 0.09 
Via Availability -3.12 1.98 0.12 -6.99 0.76 
Time Since Via Availability  -0.10 0.02 0.00 -0.13 -0.06 
Constant 31.87 1.54 0.00 28.86 34.89 

 

 
Table 3. Results from the ITSA model representing the association between Via availability and 
other independent variables with the weekly number of injuries caused by traffic crashes. The 
variable of interest (Time Since Via Availability) is shown in bold text 

Number of observations = 
Prob > chi2 = 

Log likelihood = 

393 
0.0005 
-1449.868 

 Coef. Std. Err. P>|z| [95% Conf. Interval] 

Variable (n= 396)  Mean Std. Dev Min Max 
Crash Frequency  40.24 10.27 3 68 
Number of Deaths 0.15 0.43 0 4 
Total Injuries  24.96 9.22 2 60 
Number of serious injuries  1.14 1.26 0 7 
Via on-demand ridesharing Availability  0.47 0.49 0 1 
Time since Via Availability  44.38 59.89 0 187 
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Number of total injuries per week (dependent variable)    
 Time 0.04 0.01 0.00 0.022952 0.064018 
 Via Availability -3.33 1.87 0.08 -7.00727 0.339258 
 Time Since Via Availability  -0.05 0.02 0.00 -0.08752 -0.01861 
 Constant 20.25 1.37 0.00 17.57519 22.92678 

 

 
Table 4. Results from the ITSA model representing the association between Via availability and 
other independent variables with the weekly number of serious injuries caused by traffic crashes. 
The variable of interest (Time Since Via Availability) is shown in bold text 

Number of observations =         
Prob > chi2 =      

Log likelihood = 

393 
0.0005 
-1449.868   

 Coef. Std. Err. P>|z| [95% Conf. Interval] 

Serious Injuries      
 Time -0.001 0.00 0.25 0.00 0.00 
 Via Availability -0.272 0.30 0.37 -0.87 0.32 
 Time Since Via Availability  0.003 0.00 0.20 0.00 0.01 
 Constant 1.469 0.19 0.00 1.10 1.84 
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Chapter 4: Impacts of On-demand Ride Services on the Number of Traffic Crashes – A Case 

Study of RideAustin in Austin, TX  

ABSTRACT  

On-demand ridesharing services are rapidly growing and are predicted to continue to do so, as they 

offer millions of trips to potential riders every day. The impacts of ridesharing services on travel 

behavior, traffic congestion, and the environment have been examined in depth through empirical 

studies; however, their impact on the number of traffic crashes has been neglected. Past studies 

exploring the safety impacts of ridesharing services have considered only the availability of a 

ridesharing service; however, we argue that the mere presence of a ridesharing service does not 

guarantee either a positive or a negative impact on traffic safety. Rather, it is the usage frequency 

of a service that is likely to make an impact. This study aims to analyze the impacts of ridesharing 

services on the number of traffic crashes and injuries, using RideAustin, a community-based 

ridesharing service in Austin, TX, as a case study. It adopts the difference-in-difference approach 

to investigate how RideAustin affects traffic crashes at the U.S. census block group level, while 

controlling for sociodemographic characteristics and built environment variables. The trip level 

data from RideAustin used in this study pertains approximately 1.4 million trips from 2016 to 

2017; traffic crash and injury data from the Texas Department of Transportation for the period 

2012-2020 pertains to about 373,000 accidents. Difference-in-difference models demonstrated that 

the number of traffic crashes only decreased when the number of trips in a block group increased 

a certain threshold. Mere availability of the services and very low usage (<1 ride per block group) 

was found to have no significant impact on traffic safety. The findings from this study will enable 

a better understanding of the safety benefits of ridesharing services, thereby helping transportation 

and policy planners reduce the number of traffic crashes in urban areas.  
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INTRODUCTION 

Mobility on Demand (MOD), which utilizes real-time data to fill mobility gaps by providing 

ridesharing & multimodality in transportation systems, is tremendously popular in the United 

States and around the world. It was developed based on the shared economy, and links the 

components of transportation supply and demand with trip planning without any breaks (Shaheen 

et al., 2017). On-demand ridesharing services, recognized as ride-sourcing, share trips and 

mobility modes between users with the same origins and destinations and improve trip reliability 

by decreasing travel time and cost (Rayle et al., 2014; Shaheen and Cohen 2019).  

Multiple studies have been conducted to explore the social, economic, and environmental benefits 

and advantages of on-demand ridesharing services and have shown that innovative partnerships 

between MOD services and public transit agencies can improve transportation equity for the 

underserved population and increase the efficiency of public transit ridership in low-density routes 

(Lucken et al., 2019). It has also been suggested that MOD may be able to complement traditional 

fixed-route transit systems in metropolitan areas during low-demand ridership hours (Volinski 

2019) or substitute for the fixed-route transit in small cities and rural areas (Koffman 2004; Tsay 

et al., 2016). Replacing low-ridership conventional transit services with ride-sourcing can reduce 

travel time, decrease operational costs, and boost transit performance, particularly when provided 

with the last-mile connection (Yan et al., 2019). Another important advantage is the benefit to the 

environment that results from the 22% reduction in travel distance realized by ride splitting, which 

significantly decreases the amount of gas emissions (Liu et al., 2021).  

Despite the positive effects of a ride-sourcing system on trip efficiency, equity, and accessibility, 

there is still some uncertainty about its broader impacts. Empirical evidence raises concern about 

the impacts of sharing mobility on car ownership,  but there is no evidence that it has decreased 
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private vehicle usage; indeed, it may have slightly increased it (Anderson 2014; Clewlow and 

Mishra 2017; Rayle et al., 2016). Exploring the effects of ride sourcing on individual travel 

patterns, however, indicates that in the long term, ride splitting users may shift from purchasing 

private vehicles to ridesharing (Zheng et al., 2019). Similarly, there are differing views on the 

effects of on-demand ridesharing services on traffic congestion, with some suggesting that 

adopting ridesharing can decrease traffic congestion (Alexander and González 2015; Li et al., 

2016) and others espousing that it has no impact due to increased demand for driving and vehicle 

miles traveled (Anderson 2014; Schaller Consulting 2017). MOD can be also considered a factor 

in predicting crashes and fatalities. There are opposing views about the potential effects of on-

demand ride services on the number of traffic crash incidents and fatalities, and very few studies 

have explored changes in the trends of traffic crashes and fatality changes in the MOD context 

(Brazil and Kirk 2020; Dills and Mulholland 2018; Morrison et al., 2018).  

The rapid expansion of the on-demand ridesharing market makes it crucial to understand the 

impacts that it has on the transportation systems. This study aims to understand the  environmental 

impacts of on-demand ridesharing services by addressing and clarifying the gaps in the existing 

body of literature through 1) employing a diff-in-diff analysis and examining the effects of a 

ridesharing service in Austin, Texas, and 2) applying a new method for identifying the effects from 

on-demand ridesharing services on vehicle traffic and crashes. The remainder of the paper is 

organized as follows. Section 2 reviews the available relevant literature, Section 3 introduces the 

study methodology and describes the data and the employed method, Section 4 presents the results, 

and Section 5 provides a discussion of the findings and a summary of the conclusions.  

LITERATURE REVIEW  
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The effects of MOD and ride sourcing services have been the subject of several recent studies. The 

emerging literature conceptualizes the effects of MOD services through two lines of research: 1) 

effect of ridesharing on alcohol-involved crashes; and 2) effects of ridesharing on vehicle 

ownership, traffic congestion, and road usage. 

Uber technology was one of the first ridesharing services to receive attention from scholars because 

of its potential to reduce the vast number of drunk driving incidents in the United States. Its effect 

on the shift in the total number of drunk drivers and  weekend and holiday-specific traffic fatalities 

was investigated, using data from U.S. metropolitan counties during the period of 2005 to 2014. 

Results from binomial and Poisson regression models indicated no association between the 

deployment of Uber and the number of traffic fatalities (Brazil and Kirk 2016). The entry of two 

Uber services, Uber Black and Uber X, into the California market was explored for the period of 

2009 to 2014, using a difference-in-difference approach, and the results revealed a reduction in the 

alcohol-related motor vehicle homicide rate (Greenwood and Wattal 2015). 

In 2018, Dills and Mulholland used county-level data from 2007 through 2015 to investigate the 

impacts of the introduction of Uber as an emerging ridesharing mode in the U.S. and  found that 

its presence decreased the number of fatal accidents and some types of crimes. In their research, 

the effects of Uber on crime were categorized according to incidents that might not occur because 

of a new transportation option, such as DUIs (driving under the influence), drunkenness and 

disorderly conduct, aggravated assault, and motor vehicle thefts (Dills and Mulholland 2018). 

Although the initial empirical evidence pointed out an average association between ridesharing 

and crashes, the results were mixed. Therefore, Morrison and his colleagues addressed the 

inconsistency of the empirical findings by considering physical variations across geographic 

samples. They employed interrupted time-series analyses of traffic crashes and Uber ridesharing 
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in four US cities with populations of more than 200,000: Las Vegas and Reno, Nevada; Portland, 

Oregon; and San Antonio, Texas. Their results indicated a reduction in alcohol-related accidents 

that could be attributed to Uber; however, the findings differed across case studies due to the 

different structures and topology of the cities (Morrison et al., 2018).  

Brazil and Kirk (2020) updated their study on the relationship between Uber availability and traffic 

fatalities by employing more recent data of Uber ridership and testing whether the association 

relies on local and physical attributes of the built environment. Multivariate regression modeling 

of the data from 100 of the most populated metropolitan areas in the United States between 2009 

and 2017 revealed that Uber availability does not affect traffic fatalities. Instead, they found that 

Uber's presence can increase traffic fatalities in areas with a high population density (Brazil and 

Kirk 2020).  

