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Abstract 

Mechanism of Hairpin Vortex Formation by Liutex 

Yifei Yu, Ph.D. 

 

The University of Texas at Arlington, 2023 

Supervising Professor: Chaoqun Liu 

Turbulence is still a mystery for human after more than one century’s development of fluid 

dynamics. Hairpin vortex formation is regarded as an essential process for a laminar flow transition 

to the turbulent flow. A new correct third generation vortex identification method, Liutex, was 

proposed in 2018, which can represent local rotation direction and reveal the local angular speed 

correctly. Using this powerful tool, the mechanism of hairpin vortex formation is re-examined. This 

dissertation (1) explains the mechanism of hairpin vortex formation by solving Orr-Sommerfeld 

equation using Chebyshev spectrum method (2) observes the DNS result of flat plate boundary 

layer transition (3) develops objective Liutex (4) finds correlations between Liutex and other popular 

vortex identification methods (5) defines principal coordinate and principal decomposition (6) 

defines Liutex core line. Formation of hairpin vortex usually goes through three stages: (1) 

spanwise vortex (2) Λ-vortex (3) hairpin vortex. Spanwise vortex is formed because the Blasius 

solution has unstable 2D mode which is called Tollmien–Schlichting wave and this mode leads to 

the spanwise vortex. 3D mode enforced in DNS case is originally stable for Blasius solution profile, 

however, with the development of the flow, the base flow velocity profile is changed. Use the new 
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velocity profile as the base flow, we will find the 3D mode becomes unstable. Λ-vortex appears with 

the growth of the 3D perturbation. The “eject” and “sweep” motion of Λ-vortex generate strong 

shear region. This region is unstable and results in the hairpin vortex. The Λ-and hairpin vortex roll 

up since z-component of Liutex is positive. Principal decomposition decomposes velocity gradient 

tensor into parts with clear physical meanings. Objective Liutex can obtain Liutex structure in an 

inertial frame from the data collected in the non-inertial frames. Liutex core line method is threshold-

free and provides a unique vortex structure. Correlation analysis between Liutex and other methods 

show other methods are contaminated by shear or stretching. 
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Chapter1  

Introduction 

Vortex is a widely existing phenomenon in the world such as tornado, turbulence and star 

vortex in Galaxy. People usually intuitively recognize vortex as rotational motion of fluids, however, 

not until recently there is a rigorous vortex mathematical definition. Vortex was first defined by 

Helmholtz[1]  as the vortex tubes and vortex filaments which are essentially vorticity tubes. We call 

the vorticity and vorticity related vortex identification methods as the first generation (G1). Vorticity 

method comes from the fact that vorticity does represent rotation for ideal rigid body. However, Gao 

et al.[2] found that vorticity actually is made up of rigid body rotation and shear deformation. There 

is no shear deformation for ideal rigid body, thus vorticity can reveal the rotation very well. However, 

when it comes to fluid for which shear deformation can exist, vorticity is no longer accurate 

especially in the region where there is strong shear. Yu et al.[3] did research on the correlation 

between Liutex[4, 5] (third generation method and will be introduced later) and some popular vortex 

identification methods including vorticity. It is found that in the boundary layer region where shear 

is strong, the correlation between Liutex and vorticity is weak but, in the region far away from the 

boundary where shear is small, the correlation is strong. G1 methods have been adopted by almost 

all textbooks for more than one century. It is pointed out by Nitsche[6] in the Encyclopedia of that 

“A vortex is commonly associated with the rotational motion of fluid around a common centerline. 

It is defined by the vorticity in the fluid which measures the rate of local fluid rotation”. Wu et al.[7] 

stated in their textbook that “vortex is a connected fluid region with high concentration of vorticity 
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compared with its surrounding”. In Ref [8], he gave a clearer definition that “a vortex is a vorticity 

tube surrounded by irrotational fluid”. However, many evidences showing vortex is not vorticity 

arouse scientists’ attention. In 1989, Robinson et al.[9] pointed out that “the association between 

regions of strong vorticity and actual vortices can be rather weak in the turbulent boundary layer, 

especially in the near wall region” Wang et al.[10] found that the vorticity lines are not align vortex 

