
LEARNING CAUSAL BOUNDS USING MARGINAL INDEPENDENCE

INFORMATION WITH APPLICATIONS TO GENE EXPRESSION ANALYSIS

by

BORZOU ALIPOURFARD

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2022

Copyright c© by BORZOU ALIPOURFARD 2022

All Rights Reserved

To my mother Ladan and my brother Omid

who set the example and who made me who I am.

ACKNOWLEDGEMENTS

I want to thank Dr. Gao for trusting me and giving me the freedom to pursue

my research interests. If it wasnt for her trust I wouldnt have had the confidence

to overcome and push through so many difficulties. I wish to thank my academic

advisors Dr. Gautam Das, Dr. Manfred Huber, Dr. Dajiang Zhu for their interest in

my research and for taking time to serve in my dissertation committee.

2/7/2022

iv

ABSTRACT

LEARNING CAUSAL BOUNDS USING MARGINAL INDEPENDENCE

INFORMATION WITH APPLICATIONS TO GENE EXPRESSION ANALYSIS

BORZOU ALIPOURFARD, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Jean Gao

Discovering causal relations is a fundamental goal of science. Randomized

controlled experiments were often considered to be the only reliable method for

tackling this task. However, in recent years, various causal discovery methods have

been proposed that are capable of identifying causal relations from purely observational

data. While these causal discovery methods provide a theoretical framework for

bridging the gap from statistical relations to causal conclusions, causal discovery

remains a challenging task in practice; this challenge arises because many of the

assumptions made in obtaining these theoretical results are often not met in practice.

This is especially true when one considers causal discovery in the landscape of genomic

data. The critical challenge in learning causal relations in genomic data concerns a

marked contrast between the sample size requirements of the aforementioned causal

discovery algorithms and the size of the samples obtained through genomic experiments.

These causal discovery tools require at least thousands of samples for identifying

small causal networks in domains with five to ten variables; in genomic data, we

often face networks with hundreds of nodes while the available sample is limited to

v

thousands at best. Besides this factor, in genomic studies, we have to deal with

measurement errors, averaging effects, and feedback loops, all of which undermine

the theoretical assumptions that come at the core of any typical causal discovery

algorithms. In this work, we propose a series of improvements to the available causal

discovery algorithms and propose new causal discovery tools that overcome all the

aforementioned challenges allowing one to learn and uncover relations of causal nature

in gene expression measurements.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xvi

Chapter Page

1. INTORDUCTION . 1

2. SOLVING ALL REGRESSION MODELS FOR LEARNING GAUSSIAN

NETWORKS USING GIVENS ROTATIONS 5

2.1 Introduction . 5

2.1.1 Previous Work . 6

2.1.2 Givens Rotations . 7

2.1.3 Retriangularization with Givens Rotation 8

2.2 Problem Definition . 9

2.3 A Greedy Algorithm Using Givens Rotations 11

2.4 Optimality of Greedy Algorithm . 14

2.5 Algorithmic Complexity Analysis . 16

2.6 Parallelization . 18

2.7 Conclusion . 20

3. A RENORMALIZED NORMALIZED MAXIMUM LIKELIHOOD CRITE-

RIA FOR LEARNING BAYESIAN NETWORKS 22

3.1 Introduction . 22

3.2 Gaussian Networks . 24

vii

3.3 A Crude Three-Part Code Scoring Metric 26

3.3.1 Inefficieny of Two Part Codes 29

3.4 Normalized Maximum Likelihood . 29

3.4.1 Renormalized Normalized Maximum Likelihood Scoring Metric 32

3.5 Asymptotic Behavior . 34

3.6 Numerical Evaluation . 35

3.7 Performance in Low Dimensional Setting 36

3.8 Performance For Larger Networks . 39

3.9 Conclusion . 40

4. LEARNING A LOWER BOUND ON DIRECT CAUSAL INFLUENCES

FROM MARGINAL INDEPENDENCIES 42

4.1 Introduction . 42

4.1.1 Overview of Prior Work . 44

4.1.2 Overview of Main Contributions 45

4.1.3 Overview of Results . 46

4.1.4 Problem Setting: Causal Gene Selection 46

4.2 Methods . 49

4.2.1 Causal Assumptions . 49

4.2.2 Notation . 50

4.2.3 From associative relations to causal implications: a review . . 51

4.2.4 A new perspective on causal implications of a marginal indepen-

dence structure: from causal DAGs to causal posets 52

4.2.5 Causal Feature Selection Using Marginal Independence Graph 56

4.3 Evaluation . 58

4.3.1 Simulations: Precision and Recall of Lemma 9 vs. CI tests . . 58

4.3.2 Gene Expression Analysis: Dataset GSE101521 60

viii

4.4 Discussion and Conclusions . 63

Supplementary Materials . 64

5. CAUSAL DISCOVERY FROM HETEROGENEOUS DATA: DECIDING

IF CHANGES IN MARGINAL DEPENDENCY STRUCTURE ADMIT A

CAUSAL EXPLANATION . 71

5.1 Introduction . 71

5.2 Preliminaries . 74

5.2.1 Class Σ of Undirected Graphs 77

5.3 Causal Learning From Dependency Loss: Decision Problem 79

5.4 Causal Learning From Dependency Change: Decision Problem 83

5.4.1 Weak Acyclicity . 83

5.4.2 Strong Acyclicity . 85

5.5 Causal Learning From Dependency Change: A Novel Causal Discovery

Tool . 89

5.6 Simulations . 92

5.7 Conclusions and Future Work . 96

5.8 Chapter 5 Appendix . 102

6. CAUSAL DISCOVERY USING DIRECTED TOPOLOGICAL OVERLAP

MATRIX . 166

6.1 Introduction . 166

6.2 Methods . 169

6.2.1 Unobserved Con-founders . 174

6.2.2 Measurement Errors . 174

6.2.3 Averaging . 175

6.3 Simulations . 175

6.4 A Large Scale Gene Deletion Study in Yeast 177

ix

6.5 Uncovering Post-transcriptional Myostatin Mutation in Piedmontese

Cattle . 185

6.6 Conclusions . 188

REFERENCES . 190

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Each node represents a QRD. An edge indicates that one can calculate

the QRD of a neighbouring node through using GRC operation. 9

3.1 The average rank of the generating network structure for networks having

m nodes, m ∈ {4, 5}, over 500 iterations plotted against the sample size.

The upper plot shows the results for networks having four nodes, while

the convergence rate for networks having five nodes is shown in the lower

plot. 37

3.2 Average SHD between the generating DAG and the prime DAG in

simulations with m = 8. The upper plot shows the results for graphs

where the expected number of neighbours for each node was set to nn = 2.

The middle and the lower plots show the results for nn = 4 and nn = 6. 38

3.3 Average SHD between the generating DAG and the prime DAG in

simulations with m = 10. The upper plot shows the results for graphs

where the expected number of neighbours for each node was set to nn = 2.

The middle and the lower plots show the results for nn = 4 and nn = 6. 39

4.1 Our goal is to identify the direct children of the class variable, i.e. nodes

marked by the red color. 47

4.2 Precision and Recall of boundary method against CI tests in identifying

children of a node among its descendants as a function of the sample size 61

4.3 Precision and Recall of boundary method against CI tests in identifying

children of a node among its descendants as a function of the network size 61

xi

4.4 Precision and Recall of boundary method against CI tests in identifying

children of a node among its descendants as a function of the network

sparsity . 62

4.5 Precision and Recall of boundary method against CI tests in identifying

children of a node among its descendants as a function of the number of

children of root node. 62

4.6 The sketch of the graphs and their transformations used in the proof of

Lemma 3 in A2. SC refers to the transformation corresponding to sink

completion and Σ refers to that of forming the marginal independence

graph. 65

4.7 The marginal independence structure of a non-transitive triple chain in

D ∈ S(G). The presence of edges marked by dashed lines is not certain

(they can be both present or absent). 67

5.1 The flowchart of the process described in Theorem 1.1. To identify if

there exists a pair of DAGs satisfying the conditions of the dependency

loss problem for a given pair of marginal dependency graphs, G and G1,

we first form their sink graphs Λ(G) and Λ(G1). Then, we transfer the

edge orientations from Λ(G) to Λ(G1), constructing the G-mirrored sink

graph of G1, ΛG(G1). There exists a solution to the dependency loss

problem, if and only if any DAG in the acyclic completion of the reduced

G-mirrored sink graph of G1 generates G1. 81

5.2 No DAG in the acyclic completion of the reduced G-mirrored sink graph

of G1 can generate G1, since the nodes b and c are disconnected in all

such DAGs. Therefore, according to Theorem 1.1, we conclude that

there exists no pair of DAGs, D and D1, with D1 ⊆ D, that solve the

depicted dependency loss problem. 82

xii

5.3 Even when the intersection of the target marginal dependencies is empty

we cannot guarantee a strong acyclic solution. 86

5.4 While the graphical representation in Figure 5.4.b succinctly captures

the causal relations in the domain, it is not a faithful representation of

the probability distribution implied by the causal structures shown in

Figure 5.4.a . 88

5.5 An example S(G,G1) and ∆(G,G1). 90

5.6 The number of edges implicated by the bound Λδ({G}, G,G1) is almost

always smaller than the number of unstable marginal dependency relations. 97

5.7 The number of unstable marginal dependency relations as a function

of the network size, m = {10, 12, 14, 16, 18, 20, 25}, and the number of

causal mechanisms that are manipulated l = {3, 5, 7}. 98

5.8 Compared to the heuristic bound corresponding to the unstable marginal

dependency relations, our theoretically legitimate upper bound offers

a significantly better approximation to the l = {1, 3, 5, 7} causal mech-

anisms that had caused the unstable marginal dependency relations.

. 99

5.9 The precision offered through the bound Λδ({G}, G,G1) in uncovering

the causal origins of K unstable marginal dependence relations is similar

to the precision one can hope for if one were to come up with a causal

explanation for a marginal dependence graph with K edges. 100

5.10 The precision offered by the bound Λδ({G}, G,G1) in identifying the

nodes whose generating causal mechanisms were manipulated (in blue

curve) compared to the precision of the heuristic bound of unstable

marginal dependency relations. 101

xiii

5.11 If a node, c, has a common ancestor with a, then it shares the same

ancestor with b also. 163

6.1 If a node, c, has a common ancestor with a, then it shares the same

ancestor with b also. 172

6.2 The average precision of DTOM and the average number of discovered

causal relations as a function of the parameters τ1 and τ2 in a domain

consisting of 500 nodes when given 80 samples. 177

6.3 We lowered the threshold parameter τ2 from 0.95 down to 0.70 in intervals.

At each step, we recorded the count of causal relations we discovered

(X-axis), and also, the precision of these discoveries as validated against

the true positive causal relations we estimated previously (Y-axis). The

point at the top left corner corresponds to τ2 = 0.95 and the point at

the bottom right corner correspond to τ = 0.7. 181

6.4 Precision of DTOM in resolving causal relations as a function of the

threshold parameters τ1 and τ2. 182

6.5 The average rank of the deleted gene in a gene deletion sample as scored

by the metric in Eq. 6.4 against the average number of differentially

expressed genes. Differentially expressed genes are those genes (1) whose

expression levels are statistically significantly different at p-value of

1e-6 when compared to normal expression levels in the wild-type control

samples, and (2) whose expression levels are above a predefined threshold.

We have marked the thresholds we chose in the figure. 184

xiv

6.6 The 85 circles mark the co-expression values of GDF8 and the 85 differ-

entially expressed genes; we used the Pearson correlation coefficient in

measuring the co-expression of the genes. The size of a circle is drawn

proportional to the expression level of its corresponding differentially ex-

pressed gene multiplied by the size of its differential expression. We have

indicated the 20 largest circles with the orange color. In the Wagyu cattle,

GDF8 often appears as a negative regulator of the differentially expressed

genes. In the Piedmontese cattle, however, the GDF8’s functional role

as a negative regulator is significantly less pronounced. 186

6.7 The directed topological overlap from GDF8 to the 85 differentially

expressed genes in the Piedmontese cattle (X-axis) and the Wagyu cattle

(Y-axis). 188

xv

LIST OF TABLES

Table Page

2.1 Comparison of the runtime of the proposed method (in bold) to three

other algorithms. 18

3.1 The average difference between the SHD of the prime graph to the

generating graph when using RNML metric compared to that of MDL

and the best (smallest) of AIC/BIC. 41

4.1 Among the 34 differentially expressed genes between the two groups of

MDD-S and CON, we identied four that must be directly affected by

the phenotype. 63

5.1 The orientation of the edges of the G−mirrored sink graph of G1, ΛG(G1),

as a function of the orientations of Λ(G) and Λ(G1), the sink graphs of

G and G1. 80

5.2 The orientation of the edges Λδ(f, G,G1), as a function of the orientation

of the edges of sink graph of G, the f−mirrored sink graph of G1. An

empty cell signifies an edge that is removed. 91

xvi

CHAPTER 1

INTORDUCTION

Discovering causal relations is a fundamental goal of science. Randomized

controlled experiments were often considered to be the only reliable method for

tackling this task. However, in recent years, various causal discovery methods have

been proposed that are capable of identifying causal relations from purely observational

data. While these causal discovery methods provide a theoretical framework for

bridging the gap from statistical relations to causal conclusions, causal discovery

remains a challenging task in practice; this challenge arises because many of the

assumptions made in obtaining these theoretical results are often not met in practice.

This is especially true when one considers causal discovery in the landscape of genomic

data. The critical challenge in learning causal relations in genomic data concerns a

marked contrast between the sample size requirements of the aforementioned causal

discovery algorithms and the size of the samples obtained through genomic experiments.

These causal discovery tools require at least thousands of samples for identifying

small causal networks in domains with five to ten variables; in genomic data, we

often face networks with hundreds of nodes while the available sample is limited to

thousands at best. Besides this factor, in genomic studies, we have to deal with

measurement errors, averaging effects, and feedback loops, all of which undermine

the theoretical assumptions that come at the core of any typical causal discovery

algorithms. In this work, we propose a series of improvements to the available causal

discovery algorithms and propose new causal discovery tools that overcome all the

1

aforementioned challenges allowing one to learn and uncover relations of causal nature

in gene expression measurements.

In chapter two we study a possible improvement to the Score based learning (SBL)

algorithms for causal discovery. The initial step in the majority of the SBL algorithms

consists of computing the scores of all possible child and parent-set combinations for

the variables. For networks with continuous variables, a particular score is usually

calculated as a function of the regression of the child over the variables in the parent-

set. The sheer number of regressions models to be solved necessitates the design of

efficient numerical algorithms. In chapter two, we propose an algorithm for an efficient

and exact calculation of regressions for all child and parent-set combinations. In the

proposed algorithm, we use QR decompositions (QRDs) to capture the dependencies

between the regressions for different families and Givens rotations to efficiently traverse

through the space of QRDs such that all the regression models are accounted for in

the shortest path possible. We compare the complexity of the suggested method with

different algorithms, mainly those arising in all subset regression problems, and show

that our algorithm has the smallest algorithmic complexity. We also explain how to

parallelize the proposed method so as to decrease the runtime by a factor proportional

to the number of processors utilized.

While, Score based learning has proved a promising approach for learning causal

networks in the discrete domain, when employing SBL in the continuous domain, one

is either forced to move the problem to the discrete domain or use metrics such as

BIC/AIC/BGe, and these approaches are often lacking: discretization can have an

undesired impact on the accuracy of the results, and BIC/AIC/BGe can fall short of

achieving the desired accuracy. In the third chapter, we introduce two new scoring

metrics for scoring causal networks in the continuous domain: the three-part minimum

description length and the renormalized normalized maximum likelihood metric. We

2

rely on the minimum description length principle in formulating these metrics. The

metrics proposed are free of hyperparameters, decomposable, and are asymptotically

consistent. We evaluate our solution by studying the convergence rate of the learned

graph to the generating network and, also, the structural hamming distance of the

learned graph to the generating network. Our evaluations show that the proposed

metrics outperform their competitors, the BIC/AIC/ and BGe metrics.

In the fourth chapter we consider causal learning in the low sample regimes, where

typical causal discovery algorithms, especially the ones using conditional independence

tests, suffer greatly. In chapter four, we examine the possibility of causal discovery

using only the pairwise dependency structure of a domain and investigate if this

approach can lead to more robust and reliable solutions to causal discovery when the

sample size is limited. We show that marginal dependence relations can be used to

construct a novel causal discovery tool capable of distinguishing between direct and

indirect causal effects and detecting a lower bound on direct causal effects. In our

simulations we found that causal discovery using marginal dependency information

can be significantly more accurate than causal knowledge obtained through conditional

independence tests when the sample size is limited: our experiments suggests avoiding

conditional independence tests can reduce error rate by up to 30 percent. Finally,

using this marginal dependency based causal discovery tool, we propose four candidate

genes that possibly contain the causal mutation in Major Depressive Disorder utilizing

a database of only 59 samples.

Studying patterns of dependency loss has been a cornerstone heurstic when it

comes to learning causal relations in gene expression studies. However, there are no

theoretical results that substantiate the causal claims made in this manner. Therefore,

it has not been easy to establish how well these algorithms can generalize—as causal

discovery tools—beyond the very specific datasets they were designed to handle. In

3

chapter five, we present a theoretical framework based on Reichenbach’s common

cause principle that legitimizes causal discovery from dependency loss. We build a

novel causal discovery tool that transforms dependency loss patterns into a set of

partially directed graphs; these graphs serve as upper and lower bounds depicting the

causal origins of the changes in the dependency.

4

CHAPTER 2

SOLVING ALL REGRESSION MODELS FOR LEARNING GAUSSIAN

NETWORKS USING GIVENS ROTATIONS

2.1 Introduction

Bayesian networks (BN) are used to portray probabilistic dependencies. They

are graphical models that encode a set of conditional independence statements through

absence or presence of directed edges among nodes in a graph [1, 2]. The child and

parent relations formed in a such a graph help capture the dependency structure of the

domain. BNs have found great application in machine learning, knowledge modeling,

desicion systems, and causal learning [3, 4, 5].

A significant statistical problem is to learn a BN from observational data. A

promising approach for tackling this learning problem consists of a group of algorithms

under the heading of score based learning algorithms (SBL) [6, 7, 8]. The initial

step in the majority of the SBL algorithms consists of computing the local scores

for all possible child and parent-set combinations [9, 10, 11]. In the case of Bayesian

networks over continous domain, the local score for a particular child and parent-set

pair is usually calculated as a function of the regression of the child variable over

the parent-set. The sheer number of regressions models that need solving presents

a computational challenge. For a network with m nodes, there are 2m−1 candidate

parent sets for a particular node and a total of m2m−1 candidate families (a family

consisting of a particular child and parent-set pair). The exponential number of node

and parent-set combinations neccesiates the need for efficient numerical strategies.

5

In this paper, we propose an algorithm for an efficient and exact calculation of

regressions for all child and parent-set combinations of a given set of variables. The

main data structure employed in the proposed algorithm is QR decomposition (QRD)

as it both provides high numerical percision and can capture the dependency between

the regressions for different families. Using QRD together with Givens rotations (a

low-cost operation), we show how to form a sequence of R matrices that provide the

necessary information required to solve the regressions for all the families. In the

proposed algorithm, we find the shortest of such sequences.

We further compare the theoretical runtime of the suggested method with

different algorithms, mainly those arising in all subset regression problems, and show

that our algorithm has the fastest runtime. We also explain how to parallelize the

proposed algorithm providing a linear speedup proportional to the number of processors

utilized.

2.1.1 Previous Work

A brute strategy for calculating all regression models would be to solve the

regression equations for each family independent of the other families. Given the

QRD of a family with k parents, the number of flops (a flop consisting only of basic

arithmetic operations such as a multipication, a division, a subtraction, or an addition)

required for calculating the regression coefficients is of the order of O(k2). Forming

the QRD itself requires O(2nk2) flops given n samples. Therefore, the total number

of flops required for calculating the regressions for all parent-set and child pairs is:

O(naive) = m
m∑
k=1

(2nk2 + k2)C(k,m), (2.1)

6

where C(k,m) is the number of possible combinations of k objects out of m,

and m is the number of variables.

We can achieve a faster runtime by using the covariance matrix of the data and

Cholesky decompositions and form each QRD in O(k3/3). This however comes at cost

of numerical accuracy [12]. Using (2.1) and replacing 2nk2 + k2 with k3/3, it can be

shown that forming the QRDs for all parent-set and child pairs requires O(m22m−2)

flops.

A better strategy would be to consider the problem of calculating the regression

models for all the families as that of solving for multiple all-subset regression problems

[13, 14, 15]. In other words, calculating the regression models for a BN over m variables

can be thought of as m all-subset regression problems, one for each node. Using

algorithms specialized to all-subset regression problems such as Clarke’s algorithm

or DCA, it is possible to achieve a linear speed up in solving for regression models

[16, 17, 18]. However, such algorithms still solve the all-subset regression problem for

each node independent of the other nodes and do not utilize the full structure of the

problem. Thus we conjecture that it is possible to improve the runtime even further.

2.1.2 Givens Rotations

Reviewing the basics of Givens rotations would help us explain the workings

of our proposed algorithm better. Pre-mutliplying a vector with a Givens rotation

matrix, G
(i,j)
θ , rotates the vector in the (i, j)th plane:

7

G
(i,j)
θ =

I 0 0

cos(θ) sin(θ)

0 0

− sin(θ) cos(θ)

0 0 I

, (2.2)

where cos(θ) and sin(θ) in G
(i,j)
θ appear at the intersections of ith and jth rows

and columns. By choosing θ appropriately, it is possible to rotate a vector such that

its jth component becomes zero while preserving its norm [7].

2.1.3 Retriangularization with Givens Rotation

Consider a data matrix for the variables {v1, .., vi, vi+1 , ..., vm} and its corre-

sponding QRD (with the same variable ordering). Having this QRD, it is then possible

to compute the QRD of the data matrix with variables ordered as {v1, .., vi+1, vi, ..., vm}

(variables {i} and {i+ 1} are transposed in the new order) by pre-multiplying the R

factor (after having its {i} and {i+ 1} columns swapped) by an appropriate Givens

rotation matrix:

R̂ = G
(i,i+1)
θ

r1, 1 . . . r1,i+1 r1,i . . . r1,m

0 . . . r2,i+1 r2,i . . . r2,m

...
...

...
...

0 . . . ri,i+1 ri,i . . . ri,m

0 . . . ri+1,i+1 0 . . . ri+1,m

...
...

...
...

0 . . . 0 0 . . . rm,m

, (2.3)

8

[A,B,C] [B,A,C] [B,C,A]

[C,B,A][C,A,B][A,C,B]

GRC GRC

GRC

GRCGRC

GRC

Figure 2.1: Each node represents a QRD. An edge indicates that one can calculate
the QRD of a neighbouring node through using GRC operation.

where θ can be calculated using :

cos(θ) =
ri,i+1√

(r2
i,i+1 + r2

i+1,i+1)

sin(θ) =
ri,i+1√

(r2
i,i+1 + r2

i+1,i+1)

(2.4)

Such matrix transformation requires O(6 ∗ (m− i+ 1)) flops. We can regard this

procedure as an operator that given a starting QRD outputs another QRD by column

swapping and retriangularization. We will call this operator GRC and will refer to it

by
GRC−−−→. We use

GRCi−−−→ to emphasize that column swapping occurs at index i.

2.2 Problem Definition

We will describe our problem’s framework and our proposed algorithm by

considering an example Bayesian network with three nodes, {A,B,C}. We use this

example to construct a more general framework by the end of this section. In a BN

over three variables, there are a total of nine regression models: {[A] ⊥ B, [A] ⊥

C, [B] ⊥ A, [B] ⊥ C, [C] ⊥ B, [C] ⊥ A, [A,B] ⊥ C, [A,C] ⊥ B, [B,C] ⊥ A}, where

9

[x, y] ⊥ z represents the regression model with {x, y} as predictor variables and z as

the response variable.

For these variables, there are also six QRDs, each corresponding to a specific

premutation of these variables. Each QRD can, in turn, be used to solve three

regression models:

[A,B,C]⇒ {[A] ⊥ B, [A] ⊥ C, [A,B] ⊥ C}, (2.5)

where we have used [A,B,C] for the QRD of the data matrix with variables

ordered as [A,B,C]. We can go from one permutation to another (from one QRD

to another) by using the operation introduced above and transposing two adjacent

columns and retriangularization of the resulting matrix by using Givens transformation:

[A,B,C]
GRC2−−−→ [A,C,B]. (2.6)

The GRC operation allows us to traverse between the six QRDs for the variables

[A,B,C] as shown in the graph of Fig 2.1.

Now consider the sequence of column transpositions giving rise to sequence of

permutations:

[A,B,C]
GRC1−−−→ [B,A,C]

GRC2−−−→ [B,C,A]

GRC1−−−→ [C,B,A]
GRC2−−−→ [C,A,B].

(2.7)

Note that all 9 regression models are included in this permutation set. Therefore,

it is possible to obtain all the QRDs necessary for solving all the regression models in

a BN with three variables starting with an initial QRD, and forming four more by

four adjacent column transpositions and application of four Givens rotations. Thus

10

the problem of solving for all nine regression models is reduced to performing four

simple Givens rotations.

Using this example as a basis, we propose the following algorithm. The algorithm

starts with calculating the QRD of the data matrix for m variables. This initial QRD

can be used to solve regression models for
m(m− 1)

2
families. Then, through a

sequence of adjacent column transpositions and retriangularizations, new QRDs are

calculated. Each new QRD provides the information required to solve further regression

models until all regression models are accounted for. The only remaining decision is to

choose the sequence of column transpositions optimally such that minimum number

of column transpositions are employed.

2.3 A Greedy Algorithm Using Givens Rotations

In our algorithm, we choose the sequence of column transpositions in a greedy

manner, leading to a very simple and intuitive algorithm. The greedy choice at each

step consists of chooing a column for swapping such that the number of new models

specified by the new permutation is the highest. Following is the sequence of greedy

column transpositions that provides a sequence of QRDs sufficient for solving all the

11

regressions of a BN with four variables, {A,B,C,D} (the total number of models

specified at each step is shown next to the permutations):

[A,B,C,D] ⇒ (6Models)

[B,A,C,D] ⇒ (9Models)

[B,C,A,D] ⇒ (11Models)

[C,B,A,D] ⇒ (14Models)

[C,A,B,D] ⇒ (16Models)

[C,A,D,B] ⇒ (17Models)

[C,D,A,B] ⇒ (19Models)

[D,C,A,B] ⇒ (22Models)

[D,A,C,B] ⇒ (24Models)

[D,A,B,C] ⇒ (25Models)

[D,B,A,C] ⇒ (26Models)

[D,B,C,A] ⇒ (28Models)

(2.8)

On closer examination, one will see that the above greedy algorithm follows a

recursive structure. More specifically, consider the variables {X1, X2, ..., Xm−1, Xm}.

Assume that we are given the QR decomposition of the variables in the same order as

written above. Note that the greedy algorithm starts at the left most position. Further,

note that transposing at Xm, the last variable, at any step, leads to a permutation

that only adds one single model. Therefore, a greedy algorithm can always limit its

operation to transposing the first m− 1 variables until all the m(2m−2 − 1) regression

models having predictors in {X1, X2, ..., Xm−1} are solved. When the permutations

are such exhausted that transpositions in these positions add no new models, then

the first transposition of Xm occurs: {X̂1, X̂2, ..., Xm, ˆXm−1}. In the following steps,

unless Xm is at first position, then no transposition on other variables is allowed

12

since such transpositions add no new models. This sequence continues until through

transpositions on Xm, this variable comes to the first position of the permutation,

{Xm, X̂1, X̂2, ..., ˆXm−1}. At this step, a greedy algorithm for {Xm, X̂1, X̂2, ..., ˆXm−1}

applies the same sequence of transpositions to {X̂1, X̂2, ..., ˆXm−1} that it previously

applied to {X1, X2, ..., Xn−1}. Therefore, we can implement the proposed greedy

algorithm through recursion.

In particular, assume that we have found a sequence of greedy column transposi-

tions that generates a set of QRDs sufficient for finding all the m(2m−1− 1) regression

models for a BN with m nodes. Let us call this sequence of column transpositions

Υ(m). The greedy sequence of column transpositions for a graph with m+1 nodes can

then be formed in three steps. (1) Υ(m+ 1) starts with the same sequence of column

transpositions as that of Υ(m), leading to permuatations necessary for calculation of

the regressions of every node Xi over all possible parent-sets not containing Xm+1. (2)

To calculate the regressions of nodes Xi over parent-sets containing Xm+1, we first

move the variable Xm+1 to the start of the ordering by applying m column transposi-

tions. (3) The final sequence of column swapping in Υ(m+ 1) consists of swappings at

indexes i+ 1 for i ∈ Υ(m). The resulting sequence of column transposition then form

the sequence of greedy column transpositions that generate for finding permutaitons

necessary the score table of a BN with m+ 1 nodes. The pseudocode GreedySwaps in

Algorithm 1 uses this recursive structure to find the sequence of greedy swaps.

Clarke has proposed an algorithm for solving all subset regression problem with a

similar recursive structure [18, 14]. There are, however, major differences between the

two algorithms. First, in every QRD, we consider all possible combinations of regressor

and predictor variables. For example, in the case of having the QRD of variables

{A,B,C,D}, given in alphabetic ordering, Clarke is only concerned with the three

regression models {[A,B,C]⊥D, [A,B]⊥D, [A]⊥D}, while we consider the regression

13

Algorithm 1 GreedySwaps(m)

Input: number of nodes in the BN m

Ouput: An array of length 2m −m− 1 of swapping indexes

if m == 2 then

return [1]

else

Υ̂← GreedySwaps(m− 1)

return (Υ̂ : [m− 1..1] : [i|i ∈ Υ̂])

concatanation operator is shown by :

end if

models {[A,B]⊥C, [A]⊥B, [A]⊥C} in addition to that of Clarke’s. Furthermore, as

discussed later in section 6, our algorithmic complexity analysis shows that the

proposed algorithm results in a linear speed up compared to that of Clarke’s.

Using the recurrence relation described above, we can find the length of the

greedy sequence of column transpositions as a function of number of variables in the

BN:

|Υ(m)| = 2|Υ(m− 1)|+m− 1,

|Υ(m)| = 2m − 1−m.
(2.9)

2.4 Optimality of Greedy Algorithm

In this section, we show that the proposed greedy algorithm is optimal; that

the number of GRC operations or column transpositions required for generating a

sufficient set of QRDs for solving all the regression models of a BN using the greedy

algorithm is minimal. Our proof makes use of an auxiliary problem. This problem

is that of solving all subset regression problem for m predictors and one (imaginary)

14

response variable. We first show that our original problem is equivalent to this

auxiliary problem when the only operation allowed is that of column transposition

and retriangularization. Since the optimal solution for the auxiliary problem is known

[6], we can then show that our solution is optimal for the original problem.

In the first step of our proof we show that the two following problems are

equivalent:

(i) Problem I (Original). Forming a sequence of QRDs such that all the regression

models for a BN with m variables are included in the QRD set. The constraints

are that we only have access to the starting QRD with variables ordered as

[X1, ..., Xm]. Further, the only operation available is transposing two immediate

column and retriangularization using the GRC operator.

(ii) Problem II (Auxiliary). Forming a sequence of QRDs such that all the regression

models in an all subset rgression problem with m predictor variables are included

in the QRD set. Again we are given a starting QRD with variables ordered as

[X1, ..., Xm, Y] (Y is the response variable). We are also again constrained to

only using the GRC operator.

We first show that every solution to Problem I is also a solution to problem II.

Specifically, assume that we are looking to solve the regression of Y over predictor

set P = {X1P , .., XKP}. In other words, we want a QRD where the variables, V =

{X1, .., Xm}, are ordered as [perm1(P), perm2(V \P)], and perm1(P) and perm2(V \P)

are some permutations of variables in the sets P and V \P . Assume that the size

of the predictor set P is smaller than m. Since we know the solution to Problem I,

then we have access to QRDs that provide the solution to the regressions of node

Xj, Xj ∈ V \P , over all its possible parent sets. Thus, the solution to Problem I,

has to provide a QRD of the form [ˆperm1(P), ˆperm2(V \P)]. Choosing perm1(P)

and perm2(V \P) equal to ˆperm1(P) and ˆperm2(V \P), we get the desired QRD. If

15

P == V , we simply choose a node Xj , and the solution to Problem I, provides access

to a QRD of the form [perm1(V \{Xj}), Xj], which is the desired QRD for solving

problem II.

In the same manner, we can show that every solution to Problem II is also

a solution to Problem I. Assume we wish to solve a regression for a specific parent

set and node pair where the parents are in the F = {X1F , .., XKF}, and the node

is Xj /∈ F . In other words, we want a QRD where the variables are ordered as

[perm1(F), perm2(V \F)], where V = {X1, .., Xm}, and perm1(F) and perm2(V \F)

are some permutations of variables in the sets F and V \F . Given the solution to

Problem II, we have QRDs for all subset regression models. Therefore, we have

access to a QRD where the first m variables are ordered as [ˆperm1(F), ˆperm2(V \F)].

Choosing perm1(P) and perm2(V \F) equal to ˆperm1(P) and ˆperm2(V \F), we get

the desired QRD. This concludes our proof that the above two problems are equivalent.

Our solution to Problem I, uses 2m −m− 1 column transpositions. It has been

proven that the minimal number of column transpositions required for solving Problem

II, is in fact 2m −m − 1. Therfore, the proposed greedy algorithm is optimal and

no other algorithm can generate a sequence of QRDs of smaller length such that all

regression models of a score table for a BN are included in the QRD set.

2.5 Algorithmic Complexity Analysis

In this section we calculate the runtime of our algorithm and compare it to three

other methods for solving the regression models for all possible families of a BN. To

16

analyze the runtime of the proposed algorithm, we make use of the following recurrence

relation for the sequence of column transpositions employed by our algorithm:

Υ(m) = Υ(m− 1) : [m− 1, ..., 1]

: [i+ 1 | i ∈ Υ(m− 1)],
(2.10)

where Υ(m) is the sequence of column transpositions for m variable case,

[m− 1..1] is a sequence of column transpositions starting at index m− 1 down to the

first position, and : is concatanation operator. Noting that the number of operations

required for applying Given’s transformation to a matrix of size m is six more than

its counterpart for a matrix of size m− 1, we can write the following recurrence to

describe the runtime of our algorithm:

T (m) = [T (m− 1) + 6|Υ(m− 1)|]

+
∑m−1

i=1 6(m− i+ 1) + T (m− 1),
(2.11)

where |Υ(i)| is the number of column transpositions employed by our algorithm

when applied to a network with i nodes:

|Υ(i)| = 2i − 1− i. (2.12)

Combining these two equations, (2.11) and (2.12), we can find the runtime of

our algorithm to be of the order:

T (m) = 3m2m + 62m − 3m2 − 9m− 6. (2.13)

The runtime of the proposed method for forming the QRDs of all possible

parent-set and child combination is compared to that of Clakre’s all subset regression

algorithm [18], Dropping Column Algorithm (DCA) [17], and direct brute force using

Cholesky decomposition and covariance structure in Table 2.1.

17

Table 2.1: Comparison of the runtime of the proposed method (in bold) to three other
algorithms.

Algorithm Runtime

Greedy Column Swapping O(3m2m)

DCA O(9m2m)

Clarke O(1.5m22m)

Brute Force O(0.5m32m)

2.6 Parallelization

In order to design an efficient parallel version of the proposed algorithm, let us

re-state the general problem framework introduced in section 4 so as to account for

employing of multiple processors. Given p processors, we wish to find p initial QRDs

and p sequences of adjacent column transpositions for each of the processors, such

that the resulting variable permutations and their corresponding QRDs among all

the processing cores solves for all the m ∗ (2m−1 − 1) regression models of a Bayesian

network with m nodes.

To find the optimal performance gain using P processors, we first derive a bound

on possible performance improvment in the case of all subset regression problem. Due

to discussions in section 5, we know that this bound would be still in effect for the

problem of forming all QRDs for all families in a BN. We then propose a near optimal

parallelization scheme that achieves a performance gain close to this bound.

Assume that we have found p initial QRDs, Ri, i = 1, ..., p and p sequences of

column transpositions, Υi, i = 1, ..., p, for solving the all subset regression problem

using p processors. We will denote the length of the sequence of column transpositions

performed by processor i by |Υi|. Since the p initial QRDs can at most account for

18

mp regression models and since a column transposition can at most add one new

regression model, we have:

p∑
i=1

|Υi| > 2m − 1−mp. (2.14)

Therefore we have:

∃i : |Υi| >
2m − 1−mp

p
. (2.15)

Thus the number of required column transpositions when using p processors is

at best of the order of O(
2m

p
).

We propose a parallelization method that is a direct consequence of the following

recurrence relation:

Υ0(m) = Υ0(m− 1) : [m− 1, ..., 1]

: [i+ 1 | i ∈ Υ0(m− 1)],
(2.16)

where Υ0(m) denotes the sequence of column transpositions performed by the

single core algorithm of the previous section for the m variable case.

Consider the case where the number of processors, p, is two. In this case, we

initialize the first core with the QRD of variables ordered as v1, ..., vm and the second

core with the QRD of variables ordered as vm, v1..., vm−1. For the first processor, we

choose the sequence of column transpositions equal to Υ0(m− 1), and for the second

processor we employ the sequence of column transpositions [i+ 1 | i ∈ Υ0(m− 1)]. In

general, given p = 2k processors, we can use this recurrence relation k times to find

the initial QRDs and the sequence of column transpositions for each processor.

More specifically let us represent each of the 2k processors with a binary array of

k-bits, mapping processor i to a binary array equivalent to its binary repressentation.

19

Algorithm 2 SeedPathCalculator(Pid,m)

Input: processor binary array code Pid, size of the Bayesian network m,

Output: initial permutation υ, sequence of column swapping indexes Υ

k = m− len(Pid)

υ = [1..k]

for i = k + 1 to n do

if Pid[m− i] == 0 then

υ.insert(0, i)

else

υ.append(i)

end if

end for

d = sum(Pid)

Υ = d+GreedySwaps(k)

return (υ,Υ)

Then, Algorithm 2 can provide the initial permutation and the sequence of column

swapping required to be performed at processor i.

The number of column transpositions performed by each processors in general

is of the order of O(2m−k − 1− (m− k)) or O(
2m

p
).

2.7 Conclusion

In this paper, we proposed an algorithm for an efficient and exact calculation of

regressions for all the families of a BN. Noting that the regressions for the different

families are dependent on each other, we utilized QR decomposition as a data struc-

ture for capturing these dependencies. We then used Givens rotations and column

20

transpositions as low-cost operations to efficiently trace a greedy path through the

space of QRDs such that all the regression models are included. We showed how the

proposed greedy method could be more easily implemented using recursions in section

3. In section 4 we provided a lower bound on the number of column transpositions

required for solving the regressions for all the families and showed that the proposed

greedy algorithm achieves this lower bound.

We further compared the runtime of our algorithm with specialized algorithms

for all-subset regression problems in Table 2.1. We argued that spcialized all-subset

regression algorithms and brute force algorithms do not utilize the whole of the

dependency structure among the families. The faster runtime of our proposed method

then proves that we make better use of the dependency structure. Although in

terms of algorithmic complexity our proposed algorithm has only a constant factor of

improvement compared to that of DCA, the memmory requirements of our algorithm

is much lower than theirs. Specifically, the proposed algorithm utilizes a storage of

size O(m2) (only a single R matrix needs to be stored at any moment) while DCA

requires a storage of size O(2m−3). In section 7 we further provided a near optimal

parallelization scheme for our prosed algorithm.

21

CHAPTER 3

A RENORMALIZED NORMALIZED MAXIMUM LIKELIHOOD CRITERIA FOR

LEARNING BAYESIAN NETWORKS

3.1 Introduction

A Bayesian network (BN) over a set of variables is a probabilistic graphical model

where the dependencies between the variables are represented through a collection of

edges among them in a directed acyclic graph (DAG)[19]. BNs have found extensive

applications in diverse areas of engineering such as bioinformatics, image processing,

and decision systems [20, 21, 4].

In simple cases, experts can design BNs using their domain knowledge. However,

in most applications, this approach is impractical. It is, therefore, important to be

able to learn and estimate a BN from observational data. There are two general

approaches for learning a BN from data: constraint-based learning [22] and score based

learning [7].

Score based learning has proved to be a promising approach for learning Bayesian

networks [9, 23, 11, 10]. In score based learning, the learning of a Bayesian network

from data is viewed as an optimization task. The optimization task consists of finding

the network with the highest score where the candidate networks are scored with

respect to the observations using a statistically suitable scoring metric. Understandably,

the choice of scoring metric plays an important role in the success of score based

learning algorithms.

For Bayesian networks on discrete domains, various scoring metrics have been

proposed, each formulated based on different set of statistical assumptions and motiva-

22

tions [7, 24, 25]. For Bayesian networks over continuous domains, however, there are

very few scoring criteria. Therefore, to employ score based learning in the continuous

domain, one is most often either forced to use the BIC/AIC/BGe metrics or to convert

the variables into discrete counterparts. These approaches, however, are often lacking.

The most common discretization method used in practice is to heuristically

partition the range of the continuous features into several mutually exclusive and

exhaustive regions. Doubtless, the choice of discretization policy can have a significant

undesired impact on the accuracy of the results [26]. To minimize the unfavorable

effects of discretization, Friedman et al. proposed a more principled discretization

policy where discretization of a continuous feature is based on its relation to other

variables in the network [27]. However, the scoring metric resulting from this dis-

cretization policy is not decomposable. Lack of decomposability makes the search for

the highest scoring network computationally challenging as most search algorithms

require the decomposability of the scoring metric. In the absence of discretization,

there are only three scoring metrics that are directly applicable to BNs on domains

containing continuous variables; the AIC, BIC and the BGe score [28, 29, 30].

In this paper, we describe two novel scoring metrics for Bayesian networks in

the continuous domain based on the minimum description length principle (MDL).

Our work draws inspiration from the use of the MDL principle in problems of variable

selection in regression [31, 32]. Thus we expect it to carry the advantages that MDL

offers versus the AIC and BIC in the problems of variable selection in regression to

the problem of finding a suitable Bayesian network [33]; learning a Bayesian network

can be thought of as selecting predictors for a set of variables where the predictors

are constrained to follow a particular order. Both scoring metrics proposed here are

free of hyperparameters, decomposable, and are asymptotically consistent.