Likewise, a recent study declared a 3% increase in fatal accidents involving cars and pedestrians 

in U.S. cities due to the introduction of ridesharing services (Barrios et al., 2019).  Other reported 

results of ridesharing availability are increased arterial vehicle miles traveled, extra fuel 

consumption, more hours of delays in traffic annually, and growth in the number of new car 

registrations. The results are more significant in cities with greater access to public transit, 

carpools, and high vehicle ownership. Cities with higher demand for Uber experience more 

significant traffic congestion and risk of accidents than small cities with limited access to public 

transit services (Hall, Palsson and Price 2018; Erhardt et al., 2019; Schaller 2018).  

The literature demonstrates wide discrepancies between geographical areas; hence, it is necessary 

to understand the relationships between the presence of on-demand ridesharing services and 

changes in the number of crash incidences in different contexts. This study utilizes an interrupted 

time-series analysis to investigate the effects of an on-demand ridesharing service on vehicle 
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crashes in Austin, Texas. Diff-in-diff  is a popular method that is used in the literature to evaluate 

traffic changes (Dills and Mulholland 2018; Greenwood and Wattal 2015; Morrison et al., 2018). 

This evaluation can provide urban planners with new insights that will enable them to make more 

suitable policies for developing technology-based transportation services. Furthermore, evaluating 

the safety performance of the existing on-demand ridesharing services in different geographical 

areas can provide policymakers with valuable information that will facilitate their implementing 

improvements into similar projects.  

The following questions formed the basis for this research:  

(1)  Does the deployment of an on-demand ridesharing service impact the number of crashes in its 

service area? 

(2) How is the use of an on-demand ridesharing service associated with injuries caused by traffic 

crashes in a metropolitan area?  

METHODOLOGY  

Data and Variables   

The following are the reasons for our selection of Austin, Texas as the city in which to explore the 

relationship between the availability of demand-responsive transport services (DRT) and traffic 

crashes.  

(1) Austin is home to RideAustin, which is one of the largest DRT systems in the nation and is a 

community based non-profit DRT service that provided more than two million trips to riders in its 

first year of operation.  
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(2) In 2016, Uber and Lyft, the two largest ride-hailing services, ceased their Austin operations 

due to differences with the city government on background checks of drivers. Their absence shifted 

the demand for ridesharing services to RideAustin, simplifying the data that would form the basis 

for this research.  

(3) The majority of research on DRT has focused on large metro areas and cities, but those findings 

may not be applicable to small- and medium-sized cities.  

(4) The ridership data for 2016 and 2017 was made public by RideAustin, and we were able to use 

the information for our research study.  

Data used in this research was obtained from multiple sources. The trip level ridership data for 

RideAustin was downloaded from the online database, DataWorld, which provides a dataset of 

1,494,002 trips taken during June 2016 to April 2017 and is the only data available publicly for 

download.  Each trip record includes the date, time, latitude, and longitude of origin and destination 

points, as well as the time and distance required to complete the trip. The spatial distribution of 

RideAustin trips is shown in Figure 1, where every dot represents one trip. trip  

The Texas Department of Transportation (TXDOT) Crash Record Information System (CRIS) was 

utilized for obtaining data on all of the traffic crashes reported to the police within the Austin metro 

area between 2012 to 2020. Each traffic crash record includes information on the date, time, 

location, severity, number of injuries, and number of deaths. After refining the data by removing 

records with missing information, 257,955 crash records remained in the dataset. The spatial 

distribution of traffic crashes is shown in Figure 2, where each point depicts one traffic crash 

during the study period. We used crash data from 2012 to 2020 to have enough observations before 

and after the launch of RideAustin. This period was chosen for our analysis for several reasons. 

First, since RideAustin was launched in 2016, we decided to include the maximum period in our 
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analysis after the start of the RideAustin service. Still, we did not want to include data after the 

onset of the COVID-19 pandemic. Therefore, our dataset only included a few months of data from 

2020. Second, to have an equal time period before and after the introduction of RideAustin and 

enough data points to run the difference-in-difference series analysis, we included data for an 

almost-equal period (approx. four years) of time before and after the start of the RideAustin 

service. 

Sociodemographic, built environment, and traffic-related data was obtained from the mapping 

software, Maptitude, by Caliper Corporation. Table 1 depicts a summary of the variables and 

sources from which the data was obtained. The data was aggregated at the block group level to 

include socio-demographic and built environment variables.  

The variables included in the analysis are described below,  

1. Number of trips per block group : The number of RideAustin trips per block groups 

during 2016-2017 (duration for which ridership data is available). We geocoded all 

trips and spatially joined the points of origin of each trip with the block group in which 

they were located. Then we divided the number of trips by the population of each block 

group to get “Number of trips per capita per block group” for each block group. We 

did this to standardize the number of trips based on population.  

2. Number of traffic crashes per capita per block group: The crashes reported to police 

and registered in The Texas Department of Transportation (TXDOT) Crash Record 

Information System (CRIS) were collected from 2012-2020 and spatially joined with 

block groups and then divided by the population to calculate number of traffic crashes 

per capita per block group.  
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3. Number of injuries per capita per block group: The number of injuries recorded in 

each traffic crash from the Crash Record Information System (CRIS) database  were 

collected from 2012-2020 and spatially joined with block groups and then divided by 

the population to calculate number of injuries per capita per block group.  

4. Population Density: Population of the block group divided by area to get number of 

people per square mile.  

5. Intersection Density: Number of intersections per square mile. This is used to check 

how dense the street network is, which is an important determinant of traffic crashes in 

literature.  

6. Annual average daily traffic: This is the annual average daily traffic for each block 

group collected from HERE traffic data base through Maptitude3 mapping software by 

Caliper corporation.  

7. Road Network length: This is the total length of street/road network in a block group.  

Methods  

To evaluate the impact of the availability and usage of demand-responsive transport (DRT) 

systems on traffic safety, we used the difference-in-difference (DiD) approach to measure the 

variances in the traffic crashes and traffic injuries before and after the deployment of RideAustin 

in 2016. DiD is a quasi-experimental technique that is used to measure the effect of certain 

interventions and policy measures on an outcome variable by comparing differences in control and 

treatment groups over time and before and after the intervention. A statistically significant 

difference between the treatment and control groups before and after intervention indicates that 

the intervention had a significant impact on the outcome variable. For this study we used the 

 
3 https://www.caliper.com/maptovu.htm 
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number of crashes and injuries per capita per block group as our dependent variables. Crashes and 

injuries were measured on a per capita basis to control for differences in populations of block 

groups. We used census block groups as our unit of analysis to account for small-scale and 

localized variations in crashes, as a block group is the smallest geographic unit with available 

socio-demographic and related data. Our data includes a total of 7697 block groups within the 

study region which were selected based on the geographic boundaries of the city.   

Previous studies on the impacts of public transit and demand-responsive transport systems 

assumed that the mere presence or absence of a service impacts the surrounding areas as well as 

the targeted area, and used the unavailability of these services in an area as a proxy to define 

treatment and control groups (Barreto et al., 2021).  This research, however, assumes that DRT 

services may reduce traffic crashes and injuries because 1) people will have less exposure to traffic 

as they switch from modes such as walking and biking to using DRT services, and 2) the DRT 

service will likely decrease the overall traffic volume and thus the number of traffic incidents. 

These assumptions can only hold true if a DRT service is used by the residents to the extent that it 

impacts traffic volumes/exposure rates.  

We tested several models by varying the defining criteria for the treated group. For the first model, 

we chose all block groups having at least one RideAustin trip as the treatment group and all other 

block groups as control groups. This model assumed that block groups with mere availability/just 

one ride on RideAustin would impact on the number of traffic crashes.  

For the other six models, the criteria for selecting the treatment group are given below,  

1. Model 1: Block groups with at least 1 ride were considered as treatment groups.  

2. Model 2: Block groups with at least 10 rides were considered as treatment groups.  

3. Model 3: Block groups with at least 50 rides were considered as treatment groups. 
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4. Model 4: Block groups with at least 100 rides were considered as treatment groups.  

5. Model 5: Block groups with at least 250 rides were considered as treatment groups.  

6. Model 6: Block groups with at least 500 rides were considered as treatment groups.  

The criteria for selecting the treatment groups were based on both the presence of the service and 

its actual usage to evaluate the impacts of the ridership on traffic safety.  

A summary of the dependent and independent variables used in the difference-in-difference model 

is given in Table 2. The two dependent variables are the number of crashes and the number of 

serious injuries per capita per block group. Two dummy variables were used in the model. First, 

the time variable corresponds to the implementation of RideAustin and has a value of 0 before the 

implementation of RideAustin (before 2017) and a value of 1 after implementation. The variables 

of RideAustin shown with different subscripts indicate the availability of RideAustin within a 

block group. Its value changes with the value for the threshold to select the treated group; therefore, 

each variation is denoted by its subscript. The diff-in-diff interaction term (DiD) is the product of 

the values of the two dummy variables (Time x RideAustin availability). The subscripts indicate 

the variable values for each of the six treatment and control groups mentioned above.  

RESULTS 

Traffic Crashes  

The six diff-in-diff models employed to evaluate the impact of RideAustin on traffic crashes were 

based on the criteria selected for the treatment and control groups. Table 3 illustrates the results of 

examining whether the availability of RideAustin is associated with any change in the traffic crash 

rates per block group and presents the summary statistics (estimates and p-values) of all six diff-
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in-diff models, along with the R squared/adjusted R squared values. The DiD (interaction term) 

reflects the impact of availability of RideAustin on traffic crashes.  

The results depicted in Table 3 indicate that the coefficient for the DiD term is positive but 

statistically insignificant when the treatment group is selected based on at least one trip DiD0. 