regions and vorticity is even small inside vortex region but big outside as shown in Fig.1-1. Some 

counter examples can also be immediately provided. For the laminar channel flow whose analytical 

velocity profile is 𝑢(𝑦) = 4𝑦(1 − 𝑦), it is easily to calculated out that vorticity in non-zero, but the 

streamlines are all parallel straight lines, and no vortex can be found. Around 1990s, researchers 

gradually recognized the problems of vorticity and started to find better vortex identification 

methods. In the trend of finding better vortex identification methods, some popular methods have 

been proposed including Q criterion[11], Δ  criterion[12], 𝜆2  criterion[13], 𝜆𝑐𝑖  criterion[14] and etc. 

These methods are classified as the second generation[4]. The appearance of the second-

generation methods itself is a strong evidence that vortex is not vorticity as there is no need for 

human to develop new methods if vorticity works well. Although, these methods perform better than 

vorticity, they share some common problems. Firstly, they are all scalar methods which lose the 

important information about rotation axis. Secondly, the relation between the values provided by 

these methods and the real angular velocity is unclear, i.e., these methods reflect relative rotation 

strength. It is very common that for the same case, different second-generation methods can give 

vortex strengths with orders difference. Thirdly, to visualize the vortex, a threshold needs to be 
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chosen to draw the iso-surface. However, the choice of threshold is empirical and different threshold 

choice will lead to different conclusions on vortex for the same case. For example, if the threshold 

is big the vortex breaks down, but if the threshold is small, the vortex is continuous. Then, here 

comes the problem, the vortex indeed breaks down or not. Fourthly, the second-generation 

methods are not accurate and are more or less contaminated by shear or stretching/compression. 

A good vortex identification method should satisfy the following criterions simultaneously[15]:(1) 

absolute strength (2) relative strength (3) local rotational axis (4) vortex rotation (5) vortex core size 

and (6) vortex boundary. To overcome previously-mentioned drawbacks, Liutex[5], which is 

classified as the third generation method, was proposed by Liu et al. Liutex is a vector whose 

magnitude is twice angular speed and whose direction reveals the local rotation axis direction. 

Liutex represents pure rigid body rotation which is not contaminated by shear or 

stretching/compression.  

 

Figure 1-1 vortex region and vorticity lines[16] 

The definition of Liutex direction (local rotation axis) comes from the basic idea that the local 
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rotation axis can only be stretched or compressed align its direction, i.e., 𝑑𝑣⃗ = 𝑔𝑟𝑎𝑑𝑣⃗ ∙ 𝑟 = 𝜆𝑟 

where 𝑑𝑣⃗ is the velocity increment and 𝑟 is the local rotation axis. The definition of Liutex magnitude 

comes from extracting rigid rotation part from the velocity gradient tensor and can be evaluated by 

the following formula[17]: 

𝑅 = ω⃗⃗⃗ ∙ 𝑟 − √(ω⃗⃗⃗ ∙ 𝑟)2 − 4𝜆𝑐𝑖
2  

Detailed explanation can be found in section 3. Apart from Liutex, some other progress has 

been made on vortex identification. Liutex core line method[18] can provide a unique vortex 

structure which avoid choosing threshold. It shows the strength of vortex by different colors 

meanwhile. 

 

(a) without iso-surface 
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(b) with iso-surface 

Figure 1-2 A side view of the Liutex core line for early transition stage 

 

 

Although the Liutex core line method is currently best method to exhibit the vortex structure, 

people have not developed an ideal program to automatically draw Liutex core lines. Xu et al[19, 

20] attempted to solve the problem by selecting seed points and achieved good success, but for 

different cases, parameters need to be adjusted. Right now, the most convenient vortex 

visualization is still by iso-surface. To avoid adjusting the threshold, modified Liutex-Omega 

method[21] which develops from Omega[22] method is proposed. Omega method is a scalar vortex 

identification method whose advantage is that the proper threshold for drawing iso-surface is 

always around 0.52. Considering the range of Omega method is [0.5,1], it is much easier to find 

the proper threshold method compared to the second-generation methods. Liutex-Omega[21] 

method uses Liutex to remove the shear contamination from Omega method and yields a more 