23

In the next section, we formally introduce the Bayesian Gaussian networks. We

then formulate a crude three-part code scoring metric for Bayesian networks in part 3

of our paper. In section 4, we propose a renormalized normalized maximum likelihood

scoring scheme for continous domain Bayesian networks under the assumption that

the model class under consideration consists of only Bayesian Gaussian networks.

Afterward, we study the asymptotic properties of the two proposed scoring metrics in

section 5. We evaluate and compare the performance of the proposed scoring metrics

to the BIC, AIC, and the BGe metrics using simulated data in section 6. Our results

suggest that the scoring metrics proposed here consistently perform better than the

other metrics for both sparse and dense graphs.

3.2 Gaussian Networks

Throughout this paper, we consider a domain, Xm = x1, x2, ..., xm of m contin-

uous variables. A Bayesian network over Xm is a pair B = (BP , BS). BS is usually

displayed through a directed acyclic graph, with nodes corresponding to random

variables in Xm, and its edges encode a set of conditional independence statements.

We use Pai to denote the parents of a node xi as specified by BS. BP is a set of

local conditional probabilities associated with BS: P (xi|Pai), i = 1, ,m. Together,

they represent a joint distribution over the variables in Xm, P (~(x)), through the

factorization:

P (~(x)) =
i=m∏
i=1

P (xi|Pai) (3.1)

Assuming that the joint probability distribution function of ~x is a multivariate normal

distribution, we can write:

ρ(~x) = η(~µ,Σ−1) = (2π)−m/2|Σ|−1/2e(~x−~µ)
′
Σ−1(~x−~µ), (3.2)

24

where ~µ is the m-dimensional mean vector, Σ is the m×m covariance matrix, |.| is

the determinant operation, and (.)
′

is the transpose operation. This distribution can

be factorized into the product of m conditional distributions:

ρ(~x) =
i=m∏
i=1

ρ(xi|x1, ..., xi−1)

=

m∏
i=1

η(µi +

i−1∑
j=1

bij(xj − µj), 1/τi),
(3.3)

where τi is the residual variance of the node xi, µi is the unconditional mean of xi,

and bij is a measure of the extent of partial correlation between nodes xi and xj .

Such a distribution corresponds to a Bayesian network (BP , BS) if:

∀i : ρ(xi|x1, ..., xi−1) = ρ(xi|πi)

= η(µi +
∑
xj∈πi

bij(xj − µj), 1/τi),
(3.4)

where πi’s correspond to the parent sets specified in Bs. In other words, a multivariate

Gaussian distribution corresponds to a BN, (BP , BS), if ∀bij 6= 0 : xj ∈ πi [34]. The

Bayesian network is minimal when there is an arc from xj to xi if and only if bij 6= 0.

This network is also referred to as the I-map of the probability distribution.

Instead of the above parametrization of a multivariate Normal distribution, we

opt to work with the following parametrization:

∀i : ρ(xi|x0 = 1, πi) = η(
∑
xj∈πi

βijxj + βi0, 1/τi). (3.5)

Every instantiation of parameters of one model corresponds to an instantiation of

parameters of the second model; note that the new parametrization corresponds to

a network with m+ 1 nodes with x0 = 1, and the unconditional means of all other

nodes set to zero. Thus a Bayesian network, B = (BP , BS), can be parametrized

by {(~βi, τi)|i = 1, 2, ...,m}. We call such a Bayesian network, a Gaussian network; if

further, the network is minimal, we call it a minimal Gaussian network. In the rest of

25

the paper, for notational convenience, we represent the set {πi, x0} simply by πi. We

also write ki for the cardinality of the πi, |πi|, and Pai for the values of the variables

πi.

3.3 A Crude Three-Part Code Scoring Metric

In this section, we propose our first scoring metric for Bayesian networks based

on the MDL principle. We assume that the reader is familiar with the basics of MDL

principle [35, 36]. In short, MDL views learning as a data compression task and states

that the model most suitable for a given set of observations is the one that provides

the shortest description for the observed data. Since the description method accounts

for both the model complexity and its goodness-of-fit, MDL provides a mathematical

framework that embodies a form of Occams Razor

We wish to measure how well a Bayesian network structure, BS fits the observed

data. Motivated by the MDL principle, we can alternatively evaluate how compact a

description a Bayesian network structure can provide for the observations. We propose

two methods for encoding observations using Gaussian networks. The first method

proposed in this section is a crude and a heuristic encoding scheme. In the next

section of the paper, we optimize this coding scheme to formulate a min-max optimal

encoding of the observations known as normalized maximum likelihood coding [33].

The three-part code encodes the observations in three steps. The first part of

the code describes the Bayesian network structure and the second and the third part

encode the observations using the network structure coded in the first part. The

total description length then serves as a measure of how well the network fits the

observations.

In this three-part code, we extend the MDL formulations of Lam et al. for

Bayesian networks over discrete domains to continuous domains [37]. First, to encode

26

the structure of the network, we simply enumerate the parents of each node. For a

node with ki parents we use ki lnm nats to list its parents. Therefore, the encoding

length of the structure of the network can be written as:

L1 = L(BS) =
m∑
i=1

ki ln(m). (3.6)

Having coded the network structure, we now describe how we encode the observations

in the remainder of the code. Assume that we have observed the data yn = [xn1 , ..., x
n
m]

of sample size n. Our coding scheme is to first encode the values of the root nodes

(nodes without parents) and then to encode the values of nodes whose parent values has

already been encoded. We continue this process iteratively, descending the Bayesian

network until we reach the leaves of the network.

Now, suppose that we have already encoded the values for {xn1 , ..., xni−1} and we

wish to encode the values of xi. Since we have assumed that data is sampled from a

multivariate normal distribution, we have:

ρ(xni |xn1 , ..., xni−1) = (2πτi)
−n/2e

−||xni − Pani ~βi||2

2τi ,
(3.7)

where Pani is the n×ki matrix of the values of the parents of xi. Within this framework,

the problem of optimal encoding of xni and the parameters (~βi,τi) is equivalent to the

problem of encoding a response variable given the values of predictor variables in

linear regression. Here, the response variable is xi, and the predictor variables are

πi. Following works of Rissanen, in such a setting, the shortest code for encoding the

values of xi has a length of [38, 35]:

L2 = L(xni |xn1 , ..., xni−1) = L21 + L22

=
ki
2

lnn− ln ρ(xni |Pani ; ~̂βi, τ̂i)

=
ki
2

lnn+
n

2
ln (2πeτ̂i),

(3.8)

27

where τ̂i and ~̂βi are the maximum likelihood estimates (MLE) of τi and ~βi. More

specifically, we encode the values of xni in two parts; in the first part we encode the

MLE parameters ~̂βi, and in the second part we encode the values of xni using the

distribution ρ(xni |πn
i ; ~̂βi,τ̂i). Such a coding scheme is referred to as a crude two part coding

in the MDL literature [33].

Thus the total description length of the observed data will be:

L(x1, ..., xm|x0, BS) =
n

2

m∑
i=1

ln (2πe ˆτi(BS))+

[ln(n)/2 + ln(m)]

m∑
i=1

ki(BS),

(3.9)

where we have emphasized the dependence of ki and τ̂i on the network structure BS.

It is insightful to compare this coding metric to BIC for Gaussian networks and

the MDL metric proposed for BNs over discrete domains. Comparing the penalty

terms in the proposed MDL scoring metric for Gaussian networks with the MDL

scoring metric of discrete networks, one observes that the penalty term for discrete

networks is exponential in the number of parents while it only grows linearly for

Gaussian networks. The reason is that the dimensionality of the parameter space

for discrete Bayesian networks increases exponentially with an increasing number of

parents while the parameter space of multivariate Gaussian distribution is polynomial

in the number of parents. The proposed MDL metric is essentially the same as the

BIC metric with the addition of the penalty term
∑m

i=1 ki ln(m) which accounts for

the network structure, BS. The similarity between the BIC metric and the heuristic

MDL metric has also been previously recognized in the case of problems of variable

selection in regression. In the next section we show that this heuristic coding scheme is

not optimal (this can also be easily seen by considering that the coding of the network

structure and the corresponding penalty term in the metric is rather arbitrary). We

then propose a min-max scoring metric known as normalized maximum likelihood

28

coding that alleviates many of the problems associated with the heuristic coding

scheme proposed in this section.

3.3.1 Inefficieny of Two Part Codes

The coding scheme introduced above is not Kraft-tight [36]. In particular,

consider the code proposed for encoding values of xni given values of {xn1 , ..., xni−1}:

L(xni |xn1 , ..., xni−1) = L21 + L22

=
ki
2

lnn+
n

2
ln (2πeτ̂i).

(3.10)

Note that once we decode L21 (L21 contains information on the MLE values for the

regression coefficients (~̂βi)) the set of possible values for xni become restricted to those

for which ~̂βi(x
n
i)=(~̂βi) . Therefore, this coding scheme is inefficient and the data can be

coded using fewer bits. Normalized maximum likelihood (NML) codes are a variation

of the two-part coding scheme where this inefficiency of the crude two-part coding is

addressed [36, 39].

3.4 Normalized Maximum Likelihood

The normalized maximum likelihood distribution with respect to a class of

probability distributions parametrized by a K dimensional parameter vector θ, Cθ(x) =

{P (x; θ)|θ ∈ RK}, is defined as:

Pnml(x) =
P (x; θ̂(x))∫
P (y; θ̂(y))dy

, (3.11)

where

θ̂(x) = argmax
θ

[P (x; θ)] , P (x; θ) ∈ Cθ(x). (3.12)

In normalized maximum likelihood codes, instead of using a three-part code, we encode

each observation with a single code using the NML distribution:

Lnml(x) = − ln (Pnml(x)). (3.13)

29

We are now ready to formulate the NML pdf for a Gaussian network.

A Gaussian network structure over m variables defines a class of probability

distributions parametrized by θ = {(~βi, τi)|i = 1, ...,m}:

Gθ(y
n) = {ρ(yn; θ)|θ ∈ Rm+

∑m
i=1 ki},

ρ(yn; θ) = ρ(xn1 , ..., x
n
m; θ) =

m∏
i=1

ρ(xni |πni ; ~βi, τi),
(3.14)

where:

ρ(xni |πni ; ~βi, τi) = η(~βiPa
n
i , 1/τi)

= (
1

2πτi
)n/2 exp(

1

2τi
||xni − Pani ~βi||2).

(3.15)

Let θ̂(yn) = {(~̂βi(yn), τ̂i)|i = 1, ...,m} denote the MLE estimates of ~βi and τi:

~̂βi(y
n) = ~̂βi(x

n
i , Pa

n
i) = (nΣi)

−1Pani
′
xni ,

Σi = n−1Pa
′
iPai,

τ̂i(y
n) = τ̂i(x

n
i , Pa

n
i) = 1/n||xni − Pani ~̂βi||2,

ρ(xni |Pani ; ~̂βi(y
n), τ̂i(y

n)) = (2πeτ̂i(y
n))−n/2.

(3.16)

Using (3.16) the numerator in the expression of NML distribution can be easily

calculated. However, the integral in the denominator of the NML distribution does

not exist for Gθ(y
n) [40]. We write down the constrained NML density as below:

Pnml(x; θ0) =
P (x; θ̂(x))∫

Y (θ0) P (y; θ̂(y))dy
, (3.17)

the constrained NML density is only defined for yn ∈ Y (θ0):

Y (θ0) = {yn|θ̂(yn) ∈ θ0}, (3.18)

The constrained NML density can be thought of as the conditional distribution

Pnml(y
n|yn ∈ Y (θ0)). In the case of Gθ(y

n), we propose to specify θ0 using the

following set of hyperparameters:

θ0 = (τ0, R0),

τ0 = {τ0
i |i = 1, ...,m},

R0 = {R0
i |i = 1, ...,m}.

(3.19)

30

Let these hyperparameters define the Y (θ0) as below:

Y (θ0) = Y (τ0, R0)

= {yn : xn1 ∈ X1(τ0
1 , R

0
1), ...

, xnm ∈ Xm(τ0
m, R

0
m, x

n
1 , ..., x

n
m−1)}.

(3.20)

and

Xi(τ
0
i , R

0
i , x

n
1 , ..., x

n
i−1) = {xni |τ̂i(xni , Pani) ≥ τ0

i ,

~̂β
′
i(x

n
i , Pa

n
i)Σi

~̂βi(x
n
i , Pa

n
i) ≤ R0

i },
(3.21)

The numerator of 3.17 can be easily calculated as:

ρ(yn; θ̂(yn)) =

m∏
i=1

ρ(xni |Pani ; τ̂(xni , Pa
n
i), ~̂βi(x

n
i , Pa

n
i))

=
m∏
i=1

(2πeτ̂(xni , Pa
n
i))−n/2.

(3.22)

We can calculate the denominator by first writing down the factored form of the

density: ∫
Y (θ0)

ρ(yn; θ̂(yn))dyn =

∫
X1(τ01 ,R

0
1)
...∫

Xm(τ0m,R
0
m,Pa

n
i)

m∏
i=1

ρ(xni |Pani ; ~̂βi(y
n), τ̂i(y

n))dxn1 ...dx
n
m.

(3.23)

Since only the factor ρ(xnm|Panm; ~̂βm(yn), τ̂m(yn)) is a function of xmn , we can take the

other factors out of the last integral. We now write down this last integral for a given

value of {xn1 , ..., xnm−1}:∫
Xm(τ0m,R

0
m,Pa

n
i)
ρ(xnm|Pani ; ~̂βi(y

n), τ̂i(y
n))dxnm. (3.24)

Note that both the region of integration and the MLE estimates are functions of

{xn1 , ..., xnm−1}. Using sufficient statistics, the value of this integral was calculated in

[41] :

Cm(τ0, R0) =

∫
Xm(τ0m,R

0
m,Pa

n
i)
ρ(xnm|Pani ; ~̂βi(y

n), τ̂i(y
n))dxnm

=

4nn/2(
R0
m

τ0
m

)−km/2

(2e)n/2k2
mΓ(n− km)Γ(km/2)

.

(3.25)

31

Note that the above factor is independent of the values of {xn1 , ..., xnm−1}. This

independence does not arise from chance. Our proposed parametrization of Guassian

networks and also that of contraining hyperparameters were designed with this purpose

in mind. As we will see later, this independence will make way for a scoring metric

that is decomposable and local to the nodes of the graph. As we had previously

mentioned, the decomposablity of scoring metric is essential to SBL algorithms.

The denominator of the constrained NML distribution is then:

C(τ0, R0) =
m∏
i=1

4nn/2(
R0
i

τ0
i

)−ki/2

(2e)n/2k2
i Γ(n− ki)Γ(ki/2)

.
(3.26)

In the expression above, due to the terms (
R0
i

τ 0
i

)−ki/2, the hyperparameters (τ 0, R0)

have different effects on the score of different networks structures. In the case of

problems of variable selection in regression, to get rid of similar undesired effects of

the constraining hyperparameters, Rissanen proposed a second level normalization

[39]. In the next section, borrowing from this principle, we calculate a more robust

scoring metric for Gaussian networks.

3.4.1 Renormalized Normalized Maximum Likelihood Scoring Metric

Let τ̂ 0(yn) = {τ̂ 0
i (yn)|i = 1, 2, ...,m} and R̂0(yn) = {R̂0

i (y
n)|i = 1, 2, ...,m}

denote the MLE estimates of τ 0 and R0 :

τ̂0
i (yn) = τ̂i(x

n
i , Pa

n
i) = 1/n||xni − Pani ~̂βi||2,

R̂0
i (y

n) = R̂i(x
n
i , Pa

n
i) = ~̂βi(x

n
i , Pa

n
i)
′
Σi
~̂βi(x

n
i , Pa

n
i),

(3.27)

where

~̂βi(x
n
i , Pa

n
i) = (nΣi)

−1Pani
′
xni . (3.28)

The renormalized NML (RNML) probability distribution is then given by:

ρ̄(yn) =
ρnml(y

n; τ̂0(yn), R̂0(yn))∫
Z(τ1,τ2,R1,R2) ρnml(z

n; τ̂0(zn), R̂0(zn))dzn
, (3.29)

32

where the region of integration is given by the hyperparameters:

τ1 = {τ1
i |i = 1, 2, ...,m}

τ2 = {τ2
i |i = 1, 2, ...,m}

R1 = {R1
i |i = 1, 2, ...,m}

R2 = {R2
i |i = 1, 2, ...,m}

(3.30)

with Z(τ 1, τ 2, R1, R2) defined as:

Z(τ1, τ2, R1, R2) = {zn|∀i = 1, 2, ...,m :

τ2i ≥ τ̂i0(zn) ≥ τ1i , R1
i ≥ R̂0

i (zn) ≥ R2
i }

(3.31)

Inserting the density for the NML distribution into (3.29), with the boundry conditions

above, the RNML distribution can be calculated as:

ρ̄(yn) =

m∏
i=1

(τ̂i)
−n/2(nπ)−n/2Γ(ki/2)Γ(n− ki)(

R̂0
i (yn)

τ̂0i (yn)
)−ki/2

ln(
τ2i
τ1i

ln(
R2

i

R1
i

))

, (3.32)

where we have used the RNML calculations for Gaussian distribution from [41],

together with the property of our parametriziation that allows the integrals to be

calculated independent of each other in solving the RNML distribution. Dropping the

terms independent of the network structure, the RNML code can be written as:

LRNML(yn) = − ln(ρ̄(yn))

=
m∑
i=1

(
n

2
ln(τ̂i(y

n))− ln(Γ(
ki

2
))− ln(Γ(

n− ki
2

)) +
ki

2
ln(

R̂0
i (yn)

τ̂i(yn)
)

)
.

(3.33)

Using Stirling’s approximation, we can simplify the above expression:

LRNML(yn) = − ln(ρ̄(yn))

=
m∑
i=1

(
(n− ki) ln(

τ̂i(y
n)

n− ki
) + ki ln(

R̂0
i (yn)

ki
) + ln(ki(n− ki))

)
(3.34)

Equations (3.34) and (3.33) provide a closed-form expression for the scoring of

a Gaussian Bayesian network based on the RNML metric. Note that both these

expressions are free of hyperparameter and are decomposable.

33

3.5 Asymptotic Behavior

It is well known that BIC prefers minimal I-maps over other network structures

for large sample sizes [25]. Examining the equation (3.9), it is clear that the asymptotic

behavior of the three-part coding metric is equivalent to that of the BIC metric. We

now show that the RNML scoring metric also prefers networks that are minimal

I-maps.

Theorem 1. Let Xm be a set of variables, T be an ordering on the variables in

Xm and ρ be a probability distribution over Xm. Let yn be a sample generated from

ρ. Let Bs be a minimal I-map Bayesian network of ρ and let Bs′ be any other network

structure. Furthermore, let both Bs′ and Bs be consistent with the ordering T . We

have:

LRNML(Bs, y
n) < LRNML(Bs′ , y

n) (3.35)

That is the network corresponding to the minimal I-map has the lowest description

length based on the RNML distribution.

Proof. We consider two cases. In the first case, we assume that Bs′ is a non-

minimal I-map of P . In the second case, we consider a Bs′ that is not an I-map of

P .

Assuming that Bs′ is a non-minimal I-map of P , then the variance of the residual,

τi, of each node is the same in both Bs′ and Bs. Dropping the factors less than O(n)

we have:
LRNML(Bs, y

n)− LRNML(Bs′ , y
n)

= −
m∑
i=1

− ln(Γ(
n− ksi

2
)) + ln(Γ(

n− ks′i
2

)).
(3.36)

Since Bs′ is a non-minimal I-map of P we also have:

∀i : ks
i ≤ ks′

i . (3.37)

Therefore, we have:

LRNML(Bs, y
n)− LRNML(Bs′ , y

n) ≤ 0 (3.38)

34

Now assume that Bs′ is a non-minimal I-map of P . Thus there exists at least one

node, xi, such that πs
i 6⊆ πs′

i or equivalently, ∃xj ∈ πs
i such that xj 6∈ πs′

i . Without

loss of generality, we assume that this consists of the only difference between the two

networks. Now consider a network structure, Bc, that is exactly equal to network

Bs except for the parent set of the node xi where πc
i = πs

i ∪ πs
′
i . Therefore, Bc is a

non-minimal I-map of the probability distribution and from the previous result we

know that LRNML(Bs, y
n) ≤ LRNML(Bc, y

n) . We now show that LRNML(Bc, y
n) ≤

LRNML(Bs′ , y
n).

We can transform the network Bc to the network Bs′ by removing the nodes

{xk : xk ∈ πs
i , xk 6∈ πs

′
i } from πs

′
i . Doing so will increase the residual variance of the

node xi by at least β2
ikτ̂k(y

n) . More specifically, using equation 3.34 dropping the

node xk will increase the LRNML(Bc, y
n):

∆LRNML =

(n− kci)ln(
τ̂ci (y(n))

n− kci
)− (n− kci − 1)ln(

τ̂ci (y(n))− β2
ik τ̂k(yn)

n− kci − 1
).

(3.39)

Keeping only the terms of the factor O(n), we can simplify the above expression:

∆LRNML = (n− kci)ln

τ̂ci (y(n))

τ̂ci (y(n))− β2
ik τ̂

c
k(yn)

n− kci
n− kci − 1

n→∞

= (n− kci)ln

(
τ̂ci (y(n))

τ̂ci (y(n))− β2
ik τ̂

c
k(yn)

)

= O(n).

(3.40)

Hence we can see that asymptotically as n→∞, LRNML(Bc, y
n) is smaller than

LRNML(Bs′ , y
n) by a factor of O(n).

3.6 Numerical Evaluation

We evaluate and compare the performance of the proposed scoring metrics to

the BIC, AIC, and BGe metrics using simulated data 1. We study the properties of

1For setting the prior parameters for BGe, we used the first fifth of the data to estimate the

parameters T and v using the equations (18) and (19) of [42] and we set the equivalent sample size

for both T and v, equal to the number of samples used in their estimation.

35

these four metrics on two levels: a low dimensional setting where the number of the

nodes of the graph is small, m ∈ {4, 5}, and lager graphs having m ∈ {8, 10} nodes.

In low dimensional setting, the number of possible generating graphs is limited. It is,

therefore, possible to evaluate the performance of these four metrics in detail since

we can calculate the score of all the possible generating networks. In this setting, we

examine how the true generating network structure is ranked among all other networks

by the different scoring criteria.

With larger DAGs, the number of possible generating graphs is exponentially

high and such evaluation of the performance of the scoring metrics is computationally

challenging. Hence, we decided to compare the performance of these metrics by using

a structural distance measure between the highest scoring networks (we call these

networks prime DAGs and use dynamic programming [10] to find them) and the true

generating network.

We chose Structural Hamming Distance (SHD) as our measure of performance.

SHD is a function of the number of edge addition/deletion or reversals required to

convert one DAG to another [43]. While such a structural distance measure can only

provide a heuristic summary of the performance of these metrics, nevertheless, a

comparison in terms of such structural errors has a desirable intuitive interpretation.

Furthermore, SHD compares the similarity of BNs in a causal context [43, 44]. There-

fore, it also serves as a tool to examine the applicability of the proposed metrics in

identifying the generating causal structure.

3.7 Performance in Low Dimensional Setting

In this experiment, we compare how the generating network structure is ranked

among all the possible networks by the different scoring criteria.

36

25 50 75 100 125 150 175 200

40

60

80

100

120

140

Ra
nk

25 50 75 100 125 150 175 200
Sample Size

1000

2000

3000

4000

5000

6000

Ra
nk

RNML MDL AIC BIC BGe

Figure 3.1: The average rank of the generating network structure for networks having
m nodes, m ∈ {4, 5}, over 500 iterations plotted against the sample size. The upper
plot shows the results for networks having four nodes, while the convergence rate for
networks having five nodes is shown in the lower plot.

First, a random DAG was chosen among all DAGs on m nodes, m ∈ {4, 5}. A

sample was then recursively generated from the selected DAG starting from the root

node down to the leaves using the following equation:

xi = µi +
∑
xi∈πi

bij(xj − µj) + η(0, 1/τi) (3.41)

where network parameters µi, τi were sampled from a uniform distribution

U(0.1, 1), and bij was chosen as independent realizations of U(−1, 1). Afterwards, we

computed the scores of all possible DAGs for the simulated data and calculated the

37

200 400 600 800 1000

6

8

10

SH
D

200 400 600 800 1000
11

12

13

14

15
SH

D

200 400 600 800 1000
Sample Size

19

20

21

SH
D

RNML MDL AIC BIC BGe

Figure 3.2: Average SHD between the generating DAG and the prime DAG in
simulations with m = 8. The upper plot shows the results for graphs where the
expected number of neighbours for each node was set to nn = 2. The middle and the
lower plots show the results for nn = 4 and nn = 6.

rank of the generating DAG among all other DAGs. The simulation was repeated for

500 iterations. Figure 3.1 shows the average rank of the generating network structure

for different scoring metrics as a function of the sample size.

As is shown in Figure 3.1, the convergence rate of the rank is the fastest for the

RNML metric. The MDL metric and the BIC metric show similar performance while

the AIC metric has the lowest convergence rate.

38

200 400 600 800 1000

8

10

12

14

SH
D

200 400 600 800 1000

14

16

18

20
SH

D

200 400 600 800 1000
Sample Size

20

22

24

26

SH
D

RNML MDL AIC BIC BGe

Figure 3.3: Average SHD between the generating DAG and the prime DAG in
simulations with m = 10. The upper plot shows the results for graphs where the
expected number of neighbours for each node was set to nn = 2. The middle and the
lower plots show the results for nn = 4 and nn = 6.

3.8 Performance For Larger Networks

In this section, we analyze the performance of the four metrics against the

sparsity of the generating graph for graphs having m nodes, m ∈ {8, 10}. We compare

the performance of these metrics by evaluating the SHD of the prime DAG to the

generating DAG.

Our simulations start by selecting a random graph having a specified sparsity.

Similar to the work of Kalisch et al., we simulated graphs of different sparsity by

controlling the expected number of connections, neighbours, of each node, nn ∈

{2, 4, 6} [45]. Thus, we extended the scope of our simulations beyond Erdos-Renyi

39

(uniformly random) networks and examined the performance of the metrics for networks

of varying sparsity. Afterward, a dataset of sample size N , N ∈ {50, 500, 1000}, was

simulated based on the selected generating graph similar to the previous section. To

find the prime DAG, we used the optimal dynamic programming method of Silander

et al. [10]. In selecting the maximum parent size parameter in the implementation of

this algorithm, we chose it equal to the maximum parent size of the generating graph

itself. This way, the generating graph would be included in the possible solution set of

our algorithm. For every of the 27 combinations of the control parameters (the control

parameters being the number of nodes, expected number of neighbours, and sample

size) we repeated the simulation for 100 iterations, each time for a randomly selected

generating DAG. We then computed the average SHD between the generating and

the prime DAG across these 100 iterations. Results are shown in Figures 2-3.

Figures 3.2-3.3 show that the RNML metric consistently outperforms the other

metrics irrespective of the size and the sparsity of the generating network. The

proposed three-part MDL metric comes second in terms of performance, surpassing

the AIC and the BIC metric. On average, aggregated across all sample size, sparsity,

and network size values, the RNML metric outperformed the MDL metric by an SHD

value of 0.6356 and the other two metrics by an SHD value of 1.8704. The average

reduction in the SHD value for the RNML metric as compared to MDL and the best

(smallest) of AIC/BIC is shown in Table 1 as a function of sample size.

3.9 Conclusion

In this paper, we introduced two new scoring metrics based on the MDL princi-

ple for Gaussian networks. These scores are asymptotically consistent, have simple

to calculate closed-form expressions, and are parameter-free. They are furthermore

decomposable and therefore compatible with the most Bayesian network search proce-

40

Table 3.1: The average difference between the SHD of the prime graph to the generating
graph when using RNML metric compared to that of MDL and the best (smallest) of
AIC/BIC.

Sample Size MDL BIC/AIC

50 0.7333 3.5900

500 0.6078 1.4422

1000 0.5656 0.5789

dures. Our evaluation of the proposed metrics suggests that the proposed metrics have

better performance than the AIC and the BIC metrics. The proposed RNML metric

specially outperforms all other metrics consistently and regardless of the size and the

sparsity of the generating graph and the sample size (see Figure 3.1 and Figures 3.2

3.3). The metric proposed here is also very accessible: it is easy to code, simple to

understand, and any toolbox that already implements BIC or AIC for scoring BNs

can be directly modified with little code to include these new metrics.

The RNML metric proposed here can be thought of as a continuous domain

extension to the FNML metric proposed for discrete Bayesian networks [24]. However,

unlike the FNML metric, the RNML metric was not tuned to be decomposable,

rather, decomposability came naturally to our formulation. More specifically, a major

theoretical contribution of ours in this paper was to show that a global RNML

formulation for a Gaussian network leads to a scoring metric that can be written

as function of scores resulting from application of RNML model selection criterion

applied at each local distribution.

41

CHAPTER 4

LEARNING A LOWER BOUND ON DIRECT CAUSAL INFLUENCES FROM

MARGINAL INDEPENDENCIES

4.1 Introduction

Discovering causal relations is a fundamental goal of science. Randomized

controlled experiments were often considered to be the only reliable method for

tackling this task. However, in recent years, a variety of causal discovery methods have

been proposed that are capable of identifying causal relations from purely observational

data. The performance of these causal discovery tools depends on the number of

recordings and of available samples. Furthermore, practice suggests that the sample

size requirement of most causal learning algorithms is not modest. Consider the

numerical example of [46], where the ICA (independent component analysis) uses

10000 observations for identifying a network over 7 variables, or the simulation results

in [47] which, suggests one requires 1000 samples for identifying a causal DAG with 5

nodes and 7 edges through TETRAD-II and MML-CI algorithms. SBL (score based

learning) algorithms also require large sample sizes: the simulations in [48] suggest

that over 1000 samples are required for identifying a very sparse (average in-degree

of 2.2) causal DAG (directed acyclic graph) over 15 nodes. Consequently, one must

be very cautious in interpreting the results given by these causal discovery tools,

especially in domains such as gene expression analysis, where the available sample

size (most of the time) is on the same order as the number of features. For example,

currently, one of the largest gene expression datasets on the major depressive disorder

(among all those that are publicly available in GEO and AE repositories) boasts a

42

modest sample size of only 59 measurements of 34 differentially expressed genes. In

this paper, we are concerned with causal learning in similar low sample regimes: our

goal is to characterize a type of causal knowledge that can be reliably learned in such

circumstances where these popular causal learning algorithms suffer.

In these “small data” scenarios, experts usually employ additional assumptions

and modifications to make causal discovery more reliable: various modified versions of

the PC-algorithm (Peter-Clark Algorithm) or the SBL framework have been proposed

that consider different such techniques [49, 50, 51]. These modifications usually

come with two recurring themes: 1. searching for high ranking causal features and 2.

consolidating the results of multiple unreliable conditional independence (CI) tests. For

example, in [49], a modified SBL framework has been proposed where authors, utilizing

a bootstrap procedure, calculate a confidence interval for the identified causal feature,

they then only output the highest-ranking causal features. In another study, Colombo

and Maathuis propose a modification to the PC-algorithm in order to consolidate the

inconsistent results of CI tests and make the algorithm order-independent [52]. In [50],

a similar strategy is seen where the PC-algorithm is complemented with additional

rules to make up for incongruent CI test results. We can identify a similar theme

in the work of Kalisch and Buhlmann [45]. They show that PC-algorithm scales

significantly better for sparse networks: a special property of these networks is that

they can be identified using low order CI tests.

These results and the recurring theme of inaccurate higher-order CI tests suggests

the following: the poor performance of most causal discovery tools, when the sample

size is limited, is due to only having crude estimates of higher-order CI relations.

Therefore, we hypothesize that if we were to come up with a causal inference algorithm

that utilizes only first order (or second-order) statistical information — thus avoiding

the estimation of higher-order CI relations — we may be able to achieve a more robust

43

and reliable solution. We can contrast this approach to causal discovery to the work

of [49]. Similar to [49], we are looking to identify high confidence causal features.

However, instead of searching for high confidence causal features using bootstrapping,

we attempt to identify all high confidence causal features directly by restricting the

input—apriori to any processing—to only consist of the pairwise dependency of the

variables in the domain. For this reason, we think it is worthwhile to examine the

types of causal knowledge that can be discovered in the pairwise dependency structure

of a domain and to investigate whether the causal knowledge obtained in this manner

is actually more accurate or not.

4.1.1 Overview of Prior Work

We were able to identify two works prior to ours that consider characterizing

causal knowledge implicated by a pairwise dependency structure [53, 54]. Unfortu-

nately, most of the theorems in [54] are presented without proof. In section II.C,

we focus primarily on this work: we discuss a theorem that characterizes the class

of pairwise dependency graphs, provide its missing proof, and present some new

insights. In our proof of this theorem, similar to the works of [53] and [54], we make

use of functional causal models, local causal Markov condition, and d-separation

rules. These mathematical constructs provide the necessary conditions for linking

causality to conditional dependence relations and make causal discovery possible from

observational data (see [22] for an overview of these concepts). We will, however,

slowly diverge from these assumptions in section II.D: as we further develop the theory

of causation from marginal dependencies, expanding upon an observation made first

by [53], we present a novel perspective on causal discovery that is based solely on the

Reichenbach’s principle of common cause and that of transitivity of causal relations

(section II.D).

44

4.1.2 Overview of Main Contributions

From theoretical perspective, our contributions consist of providing new proofs

for theorems in [53] and [54] , and also, bringing a new outlook to data-driven causal

discovery based on the transitivity of causal relations. Our work also holds a significant

practical value missing in [53] and [54]. While the theoretical work presented in [53]

and [54] is very valuable, it is difficult to directly make use of their results in practice:

as shown in [53], for even a small graph with only 6 nodes, there can be about 25,000

causal structures consistent with a given pairwise dependency structure. When the

number of candidate causal structures is this high, reducing causal uncertainty (even

by ten folds) does not hold much practical value.

In section II.E, we show how we can make use of these results for tackling a

popular practical problem which can be appropriatley named [small data] “causal

feature selection” task: given limited measurements of a set of candidate features

in two (or more) classes, identify those that are direct causal effects of the class

variable. This problem arises frequently in practice [55, 56]: as a case study, we

consider gene expression measurements of two populations of cases (depressed) and

controls (healthy) and attempt to identify genes whose expression are directly causally

influenced by the condition (major depressive disorder as phenotype)—see section I.D

for more detail and section III.B for experimental results with real data. We refer

to this specific instance of the causal feature selection problem as the causal gene

selection problem. We show that without conditional independence tests and using

only statistical information of the first order and second order type (co-expression and

differential expression analysis as referred to in omics literature) one is still able to

obtain causal knowledge regarding the relationship between the class variable and the

candidate features. Interestingly, causal knowledge obtained in this manner consists of

statements such as “the chromatic number of the complement of the class conditional

45

marginal independence graph is a lower bound on the outdegree of the class variable”

(Lemma 8), or “the nodes in the class conditional marginal independence graph whose

boundaries are minimal (w.r.t partial ordering induced by subset relation) consist

of only attributes directly connected to the class variable” (Lemma 9). They relate

some (global) structural property of the pairwise dependency graph to an approximate

description of the underlying generative causal model in terms of lower bounds and

minimal elements. To the best of our knowledge, these are new results in the field of

causal discovery.

4.1.3 Overview of Results

In section III.A, we present our simulation results. We compare the precision

and the recall of our proposed algorithm against that of CI tests (the PC-algorithm

route to causal discovery) in identifying children of a node among its descendants.

Our simulation results confirm our central hypothesis: in small sample limits, causal

knowledge obtained through pairwise dependency structure is significantly more

accurate than causal knowledge obtained through conditional independence tests.

Finally, in section III.B, we use the causal discovery tools we have developed for

tackling a causal gene selection problem by analyzing the dataset GSE201521. While

the nature of the problem makes it hard to validate our results, we analyze the biological

significance of the selected set of genes: we find among them two genes, CCL2 and

MTRNRL8, for which there exists notable biological evidence that implicates a causal

role for them in developing MDD [57].

4.1.4 Problem Setting: Causal Gene Selection

In this section we consider the problem of causal gene selection in more mathe-

matical detail. We represent the class (case/control) [also referred to as phenotype]

46

through the binary random variable C and the gene expressions through continuous

random variables Xi : i ∈ [1..m]. We approximate the underlying causal generative

structure through a functional causal model and assume that a certain Directed Acyclic

Graph (DAG) represents the causal mechanisms at work in the healthy (control) pop-

ulation. In other words, we assume that every measured attribute is a deterministic

function of its direct causes (graphically, these direct causes correspond to a node’s

parents in the DAG) and an unobserved noise term: Xi = fi(PaXi
, ζi). We consider a

phenotype as a change in some of these causal mechanisms. Then, an affected gene

whose expression in the healthy population, C = 0, is the result of the causal mecha-

nism Xi = f(PaXi
, ζi), in the case population appears instead as the result of a faulty

causal mechanism of the form Xi = f̂i(PaXi
, ζi, ζ̂i). The change in causal mechanisms

going from control population to the case population can thus be shown by setting the

phenotype variable as a root node in the aforementioned DAG and connecting it to Xi’s

whose generating causal mechanisms are affected by phenotype: Xi = gi(PaXi
, ζ̂i, ζi, C)

(for now, we assume there are no hidden confounders and that the random variables

ζ̂i and ζi are mutually independent: P (ζ̂1, ζ1, ..., ζ̂m, ζm) =
∏i=m

i=1 P (ζ̂i)P (ζi), implying

the manner in which C affects a variable is independent of the way it affects others

and the other sources of variation in the domain).

C

X1 X2 X3

X6

X4

X5

X11X7 X8 X9 X10

Figure 4.1: Our goal is to identify the direct children of the class variable, i.e. nodes
marked by the red color.

47

To identify the direct children of phenotype from observational data (gene

expression measurements in the two populations), we first make use of a tool commonly

employed in gene expression studies and filter the set of candidate genes to only those

which are differentially expressed. Differentially expressed genes (DEGs) are those

genes whose average expression values are observed to be different in the populations

under consideration µC==0
Xi

6= µC==1
Xi

: this is similar to the first step of the PC-algorithm

where the neighbors of a node are restricted to those that are correlated with the

given node. From a graphical perspective, the DEGs are set of nodes which have

an open path to the phenotype node, i.e., DEGs are a subset of the descendants of

the phenotype node (this is assuming that one has adjusted for relevant covariates).

They consist of all the descendants for probability distributions where µ0
Xi

= µ1
Xi

implies P (Xi, C) = P (Xi)P (C). Gaussian distributions or binomial distributions

are examples wherein the DEGs ≡ Desc(C). Putting it more directly, we will use

correlation tests (the t-test and the Fisher’s Z-test) for measuring dependence in

our experiments— the theory would remain unchanged if one uses other measures of

dependence, such as spearman correlation, mutual information, etc.

Next, to provide a solution to the causal gene selection problem, we need to

distinguish between those descendants that are children of the phenotype node and

those that are indirectly connected to the phenotype node. To accomplish this task, one

can employ conditional independence tests of the form Xi ⊥ C | X ⊂ {X1, X2, ..., Xm}.

Causal inference methods such as PC-algorithm or score based learning algorithms, in

essence, implement (score) these conditional independence tests. However, as discussed,

such tests or similar algorithms are expensive in terms of the required sample size.

Another set of tools that could possibly be employed to distinguish between the direct

and indirect children of the phenotype consist of feature selection algorithms, such as

those discussed in [58, 55]. However, as shown in [56], features selected by any typical

48

feature selection algorithm do not necessarily consist of only direct children of the

phenotype. Furthermore, the size of this set is heavily influenced by the number of

available samples. Finally, as any practical feature selection algorithm must employ a

local greedy search in the space of candidate features, the selected set of features is

usually not guaranteed to be the globally optimal one.

4.2 Methods

In this section, we review and discuss some results from the papers [53] and [54]

that characterize the causal knowledge implicated by a pairwise dependency structure.

We have collected these results in this section and have provided new proofs for

them in the appendix for three reasons. First, some of the results are lacking proofs.

Secondly, the current proofs use heavy mahinery from exisiting literature and its hard

to parse them without familiarity with the used graph-theoretic concepts. And finally,

studying these results will help us solve the causal feature selection problem in section

II.E. The lemmas that appear below were first discussed in [54] (without proof) and

more recently have been re-examined in [53].

4.2.1 Causal Assumptions

For now, we assume faithfulness, 1 and further, assume that there are no hidden

confounders (i.e., all the common parents of all the attributes are included in the

domain or take the same value across all units in the population). We will later allow

1We assume any independence observed arises due to the graph/poset structure rather than the

parameters controlling the conditional distributions, i.e., two variables are statistically independent

only if there is no open path between the two variables in the underlying DAG (and in the case of a

poset, the two are independent only if they do not share a common ancestor).

49

the possibility of the existence of hidden confounders in section II.E and when solving

the causal feature selection problem.

4.2.2 Notation

We encode the pairwise marginal independencies that hold amongst the vari-

ables in a domain in an undirected graph whose missing edges inform of pairwise

independence between the two nodes. Following are the notations we use throughout

this paper. We use the letter D when referring to a DAG (we reserve D0 for the data

generating DAG), the letter G when referring to undirected graphs, and finally, the

letter P to denote partially ordered sets (posets) (P0 is reserved for the poset of the

data generating process).

Skeleton of a DAG is an undirected graph wherein every edge in the DAG is

replaced by an undirected edge; we represent the skeleton of a DAG D through the

notation U(D). AncD(X) is used to denote the set of ancestors of the node X in

the DAG D; we assume the convention that X is included in AncD(X). Boundary

of a node, X, in an undirected graph, G, is denoted by Bd(X) and consists of nodes

which are adjacent to X; we assume the convention that X is included in Bd(X). We

use the notation BdG(X) to refer to the boundary of X in the graph G. Operators

E(.) and V (.) are used to denote the set of edges and vertices of a graph. In the case

of a directed graph, we use E(.) to refer to the edges in the skeleton of the said graph.

We say that a DAG, D, implies an undirected edge, a − b, if and only if, a

and b share a common ancestor in D. We say a DAG, D, generates a marginal

independence graph, G, if D implies all and only the edges of G.

We refer to a subset of vertices of an undirected graph that form a complete

subgraph as a clique. A clique in an undirected graph is called exterior if it contains

at least one node that is not contained in any other cliques of that graph. The letters

50

Γ and γ are used to denote a family of cliques and a particular clique. We say a

family of cliques provides an edge cover for an undirected graph if every edge in

the undirected graph is contained in at least one of the cliques. A v-structure in an

undirected graph is a triplet a− b− c with a 6− c. A chordless 4-chain is a chain in

an undirected graph consisting of four nodes wherein only the immediate vertices in

the sequence or the first and last vertices are adjacent, i.e. c− a− b− d with a 6− d

and c 6− b. We use the notation Σ(.) to refer to the marginal independence graph of a

DAG: (a, b) ∈ E(Σ(D)) if and only if AncD(a) ∩ AncD(b) 6= ∅.