However, when the number of trips for selecting the treatment group is increased, the coefficients 

for the DiD term show a significant negative association with the number of crashes. The 

coefficient value for DiD10 is 0.03 and not statistically significant, while the coefficient values for 

DiD 50,  DiD 100, and DiD 250  are respectively -0.1013, -0.1488, and -0.1603 and are significant at 98 

and 99 confidence intervals. These results indicate that the impact of RideAustin on the number of 

traffic crashes becomes more obvious with increased usage of the service. In Model 6, where the 

number of RideAustin rides increases to at least 500 rides per block group, the associations 

between ridership and crashes are significant, but the coefficient value is less than that for Models 

4 and 5. This indicates that increasing the ridership to at least 500 rides per block group decreases 

the level of positive associations between RideAustin ridership and vehicle crashes.    

Traffic Injuries 

The results for serious injuries per capita per block group are shown in Table 4. The relationship 

between RideAustin and the number of serious traffic injuries for the DiD0 and DiD10 models is 

negative and statistically significant. As the criteria for selecting the treatment group increases, the 

coefficients obtain a higher negative value and are more statistically significant. The coefficient 

for the DiD terms increases from -0.0095 in the first model to -0.1255 in the last model when the 

threshold is set at 500 trips per block group. The negative association between traffic injuries and 

RideAustin is significant for Models 3, 4, 5, and 6; however, Model 6, that explores the effects of 

RideAustin ridership on traffic injuries in counties with at least 500 rides per capita, has a smaller 
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coefficient than Models 3, 4, and 5 that illustrate counties with ridership of at least 50, 100, and 

150 per capita. These results support the assumption that the impacts of RideAustin on traffic 

crashes become evident when the criteria to determine whether or not a block group was treated is 

set at a higher value. This indicates that when more trips are taken on a DRT service such as 

RideAustin, the number of crashes is likely to decrease.  

DISCUSSION AND CONCLUSION  

The aim of this study was to examine the impacts of demand-responsive transportation services on 

the number of traffic crashes and injuries. RideAustin, an on-demand ridesharing service that 

offered approximately three million rides to people in Austin, Texas from 2016 to 2020 

(Hernandez 2020), was used as a case study. Unlike past studies that used the availability, 

presence, introduction, and resumption of on-demand ridesharing services in different 

geographical areas  to evaluate the traffic impacts (Brazil and Kirk 2020; Dills and Mulholland 

2018; Morrison et al., 2018), this study used the frequency of usage of the RideAustin service to 

evaluate its impacts on traffic safety and assumed that the mere availability of a service cannot 

significantly impact traffic safety. The key findings of this research are described below. 

First, a diff-in-diff analysis of the data indicates that there are  statistically significant and negative 

associations between the ridesharing ridership and traffic crashes of the treated block groups and 

the control block groups. This result confirms the studies that reported lower risks for vehicle 

crashes for app-based motorcycle taxi drivers compared with regular motorcyclist taxies in 

Vietnam (Nguyen-Phuoc et al., 2020), the reduced impact of Uber on alcohol-involved crashes in 

U.S. cities (Morrison et al., 2018), the significant drop in the number of serious traffic crash 
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injuries after the deployment of Uber in Great Britain (Kirk et al., 2020), and the reduction of 

traffic accidents attributed to Uber and Cabify services in Madrid (García et al., 2021).  

Second, the results revealed a negative association between vehicle traffic injuries and RideAustin 

ridership frequency, which echoes the results of Dills and Mulholland 2018; Greenwood and 

Wattal 2015; and Morrison et al., 2018. 

Third, the relationship between RideAustin and traffic crashes and injuries are dependent upon the 

treated block groups being selected based on the number of trips. The relationship is not significant 

if the treated block group is selected based only being in a service area. These findings are in 

agreement with several other studies that evaluated the impacts of policy intervention and found 

that the availability or presence of a facility or service is not sufficient to make a difference 

(Bhattacharya et al., 2012; De Juan et al., 2020; Lovenheim and Walsh 2018; Sinha and Laha 

2019). It is the actual usage of services or a facility that can have an impact. For example, as shown 

in our results, the value of the difference-in-difference term decreases with an increase in the usage 

frequency (from 0.03 in the first model to -0.168 in the last model and -0.0095 to -0.1255 in the 

crash and injury models, respectively). As the difference-in-difference terms and number of ride 

variables are both related to time, and based on changes in pattern over time, the inconsistency in 

relations could be attributed to this factor.  

Fourth, although the number of traffic and injury crashes decreases with an increase in the number 

of those utilizing the on-demand service, the significance of the model for at least 500 rides per 

county is less than that of counties with at least 50, 100, and 250 rides. This result reveals that 

counties with a higher demand for on-demand ridesharing services face greater traffic congestion 

and a higher risk of vehicle accidents than smaller counties (Hall, Palsson, and Price 2018; Erhardt 

et al. 2019; Schaller 2018). 
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Overall, on-demand ridesharing services such as RideAustin have the potential to decrease vehicle 

ownership, affect individuals' decision to transition from private cars to ridesharing, and reduce 

the overall traffic congestion and crashes in urban areas. However, the potential advantages of on-

demand ridesharing are still uncertain since studies have revealed that platforms such as Uber have 

increased traffic congestion and the number of crashes and fatalities in high dense and compact 

areas (Brazil and Kirk 2020; Li et al., 2022). Urban and built environment features such as 

population and employment density, network design, diversity of land use, and distance to other 

modes of transportation can moderate the efficiency of on-demand ridesharing services but 

enhancing the efficiency and equity of ridesharing will require developing and implementing 

strategies that adjust with the urban features of different geographical areas. Since policymakers 

necessarily cope with the principles and regulations of these platforms, considering the 

heterogeneity in the effects of on-demand ridesharing services can assist them in making 

appropriate decisions while improving mobility via MOD services. Therefore, city and 

transportation planners should be aware of the disparities in urban forms and built environment 

characteristics when approving the initiation of on-demand ridesharing service platforms.  

The results of this study indicate that subsidizing and incentivizing on-demand ridesharing services 

in urban and rural could be helpful policy interventions, as there is a positive relationship between 

the MOD services and a smaller number of traffic crashes. Regular auditing of the ridership trends 

of existing MOD services will ensure that they are not merely available in an area but also are used 

by the residents.  

Still the effects of ridesharing services on an increased number of trips are not clear in the literature. 

Therefore, studying the impacts of RideAustin on vehicular traffic was beyond the scope of this 

study. To our knowledge, RideAustin provided around 1.4 million trips in less than one year. Since 

this service is a ridesharing service, this study assumes that many of these trips were shared by 
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more than one passenger (we do not have an exact figure), which would result in the reduction of 

drive-alone trips and vehicular traffic.  

In addition, we are not stating a causal relationship between traffic crashes and an-demand 

ridesharing services. Still, we present that, in areas where people frequently use ridesharing 

services, the number of traffic crashes is lower than in areas where these services are not frequently 

used. Studying the impacts of ridesharing services on vehicular traffic could be a future research 

question and could help clarify this relationship even more.   

Study Limitations 

Although this study is a good attempt to evaluate the safety impacts of DRT services, it does have 

some limitations described below,  

The data obtained from the CRIS data only includes traffic crashes that were reported to the police, 

and the literature shows that traffic crashes are usually under-reported, as not every crash that 

occurs is reported.  

Several crashes included in the CRIS database did not contain information of some important 

variables such as the longitudes and latitudes. Since our analysis required that all the crash points 

be mapped so that they could be joined with the block groups, we had to remove all of the crashes 

lacking the latitude and longitude information, which reduced the number of observations. 

The ridership data for RideAustin available online is only for the year 2016-2017. However, our 

analysis period after the introduction of RideAustin spans from 2016-2020. The inclusion of 

ridership data for a longer temporal scale would increase the reliability of the results.  

This study included the total number of crashes and injuries in the analysis. The number of 

fatalities in the analysis would give more insights into the impact of demand responsive services 
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on traffic safety. However, traffic fatalities are rare incidents, due to which we did not have 

enough data available to do a diff-in-diff analysis on traffic fatalities or severe injuries.  
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FIGURES  

 

Figure 1. Spatial distribution of RideAustin trips in which each red dot depicts one RideAustin  
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Figure 2. Spatial distribution of traffic crashes in which each point depicts a crash site  
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TABLES 

Table 1. Sources of Data and Variables 

 

 
Table 2. Summary of Variables Measured at Block Group Level 

Variables N Mean SD Min Max 

Dependent Variables 

Ln Crashes Per Capita 
Per Block Group 7,697 -4.62 1.10 -8.16 0.39 

Ln Injuries Per Capita 
Per Block Group 7,697 -5.32 1.25 -8.70 0.16 

Independent Variables 

DiD0 7,697 0.38 0.49 0.00 1.00 

DiD10 7,697 0.33 0.47 0.00 1.00 

DiD50 7,697 0.29 0.45 0.00 1.00 

DiD100 7,697 0.26 0.44 0.00 1.00 

DiD250 7,697 0.21 0.41 0.00 1.00 

DiD500 7,697 0.17 0.37 0.00 1.00 

RideAustin0 7,697 0.88 0.33 0.00 1.00 

RideAustin10 7,697 0.77 0.42 0.00 1.00 

Data Category Variables Source 

Ridership  Number of trips per block 
group  

RideAustin/ DataWorld 
(2016-2017)  

Traffic crashes  

Number of traffic crashes 
per capita per block group  

TxDOT CRIS (2012-2020)  
Number of injuries per 
capita per block group 

Socio-demographic  Population density 
Maptitude (2015-2019 
ACS)  

Traffic  Annual average daily traffic 

Built environment  
Intersection density  
Road network length  
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RideAustin50 7,697 0.67 0.47 0.00 1.00 