accurate method at the same time keeps the original advantages.  
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Since the appearance of Liutex, many researchers have tested and analyzed Liutex method, 

and the correctness of Liutex definition has been repeatedly verified. Guo et al.[23] compared 

vortex predicted by Liutex and other methods based on the observation of a vortex evolution 

experiment result, and found that Liutex matches the experiment best. Cuissa[24] tested Liutex 

based on the Lamb-Oseen vortex which has analytical solution. He found that Liutex is the only 

one that correctly indicated the vortex region and the only one that coincides with the analytical 

rotational period. In the paper published in Space Science Reviews[25], it states that “it (Liutex) is 

the only reliable quantity for the extraction of physical information about a vortex, such as the 

rotational period and the curvature radius”. Borisov et al.[26] from Russian Academy of Sciences 

used Liutex to analyze vortex structures in the supersonic flow around a tandem of wings.  

After having the powerful tool for detecting vortex, we will revisit a classical topic in fluid 

dynamics, the mechanism of hairpin vortex formation which is an essential step for the laminar flow 

transition to turbulence. Turbulence is a natural phenomenon that can be widely observed, and 

most practical flows are turbulent. However, the mechanism of turbulence generation and 

development and the turbulence structure are still mysterious.  Usually, people believe that flow 

transition from laminar to turbulent flow in a boundary layer includes four main stages: (i) receptivity, 

(ii) linear instability, (iii) non-linear growth, and (iv) vortex breakdown to turbulence. Many direct 

numerical simulation (DNS) results and experiments show that straight spanwise vortices appear 

first and then they are gradually distorted followed by the formation of Λ-vortex. After that, hairpin 

vortex will be formed and then the flow will become turbulence.  



 

7 

 

The most famous early study of laminar flow transition was conducted by Reynolds[27]. 

Reynolds did research on the transition of pipe flow and found the transition is highly related 

to 
𝜌𝑈𝐿

𝜇
 which is named as Reynolds number in memory of his extraordinary contribution. At that 

time, people commonly thought that inviscid dynamics governs the phenomena at high 

Reynolds number. In 1880, Lord Rayleigh[28] proposed the linear stability theorem for inviscid 

parallel flow which successfully explained the “roll-up” instability of inflectional shear flows but 

not yet solved the problem of wall-bounded flow, e.g., Blasius boundary-layer solution and 

Poiseuille flow. It is because viscosity which plays a necessary role in the instability was not 

taken into consideration. Taylor[29] perhaps first noticed this reason and Prandtl[30] 

emphasized it later. According to Rayleigh’s inviscid stability theory, existence of an inflection 

point is the necessary condition for plane-parallel shear flow to have unstable modes. However, 

experiments together with the observations from people’s daily life show that Poiseuille flow, 

pipe flow, which do not contain any inflection points, are unstable if their Reynolds number are 

sufficiently high. To find a more accurate instability theory, Orr[31] and Sommerfeld[32] 

developed the incompressible viscous stability theory which is called Orr-Sommerfeld equation 

by today’s scientists. Orr-Sommerfeld equation is not easy to solve. Even for the simplest flows, 

researchers faced huge difficulty to analyze Orr-Sommerfeld equation for the large Reynolds 

numbers at which transition occurs. To solve the Orr-Sommerfeld equation, Heisenberg[33], 

Schlichting[34], Lin[35] and others proposed complicated asymptotic techniques. With the 

development of computer technique and numerical methods, it is not difficult to get numerical 

solution of the Orr-Sommerfeld equation. Malik[36] proposed a fourth order compact scheme 

and successfully achieved high accuracy. Orszag[37] suggested using Chebyshev polynomial 

expansion and achieved good results as well.  
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In this dissertation, the author reviews the three generations of vortex identification 

methods and compares Liutex with other widely used methods, finding those methods are 

contaminated by shear or stretching/compression; the author develops principal coordinate 

and principal decomposition which can decomposes velocity gradient tensor into parts with 

clear physical meanings; the author participates in defining, as the auxiliary contributor, Liutex 

core line which is threshold free and can provide unique vortex structure; the author proposes 

the steps to obtain objective Liutex which can get Liutex structure in the inertial frame from 

non-inertial kinematic data; the author explains the mechanism of hairpin vortex formation. 