4.2.3 From associative relations to causal implications: a review

The clique characterization of marginal independence graphs

The following lemma is concerned with characterization of the class of marginal

independence graphs through clique structure. It was proposed in [54] without a proof

(theorem 2:(ii)) and re-stated in [53] borrowing a theorem characterizing the edge

simplistic properties of bound graphs [59].

Lemma 1 An undirected graph, G, is generated by a DAG, D0, if and only

if there exists a family of exterior cliques, Γ, of G that provides an edge cover for

G. Furthermore, such a family is unique if G has no isolated vertices. (For proof see

appendix A1.)

The sink completion characterization of marginal independence graphs

Lemma 3 is a strengthened version of a theorem presented in [54] without a

proof (theorem 2:(i)). This lemma is also used in [53]; however, the authors do not

provide its proof. This lemma is concerned with the characterization of the class

of marginal independence graphs through a process referred to as sink completion.

A sink completion of an undirected graph, G, is any DAG that results from the

51

following two-step procedure. In the first step, referred to as sink orientation, for

every v-structure a − b − c ∈ G (with a 6− c), we orient them as a → b ← c. In

the second step, we remove bi-directed edges and orient the remaining undirected

edges in any arbitrary manner such that the ouput is a DAG. We show the set of

DAGs resulting from the sink completion of an undirected graph as S(G).

In Lemma 2 we first characterize this process in terms of the boundaries of the nodes

involved, and in Lemma 3, we use this procedure to characterize the class of marginal

independence graphs.

Lemma 2 Given an undirected graph G, an edge a− b is removed during its

sink completion if and only if BdG(a) 6⊆ BdG(b) and BdG(b) 6⊆ BdG(a). In other

words, a− b is removed, if and only if this edges participates in a chordless 4-chain

in G. Furthermore, a− b is oriented as a→ b during sink orientation if and only if

BdG(a) ⊂ BdG(b).

Lemma 3 An undirected graph, G, is generated by a DAG, D0, if and only if

any DAG resulting from the sink completion of G implies all and only the edges of

G. (See proof in appendix A2)

It can be shown lemma 3 implies that a marginal independence graph restricts

candidate causal structures to only DAGs which are subgraphs of those in the sink

completion of the marginal independence graph [53].

4.2.4 A new perspective on causal implications of a marginal independence structure:

from causal DAGs to causal posets

While in the former section we were primarily concerned with the work of [54],

in this section, we mainly focus on one of the results of [53]. In [53], the authors

note that Lemma 1, as proposed in [54], was previously discovered by McMorris

and Zaslavsky in a different setting and for characterizing upper-bound graphs of

52

posets [60]: Textor, Idelberger, and Lískiewicz use this observation to help develop

an algorithm for enumerating causal DAGs consistent with a marginal independence

graph. We will, however, utilize this observation to present a novel perspective on the

identifiability of causal relations from purely observational data.

Let us present a simplified road map of the results of previous section and

their proofs provided in the appendix. The starting point (similar to the work of

[53, 54]) of lemmas 1 and 3 is the local causal Markov condition, and from there,

using d-separation rules, one can arrive at lemnmas that characterize the class of

marginal independence graphs. Then, faced with the question ”what aspect or facet

of causation restricts the class of marginal dependency graphs”, our answer —similar

to works of [53, 54]—- should be the local causal Markov condition. This answer,

however, is not satisfactory to us as a marginal dependency structure does not contain

any information on the conditional independence relations between the variables in

a domain. The work of [60], on the other hand, shows that we can reach a similar

conclusion in a different setting where the local causal Markov condition does not

hold (note also the fact that in our proofs we hardly used the local causal Markov

condition). Then, as far as these lemmas are concerned, it seems possible to relax the

local causal Markov condition and replace it with a more fundamental and elementary

aspect of causal relations.

To develop a suitable theory of causal discovery from the marginal independence

graph, we require two things. First, we define causation (≥) to be a binary relation

between events that is reflexive (an event causes itself), anti-symmetric (no two events

can cause/precede another), and transitive (if a ≥ b and b ≥ c, then a ≥ c) [we only

require ≥ to be anti-symmetric and transitive, reflexivity is assumed for the sake

of convinience]. Any set of variables can be thought of as a partially ordered set

(poset) where the partial order is causation—from a DAG viewpoint of causality, any

53

causal DAG with the same transitive closure represents the same causal poset, and a

causal poset represents the class of DAGs with the same transitive closure. Next, to

connect causation to observable statistical relations we use Reichenbach’s common

cause principle: if two events, a and b, are dependent, then either one causes the other

(a ≥ b or b ≥ a) or they both have a common cause (∃c s.t. c ≥ b and c ≥ a). It is

the transitivity of causation together with Reichenbach’s common cause principle that

restricts the class of marginal independence graphs. The following lemmas, which

are analogous to the lemmas proposed in the previous section, result directly from

these two assumptions: they show that we can let go of the local causal Markov

condition while preserving the structure of the class of marginal independence graphs.

Here we show the underlying causal poset with P = (V,≥), and the undirected graph

representing the pairwise dependence of the attributes with G = (V,E). We say that

a causal poset, P , generates a marginal independence graph, G, if and only if for any

edge a− b present in G, there exists a z ∈ V such that z ≥ b and z ≥ a in P (in other

words, we again assume that there are no hidden confounders, and further, assume

faithfulness). The proofs of the following two lemmas are provided in the appendix.

Lemma 4 An undirected graph G = (V,E) is generated by a causal poset

P = (V,≥) if and only if there exists a family of exterior cliques, Γ, of G that provide

an edge cover for G. Further, such a family is the only such if G has no isolated

vertices. (For proof see appendix A5)

Lemma 5 G is generated by a causal poset P , if and only if, any poset in the

sink completion of P ∈ S(G) implies all and only the edges of G (we say that a

poset P implies an edge a− b in G if and only if there exists a z such that z ≥ b and

z ≥ a in P). (For proof see appendix A6)

In summary, a well known aspect of causality, the transitivity, enables causal

discovery from pairwise dependency structure of a domain independent of the local

54

causal Markov condition. This allows us to conduct causal inference in regimes where

local causal Markov condition is not an appropriate assumption. The two prominent

examples of such cases involve measurement errors and averaging.

Measurment Errors

If a variable, X1, influences another, X2, indirectly through a third variable, Z,

then the local causal Markov condition can be used to identify the indirect nature

of this influence as X1 and X2 are independent conditioned on Z. If, however, our

measurments of the variables X1, X2, and Z, contain errors, a similar conditional

independence will not hold for the measured variables. In general, conditional inde-

pendencies of a set of variables {X1, X2, ..., Xn} will not hold among the variables

{Xm
1 , X

m
2 , ..., X

m
n }, where Xm

i ’s are noisy measurements of Xi’s: X
m
i = fi(Xi, δi), f is

a deterministic function and δi’s are jointly independent [21]. While the local causal

Markov condition does not translate between these two domains, the Reichenbach’s

common cause principle and the transitivity condition do. Two measured variable Xm
1

and Xm
2 are dependent, if and only their real counterparts X1 and X2 have a common

cause. Furthermore, if we find Xm
1 and some Xm

i to be dependent, and, at the same

time, see that Xm
2 and Xm

i are independent, then we can conclude that X1 is not a

cause of X2 (see Lemma 7): if X1 is a cause of X2, by transitivity of causation, we

require any pattern in X1 (a pattern being any Xj dependent on X1) to also be ob-

servable in X2 (for Xj and X2 to be also dependent). As we have assumed faithfulness,

we conclude any pattern in Xm
1 should also be observable in Xm

2 . This contradicts our

assumption that there is a pattern Xm
i which is in Xm

1 but not Xm
2 . The translation of

these two conditions between these sets can also be immediately noted by considering

that the marginal independence graph of the variables {Xm
1 , X

m
2 , ..., X

m
n } is identical

to that of the variables {X1, X2, ..., Xn}; i.e Xm
1 and Xm

2 are dependent if and only

55

if X1 and X2 are dependent. This lets us conclude that a causal inference tool that

operates only via the marginal independence graph of the measured variables will

reach correct causal conclusions while one utilizing the local causal Markov condition

does not.

Averaging

Gene expression experiments usually measure the average concentration of a

gene in a large collection of cells rather than in a single cell. Consider a population

of cells {C1, ..., CM} and let Xm
i represent the expression level of gene Xi in the cell

Cm. Assume that the same causal mechanisms are at work in every cell so that if Xm
i

and Xm
j are independent conditional Xm

k for a given cell, then a similar independency

holds among the expression levels of these genes in other cells. The important point

here is that the corresponding conditional independency will not hold among the

average expression levels [21]. On the other hand, the marginal independence graph

of the average expression levels is identical to the marginal independence graph of

the gene expression levels in each cell. Therefore, causal conclusions made based on

the evidence of the average expression levels are incorrect if one uses the local causal

Markov condition while those that are inferred solely via the marginal independence

graph are correct.

4.2.5 Causal Feature Selection Using Marginal Independence Graph

Either through transitivity of causation or with the help of Lemmas 1 and 3,

we can directly reach the following lemmas: these two lemmas are at the core of our

causal feature selection algorithm.

56

Lemma 6 Consider the set of maximal cliques of the marginal independence

graph: Γ = {γ1, γ2, ..., γm}. For any x ∈ γi, all its descendants are also in γi:

{y|x ≥ y} ⊆ γi .

The proof of the above is provided in appendix A6. From Lemma 6, we can

immediately conclude the following.

Lemma 7 Consider the set of maximal cliques of the marginal independence

graph: Γ = {γ1, γ2, ..., γm}. For an attribute Xi, show the set of cliques where Xi

participates in as µi = {j|Xi ∈ γj}. We refer to µi as Xi’s (clique) membership. For

any two attributes Xi and Xj , Xi ≥ Xj only if µi ⊆ µj (assuming local causal markov

condition, this is equivalent to saying that there exists a directed path from Xi to Xj

only if µi ⊆ µj).

We can use Lemmas 6 and 7 to tackle the problem of causal feature selection.

Let us recall the general formulation of this problem. We are given measurements of a

set of candidate features in two (or more) classes and we are asked to identify those

that are direct causal effects of the class variable. We assume the class variable is the

root node (a node without any parents amongst the variables in the domain) in some

underlying DAG.

Algorithm

To solve the causal feature selection problem, we first propose to identify the

attributes whose probability distributions depend on the population: {X|P (X|C =

0) 6= P (X|C = 1)}. As discussed previously, these attributes consist of descendants of

the class variable. From now on, we assume that the candidate features only consist

of such attributes. In the next step, we calculate the marginal independence graph of

the candidate attributes in every class. We then form the class conditional marginal

independence graph G: for any pair of attributes, Xi and Xj , Xi−Xj ∈ G if and only

57

if Xi and Xj are found to be dependent in at least one of the classes. Using lemmas 6

and 7 we have:

Lemma 8 The minimum clique cover number of G, the class conditional

marginal independence graph, is a lower bound on the the outdegree of C, the class

variable. (See appendix A7 for proof)

Lemma 9 Consider the set of maximal cliques of the class conditional marginal

independence graph: Γ = {γ1, γ2, ..., γm}. For an attribute Xi, show the set of

maximal cliques where Xi participates in as µi = {j|Xi ∈ γj}. Then the attributes in

R = {Xi|∀j 6= i : µj 6⊆ µi} consist of a subset of the direct children of C, the class

variable.(See appendix A8 for proof)

4.3 Evaluation

4.3.1 Simulations: Precision and Recall of Lemma 9 vs. CI tests

In this section, we wish to investigate if the causal knowledge acquired from the

marginal independence graph is more accurate than the causal knowledge obtained

through CI tests. However, these two methods produce causal objects at different

resolutions, and it would be unreasonable to compare such causal objects directly. CI

tests provide a detailed description of causal mechanisms in terms of an equivalence

class of DAGs. A marginal independence graph is unable to offer such resolution

and cannot distinguish between DAGs giving rise to the same marginal independence

graphs– the equivalence class arising from pairwise dependency information is much

larger than that arising from the CI tests. Still, it is possible to compare these two

methods against each other in specific problem instances. Consider the causal discovery

problem discussed throughout this paper, the causal feature selection problem. In

the causal feature selection problem, we are given a root node (a node without any

58

parents amongst the variables in the domain), and are asked to find its children

among its descendants. Interestingly, CI tests and marginal independence graph can

both be used to tackle this problem, and they present two distinct approaches for

distinguishing between direct and indirect effects of such a node. On the one hand,

to identify children of this node through CI tests, we can apply the skeleton learning

step of the PC-algorithm to the node under consideration. On the other hand, based

on Lemma 9, we can identify a subset of the children of the node by considering

the boundaries of the candidate nodes in the marginal independence graph. In the

simulations presented in this section, we use this problem setting to compare the

precision and recall of the CI tests against our proposed method in identifying direct

children of a node among its descendants.

We set up our simulation environment through the following steps. We first create

the adjacency matrix of our DAG. We control for the number of nodes in the DAG,

m ∈ {7, 8, 9, 10, 11, 12, 13, 14, 15}, and also the sparsity, s ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

of the DAG: sparsity of a DAG is the parameter that controls expected number of

neighbors (parents or children) of a node and equals the ratio of the expected number

of connections of a node to the total number of nodes in the graph. We generate this

adjacency matrix similar to the process described in [45]: such a simulation setting is

widely used in practice to probe the performance of causal learning algorithms. We

then add a root node (the class variable) to the DAG just created and connect the root

node to k ∈ {1, 2, 3, 4, 5} randomly chosen nodes in the DAG. These are the direct

children of the root node. Afterward, we generate n ∈ {30, 40, 50, 70, 90, 110, 130, 150}

59

samples from the DAG, recursively, starting from the root node, and down to the

leaves using the following equation:

xi = µi +
∑
xi∈πi

bij(xj − µj) +N (0, 1/τi), (4.1)

where network parameters µi, τi were sampled from a uniform distribution U(0, 2),

and bij was chosen as independent realizations of U(−2, 2). Afterward, using CI tests

and our proposed method (Lemma 9), we try to distinguish between the children

and the rest of the descendants of the root node (we identify the descendants of the

root node directly through DAG adjacency matrix). We used Fisher’s Z-test with a

p-value of 0.01 to evaluate statistical dependencies (i.e., to convert partial correlation

or correlation values to boolean statements of dependence and independence).

In figures 4.2-4.5, we present the precision and recall of the CI tests against

our proposed method (referred to as the boundary method) in distinguishing between

direct and indirect effects of a root node as a function of 1. sample size, 2. network

size, 3. number of children, and 4. network sparsity; the results presented are the

average of 2000 iterations. In these figures, we have also included a new algorithm,

referred to as combined method. This algorithm is simply the AND of the CI method

and the boundary method: in the combined method, a feature is selected as a child of

the root node, if and only if both the CI tests and our proposed method select this

feature.

4.3.2 Gene Expression Analysis: Dataset GSE101521

Dataset GSE101521 contains 59 recordings of whole-exome gene expression of

three groups of controls (CON, N=29), major depressive disorder suicides (MDD-S,

N=21), and MDD non-suicides (MDD, N=9) [57]. The data was collected using

60

Figure 4.2: Precision and Recall of boundary method against CI tests in identifying
children of a node among its descendants as a function of the sample size

Figure 4.3: Precision and Recall of boundary method against CI tests in identifying
children of a node among its descendants as a function of the network size

RNA-seq measurements from the dorsal lateral prefrontal cortex of sudden-death

medication-free individuals postmortem. After adjusting for covariates age and gender,

61

Figure 4.4: Precision and Recall of boundary method against CI tests in identifying
children of a node among its descendants as a function of the network sparsity

Figure 4.5: Precision and Recall of boundary method against CI tests in identifying
children of a node among its descendants as a function of the number of children of
root node.

62

the authors used DeSeq2 v.1.6.3 to assess differential expression among the groups

[61]. Between the two groups of CON and MDD-S, the authors identified thirty-four

differentially expressed genes at a false discovery rate of p < 0.1 (a list of the thirty-four

differentially expressed genes is provided in the supplementary material of [57]).

Utilizing lemma 9, we examined which of the differentially expressed genes were

directly affected by the phenotype (MDD-S): we used Fisher’s Z-test with a p-value of

0.01 to form the class conditional adjacency matrix. Our algorithm selected four genes

as the direct children of the phenotype; these genes, together with their functional

significance, are shown in Table 4.1.

Gene ID Functional Significance

CCL2 Protein kinase activity
GBP2 Interferon gamma signaling

MTRNR2L8 Neuroprotective and antiapoptotic factor
FER1L6 ATPase activity

Table 4.1: Among the 34 differentially expressed genes between the two groups of
MDD-S and CON, we identied four that must be directly affected by the phenotype.

4.4 Discussion and Conclusions

The field of causal learning is rapidly advancing, and there is now a multitude of

approaches for identifying causal relations from purely observational data. However,

the most popular causal learning algorithms require sample sizes that are sometimes

not met in practice. Causal discovery in these small sample limits was the central

theme of our paper. We hypothesized that avoiding higher-order CI tests would

benefit causal discovery in such scenarios. This lead us to study the types of causal

knowledge that can be discovered in the pairwise dependency structure of a domain.

Expanding upon the works of [54] and [53], we presented novel results characterizing

63

causal knowledge implicated by a marginal independence graph. We further showed

that such causal insights embedded in the marginal independence graph stem from a

basic and elementary aspect of causal relations, the transitivity of causation.

We used the pairwise dependency structure of a domain to tackle a special causal

discovery problem, that of distinguishing between direct effects and indirect effects

of a variable. In our simulations, we compared the precision and the recall of our

proposed algorithm against that of CI tests in solving this causal discovery problem.

Our simulation results confirmed our main hypothesis. In small sample limits, causal

knowledge obtained through the marginal independence graph is significantly more

accurate than the causal knowledge obtained through CI tests. In a specific problem

instance where our sample size was equal to thirty, the number of candidate variables

was ten, and three among them were the children, and the sparsity of the network was

set to 0.3, we saw a 30% reduction in error rate, increasing the precision from 0.57 to

0.70, while at the same time improving the recall. We also suggested that it is possible

to employ our algorithm in supplement to CI tests: this combination resulted in a

further 23% reduction in the error rate at the cost of the recall. We further used this

causal discovery tool to examine the dataset GSE201521 and identify genes that are

directly affected by MDD. While the nature of the problem makes it hard to validate

our results, there is still significant biological evidence that implicates a causal role

for two of the four selected genes (CCL2 and MTRNRL8) [57].

Supplementary Materials

A1. An undirected graph G is generated by a DAG D0 if and only if there

exists a family of exterior cliques, Γ, of G that provides an edge cover for G. Further,

such a family is the only such if G has no isolated vertices.

64

Proof

Only if: Assume any DAG D. The roots of D, {ψ1, ψ2, .., ψm} together with

all their descendants form a family Γ = {γ1, γ2, ..., γm} of exterior cliques in G which

cover every edge in G. Every γi ∈ Γ is an exterior clique since adjacency of any root

node, ψi, is included in γi: BdG(ψi) = γi . To see that Γ is an edge cover, we note

that any adjacency (xi, xj) in G implies xi and xj share a common ancestor, z, in D.

The edge (xi, xj) is covered by the exterior clique γk where z ∈ descendants(ψk).

If: Assume there exists a family of exterior cliques in G that provides an edge

cover for G. The following construct then immediatley gives a DAG, D, that can

generate G. Assume Γ = {γ1, γ2, ..., γm} is a set of exterior cliques in G which cover

every edge in G. Find the exterior node, ψi, for all the exterior cliques γi; i.e. ψi is only

contained in γi. Form D by connecting ψi to every other node in γi, ψi → xi : ∀xi ∈ γi.

Γ is unique: Consider there are two families of exterior cliques Γ1 and Γ2.

Consider any exterior clique γi ∈ Γ1 and find the exterior node in this clique ψi. Since

Bd(ψi) = γi, then any clique containing ψi must be equal to γi and thus γi must also

be in Γ2.

A2. An undirected graph, G, is generated by a DAG, D0, if and only if any

DAG resulting from the sink completion of G implies all and only the edges of G.

D0

Generating

DAG

G D Σ(D)
Σ SC Σ

Figure 4.6: The sketch of the graphs and their transformations used in the proof of
Lemma 3 in A2. SC refers to the transformation corresponding to sink completion
and Σ refers to that of forming the marginal independence graph.

65

Proof

Existence: There is at least one DAG in the sink completion of any undirected

graph. This is due to the fact that every sink orientation is acyclic and any partially

oriented acyclic graph can be fully oriented to form a DAG (see appendix A3.)

All: Let D0 denote the data generating DAG. We first show that every edge in

its marginal independence graph, G = Σ(D0), is also present in Σ(.) of any DAG in

G’s sink completion. Without any loss, we show this for an arbitrary D ∈ S(G). In

mathematical terms, we wish to show (a, b) ∈ E(G)⇒ (a, b) ∈ E(Σ(D)).

If (a, b) is present in G then (a, b) must have a common ancestor in D0. We refer

to this common ancestor as z. Since z is an ancestor of a (b) we have BdG(z) ⊆ BdG(a)

(BdG(z) ⊆ BdG(b)).

Now, if (a, b) is present in D, then, (a, b) will be present in Σ(D) and we are

satisfied. If (a, b) is missing in D, then, they must have participated in a chordless

4-chain (c− a− b− d) in G (Lemma 2). This, in turn, implies that there is no directed

path between a and b in D0: z 6= a, z 6= b (a directed path from a to b would imply

that BdG(a) ⊆ BdG(b)). Furthermore, z cannot be adjacent to c or d as that would

imply the chords c− b or a− d in G since BdG(z) ⊆ BdG(a) and BdG(z) ⊆ BdG(b).

Therfore, we will have two v-structures in G, one in the form of c− a− z with c 6− z

and the other being z − b− d with d 6− z.

The sink orientation process will have these two v-structures oreinted as c→

a ← z and z → b ← d. The last piece of the puzzle is to note that the edge z − a

(z− b) cannot be removed during sink completion as we have assumed z is an ancestor

of a (b), and therefore, BdG(z) ⊆ BdG(a) (BdG(z) ⊆ BdG(b)). The formation of the

structure a← z → b in D implies that the edge (a, b) will be present in Σ(D).

Only: We wish to show that every edge in Σ(D) is also present in G. In other

words, we wish to show (a, b) ∈ Σ(D) ⇒ (a, b) ∈ E(G). Since E(D) ⊂ E(G), any

66

edge in Σ(D) not present in G must also not be present in D. The difference between

Σ(D) and D can be due to transitive edges or trek edges.

Only: transitive edges We show that any DAG, D, formed during sink

completion is a poset. To prove this, we show that no structure of the form a→ b→ c

with a 6→ c is present in the sink completion of any undirected graph G. Assume the

contrary that such a structure exists in D.

First we note that the edges (a, b) and (b, c) must have been inG as E(D) ⊆ E(G).

Furthermore, the edge (a, c) must also have been in G as without (a, c), a−b−c would

have formed a v-structure in G that would have been oritented as a→ b← c during

sink orientation. Since we have assumed that the edge (a, c) is not present in D, then

this edge must have been removed during the sink completion process. This lets us

conclude a and c must have participated in a chordless 4-chain in G: e− a− c− f .

Thus, the structure shown in figure 4.7 is present in G. Regardless of the existence

of edges e− b or b− f in this structure, no sink completion of it leads to a chain of

the form a → b → c. First, if the edge e − b (or b − f) is missing in G, then a − b

(or a− c) will be removed during sink completion as e− a− b− c (or a− b− c− f)

form a chordless-4 chain. If both edges e− b and b− f are present in G, then we have

v-structures a− b− f (with a 6− f) and c− b− e (with c 6− e) in G causing a− b and

b− c to be oriented as a← b and b← c during sink orientation. This contradicts our

assumption that the edge b− c is oriented as b→ c in D.

e a c f

b

Figure 4.7: The marginal independence structure of a non-transitive triple chain in
D ∈ S(G). The presence of edges marked by dashed lines is not certain (they can be
both present or absent).

67

Only: trek edges We define a trek edge, (a, b), as an edge that is added to

D in process of forming its marginal independence graph, Σ(D), and connects nodes

that have a common ancestor, c, where c 6= a, c 6= b. We previously proved that D is

a poset. Therefore, any common ancestor of two nodes is directly connected to both

of the nodes in D. This common ancestor must also be adjacent to both a and b in G

as E(D) ⊆ E(G). We now must show that a← c→ b ∈ D only if a− b ∈ G. Assume

a− b 6∈ G. Then, since in constructing D, sink orientation would orient any structure

of the form a− c− b ∈ G as a collider (a→ c← b ∈ D) we face a contradiction as we

had assumed that c is a common parent of a and b in D.

A3. Sink orientation of any undirected graph, G, is acyclic.

Proof

Assume that there is a cycle formed during sink orientation. Let this cycle consis

of the nodes {c1, ..., cn}. Assume that the orientations are of the form ci → ci+1 for the

nodes with indices in i ∈ 1, ..., n− 1 and the cycle is completed with the orientation

cn → c1 for the nodes cn and c1. The orientations ci → ci+1 imply the boundary

relations BdG(ci) ⊂ BdG(ci+1) (see Lemma 2). Thus, BdG(c1) ⊂ BdG(cn). However,

this contradicts the orientation cn → c1 which implies BdG(cn) ⊂ BdG(c1).

A4. An undirected graph G = (V,E) is generated by a causal poset P = (V,≥)

if and only if there exists a family of exterior cliques, Γ, of G that provide an edge

cover for G. Further, such a family is the only such if G has no isolated vertices.

This can be seen by considering Lemma 1 and the fact that any DAG D

and the poset corresponding to its transitive closure give rise to the same marginal

independence graph. However, as noted in [53], Lemma 4 is essentially the theorem

proposed originally by McMorris and Zaslavsky [60] and this result predates the

statement of [54].

68

A5. G is generated by a causal poset P , if and only if, any poset in the sink

completion of P ∈ S(G) implies all and only the edges of G (we say that a poset P

implies an edge a− b in G if and only if there exists a z such that z ≥ b and z ≥ a in

P).

To see this, we note that any DAG in the sink completion, as shown in the proof

of Lemma 3 in A2, is a poset (i.e. its transitive closure is itself).

A6. Consider the set of maximal cliques of the marginal independence graph:

Γ = {γ1, γ2, ..., γm}. For any x ∈ γi, all its descendants are also in γi: {y|x ≥ y} ⊆ γi .

Proof Consider any xb in the boundary of x (a node is said to be in the boundary

of another node if these two nodes are connected through an edge; by convention, we

assume that a node is in its own boundary). From Reichenbach’s principle of common

cause we conclude there exists a z such that z ≥ xb and z ≥ x. Transitivity of causation

implies that z ≥ xd for any xd ∈ {y : x ≥ y}, concluding that {y|x ≥ y} ⊆ γi.

A7. The minimum clique cover number of G, the class conditional marginal

independence graph, is a lower bound on the the outdegree of C, the class variable.

Proof Consider a missing edge in G: Xi −Xj 6∈ G. From this missing edge, we

can conclude that Xi and Xj don’t share any common ancestors (Xi ← Z → Xj) nor

there is a directed path connecting these two to each other (Xi...→ ...Xj). Since both

these attributes are connected to the class node (Xi ← ... ← C → ... → Xj), then

these attributes must be connected to the class variable via different causal pathways :

in the underlying DAG (poset), the directed paths from C, the class node, to these

two attributes cannot have any overlap as that would imply these two attributes

share a common ancestor. Therefore, the paths from C to these two attributes must

involve non-overlapping edges directed out from C. This allows us to conclude that

the minimum number of edges required to connect the class variable C to all the

candidate attributes cannot be smaller than the minimum clique cover number of G.

69

A8. Consider the set of maximal cliques of the class conditional marginal

independence graph: Γ = {γ1, γ2, ..., γm}. For an attribute Xi, show the set of

maximal cliques where Xi participates in as µi = {j|Xi ∈ γj}. Then the attributes in

R = {Xi|∀j 6= i : µj 6⊆ µi} consist of a subset of the direct children of C, the class

variable.

Proof According to Lemma 7, for any Xr ∈ R, the causal effect of class variable

to these attributes cannot be mediated by any other observed variable in the domain.

Therefore, these attributes must be directly connected to the class variable.

70

CHAPTER 5

CAUSAL DISCOVERY FROM HETEROGENEOUS DATA: DECIDING IF

CHANGES IN MARGINAL DEPENDENCY STRUCTURE ADMIT A CAUSAL

EXPLANATION

5.1 Introduction

Differential Connectivity Analysis (DCA) is a blanket term referring to a large

and varied collection of algorithms [62, 63, 64, 65, 66]. At their core, these algorithms

are concerned with the causal structure that orchestrates and connects the actions of

processes in any functional system. This orchestrated action or harmony is manifest

in the form of the various statistical dependence relations that hold in a domain.

A DCA algorithm is used to inspect how this orchestrated action changes across

different conditions and the unstable statistical dependence relations and those that

are persistent are distinguished from one another. Often, experts employ DCA as a

springboard to causal postulates. For instance, experts have used DCA to attribute

complex diseases to, and as being caused by, the loss of certain desired statistical

dependencies [67, 68, 66]. However, bridging the gap from persistent and unstable

statistical dependence relations to causal conclusions has so far exclusively relied

on heuristics and expert knowledge1 [71, 68, 72, 73]. In this paper, we ask whether

theoretical results, and not heuristics or expert knowledge, can substantiate the use of

DCA for causal discovery.

1The following excerpt perhaps best indicates the general sentiment and heuristic that is often

invoked in bridging this gap: “As with shadows, these correlational patterns are incomplete - and

potentially ambiguous - projections of the original causal processes. As with shadows, we can infer

much about the underlying causal process if we can learn to study their details [...]” [69, 70].

71

Such theoretical results can greatly help propel and expand the use of DCA as

a causal discovery tool. First, without a theory that supports the use of DCA as a

springboard to causal postulates, it has not ben easy to establish how well a particular

DCA algorithm can generalize—as a causal discovery tool—beyond the specific data-set

it was designed to handle. Thus, DCA algorithms have remained very much domain

and data-set specific. For the same reason, even when it comes to the same domain

or the same data-set, it is still challenging to establish which DCA paradigm is best

suited for causal discovery [66]. In practice, DCA algorithms are often deployed as

heuristic feature selection algorithms where the processes whose dependence relations

are deemed to be highly unstable are picked out for further analysis and empirical

evaluation. In some instances, expert knowledge and experimental data have validated

such attempts at causal discovery through DCA, however, there are other instances

where DCA has failed [74]. It still remains difficult to explain why DCA is a valuable

causal discovery tool only in certain occasion and not the others. While these results

paint DCA in a negative light, nevertheless, the undeniable fact is that statistical

dependence relations have been observed to be unstable time and again, and these

dependence relations are a reflection of the underlying causal forces; the only question

is whether we can unravel the changes in dependency relations in terms of causal

relations in polynomial time.

Among the massive collection of the different DCA paradigms, in this paper,

we study what is the most basic and prevalent one [75, 63, 67, 66]. We consider

only marginal dependence relations and are only concerned with the undirected

graph of marginal dependencies wherein edges connect nodes representing statistically

dependent processes or variables. We assume we have constructed a domain’s marginal

dependency graph under two conditions, i.e. case and control, and have distinguished

the edges that are persistent from those that are unstable. Our main concern in

72

this paper is to evaluate DCA as a causal discovery tool, to understand what causal

facts are concealed under the complex web of dependency changes, and if there are

polynomial time algorithms that can reveal these causal facts. For this purpose, it

is imperative that we first examine the following decision problem. Can we decide

in polynomial time if the changes in the marginal dependency graph admit a causal

explanation? We show that under certain set of assumptions, the simplest case of

which is having only dependency loss, and in a more complex setting we have a relaxed

form of faithfulness, a valid causal explanation, if one exists, can be constructed in

polynomial time using Reichenbach’s common cause principle and the formalism of

functional causal models. While these decision type results are the main output of

this paper, we also propose a novel causal discovery algorithm that given the unstable

and stable marginal dependence relations, estimates a informed upper bound on the

set of causal mechanisms that are unstable.

Before moving forward, we briefly pause here and compare our work to causal

learning in settings where distribution shifts occur. In domain adaptation or dis-

tribution shift problems, similar to our setting, the causal mechanisms, specifically,

the parameters associated with the causal structure generating the observed data,

are assumed to change across different conditions [76, 77, 78, 79]. The principle

causal discovery tool employed in these scenarios is that of the invariance of causal

mechanisms [78, 79, 80]: P (cause) and P (effect |cause) should change independently

across conditions while a similar relation does not hold in the reverse direction and the

changes in P (cause|effect) and P (effect) are dependent. This asymmetry is often used

for distinguishing cause and effect in such scenarios. When it comes to persistent and

unstable marginal dependence relations, we cannot employ this principle since we have

no information on the conditional distribution of the variables involved, and we cannot

test for their invariance. Furthermore, these work often assume that the observed

73

distributions are faithful to some directed acyclic graph where the condition or the

context variable is included as an exogenous node along the nodes corresponding to

other processes in the domain. First, the faithfulness assumption requires, to a great

extent, the stability of the generating causal structure, and thus the stability of almost

all statistical dependence relations across the different conditions. In other words,

these works assume that only the parameter values change across the conditions while

the generating causal structure is not affected (i.e. a positive correlation value in

one condition becomes negative in the other or some other similar parameter change

setting). Second, these works require the generating causal structure to be acyclic,

while we consider cyclic causal structures as well.

5.2 Preliminaries

In this work, we are concerned with a domain over m variables X = {x1, ..., xm}.

We are given the marginal dependency relations in the domain under two conditions,

C ∈ {1, 2}, in the form of undirected graphs (UG), G1 and G2, where an edge

xi − xj ∈ G1(G2) connects the two nodes xi and xj in G1(G2) if and only if the nodes

are statistically dependent when the conditioning variable or the context takes the

value C = 1(C = 2). We assume that underlying each domain is a causal system

giving rise to the observed marginal dependency relations. Using the formalism of

functional causal models, we represent this causal structure with a directed graph

(DG) D1(D2): xi → xj ∈ D1(D2) if and only if xi is a direct cause of xj (xi to directly

control the regulation and the production of xj) when the conditioning variable or the

context takes the value C = 1(C = 2) [81].

Through Reichenbach’s common cause principle, from the causal structure,

we can directly obtain the marginal dependency graph by connecting nodes xi, xj,

i 6= j, that share a common ancestor. We say a causal structure, D, generates a

74

marginal dependency graph, G, if G can be obtained from the causal structure in

this manner and write Σ(D) = G. While the marginal dependency graph can be

directly calculated from the causal structure, the causal structure is not uniquely

identifiable from the marginal dependency graph. We study the causal implications of

a marginal dependency graph in the next section; before that, we first need to review

some graph-theoretic notions.

We use the abbreviations UG, DG, DAG, PDG, and PDAG in place of

undirected graphs, directed graphs, directed acyclic graphs, partially directed graphs,

and partially directed acyclic graphs. We say two nodes, a and b, are adjacent in

a UG, G, if they are connected by an edge in G, and write a − b ∈ G. We refer to

the collection of vertices adjacent to a node in a UG, together with the node itself,

as the boundary of that node in the graph. We use the notation ΩG(ξ) to denote

the boundary of the node ξ in the graph G. We say the nodes a, b, and c form a

v-structure, a− b− c, in a UG, G, if the nodes a and b, and the nodes b and c are

both connected in the UG, a− b ∧ b− c ∈ G, and the nodes a and c are disconnected

in G. We refer to a subset of vertices of a UG that form a maximal complete subgraph

as a clique. A clique in a UG is called external if it contains at least one node that

is not contained in any other cliques of that graph. A node, ξ, in a UG, G, is called an

external node if ΩG(ξ) ⊆ ΩG(x) for every x ∈ ΩG(ξ). Every external clique contains

at least one external node. We say a family of cliques provides an edge cover for a

UG if every edge in the UG is contained in at least one of the cliques.

The sink graph of a UG, G, is a PDG, P , obtained by orienting an edge

a − b in G as (1) a → b if ΩG(a) ⊂ ΩG(b), (2) a ← b if ΩG(a) ⊃ ΩG(b), (3) a − b if

ΩG(a) == ΩG(b), and (4) a ↔ b if neither (1), (2), or (3) are applicable. We use

the notation Λ(G) to denote the sink graph of graph G: Λ(G) = P . The reduced

sink graph of a UG, G, is the PDAG, P , obtained by removing the doubly oriented

75

edges of its sink graph. We use the notation Λo(G) to denote the reduced sink graph

of graph G. We say a DAG, D, is in the acyclic completion of some PDAG, P ,

if D can be obtained by orienting the undirected edges in P . We say a DG, D, is

in the completion of some PDG, P , if D can be obtained orienting the undirected

edges in P (we are free to orient an undirected edge as ↔, → or ←). When we write

a→ b ∈ P for some nodes a and b in some PDG (DG), P , we mean that a and b are

connected in P either with a doubly oriented edge or through an edge oriented from a

to b. However, when we say the edge connecting a and b is oriented as a→ b in P , we

specifically mean that the edge between a and b is not doubly oriented.

We say the node x1 is an ancestor of the node xm in the DG D, if there exists

a sequence of nodes {x1, ..., xm−1, xm} where for any two immediate nodes in the

sequence, xi and xi+1, xi → xi+1 ∈ D. We use the notation x1 ≥ xm ∈ D to indicate

that x1 is an ancestor of xm in the DG D. We say a node xm is a descendant of

the node x1 in a DG, D, if x1 is an ancestor of xm in D. For convenience, we assume

every node is its own descendant as well as its own ancestor. We say a node, ξ, is a

root node in a DAG if it does not have any ancestors. We say a node is a root∗

node in a DG if every ancestor of the node is also its descendant.

We say a PDAG, P , is strongly transitive if (1) for any triplet (x, y, z) forming

a directed path in P , the edges between x, y and z are oriented as x → y → z

or x − y → z or x → y − z in P , the nodes x and z are also connected in P and

the edge x− z is oriented as x→ z in P , and (2) for any triplet (x, y, z) forming an

undirected path in P , the edges between x and y, and y and z are undirected in

P , the nodes x and z are also connected in P and the edge x− z is undirected in P

also. We say a PDAG, P , is weakly transitive if (1) for any triplet (x, y, z) forming

a directed path in P , the nodes x and z are also connected in P and the edge x− z is

either undirected in P or is oriented as x → z in P , and (2) for any triplet (x, y, z)

76

forming an undirected path in P the nodes x and z are also connected in P and the

edge x− z is either undirected in P or is oriented as x→ z.

We say a node, ξ, is strongly transitive in a PDG, P , if (1) whenever there is

a directed path from ξ to node y through node x, then ξ and y are also connected in

P and the edge between ξ and y is oriented as ξ → y in P , and (2) whenever there is

an undirected path from ξ to node y through node x, then ξ and y are also connected

in P through an undirected edge. We say a node, ξ, is weakly transitive in a PDG,

P , if (1) whenever there is a directed path from ξ to node y through node x, then ξ

and y are also connected in P and the edge between ξ and y is either undirected in P

or is oriented as ξ → y in P , and (2) whenever there is an undirected path from ξ to

node y through node x, then ξ and y are also connected in P and the edge ξ − y is

either undirected in P or is oriented as ξ → y in P .

5.2.1 Class Σ of Undirected Graphs

The following results are the foundations on which we build our causal theory

of DCA: they characterize the causal knowledge encoded in a marginal dependency

graph [59, 54, 53, 82]. These results assume the local causal Markov condition, which

states a node is independent of its non-descendants conditional on its direct parents.

Lemma 1.1. An undirected graph, G, is generated by a DAG, if and only if

any DAG in the acyclic completion of the reduced sink graph of G generates G.

Lemma 1.2. An undirected graph, G, is generated by the DAG D, only if, D

is a subgraph of some DAG that is in the acyclic completion of the reduced sink graph

of G.

Note 1 (regarding edge orientations in the sink graph). In the DAG graphical

representation of a causal structure, an edge a→ b records a as a direct cause of b. A

77

similar orientation in the sink graph, however, only implies that b 6≥ a, or b is not an

ancestor (a direct or an indirect cause) of a.

Lemma 1.3. An undirected graph, G, is generated by a DAG, if and only if

there exists a unique family of external cliques, Γ, of G that simultaneously provides

an edge cover and a node cover for G.

Definition. Σ Class: We say an undirected graph G is in the Σ class when

G can be generated by a DAG.

Note 2 (bounds on the generating causal structure). Lemmas 1.1 and 1.2 charac-

terize two bounds for the target causal structure generating the observed marginal

dependency relations. The reduced sink graph serves as an upper bound of the target

causal structure; according to lemma 1.2, the target causal structure is a subgraph of a

DAG that is in the acyclic completion of the reduced sink graph. Lemma 1.3 points to a

set of minimal causal structures that can generate the sought for marginal dependency

graph. These minimal causal structures correspond to any DAG obtained by (1) select-

ing one external node, ξi, for every external clique, and (2) connecting every external

node in this selection to all the nodes in their boundaries: ξi → xj,∀xj ∈ ΩG(ξi) [53].

These results assume the prior knowledge that the generating causal structure is

acyclic. We will now show that irrespective of whether the generating causal structure

is acyclic or not, the Σ class remains the same. The main factor that allows us to

extend these lemmas in such a manner is that the local causal Markov condition

is not the only bridge between the causal structure generating the data and the

observed marginal dependency graph: we can, instead, reconcile this gap using the

Reichenbach’s common cause principle.

Lemma 1.4. An undirected graph, G, is generated by a DG, only if there exists

a DAG generating G. (Supplementary material A.1.)

78

5.3 Causal Learning From Dependency Loss: Decision Problem

In the dependency loss setting, we take one condition to depict a functional

system and the other to delineat a possible malfunction where some of the causal

mechanisms have been disrupted and removed. In other words, we take one causal

structure to be a subgraph of the other. In the dependency loss setting we use

a slightly different noation and we distinguish the two conditions by labeling the

marginal dependency graph of the functional system as G and its counterpart with

G1. We also use the notation D and D1 to denote the corresponding causal structures:

a → b ∈ D1 =⇒ a → b ∈ D. Let us now start with the decision version of the

dependency loss problem: given two marginal dependency graphs, G and G1, with

G1 ⊆ G and both in Σ, can we decide in polynomial time if there exist a pair of DAGs,

D and D1, with D1 ⊆ D, that generate the given marginal dependency relations?