RideAustin100 7,697 0.60 0.49 0.00 1.00 

RideAustin250 7,697 0.50 0.50 0.00 1.00 

RideAustin500 7,697 0.38 0.49 0.00 1.00 

Time  7,697 0.43 0.50 0.00 1.00 

Intersection Density 7,697 344.12 304.11 0.00 2021.67 

Average Daily Traffic  7,697 71650.15 84636.53 586.20 800900.60 

Population Density 7,697 4032.57 4593.09 8.28 53614.90 

Number of RideAustin 
Trips  7,697 31.10 38.87 1.00 433.00 

Road Network Length 7,697 19.98 21.29 0.00 164.68 
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Table 3. RideAustin Ridership Frequency and Vehicle Traffic Crashes [Dependent Variable: Log (Traffic Crashes Per Capita)] 

 Predictors 
Model1 (DiD0) Model2 (DiD10) Model3 (DiD 50) Model4 (DiD 100) Model5 (DiD 250) Model6 (DiD 500) 

Est p Est p Est p Est p Est p Est p 

(Intercept) 0 1 0 1 0 1 0 1 0 1 0 1 

DiD 0.0093 0.727 -0.01892 0.349 -0.04605 0.009 -0.06223 <0.001 -0.06075 <0.001 -0.04851 0.001 

RideAustin  -0.0963 <0.001 -0.11705 <0.001 -0.05412 <0.001 0.00406 0.761 0.02891 0.03 0.03406 0.01 

Time -0.0199 0.437 0.00352 0.85 0.02177 0.166 0.03055 0.033 0.02474 0.052 0.01323 0.251 

AADT 0.4517 <0.001 0.45719 <0.001 0.45161 <0.001 0.44172 <0.001 0.43687 <0.001 0.43494 <0.001 

RideAustin Trips -0.087 <0.001 -0.08826 <0.001 -0.08637 <0.001 -0.08375 <0.001 -0.08271 <0.001 -0.08277 <0.001 

Intersection Density  0.3168 <0.001 0.33198 <0.001 0.32579 <0.001 0.31284 <0.001 0.30566 <0.001 0.30204 <0.001 

Population Density -0.211 <0.001 -0.20127 <0.001 -0.20986 <0.001 -0.21926 <0.001 -0.22352 <0.001 -0.2247 <0.001 

Road Network 
Length 0.0435 <0.001 0.03411 0.002 0.04466 <0.001 0.05169 <0.001 0.05483 <0.001 0.05563 <0.001 

R2 / R2 adj 0.377 / 0.376 0.381 / 0.381 0.374 / 0.373 0.371 / 0.370 0.370 / 0.370 0.370 / 0.369 
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Table 4. RideAustin Ridership Frequency and Vehicle Traffic Injuries [Dependent Variable : Log (Traffic Injuries Per Capita)] 

 Predictors 
Model1 (DiD0) Model2 (DiD10) Model3 (DiD 50) Model4 (DiD 100) Model5 (DiD 250) Model6 (DiD 500) 

Est p Est p Est P Est p Est p Est p 

(Intercept) 0 1 0 1 0 1 0 1 0 1 0 1 

DiD -0.00802 0.771 -0.02744 0.189 -0.05082 0.005 -0.06199 <0.001 -0.06305 <0.001 -0.03737 0.009 

RideAustin  -0.03741 0.003 -0.04169 0.002 0.04864 <0.001 0.11406 <0.001 0.13821 <0.001 0.11829 <0.001 

Time -0.05225 0.048 -0.03736 0.053 -0.02217 0.171 -0.01691 0.249 -0.02117 0.104 -0.03986 0.001 

AADT 0.41977 <0.001 0.42202 <0.001 0.40789 <0.001 0.39559 <0.001 0.39227 <0.001 0.39387 <0.001 

RideAustin Trips -0.08191 <0.001 -0.08243 <0.001 -0.07882 <0.001 -0.07666 <0.001 -0.07864 <0.001 -0.08185 <0.001 

Intersection Density  0.32169 <0.001 0.32805 <0.001 0.30926 <0.001 0.29007 <0.001 0.28012 <0.001 0.28118 <0.001 

Population Density -0.16135 <0.001 -0.15732 <0.001 -0.17176 <0.001 -0.18233 <0.001 -0.18263 <0.001 -0.17828 <0.001 

Road Network 
Length 0.03865 0.001 0.03474 0.002 0.0473 <0.001 0.05502 <0.001 0.05468 <0.001 0.05131 <0.001 

R2 / R2 adj 0.389 / 0.388 0.389 / 0.389 0.396 / 0.395 0.402 / 0.402 0.406 / 0.406 0.404 / 0.403 
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Chapter 5:  Integrating Shared Autonomous Vehicles into Existing Transportation Services: 

Evidence from a Paratransit Service in Arlington, Texas 

ABSTRACT  

This study investigates the potential benefits of integrating shared autonomous vehicles and an 

existing transportation system by exploring a recently initiated project that integrates autonomous 

vehicles (AVs) with an existing on-demand ridesharing service, Via, in Arlington, Texas.  We first 

identified the spatial patterns of the ridership on a localized scale, using geographically weighted 

regression (GWR) for the existing paratransit service, Handitran. Assuming that the existing 

ridership will be combined in the future with shared autonomous vehicles (SAVs), we looked at 

integration options, based on the spatial patterns of supply and demand and payment options for 

the riders. The results suggest that the paratransit service, Handitran, is currently used by a small 

proportion of the eligible population, whose travel patterns differ based on their age. For instance, 

younger users usually ride Handitran for traveling to work, recreational activities, and routine 

chores, while senior riders often use the service for medical and recreational trips. The results of 

the geographically weighted regression (GWR) model indicate that the major determinants of 

Handitran usage are the population's percentage of older adults, racial distribution, and household 

vehicle ownership; the coefficients of these factors vary across the City. The results of hot-spot 

analyses reveal that the integration of the services will improve the efficiency of the existing 

transportation system by responding to the excess rider demand, particularly in the downtown area. 

Finally, we describe the implications of implementing policies for AV integration in cities, service 

providers, and other stakeholders and suggest future research topics. 
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INTRODUCTION 

Alleviating the need for owning a vehicle and promoting the use of public transit may be 

simultaneously accomplished by integrating transportation services [1]. Several studies have 

proposed combining fixed-route transit systems in dense areas with demand-responsive services 

that serve those in less transit-demanding locations [2–5]. Recently, transit agencies have partnered 

with rapidly growing, privately-owned transportation network companies (TNCs) that use an 

online platform or mobile application to connect commuters with drivers who are operating their 

own vehicles [9] in an attempt to combine multiple mobility modes, increase the cost-effectiveness 

of travel, and provide more options for existing and future transit users [6]. Sharing repetitive and 

pre-planned trips through on-demand services reduces the number of miles traveled and the length 

of time required to reach destinations compared to conventional ridesharing services such as taxis 

[7]. Therefore, partnering with mobility-on-demand (MOD) companies to integrate public transit 

into TNCs enhances the efficiency and quality of public transport services, particularly for low-

income, elderly, and disabled people and those who reside in rural areas [8]. Although various 

studies have explored integrating fixed-route transit and demand-responsive services, discussions 

about integrating future technologies such as shared autonomous vehicles into existing public 

transit services are still limited [9–11], despite their promising potential [12, 13]. Recent literature 

on the potential synergies between AVs and ridesharing touts shared autonomous vehicles (SAVs) 

as having unique advantages over other public transit modes, such as lower travel costs and more 

trips served per ride [12], greater travel convenience [14], and the ability to mitigate adverse 

environmental effects [12]. A rich body of research addresses factors contributing to the 

deployment and adoption of AVs; however, most of them assume that AVs are an updated version 
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of personal human-driven cars [15–19]. Rapid advancements in the field of information and 

communication technology (ICT) equip AVs with a much higher potential than a personal 

automobile for enhancing mobility options and reducing manual driving efforts, and the 

interactions between existing transportation services and future SAVs need further exploration.  

To address the research gap, we explored the potentials of an integrated transportation network, 

including an SAV and an existing paratransit service. Our focus was on RAPID (rideshare, 

automation, and payment integration demonstration), a SAV project that aims to integrate Level 4 

AVs into existing transportation services in Arlington, Texas. The RAPID project combines AV 

and MOD technologies to develop an efficient and accessible transit network in a low-density 

urban setting where conventional fixed-route transit is impractical. The project also provides 

wheelchair-accessible vehicles as part of its autonomous fleet. The ways that the SAVs can play a 

complementary role in their integration with the existing on-demand ridesharing paratransit service 

were explored, as were the spatial patterns of trips at a block group level. Sociodemographic 

factors were controlled using geographically weighted regression (GWR) techniques to identify 

local and spatial differences while exploring travel patterns. Block groups are the smallest 

geographical scale used in such a study to the best of our knowledge, giving more targeted and 

local transportation insights. Most of the previous research was developed based on aggregated 

data at relatively large geographical scales where multiple modes of public transit are available 

(e.g., counties, cities, census tracts), but studies of midsized cities with no fixed-route public transit 

option are currently lacking [18, 20, 21]. 

The remainder of this paper is organized as follows. Section 2 describes the conceptual framework 

of transportation integration while addressing the features of SAVs and paratransit services in the 

existing literature. The research methodology follows and iterates the details of the case study, 

followed by descriptions of the data collection and analysis. In the results section, we detail the 
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significant findings, and in the discussion and conclusion section, we summarize the results and 

potential policy implications. 

LITERATURE REVIEW  

During the last few decades, designing and operating an integrated public transit system has 

become a subject of great interest [20, 22, 23]; however, studies on the integration of AVs into 

existing transportation services have only been conducted recently. The first efforts to study AVs 

as a potential enabling technology for improving future urban mobility researched systematic 

approaches to design and evaluate autonomous mobility-on-demand (AMoD) systems. To 

estimate the effects of different SAV fleet sizes and environmental benefits regarding the 

relocation of self-driving shared vehicles with personal mobility, transportation scholars often 

utilized agent-based simulation models and espoused that a reasonable fleet of SAVs has the 

potential to replace conventional vehicles [12, 24]. For instance, Spieser et al. [25] suggested that 

deploying a fleet of SAVs the approximate size of one-third of all personal transportation can meet 

an entire population's mobility needs. 