This dissertation is organized as follows. In chapter 2, the direct numerical simulation 

(DNS) of flat plate boundary layer transition set up is introduced, including governing equations, 

numerical methods, and parameters. This DNS was done by Chen et al.[38] and Wang et 

al.[10], and its result will be used in the following chapters as the numerical example. Chapter 

3 introduces three generations of vortex identification methods and exhibits the advantages of 

Liutex. In chapter 4, the method to obtain objective Liutex based on a zero-vorticity reference 

point is provided. Chapter 5 introduces stability theory and the way to solve the equation. The 

mechanism of hairpin vortex formation is explained in chapter 7. This dissertation content is 

summarized in chapter 7. 
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Chapter2 

Direct Numerical Simulation 

This chapter introduces the direct numerical simulation (DNS) of the flat plat boundary layer 

transition including the governing equations, numerical methods and code validation. This 

simulation was done by Chen[38] and Wang[10], and the author uses the result to do analysis in 

the following chapters. DNS is a computational technique used in fluid dynamics to numerically 

solve the Navier-Stokes equations, which describe the motion of viscous fluids such as water and 

air. In DNS, all small vortices are resolved by extremely small mesh sizes and small time steps and 

high order numerical schemes. For a simple problem, tens of millions grid points and millions of 

time steps are required. The equations are solved without any approximations or simplifications, 

making it a highly accurate and detailed method for studying fluid flows. 

DNS involves discretizing the Navier-Stokes equations in space and time and solving them 

numerically on a computer. This requires high-performance computing resources and efficient 

algorithms to handle the large amount of data generated in the simulation. 

DNS can provide detailed information on the flow field, including the velocity and pressure 

distributions, turbulence statistics, and the interaction between different fluid structures. This level 

of detail is particularly useful for understanding complex fluid phenomena such as turbulent flows, 

which are notoriously difficult to model and analyze using other techniques. 
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2.1 Governing equations 

Navier-Stokes equations (N-S equation), which are a set of partial differential equations are 

the governing equations of fluid dynamics. These equations were first derived by Claude-Louis 

Navier and George Gabriel Stokes in the early 19th century, and therefore these equations are 

named after them. The 3D compressible N-S equations in curvilinear coordinates can be written in 

the following conservation form. 

 
1

J

∂𝐐

∂t
+

∂(𝐄−𝐄v)

∂ξ
+

∂(𝐅−𝐅v)

∂η
+

∂(𝐇−𝐇v)

∂ζ
= 0 (2.1) 

The vector of conserved quantities 𝑸 , inviscid flux vector(𝑬, 𝑭,𝑯) , and viscous flux vector 

(𝑬𝒗, 𝑭𝒗, 𝑯𝒗) are defined as 

 𝑸 =

(

 
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝑒 )

 
 

 (2.2) 

 𝑬 =
1

𝐽

(

 
 

𝜌𝑈
𝜌𝑢𝑈 + 𝑝𝜉𝑥

𝜌𝑣𝑈 + 𝑝𝜉𝑦

𝜌𝑤𝑈 + 𝑝𝜉𝑧

(𝑒 + 𝑝)𝑈 )

 
 

 (2.3) 

 𝑭 =
1

𝐽

(

 
 

𝜌𝑉
𝜌𝑢𝑉 + 𝑝𝜂𝑥

𝜌𝑣𝑉 + 𝑝𝜂𝑦

𝜌𝑤𝑉 + 𝑝𝜂𝑧

(𝑒 + 𝑝)𝑉 )

 
 

 (2.4) 

 𝑯 =
1

𝐽

(

 
 

𝜌𝑊
𝜌𝑢𝑊 + 𝑝𝜁𝑥

𝜌𝑣𝑊 + 𝑝𝜁𝑦

𝜌𝑤𝑊 + 𝑝𝜁𝑧

(𝑒 + 𝑝)𝑊 )

 
 

 (2.5) 

 𝑬𝑣 =
1

𝐽

(

  
 