In answering this question, we introduce two new notions that will also be

important to our causal interpretation of dependency change in section 3.2. These two

concepts are mirrored sink graphs and the idea of a node’s outer externality. These are

extensions of the notions of a sink graph and a node’s externality discussed previously

in section 2.1.

[]-Mirrored Sink Graph Given a pair of undirected graphs, G and G1, the

G−mirrored sink graph of G1, ΛG(G1), is a partially directed graph whose skeleton is

the same as that of the sink graph of G1. The orientations of the edges of PG
G1

are

obtained by transferring edge orientations from Λ(G) to Λ(G1) : x→ y ∈ ΛG(G1) ⇐⇒

x and y are connected in G1 and x→ y ∈ Λ(G) ∨ x→ y ∈ Λ(G1)(see Table:5.1).

We also consider f-mirrored sink graphs, where f is a collection of undirected

graphs. The f-mirrored sink graph of G1, Λf(G1), is a partially directed graph whose

skeleton is the same as that of the sink graph of G1, and the orientations of the edges

of Λf(G1) are obtained by transferring edge orientations from the sink graph of every

79

undirected graph in f to Λ(G1): x→ y ∈ Λf(G1) ⇐⇒ x and y are connected in G1

and ∃G ∈ f ∪ {G1} s.t x→ y ∈ Λ(G).

Reduced []-Mirrored Sink Graph Given a pair of undirected graphs, G and

G1, the reduced G−mirrored sink graph of G1 is the partially directed acyclic graph

obtained by removing the doubly oriented edges of the G−mirrored sink graph of G1.

[]-Outer External Nodes Given two undirected graphs, G1 and G, we say a

node ξ is G1-outer external in G, if ∀x ∈ ΩG1(ξ),ΩG(ξ) ⊆ ΩG(x).

Table 5.1: The orientation of the edges of the G−mirrored sink graph of G1, ΛG(G1),
as a function of the orientations of Λ(G) and Λ(G1), the sink graphs of G and G1.

Λ(G) Λ(G1) ΛG(G1)

− − −
− → →
− ← ←
− ↔ ↔
→ − →
→ → →
→ ← ↔
→ ↔ ↔
↔ − ↔
↔ → ↔
↔ ← ↔
↔ ↔ ↔

Using these two constructs, we answer the decision version of the dependency

loss problem in Theorems 1.1 and 1.2 below.

Theorem 1.1. Two undirected graphs, G and G1, with G and G1 both in the Σ

class and G1 a subgraph of G, are generated by DAGs, D and D1, with D1 a subgraph

of D, if and only if any DAG in the acyclic completion of the reduced G−mirrored

sink graph of G1 generates G1. (Supplementary material B.1.)

80

G

G1

Λ(G)

Λ(G1) ΛG(G1)

orien
tation

s

Transfer

?

Figure 5.1: The flowchart of the process described in Theorem 1.1. To identify if
there exists a pair of DAGs satisfying the conditions of the dependency loss problem
for a given pair of marginal dependency graphs, G and G1, we first form their sink
graphs Λ(G) and Λ(G1). Then, we transfer the edge orientations from Λ(G) to Λ(G1),
constructing the G-mirrored sink graph of G1, ΛG(G1). There exists a solution to the
dependency loss problem, if and only if any DAG in the acyclic completion of the
reduced G-mirrored sink graph of G1 generates G1.

Figure 5.1 shows the flowchart of the process described in Theorem 1.1. Figure 5.2

depicts an example application of Theorem 1.1, showing that there exists no pair of

DAGs (D,D1), D1 ⊆ D, satisfying the conditions of the dependency loss problem for

the marginal dependency graphs depicted.

Theorem 1.2. Two undirected graphs, G and G1, with G and G1 both in the

Σ class and G1 a subgraph of G, are generated by DAGs, D and D1, with D1 ⊆ D, if

and only if for every external clique of G1, there exists at least one node external in G1,

ξ, that is also G1-outer external in G: ∀x ∈ ΩG1(ξ) : ΩG(ξ) ⊆ ΩG(x). (Supplementary

material B.2.)

The main idea behind these theorems is straightforward. Let us assume that

the two DAGs D and D1 are a possible solution to the dependency loss problem:

Σ(D) = G, Σ(D1) = G1, and D1 ⊆ D. We explained that an edge a→ b in Λ(G), the

sink graph of the marginal dependency graph of D, implies that b is not an ancestor

of a in D (see Note 1). Now, since D1 is assumed to be a subgraph D, then b cannot

be an ancestor of a in D1 either. Thus, every orientation in Λ(G) not only encodes a

81

a

b

c

d

a

b

c

d

(a) Marginal dependency graphs G (on the left)
and G1 (on the right).

a

b

c

d

a

b

c

d

(b) Sink graphs Λ(G) (on the left) and Λ(G1)
(on the right).

a

b

c

d

(c) The G-mirrored sink graph of G1, ΛG(G1).
The edge connecting b and c is dashed signi-
fying that it will be removed in the reduced
G-mirrored sink graph of G1.

Figure 5.2: No DAG in the acyclic completion of the reduced G-mirrored sink graph
of G1 can generate G1, since the nodes b and c are disconnected in all such DAGs.
Therefore, according to Theorem 1.1, we conclude that there exists no pair of DAGs,
D and D1, with D1 ⊆ D, that solve the depicted dependency loss problem.

constraint with respect to the causal relations in D, but the same constraint must

also hold for the causal relations in D1. In the sink transfer process we encode this

constraint by preserving the orientation a→ b ∈ Λ(G) when forming the G-mirrored

sink graph of G1.

Similar to the lemmas 1.1-1.3, these results can also be extended to instances

where the generating causal structures are possibly cyclic and we have:

Theorem 1.3. Two undirected graphs, G and G1, with G and G1 both in the Σ

class and G1 ⊆ G, are generated by DGs, D and D, with D1 ⊆ D only if there exists

two DAGs, D∗ and D∗1, with D∗1 ⊆ D∗, generating the target marginal dependency

relations. (Supplementary material B.3.)

82

5.4 Causal Learning From Dependency Change: Decision Problem

In practice, the changes in marginal dependency relations across conditions

have been observed to often times include both gain and loss of dependency relations.

This implies that the data generating causal structure must have both experienced

the removal of some causal mechanisms and also the incorporation of new causal

mechanisms. Now, if we assume that there are no restrictions on where new causal

mechanisms are admitted and which causal mechanisms can be removed, then a

marginal dependency graph could change in any arbitrary manner from one condition

onto the next. Therefore, as the causal structures are to be independent, then the

causal information in one condition would not help resolve the causal uncertainty

in the other. However, it is but natural to suggest that causal relations are not

to be reversed across conditions. This leads us to consider the following acyclicity

restrictions on the generating causal structures:

Weakly Acyclic Directed Graphs We say two directed graphs D1 and D2

are weakly acyclic if when a is ancestor of b in D1, then b is an ancestor of a in D2

only if b is an ancestor of a in D1: a ≥ b ∈ D1 ∧ b ≥ a 6∈ D1 =⇒ b ≥ a 6∈ D2.

Strongly Acyclic Directed Graphs We say two directed graphs D1 and D2

are strongly acyclic if when a is ancestor of b in D1(D2), then b is an ancestor of a in

D, the union of the two DGs D = D1 ∪D2, only if b is an ancestor of a in D1(D2) :

a ≥ b ∈ D1 ∧ b ≥ a 6∈ D1 =⇒ b ≥ a 6∈ D.

5.4.1 Weak Acyclicity

If the intersection of the given marginal dependency graphs was empty, then

there would always exists two weakly acyclic DAGs generating the target marginal

dependencies; one could take any two DAGs in the completion of the reduced sink

graphs of the two marginal dependency graphs and one would obtain two weakly

83

acyclic DAGs generating the sought for marginal dependency graphs. When the

given marginal dependencies overlap, however, it is difficult to decide if a weakly

acyclic solution to the dependency change problem exists or not. On the one hand,

we are not aware of any polynomial time algorithms that could make such a decision.

On the other hand, it would be challenging, if not impossible, to enforce the weak

acyclicity constraint using only the orientations on the edges of the sink graphs of

the marginal dependencies. The orientation on the edges of a sink graph encode

constraints such as a 6≥ b ∈ D1, while weak acyclicity requires constraints of the

form a ≥ b ∈ D1 =⇒ b ≥ a 6∈ D2 ∨ b ≥ a ∈ D1. For this reason, we replace the

constraint of weakly acyclic DAGs, with a stronger condition2, which we refer to

as intersection matched DAGs, so that whenever there exists two intersection

matched DAGs generating the target marginal dependencies, then there also exists

two weakly acyclic DAGs.

Intersection Matched Directed Graphs We say two directed graphs, D1

and D2, are intersection matched if Σ(D1 ∩D2) = Σ(D1) ∩ Σ(D2).

Theorem 2.1. Given a pair of undirected graphs, G1 and G2, with G1 and

G2 both in Σ, there exists a pair of intersection matched DAGs generating the given

marginal dependency graphs, if and only if any DAG in the acyclic completion of

the reduced {G1, G2}−mirrored sink graph of G∩, G∩ = G1 ∩ G2, generates G∩.

(Supplementary material C.1.)

Theorem 2.2. Given a pair of undirected graphs, G1 and G2, with G1 and

G2 both in Σ, there exists a pair of intersection matched DAGs generating the

given marginal dependency graphs, if and only if for every external clique of G∩,

2Intersection matched constraint neither implies or is implied by weak acyclicity. We say intersec-

tion matched is a stronger condition in the sense that whenever there exists two intersection matched

DAGs generating the target marginal dependencies, then there also exists two weakly acyclic DAGs.

84

G∩ = G1 ∩ G2, there exists at least one node that is (1) external in G∩, and (2)

G∩-outer external in G1 and G2. (Supplementary material C.2.)

Similar to the previous sections, we can extend these results to directed graphs:

Theorem 2.3. Given a pair of undirected graphs, G1 and G2, with G1 and

G2 both in Σ, there exists a pair of intersection matched DGs generating the given

marginal dependency graphs, only if there exists a pair of intersection matched DAGs

generating G1 and G2. (Supplementary material C.3.)

Finally, we have:

Theorem 2.4. If there exists a pair of intersection matched DAGs generating

undirected graphs G1 and G2, then there exists a pair of weakly acyclic DAGs

generating G1 and G2. (Supplementary material C.4.)

5.4.2 Strong Acyclicity

When the intersection of the target marginal dependencies is empty, unlike the

case for weak acyclicity, we can no longer guarantee a strong acyclic solution (consider

the example marginal dependencies shown in Figure 5.3). Then, the intersection

matched constraint of the previous section is no longer a sufficient condition when

it comes to searching for a strong acyclic solution. Searching for a strong acyclic

solution would require one to iterate over all the possible pair of DGs generating

the target marginal dependencies, forming their union, and validating if their union

has cycles only where there are cycles in one of the generating DGs. We are not

aware of any polynomial time algorithm that can find a way around this exponential

search. Similar to the case for weak acyclicity, we instead enforce a relaxed form

of faithfulness, marginal and ancestral faithfulness, so that whenever there exists a

solution comprising of a pair of DGs that are marginally and ancestrally faithful, and

also intersection matched, then there exists a strongly acyclic solution as well.

85

a

b

c

d

e a

b

c

d

e

(a) Marginal dependency graphs G1 (on the
left) and G2 (on the right).

a

b

c

d

e a

b

c

d

e

(b) The only two DGs that can generate the
target marginal dependencies.

a

b

c

d

e

(c) A strong acyclic solution does not exist,
since in the only possible solution the union
of the two causal structures contains a cycle,
C = {a, b, c, d}.

Figure 5.3: Even when the intersection of the target marginal dependencies is empty
we cannot guarantee a strong acyclic solution.

Marginally Faithful Directed Graphs We say two directed graphs D1 and

D2 are marginally faithful if Σ(D1 ∪D2) = Σ(D1) ∪ Σ(D2).

Ancestrally Faithful Directed Graphs We say two directed graphs D1 and

D2 are ancestrally faithful if (D1 ∪D2)+ = D+
1 ∪D+

2 . The operator (.)+ returns the

transitive closure of the input directed graph.

Before we show how these constraints help us find a strong acyclic solution, we

briefly discuss our reasoning behind referring to these conditions as some relaxed form

86

of faithfulness. In the domain adaptation setting, the change in the parameters of a

causal structure are graphically captured with a directed graph where the condition or

the context variable is included as an exogenous node along the nodes corresponding

to the other variables in the domain. This node is then set as a direct parent of those

variables whose generating causal mechanisms are modified across conditions. We can

use the same graphical representation to capture unstable statistical dependencies and

causal mechanisms. Consider for instance the causal structures shown in Figure 5.4.a .

Let us refer to these causal structures as D1 and D2. To capture the different causal

mechanisms in play across the two conditions, we take the union of D1 and D2,

D = D1 ∪D2, and further include a fourth node corresponding to the conditioning or

the context variable and connect it to the node whose generating causal mechanism

is unstable across the two conditions (Figure 5.4.b). Now, while this graphical

representation succinctly captures the causal relations in the domain across the two

conditions, it is not a faithful representation of the original probability distribution

implied by the causal structures in Figure 5.4.a . According to the graph in Figure 5.4.b,

the nodes x1 and x3 are d-connected conditional on the set {x2, C}. However, in

neither contexts, the variables x1 and x3 are dependent conditional on x2, since in the

corresponding causal structures, i.e. Figure 5.4.a, these two nodes are d-separated

conditioned on x2. Faithfulness would require any two sets of nodes, X and Y , to be

d-connected in D given a third set of nodes Z, only when X and Y are d-connected

given Z in D1 or D2. It can be easily shown that faithfulness, in this sense, requires

D1 and D2 to be a pair of marginally faithful and ancestrally faithful DGs. We now

show how marginal and ancestral faithfulness can help us construct a strongly acyclic

solution using the merged sink graph.

Merged Sink Graph Given a pair of undirected graphs, G1 and G2, their inter-

section G∩ = G1∩G2, and their union G = G1∪G2, we call the {G1, G2, G∩}−mirrored

87

x1

x2

x3 x1

x2

x3

(a) The causal relations in effect in the domain
under two different conditions.

x1

x2

x3

C

(b) We can graphically capture the change in
the causal relations by including the condition
or the context variable as an exogenous node
and connecting it to the node x2.

Figure 5.4: While the graphical representation in Figure 5.4.b succinctly captures the
causal relations in the domain, it is not a faithful representation of the probability
distribution implied by the causal structures shown in Figure 5.4.a .

sink graph of G the merged sink graph of G1 and G2. The merged sink graph of

G1 and G2 can be obtained transferring edge orientations from Λ(G1), Λ(G2), and

Λ(G∩) to Λ(G): x → y ∈ Λ{G1,G2,G∩}(G) ⇐⇒ x and y are connected in G and

x→ y ∈ Λ(G) ∨ x→ y ∈ Λ(G1) ∨ x→ y ∈ Λ(G2) ∨ x→ y ∈ Λ(G∩.

Theorem 3.1. Given two marginal dependency graphs G1 and G2, there exists

two ancestrally faithful, marginally faithful, intersection matched DAGs generating

G1 and G2 if and only if the following three conditions hold:

(1) For every external clique of G1 , there exists at least one node that is (1.1)

external in G1, (1.2) G1−outer external in G = G1∪G2 , (1.3) external in G∩ = G1∩G2,

(1.4) G∩-outer external in G2, and (1.5) weakly transitive in {G1, G2, G∩}−mirrored

sink graph of G, the merged sink graph of G1 and G2.

(2) For every external clique of G2 , there exists at least one node that is (2.1)

external in G2, (2.2) G2−outer external in G , (2.3) external in G∩, (2.4) G∩-outer

external in G1, and (2.5) weakly transitive in the merged sink graph of G1 and G2.

88

(3) For every external clique of G∩, there exists at least one node that is (3.1)

external in G∩, (3.2) G∩-outer external in G1, G2, and G, and (3.3) weakly transitive

in the merged sink graph of G1 and G2. (Supplementary material D.1.)

Theorem 3.2. Given two marginal dependency graphs G1 and G2, there

exists an ancestrally faithful, marginally faithful, intersection matched pair DGs

generating G1 and G2 only if there exists an ancestrally faithful, marginally faithful,

intersection matched pair of DAGs generating the given marginal dependency graphs.

(Supplementary material E.1.)

Theorem 3.3. If there exists an ancestrally faithful, marginally faithful, in-

tersection matched pair of DGs generating G1 and G2, then there exists a strongly

acyclic pair of DGs generating G1 and G2. (Supplementary material E.2.)

5.5 Causal Learning From Dependency Change: A Novel Causal Discovery Tool

Consider an instance of dependency loss problem where the marginal dependen-

cies are denoted with G and G1. Often, for a given (G,G1), there exists more than

one pair of DGs satisfying the conditions of the dependency loss problem. We refer to

this collection of pairs of DGs as the solution-set of the dependency loss problem and

denote it with S(G,G1):

S(G,G1) = {(D,D1)|D1 ⊆ D,Σ(D) = G,Σ(D1) = G1}.

We sometimes write D∈S(G,G1) to imply that there exists at least one DG,

D1, such that (D,D1) ∈ S(G,G1). Similarly, we write D1∈S(G,G1) to imply that

there exists at least one DG, D, such that (D,D1) ∈ S(G,G1).

We are interested in learning a causal explanation of the observed dependency

loss: that is, we would would like to characterize the set ∆(G,G1) :

∆(G,G1) = {δD|δD = D −D1, (D,D1) ∈ S(G,G1)}.3

89

An example S(G,G1) and ∆(G,G1) are shown in Figure 5.5.

a b

cd

a b

cd

(a) G1 is plotted on the left, G2 is plotted on
the right.

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

(b) The set of all pairs (D,D1) satisfying the
conditions of the dependency loss problem for
the marginal dependency structures shown in
Figure 5.5-(a). There are only seven such pairs
in the (acyclic) solution-set. A pair (D,D1) ∈
S(G,G1) is shown here by a single DAG: D
corresponds to the DAG over both the dashed
and the solid edges, and D1 corresponds to
the DAG with the dashed edges removed.

a b

cd

(c) Upper bound for the set ∆(G,G1)

Figure 5.5: An example S(G,G1) and ∆(G,G1).

We now show that an upper bound for ∆(G,G1) can be easily characterized in

terms of the differences between the sink graph of G and the G−mirrored sink graph

of G1. These differences are calculated using the Λδ operator:

Definition. Λδ operator Given a set of UGs, f, and two undirected graph G1

and G, the operator Λδ outputs a PDG, Λδ(f, G,G1), whose skeleton is a subgraph of

the sink graph of G, and whose edge orientations are obtained from the sink graph of

2Di−Dj refers to the DG constructed by removing all the edges in Dj from Di. Similarly, Gi−Gj

refers to the UG constructed by removing all the edges in Gj from Gi.

90

G and the f ∪ {G}−mirrored sink graph of G1 according to the procedure shown in

table 5.2.

Table 5.2: The orientation of the edges Λδ(f, G,G1), as a function of the orientation
of the edges of sink graph of G, the f−mirrored sink graph of G1. An empty cell
signifies an edge that is removed.

Λ(G) Λf∪{G}(G1) Λδ(f, G,G1)
− −
− ↔ −
− → ←
− −
→ →
→ ↔ →
→ →
↔
↔ ↔

To see how using Λδ we can estimate an informed upper bound on ∆(G,G1), first,

let us remove a set of undesirable solutions in the solution-set, S(G,G1). It is often the

case that for any D∈S(G,G1), one can find multiple D1’s corresponding to that choice

of D in the solution-set. Let us refer to the set of all such D1’s for some choice of D

with S(G,G1)(D):S(G,G1)(D) = {D1|(D,D1) ∈ S(G,G1)}. We immediatley note that

D∗1 = ∪D1∈S(G,G1)
(D1)D1 also belongs to S(G,G1)(D) and it is the one with the minimum

Hamming distance to D (the number of edge deletions required to modify D to a

D1 ∈ S(G,G1)(D) is the smallest for D∗1). From the pairs (D,D1) ∈ S(G,G1), we only

consider those where D1 corresponds to the DG(DAG) with the minimum Hamming

distance to its D and remove all other solution instances; it can be easily shown that

this DG(DAG) exists and is unique. From now on, when using the notations S(G,G1)

and ∆(G,G1), we assume that this pre-processing step has been applied. We can now

show:

91

Theorem 4.1. Λδ({G}, G,G1) is a tight upper bound for ∆(G,G1). That is,

for all δD in ∆(G,G1), δD is a subgraph of Λδ({G}, G,G1): a→ b ∈ δD only if a→ b

or a− b are in Λδ({G}, G,G1). (Supplementary material F.1.)

We can easily extend this result and argue that in the case of dependency

change, given marginal dependency relations G1, G2, and their intersection G∩, if the

solution-set is restricted to those DGs that are intersection matched, a similar upper

bound can be characterized in terms of Λδ({G1, G2}, G1, G∩):

Corollary Λδ({G1, G2}, G1, G∩) provides an upper bound for ∆(G1, G∩). That

is, for all δD in ∆(G1, G∩), δD is a subgraph of Λδ({G1, G2}, G1, G∩): a → b ∈ δD

only if a→ b or a− b are in Λδ({G1, G2}, G1, G∩). (Supplementary material F.2.)

5.6 Simulations

The goal of this paper is to evaluate DCA as a causal discovery tool. In the

previous two sections we showed that, under certain assumptions, we can find a causal

explanation that matches the observed changes in marginal dependency relations in

polynomial time. We further characterized a tight upper bound for the set of all

causal mechanisms whose impaired function can account for the observed unstable

marginal dependency relations. The important question that we have not yet answered

concerns characterizing the causal information content of DCA. Consider an instance

of dependency loss problem where the marginal dependencies are denoted with G and

G1. We are interested in obtaining a measure of the causal information content of DCA

(or equivalently its causal uncertainty): that is, we would would like to characterize

the cardinality of the set ∆(G,G1).

If the set ∆(G,G1) contains only few elements, then DCA, as a causal discovery

tool, offers a very high causal resolution with a desirable causal information content.

On the other hand, if the cardinality of the set ∆(G,G1) is large, then we can only

92

ascertain the causal origins of the unstable marginal dependence relations with an

equally large uncertainty. Unfortunately, we don’t know of any easy way to enumerate

the elements of this set as a function of the marginal dependencies G and G1. In this

section, we use a series of simulations to examine this question and to obtain a measure

of the causal uncertainty of DCA. Our simulations suggest that the causal uncertainty

of DCA in uncovering the causal origins of K unstable marginal dependence relations

is similar to the causal uncertainty one would face if one were to come up with a

causal explanation for a marginal dependence graph with K edges.

First let us characterize the complexity of our proposed bound Λδ({G}, G,G1)

and examine the number of edges or causal mechanisms that are implicated by this

bound. In practice, experts often use the unstable marginal dependence relations as

pointers and a springboard to causal postulates. Our simulations suggest that our

proposed bound has a complexity lower than the set of unstable marginal dependence

relations. Thus, an expert who has been successful in sifting through the set of

unstable marginal dependence relations to find a suitable causal explanation should

find it no more difficult to sift through the causal mechanism proposed by the

bound Λδ({G}, G,G1). In our simulations we construct a random DAG, D, with

m = {10, 12, 14, 16, 18, 20, 25} nodes such that the expected number of neighbours of

any nodes is nn = 3. We then randomly choose and remove l = {1, 3, 5, 7} causal

mechanisms from the DAG we had constructed in the previous step. We compare the

number of marginal dependency relations affected to the number of edges in the bound

Λδ({G}, G,G1) where G and G1 correspond to the marginal dependency graphs of the

causal structures constructed. We repeat this process for each parameter setting for

1000 iterations. The average ratio of the number of edges in the bound Λδ({G}, G,G1)

to that of the count of unstable marginal dependency relations, together with the

Hamming distance between the two structures are reported in Fig 5.6.

93

Next, to evaluate the causal information content of DCA, we need a suitable

x-axis that provides a good measure of the difficulty or the challenge of identifying

the causal origins of the changes in marginal dependency relations. The network size,

the sparsity, and the number of unstable causal mechanisms can all contribute to the

difficulty of resolving the responsible unstable causal mechanisms. However, even in

the same DAG, removing some causal mechanisms can cause rather large changes

in marginal dependency relations and removing some other causal mechanisms may

barely affect the marginal dependence relations in the domain. This is shown in

Fig 5.7 where the number of unstable marginal dependency relations are plotted as

a function of the network size and the number of unstable causal mechanisms. Our

previous results in Fig: 5.6 suggests that a good x-axis to denote the complexity or

the challenge of resolving the responsible faulty causal mechanisms is that of the

number of unstable marginal dependence relations. The higher the number of unstable

marginal dependence relations, the higher the number of causal mechanisms that are

implicated by our proposed bound Λδ({G}, G,G1).

Next, to evaluate the causal information content of DCA, instead of enumerat-

ing the set ∆(G,G1), we compare the causal mechanisms implicated by the bound

Λδ({G}, G,G1) to the actual causal mechanisms that were responsible for the observed

unstable marginal dependency relations. We first construct a random DAG, D, with

m = {10, 12, 14, 16, 18, 20, 25} nodes such that the expected number of neighbours of

any nodes is nn = 3. We then randomly choose and remove l = {1, 3, 5, 7} causal

mechanisms from the DAG we had constructed in the previous step. Next, we form

the partially directed graph of the bound Λδ({G}, G,G1) where G and G1 correspond

to the marginal dependency graphs of the causal structures constructed. Finally we

measure how precisely the bound Λδ({G}, G,G1) represents the causal mechanisms

that were removed from D and we further calculate the Hamming distance between

94

the two. We repeat this process for each parameter setting for 1000 iterations. The

average precision and the average Hamming distance are plotted as a function of the

number of unstable marginal dependency relations in Figure 5.8. In the same figure we

also include the average precision and the average Hamming distance of the heuristic

bound corresponding to that unstable marginal dependence relations. Compared to

this heuristic that experts have often deployed in their research, our proposed upper

bound offers a significantly better precision.

We note here that the precision offered through the bound Λδ({G}, G,G1) in

uncovering the causal origins of K unstable marginal dependence relations is similar

to the precision one can hope for if one were to come up with a causal explanation for

a marginal dependence graph with K edges. This is shown in Figure 5.9 where we

show the precision a sink graph of a marginal dependency graph offers in identifying

the causal structure that generated the marginal dependency graph.

Finally, our simulations suggest that our proposed upper bound offers a desir-

able precision when it comes to identifying the nodes whose causal mechanisms are

affected using simply the information pertaining to unstable and stable marginal

dependency relations. Here, we again first construct a random DAG, D, with

m = {10, 12, 14, 16, 18, 20, 25} nodes such that the expected number of neighbours

of any nodes is nn = 3. We then randomly choose and remove l = {1, 3, 5, 7} causal

mechanisms from the DAG we had constructed in the previous step. Next, we form

the partially directed graph of the bound Λδ({G}, G,G1) where G and G1 correspond

to the marginal dependency graphs of the causal structures constructed. We then

measure how precisely the nodes with incoming edges in Λδ({G}, G,G1) represent the

nodes whose generating mechanisms were manipulated in the experiment. Again, we

plot the average precision as a function of the number of unstable marginal dependency

relations in Figure 5.10. In the same figure we also include the average precision

95

offered by the heuristic bound corresponding to that unstable marginal dependence

relations. Once again, compared to this heuristic that experts have often deployed in

their research, our proposed upper bound offers a significantly better precision.

5.7 Conclusions and Future Work

In this paper, we proposed a novel causal discovery tool for tracing patterns

of dependency change to their causal origin. Unlike the standard approaches to

causal discovery—where causal relations are learned from statistical dependencies that

hold in a domain—our causal discovery tool constructs a causal object based on the

differential dependencies between two conditions. Furthermore, the theory presented

is not bounded by the limitations of the local causal Markov condition: thus, our

results are still applicable even when the generating causal structure contains cycles.

There are still many avenues left to explore in this setting. For instance, we

only considered a causal characterization of dependency change across two conditions:

a major expansion would be to develop this theory for handling an arbitrary number

of conditions and contexts. Our theoretical results also permit the transfer of causal

information from one domain to another. Consider, for instance, Theorem 1.1, where

by forming the mirrored sink graph, we obtain a better picture of the causal structure

underlying one condition by observing the dependencies in another condition. We

expect the problem setting we studied in this paper to have significant practical

application, especially in the biomedical field, where differential marginal dependency

relations have often helped guide experts to identify the causal origins of a disease.

96

(a) The ratio of the number of edges in the bound Λδ({G}, G,G1) to that of the
count of unstable marginal dependency relations as a function of network size, m,
and the number of unstable causal mechanisms l = {1, 3, 5, 7} averaged over 1000
randomly sampled DAGs with nn = 3.

(b) The Hamming distance between the bound Λδ({G}, G,G1) and the undirected
graph corresponding to that of unstable marginal dependency relations as a function
of network size, m, and the number of unstable causal mechanisms l = {1, 3, 5, 7}
averaged over 1000 randomly sampled DAGs with nn = 3

Figure 5.6: The number of edges implicated by the bound Λδ({G}, G,G1) is almost
always smaller than the number of unstable marginal dependency relations.

97

Figure 5.7: The number of unstable marginal dependency relations as a function of
the network size, m = {10, 12, 14, 16, 18, 20, 25}, and the number of causal mechanisms
that are manipulated l = {3, 5, 7}.

98

(a) The precision by which the bound Λδ({G}, G,G1) (the blue curve) and the
heuristic bound corresponding to the unstable marginal dependency relations (the
blue curve) represent the l = {1, 3, 5, 7} causal mechanisms that had caused the
unstable marginal dependency relations. The precision is plotted as a function of
the number of unstable marginal dependency relation.

(b) The Hamming distance from the bound Λδ({G}, G,G1) (the blue curve) and the
heuristic bound corresponding to the unstable marginal dependency relations (the
blue curve) to the l = {1, 3, 5, 7} causal mechanisms that had caused the unstable
marginal dependency relations. The Hamming distance is plotted as a function of
the number of unstable marginal dependency relation.

Figure 5.8: Compared to the heuristic bound corresponding to the unstable marginal
dependency relations, our theoretically legitimate upper bound offers a significantly
better approximation to the l = {1, 3, 5, 7} causal mechanisms that had caused the
unstable marginal dependency relations.

99

(a) The precision by which the sink graph of a marginal dependency graph represents
the causal structure generating the sought for marginal dependency relations.

(b) The Hamming distance between the sink graph of a marginal dependency graph
and the causal structure generating the sought for marginal dependency relations.

Figure 5.9: The precision offered through the bound Λδ({G}, G,G1) in uncovering the
causal origins of K unstable marginal dependence relations is similar to the precision
one can hope for if one were to come up with a causal explanation for a marginal
dependence graph with K edges.

100

Figure 5.10: The precision offered by the bound Λδ({G}, G,G1) in identifying the
nodes whose generating causal mechanisms were manipulated (in blue curve) compared
to the precision of the heuristic bound of unstable marginal dependency relations.

101

5.8 Chapter 5 Appendix

A.1

Lemma 1.4. An undirected graph, G, is generated by a DG, only if there exists

a DAG generating G.

Proof. To prove this lemma we use Lemma S.A.1 below. Lemma S.A.1 states an

undirected graph, G, is generated by a DG graph only if any DG in the completion

of the reduced sink graph of G generates G. Since there is at least one DAG in the

completion of the reduced sink graph of G [54], by Lemma S.A.1, this DAG must

generate G. We conclude an undirected graph is generated by a DG only if there

exists a DAG generating it.

Lemma S.A.1. An undirected graph, G, is generated by a DG, only if any DG

in the completion of the reduced sink graph of G generates G.

We first show for any DG, D, in the completion of the reduced sink graph of

some UG, G, the marginal dependency graph of D is a subgraph of G, Σ(D) ⊆ G. In

the second part, we show if this UG is known to have been generated by some DG D∗,

then the marginal dependency graph of any DG, D, in the completion of the reduced

sink graph of G, will be equal to G.

To show for any DG, D, in the completion of the sink graph of some UG, G, the

marginal dependency graph of D is a subgraph of G, Σ(D) ⊆ G, we first show any

such D is transitive. Using this result, we show two nodes share a common ancestor

in D only if they are directly connected in G.

Consider any directed path x1 → x2 → ...→ xn in D, where D is any DG in the

completion of the reduced sink graph of some undirected graph G. An edge, xi → xi+1,

is oriented as such in D, only if it is oriented as xi → xi+1 or it is undirected in the

sink graph of G. This implies the boundary of xi in G is a subset of or equal to the

102

boundary of xi+1, ΩG(xi) ⊆ ΩG(xi+1) [53]. Therefore, the above directed path lets us

conclude (1) x1 is in the boundary of xn in G, and (2) ΩG(x1) ⊆ ΩG(xn). This result

is what we meant by transitivity of D.

Now, we show two nodes, xi and xj, have a common ancestor in D, only if xi

and xj are directly connected in G, implying Σ(D) ⊆ G. Let’s assume z is a common

ancestor xi and xj in D. The argument in the previous paragraph lets us conclude

(1) z is directly connected to both xi and xj in G, and (2) boundary of z in G is a

subset of the boundary of both xi and xj. As xj ∈ ΩG(z) and ΩG(z) ⊆ ΩG(xi), we

conclude xj must be in the boundary of xi in G. This proves that for any DG, D, in

the completion of the reduced sink graph of some UG, G, the marginal dependency

graph of D is a subgraph of G.

We now show if G is generated by some DG, D∗, any DG, D, in the completion

of reduced the sink graph of G, implies all the edges in G. We prove this by showing

those edges that are removed from G when its reduced sink graph is formed are

necessarily implied in any such D.

Any such must have been doubly oriented in the sink graph of G. Consider such

a doubly oriented edge a→ b↔ c← d. Since there is a doubly oriented edge between

b and c in the sink graph of G = Σ(D∗), there cannot be any directed paths between

b and c in D∗. If there was a directed path from b to c in D∗, b would have been an

ancestor of c in D∗ and ΩΣ(D∗)(b) ⊆ ΩΣ(D∗)(c)—there would be no doubly oriented

edge between b and c in the sink graph of G if the boundary of b in G were to be

a subset of (or equal to) the boundary of c. Therefore, since b and c are connected

in Σ(D∗), and since there is no directed path in D∗ from either b to c or c to b,

we conclude they must have had a common ancestor, z(z 6= b, z 6= c), in D∗. This

common ancestor, z, must be directly connected to both b and c in G since G is the

marginal dependency graph of D∗. Furthermore, z cannot be connected to neither d

103

nor a in G. If d was connected to z in G, then d must have also been connected to

b: z is assumed to be an ancestor of b in D∗ and any node in the boundary of z in

G = Σ(D∗) must also be in the boundary of b (ΩG(z) ⊆ ΩG(b)). This lets us conclude

that the edges z − b and z − c in G are oriented as z → b and z → c in the sink graph

of G (d is a node in the boundary of c not connected to z; d− c− z form a v-structure

and force c − z to be oriented as c ← z; c − z cannot be doubly oriented since z is

an ancestor of c in D∗ and ΩG(z) ⊆ ΩG(c)). Therefore, in any DG in the completion

of the reduced sink graph of G, b and c share z as a common ancestor, and they are

directly connected in the marginal dependency graph of any such DG.

B.1

To prove the theorem 1.1, we first require the following two results:

Lemma S.B.1. The reduced sink graph of any UG, G, does not contain

a semi-directed cycle. A semi-directed cycle in a PDG, P , is a sequence of nodes

{x1, ..., xn, x1}, where, (1) for every two consecutive nodes, xi and xi+1, in the sequence,

xi and xi+1 are connected in P and the edge xi− xi+1 is either undirected in P or it is

oriented as xi → xi+1 in P , and (2) at least one such edge in the sequence is directed.

Proof. An edge is oriented as a → b in the reduced sink graph of some undirected

graph, G, only if the boundary of a is a subset of the boundary of b in G [53]. Similarly,

two nodes are connected by an undirected edge, a−b, in the sink graph only if that the

boundaries of the nodes a and b are the same in G, ΩG(a) = ΩG(b). Now, assume we

have a semi-directed cycle, C = {x1, ..., xn, x1}, in the sink graph of some undirected

graph G. There is at least one directed edge in this sequence: without loss of generality,

let’s then say the edge connecting xn and x1 is oriented as xn → x1 in the sink graph

104

of G. We then conclude that ΩG(xn) ⊂ ΩG(x1). On the other hand, the sequence

{x1, ..., xn} in this semi-directed cycle implies ΩG(x1) ⊆ ΩG(xn), which contradicts

the previous statement. Therefore, there cannot be any semi-directed cycles in the

sink graph of any undirected graph.

Lemma S.B.2. Given two undirected graphs, G and G1, with G1 ⊆ G, the

reduced G−mirrored sink graph of G1 is acyclic.

Proof. If there is a cycle {x1, ..., xn, x1} in the reduced G−mirrored sink graph of G1,

then, since both the reduced sink graph of G and the reduced sink graph of G1 are

acyclic, there must exist a semi-directed cycle in the sink graph of G1. By Lemma

S.B.1. this is not possible.

Theorem 1.1. Two undirected graphs, G and G1, with G and G1 both in the Σ

class and G1 a subgraph of G, are generated by DAGs, D and D1, with D1 a subgraph

of D, if and only if any DAG in the acyclic completion of the reduced G−mirrored

sink graph of G1 generates G1.

Proof. First we prove the only if part of this theorem. We do this in two steps. We

show for any DAG, D1, in the acyclic completion of the reduced G−mirrored sink

graph of G1, the marginal dependency graph of D1 is a subgraph of G1, Σ(D1) ⊆ G1.

We then show if there exists two DAGs, D∗ and D∗1, D∗1 ⊆ D∗, generating G and G1,

for any DAG, D1, in the acyclic completion of the reduced G−mirrored sink graph of

G1, G1 is a subgraph of the marginal dependency graph of D1, G1 ⊆ Σ(D1).

In proving the first step, we consult Lemma S.A.1. First, note any DAG, D1,

in the acyclic completion of the reduced G−mirrored sink graph of G1 is a subgraph

of some DG in the completion of the reduced sink graph of G1: a→ b ∈ D1 only if

105

the edge connecting a and b in the reduced sink graph of G1 is either undirected or is

oriented as a → b. By Lemma S.A.1, for any DG in the completion of the reduced

sink graph of G1, its marginal dependency graph is equal to G1. Now, since D1 is a

subgraph of some such DG, we conclude the marginal dependency graph of D1 is a

subgraph of G1.

Now, we wish two show if there exists two DAGs, D∗ and D∗1, D∗1 ⊆ D∗,

generating G and G1, then, for any DAG, D1, in the acyclic completion the reduced

G−mirrored sink graph of G1, G1 is a subgraph of the marginal dependency graph

of D1— in other words, we wish to prove any D1 in the acyclic completion of the

reduced G−mirrored sink graph of G1 implies all the edges in G1 whenever there

exists two DAGs satisfying the conditions of the dependency loss problem. If a and b

are connected in G1, they remain connected in all such DAGs unless the edge a− b

becomes doubly oriented in the G−mirrored sink graph of G1. An edge, a− b, in G1

becomes doubly oriented in the G−mirrored sink graph of G1 under 3 conditions: (1)

the edge a− b is doubly oriented in the sink graph of G1, (2) the edge a− b is oriented

in opposite directions in the sink graphs of G1 and G, (3) the edge a − b is doubly

oriented in the sink graph of G .

1. The edge a− b is doubly oriented in the sink graph of G1:

Since (1) D∗1 generates G1, and (2) the edge connecting a and b is doubly oriented

in the sink graph of G1, there cannot be a directed path between a and b in D∗1. If

a was an ancestor of b in D∗1, then the boundary of a in G1 = Σ(D∗1) would be a

subset of or equal to the boundary of b in G1. However, if that was the case the

edge between a and b in the sink graph of G1 would not have been doubly oriented.

Therefore, a and b must have a common ancestor, z (z 6= a and z 6= b), in D∗1. As G1

is the marginal dependency graph of D∗1, z must be connected to both a and b in G1.

Furthermore, the edges z − a and z − b must be oriented as z → a and z → b in the

106

sink graph of G1. Since z is an ancestor of a and b in D∗1, we have ΩG1(z) ⊆ ΩG1(a)

and ΩG1(z) ⊆ ΩG1(b). As the edge between a and b is doubly oriented in the sink

graph of G1, then there must exist a c such that c ∈ ΩG1(a) ∧ c 6∈ ΩG1(b). Then we

conclude that ΩG1(z) must be a subset of the ΩG1(a). Therefore, the edge z − a has

to be oriented as z → a in the sink graph of G1. Likewise, the edge z − b must be

oriented as z → b in the sink graph of G1. Now, since D∗1 is a subgraph of D∗, z

is also a common ancestor of a and b in D∗. Therefore, z must also be connected

to a and b in G. Finally, the connections z − a (and z − b) are either undirected or

oriented as z → b in the sink graph of G: z is an ancestor of b in D∗ and the boundary

of z in G = Σ(D∗) must be a subset of or equal to the boundary of a. Finally, the

orientations of the edges z − a and z − b in the sink graphs of G and G1 imply that

the edges z − a and z − b are oriented as a← z → b in the G−mirrored sink graph of

G1. This proves that a and b are directly connected in the marginal dependency graph

of any DAG in the acyclic completion of the reduced G−mirrored sink graph of G1.

2. The edge a− b is oriented as a→ b in the sink graph of G1 and a← b in the

sink graph of G:

The orientation a← b in the sink graph of G implies there is no directed path

from a to b in D∗. Given that D∗1 is a subgraph of D∗, there cannot be any directed

paths from a to b in D∗1 either. Therefore, and since a − b is oriented as a → b in

the sink graph of G1, there are no directed paths between a and b, whether from

a to b or from b to a, in D∗1. As a and b are connected in the G1, then they must

have had a common ancestor, z (z 6= a and z 6= b), in D∗1. Since G1 is the marginal

dependency graph of D∗1, z must be directly connected to both a and b in G1. As G1

is a subgraph of G, z must also connect to both a and b in G. Now, the orientation

a← b in the sink graph of G1 implies there exists a node, c, in the boundary of a in

G1 that is not in the boundary of b. This node c cannot be in the boundary of z in

107

G1 either: otherwise, since z is an ancestor of b in D∗1, b would have been connected

to c in G1 also. Now, since z is an ancestor of a in D∗1 and given that c ∈ ΩG1(a) and

c is not in the boundary of z in G1, then ΩG1(z) ⊂ ΩG1(a), and the edge z − a must

be oriented as z → a in the sink graph of G1. The same edge must be oriented as

z − a or z → a in the sink graph of G: z is an ancestor of a in both D∗1 and D∗, and

therefore ΩΣ(D∗)(z) must be a subset of or equal to ΩΣ(D∗)(a). Then, the edge z − a

must be oriented as z → a in the G−mirrored sink graph of G1. Likewise, the edge

z − b must be also oriented as z → b in the G−mirrored sink graph of G1. Therefore,

a− z − b is oriented as a← z → b in the G−mirrored sink graph of G1. This implies

a and b are directly connected in the marginal dependency graph of any DAG in the

acyclic completion of the reduced G−mirrored sink graph of G1.