Synergistic opportunities between AVs and public transit systems differ based upon the City's 

organizational structure and demand characteristics. In Singapore, Shen and colleagues [10] 

proposed preserving bus routes in high-demand areas while replacing low-demand bus routes with 

shared AVs. They developed an agent-based supply-side simulation, and the results indicated that 

a combination of 90% high-demand bus routes with 10% AVs could improve the service quality, 

sustainability, and efficiency of existing bus services. The result of a study by Levin and colleagues 

[9] indicates that integrating a transit service with a small fleet of SAVs can reduce the 

transportation system's total travel time. Another agent-based simulation of the supply and demand 

interactions of an integrated AV and public transit system in a major European city revealed that 

suppliers should consider the level of service and the operational cost to achieve an optimal fleet 
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size. Some strategies, such as combining AV and public transit fare systems, encourage the 

demand for ridesharing and reinforce service integration [11]. Exploring the economic impacts of 

substituting conventional buses with demand-responsive transit (DRT) services in low-to-medium 

density areas indicates that service fare and vehicle capacity can determine the demand for new 

service integration [26].  In summary, factors such as the fleet size and vehicle capacity; the quality 

and the level of the service, the fares charged, operational costs, hailing strategies, transit 

frequency, and fleet management are among the factors that have been studied to understand the 

balance between public transit and SAVs through simulation of SAVs system platforms [11, 27–

29].  

The studies mentioned above proposed a simulation-based approach to designing and evaluating 

integrated AV and public transportation systems. A few studies have also explored the potential 

of AVs to resolve transportation issues by integrating solutions while analyzing the social 

dynamics, social preferences, attitudes, and consumer concerns [18, 30, 31]. A recent study 

suggests that for efficient and economic integration of public transit services into on-demand ride-

sourcing services, there is a need to understand factors affecting riders and drivers' travel demand 

and supply in an integrated system [32]. The results from an empirical study in Atlanta showed 

that the residents would be interested in integrating their high-quality mass transit with AVs if they 

felt that such integration could improve their trip time and productivity [18]. A recent study 

suggests that accessibility and safety are the primary concerns of people considering adopting an 

integrated transportation system [33].  

A substantial gap remains in the synergistic opportunities provided by AVs and existing 

transportation services. As cities and transportation agencies begin to integrate and improve their 

transit services, it is crucial that they understand the travel patterns and factors that influence the 

existing ridership that is expected to utilize SAVs. Successful policy development for integrating 
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transit services requires recognizing the travel behavior and patterns of the services that are 

expected to operate through the system. 

Past studies have been primarily conducted in large cities with ample public transit access, such as 

Singapore, Lisbon, and Toronto [21, 24, 34, 35], but defining the role of SAVs in future 

transportation systems is different in urban settings with no access to a comprehensive and robust 

public transit service. Accordingly, this study aims to understand the patterns of existing usage 

and potential interaction between an SAV fleet with an existing ridesharing service by answering 

the following questions:   

1. How and to what extent is the existing paratransit service currently used by the residents 

of a city?  

2. What forces shape the existing ridership at the block group level? 

3. What opportunities can be considered a result of the potential integration of  SAVs into the 

current service? 

We examined the travel behaviors of the users of Handitran, specialized paratransit service in 

Arlington, Texas, to begin answering the questions, as the RAPID SAV is projected to operate in 

areas currently served by Handitran: downtown Arlington and on the University of Texas at 

Arlington campus. We compared the usage patterns of the Handitran service inside and outside the 

proposed RAPID SAV service area to predict the possible demand and ridership patterns for the 

new service. This study will help AV planners predict SAV service usage by identifying the 

paratransit service's actual users and understanding the SAV-paratransit interaction will enable the 

City's administration to make data-driven decisions and further optimize the existing services and 

the proposed SAVs. To perform our study, we used trip data from the Handitran service for all 

rides requested during 2019.  
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The Handitran riders were categorized into two groups: adults above the age of 65 and persons 

under the age of 65 with disabilities. This population segment was addressed as the transportation-

disabled population and was studied, using a wide range of techniques that varied from focusing 

on the demographic characteristics of travelers to spatial and geographic factors that influence the 

traveling behavior of the elderly [36–40]. We then compared the Handitran usage patterns inside 

and outside the RAPID service zone and explored the factors affecting the paratransit ridership to 

predict the future integration of the SAV ridership. The differences in trip characteristics when an 

alternative mode of public transit is available, and the potential integration of the future SAV 

service into the current paratransit service were investigated. While previous research mainly 

relied on regression models to identify transit ridership determinant factors, this study utilized a 

GWR model to evaluate the spatial ridership of Handitran paratransit service. 

DATA AND METHODOLOGY  

Data 

Study area 

This study was conducted in the City of Arlington, Texas, which has the distinction of being one 

of the largest cities in the United States without a mass-transit service [41]. Arlington is a medium-

sized city that is located in the middle of the DFW metropolitan area, which is considered one of 

the fastest-growing metro areas in the United States. The 2019 population of Arlington was 

392,462, a 7% increase from 365,438 in 2010 (ACS-2019). The number of people aged 65 or older 

was 40,101 (10.2% of the total population) in 2019, up from 29,752 (8.1% of the total population) 

in 2010 (American Community Survey 2019). Due to its strategic location in the heart of the fast-

growing DFW metro area, population growth is expected to continue.  
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Arlington's leadership role in implementing app-based, on-demand services and SAV technologies 

in the Dallas Fort Worth (DFW) region made it an attractive location in which to perform this 

research and analyze the potential integration of SAV services with existing transit options. It has 

an app-based, on-demand ridesharing service under the Via4 platform and is also served by the 

Handitran paratransit service [42]. In 2020, the City was granted a $1.7 million Integrated Mobility 

Innovation (IMI) award by the Federal Transit Administration (FTA, 2020). While some findings 

may not be directly applicable to cities of all types and characteristics, this study provides valuable 

insight for cities of comparable size and demographics.  

Handitran service and trip data analysis  

Arlington's Handitran is a federally assisted transportation program under Title VI of the Civil 

Rights Act of 1964 and related statutes that provide rides to eligible people (City of Arlington 

Handitran, 2014). Handitran rides can be booked online via the website or by telephone. To be 

eligible for the service, an individual must be either a "senior citizen" or "transportation disabled." 

Senior citizens are defined as persons 65 years of age or older; the transportation-disabled are those 

who, because of a functional limitation (caused by either a physical, medical, or mental condition), 

cannot independently operate a motorized vehicle, either on a permanent or temporary basis. 

Handitran is an important mobility option that serves the entire City of Arlington and includes up 

to 1.5 miles outside the city limits. The downtown area will be served by an SAV service (RAPID) 

that will be integrated with the on-demand ridesharing service (Via). We used a dataset based on 

all the Handitran rides requested during 2019 to explore the characteristics and features of the 

service. Figure 1 shows the distribution of trips based on their points of origin. In 2019, there were 

 
4 An app based, on-demand ride service providing shared rides at subsidized rates in the City of Arlington, TX  

https://www.transit.dot.gov/IMI
https://www.transit.dot.gov/IMI
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373,202 trips requested from Handitran, including trips that were cancelled or not taken, with an 

average of 231 trips per passenger. 

Analytical Methods 

The data analysis was performed in three steps. First, we analyzed the trip data for Handitran, a 

service for the transportation-dependent population in Arlington, to disaggregate the riders and 

gain a better understanding of the occasional and frequent users of the paratransit and to determine 

how the different categories of riders use the service. Second, we used the geographically weighted 

regression technique, which explores relationships between paratransit ridership and 

sociodemographic and geographical features at an aggregated level, to explore the determinant 

factors of ridership for Handitran. Finally, we evaluated the potential for integrating the paratransit 

service into a newly initiated shared autonomous vehicles service in Arlington.  

Trip Data Analysis 

The trip level data for all the trips requested from the Handitran service in 2019 was analyzed, 

based on the age of the users, to determine the role, if any, that age plays in the usage patterns. 

We also analyzed the travel patterns for which the Handitran services were requested, based on 

the time of day and purpose of the trips.  

Geographical weighted regression (GWR)  

For analyzing the determinant factors of the ridership, we used a geographically weighted 

regression model, which was more effective than a linear regression model. Linear regression 

models are beneficial for understanding relationships between dependent and independent 

variables, but they generally do not consider the effects of geographical or spatial variations [6] in 

the model. Sociodemographic characteristics play a crucial role in shaping transit usage behaviors 

and patterns, but their spatial features vary across geographical areas.  
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Geographically weighted regression models, which account for spatial non-stationarity of variable 

values over space in a model, were first proposed by Brunsdon et al. [8]. They are an extension of 

linear regression models, as they account for spatial variations. The GWR model can be 

mathematically described as shown in eq (1). GWR is a popular analytical technique that is used 

in the literature to explore local-scale variations in variables of interest [43–46].  

yi = β0(ui , vi) + p ∑ k βk(ui , vi)xik +εi              (1) 

where,  

(ui ,vi) are the coordinates (latitudes and longitudes) of a location 

βk  represents the parameters that need to be estimated, is a function of the location, and is 

calculated for each spatial unit (block group in this analysis) 

εi is the error term 

To find a model with a better fit, we ran ordinary least square regression (OLS) and GWR, using 

the same set of predictor variables; the number of Handitran rides was used as the dependent 

variable. The OLS regression model resulted in a very low R-squared value (0.20), and the 

residuals plots showed a clustering behavior. Therefore, we chose GWR because of its higher R-

squared value and random residuals and for its ability to explain variations at a local scale [47, 48].  