0
𝜏𝑥𝑥𝜉𝑥 + 𝜏𝑦𝑥𝜉𝑦 + 𝜏𝑧𝑥𝜉𝑧

𝜏𝑥𝑦𝜉𝑥 + 𝜏𝑦𝑦𝜉𝑦 + 𝜏𝑧𝑦𝜉𝑧

𝜏𝑥𝑧𝜉𝑥 + 𝜏𝑦𝑧𝜉𝑦 + 𝜏𝑧𝑧𝜉𝑧

𝑞𝑥𝜉𝑥 + 𝑞𝑦𝜉𝑦 + 𝑞𝑧𝜉𝑧 )

  
 

 (2.6) 
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 𝑭𝑣 =
1

𝐽

(

 
 

0
𝜏𝑥𝑥𝜂𝑥 + 𝜏𝑦𝑥𝜂𝑦 + 𝜏𝑧𝑥𝜂𝑧

𝜏𝑥𝑦𝜂𝑥 + 𝜏𝑦𝑦𝜂𝑦 + 𝜏𝑧𝑦𝜂𝑧

𝜏𝑥𝑧𝜂𝑥 + 𝜏𝑦𝑧𝜂𝑦 + 𝜏𝑧𝑧𝜂𝑧

𝑞𝑥𝜂𝑥 + 𝑞𝑦𝜂𝑦 + 𝑞𝑧𝜂𝑧 )

 
 

 (2.7) 

 𝑬𝑣 =
1

𝐽

(

  
 

0
𝜏𝑥𝑥𝜁𝑥 + 𝜏𝑦𝑥𝜁𝑦 + 𝜏𝑧𝑥𝜁𝑧

𝜏𝑥𝑦𝜁𝑥 + 𝜏𝑦𝑦𝜁𝑦 + 𝜏𝑧𝑦𝜁𝑧

𝜏𝑥𝑧𝜁𝑥 + 𝜏𝑦𝑧𝜁𝑦 + 𝜏𝑧𝑧𝜁𝑧

𝑞𝑥𝜁𝑥 + 𝑞𝑦𝜁𝑦 + 𝑞𝑧𝜁𝑧 )

  
 

 (2.8) 

where 𝐽 is the Jacobian of the coordinate transformation between the curvilinear (𝜉, 𝜂, 𝜁) and 

Cartesian frames (𝑥, 𝑦, 𝑧) , and 𝜉𝑥 ,  𝜉𝑦 , 𝜉𝑧 , 𝜂𝑥 , 𝜂𝑦 , 𝜂𝑧 ,   𝜁𝑥 , 𝜁𝑦 ,   𝜁𝑧  are coordinate transformation 

metrics. The contravariant velocity components (𝑈, 𝑉,𝑊) are defined as 𝑈 = 𝑢𝜉𝑥 + 𝑣𝜉𝑦 + 𝑤𝜉𝑧,  𝑉 =

𝑢𝜂𝑥 + 𝑣𝜂𝑦 + 𝑤𝜂𝑧, 𝑈 = 𝑢𝜁𝑥 + 𝑣𝜁𝑦 + 𝑤𝜁𝑧. 𝑒 is the total energy and defined as  

 𝑒 =
𝑝

𝛾−1
+

1

2
(𝑢2 + 𝑣2 + 𝑤2) (2.9) 

The components of viscous stress and heat flux are denoted by 𝜏𝑥𝑥 , 𝜏𝑦𝑥 , 𝜏𝑧𝑥 , 𝜏𝑥𝑦 , 𝜏𝑦𝑦 , 𝜏𝑧𝑦 , 𝜏𝑥𝑧 ,

𝜏𝑦𝑧 , 𝜏𝑧𝑧 and 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧, respectively. Their expressions are 

 𝑞𝑥 = 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 −
1

(𝛾−1)𝑃𝑟𝑀∞
2

𝜇(𝑇)

𝑅𝑒

𝜕𝑇

𝜕𝑥
 (2.10) 

 𝑞𝑦 = 𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 −
1

(𝛾−1)𝑃𝑟𝑀∞
2

𝜇(𝑇)

𝑅𝑒

𝜕𝑇

𝜕𝑦
 (2.11) 

 𝑞𝑧 = 𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧 −
1

(𝛾−1)𝑃𝑟𝑀∞
2

𝜇(𝑇)

𝑅𝑒

𝜕𝑇

𝜕𝑧
 (2.12) 