3. The edge a− b is doubly oriented in the sink graph of G:

Since D∗ generates G, and the edge a− b is doubly oriented in the sink graph of

G, there cannot be any directed paths from a to b or b to a in D∗. Now, since a and b

are directly connected in G1 and D∗1 is a subgraph of D∗, we conclude that a and b

must have had a common ancestor, z (z 6= a and z 6= b), in D∗1. As D∗1 is a subgraph

of D∗, z is also a common ancestor of a and b in D∗ and is directly connected to both

of them in G. Now, the edges z− a and z− b must be oriented as z → a and z → b in

the sink graph of G. Since z is an ancestor of a and b in D∗, we have ΩG(z) ⊆ ΩG(a)

and ΩG(z) ⊆ ΩG(b). As the edge between a and b is doubly oriented in the sink graph

of G, then there must exist a node c such that c ∈ ΩG(a) ∧ c 6∈ ΩG(b). Then we

conclude that ΩG(z) must be a subset of the ΩG(a) as c cannot be in the boundary

of z in G, since otherwise, the boundary of z in G would no longer be a subset of

the boundary of b. Therefore, the edge z − a has to be oriented as z → a in the sink

graph of G. Furthermore, the same edges ,z − a and z − b, are either undirected or

oriented as z → a(b) in the sink graph of G1 since z is an ancestor of both a and b in

108

D∗1. Therefore, a− z − b is oriented as a← z → b in the G−mirrored sink graph of

G1. This implies a and b are directly connected in the marginal dependency graph of

any DAG in the acyclic completion of the reduced G−mirrored sink graph of G1.

Part 2: if

We show if there exists a DAG, D1, in the completion of the reduced G−mirrored

sink graph ofG1 that generates G1, then there exist a DAGD, withD1 ⊆ D, generating

G. We construct D, using the sink graph of G as the starting point, as follows.

First, we form a PDAG by removing the doubly oriented edges in the sink graph

of G and copying the orientations of the edges in D1 to it: for any edge a− b in the

sink graph of G, we orient this edge as a → b, if a and b are connected with the

orientation a→ b in D1. No edge is reversed during this process since D1 is a DAG

in the acyclic completion of the reduced G−mirrored sink graph of G1; a → b is in

D1 only if a and b are connected in the reduced G−mirrored sink graph of G1 and

the edge a − b is undirected or is oriented as a → b in both the sink graph of G1

and the sink graph of G. This constructions gives rise to a partially directed acyclic

graph: since both D1 and the sink graph of G (after removing its doubly oriented

edges) are acyclic, a cycle in this construction would imply a semi-directed cycle in

the sink graph of G, which is impossible (see Lemma S.B.1). We finish constructing

D by orientating all the remaining undirected edges in any arbitrary manner so that

the resulting graph is acyclic. D is a DAG in the acyclic completion of the sink graph

of G and its marginal dependency graph is equal to G by Lemma 1.1; by construction,

we also have D1 ⊆ D.

B.2

Theorem 1.2. Two undirected graphs, G and G1, with G and G1 both in the

Σ class and G1 a subgraph of G, are generated by DAGs, D and D1, with D1 ⊆ D, if

109

and only if for every external clique of G1, there exists at least one node external in

G1, ξ, that is also G1-outer external in G: ∀x ∈ ΩG1(ξ) : ΩG(ξ) ⊆ ΩG(x).

Proof. We first prove the only if part of this theorem. Assume two DAGs D∗ and D∗1,

with D∗1 ⊆ D∗, generate the given undirected graphs: Σ(D∗) = G, Σ(D∗1) = G1. We

show that the roots nodes (nodes who don’t have any parents) of D∗1 are external in

G1 and G1-outer external in G1.

First we show any such root node, ξi, is external in G1: ΩG1(ξi) ⊆ ΩG1(x) for

all x in the boundary of ξi in G1. Any node x in the boundary of ξi in G1 must by

definition have a common ancestor with ξi in D∗1, and since ξi is a root node in D∗1,

we conclude that any such x must be a descendant of ξi in D∗1. Therefore, ξi is an

external node in G1, and together with the collection of all its descendants, it forms

an external clique in G1. On the other hand, ξi’s are G1-outer external in G. Since

D∗1 is a subgraph of D∗, any x in the boundary of ξi in G1, which by aforementioned

argument is a descendant of ξi in D∗1, remains a descendant of ξi in D∗. Therefore,

as G is the marginal dependency graph of D∗, then ΩG(ξi) ⊆ ΩG(x) for any x in the

boundary of ξi in G1, and the ξi’s G1-outer external in G.

To prove the if part of the theorem, we construct two DAGs D and D1, with

D1 ⊆ D, that generate the given marginal dependency relations. We first construct

D1. We do so by selecting one external node, ξi, per external clique of G1, that is also

G1-outer external in G. Then, for every ξi in this selection, we connect ξi to all nodes,

x, in its boundary with the following orientation: ξi → x. The resulting directed

graph by construction is acyclic and generates G1. This completes the construction of

D1.

We construct D, using the sink graph of G as the starting point, as follows.

First, we form a PDAG by (1) removing the doubly oriented edges of the sink graph of

110

G, and (2) copying the orientations of the edges in D1 (as constructed in the previous

step) to the edges in the sink graph of G: for any edge, a − b, in the sink graph of

G, we orient this edge as a→ b if a and b are connected in D1 and the edge a− b is

oriented as a→ b in D1. No edge is reversed during this process since we had assumed

that ξi’s are a set of nodes G1-outer external in G: for any edge ξi → x in D1, ξi

and x must be connected in G and the edge ξi − x must either be undirected in the

sink graph of G or it must be oriented as ξi → x. This constructions gives rise to a

partially directed acyclic graph: since both D1 and the reduced sink graph of G are

acyclic, a cycle in this construction would imply a semi-directed cycle in the reduced

sink graph of G, which is impossible (see Lemma S.B.1). We finish the construction of

D by orientating all the remaining undirected edges in any arbitrary manner so that

the resulting graph is acyclic. D is a DAG in the acyclic completion of the reduced

sink graph of G and its marginal dependency graph is equal to G by Lemma 1.1; by

construction, we also have D1 ⊆ D.

B.3

Theorem 1.3. Two undirected graphs, G and G1, with G and G1 both in the Σ

class and G1 ⊆ G, are generated by DGs, D and D, with D1 ⊆ D only if there exists

two DAGs, D∗ and D∗1, with D∗1 ⊆ D∗, generating the target marginal dependency

relations.

Proof. To prove this result we use the Lemma S.B.3 below. By Lemma S.B.3. there

exists two DGs D and D1, D1 ⊆ D, generating G and G1, only if any DG in the

completion of the reduced G−mirrored sink graph of G1 generates G1. This lets

us conclude that all the DAGs in the completion of the reduced G−mirrored sink

graph of G1 (if any) generate G1 also. Now, by Lemma S.B.2. we know the reduced

111

G−mirrored sink graph of G1 is acyclic so that there exists at least one DAG in its

completion. Therefore, Lemma S.B.3 below allows us to conclude whenever there

exists a pair of DGs satisfying the conditions of the dependency loss problem and

generating G and G1, then there also always exists a pair of DAGs satisfying the

conditions of the dependency loss problem and generating G and G1.

Lemma S.B.3. Two undirected graphs, G and G1, with G and G1 both in

the Σ class and G1 a subgraph of G, are generated by DGs, D and D1, with D1 a

subgraph of D, only if any DG in the acyclic completion of the reduced G−mirrored

sink graph of G1 generates G1.

Proof. First, we show for any DG, D1, in the completion of the reduced G−mirrored

sink graph of G1, the marginal dependency graph of D1 is a subgraph of G1, Σ(D1) ⊆

G1. We then show if there exists two DGs, (D∗, D∗1), D∗1 ⊆ D∗, generating G and G1,

then for any DG, D1, in the completion of the reduced G−mirrored sink graph of G1,

G1 is a subgraph of the marginal dependency graph of D1, G1 ⊆ Σ(D1).

In proving the first step, we consult Lemma S.A.1. First, note any DG, D1, in

the completion of the reduced G−mirrored sink graph of G1 is a subgraph of some

DG in the completion of the reduced sink graph of G1: a→ b ∈ D1 only if the edge

connecting a and b in the sink graph of G1 is either undirected or is oriented as a→ b.

By Lemma S.A.1, for any DG in the completion of the sink graph of G1, its marginal

dependency graph is equal to G1. Now, since D1 is a subgraph of some such DG, we

conclude the marginal dependency graph of D1 is a subgraph of G1.

Now, we wish two show if there exists two DGs, D∗ and D∗1, D∗1 ⊆ D∗, generating

G and G1, then, for any DG, D1, in the completion of the reduced G−mirrored sink

graph of G1, G1 is a subgraph of the marginal dependency graph of D1— in other

words, we wish to prove any D1 in the completion of the reduced G−mirrored sink

112

graph of G1 implies all the edges in G1 whenever there exists two DGs satisfying the

conditions of the dependency loss problem. If a and b are directly connected in G1,

they remain directly connected in all such DGs unless the edge a− b becomes doubly

oriented in the G−mirrored sink graph of G1. An edge, a− b, in G1 becomes doubly

oriented in the G−mirrored sink graph of G1 under 3 conditions: (1) the edge a− b

is doubly oriented in the sink graph of G1, (2) the edge a− b is oriented in opposite

directions in the sink graphs of G1 and G, (3) the edge a− b is doubly oriented in the

sink graph of G1 .

1. The edge a− b is doubly oriented in the sink graph of G1:

Since (1) D∗1 generates G1, and (2) the edge connecting a and b is doubly oriented

in the sink graph of G1, there cannot be a directed path between a and b in D∗1. If

a was an ancestor of b in D∗1, then the boundary of a in G1 = Σ(D∗1) would be a

subset of or equal to the boundary of b in G1. However, if that was the case the

edge between a and b in the sink graph of G1 would not have been doubly oriented.

Therefore, a and b must have a common ancestor, z (z 6= a and z 6= b), in D∗1. As G1

is the marginal dependency graph of D∗1, z must be connected to both a and b in G1.

Furthermore, the edges z − a and z − b must be oriented as z → a and z → b in the

sink graph of G1. Since z is an ancestor of a and b in D∗1, we have ΩG1(z) ⊆ ΩG1(a)

and ΩG1(z) ⊆ ΩG1(b). As the edge between a and b is doubly oriented in the sink

graph of G1, then there must exist a node, c, such that c ∈ ΩG1(a)∧ c 6∈ ΩG1(b). Then

we conclude that ΩG1(z) must be a subset of the boundary of a in G1 and also the

boundary of b in G1. Therefore, the edge z − a has to be oriented as z → a in the

sink graph of G1. Now, since D∗1 is a subgraph of D∗, z is also a common ancestor

of a and b in D∗. Therefore, z must also be connected to a and b in G. Finally, the

connections z − a and z − b are either undirected or oriented as z → b and z → a in

the sink graph of G: z is an ancestor of b in D∗ and the boundary of z in G = Σ(D∗)

113

must be a subset of or equal to the boundary of a. Finally, the orientations of the

edges z − a and z − b in the sink graphs of G and G1 imply that the edges z − a and

z − b are oriented as a ← z → b in the G−mirrored sink graph of G1. This proves

that a and b are directly connected in the marginal dependency graph of any DAG in

the acyclic completion of the reduced G−mirrored sink graph of G1.

2. The edge a− b is oriented as a→ b in the sink graph of G1 and a← b in the

sink graph of G:

The orientation a← b in the sink graph of G implies there is no directed path

from a to b in D∗. Given that D∗1 is a subgraph of D∗, there cannot be any directed

paths from a to b in D∗1 either. Therefore, and since a − b is oriented as a → b in

the sink graph of G1, there are no directed paths between a and b, whether from

a to b or from b to a, in D∗1. As a and b are connected in the G1, then they must

have had a common ancestor, z (z 6= a and z 6= b), in D∗1. Since G1 is the marginal

dependency graph of D∗1, z must be directly connected to both a and b in G1. As G1

is a subgraph of G, z must also connect to both a and b in G. Now, the orientation

a← b in the sink graph of G1 implies there exists a node, c, in the boundary of a in

G1 that is not in the boundary of b. This node c cannot be in the boundary of z in G1

either: otherwise, since z is an ancestor of b in D∗1, b would have been connected to c

in G1 also. Now, since z is an ancestor of a in D∗1 and given that c ∈ ΩG1(a) and c is

not in the boundary of z in G1, then ΩG1(z) ⊂ ΩG1(a), and the edge z − a must be

oriented as z → a in the sink graph of G1. The same edge must be oriented as z−a or

z → a in the sink graph of G: z is an ancestor of a in both D∗1 and D∗, and therefore

ΩΣ(D∗)(z) must be a subset of or equal to ΩΣ(D∗)(a). Then the edge z − a must be

oriented as z → a in the G−mirrored sink graph of G1. Likewise, the edge z − b must

be oriented as z → b in the G−mirrored sink graph of G1. Therefore, a − z − b is

oriented as a← z → b in the G−mirrored sink graph of G1. This implies a and b are

114

directly connected in the marginal dependency graph of any DG in the completion of

the reduced G−mirrored sink graph of G1.

3. The edge a− b is doubly oriented in the sink graph of G:

Since D∗ generates G, and the edge a− b is doubly oriented in the sink graph of

G, there cannot be any directed paths from a to b or b to a in D∗. Now, since a and b

are directly connected in G1 and D∗1 is a subgraph of D∗, we conclude that a and b

must have had a common ancestor, z (z 6= a and z 6= b), in D∗1. As D∗1 is a subgraph

of D∗, z is also a common ancestor of a and b in D∗ and is directly connected to both

of them in G. Now, the edges z − a and z − b must be oriented as z → a and z → b

in the sink graph of G. Since z is an ancestor of a in D∗, we have ΩG(z) ⊆ ΩG(a). As

the edge between a and b is doubly oriented in the sink graph of G, then there must

exist a c such that c ∈ ΩG(a) ∧ c 6∈ ΩG(b). Then we conclude that ΩG(z) must be a

subset of the ΩG(a). Therefore, the edge z − a has to be oriented as z → a in the sink

graph of G. Furthermore, the same edges, z − a and z − b, are either undirected or

oriented as z → a and z → b in the sink graph of G1, since z is an ancestor of a in

D∗1, and the boundary of z in G1 is a subset of or equal to the boundary of a and the

boundary of b . Therefore, a− z − b is oriented as a← z → b in the G−mirrored sink

graph of G1. This implies a and b are directly connected in the marginal dependency

graph of any DG in the completion of the reduced G−mirrored sink graph of G1.

C.1

Theorem 2.1. Given two undirected graphs, G1 and G2, with G1 and G2

both in Σ, there exists two intersection matched DAGs generating the given marginal

dependency graphs, if and only if any DAG in the acyclic completion of the reduced

{G1, G2}−mirrored sink graph of G∩, G∩ = G1 ∩G2, generates G∩.

115

Proof. We first prove the only if part of this theorem. Let’s say the pair D1 and

D2 are a pair of intersection matched DAGs generating G1 and G2: Σ(D1) = G1,

Σ(D2) = G2, and Σ(D1 ∩ D2) = G1 ∩ G2. Let us refer to the intersection of these

two DAGs with D∩. Now we show any DAG in the acyclic completion of the reduced

{G1, G2}−mirrored sink graph of G∩ generates G∩.

First, note any DAGD in the acyclic completion of the reduced {G1, G2}−mirrored

sink graph of G∩ is a subgraph of some DG in the completion of the reduced sink

graph of G∩: a→ b ∈ D only if the edge connecting a and b in the sink graph of G∩

is either undirected or is oriented as a → b. By Lemma S.A.1, for any DG in the

completion of the sink graph of G∩, its marginal dependency graph is equal to G∩.

Now, since D is a subgraph of some such DG, we conclude the marginal dependency

graph of D is also a subgraph of G∩.

Now, we wish two show if there exists two intersection matched DAGs, D∗1 and

D∗2, Σ(D∗1 ∩D∗2) = Σ(D∗1) ∩ Σ(D∗2), generating G1 and G2, then, for any DAG, D, in

the acyclic completion the reduced {G1, G2}−mirrored sink graph of G∩, the marginal

dependency graph of D is a supergraph of G∩— in other words, we wish to prove

any D in the acyclic completion of the reduced {G1, G2}−mirrored sink graph of G∩

implies all the edges in G∩ whenever there exists two DAGs satisfying the conditions

of the theorem. If a and b are connected in G∩, they remain connected in all such

DAGs unless the edge a− b becomes doubly oriented in the {G1, G2}−mirrored sink

graph of G∩. An edge, a−b, in G∩ becomes doubly oriented in the {G1, G2}−mirrored

sink graph of G∩ under four conditions: (1) the edge a− b is doubly oriented in the

sink graph of G∩, (2) the edge a − b is oriented in opposite directions in the sink

graphs of G∩ and G1(or G2), (3) a− b is doubly oriented in the sink graph of G1 (or

G2), (4) the edge a− b is oriented in opposite directions in the sink graphs of G1 and

G2.

116

1. The edge a− b is doubly oriented in the sink graph of G∩:

Since (1) D∗∩ = D∗1 ∩D∗2 generates G∩, and (2) the edge connecting a and b is

doubly oriented in the sink graph of G∩, there cannot be a directed path between a

and b in D∗∩. If a was an ancestor of b in D∗∩, then the boundary of a in G∩ = Σ(D∗∩)

would be a subset of or equal to the boundary of b in G∩. However, if that was the

case, the edge between a and b in the sink graph of G∩ would not have been doubly

oriented. Therefore, given that there is no directed paths between a and b in D∗∩,

and given that a and b are marginally dependent since they are directly connected

in G∩, then a and b must have a common ancestor, z (z 6= a and z 6= b), in D∗∩. As

G∩ is the marginal dependency graph of D∗∩, z must be connected to both a and

b in G∩. Furthermore, the edges z − a and z − b must be oriented as z → a and

z → b in the sink graph of G∩. Since z is an ancestor of a and b in D∗∩, we have

ΩG∩(z) ⊆ ΩG∩(a) and ΩG∩(z) ⊆ ΩG∩(b). Next, since there exists a node, c, such that

c ∈ ΩG∩(a) ∧ c 6∈ ΩG∩(b), then ΩG∩(z) must be a subset of the ΩG∩(a). Therefore,

the edge z − a has to be oriented as z → a in the sink graph of G∩. Now, since

D∗∩ is a subgraph of D∗1 and D∗2, z is also a common ancestor of a and b in D∗1 and

D∗2. Therefore, z must also be connected to a and b in G1 and G2. Finally, the

connections z − a (and z − b) are either undirected or oriented as z → b in the sink

graphs of G1 and G2: z is an ancestor of b in D∗1 and D∗2, thus the boundary of z in

G1 = Σ(D∗1) and G2 = Σ(D∗1) must be a subset of or equal to that of the boundary

of a. Finally, the orientations of the edges z − a and z − b in the sink graphs of

G∩, G1, and G2 imply that the edges z − a and z − b are oriented as a ← z → b

in the {G1, G2}−mirrored sink graph of G∩ . This proves that a and b are directly

connected in the marginal dependency graph of any DAG in the acyclic completion of

the reduced {G1, G2}−mirrored sink graph of G∩ .

117

2. The edge a− b is oriented as a→ b in the sink graph of G1 (or G2) and a← b

in the sink graph of G∩:

The orientation a← b in the sink graph of G1(or G2) implies there is no directed

path from a to b in D∗1 (or D∗2). Given that D∗∩ is a subgraph of D∗1 (and D∗2), there

cannot be any directed paths from a to b in D∗∩ either. Therefore, and since the edge

a− b is oriented as a→ b in the sink graph of G∩, there are no directed paths between

a and b, whether from a to b or from b to a, in D∗∩. As a and b are connected in the

G∩, then they must have had a common ancestor, z (z 6= a and z 6= b), in D∗∩. Since

G∩ is the marginal dependency graph of D∗∩, z must be directly connected to both a

and b in G∩; as G∩ is a subgraph of G1 and G2, z must also connect to both a and b

in G1 and G2. Now, the orientation a← b in the sink graph of G∩ implies there exists

a node, c, in the boundary of a in G∩ that is not in the boundary of b. This node

c cannot be in the boundary of z in G∩ either: otherwise, since z is an ancestor of

b in D∗∩, b would have been connected to c in G∩ also. Then, since z is an ancestor

of a in D∗∩ and given that c ∈ ΩG∩(a) and c is not in the boundary of z in G∩, we

have ΩG∩(z) ⊂ ΩG∩(a), and the edge z − a must be oriented as z → a in the sink

graph of G∩. The same edge must be either undirected or oriented as z → a in the

sink graphs of G1 and G2: z is an ancestor of a in both D∗1 and D∗2, and therefore

ΩΣ(D∗1)(z) must be a subset of or equal to ΩΣ(D∗1)(a) and ΩΣ(D∗2)(z) ⊆ ΩΣ(D∗2)(a). Then

the edge z − a must be oriented as z → a in the {G1, G2}−mirrored sink graph of G∩.

Likewise, the edge z − b must be oriented as z → b in {G1, G2}−mirrored sink graph

of G∩. Therefore, a− z − b is oriented as a← z → b in the {G1, G2}−mirrored sink

graph of G∩. This implies a and b are directly connected in the marginal dependency

graph of any DAG in the acyclic completion of the reduced {G1, G2}−mirrored sink

graph of G∩.

3. The edge a− b is doubly oriented in the sink graph of G1 (or G2):

118

Since D∗1 generates G1, and the edge a− b is doubly oriented in the sink graph

of G1, there cannot be any directed paths from a to b or b to a in D∗1. Now, since a

and b are directly connected in G∩, and D∗∩ is a subgraph of D∗1 generating G∩, we

conclude that a and b must have had a common ancestor, z (z 6= a and z 6= b), in

D∗∩: there cannot be any directed paths between a and b in D∗1, and since D∗∩ is a

subgraph of D∗1, there is no directed path between a and b in D∗∩ also. As D∗∩ is a

subgraph of D∗1 and D∗2, z must also be a common ancestor of a and b in both D∗1 and

D∗2, and must be directly connected to both of them in both G1 and G2. Now, given

that the edge a − b is doubly oriented in the sink graph of G1, and z is a common

ancestor of a and b in D∗1, then the edges z − a and z − b must be oriented as z → a

and z → b in the sink graph of G1. Furthermore, the same edges (z − a and z − b)

are either undirected or oriented as z → a(b) in the sink graph of G∩ and the sink

graph of G2, since z is an ancestor of a in both D∗∩ and D∗2. Therefore, a− z − b is

oriented as a ← z → b in the {G1, G2}−mirrored sink graph of G∩. This implies a

and b are directly connected in the marginal dependency of graph any DAG in the

acyclic completion of the reduced {G1, G2}−mirrored sink graph of G∩.

4. The edge a− b is oriented as a→ b in the sink graph of G1 and a← b in the

sink graph of G2:

On the one hand, the orientation a→ b in the sink graph of G1 implies there is

no directed path from b to a in D∗1. Given that D∗∩ is a subgraph of D∗1, there cannot

be any directed paths from b to a in D∗∩ either. On the other hand, the orientation

a ← b in the sink graph of G2 implies there is no directed path from a to b in D∗2 .

Given that D∗∩ is a subgraph of D∗2, there cannot be any directed paths from b to

a in D∗∩ either. Thus, we conclude that there are no directed paths between a and

b, whether from a to b or b to a, in D∗∩. As a and b are connected in the G∩, then

they must have had a common ancestor, z (z 6= a and z 6= b), in D∗∩. Since G∩ is the

119

marginal dependency graph of D∗∩, z must be directly connected to both a and b in

G∩; as G∩ is a subgraph of G1 and G2, z must also connect to both a and b in G1 and

G2. Now, the orientation a← b in the sink graph of G2 implies there exists a node, c,

in the boundary of a in G2 that is not in the boundary of b. This node c cannot be in

the boundary of z in G2 either: otherwise, since z is an ancestor of b in D∗2, b would

have been connected to c in G2 also. Then, since z is an ancestor of a in D∗2 and given

that c ∈ ΩG2(a) and c is not in the boundary of z in G2, then ΩG2(z) ⊂ ΩG2(a), and

the edge z − a must be oriented as z → a in the sink graph of G2. The same edge

must be either undirected or oriented as z → a in the sink graph of G1 and G∩: z

is an ancestor of a in both D∗1 and D∗∩, and therefore ΩΣ(D∗1)(z) must be a subset of

or equal to ΩΣ(D∗1)(a) and ΩΣ(D∗∩)(z) ⊆ ΩΣ(D∗∩)(a). Therefore the edge z − a must be

oriented as z → a in the {G1, G2}−mirrored sink graph of G∩. By the same logic,

the edge z − b must oriented as z → b in the {G1, G2}−mirrored sink graph of G∩.

Therefore, a− z − b is oriented as a← z → b in the {G1, G2}−mirrored sink graph of

G∩. This implies a and b are directly connected in the marginal dependency of any

DAG in the acyclic completion of the reduced {G1, G2}−mirrored sink graph of G∩.

Part 2: if We show if there exists a DAG, D∩, in the completion of the

reduced {G1, G2}−mirrored sink graph of G∩ that generates G∩, then there exists

two intersection matched DAGs, D1 and D2, with D∩ ⊆ D1 and D∩ ⊆ D2, generating

G1 and G2. We construct D1 and D2, using the sink graphs of G1 and G2 as the

starting point, as follows. For the sake of brevity we only discuss how to construct

D1, construction of D2 follows similarly.

First, we form a PDAG by removing the doubly oriented edges in the sink graph

of G1 and copying the orientations of the edges in D∩ to it: for any edge a − b in

the sink graph of G1, we orient this edge as a → b if the edge a − b is oriented as

a→ b in D∩. No edge is reversed during this process since D∩ is a DAG in the acyclic

120

completion of the reduced {G1, G2}−mirrored sink graph of G∩; a→ b is in D∩ only

if a and b are connected in the reduced {G1, G2}−mirrored sink graph of G∩ and the

edge a − b is undirected or is oriented as a → b in the sink graphs of G1, G2, and

G∩. This constructions gives rise to a partially directed acyclic graph: since both D∩

and the sink graph of G1 (after removing its doubly oriented edges) are acyclic, a

cycle in this construction would imply a semi-directed cycle in the sink graph of G1,

which is impossible (see Lemma S.B.1). We finish constructing D1 by orientating all

the remaining undirected edges in any arbitrary manner so that the resulting graph

is acyclic. D1 is a DAG in the acyclic completion of the sink graph of G1 and its

marginal dependency graph is equal to G1 by Lemma 1.1; by construction, we also

have D∩ ⊆ D1.

C.2

Theorem 2.2. Given two undirected graphs, G1 and G2, with G1 and G2

both in Σ, there exists two intersection matched DAGs generating the given marginal

dependency graphs, if and only if for every external clique of G∩, G∩ = G1 ∩G2, there

exists at least one node that is (1) external in G∩, and (2) G∩-outer external in G1

and G2.

Proof. We first prove the only if part of this theorem. Assume two DAGs D∗1 and D∗2,

are two intersection matched DAGs generating G1 and G2: Σ(D∗1) = G1, Σ(D∗2) = G2,

and Σ(D∗1 ∩D∗2) = G1 ∩G2. We show that the roots nodes (nodes who don’t have any

parents) of D∗∩ = D∗1 ∩D∗2 are external in G∩ and G∩-outer external in G1 and G2.

First we show any such root node, ξi, is external in G∩: ΩG∩(ξi) ⊆ ΩG∩(x) for

all x in the boundary of ξi in G∩. Any node x in the boundary of ξi in G∩ must by

121

definition have a common ancestor with ξi in D∗∩, and since ξi is a root node in D∗∩,

we conclude that any such x must be a descendant of ξi in D∗∩. Therefore, ξi is an

external node in G∩, and together with the collection of all its descendants, it forms

an external clique in G∩. On the other hand, ξi’s are G∩-outer external in G1 and G2.

Since D∗∩ is a subgraph of D∗1 and D∗2, any x in the boundary of ξi in G∩, which by

aforementioned argument is a descendant of ξi in D∗∩, remains a descendant of ξi in

D∗1 and D∗2. Therefore, as G1 and G2 are the marginal dependency graphs of D∗1 and

D∗2, then ΩG1(ξi) ⊆ ΩG1(x) and ΩG2(ξi) ⊆ ΩG2(x), and the ξi’s G∩-outer external in

G1 and G2.

To prove the if part of the theorem, we construct three DAGs D∩, D1, and D2,

with D∩ ⊆ D1 and D∩ ⊆ D2, such that Σ(D∩) = G∩, Σ(D1) = G1, and Σ(D2) = G2.

We first construct D∩. We do so by selecting one external node, ξ∩i , per external

clique of G∩, that is also G∩-outer external in G1 and G2. Then, for every ξ∩i in this

selection, we connect ξ∩i to all nodes, x, in its boundary with the following orientation:

ξ∩i → x. The resulting directed graph by construction is acyclic and generates G∩.

This completes the construction of D∩.

We next construct D1 and D2. For brevity, we only discuss how to construct

D1, construction of D2 follows similarly. We construct D1 on top of the the sink

graph of G1 as we describe next. First, we form a PDAG by (1) removing the doubly

oriented edges of the sink graph of G1, and (2) copying the orientations of the edges

in D∩ (as constructed in the previous step) to the edges in the sink graph of G1: for

any edge, a− b, in the sink graph of G1, we orient this edge as a→ b if a and b are

connected in D∩ and the edge a− b is oriented as a→ b in D∩. No edge is reversed

during this process since we had assumed that ξ∩i ’s are a set of nodes that G∩-outer

external in G1. For any edge ξ∩i → x in D∩, ξ
∩
i and x must be connected in G1 and

the edge ξ∩i − x must be either undirected in the sink graph of G1 or it must be

122

oriented as ξ∩i → x since ξ∩i is G∩-outer external in G1, and ΩG∩(ξ∩i) ⊆ ΩG∩(ξ∩i)(x).

This constructions gives rise to a partially directed acyclic graph: since both D∩ and

the reduced sink graph of G1 are acyclic, a cycle in this construction would imply a

semi-directed cycle in the sink graph of G1, which is impossible (see Lemma S.B.1).

We finish the construction of D1 by orientating all the remaining undirected edges

in any arbitrary manner so that the resulting graph is acyclic. D1 is a DAG in the

acyclic completion of the reduced sink graph of G1 and its marginal dependency graph

is equal to G by Lemma 1.1; by construction, we also have D∩ ⊆ D1.

C.3

Theorem 2.3. Given two undirected graphs, G1 and G2, with G1 and G2

both in Σ, there exists two intersection matched DGs generating the given marginal

dependency graphs, only if there exists two intersection matched DAGs generating G1

and G2.

Proof. To prove this result we use the Lemmas S.C.1 and S.C.2 below. By Lemma S.C.1

there exists two intersection matched DGs generating the given marginal dependency

graphs, G1 and G2, with G∩ = G1 ∩ G2, only if any DG in the completion of the

reduced {G1, G2}−mirrored sink graph of G∩ generates G∩. This lets us conclude

that all the DAGs (if any) in the completion of the reduced {G1, G2}−mirrored

sink graph of G∩ generate G∩ also. Now, by Lemma S.C.2. we know the reduced

{G1, G2}−mirrored sink graph of G∩ is acyclic so that there exists at least one DAG

in its completion. Therefore, Lemma S.C.1 together with Theorem 2.1., allow us to

conclude whenever there exists a pair of intersection matched DGs generating G1 and

G2, then there also always exists a pair of intersection matched DAGs generating G1

and G2.

123

Lemma S.C.1. Given two undirected graphs, G1 and G2, with G1 and G2

both in Σ, there exists two intersection matched DGs generating the given marginal

dependency graphs, only if any DG in the completion of the {G1, G2}−mirrored sink

graph of G∩, G∩ = G1 ∩G2, generates G∩.

Proof. Let’s say the pair D∗1 and D∗2 are pair of intersection matched DGs generating

G1 and G2: Σ(D∗1) = G1, Σ(D∗2) = G2, and Σ(D∗1 ∩D∗2) = G1 ∩ G2. Let us refer to

the intersection of these two DGs with D∗∩. Now we show any DG in the completion

of the reduced {G1, G2}−mirrored sink graph of G∩ generates G∩.

First, note any DG D∩ in the completion of the reduced {G1, G2}−mirrored

sink graph of G∩ is a subgraph of some DG in the completion of the reduced sink

graph of G∩: a → b ∈ D∩ only if the edge connecting a and b in the sink graph of

G∩ is either undirected or is oriented as a→ b. By Lemma S.A.1, for any DG in the

completion of the sink graph of G∩, its marginal dependency graph is equal to G1.

Now, since ∩ is a subgraph of some such DG, we conclude the marginal dependency

graph of D∩ is also a subgraph of G∩.

Now, we wish two show if there exists two intersection matched DGs, D∗1 and

D∗2, Σ(D∗1 ∩D∗2) = Σ(D∗1) ∩ Σ(D∗2), generating G1 and G2, then, for any DG, D∩, in

the completion of the reduced {G1, G2}−mirrored sink graph of G∩, the marginal

dependency graph of D∩ is a supergraph of G∩— in other words, we wish to prove

any D∩ in the completion of the reduced {G1, G2}−mirrored sink graph of G∩ implies

all the edges in G∩ whenever there exists two DGs satisfying the conditions of the

theorem. If a and b are connected in G∩, they remain connected in all such DGs

unless the edge a− b becomes doubly oriented in the {G1, G2}−mirrored sink graph

of G∩. An edge, a− b, in G∩ becomes doubly oriented in the {G1, G2}−mirrored sink

graph of G∩ under four conditions: (1) the edge a− b is doubly oriented in the sink

124

graph of G∩, (2) the edge a− b is oriented in opposite directions in the sink graphs of

G∩ and G1(or G2), (3) a− b is doubly oriented in the sink graph of G1 (or G2), (4)

the edge a− b is oriented in opposite directions in the sink graphs of G1 and G2.

1. The edge a− b is doubly oriented in the sink graph of G∩:

Since (1) D∗∩ = D∗1 ∩D∗2 generates G∩, and (2) the edge connecting a and b is

doubly oriented in the sink graph of G∩, there cannot be a directed path between a

and b in D∗∩. If a was an ancestor of b in D∗∩, then the boundary of a in G∩ = Σ(D∗∩)

would be a subset of or equal to the boundary of b in G∩. However, if that was the

case the edge between a and b in the sink graph of G∩ would not have been doubly

oriented. Therefore, given that there is no directed paths between a and b in D∗∩ and

given that a and b are marginally dependent since they are directly connected in G∩,

then a and b must have a common ancestor, z (z 6= a and z 6= b), in D∗∩. As G∩ is

the marginal dependency graph of D∗∩, z must be connected to both a and b in G∩.

Furthermore, the edges z − a and z − b must be oriented as z → a and z → b in the

sink graph of G∩. Since z is an ancestor of a and b in D∗∩, we have ΩG∩(z) ⊆ ΩG∩(a)

and ΩG∩(z) ⊆ ΩG∩(b). Given that there exists a c such that c ∈ ΩG∩(a) ∧ c 6∈ ΩG∩(b),

then ΩG∩(z) must be a subset of the ΩG∩(a). Therefore, the edge z − a has to be

oriented as z → a in the sink graph of G∩. Now, since D∗∩ is a subgraph of D∗1 and

D∗2, z is also a common ancestor of a and b in D∗1 and D∗2. Therefore, z must also

be connected to a and b in G1 = Σ(D∗1) and G2 = Σ(D∗2). Finally, the edges z − a

and z − b are either undirected or oriented as z → b and z → a in the sink graphs

of G1 and G2: z is an ancestor of b in D∗1 and D∗2, and the boundary of z in Σ(D∗1)

(Σ(D∗1)) must be a subset of or equal to the boundary of a. Finally, the orientations of

the edges z − a and z − b in the sink graphs of G∩, G1, and G2 imply that the edges

z− a and z− b are oriented as a← z → b in the {G1, G2}−mirrored sink graph of G∩.

125

This proves that a and b are directly connected in the marginal dependency graph of

any DG in the completion of the reduced {G1, G2}−mirrored sink graph of G∩ .

2. The edge a− b is oriented as a→ b in the sink graph of G1 and a← b in the

sink graph of G∩:

The orientation a← b in the sink graph of G1 implies there is no directed path

from a to b in D∗1. Given that D∗∩ is a subgraph of D∗1, there cannot be any directed

paths from a to b in D∗∩ either. Therefore, and since the edge a − b is oriented as

a→ b in the sink graph of G∩, there are no directed paths between a and b, whether

from a to b or from b to a, in D∗∩. As a and b are connected in the G∩ = Σ(D∗∩), then

the nodes a and b must have had a common ancestor, z (z 6= a and z 6= b), in D∗∩.

Since G∩ is the marginal dependency graph of D∗∩, z must be directly connected to

both a and b in G∩; as G∩ is a subgraph of G1 and G2, z must also connect to both a

and b in G1 and G2. Now, the orientation a← b in the sink graph of G∩ implies there

exists a node, c, in the boundary of a in G∩ that is not in the boundary of b. This

node c cannot be in the boundary of z in G∩ either: otherwise, since z is an ancestor

of b in D∗∩, b would have been connected to c in G∩ also. Then, since z is an ancestor

of a in D∗∩, and given that c ∈ ΩG∩(a) and c is not in the boundary of z in G∩, then

ΩG∩(z) ⊂ ΩG∩(a), and the edge z − a must be oriented as z → a in the sink graph of

G∩. The same edge must be either undirected or oriented as z → a in the sink graphs

of G1 and G2: z is an ancestor of a in both D∗1 and D∗2, and therefore ΩΣ(D∗1)(z) must

be a subset of or equal to ΩΣ(D∗1)(a) and ΩΣ(D∗2)(z) ⊆ ΩΣ(D∗2)(a). Then the edge z − a

must be oriented as z → a in the {G1, G2}−mirrored sink graph of G∩. Likewise, the

edge z − b must be oriented as z → b in the {G1, G2}−mirrored sink graph of G∩.

Therefore, a− z − b is oriented as a← z → b in the {G1, G2}−mirrored sink graph of

G∩. This implies a and b are directly connected in the marginal dependency graph of

any DG in the completion of the reduced {G1, G2}−mirrored sink graph of G∩.

126

3. The edge a− b is doubly oriented in the sink graph of G1:

Since D∗1 generates G1, and the edge a− b is doubly oriented in the sink graph

of G1, there cannot be any directed paths from a to b or b to a in D∗1. Now, since a

and b are directly connected in G∩, and D∗∩ is a subgraph of D∗1 generating G∩, we

conclude that a and b must have had a common ancestor, z (z 6= a and z 6= b), in D∗∩:

there cannot be any directed paths between a and b in D∗1, and since D∗∩ is a subgraph

of D∗1, there is no directed path between a and b in D∗∩ also. As D∗∩ is a subgraph of

D∗1 and D∗2, z must also be a common ancestor of a and b in both D∗1 and D∗2, and

must be directly connected to both of them in both G1 and G2. Now, the edges z − a

must be oriented as z → a in the sink graph of G1. Since z is an ancestor of a and b

in D∗1, we have ΩG1(z) ⊆ ΩG1(a) and ΩG1(z) ⊆ ΩG1(b). Next, since there exists a c

such that c ∈ ΩG1(a) ∧ c 6∈ ΩG1(b), then ΩG1(z) must be a subset of the ΩG1(a) and

the edge z− a has to be oriented as z → a in the sink graph of G1. Likewise, the edge

z − b has to be oriented as z → b in the sink graph of G1. Furthermore, the same

edges, z − a and z − b, are either undirected or oriented as z → a and z → b in the

sink graph of G∩ and the sink graph of G2 since z is an ancestor of a in D∗∩ and D∗2.

Therefore, a− z − b is oriented as a← z → b in the {G1, G2}−mirrored sink graph of

G∩. This implies a and b are directly connected in the marginal dependency graph of

any DG in the completion of the reduced {G1, G2}−mirrored sink graph of G∩.

4. The edge a− b is oriented as a→ b in the sink graph of G1 and a← b in the

sink graph of G2:

On the one hand, the orientation a→ b in the sink graph of G1 implies there is

no directed path from b to a in D∗1. Given that D∗∩ is a subgraph of D∗1, there cannot

be any directed paths from b to a in D∗∩ either. On the other hand, the orientation

a ← b in the sink graph of G2 implies there is no directed path from a to b in D∗2 .

Given that D∗∩ is a subgraph of D∗2, there cannot be any directed paths from b to

127

a in D∗∩ either. Thus, we conclude that there are no directed paths between a and

b, whether from a to b or b to a, in D∗∩. As a and b are connected in the G∩, then

they must have had a common ancestor, z (z 6= a and z 6= b), in D∗∩. Since G∩ is the

marginal dependency graph of D∗∩, z must be directly connected to both a and b in

G∩. As G∩ is a subgraph of G1 and G2, z must also connect to both a and b in G1

and G2. Now, the orientation a ← b in the sink graph of G2 implies there exists a

node, c, in the boundary of a in G2 that is not in the boundary of b. This node c

cannot be in the boundary of z in G2 either: otherwise, since z is an ancestor of b

in D∗2, b would have been connected to c in G2 also. Then, since z is an ancestor of

a in D∗2 and given that c ∈ ΩG2(a) and c is not in the boundary of z in G2, we have

ΩG2(z) ⊂ ΩG2(a), and the edge z − a must be oriented as z → a in the sink graph of

G2. The same edge must be either undirected or oriented as z → a in the sink graph

of G1 and G∩: z is an ancestor of a in both D∗1 and D∗∩. Therefore, the edge z − a

must be oriented as z → a in the {G1, G2}−mirrored sink graph of G∩. By the same

logic, the edge z − b must oriented as z → b in the {G1, G2}−mirrored sink graph

of G∩. Therefore, a− z − b is oriented as a← z → b in the {G1, G2}−mirrored sink

graph of G∩. This implies a and b are directly connected in the marginal dependency

graph of any DG in the completion of the reduced {G1, G2}−mirrored sink graph of

G∩.