The spatial statistics tool in the ArcGIS Pro software was used to run the GWR model.  

Seven sociodemographic variables at the block group level were found to be significant in the 

GWR model: total population; percentage of population  65 and older; distribution of white, Asian, 

and non-English-speaking people; share of people with bachelor's or higher degrees; and the share 

of households without a vehicle. The data for these variables were collected from the five-year 

American Community Survey (ACS) at a block group level and was validated by the pairwise 

correlation test.  
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We chose block groups as the spatial unit of analysis for several reasons. First, they are the most 

granular geographical level for which census data is available from the American Community 

Survey, and they are more analogous to neighborhoods than census tracts. Second, our study area 

is the City of Arlington, which is a mid-size town and consists of 32 census tracts and 355 block 

groups. Considering a higher spatial unit of analysis such as a census tract would reduce the 

number of observations and result in a lack of variation in the key variables within the case study 

area for running a regression model. Third, block groups have been extensively used in the 

literature where the research questions involve variables related to sociodemographic 

characteristics [49–52].    

DATA ANALYSIS AND RESULTS 

Trip data analysis 

Handitran travel pattern    

Research shows that paratransit services do not operate at their maximum capacity, mainly because 

of the lack of coordination between paratransit agencies and contractors hired to provide the 

services [53]. Table 1 shows the usage patterns of the Handitran service in 2019. Only 1,618 

customers used the service, which is less than 2% of the population eligible for the service, based 

on their age or disability status. Not only is the number of active users low, but most of the trips 

were taken by an even smaller number of users. Data shows that over 50% of all Handitran 

paratransit rides in 2019 were made by only 12% of its users. The limited use of Handitran service 

by the eligible population could stem from the quality of the service and hailing and fare strategies. 

In addition, the service is not available to all potential users due to the fleet size, capacity of the 

service, and the hailing strategies set by the Handitran management. Another reason for the low 

usage could be the lack of advertisement for the services, which leaves many unaware of the 
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option. It is also highly likely that many of the eligible users do not know about the service or 

know how to use it due to the lower educational attainment levels and lack of English-speaking 

skills.  

Trip characteristics by age group 

Some studies suggest that the frequency of trips requested by individuals decreases after age 65 

[54]. Table 2 shows the distribution of users in each age category (over and under 65), the total 

and the average number of trips using Handitran data. Overall, the ridership is significantly high 

in the group under 65 years of age. This could be associated with the purpose of each age group 

using the service. 25% of their Handitran trips by younger users are work-related, while only 7% 

of trips by older users are for work purposes. This could be one of the reasons for higher trip 

frequencies by younger users. 

To evaluate whether the travel patterns of the two groups (over and under 65 years of age) are 

statistically different, we ran a difference in means test (t-test) for trip distances and trip durations 

for both groups. The results of the test, shown in Table 3, revealed that there is a statistically 

significant difference between the trip distances of the two age groups; the hypothesis that the 

differences are not equal to 0 is statistically significant at a 95% confidence level.  

The results of the t-test for trips durations for both age groups are shown in Table 4. It can be 

observed that there is a statistically significant difference in the trip durations of the two groups, 

with younger people taking longer trips on average.  

Trip purpose by age group 

Figure 2 illustrates the distribution of trip purposes based on the two age groups. The trip purposes 

for the Handitran paratransit are categorized as work, school, medical, essential personal trips 

(ESP), such as going to a bank, grocery store, pharmacy, etc., and recreation. The results indicated 

that there is a notable difference between the two age groups' purposes for their trips. The pie chart 
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shows that users under 65 make a higher share of work- and school-related trips, while older users 

make more medical and recreational trips. 

Temporal patterns by age group 

In addition to the aforementioned trip characteristics, it is important for the optimal allocation of 

resources to understand the distribution of trips pertaining to the time of the day. Understanding 

the temporal usage patterns of the Handitran service is vital to uncovering certain characteristics 

of passengers' daily activities and the potential for integrating multiple services, such as the new 

SAV RAPID service. Such temporal usage patterns can be effectively understood via a graph, as 

illustrated in Figure 3. The plots in Figure 3 (a & b) display the temporal patterns of usage for both 

age groups and further divide the usage into two categories: weekdays and weekends. The plots 

show the number of rides taken on Handitran during the operating hours (7 AM to 10 PM on 

weekdays; 8 AM to 9 PM on Saturdays).  

There is a clear difference in the temporal usage patterns of the two age groups and days of the 

week. During weekdays, users tend to make more trips in the early morning, with peak usage 

between 8-9 AM for both age groups. During weekends, the trips peak almost one hour later (9 

and 10 AM) than on weekdays for both age groups. Evening peaks vary widely between the age 

groups and the two temporal categories. Evening peaks tend to last longer during weekdays, 

starting at 1 PM for older users and 2 PM for younger users. The plots also show that younger 

users take advantage of the service more frequently than older users; in fact, they made more than 

10,000 trips on average during peak hours, while older users averaged slightly more than 4,000 

trips per day. These temporal patterns correspond, to a large extent, to trip purposes for each group. 

As younger users take Handitran trips for work, the peak hour for these users is between 7-9 AM 

in the morning. On the other hand, the peak hour for older people is between 8-10 AM indicating 

that older people start their daily activities later in the day than younger people.  
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Results of the GWR 

The GWR model was used to analyze the determinant factors of ridership for the Handitran service. 

Descriptive statistics for the variables are presented in Table 5.  

Table 6 shows the output of the GWR model. The GWR-adjusted R-squared value of 0.44 is twice 

that of the OLS model. The GWR model evaluated each element (block group) at a local scale in 

relation to its neighbors. Neighbors were the block groups with similar characteristics that were 

spatially located next to the block group under study. This process was performed for each block 

group, and a coefficient was assigned to every unit.  

 Figure 4 (a-g) shows the distribution of the coefficient values of all the independent variables, 

with the dependent variable at the block group level. The large and small polygons represent the 

Via and RAPID service areas, respectively. The local scale maps from GWR allow us to 

understand the type/strength of the relationship of the variables, with independent variables at a 

micro (block group) scale. We anticipated that understanding the determinants of the existing 

ridership by considering spatial differences would help in devising relevant strategies for 

integrating the new transportation service. The small and big polygons show the Handitran and 

RAPID service areas, respectively. Because of variations in the absolute values of coefficients, we 

used a standard deviation scale for easy comparison of the independent variables. The red color 

represents statistically significant negative coefficient values, indicating that the relevant variable 

has a negative relationship with Handitran ridership. The darker red color shows higher (negative) 

coefficient values, while the lighter red/orange color shows lower negative coefficient values, 

ranging from -0.5 to -2.5 standard deviations. The blue color represents statistically significant 

positive coefficient values, showing a positive relationship of the variable with Handitran 

ridership. The dark blue color represents higher coefficient values, while the light color shows 

lower values ranging between 0.5 to 2.5 standard deviations. The white color represents values 
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between 0.5 and -0.5 standard deviations, where the relationship between the independent variable 

with the number of Handitran Trips is not statistically significant. The maps show that the 

coefficients of all independent variables are not globally uniform but vary significantly in different 

parts of the City, indicating different usage patterns. Variations in coefficient values across spaces 

are given in Table 7.  

Potential for Service Integration 

In recent years, the transportation sector has experienced technological advancements, new modes 

of transit, and increasing growth of app-based on-demand ride services. The improvement of 

transit services and provision of a better mobility experience are possible through integrating 

multiple modes in terms of ride-booking options (smartphone apps) and modes of payments 

(online payment for services). Integration of the two systems could likely improve the quality of 

service, provide a better mobility experience to users, reduce traffic congestion, enhance the 

overall system performance, and lower the operating and maintenance costs. Based on the existing 

usage patterns, we find the following advantages to integrating multiple modes to improve the 

overall system. 

Ridership / Clientele   

Handitran provides services for the entire City of Arlington, while the proposed Arlington RAPID 

services will only be available in the areas in and around the UTA campus and downtown. 

Although the service area for RAPID is minimal compared to Handitran (about 1% of the total 

Handitran service area), it will serve some of the City's largest activity centers. Since the 

population of the RAPID service area is unknown, we used the number of Handitran trips per 

square mile to compare the usage patterns and as a proxy for the future demand and potential of 

integrating both services. As shown in Table 8, the number of trips per square mile in the RAPID 
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service area was about 28% larger than that of the whole Handitran service area in 2019. Hence, 

there is considerable excess demand for using Handitran in the designated RAPID service area. 

Accordingly, the RAPID integration could improve the efficiency of Arlington's existing 

transportation system by servicing the excess demand for ridership in the City's downtown area.  

Existing user locations  

The RAPID project is projected to include a wheelchair-accessible vehicle to provide services to 

people with disabilities. To understand the potential for transit demand from the perspective of the 

transportation-disabled population, we used ArcGIS software to run an optimized hot-spot analysis 

of Handitran users, based on their home locations, comparing hot and cold spots with the proposed 

RAPID service area,  The results are shown in Figure 5. The black polygon shows the proposed 

RAPID service area, the red color shows the users' hot-spots, and white indicates that there are not 

spatially significant hot-spots. It is clear from the map that Handitran users are clustered in the 

downtown/UTA area, and the hot-spots are partially located within and surrounding the RAPID 

service zone, indicating a higher demand for paratransit services. 