𝜏𝑥𝑥 =
𝜇(𝑇)

𝑅𝑒
[2(𝜉𝑥

𝜕𝑢

𝜕𝜉
+ 𝜂𝑥

𝜕𝑢

𝜕𝜂
+ 𝜁𝑥

𝜕𝑢

𝜕𝜁
) −

2

3
(𝜉𝑥

𝜕𝑢

𝜕𝜉
+ 𝜉𝑦

𝜕𝑣

𝜕𝜉
+ 𝜉𝑧

𝜕𝑤

𝜕𝜉
+ 𝜂𝑥

𝜕𝑢

𝜕𝜂
+ 

 𝜂𝑦
𝜕𝑣

𝜕𝜂
+ 𝜂𝑧

𝜕𝑤

𝜕𝜂
+ 𝜁𝑥

𝜕𝑢

𝜕𝜁
+ 𝜁𝑦

𝜕𝑣

𝜕𝜁
+ 𝜁𝑧

𝜕𝑤

𝜕𝜁
)] (2.13) 

𝜏𝑦𝑦 =
𝜇(𝑇)

𝑅𝑒
[2(𝜉𝑦

𝜕𝑣

𝜕𝜉
+ 𝜂𝑦

𝜕𝑣

𝜕𝜂
+ 𝜁𝑦

𝜕𝑣

𝜕𝜁
) −

2

3
(𝜉𝑥

𝜕𝑢

𝜕𝜉
+ 𝜉𝑦

𝜕𝑣

𝜕𝜉
+ 𝜉𝑧

𝜕𝑤

𝜕𝜉
+ 𝜂𝑥

𝜕𝑢

𝜕𝜂
+ 

 𝜂𝑦
𝜕𝑣

𝜕𝜂
+ 𝜂𝑧

𝜕𝑤

𝜕𝜂
+ 𝜁𝑥

𝜕𝑢

𝜕𝜁
+ 𝜁𝑦

𝜕𝑣

𝜕𝜁
+ 𝜁𝑧

𝜕𝑤

𝜕𝜁
)] (2.14) 

𝜏𝑧𝑧 =
𝜇(𝑇)

𝑅𝑒
[2 (𝜉𝑧

𝜕𝑤

𝜕𝜉
+ 𝜂𝑧

𝜕𝑤

𝜕𝜂
+ 𝜁𝑧

𝜕𝑤

𝜕𝜁
) −

2

3
(𝜉𝑥

𝜕𝑢

𝜕𝜉
+ 𝜉𝑦

𝜕𝑣

𝜕𝜉
+ 𝜉𝑧

𝜕𝑤

𝜕𝜉
+ 𝜂𝑥

𝜕𝑢

𝜕𝜂
+ 
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 𝜂𝑦
𝜕𝑣

𝜕𝜂
+ 𝜂𝑧

𝜕𝑤

𝜕𝜂
+ 𝜁𝑥

𝜕𝑢

𝜕𝜁
+ 𝜁𝑦

𝜕𝑣

𝜕𝜁
+ 𝜁𝑧

𝜕𝑤

𝜕𝜁
) (2.15) 

 𝜏𝑥𝑦 =
𝜇(𝑇)

𝑅𝑒
[𝜉𝑥

𝜕𝑣

𝜕𝜉
+ 𝜉𝑦

𝜕𝑢

𝜕𝜉
+ 𝜂𝑥

𝜕𝑣

𝜕𝜂
+ 𝜂𝑦

𝜕𝑢

𝜕𝜂
+ 𝜁𝑥

𝜕𝑣

𝜕𝜁
+ 𝜁𝑦

𝜕𝑢

𝜕𝜁
] (2.16) 

 𝜏𝑥𝑧 =
𝜇(𝑇)

𝑅𝑒
[𝜉𝑥

𝜕𝑤

𝜕𝜉
+ 𝜉𝑧

𝜕𝑢

𝜕𝜉
+ 𝜂𝑥

𝜕𝑤

𝜕𝜂
+ 𝜂𝑧

𝜕𝑢

𝜕𝜂
+ 𝜁𝑥

𝜕𝑤

𝜕𝜁
+ 𝜁𝑧

𝜕𝑢

𝜕𝜁
] (2.17) 