Lemma S.C.2. Given any two undirected graphsG1 andG2, withG∩ = G1∩G2,

the reduced {G1, G2}−mirrored sink graph of G∩ is acyclic.

Proof. Lets assume there is a cycle, C = {x1, x2, ..., xm, x1}, in the reduced {G1, G2}−mirrored

sink graph of G∩. We immediately conclude that every two consecutive nodes in

the collection {x1, x2, ..., xm, x1} must be connected by an edge in G1, G2, and G∩.

Consider the edge x1 → x2 in this cycle. Since the edge connecting x1 and x2 is

128

oriented as x1 → x2 in the reduced {G1, G2}−mirrored sink graph of G∩, we conclude

that the edge connecting these same two nodes must be oriented as x1 → x2 in either

the reduced sink graph of G1, the reduced sink graph of G2, or the reduced sink graph

of G∩. Let’s say that the edge x1−x2 is oriented as x1 → x2 in the reduced sink graph

of G1. Every other edge xi − xi+1 must either be undirected or must be oriented as

xi → xi+1 in the reduced sink graph of G1. Thus the reduced sink graph of G1 must

have had a semi-directed cycle. However, according to Lemma S.B.1, the reduced sink

graph of any UG, G, cannot contain a semi-directed cycle.

C.4

Theorem 2.4. If there exists two intersection matched DAGs generating

undirected graphs G1 and G2, then there exists two weakly acyclic DAGs generating

G1 and G2.

Proof. Let’s say D1 and D2 are two intersection matched DAGs generating G1 and

G2. We will us refer to the intersection of these two DAGs with D∩.

Consider the root nodes of D1: these nodes are also root nodes of D∩ and must

be external in G1 and G∩. Similarly the root nodes of D2 must be external in G2 and

G∩, and they must be root nodes of D∩ also. From the given intersection matched

DAGs we construct two DAGs, R1 and R2, such that R1 and R2 are weakly acyclic.

We construct R1 by directly connecting every root node in D1, ξ1
i , to every node, x,

that is its descendant in D1: ∀x ∈ ΩG1(ξi) : ξ1
i → x. We construct R2 similarly and

by connecting every root node of D2 to all their descendants. We now show R1 and

R2 are weakly acyclic.

Let’s assume the contrary and say that there exists two nodes x and y, such that

x is an ancestor of y in R1, and y is an ancestor of x in R2. Given the construction of

129

R1 and R2, then x must have been a root node of D1 and y must have been a root

node of D2. Since D1 and D2 are intersection matched, and since x and y must be

connected in both G1 and G2 (otherwise x→ y would not have been in R1 and x← y

would not have been in R2), we conclude that x and y must have had a common

ancestor, z, in D∩. Since x is a root node of D1, then the only possible common

ancestor of x and y in D∩ would be x itself. Thus x is an ancestor of y in D∩. However,

this is not possible since y is a root node of D∩. Therefore, R1 and R2 must be weakly

acyclic.

D.1

Theorem 3.1 Given two marginal dependency graphs G1 and G2, there exists

two ancestrally faithful, marginally faithful, intersection matched DAGs generating

G1 and G2 if and only if the following three conditions hold:

(1) For every external clique of G1 , there exists at least one node that is (1.1)

external in G1, (1.2) G1−outer external in G = G1∪G2 , (1.3) external in G∩ = G1∩G2,

(1.4) G∩-outer external in G2, and (1.5) weakly transitive in {G1, G2, G∩}−mirrored

sink graph of G, the merged sink graph of G1 and G2.

(2) For every external clique of G2 , there exists at least one node that is (2.1)

external in G2, (2.2) G2−outer external in G , (2.3) external in G∩, (2.4) G∩-outer

external in G1, and (2.5) weakly transitive in the merged sink graph of G1 and G2.

(3) For every external clique of G∩, there exists at least one node that is (3.1)

external in G∩, (3.2) G∩-outer external in G1, G2, and G, and (3.3) weakly transitive

in the merged sink graph of G1 and G2.

130

Proof. We use the following notation in our proof. P1 and P2 are used to denote

the sink graphs of G1 and G2. We use G to represent the union of the two marginal

dependency graphs, G = G1 ∪G2, and P to denote its sink graph. We use G∩ for the

intersection of the two marginal dependency graphs, G∩ = G1 ∩G2, and P∩ to denote

its sink graph. We use P ∗1 and P ∗2 for the G−mirrored sink graphs of G1 and G2, P ∗∩

to denote {G,G1, G2}−mirrored sink graph of G∩, and finally P ∗∗ for the merged sink

graph of G1 and G2.

Only If

Lets say the two DAGs D1 and D2 are ancestrally faithful, marginally faithful,

intersection matched DAGs generating G1 and G2. Let us represent the union and

intersection of these two DAGs, respectively, by D and D∩.

First we show that the root nodes of D1 and D2 satisfy conditions (1.1)-(1.5)

and (2.1)-(2.5).

(1.1, 2.1) Root nodes of D1 are external nodes of G1. Consider a root node of

D1, φ
1
i . Any node v connected to φ1

i in G1 must also be connected to every other

node in the boundary of φ1
i in G1. If a node is connected to φ1

i in G1, then this node

must be a descendant of φ1
i in D1, and therefore, it must be connected to every other

descendant of φ1
i in the marginal dependency graph of D1 as φ1

i is a common ancestor

of all of its descendants. Furthermore, every edge in G1 covered by an external clique

containing one of these root nodes. Consider an edge x− y ∈ G1. Since Σ(D1) = G1,

then there must exist a z such that z ≥ x ∧ z ≥ y in D1. Now, either z is a root

node, or it is a descendant of a root node πz. Then the edge x− y is contained in the

external clique of the root node πz in G1.

(1.2, 2.2) The root nodes of D1 are G1-outer external in G and the root nodes

of G2 are G2-outer external in G. Consider a root node of D1, φ
1
i . Since D1 is a

subgraph of D, then all the nodes in ΩG1(φ
1
i) remain as descendants of φ1

i in D:

131

∀v ∈ ΩG1(φ
1
i) : φ1

i ≥ v ∈ D. Therefore, for all v in ΩG1(φ
1
i) , the boundary of φ1

i in G

is a subset of or equal to the boundary of v in G, and φ1
i is G1-outer external in G.

(1.3, 2.3) These roots also remain external in G∩ = G1 ∩G2 since they are also

the root nodes of D∩ as D∩ is a subgraph of D1 and D2.

(1.4, 2.4) Finally, since they remain as roots node in D∩, and since D∩ is a

subgraph of D1 and D2, then these root nodes are G∩-outer external in G1 and G2.

We now show that any such root, φ, is weakly transitive in P ∗∗. That is,

(i) whenever there is a directed path from φ to node y through node x in P ∗∗, i.e.

φ→ x→ y or φ− x→ y or φ→ x− y, then φ and y are also connected inP ∗∗ and

the edge φ − y is either undirected in P ∗∗ or is oriented as φ → y in P ∗∗, and (ii)

whenever there is an undirected path from φ to node y through node x, i.e. φ− x− y,

then φ and y are also connected in P ∗∗ and the edge φ− y is either undirected in P ∗∗

or is oriented as φ → y. We consider each of these four cases, namely φ → x → y,

φ− x→ y, φ→ x− y, and φ− x− y separately.

Part 1

Case 1. Lets say the edges φ − x and x − y are oriented as φ − x − y in P ∗∗. We

show that the nodes φ and y must be connected in P ∗∗ and the edge φ− y is either

undirected in P ∗∗ or is oriented as φ→ y.

Here we only utilize the fact that φ is a node external in G∩ and G∩-outer

external in G1, G2, and G. Let us then emphasize here that this case of weak

transitivity holds for any pair of undirected graphs G1 and G2, and for any node φ

who is a node external in G∩ and G∩-outer external in G1, G2, and G = G1 ∪G2.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y forms a v-structure in G, forcing the edge x− y to be oriented as

x ← y in P , the sink graph of G. If the edge x − y was oriented as x ← y in P ,

however, the edge x− y would not have been left undirected in the merged sink graph

132

of G1 and G2, P
∗∗. Therefore, the nodes φ and y must be connected in G, and for

that reason they must also be connected in G1 or G2.

(I) Now lets assume that the nodes φ and x are only connected in G1. Since

the edge φ− x is undirected in P ∗∗, we conclude that φ− x is undirected in P ∗1 .

(I.I) Now, if x and y are also connected in G1, then the edge x− y must also be

undirected in P ∗1 since this edge is undirected in P ∗∗. Since both edges x−y and φ−x

are undirected in P ∗1 , then φ and y must have also been connected in P ∗1 through an

undirected edge given that P ∗1 is strongly transitive. Now, if φ and y are disconnected

in G2, then we conclude that the edge φ− y is undirected in P ∗∗ as well, since this

edge only resides in G1 and is undirected in P ∗1 . On the other hand, if φ and y are

also connected in G2, then the edge φ− y must be either undirected or oriented as

φ→ y in the sink graphs of G, G2, and G∩: φ is a node external in G∩ and G∩-outer

external in G1, G2, and G, and y is a node in the boundary of φ in G∩. Then the

edge φ− y is either undirected in P∗∗ or is oriented as φ→ y.

(I.II) If x and y are not connected in G1, then φ and y cannot be connected in

G1 either, since otherwise the triplet y − φ− x would have formed a v-structure in G1

and the edge φ− x would have been oriented as φ← x in P1. Then the edge φ− x

would not have been undirected in P ∗∗. Therefore, φ and y are disconnected in G1

and must be connected only in G2. On the other hand, if x and y are not connected

in G1, then x and y must be connected in G2 and the edge x− y must be undirected

in P ∗2 . However, since the triplet x− y−φ forms a v-structure in G2 (we had assumed

that φ and x are only connected in G1), the edge x− y cannot be undirected in P ∗2 .

(II) Now lets assume that the nodes φ and x are connected both in G1 and G2.

Under this condition, φ− x can only be undirected in P ∗1 and P ∗2 .

(II.I) Now, if x and y are only connected in G1, then the edge x− y must be

undirected in P ∗1 since this edge is undirected in P ∗∗. Furthermore, since x and y are

133

assumed to be disconnected in G2, and the edge φ− x is undirected in P ∗∗, then the

nodes φ and y must be disconnected in G2; otherwise, the v-structure y− φ− x would

have forced the edge φ− x to take the orientation φ← x in P2 and this edge would

not have been oriented as undirected in P ∗∗. Therefore, φ and y must be connected

in G1 and only in G1. Now, since P ∗1 is strongly transitive and we have the chain

φ− x− y in P ∗1 , then the edge φ− y must be undirected in P ∗1 . Since, the edge φ− y

only resides in G1, we conclude that φ and y must be connected through an undirected

edge, φ− y, in P ∗∗.

(II.II) Finally, lets assume that x and y are also connected in both G1 and

G2. We immediately note that φ and y must also be connected in both G1 and G2,

otherwise, the triplet φ − x − y would form a v-structure in G1 or G2, preventing

the formation of an undirected edge between x and y in P ∗∗. This lets us conclude

that x, y, and φ form a connected component in G∩. Now, since the edges x− y and

φ− x are undirected in P ∗∗, then these two edges must also be undirected in P ∗∩, the

{G,G1, G2}-mirrored sink graph of G∩. Finally, since P ∗∩ is strongly transitive, then

φ− y must also be undirected in P ∗∩, and therefore, it must also be undirected in P ∗∗.

Case 2. Lets say the edges φ− x and x− y are oriented as φ→ x− y in P ∗∗. We

show that the edge φ− y must be in P ∗∗ and it must be either undirected or oriented

as φ→ y in P ∗∗.

Here we only utilize the fact that φ is a node external in G∩ and G∩-outer

external in G1, G2, and G. Let us then emphasize here that this case of weak

transitivity holds for any pair of undirected graphs G1 and G2, and for any node φ

who is a node external in G∩ and G∩-outer external in G1, G2, and G = G1 ∪G2.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y would have formed a v-structure in G, forcing the edge x− y to be

oriented as x ← y in P , the sink graph of G. If this edge was oriented as x ← y in

134

P , however, it would not be undirected in the merged sink graph of G1 and G2, P ∗∗.

Therefore, the nodes φ and y must be connected in G, and for that reason they must

be also connected in G1 or G2.

(I) Now lets assume that the nodes φ and x are only connected in G1. Since

the edge φ − x is oriented as φ → x in P ∗∗, we conclude that the edge φ − x must

have been oriented as φ→ x in P ∗1 .

(I.I) Now, if the nodes x and y are also connected in G1, then the edge x− y

must be undirected in P ∗1 since this edge is undirected in P ∗∗. Given that P ∗1 is

strongly transitive, then the nodes φ and y must be connected in P ∗1 and the edge

φ− y must be oriented as φ→ y in P ∗1 . Now, if φ and y are disconnected in G2, we

can then immediately conclude that the edge φ− y will be oriented as φ→ y in P ∗∗.

On the other hand, if φ and y are connected in G2 also, then the edge φ − y must

either be undirected in P ∗2 or it must be oriented as φ→ y. To see this, note that if φ

and y are connected in G2 also, then y must be a node in the boundary of φ in G∩,

and given that φ is a node G∩-outer external in G2 and G, then the boundary of φ in

G2 and G must a subset of or equal to the boundary of y. Furthermore, as φ external

in G∩, then the boundary of φ in G∩ is also a subset of or equal to the boundary of y.

Therefore, the edge φ− y must be either undirected in P∩ or it must be oriented as

φ→ y in P∩. Given the possible orientations of the edge φ− y in P ∗1 , P ∗2 , and P − ∩,

we conclude that the edge φ− y must be oriented as φ→ y in P ∗∗.

(I.II) If the nodes x and y are not connected in G1, then the nodes φ and y

cannot be connected in G1 either. Otherwise, the triplet y− φ− x would have formed

a v-structure in G1 and the edge φ − x would have been oriented as φ ← x in P1.

Then, the edge φ − x would not have been oriented as φ → x in P ∗∗. Therefore, φ

and y cannot be connected in G1 and must be connected only in G2. On the other

hand, if x and y are not connected in G1, then x and y must be connected in G2 and

135

the edge x− y must be undirected in P ∗2 . However, since the triplet x− y− φ forms a

v-structure in G2 (we had assumed that φ and x are only connected in G1), the edge

x− y cannot not be undirected in P ∗2 .

(II) Now lets assume that φ and x are connected both in G1 and G2. Under

this condition, given that the edge φ− x is oriented as φ→ x in P ∗∗, the edge φ− x

can only be either undirected or oriented as φ→ x in P ∗1 and P ∗2 .

(II.I) Now, if x and y are only connected in G1, then the edge x− y must be

undirected in P ∗1 since this edge is undirected in P ∗∗. Furthermore, since x and y are

disconnected in G2, and the edge φ− x is oriented as φ→ x in P ∗∗, then the nodes φ

and y must be disconnected in G2; otherwise, the v-structure y − φ− x would force

the edge φ− x to take the orientation φ← x in P2 and would prevent the orientation

φ→ x from forming in P ∗∗. Therefore, φ and y must be connected in G1 and only in

G1. Now, since P ∗1 is strongly transitive and we either have the chain φ − x − y or

φ→ x− y in P ∗1 , then the edge φ− y must be oriented either as φ→ y or it must be

left undirected in P ∗1 . Since, the edge φ− y only resides in G1, we conclude that φ and

y must be connected either through an undirected edge, φ− y, or with the orientation

φ→ y in P ∗∗.

(II.II) Finally, lets assume that the nodes x and y are also connected in both

G1 and G2. We immediately note that φ and y must also be connected in both G1 and

G2, otherwise, the triplet φ− x− y would form a v-structure in G1 or G2, preventing

the edge x − y to be left undirected in P ∗∗. This lets us conclude that x, y, and φ

form a connected component in G∩. Now, since the edges x− y and φx are oriented

as φ → x − y in P ∗∗, then they must be oriented with same exact orientation, i.e.

x− y and φ→ x, in P ∗∩, the {G,G1, G2}-mirrored sink graph of G∩. Finally, since P ∗∩

is strongly transitive, then φ and y must be connected in P ∗∩ and the edge φ− x must

136

be oriented as φ→ y in P ∗∩, and hence, the nodes φ and y must be connected with

the same orientation, φ→ y, in P ∗∗.

Case 3. Lets say the edges φ− x and x− y are oriented as φ→ x→ y in P ∗∗. We

show that the edge φ− y must be in P ∗∗ and it must be oriented as φ→ y in P ∗∗.

Here we show that if G1 and G2 are generated by two ancestrally faithful,

marginally faithful, intersection matched DAGs or DGs, D1 and D2, then the nodes

in D1 whose boundary in G1 and G∩ comprises of only their descendants in D1 and

D∩ satisfy this case of weak transitivity in P ∗∗. The same applies to the nodes in D2

whose boundary in G2 and G∩ comprises of only their descendants in D1 and D∩.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y forms a v-structure in G, forcing the edge x− y to be oriented as

x← y in P , the sink graph of G. If x← y was in P , however, the edge x−y would not

have been oriented as x→ y in the merged sink graph of G1 and G2, P ∗∗. Therefore,

the nodes φ and y must be connected in G, and for that reason they must also be

connected in either G1 or G2.

(I) Now lets assume that the nodes φ and x are only connected in G1. Since

the edge φ− x is oriented as φ→ x in P ∗∗, we conclude that the edge φ− x must be

oriented as φ→ x in P ∗1 .

(I.I) Now, if x and y are also connected in G1, then the edge x− y must either

be undirected in P ∗1 or it must be oriented as x→ y in P ∗1 since it is oriented as x→ y

in P ∗∗. Then, since P ∗1 is strongly transitive, and given the chain φ→ x− y in P ∗1 ,

we conclude that the edge φ− y must be oriented as φ→ y in P ∗1 . Now, if φ and y

are disconnected in G2, we can then immediately conclude that the edge φ− y must

be oriented as φ→ y in P ∗∗. On the other hand, if φ and y are connected in G2, then

φ and y are also connected in G∩, and we conclude that y must be a descendant of φ

in D∩, and on that account, y must also be a descendant of φ in D1 and D2. This

137

implies that the the boundary of the node φ is a subset of or equal to that of the

boundary of the node y in graphs G1, G2, G∩, and G. Then, the edge φ − y must

either be undirected or it must be oriented as φ→ y in the sink graphs of G, G1, G2,

and G∩. Given that we already established that the edge φ− y must be oriented as

φ→ y in P ∗1 , we conclude that the edge φ− y must be oriented as φ→ y in P ∗∗.

(I.II) If the nodes x and y are not connected in G1, then the nodes φ and y

cannot be connected in G1 either. Otherwise, the triplet y− φ− x would have formed

a v-structure in G1 and the edge φ − x would have been oriented as φ ← x in P1.

Then the edge φ− x would not have not been oriented as φ→ x in P ∗∗. Therefore, φ

and y cannot be connected in G1 and must be connected only in G2. Furthermore,

if x and y are not connected in G1, then x and y must be connected in G2 and the

edge x − y must be oriented as x → y in P ∗2 . Then, the nodes x, y, and φ form a

v-structure x− y − φ in G2, and the edge y − φ can only be either doubly oriented,

y ↔ φ, in P ∗2 or it must be oriented as y ← φ in P ∗2 . If y − φ is oriented as y ← φ in

P ∗2 , since y and φ are disconnected in G1, we can immediately conclude that the edge

y − φ is also oriented as y ← φ in P ∗∗. We now show that y − φ cannot be doubly

oriented in P ∗2 under the conditions we have considered so far.

First we note that the edge y−φ must be undirected in P or it must be oriented

as y ← φ (since P is strongly transitive, and φ→ x→ y is in P ∗∗). Now, If y − φ is

doubly oriented in P ∗2 , then it must have been either doubly oriented in P2 or it must

have been oriented as y → φ. Since we had assumed that φ and x were disconnected

in G2, however, the edge between φ and y cannot be oriented as φ ← y in the sink

graph of G2: x is in the boundary of y in G2 while it is not in the boundary of φ and

ΩG2(y) 6⊆ ΩG2(φ). Then, the only possibility is for the edge φ−y to be doubly oriented

in P2. Thus, φ has the node y in its boundary in G2 who is not its descendant in

D2, and therefore φ must have been a node whose boundary in G1 and G∩ comprises

138

of only its descendants in D1 and D∩. Furthermore, since the edge y − φ is doubly

oriented in P2, we conclude that φ must have a node, φ2, as its ancestor in D2 where

φ2 is not connected to y in G2. On the other hand, since φ and x are connected in G1,

and the boundary of φ in G1 is comprised of only its descendants in D1, we conclude

φ must be an ancestor of x in D1. Now, since φ is an ancestor of x in D1, and φ2 is

an ancestor of φ in D2, and that D1 and D2 are ancestrally faithful, then φ2 must be

an ancestor of x in either D1 or D2. However, φ2 cannot be an ancestor of x in D2,

since that would imply φ2 and y were connected in G2. The boundary of x is a subset

of or equal to that of y in G2 according to the orientation of the edge x − y in P ∗2 ,

and if φ2 were connected to x in G2, then φ2 and y must have been connected in G2

as well. Therefore, φ2 must be an ancestor of x in D1. Finally, we note that under

the conditions specified φ2 and y must be connected in G1. Otherwise, since φ2 and

y are not connected in G2, then φ2 − x − y would have formed a v-structure in G,

and the edge x− y would have not been oriented as x→ y in P ∗∗. Now, since φ2 is

an ancestor of x in D1, and φ2 and y are connected in G1, we conclude that x and y

must also be connected in G1, which is against the conditions we have specified.

(II) Now lets assume that the nodes φ and x are connected in both G1 and G2.

(II.I) Now, if x and y are only connected in G1, then the edge x− y must be

oriented as x→ y in P ∗1 since it is oriented as x→ y in P ∗∗. Therefore, since P ∗1 is

strongly transitive, and we have either the chain φ→ x→ y or the chain φ− x→ y

in P ∗1 , then the edge φ − y must be oriented as φ → y in P ∗1 . Now, if φ and y are

disconnected in G2, we can then immediately conclude that the edge φ− y must be

oriented as φ→ y in P ∗∗ also. In fact, φ and y cannot be connected in G2. Otherwise,

the triplet x−φ− y would have formed a v-structure in G2, and the edge x−φ would

have been oriented as x → φ in P2, and this edge would not have been oriented as

φ→ x in P ∗∗.

139

(II.II) Finally, lets assume that the nodes x and y are also connected in both

G1 and G2. We immediately note that φ and y must also be connected in both G1

and G2. Otherwise, the triplet φ− x− y would have formed a v-structure in G1 or G2,

preventing the formation of x→ y in P ∗∗. This lets us conclude that x, y, and φ form

a connected component in G∩. Now, since the edges φ − x and x − y are oriented

as φ → x → y in P ∗∗, then the same edges must be oriented similarly, x → y and

φ→ x, in P ∗∩, the {G,G1, G2}-mirrored sink graph of G∩. Finally, since P ∗∩ is strongly

transitive, then the edge φ− y must be oriented as φ→ y in P ∗∩, and therefore, the

edge φ− y, must be oriented as φ→ y in P ∗∗.

Case 4. Lets say the edges φ− x and x− y are oriented as φ− x→ y in P ∗∗. We

show that the nodes φ and y must be connected in P ∗∗ and the edge φ− y must either

be undirected in P ∗∗ or it must be oriented as φ→ y.

Here we show that if G1 and G2 are generated by two ancestrally faithful,

marginally faithful, intersection matched DAGs or DGs, D1 and D2, then the nodes

in D1 whose boundary in G1 and G∩ comprises of only their descendants in D1 and

D∩ satisfy this case of weak transitivity in P ∗∗. The same applies to the nodes in D2

whose boundary in G2 and G∩ comprises of only their descendants in D1 and D∩.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y forms a v-structure in G, forcing the edge x− y to be oriented as

x ← y in P , the sink graph of G. If the edge x − y was oriented as x ← y in P ,

however, this edge would not have been oriented as x→ y in the merged sink graph

of G1 and G2, P
∗∗. Therefore, the nodes φ and y must be connected in G, and for

that reason they must also be connected in G1 or G2.

(I) Now lets assume that nodes x and y are only connected in G1. Since x→ y

is in P ∗∗, we conclude that the edge x− y must have been oriented as x→ y in P ∗1 .

140

(I.I) Now, if the nodes φ and x are also connected in G1, then the edge φ− x

must be undirected in P ∗1 since this edge is undirected P ∗∗. Since P ∗1 is strongly

transitive, then the edge φ− y must be oriented as φ→ y in P ∗1 . Now, if φ and y are

disconnected in G2, we can then immediately conclude that the edge φ− y must be

oriented as φ→ y in P ∗∗. On the other hand, if φ and y are connected in G2, then φ

and y are also connected in G∩, and we conclude that y must be a descendant of φ

in D∩, and on that account, y must also be a descendant of φ in D1 and D2. This

implies that the the boundary of the node φ is a subset of or equal to that of the

boundary of the node y in graphs G1, G2, G∩, and G. Then, the edge φ − y must

either be undirected or it must be oriented as φ→ y in the sink graphs of G, G1, G2,

and G∩. Given that we already established that φ and y must be connected in G1,

and the edge φ− y must be oriented as φ→ y in P ∗1 , we conclude that the edge φ− y

must be oriented as φ→ y in P ∗∗.

(I.II) If φ and x are not connected in G1, then, on the one hand, φ and x

must be connected in G2, and on the other hand, φ and y cannot be connected in G2.

Otherwise, since x and y were assumed to be disconnected in G2, the triplet y− φ− x

would have formed a v-structure in G2 and the edge φ−x would have been oriented as

φ← x in P2 . Then the edge φ− x would not have been undirected in P ∗∗. Therefore,

φ and y are disconnected in G2 and must be connected only in G1. Then x, y, and

φ form a v-structure x− y − φ in G1, and the edge y − φ can only be either doubly

oriented y ↔ φ in P ∗1 or it must oriented as y ← φ in P ∗1 . If the edge y− φ is oriented

as y ← φ in P ∗1 , since y and φ are disconnected in G1, we can immediately conclude

that this edge must also oriented as y ← φ in P ∗∗. We now show that y − φ cannot

be doubly oriented in P ∗1 under the conditions we have considered so far.

First we note that the edge y−φ must be undirected in P or it must be oriented

as y ← φ (since P is strongly transitive, and φ→ x→ y is in P ∗∗). Now, If y − φ is

141

doubly oriented in P ∗1 , then it must have been either doubly oriented in P1 or it must

have been oriented as y → φ. Since we had assumed that φ and x were disconnected

in G1, however, the edge between φ and y cannot be oriented as φ ← y in the sink

graph of G2: x is in the boundary of y in G1 while it is not in the boundary of φ

and ΩG1(y) 6⊆ ΩG1(φ). Then, the only possibility is for the edge φ− y to be doubly

oriented in P1. Thus, φ has node, y, in its boundary in G1 who is not its descendant

in D1, therefore φ must have been a node whose boundary in G2 and G∩ comprises

of only its descendants in D2 and D∩. Furthermore, since the edge y − φ is doubly

oriented in P1, we conclude that φ must have a node, φ1, as its ancestor in D1 where

φ1 is not connected to y in G1. On the other hand, since φ and x are connected in G2,

and the boundary of φ in G2 is comprised of only its descendants in D2, we conclude

φ must be an ancestor of x in D2. Now, since φ is an ancestor of x in D2, and φ1 is

an ancestor of φ in D1, and that D1 and D2 are ancestrally faithful, then φ1 must be

an ancestor of x in either D1 or D2. However, φ1 cannot be an ancestor of x in D1,

since that would imply φ1 and y were connected in G1. The boundary of x is a subset

of or equal to that of y in G1 according to the orientation of the edge x− y in P ∗1 and

if φ1 were connected to x in G1, then φ1 and y must have been connected in G1 as

well. Therefore, φ1 must be an ancestor of x in D2. Finally, we note that under the

conditions specified φ1 and y must be connected in G2. Otherwise, since φ1 and y are

not connected in G1, then φ1 − x − y would form a v-structure in G, and the edge

x− y would not be oriented as x→ y in P ∗∗. Now, since φ1 is an ancestor of x in D2

and φ1 and y are connected in G2, we conclude that x and y must also be connected

in G2, which is against the conditions (condition (I)) we have specified.

(II) Now lets assume that x and y are connected both in G1 and G2.

(II.I) Now, if φ and x are only connected in G1, then the edge φ− x must be

undirected in P ∗1 since this edge is undirected in P ∗∗. On the other hand, since the

142

edge x− y is oriented as x→ y is in P ∗∗, then this edge must either be undirected in

P ∗1 or it must be oriented as x→ y in P ∗1 . Given that both φ and x, and x and y are

assumed to be connected in G1, then φ and y must also be connected in G1: otherwise,

the triplet φ − x − y would form a v-structure in G1, preventing the formation of

x→ y or φ− x in P ∗∗. Now, since φ− x is undirected in P ∗1 , and the edge x− y must

either be undirected in P ∗1 or it must be oriented as x→ y in P ∗1 , and given that P ∗1 is

strongly transitive, then the edge φ− y either remains undirected in P ∗1 or it must be

oriented as φ→ y. Now, if φ and y are disconnected in G2, we can then immediately

conclude that the edge φ− y either remains undirected in P ∗∗ or it must be oriented

as φ → y in P ∗∗. On the other hand, if φ and y were connected in G2, then φ and

y must have also been connected in G∩. Since φ is a node whose boundary in G∩

comprises of only its descendants in D∩, then y must have been a descendant of φ in

D∩, and the edge φ− y must have been either undirected or oriented as φ→ y in the

sink graphs of G1, G2, G, and G∩. Then the edge φ− y must be either undirected or

oriented as φ→ y in P ∗∗.

(II.II) Finally, lets assume that x and y are also connected in both G1 and G2.

We immediately note that the nodes φ and y must also be connected in both G1 and

G2, otherwise, the triplet φ − x − y would form a v-structure in G1 or G2, and the

edge x− y would not be oriented as x → y in P ∗∗. This lets us conclude that x, y,

and φ form a connected component in G∩. Now, since the edges x− y and φ− x are

oriented as φ− x→ y in P ∗∗, then these edges must be oriented similarly, x→ y and

φ− x, in P ∗∩, the {G1, G2, G}-mirrored sink graph of G∩. Finally, since P ∗∩ is strongly

transitive, then the edge φ − y must be oriented as φ → y in P ∗∩, and therefore, as

φ→ y in P ∗∗.

Part 2

143

Now consider the root nodes of D∩. These roots are external nodes of G∩, and

for every external clique of G∩, there must exists a root node of D∩ that resides in this

clique (2.1). Any such root node, φ∩k , is G∩-outer external in G1, G2, and G (G2-outer

external in G), since φ∩k is an ancestor of all the nodes in ΩG∩(φ∩k) in D∩, and remains

an ancestor of all such nodes in D1, D2, and D = D1 ∪D2 also (2.2).

We now show that any such root, φ, is weakly transitive in P ∗∗. That is,

(i) whenever there is a directed path from φ to node y through node x in P ∗∗, i.e.

φ→ x→ y or φ− x→ y or φ→ x− y, then φ and y are connected in P ∗∗ and the

edge φ− y is either oriented as φ→ y or is undirected in P ∗∗, and (ii) whenever there

is an undirected path from φ to node y through node x, i.e. φ− x− y, then φ and y

are connected in P ∗∗ and the edge φ− y is undirected in P ∗∗ . We consider each of

these four cases, namely φ→ x→ y, φ− x→ y, φ→ x− y, and φ− x− y separately.

Out of these four cases, we only need to reconsider the cases relating to the structures

φ→ x→ y and φ− x→ y.

Case 3. Lets say the edges φ− x and x− y are oriented as φ→ x→ y in P ∗∗. We

show that the edge φ− y must be in P ∗∗ and it must be oriented as φ→ y in P ∗∗.

Here we show that if G1 and G2 are generated by two ancestrally faithful,

marginally faithful, intersection matched DAGs or DGs, D1 and D2, then the nodes

in D∩ whose boundary in G∩ comprises of only their descendants in D∩ satisfy this

case of weak transitive in P ∗∗.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y would have formed a v-structure in G, forcing the edge x− y to be

oriented as x← y in P , the sink graph of G. If the edge x− y was oriented as x← y

in P , however, the edge x− y would not have been oriented as x→ y in the merged

sink graph of G1 and G2, P ∗∗. Therefore, the nodes φ and y must be connected in G,

and for that reason they must also be connected in G1 or G2.

144

(I) Now lets assume that the nodes φ and x are only connected in G1. Since

the edge φ− x is oriented as φ→ x in P ∗∗, we conclude that the edge φ− x must be

oriented as φ→ x in P ∗1 .

(I.I) Now, if x and y are also connected in G1, then the edge x− y must either

be undirected in P ∗1 or it must be oriented as x → y in P ∗1 since it is oriented as

x→ y in P ∗∗. Then, since P ∗1 is strongly transitive, and given the chain φ→ x− y

in P ∗1 , we conclude that φ and y must also be connected in G1 and the edge φ − y

must be oriented as φ → y in P ∗1 . Now, if φ and y are disconnected in G2, we can

then immediately conclude that the edge φ− y must be oriented as φ→ y in P ∗∗. On

the other hand, if φ and y are connected in G2, then y must have been a node in the

boundary of φ in G∩, and given that φ is an ancestor of all the nodes in its boundary

in G∩, φ must have been an ancestor of y in D∩, D1 and D2. Then the edge φ − y

must have been either undirected or oriented as φ→ y in the sink graphs of G∩ and

G2. Given that we already established that the edge φ− y is oriented as φ→ y in P ∗1 ,

we conclude that the edge φ− y must be oriented as φ→ y in P ∗∗.

(I.II) If the nodes x and y are not connected in G1, then the nodes φ and y

cannot be connected in G1 either. Otherwise, the triplet y− φ− x would have formed

a v-structure in G1 and the edge φ − x would have been oriented as φ ← x in P1.

Then, the edge φ− x would not have not been oriented as φ→ x in P ∗∗. Therefore,

φ and y cannot be connected in G1 and must be connected in G2 and only in G2.

Furthermore, if x and y are not connected in G1, then x and y must be connected in

G2 and the edge x− y must be oriented as x→ y in P ∗2 . Then, the nodes x, y, and

φ form a v-structure x− y − φ in G2, and the edge y − φ can only be either doubly

oriented, y ↔ φ, in P ∗2 or it must be oriented as y ← φ in P ∗2 . If y − φ is oriented as

y ← φ in P ∗2 , since y and φ are disconnected in G1, we can immediately conclude that

145

the edge y − φ is also oriented as y ← φ in P ∗∗. We now show that y − φ cannot be

doubly oriented in P ∗2 under the conditions we have considered so far.

First we note that the edge y−φ must be undirected in P or it must be oriented

as y ← φ (since P is strongly transitive, and φ→ x→ y is in P ∗∗). Now, If y − φ is

doubly oriented in P ∗2 , then it must have been either doubly oriented in P2 or it must

have been oriented as y → φ. Since we had assumed that φ and x were disconnected

in G2, however, the edge between φ and y cannot be oriented as φ ← y in the sink

graph of G2: x is in the boundary of y in G2 while it is not in the boundary of φ

and ΩG2(y) 6⊆ ΩG2(φ). Then, the only possibility is for the edge φ− y to be doubly

oriented in P2. Now, since the edge y− φ is doubly oriented in P2, we conclude that φ

must have some ancestor in D2, φ2, that is a root or root∗ node of D2 and whom y is

not a descendant of: φ2 ≥D2 φ∧φ2 6≥D2 y. Then φ must be connected to φ2 in P ∗2 with

an edge oriented as φ2 → φ: φ2 is an ancestor of φ in D2 and there is a node, namely

y, in the boundary of φ that is not in the boundary of φ2. Now, given that φ is a node

whose boundary in G∩ comprises of only its descendants in D∩, we conclude that φ2

cannot be connected to φ in G1. Otherwise, if φ2 was connected to φ in G1, then φ2

would have been in the boundary of φ in G∩, and since any node in the boundary of φ

in G∩ is by our assumption a descendant of φ in D∩, φ2 would have been a descendant

of φ in D∩, and on that account a descendant of φ in D2 as well. However, this is

impossible since we have already established that the node y, a neighbour of φ in G2,

is not in the boundary of φ2 in G2. Since φ2 and φ must be disconnected in G1, and

since φ2 → φ is in P ∗2 , we conclude that the edge φ2 − φ must be oriented as φ2 → φ

in P ∗∗. Now, Given that φ2 is a root or a root∗ node of D2, and having shown that

nodes such as φ2 whose boundary in G2 and G∩ comprise only of their descendants in

D2 and D∩ are weakly transitive in P ∗∗, the chain φ2 → φ→ x in P ∗∗ tells us that φ2

and x must be connected in P ∗∗ either with an undirected edge or as φ2 → x. Given

146

that φ2 cannot be in the boundary of x in G2, as otherwise, since the boundary of x

is a subset of or equal to that of the boundary y in G2, we would have y also be in

the boundary of φ2 in G2, we conclude that φ2 and x must be connected in G1 and

G1 only. Furthermore, since the edge φ2 − x is either undirected in P ∗∗ or oriented as

φ2 → x, then this edge must also be either undirected in P ∗1 or it must be oriented as

φ2 → x, implying that the boundary of φ2 in G1 is a subset of or equal to that of the

boundary of x. Finally, we note that under the conditions specified φ2 and y must be

connected in G1. Otherwise, since φ2 and y are not connected in G2, then the triplet

φ2 − x− y would have formed a v-structure in G, and the edge x− y would have not

been oriented as x→ y in P ∗∗. Now, since the boundary of φ2 in G1 must be a subset

of or equal to that of the boundary of x, and φ2 and y must be connected in G1, we

conclude that x and y must also be connected in G1, which is against the conditions

we have specified.

(II) Now lets assume that the nodes φ and x are connected in both G1 and G2.

(II.I) Now, if x and y are only connected in G1, then the edge x− y must be

oriented as x→ y in P ∗1 since it is oriented as x→ y in P ∗∗. Therefore, since P ∗1 is

strongly transitive, and we have either the chain φ→ x→ y or the chain φ− x→ y

in P ∗1 , then the edge φ − y must be oriented as φ → y in P ∗1 . Now, if φ and y are

disconnected in G2, we can then immediately conclude that the edge φ− y must be

oriented as φ→ y in P ∗∗ also. In fact, φ and y cannot be connected in G2. Otherwise,

the triplet x−φ− y would have formed a v-structure in G2, and the edge x−φ would

have been oriented as x → φ in P2, and this edge would not have been oriented as

φ→ x in P ∗∗.

(II.II) Finally, lets assume that the nodes x and y are also connected in both

G1 and G2. We immediately note that φ and y must also be connected in both G1

and G2. Otherwise, the triplet φ− x− y would have formed a v-structure in G1 or G2,

147

preventing the formation of x→ y in P ∗∗. This lets us conclude that x, y, and φ form

a connected component in G∩. Now, since the edges φ − x and x − y are oriented

as φ → x → y in P ∗∗, then the same edges must be oriented similarly, x → y and

φ→ x, in P ∗∩, the {G,G1, G2}-mirrored sink graph of G∩. Finally, since P ∗∩ is strongly

transitive, then the edge φ− y must be oriented as φ→ y in P ∗∩, and therefore, the

edge φ− y, must be oriented as φ→ y in P ∗∗.

Case 4. Lets say the edges φ− x and x− y are oriented as φ− x→ y in P ∗∗. We

show that the nodes φ and y must be connected in P ∗∗ and the edge φ− y must either

be undirected in P ∗∗ or it must be oriented as φ→ y.

Here we show that if G1 and G2 are generated by two ancestrally faithful,

marginally faithful, intersection matched DAGs or DGs, D1 and D2, then the nodes

in D∩ whose boundary in D∩ comprises of only their descendants in D∩ satisfy this

case of weak transitive in P ∗∗.

First we note that the nodes φ and y must be connected in G. Otherwise, the

triplet φ− x− y forms a v-structure in G, forcing the edge x− y to be oriented as

x ← y in P , the sink graph of G. If the edge x − y was oriented as x ← y in P ,

however, this edge would not have been oriented as x→ y in the merged sink graph

of G1 and G2, P
∗∗. Therefore, the nodes φ and y must be connected in G, and for

that reason they must also be connected in G1 or G2.

(I) Now lets assume that nodes x and y are only connected in G1. Since x→ y

is in P ∗∗, we conclude that the edge x− y must have been oriented as x→ y in P ∗1 .

(I.I) Now, if the nodes φ and x are also connected in G1, then the edge φ− x

must be undirected in P ∗1 since this edge is undirected P ∗∗. Since P ∗1 is strongly

transitive, then the edge φ − y must be oriented as φ → y in P ∗1 . Now, if φ and y

are disconnected in G2, we can then immediately conclude that the edge φ− y must

be oriented as φ → y in P ∗∗. On the other hand, if φ and y are connected in G2,

148

then the edge φ− y must either be undirected in P ∗2 or it must be oriented as φ→ y:

y ∈ ΩG∩(φ) and φ is G∩-outer external in G2 and G. Furthermore, φ must be external

in G∩ and the edge φ− y must be either undirected in P∩ or it must be oriented as

φ→ y in P∩. This lets us conclude that φ− y must be oriented as φ→ y in P ∗∗.

(I.II) If φ and x are not connected in G1, then, on the one hand, φ and x

must be connected in G2. On the other hand, φ and y cannot be connected in G2.

Otherwise, since x and y were assumed to be disconnected in G2, the triplet y− φ− x

would have formed a v-structure in G2 and the edge φ−x would have been oriented as

φ← x in P2. Then the edge φ− x would not have been undirected in P ∗∗. Therefore,

φ and y are disconnected in G2 and must be connected in G1 and only in G1. Then x,

y, and φ form a v-structure x− y − φ in G1, and the edge y − φ can only be either

doubly oriented y ↔ φ in P ∗1 or it must oriented as y ← φ in P ∗1 . If the edge y − φ is

oriented as y ← φ in P ∗1 , since y and φ are disconnected in G1, we can immediately

conclude that this edge must also be oriented as y ← φ in P ∗∗. We now show that

y − φ cannot be doubly oriented in P ∗1 under the conditions we have considered so far.