Existing Demand Distribution and Future Extension Potential  

While it is important to know that many of the Handitran users are clustered in the downtown area, 

it is also important to see their usage patterns based on the spatial distribution of the number of 

trips. Intuitively, it seems that trips should be clustered in areas where users are; however, the hot-

spot analysis of the trips showed a different pattern. Figure 6 shows the results of the hot-spot 

analysis of trips based on their origins. We used Maptitude, a spatial analysis software, rather than 

the ArcGIS-optimized hot-spots option, to run the analysis for origin points of trips, as ArcGIS 

requires that the features be aggregated to a polygon. For example, it uses the number of trips per 

block/block group to create a hot-spot map, while we opted to run hot-spots based on actual trip 
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locations. Small and big polygons show the RAPID and Via on-demand service areas, respectively.  

The red areas show hot-spots, and the blue areas show cold spots. Hot-spots show spatially 

significant clustering of high values, while cold spots show spatially significant clustering of low 

values (in this case, the number of Handitran trips). These hot-spots show that although many 

Handitran users live in the downtown area, most of the trips originate from the southern part of the 

City. We also see a major effect of the Via service because all the hot-spots are located outside the 

Via service area. These patterns show the inter-dependence of multiple services and the potential 

for integration because all the services currently operate individually while competing with other 

services. The trip hot-spots data could also be useful for the future expansion of the RAPID service 

area. 

Interaction with alternative transit modes and service 

Unlike other cities of the same size, Arlington does not have a fixed-route public transit system. 

At present, Handitran only serves the transportation-disabled and elderly populations, while the 

Via on-demand rideshare service is available to anyone in the City. As of 2019, Handitran served 

the entire City of Arlington, plus 1.5 miles outside the city boundaries, while Via's service area 

was limited to specific sections of the City 5 . Therefore, it is important to understand the 

interactions of paratransit services with other public transit modes – Via, in this case.  

Table 9 shows a comparison of Handitran trips in areas where Via is and is not available, and it is 

evident that people who reside in areas that don't have Via services take more and longer trips on 

Handitran. The statistics show that 62% of Handitran trips originate from areas where Via services 

are unavailable; only 37% originate from block groups served by Via. These statistics show how 

the unavailability of an alternative mode impacts other modes. Without integration, both services 

 
5 Via’s service area was expanded to the entire city of Arlington in January 2021. 
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may be present in an area but are more likely to compete rather than to complement each other. 

On the other hand, an integrated service can significantly improve the efficiency of all 

modes/services.  

Potential for payment integration 

Another avenue of integration is the payment platform for these services. Currently, Handitran 

payments can only be made with cash or a monthly pass. According to the service policy, no 

passenger can be denied services for his/her inability to pay the fare, so a "fare-owed form" is filled 

out by any passenger unable to pay at the time of the ride. Those completing the form are obligated 

to pay later, but no data is available about how many actually do so. There is, however, data that 

shows that cash payments and fare-owed procedures can adversely affect the quality and efficiency 

of the service. Table 10 shows the distribution of modes of payments for Handitran trips. 

Approximately 34% of trips are paid for with cash, and around 16% do not pay at the time of the 

ride. This payment collection system is very inefficient and results in less revenue. Since Handitran 

does not have an existing smartphone app or online mode of payment, its revenue collection could 

be enhanced if it were integrated with RAPID.  

DISCUSSION AND CONCLUSION  

This study explored the advantages of integrating existing transportation services and proposed a 

shared autonomous vehicle (SAVs) service. We focused on an existing Handitran paratransit 

service and the RAPID SAV project piloted by the City of Arlington, Texas. Unlike past studies 

that evaluated integrated AV and public transit services by designing concrete scenarios based on 

agent-based simulation platforms [10, 11], we explored the potential for SAV/PT rideshare 

integration by determining and understanding the travel patterns of paratransit users that may be 

the future consumers of the integrated services. 



 

98 
 

Data analysis of the ridership of Arlington's paratransit service indicated significant differences in 

the travel behaviors and patterns of the two studied age groups. A large percentage of the riders 

were shown to be younger than 65, rode more frequently and for longer distances than their older 

counterparts, and utilized the service more for work and school purposes than those older than 65. 

This finding may be due to life cycle changes and travel behavior shifts in older adults, such as 

retirement [57], and their need for more medical and recreational trips. While there is no direct 

empirical evidence to identify the potential users of integrated public transit services and SAVs, 

this finding could imply that younger adults are more likely to rideshare through future integrated 

services. This result is beyond the primary public transit integration goals that are usually 

suggested to improve the mobility needs of senior adults [8]. Although it appears that the RAPID 

SAVs could provide a more convenient and flexible mobility option for elderly adults than driving 

their own vehicle, it is not possible at this time to accurately draw conclusions about the 

relationship between age and the adoption of SAVs. Our findings, however, do previous support 

studies in the US indicating that older adults are more likely to drive a private vehicle than utilize 

AVs [58], but younger people are more inclined to opt for an SAV [59]. Because many older adults 

for whom the existing paratransit services were designed do not take advantage of them, it is not 

expected that they will use  SAVs to the extent that younger adults will.  

According to the GWR results, the future RAPID service will operate in an area that shows a 

significant elasticity coefficient with existing paratransit in terms of sociodemographic attributes 

at the block-group level. In the blocks in which the integrated RAPID ride will be available, race 

(share of the white and Asian populations) has the highest negative association with the existing 

ridership. The level of education (share of the population with a bachelor's degree) and lack of 

access to a vehicle (share of households with no vehicles) also negatively affect the existing 

ridership at the block level. This result reveals that in the RAPID service area, a part of the 
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population that includes some white and Asian people with higher education and those with no 

access to a vehicle is less likely to use the current paratransit frequently. On the other hand, the 

results suggest that some RAPID service area blocks with a significant share of the 65 and above 

population have a greater tendency to use the current paratransit. These findings indicate the 

potential synergies for integrating RAPID into existing transit, including paratransit and Via on-

demand rideshare, to provide services with unique advantages to residents of this particular area 

[12]. Although little has been done to identify the sociodemographic features of potential SAV 

users [60, 61], our findings shed light on the findings from empirical studies suggesting that 

residents of densely populated regions, students, and highly trained individuals have more positive 

attitudes and perceptions towards AVs [62, 63].  

Our findings also indicate that the deployment of SAVs and existing paratransit and ridesharing 

services are not mutually exclusive. A comparison of paratransit service usage within and outside 

the RAPID service area showed that the demand for trips per square mile in the RAPID service 

area was about 128% of the total trips generated per square mile across the entire Handitran service 

area in 2019. Despite the presence of the Via rideshare service in Arlington's downtown area in 

2019, there has also been a considerable demand for using Handitran in the RAPID service area. 

This demand may be effectively met through the integration of RAPID SAVs by reducing travel 

time [9], improving service quality, and utilizing transit services more efficiently [10]. Therefore, 

we anticipate that the integration of the RAPID on-demand SAV service will improve the 

efficiency of the existing transportation system in Arlington by responding to the demand for riders 

in the downtown area through encouraging SAV ridesharing and improving the efficiency of all 

the services [11]. The high-demand hot-spots that we have identified in this work can aid city 

officials in determining future expansion areas for the service. 
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The introduction of the RAPID service in Arlington also offers opportunities for payment 

integration. Currently, more than one-third of Handitran service payments are made with cash, 

paid directly to the drivers at the time of the service. Compared to the application-based payment 

approaches, this method is sub-optimal and inefficient.  Integration of the payment methods of the 

two services could offer the Handitran users more flexibility and convenience and significantly 

improve their trip experience.  

POLICY RECOMMENDATIONS AND FUTURE RESEARCH  

A number of policy recommendations can be drawn from the analysis of sociodemographic 

determinants of ridership, spatiotemporal patterns of usage, interactions of multiple transit 

modes/services, and the potential for integration. These recommendations can benefit the 

stakeholders, the City's policy and decision-makers, and the companies providing the transit 

service in their planning, design, and optimization of mobility services for existing as well as future 

projects.  

The analysis of trip characteristics and usage patterns indicates that a very small percentage of 

eligible users (~2%) use the service, and the majority of the users are younger than 65.  We 

hypothesize that this could be due to two reasons. First, many of the City's residents are not aware 

of the service because it is not advertised. Second, the application process for determining 

eligibility takes time and extra effort that could become a stumbling block for the potential 

population, who might otherwise sign up for the service. Integration of the services and the access 

to Handitran through a smartphone application could improve the visibility of the service and also 

ease the application process for new customers by providing them with an online registration 

facility on the app.  
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The temporal distribution of trips reveals that there is a higher demand on weekdays than on 

weekends. High demand periods during weekdays are 7 to 9 in the morning and 1 to 5 in the 

evening. The evening peak for older adults lasts longer than that for younger users. The spatial 

distribution of trips at the block group level shows a wide range of variations across the City, 

indicating diverse demand levels in different areas. It is expected that the distribution of vans in 

high-demand areas and the trips of longer durations can improve the quality and efficiency of the 

service; however, a simulation-based study that evaluates the distribution of resources (vans and 

drivers) and impacts of integration with other modes and services are needed. 

Finally, the sociodemographic determinants of ridership from the geographically weighted 

regression model suggest that the effects of sociodemographic characteristics vary significantly 

across the City. A variable showing a very strong relationship with ridership in the northern parts 

of the City may show an opposite behavior in the south. These results indicate that a strategy for 

optimizing the service quality in one area may not be effective in others; therefore, the City or the 

service providers should customize any intervention. A survey designed to reveal the preferences 

of potential users in specific areas could help in determining the suitability of future plans. 