 𝜏𝑦𝑧 =
𝜇(𝑇)

𝑅𝑒
[𝜉𝑦

𝜕𝑤

𝜕𝜉
+ 𝜉𝑧

𝜕𝑣

𝜕𝜉
+ 𝜂𝑦

𝜕𝑤

𝜕𝜂
+ 𝜂𝑧

𝜕𝑣

𝜕𝜂
+ 𝜁𝑦

𝜕𝑤

𝜕𝜁
+ 𝜁𝑧

𝜕𝑣

𝜕𝜁
] (2.18) 

For the purpose of dimensionless, 𝛿𝑖𝑛, , 𝜌∞, 𝑈∞, 𝑇∞ and 𝜌∞𝑈∞
2  are reference values for length, 

density, velocity, temperature and pressure, where 𝛿𝑖𝑛 is the inflow displacement thickness. Mach 

number 𝑀∞, Reynolds number 𝑅𝑒, Prandtl number 𝑃𝑟 and specific heat ratio 𝛾 are 

 𝑀∞ =
𝑈∞

√𝛾𝑅𝑇∞
 (2.19) 

 𝑅𝑒 =
𝜌∞ 𝑈∞𝛿𝑖𝑛

𝜇∞
 (2.20) 

 𝑃𝑟 =
𝐶𝑃𝜇∞

𝑘∞
 (2.21) 

 𝛾 =
𝐶𝑃

𝐶𝑣
 (2.22) 

where R represents ideal gas constant, 𝐶𝑃  and 𝐶𝑣  represent Specific Heat at Constant 

Pressure and Specific Heat Capacity respectively. Viscosity coefficient is evaluated by Sutherland 

formula, 

 𝜇 =
𝑇

3
2(1+𝑆)

𝑇+𝑆
 (2.23) 

where  

 𝑆 =
110.3𝐾

𝑇∞
 (2.24) 

2.2 Numerical Methods 

Compact schemes are able to achieve high order of accuracy with fewer grid points compared 
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to non-compact schemes. A sixth order compact scheme is used for the space discretization in the 

streamwise and wall normal directions. Lele[39] proposed a series of compact schemes which have 

the following general expressions, 

 𝛽−𝑓𝑗−2
′ + 𝛼−𝑓𝑗−1

′ + 𝑓𝑗
′ + 𝛼+𝑓𝑗+1

′ + 𝛽+𝑓𝑗+2
′ =

1

ℎ
(𝑏−𝑓𝑗−2 + 𝑎−𝑓𝑗−1 + 𝑐𝑓𝑗 + 𝑎+𝑓𝑗+1 + 𝑏+𝑓𝑗+2) (2.25) 

where 𝑓𝑗
′ are the derivative at point j. For the sixth order scheme used in this simulation, 

 𝛽− = 0,𝛼− =
1

3
, 𝛽+ = 0,𝛼+ =

1

3
, 𝑏− = −

1

36
, 𝑎− = −

7

9
, 𝑎+ =

7

9
, 𝑏+ =

1

36
 (2.26) 

In spanwise direction, the pseudo-spectral method is used because it has periodic boundary 

conditions in the spanwise direction and pseudo-spectral itself satisfies periodic conditions and can 

achieve higher accuracy. 

For time discretization, a total variation diminishing (TVD) third order Runge-Kuntta method is 

applied. 

 𝑄(0) = 𝑄(𝑛) (2.27) 

 𝑄(1) = 𝑄(0) + Δ𝑡𝑅(0) (2.28) 

 𝑄(2) =
3

4
𝑄(0) +

1

4
𝑄(1) +

1

4
Δ𝑡𝑅(1) (2.29) 

 𝑄(𝑛+1) =
1

3
𝑄(0) +

2

3
𝑄(2) +

2

3
Δ𝑡𝑅2 (2.30) 

2.3 DNS case set up 

The Direct Numerical Simulation method is used to study the process of the boundary layer flow 

transition on the plate plane. The physical domain and coordination system are illustrated in Fig. 2-1, 

where 𝑥𝑖𝑛 represents the distance between leading edge of plate and inlet of physical simulation domain, 

𝐿𝑥 and 