First we note that the edge y−φ must be undirected in P or it must be oriented

as y ← φ (since P is strongly transitive, and φ→ x→ y is in P ∗∗). Now, If y − φ is

doubly oriented in P ∗1 , then it must have been either doubly oriented in P1 or it must

have been oriented as y → φ. Since we had assumed that φ and x were disconnected

in G1, however, the edge between φ and y cannot be oriented as φ ← y in the sink

graph of G1: x is in the boundary of y in G1 while it is not in the boundary of φ

and ΩG1(y) 6⊆ ΩG1(φ). Then, the only possibility is for the edge φ− y to be doubly

oriented in P1. Now, since the edge y − φ is doubly oriented in P1, we conclude that

φ must have some ancestor in D1, φ1, that is a root or root∗ node of D1 and whom

y is not a descendant of: φ1 ≥D1 φ ∧ φ1 6≥D1 y. Then φ must be connected to φ1

in P ∗1 with an edge oriented as φ1 → φ: φ1 is an ancestor of φ in D2 and there is a

149

node, namely y, in the boundary of φ that is not in the boundary of φ1. Now, given

that φ is a node whose boundary in G∩ comprises of only its descendants in D∩, we

conclude that φ1 cannot be connected to φ in G2. Otherwise, if φ1 was connected to

φ in G2, then φ1 would have been in the boundary of φ in G∩, and since any node

in the boundary of φ in G∩ is by our assumption a descendant of φ in D∩, φ1 would

have been a descendant of φ in D∩, and on that account a descendant of φ in D1 as

well. However, this is impossible since we have already established that the node y,

a neighbour of φ in G1, is not in the boundary of φ1 in G1. Since φ1 and φ must be

disconnected in G2, and since φ1 → φ is in P ∗1 , we conclude that the edge φ1− φ must

be oriented as φ1 → φ in P ∗∗. Now, Given that φ1 is a root or a root∗ node of D2, and

having shown that nodes such as φ1 whose boundary in G1 and G∩ comprise only of

their descendants in D1 and D∩ are weakly transitive in P ∗∗, the chain φ1 → φ→ x

in P ∗∗ tells us that φ1 and x must be connected in P ∗∗ either with an undirected edge

or an edge oriented as φ1 → x. Given that φ1 cannot be in the boundary of x in G1,

as otherwise, since the boundary of x is a subset of or equal to that of the boundary

y in G1, we would have y also be in the boundary of φ1 in G1, we conclude that φ1

and x must be connected in G2 and G2 only. Furthermore, since the edge φ1 − x is

either undirected in P ∗∗ or oriented as φ1 → x, then this edge must be also either

undirected in P ∗2 or it must be oriented as φ1 → x, implying that the boundary of φ1

in G2 is a subset of or equal to that of the boundary of x. Finally, we note that under

the conditions specified φ1 and y must be connected in G2. Otherwise, since φ1 and y

are not connected in G1, then the triplet φ1 − x− y would have formed a v-structure

in G, and the edge x− y would have not been oriented as x→ y in P ∗∗. Now, since

the boundary of φ1 in G2 must be a subset of or equal to that of the boundary of

x, and φ1 and y must be connected in G2, we conclude that x and y must also be

connected in G2, which is against the conditions we have specified.

150

(II) Now lets assume that x and y are connected both in G1 and G2.

(II.I) Now, if φ and x are only connected in G1, then the edge φ− x must be

undirected in P ∗1 since this edge is undirected in P ∗∗. On the other hand, since the

edge x− y is oriented as x→ y is in P ∗∗, then this edge must either be undirected in

P ∗1 or it must be oriented as x→ y in P ∗1 . Given that both φ and x, and x and y are

assumed to be connected in G1, then φ and y must also be connected in G1: otherwise,

the triplet φ − x − y would form a v-structure in G1, preventing the formation of

x→ y or φ− x in P ∗∗. Now, since φ− x is undirected in P ∗1 , and the edge x− y must

either be undirected in P ∗1 or it must be oriented as x→ y in P ∗1 , and given that P ∗1 is

strongly transitive, then the edge φ− y either remains undirected in P ∗1 or it must be

oriented as φ→ y. Now, if φ and y are disconnected in G2, we can then immediately

conclude that the edge φ− y either remains undirected in P ∗∗ or it must be oriented

as φ→ y in P ∗∗. In fact, the nodes φ and y must be disconnected in G2. Otherwise,

the the triplet x− y − φ would have formed a v-structure in G2, and the edge x− y

would have been oriented as x → y in P2. If that was the case, however, the edge

x− y would not be undirected in P ∗∗.

(II.II) Finally, lets assume that x and y are also connected in both G1 and G2.

We immediately note that the nodes φ and y must also be connected in both G1 and

G2, otherwise, the triplet φ − x − y would form a v-structure in G1 or G2, and the

edge x− y would not be oriented as x → y in P ∗∗. This lets us conclude that x, y,

and φ form a connected component in G∩. Now, since the edges x− y and φ− x are

oriented as φ− x→ y in P ∗∗, then these edges must be oriented similarly, x→ y and

φ− x, in P ∗∩, the {G1, G2, G}-mirrored sink graph of G∩. Finally, since P ∗∩ is strongly

transitive, then the edge φ − y must be oriented as φ → y in P ∗∩, and therefore, as

φ→ y in P ∗∗.

If

151

Lets assume for every external clique of G1, G2, and G∩, there exists at least

one node, ψ1
i , ψ

2
j , and ψ∩k that satisfies the conditions specified in the lemma. We

construct two intersection matched, marginally faithful, ancestrally faithful DAGs R∗1

and R∗2 generating G1 and G2 as follows. Note that the two DAGs we construct

here are strongly acyclic.

Step 1

We first construct three DAGs R1, R2, and R∩. We construct R1 by selecting one

node, ψ1
i , for every external clique of G1 that satisfies the conditions (1.1)-(1.5) specified

in the lemma. We then connect this node to all other nodes in its neighbourhood in

G1 through a directed arrow as shown next: ∀x ∈ Ω1(ψ1
i) : ψ1

i → x. We construct R2

and R∩ similarly, by first selecting one node per external clique of G2 and G∩, ψ2
j and

ψ∩k , that satisfies the conditions, respectively (2.1-2.5) and (3.1-3.3), specified in the

lemma, and then connecting it too all other nodes in their boundaries as described.

Step 2

We can always select the ψ’s such that R1, R2 and R∩ are pairwise weakly

acyclic. First, choose any arbitrary R∩. Now, lets say the chosen R1 and R∩ are not

weakly acyclic and they have K instance where the edges in R1 and R∩ are reversed.

Thus, there exists two nodes ψ1
i and ψ∩k such that ψ1

i → ψ∩k is in R1 and ψ1
i ← ψ∩k

is in R∩ . Since ψ∩k is G∩-outer external in G1 and ψ1
i is external in G1, then ψ∩k is

also an external node of the same clique as that of ψ1
i in G1. We construct a new R1

by choosing ψ∩k in place of ψ1
i in the selection made in step 1. The new R1 and R∩

then have at most K − 1 instance where the edges in R1 and R∩ are reversed.We can

similarly construct an R2 that is weakly acyclic w.r.t R∩.

Step 3

We note that if we have chosen R1 and R2 to both be weakly acyclic w.r.t R∩,

then they are both weakly acyclic w.r.t one another. Assume the contrary and lets say

152

there exists two distinct nodes ψ1
i and ψ2

j such that ψ1
i → ψ2

j is in R1 and ψ1
i ← ψ2

j is

in R2. Then the nodes ψ1
i and ψ2

j must have been directly connected both in G1 and

G2, and therefore, they must have also been connected in G∩. Since the edge ψ1
i − ψ2

j

is in G∩, then, in the construction of R∩, we must have selected at least node, ψ∩k , in

an external clique covering this edge, and we must have connected this node to both

ψ1
i and ψ2

j with the following orientation: ψ1
i ← ψ∩k → ψ2

j . On the other hand, since

the edge ψ1
i − ψ∩k must also be in G1 (owing to the fact that G∩ ⊆ G1), then we must

have had the edge ψ1
i → ψ∩k in R1. If ψ∩k and ψ1

i are distinct nodes, this would imply

that R∩ and R1 were not weakly acyclic. Thus, the nodes ψ∩k and ψ1
i must have been

the same. Similarly, we can conclude that ψ∩k is the same node as ψ2
j , which would

imply that ψ2
j and ψ1

i are the same node. This is however impossible since we had

assumed ψ2
j and ψ1

i are two distinct nodes.

Step 4

If the R1, R2, and R∩ are constructed as instructed above to be pairwise weakly

acyclic, then their union R = R1 ∪R2 ∪R∩ must be acyclic.

Lets assume that there is a cycle. Either all edges in the cycle come from R1 or

R2 or there exists at least one edge that is only present in R∩. Lets say one such edge

exists and let us denote this edge with ψ∩k → ψ. We show that R must then have a

cycle without this edge as well.

To see this, consider the edge that comes right before this edge in the cycle:

ψ → ψ∩k → ψ. The edge ψ → ψ∩k cannot be in R∩. An edge in R∩ connects one

external node per external clique of G∩ to a node in that external clique. If the edge

ψ → ψ∩k was in R∩, then we would conclude that ψ was an external node of some

external clique, Γ, in G∩, and ψ∩k was some node in that external clique. The edge

ψ∩k → ψ in R∩, on the other hand, implies that the node ψ∩k is an external node of

some other external clique, Γ̂, of G∩. This is not possible since we already established

153

that ψ∩k is in the external clique Γ and thus it cannot be an external node of Γ̂. Then,

the edge ψ → ψ∩k must be in R1 or in R2.

Let’s say the edge ψ → ψ∩k is in R1. The edge ψ → ψ∩k in R1 implies that

ψ and ψ∩k are directly connected in G1. Now, since ψ∩k is G∩-outer external in G1,

we have ∀x ∈ ΩG∩(ψ∩k) : ΩG1(ψ
∩
k) ⊆ ΩG1(x). Given that ψ is in ΩG∩(ψ∩k), then

ΩG1(ψ
∩
k) ⊆ ΩG1(ψ), and since ψ is in ΩG1(ψ

∩
k), then ψ must also be in ΩG1(ψ) and the

nodes ψ and ψ must be connected in G1. As the nodes ψ and ψ must be connected in

G1, then we must have connected the nodes ψ and ψ through the edge ψ → ψ in the

construction of R1 and we must have a cycle in R without the edge ψ∩k → ψ.

We now show R cannot contain a cycle where all the edges in the cycle are in R1

or R2. We show this by proving that existence of such a cycle is only possible when

R1 and R2 are not weakly acyclic.

Assume the contrary and lets say there is such a cycle {ψ1, ψ2, ...ψn, ψ1} in R.

First we note that given the construction of R1 and R2, the longest directed path in

R1 and R2 is one and there is no chain of length two in either of these two DAGs.

Therefore, (1) no edge in the cycle can be present in both R1 and R2, and (2) no two

successive edges in the cycle can be both present in R1 and no two successive edges

can be both present in R2–in other words, if the edge ψi → ψi+1 is in R1, then the

edge ψi+1 → ψi+2 must be in R2. The other important detail about the structure of

the graphs R1, R2 and R∩, is that for any edge ψ → x in these graphs, this edge must

appear as either undirected in P ∗∗ or it must be present with the same orientation,

ψ → x. This can be easily verified by reminding ourselves of the conditions specified

in the Lemma (in fact the conditions were engineered so as to guarantee this property).

For instance, consider the edge ψ → x in R1. Using the following properties, we can

154

immediately verify that ψ and x are connected in P ∗∗ and the edge ψ − x is either

undirected or is oriented as ψ → x in P ∗∗

1 the nodes ψ and x must be connected in G1 and hence in G = G1 ∪G2.

2 the edge ψ−x must either be undirected or oriented as ψ → x in the sink graph

of G1 owing to the fact that ψ is an external node of G1.

3 the edge ψ− x, if present in G∩, must either be undirected or oriented as ψ → x

in the sink graph of G∩ since ψ is an external node in G∩.

4 the edge ψ−x must either be undirected or oriented as ψ → x in the sink graph

of G since ψ is G1-external in G.

5 the edge ψ − x if present in G2 must either be undirected or oriented as ψ → x

in the sink graph G2 owing to ψ being a G∩ outer external node in G2.

Now, to show that R cannot contain any cycles, first, consider the path ψ1 →

ψ2...→ ψn−1. Given that ψ1 is weakly transitive in P ∗∗, and that every edge in this

sequence is either undirected in P ∗∗ or is oriented as ψi → ψi+1, we can immediately

conclude that the nodes ψ1 and ψn−1 are connected in P ∗∗ and the edge ψ1 − ψn−1

is either undirected in P ∗∗ or is oriented as ψ1 → ψn−1. The complement of this

directed path in the cycle, ψn−1 → ψn → ψ1, on the other hand, implies that the

edge ψn−1 − ψ1 must be either undirected in P ∗∗ or it must be oriented as ψn−1 → ψ1.

Combining these two statements we conclude the edge ψn−1 − ψ1 must be undirected

in P ∗∗.

Now, let’s say the edge ψn−1 → ψn is in R1. Then, the edge ψn → ψ1 must have

been in R2 and only in R2. Finally, the edge ψ1 → ψ2 must have been in R1 and R1

only. Then, the edge ψ1 − ψn−1 cannot be in G1 since ψ1 and ψn−1 are external nodes

of two different external cliques in G1. Therefore, since the nodes ψ1 and ψn−1 must

be connected in P ∗∗, and on that account they must be connected in G = G1 ∪G2, we

conclude that ψ1 and ψn−1 must be connected in G2. Now, since the edge ψ1−ψn−1 is

155

undirected in P ∗∗, we conclude ψ1 and ψn−1 are also connected by an undirected edge

in the sink graph of G2. Since the edge ψ1 − ψn−1 must have been undirected in the

sink graph of G2, then, every node in the boundary of ψ1 in G2 must have also been

in the boundary of ψn−1. Since ψn is in the boundary of ψ1 in G2, we conclude that

ψn must have also been in the boundary of ψn−1 in G2. Then, in the construction of

R2 we must have had connected ψn to ψn−1 through the edge ψn → ψn−1. However,

this would imply that the DAGs R1 and the R2 were not weakly acyclic.

Step 5

Form the transitive closure of R, RTC . Since every directed path in R begins at

a node that is weakly transitive in P ∗∗, ψ, and every edge along the path is either

undirected in P ∗∗ or is oriented with the same orientation as in R, then every edge

ψ → x in RTC must appear in P ∗∗ as either ψ → x or ψ − x. Therefore, every such

edge must also appear in P1 or P2 with the same orientation or as undirected. We

can then add any such edges to either R1 or R2 without affecting their marginal

dependency graph. Lets refer to these extended DAGs as R∗1 and R∗2.

Step 6

The two DAGs R∗1 and R∗2 are ancestrally faithful, marginally faithful, intersec-

tion matched, and generate G1 and G2.

1 The marginal dependency graph of R∗1 is G1 and the marginal dependency graph

of R∗2 is G2. First, we note that since the marginal dependency graph of R1 is

G1, and R∗1 is a supergraph of R1, then the marginal dependency graph of R∗1

is a supergraph of G1. On the other hand, the marginal dependency graph of

R∗1 is a subgraph of G1 as R∗1 is a DAG who is a subgraph of some DAG in the

completion of reduced the sink graph of G1 (Lemma S.A.1). For every edge

ψi → x in R∗1, ψi and x must be connected in G1, and the edge ψi − x must

156

either be undirected or oriented as ψi → x in the sink graph of G1 as discussed

in Step 5.

2 The marginal dependency graph of the intersection of the two DAGs R∗1 and R∗2

is G∩ since R∩ is a subgraph of both R∗1 and R∗2, and Σ(R∩) = G∩.

3 The marginal dependency graph of the union of the two DAGs R∗1 and R∗2 is G.

Every edge in R∗1 or R∗2 must appear with the same orientation or as undirected

in P ∗∗. Then, R∗1 and R∗2 must be both subgraphs of DAGs in the completion of

the reduced sink graph of G, since P ∗∗ is the {G1, G2, G∩}-mirrored sink graph

of G. Then, by Lemma S.A.1, we conclude that the marginal dependency graph

of the union of the two DAGs R∗1 and R∗2 is G.

4 The DAGs R∗1 and R∗2 are ancestrally faithful. To show this we need to prove

that the transitive closure of R∗1 ∪R∗2 is a subgraph of the union of the transitive

closures of R∗1 and R∗2. Owing to Step 5, the union of the two DAGs, R∗1 ∪R∗2, is

exactly equal to the DAG RTC . Then, the transitive closure of R∗1 ∪R∗2 is the

transitive closure of RTC , and since RTC is a transitive DAG, then the transitive

closure of R∗1 ∪ R∗2 is nothing but RTC itself. Now, since the union of the two

DAGs R∗1 and R∗2 is equal RTC , then the union of their transitive closures must

be a supergraph of RTC , which by our previous argument is the transitive closure

of the union of R∗1 and R∗2.

E.1

Theorem 3.2. Given two marginal dependency graphs G1 and G2, there exists

two ancestrally faithful, marginally faithful, intersection matched DGs generating G1

and G2 only if there exists two two ancestrally faithful, marginally faithful, intersection

matched DAGs generating the given marginal dependency graphs.

157

Proof. We use the following notation in our proof. P1 and P2 are used to denote

the sink graphs of G1 and G2. We use G to represent the union of the two marginal

dependency graphs, G = G1 ∪G2, and P to denote its sink graph. We use G∩ for the

intersection of the two marginal dependency graphs, G∩ = G1 ∩G2, and P∩ to denote

its sink graph. We use P ∗1 and P ∗2 for the G−mirrored sink graphs of G1 and G2, P ∗∩

to denote {G,G1, G2}−mirrored sink graph of G∩, and finally P ∗∗ for the merged sink

graph of G1 and G2.

Lets say the two DGs D1 and D2 are ancestrally faithful, marginally faithful,

intersection matched DGs generating G1 and G2. Let us represent the union and

intersection of these two DGs, respectively, by D and D∩. We find a set of nodes in

D1, D2, and D∩ such that:

(1) For every external clique of G1 , at least one node is (1.1) external in G1,

(1.2) G1−outer external in G = G1 ∪ G2 , (1.3) external in G∩ = G1 ∩ G2, (1.4)

G∩-outer external in G2, and (1.5) weakly transitive in P ∗∗, the merged sink graph

of G1 and G2.

(2) For every external clique of G2 , at least one node that is (2.1) external in

G2, (2.2) G2−outer external in G , (2.3) external in G∩, (2.4) G∩-outer external in

G1, and (2.5) weakly transitive in P ∗∗.

(3) For every external clique of G∩ = G1 ∩G2, at least one node that is (3.1)

external in G∩, (3.2) G∩-outer external in G1, G2, and G, and (3.3) weakly transitive

in P ∗∗.

Part 1: Finding Appropriate Nodes In External Cliques of G∩

For every edge x− y in G∩ connecting the nodes x and y, we find a node in D∩,

π, such that π is in the boundary of x and y in G∩ and π is (3.1) external in G∩, (3.2)

G∩-outer external in G1, G2, and G, and (3.3) weakly transitive in P ∗∗.

158

Since x and y are connected in G∩, and given the fact that D∩ has generated

G∩, we can conclude that x and y must have had a common ancestor, π1, in D∩ and

π1 ∈ ΩG∩(x) ∩ ΩG∩(y). Now either π1 itself is a root∗ node in D∩ or it has a ancestor

in D∩, π, that is a root∗ node in D∩. To see this, let’s say neither π1 nor any of its

ancestors in D∩, Π∩(π1) = {π1, π2..., πm}, are a root∗ node in D∩. Since π1 is not a

root∗ node in D∩, then π1 must have an ancestor in D∩ that is not its descendant.

Lets call this ancestor π∗1. Then, π∗1 is an ancestor of π1 in D∩, and π∗1 must be in the

set Π∩(π1). Let’s assume that π∗1 is the node labeled as π2 in this set. Now, since

π2 is not a root∗ node in D∩, then π2 must have an ancestor in D∩ that is not its

descendant. Lets call this ancestor π∗2. Then π∗2 is an ancestor of π2 in D∩, and since

π2 is an ancestor of π1 in D∩, then π∗2 must have been an ancestor of π1 in D∩ also.

Therefore, π∗2 must be in the set Π∩(π1). Furthermore, the node π∗2 must be a different

node than π1. π
∗
2 cannot be π1 since π2

∗ is a node that’s not a descendant of π2 in

D∩. Thus π∗2 must be a node in the collection {π3, π4..., πm}. Lets then assume that

π∗2 is the node labeled as π3 in this set. Again, since π3 is not a root∗ node in D∩,

then π3 must have an ancestor in D∩ that is not its descendant. Using this logic we

can then climb the ancestors of π1 in D∩ one by one, iteratively, and as we make this

climb, for every new node that we reach, since this node is not a root∗ node in D∩, we

can always find a node that we have not visited previously and continue the climb

indefinitely which should be impossible since the graphs we consider are defined over

finite domains.

Therefore, we conclude for every edge x− y in G∩, we can find a node π in D∩,

such that π is in the boundary of x and y in G∩, and π is a root∗ node in D∩. Since

π is a root∗ node in D∩, then π satisfies the following properties:

1 The node π is an external node in G∩. Since π is a root∗ node in D∩, then all

its ancestors in D∩ must be its descendants also. Then any node x sharing a

159

common ancestor with π in D∩, must also be its descendant. Therefore, the

boundary of π in G∩ is a subset of or equal to that boundary of every node, x,

that its connected to π in G∩: ∀x ∈ ΩG∩(π) : ΩG∩(π) ⊆ ΩG∩(x).

2 The node π G∩-outer external in G1, G2, and G. As before, any node x sharing

a common ancestor with π in D∩, must also be its descendant. As D∩ is a

subgraph of D1, D2, any such node, x, must also remain π’s descendant in D1,

D2, and D = D1 ∪D2 . Then, the boundary of π in G1, G2, and G must be a

subset of or equal to that boundary of every node, x, that its connected to π in

G∩.

3 This node π must also be weakly transitive in P ∗∗. This immediately re-

sults from our proof of weak transitivity of nodes in D∩ whose boundary in

D∩ comprises of only their descendants in D∩ whenever G1 and G2 are gener-

ated by two ancestrally faithful, marginally faithful, intersection matched DGs

(Supplementary D.1).

Part 2: Finding Appropriate Nodes In External Cliques of G1 and G2

We show that for every edge x− y in G1, we can find a node π in D1, such that

π is in the boundary of x and y in G1, and π is a root∗ node in both D1 and D∩.

We previously showed that for every edge x− y in G∩, we can find a node, π1,

in D∩ such that π1 is in the boundary of x and y in G∩, and π1 is a root∗ node in D∩.

The same applies to the graph G1. That is, for every edge x− y in G1 , we can find a

node, π1, in D1, such that π1 is in the boundary of x and y in G1, and π1 is a root∗

node in D1. Now, consider the ancestors of such a π1 in D1 and let us refer to this set

with the notation Π1(π1) = {π1, ..., πm}. Note that all the nodes in Π1(π1) are root∗

nodes of D1. Assume the opposite and let’s say πi has an ancestor, η, in D1 that is

not its descendant. Then, η must be an ancestor of π1, and since π1 is a root∗ node of

D1, then π1 must itself be an ancestor of η in D1. Now, since πi is an ancestor of π1

160

in D1, and given that π1 is an ancestor of η in D1, then πi must be an ancestor of η

in D1 also. However, we had assumed that η is not a descendant of πi.

We now show that at least one node in Π1(π1) must be a root∗ node of D∩ as

well. If Π1(π1) only contains π1, then π1 is clearly a root∗ node of D∩ as well as that

of D1 (π1 has no ancestors in neither D1 nor D2 besides itself and thus by default it

is a root∗ node of both D1 and D∩). Lets assume none of the nodes in {π1, ..., πm}

are a root∗ node in D∩. Since π1 is not a root∗ node in D∩, then π1 must have an

ancestor in D∩ that is not its descendant in D∩. Lets call this ancestor π∗1. Then π∗1 is

an ancestor of π1 in both D∩ and D1, and π∗1 must be in the set Π1(π1). Let’s assume

that π∗1 is the node labeled as π2 in this set. Now, since π2 is not a root∗ node in D∩,

then π2 must have an ancestor in D∩ that is not its descendant in D∩. Lets call this

ancestor π∗2. Then π∗2 is an ancestor of π2 in D∩, and since π2 is an ancestor of π1 in

D∩, then π∗2 must have been an ancestor of π1 in D∩ also. Therefore, π∗2 must also be

in the set Π1(π1). Now, π∗2 cannot be π1. π
∗
2 cannot be π2 since π2

∗ is a node that’s

not a descendant of π2 in D∩. Lets then assume that π∗2 is the node labeled as π3 in

this set. Again, since π3 is not a root∗ node in D∩, then π3 must have an ancestor

in D∩ that is not its descendant. Using this logic we can then climb the ancestors of

π1 in D∩ one by one, iteratively, and as we make this climb, for every new node that

we reach, since this node is not a root∗ node in D∩, we can always find a node that

we have not visited previously and continue the climb indefinitely which should be

impossible since the graphs we consider are defined over finite domains.

Therefore, we conclude for every edge x− y in G1, we can find a node π in D1,

such that π is in the boundary of x and y in G1, and π is a root∗ node in both D1 and

D∩. Since π is a root∗ node in both D1 and D∩, then π is (1.1) external in G1, (1.2)

G1−outer external in G = G1 ∪G2 , (1.3) external in G∩ = G1 ∩G2, (1.4) G∩-outer

external in G2, and (1.5) weakly transitive in P ∗∗, the merged sink graph of G1 and

161

G2. This immediately results from our proof of weak transitivity of nodes in D1 (D2)

whose boundary in G1 (G2) and G∩ comprises of only their descendants in D1 and

D∩ whenever G1 and G2 are generated by two ancestrally faithful, marginally faithful,

intersection matched DAGs or DGs (Supplementary D.1).

E.2

Theorem 3.3. If there exists an ancestrally faithful, marginally faithful, in-

tersection matched pair of DGs generating G1 and G2, then there exists a strongly

acyclic pair of DGs generating G1 and G2.

Proof. Theorem 3.2 tells us if there exists an ancestrally faithful, marginally faithful,

intersection matched pair of DGs generating G1 and G2, then there exists an ancestrally

faithful, marginally faithful, intersection matched pair of DAGs generating G1 and G2.

The existence of two such DAGs implies the existence of a selection of nodes satisfying

the conditions of Theorem 3.1, and we have already shown in Supplementary D.1 how

to construct two strongly acyclic DAGs generating G1 and G2 using nodes that satisfy

these conditions.

F.1

Lemma S.F.1. An undirected graph, G, is generated by the DG D, only if D

is a subgraph of some DG in the completion of the reduced sink graph of G.

Proof. We show that a→ b is in D, only if the edge a− b is undirected or is oriented

as a→ b in the reduced sink graph of G. The connection a→ b in D implies “a” and

“b” are directly connected in G since D generates G and Σ(D) = G. Furthermore,

162

c

z

a

b

Figure 5.11: If a node, c, has a common ancestor with a, then it shares the same
ancestor with b also.

as “a” is a parent of “b” in D, then ΩG(a) ⊆ ΩG(b); any node sharing a common

ancestor with “a” shares the same ancestor with “b” as well. In other words, any node

in the boundary of “a” in G must also be in the boundary of “b” (see Figure 5.11).

Therefore, the edge a − b must be either undirected or is oriented as a → b in the

reduced sink graph of G, completing our proof of this Lemma.

Lemma S.F.2. Two undirected graphs, G and G1, with both in Σ, and G2 ⊆ G1

are generated by DGs D and D1 with D1 ⊆ D, only if D1 is subgraph of some DG in

the completion of the reduced G−mirrored sink graph of G1.

Proof. We show that a→ b is in D1 only if the edge a− b is undirected or is oriented

as a → b in the reduced G−mirrored sink graph of G1. Since D1 is assumed to

generate G1, a→ b is in D1 only if “a” and “b” are directly connected in G1 = Σ(D1).

Furthermore, “a” being an ancestor of “b” in D1 implies ΩG1(a) ⊆ ΩG1(b): any node

sharing a common ancestor with “a” shares the same ancestor with “b” as well. Since

D1 is a subgraph of D, then “a” remains an ancestor of “b” in D. Now, as D is

assumed to generate G, we conclude that ΩG(a) ⊆ ΩG(b) also. Therefore, since the

boundary of “a” is a subset of or equal to the boundary of “b” in both G and G1, and

we conclude a→ b is in D1, only if the edge a− b is undirected or is oriented as a→ b

in the reduced G−mirrored sink graph of G1.

163

Theorem 4.1. Λδ({G}, G,G1) is a tight upper bound for ∆(G,G1). That is,

for all δD in ∆(G,G1), δD is a subgraph of Λδ({G}, G,G1): a→ b ∈ δD only if a→ b

or a− b are in Λδ({G}, G,G1).

Proof. We will use the following definition in proving Theorem 4.1.

Definition: Full Completion. A DG is said to be a full completion of a

PDG if it can be obtained from the PDG by orienting any undirected edge in the

PDG as a↔ b.

δD is a subgraph of D, a directed graph generating G. By Lemma S.F.1, D,

itself, must be a subgraph of some DG in the completion of reduced sink graph of

G. Therefore, δD is a subgraph of some DG in the completion of the reduced sink

graph of G, and a and b are connected by the edge a→ b in δD only if a and b are

connected in the sink graph of G and the edge a− b is either undirected in the sink

graph of G or is oriented as a→ b.

On the other hand, δD cannot have any edge a → b where “a” and “b” are

connected in the G−mirrored sink graph of G1 by an undirected edge or an edge

oriented as a → b. To see this, assume the contrary and let’s say there exists two

DGs, D and D1, with D1 ⊆ D and Σ(D) = G and Σ(D1) = G1, where δD = D −D1

contains a set of edges, E = {ai → bi|i = 1...m}, that are in the reduced G−mirrored

sink graph of G1 as either undirected or oriented as ai → bi. If such a pair of DGs

existed, then the pair D and D1 ∪ E would also be a solution to the dependency

loss problem. The marginal dependency graph of D1 is G1, and since D1 ∪ E is a

supergraph of D1, then the marginal dependency graph of D1 ∪ E contains all the

edges in G1. On the other hand, according to the Lemma S.F.2 and our assumption

that the edges in E are in the the reduced G−mirrored sink graph of G1, then every

edge x→ y in D1 ∪ E is also present in the reduced G−mirrored sink graph of G1 as

164

either an undirected edge or an edge oriented as x→ y. As the marginal dependency

graph of any DG in the completion of the reduced G−mirrored sink graph of G1 is

equal to G1 (Lemma S.B.3) and D1 ∪ E is a subgraph of some such DG, then the

marginal dependency graph D1 ∪ E must be a subgraph of G1. Since the marginal

dependency graph of D1 ∪ E must be both a subgraph and a supergraph of G1, then

the marginal dependency graph of D1 ∪ E is equal to G1. By construction, the pair

(D,D1 ∪ E) have a smaller Hamming distance to another compared to the original

pair (D,D1). Therefore, we conclude the original pair (D,D1) must have been an

instance of an undesired solution to the dependency loss problem, which should have

had been removed.

To see Λδ({G}, G,G1) is a tight upper-bound , we construct a solution, D and

D1, where D − D1 is a full completion of Λδ({G}, G,G1). Take D to be the full

completion of the sink graph of G, and D1 to be the full completion of G−mirrored

sink graph of G1. By lemma S.A.1, the marginal dependency graph of D is G. By

Lemma S.B.3, the marginal dependency graph of D1 is G1. Furthermore, D1 is a

subgraph of D: an edge is doubly oriented in D1 only if the edge is undirected in

the reduced G−mirrored sink graph of G1, which in turns requires the edge to be

undirected in the sink graph of G as well, and by that account, this edge must also

be doubly oriented in D. Similarly, we can argue an edge is oriented as a → b in

D1 only if the same edge is either doubly oriented in D or is oriented as a→ b. By

construction, the difference between D and D1, δD = D1 −D2, is the full completion

of Λδ({G}, G,G1).

165

CHAPTER 6

CAUSAL DISCOVERY USING DIRECTED TOPOLOGICAL OVERLAP MATRIX

6.1 Introduction

There are now a variety of causal discovery tools capable of identifying causal

relations from purely observational data [83, 22]. These causal discovery tools, at

their core, must transform statistical relations into causal ones. This transformation

is often made possible through the local causal Markov condition and the formalisms

of functional causal models [84, 80]. Unfortunately, the theoretical assumptions that

underlie the local causal Markov condition are often not met in practice [80, 22, 21, 49].

This disconnect between theory and practice is especially marked in genomics. In

genomics, the unwanted presence of measurement errors, averaging effects, and feedback

loops significantly undermine the legitimacy of the local causal Markov condition.

Furthermore, even the most sample efficient causal discovery algorithms require sample

sizes orders above what is available even for the largest genomics databases out there

[50, 49, 21, 52, 45]. This paper aims to construct a causal discovery tool suitable for

a genomics setting whose legitimacy and practicality are not undermined by limited

sample sizes or the unwanted presence of measurement errors, averaging effects, and

feedback loops.

Briefly, the reasoning engine of our proposed causal discovery tool operates via

measuring what we refer to as the directed topological overlap matrix (DTOM) of the

genes. Elements of the DTOM are calculated as a function of the neighborhoods of

the genes in the gene co-expression network. They express the strength of evidence

for causal relations between a pair of genes. The more the neighborhoods of two

166

genes in the gene co-expression network overlap, the larger their directed topological

overlap becomes. Only the genes with high directed topological overlap are suspected

of having a causal relation. This type of reasoning by which causal influences are

expressed in terms of the neighborhoods of the genes in the co-expression network—or

equivalently, the neighborhoods of the genes in the co-expression network are given a

causal interpretation—is a direct consequence of Reichenbach’s common cause principle

as we will show later in this paper [60, 59, 54].

We are then extracting a type of causal knowledge that lies entirely within

the gene co-expression network. We, therefore, expect our causal conclusions to be

more robust w.r.t sample size effects as we avoid testing for higher-order conditional

independence relations. Furthermore, and as we show in our paper, this type of

causal knowledge is also robust against the presence of feedback loops, unobserved

con-founders, averaging effects, and measurement noise. However, these benefits come

at a cost. Through DTOM, we can only work out the causal relations up to an

equivalence class. This equivalence class can often be larger than the one obtained

assuming the local causal Markov condition.

The extent to which we can unravel the causal structure through DTOM depends

on two factors. First is the accuracy by which we can estimate the gene co-expression

network. Second is the manner in which the nodes are connected in the gene co-

expression network. In general, the more v-structures the gene co-expression network

contains, the better we can work out the causal forces. At one extreme, and when the

gene co-expression network is a fully connected graph, DTOM does not impart any

causal knowledge. At the other extreme, it is possible to have a causal resolution on

par with the equivalence classes obtained through the local causal Markov condition

without requiring strict assumptions. We study in more detail the extent to which we

can expect to resolve causal forces through DTOM in a genomics setting using two

167

real gene expression data sets. We further evaluate the practicality and the usefulness

of the causal information obtained through DTOM in different tasks.

First, we consider a large-scale gene deletion study in yeast (Saccharomyces

cerevisiae) [85]. This data contains the genome-wide mRNA expression levels of 6,170

genes with a pool of 160 wild-type control samples and a total of 1,479 single-gene

deletions intervention samples. Each gene deletion sample is labeled with the name

of the deleted gene. In our experiments, we examine if the causal resolution offered

by DTOM enables one to reverse engineer the sample labels. In other words, we

examine if we can identify the deleted gene for each sample knowing only the set of

differentially expressed genes. Thus, we establish the practicality and the utility of

DTOM by studying if we can employ DTOM to make out the causal gene among a

set containing its effects.

In the next experiment, we contrast the muscle transcriptomes of Piedmontese

and Wagyu following the work in [86]. We set out to examine if we could apply

DTOM to identify the genomic DNA mutation in the myostatin (GDF8) in the

Piedmontese cattle. This study is interesting to us since the regulatory perturbation

of myostatin in Piedmontese cattle is post-transcriptional. More specifically, GDF8

shows no differential expression across the two breeds. Then, to identify the causal

mutation in myostatin, we must capture the functional role of the myostatin from the

gene expression data since its expression level alone does not inform us of its post-

transcriptional mutation. Following the work of Hudson, Reverter, and Dalrymple, we

show how their proposed approach can be enhanced using DTOM such that one can

immediately identify the genomic mutation in GDF8 in Piedmontese cattle.

168

6.2 Methods

Topological overlap is a measure capturing gene functional relations [87, 88, 89].

The topological overlap matrix (TOM) is obtained from the gene co-expression network

based on the following equation:

oij =
lij

min(ki.kj)
(6.1)

where the topological overlap between two genes, xi and xj, is calculated as

ratio of number of their shared neighbors in the gene co-expression network, lij , to the

minimum number of neighbors of each gene, ki and kj. This mathematical construct

was first proposed by Ravasz et al. (see [89]) and has since been employed as a metric

that can capture gene functional relations. Experimental results have supported

the usefulness of TOM in numerous instances [90]. In fact, the strongest argument

supporting the use of TOM to evaluate gene functional relations comes from its very

success in practice; we found little theoretical justification that could explain why

TOM has performed so well in practice1.

Surprisingly, there exists a causal structure known as the sink graph that bears

a striking similarity with TOM [53, 54, 59, 60]. First, let us show how we calculate

the sink graph of the gene co-expression network and its relation to the topological

overlap matrix. We can then discuss its causal interpretation after reviewing some

graph-theoretic notions.

1 If our causal interpretation of TOM based on the theory of sink graphs is valid, we can perhaps

attribute its success in mapping genes with similar functionality to its causal connotations.

169

To construct the sink graph of the gene co-expression network, we start by first

calculating what we refer to as the directed topological overlap matrix, O∗:

O∗ij =
lij
ki
, O∗ji =

lij
kj
. (6.2)

Now, if we imagine the genes as nodes in a graph, then the sink graph of the gene

co-expression network is the directed graph in which two genes are connected by an

edge, xi → xj, if and only if o∗ij == 1. Using Reichenbach’s common cause principle,

we next show that the sink graph of the gene co-expression network estimates an

upper bound on the causal forces between the genes. But, before that, we need to

review certain graph-theoretic notions.

Consider a domain over m variables X = {x1, ..., xm}. For now, we assume

that we are given the marginal dependency relations in the domain, for instance the

co-expression information, in the form of an undirected graph, G, where an edge

xi − xj ∈ G connects the two nodes xi and xj in G if and only if the nodes are

statistically dependent. We often refer to G as the domain’s marginal dependency

graph. We assume that underlying the domain is a causal system giving rise to the

observed marginal dependency relations. We represent this causal structure with a

directed graph D: xi → xj ∈ D if and only if xi is a direct cause of xj (xi to directly

control the regulation and the production of xj) [81]. We say xi is a parent of xj in D

if the edge xi → xj connects the two nodes in D. We say xi is an ancestor of xj if

there exists a sequence of nodes {x1, ..., xm} where for any two immediate nodes in

the sequence, xk and xk+1, the edge xk → xk+1 is in D, and both the edges xi → x1

and xm → xj are also in D. We use the notation AncD(xi) to denote the collection of

all the ancestors of the node xi in the directed graph D (we sometimes may remove

170

the subscript D if doing so does not cause confusion). We assume the convention that

a node is its own ancestor.

Through Reichenbach’s common cause principle, we can directly calculate the

marginal dependency graph from the causal structure by connecting pairs of nodes

sharing at least one ancestor. We say a causal structure, D, generates a marginal

dependency graph, G, if G can be obtained from the causal structure in this manner

and write Σ(D) = G. While the marginal dependency graph can be directly calculated

from the causal structure, the causal structure is not uniquely identifiable from the

marginal dependency graph. However, the following key result tells us that a marginal

dependency graph can be used to estimate an upper-bound on the set of causal

relations that hold in the domain. In fact, this bound is nothing but the sink graph of

the marginal dependency graph: 2

Theorem 6.2.1. An undirected graph, G, is generated by the directed graph D, only

if, D is a subgraph of the sink graph of G.

Proof. We show if a node, a, is parent of another, b, in D, then a and b must be

connected through the edge a → b in the sink graph of G. To show this, we only

need to prove that every node connected to a in G is also connected to b. Consider a

node c that is connected to a in G. According to the Reichenbach’s common cause

principle, and since c and a are connected in G, then c and a must have had a common

ancestor in D. Let us refer to this common ancestor as z. (see Figure:6.1) Now, since

we had assumed that a is a parent and direct cause of b in D, then z is also a common

ancestor of b and c in D. This lets us conclude that every node connected to a in G,

2The same result can be found in [53, 54, 59, 60]. However, they only consider cases wherein the

generating causal structure is acyclic and there are no feedback loops. Here we show that this results

remains valid whether the underlying causal system contains cycles or not.

171

c

z

a

b

Figure 6.1: If a node, c, has a common ancestor with a, then it shares the same
ancestor with b also.

must also be connected to b. Therefore, a and b must be connected through the edge

a→ b in the sink graph of G.

According to Theorem 1, the sink graph of the gene co-expression then estimates

an upper bound on the causal forces between the genes. The extent to which this

upper bound approximates the underlying causal system depends on the structure

and the connections in the gene co-expression network itself. In general, the more

v-structures 3 the gene co-expression network contains, the better we can work out the

causal forces since the v-structures reduce the overlap between genes’ neighbors [53].

Theorem 1 above holds only when we can have an exact estimate of the gene

co-expression network. Given that both false positives and false negatives are expected

in estimating the gene co-expression network, we, therefore, prefer to directly work

with the DTOM matrix itself or construct the sink graph by applying a more liberal

threshold: we connect two nodes in the sink graph through an edge xi → xj if

the directed topological overlap from xi to xj exceeds a liberal threshold, o∗ij ≥ τ2,

0 < τ2 < 1.

3We say the nodes a, b, and c form a v-structure, a − b − c, in a undirected graph, G, if the

nodes a and b, and the nodes b and c are both connected in G, a− b ∧ b− c ∈ G, and the nodes a

and c are disconnected in G.

172

Putting all the pieces together, to identify the causal forces among the genes

through DTOM, first we establish their statistical dependence. In our paper, we

use Pearson’s correlation to verify statistical dependence. After constructing the

correlation matrix, we apply a suitable threshold τ1 and convert the matrix into an

undirected graph representing the gene co-expression. We then calculate DTOM using

eq. 6.2. Having computed the DTOM, we can either opt to work with the DTOM

directly or obtain the sink graph of the gene co-expression network by applying a

secondary threshold, τ2, to the DTOM.