Although this study provides a good foundation for understanding the spatiotemporal patterns of 

transit ridership of older adults and the likely interaction of multiple services/modes, it could be 

expanded in the future studies by adding more sociodemographic variables and the data that covers 

a longer period of time.  
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FIGURES 

 
Figure 1. Spatial distribution of trips completed by Handitran in 2019 

 

 

Figure 2. Trip distribution by purpose.  
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Figure 3 (a). Temporal distribution of daily average number of trips made by users 65 years of 
age 

 

 

Figure 3 (b). Temporal distribution of daily average number of trips made by users under 65 
years of age  
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(a) Total population (b) Share of 65 and above 

  

(c) Share of White population  (d) Share of Asian population 
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 ` 

(e) Share of bachelors or higher degree (f) Share of households with no vehicles 

   

(g) Share of non-English speakers  

Figure 4 (a-g). Local coefficient values of independent variables vs. the dependent variable 
(number of Handitran trips per block group); color scale shows the value of each coefficient 

  



 

111 
 

 

Figure 5. Hot-spots of Handitran user locations 

 

 

 
Figure 6. Hot-spots of Handitran trips based on points of origin 
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TABLES  

Table 1. Handitran trip data summary (2019) 

 
 
Table 2. Summary of  trip data by age group 

 

 
Table 3. t-test for trip distances of two groups 

Two-sample t-test with equal variances 
Group Observations Mean Std. Err Std. Dev [95% Conf. Interval] 

Under 65  75,580 6.780989 0.015088 4.147858 6.751418 6.810561 
Over 65  30,206 6.075029 0.022283 3.87279 6.031353 6.118705 

Combined 105,786 6.57941 0.012556 4.083662 6.554802 6.604019 

Attribute Data 

Total Population in Handitran Zone 573,867 
65+ Population (ACS- 2014-2018) without Disabilities 35,368 
People with Disabilities 57,386  

(10% of the overall population has a 
disability: City of Arlington) 

Eligible People 92,754 

Total Users 1,618 (~ 1.74 % of Eligible Users) 
Total Trips 373,202 
Average Trips per User 231 
Only 12% of the users make over 50% of all trips 

 
Age Group   

 
Under 65  Over 65  Total Population 

Users     
Number of users  422 277 699 
Percentage  60% 40% 100% 
Trips 

   

Total Number of Trips  75,580 30,206 105,786 
Percentage  71% 29% 100% 
Average Number of Trips  179.10 109.05 151.34 
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Diff  0.70596  0.027713 0.651642 0.760278 
Ha: diff < 0 Ha: diff != 0 Ha: diff> 0 

Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000 

 

 
Table 4. T-test for trip durations in two groups 

Two-sample t- test with equal variances 
Group Observations Mean Std. Err Std. Dev [95% Conf. Interval] 

Under 65  75,580 18.62929 0.030948 8.508019 18.56864 18.68995 
Over 65  30,206 16.8618 s0.047864 8.318655 16.76798 16.95561 

Combined 105,786 18.1246 0.026109 8.491951 18.07343 18.17578 
Diff  1.767494  0.05755 1.654697 1.880292 

Ha: diff < 0 Ha: diff != 0 Ha: diff> 0 
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000 

 

 

Table 5. Descriptive statistics of variables in the GWR model 

 
 
Table 6. Summary of the GWR model 

------- Analysis Details ------- 
Number of Features 335 
  
Dependent Variable Number of Handitran Trips 

Variable Type Variable Mean SD 
Dependent Variable  Number of Handitran Rides  221.3 286.9 

Independent variable  

Total Population 1764 1070 
Share of 65 and above  10.9 8.03 
Share of White Population 62.7 22.3 
Share of Asian Population 5.7 7.7 
Share of bachelor's degree/more 27.5 17.6 
Share of HHs with no vehicle 4.5 6.5 
Share of Non-English speakers 30.3 17.6 



 

114 
 

Explanatory Variables 

Total Population 
Share of 65 and above  
Share of White Population  
Share of Asian Population 
Share of bachelor's degree or higher 
Share of households with no vehicles 
Share of non-English speakers  

---------- Model Diagnostics ----------- 

R-squared                           0.59 
Adjusted R-squared                          0.45 

 

 
Table 7. Variation in coefficient strengths across space 

Variable 
Spatial variation in relationship with Handitran Ridership 
Strong Neutral Weak 

Total Population South West North 
Share of 65 and above  Center  West, East South 
Share of White Pop.  Northwest, South Northeast, Southwest Center 
Share of Asian Population East, Northwest North, South Center, West 
Share of bachelor's degree/more West, Northeast South, Northwest Center 
Share of HHs with no vehicles Center North South, West 

Share of non-English speakers West, Northwest Northeast South, 
Southeast 

 

 
Table 8. Comparison of Handitran service usage within and outside of the RAPID service area 

 

 
Table 9. Trip comparison based on the availability of Via services 

 Availability of Via Services  

Service Zone  Total area (sq miles)  Total Completed Trips in 
2019  Trips per square mile  

Handitran (existing)  199 149,012 1,410 
RAPID (proposed)  1.09 1,972 1,809 
% Of RAPID 1.04 1.32 128.3 
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 NO YES Total 
Average Distance  7.13 5.36 6.46 
Total Number of Trips  80,541 48,766 129,307 
Trip Distribution Percentage  62.29% 37.71% 100% 

 
Table 10. Modes of payments for Handitran trips 

 
  

Type Share Percentage 
Cash to driver 51,825 34.78% 
Credit Card 89 0.06% 
Fare Owed 23,694 15.90% 
Monthly pass 71,726 48.14% 
Ticket 7 0.00% 
Volunteer pass 1,669 1.12% 
Total 149,010 100.00% 
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Chapter 6: Policy Implications and Future Research Opportunities 

POLICY IMPLICATIONS  

This dissertation provides an in-depth analysis of several aspects of DRT systems. As the DRT 

systems have the potential to contribute positively to making transportation systems more 

efficient and sustainable, several policy implications need to be viewed. This chapter explains 

the policy implications of the finding of this dissertation that could be applied to DRT systems in 

low-density, rural cities that lack mass transit systems.   

Firstly, the insights from travel patterns of the RAPID (SAV) users showed significantly 

different patterns of usage based on the time of the day and the day of the week. The usage 

trends showed higher ridership numbers on Wednesdays and Thursdays and early and late 

afternoon times. These patterns indicate the spatial and temporal patterns of the concentration of 

demands of the RAPID service. These insights could be used to implement strategies for 

balancing supply and demand and improving service efficiency in order to provide services in 

areas and times of need. Managing the supply of services that meets the demand levels could 

keep the travel times under a certain threshold to keep the satisfaction levels of existing users and 

attract new customers to switch from their existing modes of transit to RAPID.  

Planning the service schedules for the service will help with better service reliability and 

accessibility to attract more users.  

The finding from the Ordered Logistic Regression models indicates that the existing mode of 

transit and user perceptions about the RAPID service plays a vital role in user acceptance of the 

SAV service. Safety is an important factor, as users with higher levels of perception about the 

safety of RAPID were more likely to be frequent users. Users with  Uber, Lyft, Walking, and 

Biking as their usual mode of commute are more likely to be frequent users than users who take 
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private vehicles as their usual mode of transport. This provides an opportunity for RAPID 

service to attract users from other modes to be loyal RAPID customers. This could be achieved 

by offering safe, accessible, and reachable services when users need them the most. The 

likelihood of attracting users from other modes could be exploited by removing the barriers in 

multi-modal transport and providing options to users to be able to switch between the modes and 

be able to move from one service to the other. The strategies, if measured and applied in the right 

way, could significantly improve the ridership numbers of the RAPID service.  

In terms of traffic safety, the findings from the RideAustin service indicate that the impact of the 

service on traffic crashes was more obvious when the number of trips taken in that area was beyond 

a certain threshold. This indicates that the mere presence of a service is not likely to make any 

significant difference unless the service has a large clientele and shares a good proportion of all 

vehicular trips in an area. This underscores the important point that policymakers and decision-

makers should focus more on service quality instead of the mere provision of a service. Regular 

auditing of ridership patterns could be a very useful means to take account of current ridership 

trends and the potential of improving the service and ridership. Strategies to incentives and 

subsidize  DRT services could be helpful in improving ridership numbers that could result in a 

reduction of traffic crashes.  

Ridership analysis of Handitran data indicates sub-optimal usage ( 2% use the service), and most 

of the users are younger than 65 years of age. The likely reason could be attributed to a lack of 

awareness by eligible users and the difficult sign-up process for potential users. These barriers to 

onboarding new users could be addressed by strategies to advertise the service so that the majority 

of the population is aware of the availability of this service. The sign-up process could be made 

easier and simpler by integrating Handitran with existing DRT services that already have running 
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smartphone applications. That could help attract more users and benefit the eligible, transit-

dependent populations.   

The results from the Geographical Weighted Regression (GWR) model indicate that the 

relationship of socio-demographic variables varies significantly across the space in the study area. 

This indicates that all socio-demographic groups have different responses and travel patterns. This 

indicates that policymakers should implement strategies that are focused on each socio-

demographic group instead of using a one fits all approach. These tailored interventions could help 

improve the service quality and the user base.   

FUTURE RESEARCH OPPORTUNITIES  

The RAPID SAVs study was based on a survey responded to by current users of the service. To 

understand the likelihood of users switching from other modes to RAPID, it is important to also 

analyze the behaviors of potential users, which could be included in a future study. That will 

provide better insights into user preferences and their willingness to switch existing modes of 

transit they use.  The cost of traveling and willingness to pay to use SAV services are vital 

factors in the acceptance of these services. The RAPID SAV service study could not include the 

impacts of the cost of traveling as the service was available free of cost to UTA students. A study 

in the future to analyze the impacts of travel cost and how it impacts users willing to pay to get 

better insights for acceptance of such services.  

Traffic safety studies were based on data collected from the Texas Department of Transportation’s 

(TxDOT) Crash Record Information System (CRIS). Although the data is a great resource for the 

analysis of traffic crashes, it only includes traffic crashes that were reported to the police. Future 

research using any alternative sources of data, such as crowdsourced data, could be used future 
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research. Data for RideAustin was available only for one year; future studies could include data 

for a longer duration to have a better insight into the impact of DRT services on traffic crashes.  
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