The threshold parameter τ1 used in constructing the gene co-expression network

is often decided through statistical means; given enough samples, this threshold could

be as low as 0.1. By increasing this threshold parameter, we can further distinguish

the strong statistical dependencies in the domain. As we increase τ1, we successively

construct more sparse gene co-expression networks wherein only the strongest statistical

dependencies are depicted. The question here is whether calculating DTOM using a

gene co-expression network that only displays the strongly correlated genes obtains an

upper-bound on strong causal effects 4. This would only hold if the following extension

of Reichenbach’s common cause principle were true5:

The Strong Common Cause Postulate: Two variables are strongly correlated if

and only if they have a strong common cause.

The strong common cause postulate, if it were to be accurate, would transform

the parameter τ1 into a convenient dial that would help tune causal discovery through

DTOM, offering a mechanism to trade recall for better precision. In our simulations,

4We say xi is a strong cause of xj if xi is a cause of xj and the Pearson correlation of xi and

x− J is above τ1.
5For the strong common cause postulate to hold it is necessary that no long chains of cause and

effect exists in the domain, x1 → x2 → ...→ xn, n >> 1.

173

we study the utility of the strong common cause postulate. Before that, we next argue

why causal discovery through DTOM can be more robust to the unwanted influences

of unobserved confounding variables, measurement errors, and averaging effects.

6.2.1 Unobserved Con-founders

Even with unobserved confounding variables, the sink graph remains a valid

upper bound for the causal forces in the domain. We can easily verify this by consulting

the proof of Theorem 1. However, unwanted confounding variables can affect the

extent to which the sink graph can resolve the causal relations in a domain. For

example, a global confounding effect may cause a significant overlap between the

neighborhoods of the genes, inducing large cliques in the gene co-expression network.

As a result, the sink graph will not resolve the causal relations among the genes

participating in these cliques. The strong common cause postulate offers a means that

could help amend this issue. We could construct the gene co-expression network by

applying a rather conservative threshold to the gene correlation matrix. By doing

so, we can filter out weak confounding effects and only consider correlations that are

stronger than those produced by the unwanted confounding variables. This comes at

the cost of filtering out possible weak causal relations.

6.2.2 Measurement Errors

In general, conditional independencies of a set of variables {X1, X2, ..., Xn} will

not hold among the variables {Xm
1 , X

m
2 , ..., X

m
n }, where Xm

i ’s are noisy measurements

of Xi’s: X
m
i = fi(Xi, δi), f is a deterministic function and δi’s are jointly independent

[21]. Measurement noise can then threaten the legitimacy of the local causal Markov

condition. However, the Reichenbach’s common cause principle still remains valid

in presence of measurement errors: the noisy measurements of Xm
i and Xm

j are

174

statistically dependent, if and only if Xi and Xj have a common cause. In other words,

the marginal dependency graph of the variables {Xm
1 , X

m
2 , ..., X

m
n } is identical to that

of the variables {X1, X2, ..., Xn}; i.e Xm
i and Xm

j are dependent if and only if Xi and

Xj are dependent.

6.2.3 Averaging

Gene expression experiments usually measure the average concentration of a

gene in a large collection of cells rather than in a single cell. Consider a population

of cells {C1, ..., CM} and let Xm
i represent the expression level of gene Xi in the cell

Cm. Assume that the same causal mechanisms are at work in every cell so that if Xm
i

and Xm
j are independent conditional Xm

k for a given cell, then a similar independency

holds among the expression levels of these genes in other cells. The important point

here is that the corresponding conditional independency will not hold among the

average expression levels [21]. Then averaging can undermine the legitimacy of the

local Causal Markov condition. On the other hand, the marginal dependency graph

of the average expression levels is identical to the marginal dependency graph of the

gene expression levels in each cell. Then, the sink graph of the gene co-expression

network remains unaffected whether we measure the average concentrations of the

genes in a collection of cells or whether our measurements come from a single cell.

6.3 Simulations

Our main goal in this section is to study the utility of the strong common cause

principle. We examine here if the threshold parameter τ1 allows us to tune the recall

and the precision of our proposed causal discovery algorithm.

We set up our simulation environment through the following steps. We first

create the adjacency matrix of our causal structure: A, where Aij == 1 if i is a parent

175

of j. We consider a domain consisting of 500 variables, X = {x1, x2, ..., x500} and we

construct our adjacency matrix such that each node on average is directly connected

to four others in a directed acyclic graph. We generate this adjacency matrix similar

to the process described in [45]: such a simulation setting is widely used in practice

to probe the performance of causal learning algorithms. Afterward, we generate

eighty samples, {x1
i , ...x

80
i }, in a recursive manner, starting from the root nodes of the

directed acyclic graph, and down to the leaves using the following equation:

xki = µi +
∑
xj∈πi

bij(x
k
j − µj) +N (0, 1/τi), (6.3)

where πi denotes the parents of the node xi and N (0, 1/τi) is a noise term

sampled from a normal distribution with mean of zero and variance of τi. We sample

the parameters µi and τi from the uniform distribution U(0, 1), and bij’s were chosen

as independent realizations of U(−1, 1). We then feed these samples to our causal

learning machine to calculate DTOM.

To identify the causal forces in the domain, first we establish their statistical

dependence. In our simulations we use Pearson’s correlation to verify statistical

dependence. We then apply successively increasing thresholds τ1 ∈ {0.3, 0.5, 0.7, 0.9}

to the correlation matrix and obtain successively more sparse undirected graphs

representing the domain’s strongest marginal dependency relations. For each of

the resulting marginal dependency graphs, we then calculate DTOM using eq. 6.2.

Afterward, we apply a secondary threshold, τ2 ∈ {0.7, 0.9}, to the DTOM to obtain

the sink graph. By comparing the resulting sink graph to the generating causal

structure, we calculate our algorithm’s precision, and also, we report the number of

causal relation we were able to discover at thresholds τ1 and τ2. We then generate

a new adjacency matrix and repeat this process all over. The results that we report

176

next are the averages obtained by sampling over 5000 randomly generated adjacency

matrices.

Figure 6.2 plots the average precision and the average number of discovered

causal relations as a function of the parameters τ1 and τ2. We see that increasing the

thresholds τ1 and τ2 value has lead to uncovering a lower number of causal relations,

however, the causal relations that are extracted are more precise. This verifies the

utility of the strong common cause postulate and the usefulness of DTOM in resolving

causal relation at least in the experimental setup we just described. The utility of

DTOM in resolving causal in genomics setting remains to be seen.

Figure 6.2: The average precision of DTOM and the average number of discovered
causal relations as a function of the parameters τ1 and τ2 in a domain consisting of
500 nodes when given 80 samples.

6.4 A Large Scale Gene Deletion Study in Yeast

For our first experiment we consider a large scale gene deletion study in yeast

(Saccharomyces cerevisiae). This data contains the genome wide mRNA expression

177

levels of 6,170 genes with a pool of 160 wild-type control samples and a total of 1,479

single gene deletion intervention samples.

Consider a single gene deletion sample wherein the gene X is deleted. We can use

this sample to identify the set of genes, Y , that are differentially expressed following

the deletion of the gene X and thus extract a set of true positive causal relations,

X → Y . We can then deploy these true positive causal relations as a measuring stick

to validate the use of directed topological overlap matrix in causal discovery. However,

these true positive causal relations can be very sensitive to the criteria by which the

differential expression of a gene is established. To obtain a set of robust true positives,

we employ a conservative criteria combining the notion of strong intervention effect of

[91] and the restrictions on differential expression as specified in [85]. In summary,

we establish a true positive causal influence from gene X to gene Y , X → Y if the

following conditions hold.

1. The sample where gene X is deleted is must be a successful deletion. A sample

where gene X is deleted is considered a successful deletion if the following

conditions hold.

(a) The sample where the gene X is deleted is labeled as a responsive mutation

according to the criteria set by [2],

(b) the expression level (the M-ratio or the log-2 fold change) of the gene X

attains its lowest value in the sample where the gene X is deleted,

(c) the expression level (the M-ratio or the log-2 fold change) of the gene X is

below -1.7 in the sample where gene X is deleted,

(d) the expression level of the gene X is statistically significantly different at

p-value of 1e− 6 in the sample where gene X is deleted when compared to

its normal expression levels in the wild-type control samples.

178

2. We extract a true positive causal relation in the sample where gene X is deleted

if we are able to find any gene Y that satisfies the conditions below:

(a) the expression level (the M-ratio or the log-2 fold change) of the gene Y

attains its lowest value or its highest value in the sample where the gene X

is deleted,

(b) the expression level (the M-ratio or the log-2 fold change) of the gene Y is

below -1.7 or above 1.7 in the sample where gene X is deleted,

(c) the expression level of the gene Y is statistically significantly different at

p-value of 1e− 6 in the sample where gene X is deleted when compared to

its normal expression levels in the wild-type control samples.

Furthermore, for the sake of uniformity, we limited our analysis to those samples

of BY4742 strain where the extraction protocol was labeled yeast HTP RNA isolation

for robot v2.0 and were grown using the Tecan platereader setup.

Only 365 of the 1,479 single gene deletion samples met the criteria 1.a-1.d

specified above. Out of the 365 successful deletions, in only 80 instances we were able

to identify a true positive causal relation (criteria 2.a - 2.c were satisfied by at least

one gene Y , Y 6= X). Per each mutation instance where at least one true positive

causal relation was identified, we found on average just below 9 causal relations, giving

rise to a total of 704 true positive causal relations.

After establishing the set of true positive causal relations, we estimated the gene

co-expression network over the set of 784 genes that participated in the 704 true positive

causal relations. To obtain an accurate estimate of the gene co-expression network,

we concatenated the wild-type control samples with all the intervention samples,

regardless of whether the intervention was deemed successful or not. Afterwards, we

subtracted the first SVD component from the data matrix thus constructed to remove

any slow-growth effects. We then calculated the Pearson correlation coefficient for

179

each gene pair. The 0.99 quantile of the co-expression values was 0.463. Permuting the

expression levels for each gene, we then estimated a null coexpression distribution. The

1-1e-8 quantile of this distribution was 0.4571. Interestingly, both the 0.99 quantile of

the co-expression values and the estimated 1-1e-8 quantile of the null co-expression

values were significantly higher than the critical threshold one would obtain using

Fisher’s Z-transformation at p-value of 1e-8. The critical threshold obtained using

Fisher’s transformation was 0.17. Given our results in the Simulations section, we

decided to construct the gene co-expression network by thresholding the co-expression

matrix at the more conservative threshold of 0.4571.

Having the gene co-expression network, we then calculated its directed topological

overlap matrix. For each deleted gene in the 80 successful gene deletion records, we

extracted the set of genes, Y , where the directed topological overlap from the deleted

gene to Y was above a predefined threshold, τ2. Whenever the directed topological

overlap matrix from the deleted gene to Y crossed the predefined threshold, we

predicted the deleted gene to be a causal regulator of Y . Selecting a higher threshold

value, τ2, would lead to uncovering a lower number of causal relations. However, we

except to have more confidence in the causal relations we extract. We lowered the

threshold value τ2 from 0.95 down to 0.70 in intervals. At each step, we recorded the

count of causal relations we discovered, and also, the precision of these discoveries as

validated against the true positive causal relations we estimated previously. Figure 6.3

shows the precision of DTOM in uncovering causal relations against the number of

causal relations we extract at each level of τ2.

The precision of the discovered causal relations as a function of both parameters

τ1 and τ2 is shown in Figure 6.4. This results suggests that constructing the co-

expression network using the conservative threshold τ1 = 0.4571 obtains a significantly

more precise set of causal relations compared to the more liberal threshold obtained

180

Figure 6.3: We lowered the threshold parameter τ2 from 0.95 down to 0.70 in intervals.
At each step, we recorded the count of causal relations we discovered (X-axis), and also,
the precision of these discoveries as validated against the true positive causal relations
we estimated previously (Y-axis). The point at the top left corner corresponds to
τ2 = 0.95 and the point at the bottom right corner correspond to τ = 0.7.

by using Fisher’s Z-transformation. This confirms the utility of the strong common

cause postulate in genomics settings. However, we see that increasing the threshold τ1

beyond a certain value has diminishing returns, and can even lower the precision.

Our results suggest that DTOM, using conservative thresholds τ1 = 0.4571 and

τ2 = 0.7, can obtain a fairly precise picture (precision of 0.7) of the causal relations,

although a rather incomplete picture (138 causal relations identified distributed over

80 genes). The important question here is whether such a portrayal of the underlying

causal system is of any use. To emphasize the practicality of DTOM, we consider

whether causal knowledge imparted by DTOM allows us to reverse engineer the sample

labels, and identify the deleted gene for each gene deletion sample. This is rather

an elementary task if we were to know the fold changes of the genes in the deletion

sample; the deleted gene is almost always the gene whose expression is the lowest in

the deletion sample. To make this task more challenging, we hide the fold change

181

Figure 6.4: Precision of DTOM in resolving causal relations as a function of the
threshold parameters τ1 and τ2.

numbers from our algorithm, and for each gene deletion sample we only inform our

algorithm of the set of genes that were measured to be differentially expressed.

To obtain the set of differentially expressed genes in a gene deletion sample,

we search for genes whose expression level (the M-ratio or the log-2 fold change) is

statistically significantly different at p-value of 1e-6 when compared to their normal

expression levels in the wild-type control samples. We further require the expression

level (the M-ratio or the log-2 fold change) to be above a predefined threshold,

τFC ∈ {0.7, 0.9, 1.1, 1.3, 1.7}. Clearly, the lower the selected threshold on fold change

is, the higher the count of differentially expressed genes grows, and the harder it

becomes to pick out the deleted gene. Basically, in this experiment we examine if we

can employ DTOM to distinguish the causal gene among its effects6, i.e. the list of

differentially expressed genes.

Like before, for the sake of uniformity, we limited our analysis to those samples of

BY4742 strain where the extraction protocol was labeled yeast HTP RNA isolation for

6We emphasize here that since we are relaxing the conservative criteria 1.a-1.d and 2.a-2.b, the

deleted gene is no longer guaranteed to be the causal regulator of the differentially expressed genes

extracted thus.

182

robot v2.0 and were grown using the Tecan platereader setup. We further eliminated

all mutations that are labeled as a nonresponsive mutation according to the criteria set

by [2]. For each of the remaining deletion samples (a total of 367) we identified the set

of differentially expressed genes: genes whose expression level (the M-ratio or the log-2

fold change) were statistically significantly different at p-value of 1e-6 when compared

to their normal expression levels in the wild-type control samples, and whose log-2

fold change was be above a predefined threshold, τFC ∈ {0.7, 0.9, 1.1, 1.3, 1.7}. At fold

change level of 1.7, we found a total of 1073 genes that were differentially expressed in

at least one of the gene deletion samples. At fold change level of 0.7, we found 3547

genes that were differentially expressed in at least one of the gene deletion samples.

Afterward, we concatenated the wild-type control samples with all the interven-

tion samples, regardless of whether the intervention was deemed responsive or not.

After subtracting the first SVD component, we calculated the Pearson correlation

coefficient for each gene pair in the set of differentially expressed genes. We then

constructed the co-expression network by thresholding the gene co-expression matrix,

connecting only those genes whose correlation exceeded the 0.4571 threshold we had

calculated earlier. Having the gene co-expression network, we then calculated the

DTOM using eq. 6.2. This time, instead of thresholding the DTOM, we opted to work

with the DTOM values directly.

Now, consider a specific gene deletion sample where the gene xk was been deleted.

Let us assume that that our selected fold change level was 1.7, and that the set of

differentially expressed genes in this sample were the genes DEG(xk) = {xk, y1, ..., ym}.

We represent this set of differentially expressed genes with a vector of size 1073; 1073

is the size of the set of all differentially expressed genes in all deletion samples at

fold change of 1.7. We set this vector equal to zero everywhere except the indices

corresponding to the genes in the set DEG(xk) where we set it equal to one. Let us

183

denote this vector with ~D(xk). To pick out the deleted gene in the set DEG(xk), we

assigned a score to each of the genes in the set that measures the overlap between a

gene’s directed topological overlap vector and the vector ~D(xk). To be more specific,

we assigned to each gene a score obtained using the following equation:

S(yi) =
< DTOM [yi, :], ~D(xk) >

||DTOM [yi, :]||1
, (6.4)

where < ., . > and ||.||1 denote inner product and L1 norm. DTOM [yi, :] denotes

the row in the DTOM corresponding to the gene yi. We then ranked the genes in

DEG(xk) according to the score assigned to them by the formula above. Figure 6.5

shows the average rank of the deleted gene against the number of candidate genes as

scored by DTOM.

Figure 6.5: The average rank of the deleted gene in a gene deletion sample as
scored by the metric in Eq. 6.4 against the average number of differentially expressed
genes. Differentially expressed genes are those genes (1) whose expression levels
are statistically significantly different at p-value of 1e-6 when compared to normal
expression levels in the wild-type control samples, and (2) whose expression levels are
above a predefined threshold. We have marked the thresholds we chose in the figure.

184

At fold change level of 1.7 we found on average 8.55 differentially expressed

genes per each deletion sample. The average rank of the deleted gene among the set

of the differentially expressed genes across the 367 deletions samples was 2.13.

6.5 Uncovering Post-transcriptional Myostatin Mutation in Piedmontese Cattle

A genomic DNA mutation in the myostatin (GDF8) mRNA transcript of the

Piedmontese cattle accelerates muscle growth causing the double-muscling the Pied-

motese cattles are known for. This regulatory perturbation of myostatin in the

Piedmontese cattles is entirely post-transcriptional. Due to the post-transcriptional

nature of this mutation, the myostatin shows no differential expression in the Pied-

motese cattle when compared to the non-mutant Wagyu cross. Our goal in this

experiment is to investigate if it is possible to identify the mutation in myostatin by

contrasting the muscle transcriptomes of the Piedmontese and Wagyu crosses. For

this, it is necessary that we somehow capture the functional role of the myostatin

from gene expression data since its expression level alone does not inform of its

post-transcriptional mutation.

To measure the extent to which the functional role of a regulator changes in the

Piedmontese cattle, Hudson, Reverter, and Dalrymple propose the following metric

[86]:

Rf =
n∑
i=1

µi|µPi − µWi |(rPif − rWif)2, (6.5)

where the score assigned to regulator f , Rf , is calculated as a weighted average of

the difference in the co-expression of the said regulator and the set of genes differentially

expressed across the two breeds, rPif − rWif . The weights in this average correspond to

185

the expression level of the differentially expressed gene µi, further scaled by the size

of differential expression µPi − µWi .

Using bovine oligonucleotide microarray, Hudson, Reverter, and Dalrymple

obtained the genome wide expression levels of 11,057 genes in two crosses and across

10 developmental time points [86]. Out of the 11,057 genes, they then extracted a

list of 920 candidate regulators. After identifying 85 differentially expressed genes,

they rank the 920 candidate regulators using eq. 6.5. They find GDF8 to be the

fourth most positively differentially wired7 regulator. Figure 6.6 succinctly captures

the positive differential wiring of GDF8. It is but natural to ask ourselves if we can

improve upon their score using DTOM.

Figure 6.6: The 85 circles mark the co-expression values of GDF8 and the 85 differen-
tially expressed genes; we used the Pearson correlation coefficient in measuring the
co-expression of the genes. The size of a circle is drawn proportional to the expression
level of its corresponding differentially expressed gene multiplied by the size of its
differential expression. We have indicated the 20 largest circles with the orange color.
In the Wagyu cattle, GDF8 often appears as a negative regulator of the differentially
expressed genes. In the Piedmontese cattle, however, the GDF8’s functional role as a
negative regulator is significantly less pronounced.

7Hudson, Reverter, and Dalrymple refer to a regulator f as being positively differentially wired to

some gene, i, if rWif < rPif .

186

To get started, first we opted to calculate DTOM directly using the co-expression

values and without defining gene neighbors through significance testing: it is challeng-

ing to distinguish the statistically significant co-expressions given the limited number

of samples. We decided to estimate DTOM using the following measure (eq 6.6):

o∗fi =
〈|rf.|, |r.i|〉
||rf.||1

, (6.6)

where rf is a vector delineating the co-expression values of the regulator f , the

operator ||.||1 denotes the L1 norm, and the operator |.| denotes the element-wise

absolute value of a vector. The proposed DTOM estimator is comparable to the

generalized TOM (GTOM) measure proposed by Zhang and Horvath. In fact, the

only difference is that here we take the absolute value of the co-expressions whereas

in GTOM the co-expression values are inserted as they are.

Figure 6.7 shows the directed topological overlap from GDF8 to the 85 differen-

tially expressed genes. The 85 circles mark the 85 differentially expressed genes where

they are drawn proportional to the expression level of the differentially expressed gene

multiplied by the size of its differential expression. We have indicated the 20 largest

circles with the orange color. We see a large concentration of circles to the top right

corner of the figure. This endorses GDF8’s causal role in regulating the expression of

these genes. Furthermore, we see that GDF8’s causal role is more pronounced in the

Wagyu cross since most of the circles appear above the diagonal line drawn.

Now, if we were to take the same scoring metric as 6.4 and weigh each co-

expression further by the DTOM of the regulator to the differentially expressed gene,

see eq. 6.7 below, then GDF8 pops as the number one highest scoring gene.

Rf =
n∑
i=1

µi(µ
P
i − µWi)(rPifo

∗P
if − rWif c∗Wif). (6.7)

187

Figure 6.7: The directed topological overlap from GDF8 to the 85 differentially
expressed genes in the Piedmontese cattle (X-axis) and the Wagyu cattle (Y-axis).

Hudson, Reverter, and Dalrymple were able to score gene GDF8 as the highest

scoring gene only when they combined two different metrics. Here, however, using

DTOM information we were able to immediately highlight GDF8 as the highest scoring

gene. The top five ranking genes according to our proposed metric are GDF8, MYOD1

(master regulator of muscle cell differentiation), CSRP1 (development and cellular

differentiation), SUV39H2 (represses promoter activity), and SMYD1 (transcription

corepressor).

6.6 Conclusions

The theoretical assumptions that underlie the local causal Markov condition are

often not met in practice. This disconnect between theory and practice is especially

marked in genomics. In genomics, the unwanted presence of measurement errors,

averaging effects, and feedback loops significantly undermine the legitimacy of the local

causal Markov condition. In this paper, replacing the local causal Markov condition

with Reichenbach’s common cause principle, we presented DTOM, a flexible approach

to causal discovery in genomics settings. Briefly, the elements of DTOM are calculated

188

as a function of the neighborhoods of the genes in the gene co-expression network.

The more the neighborhoods of two genes overlap, the larger their directed topological

overlap becomes. Only those pairs of genes with high directed topological overlap are

then suspected of having a causal relation.

We studied the practicality and the utility of DTOM for discovering causal

relations using two real gene expression data-sets. First, we considered a large-scale

gene deletion study in yeast. We showed that through DTOM we are able to reverse

engineer the sample labels with desirable precision, distinguishing the deleted gene

in a sample knowing only the set of differentially expressed genes. In the next study,

we contrasted the muscle transcriptomes of Piedmontese and Wagyu crosses. While

the regulatory perturbation of myostatin in the Piedmontese cattle is entirely post-

transcriptional, we were still able to immediately identify the causal mutation in

Myostatin in the Piedmontese cattle using DTOM.

189

REFERENCES

[1] S. L. Lauritzen, Graphical models. Clarendon Press, 1996, vol. 17.

[2] F. V. Jensen, An introduction to Bayesian networks. UCL press London, 1996,

vol. 210.

[3] P. Spirtes, C. N. Glymour, and R. Scheines, Causality from probability. Carnegie-

Mellon University, Laboratory for Computational Linguistics, 1989, vol. 112.

[4] N. Friedman, “Inferring cellular networks using probabilistic graphical models,”

Science, vol. 303, no. 5659, pp. 799–805, 2004.

[5] J. Pearl, Causality. Cambridge university press, 2009.

[6] G. F. Cooper and E. Herskovits, “A bayesian method for the induction of

probabilistic networks from data,” Machine learning, vol. 9, no. 4, pp. 309–347,

1992.

[7] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning bayesian networks:

The combination of knowledge and statistical data,” Machine learning, vol. 20,

no. 3, pp. 197–243, 1995.

[8] D. M. Chickering and C. Meek, “Finding optimal bayesian networks,” in Pro-

ceedings of the Eighteenth conference on Uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc., 2002, pp. 94–102.

[9] D. M. Chickering, “Optimal structure identification with greedy search,” Journal

of machine learning research, vol. 3, no. Nov, pp. 507–554, 2002.

[10] T. Silander and P. Myllymaki, “A simple approach for finding the globally optimal

bayesian network structure,” arXiv preprint arXiv:1206.6875, 2012.

190

[11] M. Teyssier and D. Koller, “Ordering-based search: A simple and effective

algorithm for learning bayesian networks,” arXiv preprint arXiv:1207.1429, 2012.

[12] J. M. Ortega, Numerical analysis: a second course. SIAM, 1990.

[13] A. Miller, Subset selection in regression. Chapman and Hall/CRC, 2002.

[14] D. Smith and J. Bremner, “All possible subset regressions using the qr decom-

position,” Computational Statistics & Data Analysis, vol. 7, no. 3, pp. 217–235,

1989.

[15] P. Yanev, P. Foschi, and E. J. Kontoghiorghes, “Algorithms for computing the qr

decomposition of a set of matrices with common columns,” Algorithmica, vol. 39,

no. 1, pp. 83–93, 2004.

[16] C. Gatu, P. I. Yanev, and E. J. Kontoghiorghes, “A graph approach to generate

all possible regression submodels,” Computational Statistics & Data Analysis,

vol. 52, no. 2, pp. 799–815, 2007.

[17] C. Gatu and E. J. Kontoghiorghes, “Parallel algorithms for computing all possible

subset regression models using the qr decomposition,” Parallel Computing, vol. 29,

no. 4, pp. 505–521, 2003.

[18] M. Clarke, “Algorithm as 163: A givens algorithm for moving from one linear

model to another without going back to the data,” Journal of the Royal Statistical

Society. Series C (Applied Statistics), vol. 30, no. 2, pp. 198–203, 1981.

[19] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible

inference. Elsevier, 2014.

[20] R. G. Cowell, P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic

networks and expert systems: Exact computational methods for Bayesian networks.

Springer Science & Business Media, 2006.

191

[21] P. Spirtes, C. Glymour, R. Scheines, S. Kauffman, V. Aimale, and F. Wim-

berly, “Constructing bayesian network models of gene expression networks from

microarray data,” 2000.

[22] P. Spirtes, C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper, and

T. Richardson, Causation, prediction, and search. MIT press, 2000.

[23] M. Scutari, “Learning bayesian networks with the bnlearn r package,” arXiv

preprint arXiv:0908.3817, 2009.

[24] T. Silander, T. Roos, P. Kontkanen, and P. Myllymäki, “Factorized normal-

ized maximum likelihood criterion for learning bayesian network structures,” in

Proceedings of the 4th European Workshop on Probabilistic Graphical Models,

2008.

[25] R. R. Bouckaert, “Probabilistic network construction using the minimum de-

scription length principle,” in European conference on symbolic and quantitative

approaches to reasoning and uncertainty. Springer, 1993, pp. 41–48.

[26] R. Daly, Q. Shen, and S. Aitken, “Learning bayesian networks: approaches and

issues,” The knowledge engineering review, vol. 26, no. 2, pp. 99–157, 2011.

[27] N. Friedman, M. Goldszmidt, et al., “Discretizing continuous attributes while

learning bayesian networks,” in ICML, 1996, pp. 157–165.

[28] H. Akaike, “Information theory and an extension of the maximum likelihood

principle,” in Selected Papers of Hirotugu Akaike. Springer, 1998, pp. 199–213.

[29] G. Schwarz et al., “Estimating the dimension of a model,” The annals of statistics,

vol. 6, no. 2, pp. 461–464, 1978.

[30] D. Geiger and D. Heckerman, “Learning gaussian networks,” in Uncertainty

Proceedings 1994. Elsevier, 1994, pp. 235–243.

192

[31] A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in

coding and modeling,” IEEE Transactions on Information Theory, vol. 44, no. 6,

pp. 2743–2760, 1998.

[32] M. H. Hansen and B. Yu, “Model selection and the principle of minimum descrip-

tion length,” Journal of the American Statistical Association, vol. 96, no. 454, pp.

746–774, 2001.

[33] P. D. Grünwald, The minimum description length principle. MIT press, 2007.

[34] R. D. Shachter and C. R. Kenley, “Gaussian influence diagrams,” Management

science, vol. 35, no. 5, pp. 527–550, 1989.

[35] R. Jorma, Stochastic complexity in statistical inquiry. World scientific, 1998,

vol. 15.

[36] J. Rissanen, “Stochastic complexity and modeling,” The annals of statistics, pp.

1080–1100, 1986.

[37] W. Lam and F. Bacchus, “Learning bayesian belief networks: An approach based

on the mdl principle,” Computational intelligence, vol. 10, no. 3, pp. 269–293,

1994.

[38] J. Rissanen, “A universal prior for integers and estimation by minimum description

length,” The Annals of statistics, pp. 416–431, 1983.

[39] ——, “Mdl denoising,” IEEE Transactions on Information Theory, vol. 46, no. 7,

pp. 2537–2543, 2000.

[40] K. Miyaguchi, “Normalized maximum likelihood with luckiness for multivariate

normal distributions,” arXiv preprint arXiv:1708.01861, 2017.

[41] T. Roos, “Mdl regression and denoising,” Unpublished manuscript, 2004.

[42] J. Kuipers, G. Moffa, D. Heckerman, et al., “Addendum on the scoring of gaussian

directed acyclic graphical models,” The Annals of Statistics, vol. 42, no. 4, pp.

1689–1691, 2014.

193

[43] I. Tsamardinos, L. E. Brown, and C. F. Aliferis, “The max-min hill-climbing

bayesian network structure learning algorithm,” Machine learning, vol. 65, no. 1,

pp. 31–78, 2006.

[44] M. de Jongh and M. J. Druzdzel, “A comparison of structural distance measures

for causal bayesian network models,” Recent Advances in Intelligent Information

Systems, Challenging Problems of Science, Computer Science series, pp. 443–456,

2009.

[45] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed acyclic

graphs with the pc-algorithm,” Journal of Machine Learning Research, vol. 8, no.

Mar, pp. 613–636, 2007.

[46] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen, “A linear non-gaussian

acyclic model for causal discovery,” Journal of Machine Learning Research, vol. 7,

no. Oct, pp. 2003–2030, 2006.

[47] H. Dai, K. B. Korb, C. S. Wallace, and X. Wu, “A study of causal discovery, with

weak links and small samples,” in IJCAI. Citeseer, 1997, pp. 1304–1309.

[48] Z. Liu, B. Malone, and C. Yuan, “Empirical evaluation of scoring functions for

bayesian network model selection,” in BMC bioinformatics, vol. 13, no. S15.

Springer, 2012, p. S14.

[49] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian networks to

analyze expression data,” Journal of computational biology, vol. 7, no. 3-4, pp.

601–620, 2000.

[50] L. Badea, “Inferring large gene networks from microarray data: a constraint-

based approach,” in IJCAI-2003 Workshop on Learning Graphical Models for

Computational Genomics, vol. 72. Citeseer, 2003.

194

[51] B. Liu, J. Li, A. Tsykin, L. Liu, A. B. Gaur, and G. J. Goodall, “Exploring

complex mirna-mrna interactions with bayesian networks by splitting-averaging

strategy,” BMC bioinformatics, vol. 10, no. 1, p. 408, 2009.

[52] D. Colombo and M. H. Maathuis, “Order-independent constraint-based causal

structure learning,” The Journal of Machine Learning Research, vol. 15, no. 1,

pp. 3741–3782, 2014.

[53] J. Textor, A. Idelberger, and M. Lískiewicz, “Learning from pairwise marginal

independencies,” arXiv preprint arXiv:1508.00280, 2015.

[54] J. Pearl and N. Wermuth, “When can association graphs admit a causal interpre-

tation?” in Selecting Models from Data. Springer, 1994, pp. 205–214.

[55] M. Tsagris, Z. Papadovasilakis, K. Lakiotaki, and I. Tsamardinos, “Efficient

feature selection on gene expression data: Which algorithm to use?” BioRxiv, p.

431734, 2018.

[56] S. Weichwald, T. Meyer, O. Özdenizci, B. Schölkopf, T. Ball, and M. Grosse-

Wentrup, “Causal interpretation rules for encoding and decoding models in

neuroimaging,” Neuroimage, vol. 110, pp. 48–59, 2015.

[57] S. P. Pantazatos, Y. Huang, G. B. Rosoklija, A. J. Dwork, V. Arango, and J. J.

Mann, “Whole-transcriptome brain expression and exon-usage profiling in major

depression and suicide: evidence for altered glial, endothelial and atpase activity,”

Molecular psychiatry, vol. 22, no. 5, pp. 760–773, 2017.

[58] A. Lozano, G. Swirszcz, and N. Abe, “Group orthogonal matching pursuit for

logistic regression,” in Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics, 2011, pp. 452–460.

[59] F. R. McMorris and G. Myers, “Some uniqueness results for upper bound,”

Discrete Mathematics, vol. 44, no. 3, pp. 321–323, 1983.

195

[60] F. McMorris and T. Zaslavsky, “Bound graphs of a partially ordered set,” J.

Combin. Inform. System Sci, vol. 7, no. 2, pp. 134–138, 1982.

[61] M. I. Love, W. Huber, and S. Anders, “Moderated estimation of fold change and

dispersion for rna-seq data with deseq2,” Genome biology, vol. 15, no. 12, p. 550,

2014.

[62] D. Kostka and R. Spang, “Finding disease specific alterations in the co-expression

of genes,” Bioinformatics, vol. 20, no. suppl 1, pp. i194–i199, 2004.

[63] M. Watson, “Coxpress: differential co-expression in gene expression data,” BMC

bioinformatics, vol. 7, no. 1, pp. 1–12, 2006.

[64] N. J. Hudson, B. P. Dalrymple, and A. Reverter, “Beyond differential expression:

the quest for causal mutations and effector molecules,” BMC genomics, vol. 13,

no. 1, pp. 1–16, 2012.

[65] C. Gaiteri, Y. Ding, B. French, G. C. Tseng, and E. Sibille, “Beyond modules

and hubs: the potential of gene coexpression networks for investigating molecular

mechanisms of complex brain disorders,” Genes, brain and behavior, vol. 13, no. 1,

pp. 13–24, 2014.

[66] D. D. Bhuva, J. Cursons, G. K. Smyth, and M. J. Davis, “Differential co-

expression-based detection of conditional relationships in transcriptional data:

comparative analysis and application to breast cancer,” Genome biology, vol. 20,

no. 1, pp. 1–21, 2019.

[67] M. Bockmayr, F. Klauschen, B. Györffy, C. Denkert, and J. Budczies, “New

network topology approaches reveal differential correlation patterns in breast

cancer,” BMC systems biology, vol. 7, no. 1, pp. 1–14, 2013.

[68] D. Amar, H. Safer, and R. Shamir, “Dissection of regulatory networks that are

altered in disease via differential co-expression,” PLoS Comput Biol, vol. 9, no. 3,

p. e1002955, 2013.

196

[69] A. de la Fuente, “From differential expressionto differential networking–

identification of dysfunctional regulatory networks in diseases,” Trends in genetics,

vol. 26, no. 7, pp. 326–333, 2010.

[70] B. Shipley, Cause and correlation in biology: a user’s guide to path analysis,

structural equations and causal inference with R. Cambridge University Press,

2016.

[71] C. Gaiteri, J.-P. Guilloux, D. A. Lewis, and E. Sibille, “Altered gene synchrony

suggests a combined hormone-mediated dysregulated state in major depression,”

PloS one, vol. 5, no. 4, p. e9970, 2010.

[72] L. D. Thomas, D. Vyshenska, N. Shulzhenko, A. Yambartsev, and A. Morgun,

“Differentially correlated genes in co-expression networks control phenotype tran-

sitions,” F1000Research, vol. 5, 2016.

[73] E. Gov and K. Y. Arga, “Differential co-expression analysis reveals a novel

prognostic gene module in ovarian cancer,” Scientific reports, vol. 7, no. 1, pp.

1–10, 2017.

[74] M. Farahbod and P. Pavlidis, “Differential coexpression in human tissues and

the confounding effect of mean expression levels,” Bioinformatics, vol. 35, no. 1,

pp. 55–61, 2019.

[75] J. Ihmels, S. Bergmann, J. Berman, and N. Barkai, “Comparative gene expression

analysis by a differential clustering approach: application to the candida albicans

transcription program,” PLoS Genet, vol. 1, no. 3, p. e39, 2005.

[76] K. D. Hoover, “The logic of causal inference: Econometrics and the conditional

analysis of causation,” Economics & Philosophy, vol. 6, no. 2, pp. 207–234, 1990.

[77] J. Tian and J. Pearl, “Causal discovery from changes,” in Proceedings of the

Seventeenth conference on Uncertainty in artificial intelligence, 2001, pp. 512–521.

197

[78] J. Peters, P. Bühlmann, and N. Meinshausen, “Causal inference by using invariant

prediction: identification and confidence intervals,” Journal of the Royal Statistical

Society. Series B (Statistical Methodology), pp. 947–1012, 2016.

[79] K. Zhang, B. Huang, J. Zhang, C. Glymour, and B. Schölkopf, “Causal discovery

from nonstationary/heterogeneous data: Skeleton estimation and orientation

determination,” in IJCAI: Proceedings of the Conference, vol. 2017. NIH Public

Access, 2017, p. 1347.

[80] J. Peters, D. Janzing, and B. Schölkopf, Elements of causal inference: foundations

and learning algorithms. The MIT Press, 2017.

[81] P. Sprites, C. Glymour, and R. Scheines, “Causation, prediction and search (first,

online ed.),” 1993.

[82] M. Wienöbst and M. Liskiewicz, “Recovering causal structures from low-order

conditional independencies,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 06, 2020, pp. 10 302–10 309.

[83] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery methods

based on graphical models,” Frontiers in genetics, vol. 10, p. 524, 2019.

[84] J. Pearl and T. Verma, The logic of representing dependencies by directed graphs.

University of California (Los Angeles). Computer Science Department, 1987.

[85] P. Kemmeren, K. Sameith, L. A. Van De Pasch, J. J. Benschop, T. L. Lenstra,

T. Margaritis, E. ODuibhir, E. Apweiler, S. van Wageningen, C. W. Ko, et al.,

“Large-scale genetic perturbations reveal regulatory networks and an abundance

of gene-specific repressors,” Cell, vol. 157, no. 3, pp. 740–752, 2014.

[86] N. J. Hudson, A. Reverter, and B. P. Dalrymple, “A differential wiring analysis

of expression data correctly identifies the gene containing the causal mutation,”

PLoS computational biology, vol. 5, no. 5, p. e1000382, 2009.

198

[87] B. Zhang and S. Horvath, “A general framework for weighted gene co-expression

network analysis,” Statistical applications in genetics and molecular biology, vol. 4,

no. 1, 2005.

[88] A. M. Yip and S. Horvath, “Gene network interconnectedness and the generalized

topological overlap measure,” BMC bioinformatics, vol. 8, no. 1, pp. 1–14, 2007.

[89] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási,

“Hierarchical organization of modularity in metabolic networks,” science, vol. 297,

no. 5586, pp. 1551–1555, 2002.

[90] P. Langfelder and S. Horvath, “Wgcna: an r package for weighted correlation

network analysis,” BMC bioinformatics, vol. 9, no. 1, pp. 1–13, 2008.

[91] N. Meinshausen, A. Hauser, J. M. Mooij, J. Peters, P. Versteeg, and P. Bühlmann,

“Methods for causal inference from gene perturbation experiments and validation,”

Proceedings of the National Academy of Sciences, vol. 113, no. 27, pp. 7361–7368,

2016.

199

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTORDUCTION
	SOLVING ALL REGRESSION MODELS FOR LEARNING GAUSSIAN NETWORKS USING GIVENS ROTATIONS
	Introduction
	Previous Work
	Givens Rotations
	Retriangularization with Givens Rotation

	Problem Definition
	A Greedy Algorithm Using Givens Rotations
	Optimality of Greedy Algorithm
	Algorithmic Complexity Analysis
	Parallelization
	Conclusion

	A RENORMALIZED NORMALIZED MAXIMUM LIKELIHOOD CRITERIA FOR LEARNING BAYESIAN NETWORKS
	Introduction
	Gaussian Networks
	A Crude Three-Part Code Scoring Metric
	Inefficieny of Two Part Codes

	Normalized Maximum Likelihood
	Renormalized Normalized Maximum Likelihood Scoring Metric

	Asymptotic Behavior
	Numerical Evaluation
	Performance in Low Dimensional Setting
	Performance For Larger Networks
	Conclusion

	LEARNING A LOWER BOUND ON DIRECT CAUSAL INFLUENCES FROM MARGINAL INDEPENDENCIES
	Introduction
	Overview of Prior Work
	Overview of Main Contributions
	Overview of Results
	Problem Setting: Causal Gene Selection

	Methods
	Causal Assumptions
	Notation
	 From associative relations to causal implications: a review
	A new perspective on causal implications of a marginal independence structure: from causal DAGs to causal posets
	Causal Feature Selection Using Marginal Independence Graph

	Evaluation
	Simulations: Precision and Recall of Lemma 9 vs. CI tests
	Gene Expression Analysis: Dataset GSE101521

	Discussion and Conclusions
	Supplementary Materials

	CAUSAL DISCOVERY FROM HETEROGENEOUS DATA: DECIDING IF CHANGES IN MARGINAL DEPENDENCY STRUCTURE ADMIT A CAUSAL EXPLANATION
	Introduction
	Preliminaries
	Class of Undirected Graphs

	Causal Learning From Dependency Loss: Decision Problem
	Causal Learning From Dependency Change: Decision Problem
	Weak Acyclicity
	Strong Acyclicity

	Causal Learning From Dependency Change: A Novel Causal Discovery Tool
	Simulations
	Conclusions and Future Work
	Chapter 5 Appendix

	CAUSAL DISCOVERY USING DIRECTED TOPOLOGICAL OVERLAP MATRIX
	Introduction
	Methods
	Unobserved Con-founders
	Measurement Errors
	Averaging

	Simulations
	A Large Scale Gene Deletion Study in Yeast
	Uncovering Post-transcriptional Myostatin Mutation in Piedmontese Cattle
	Conclusions

	REFERENCES

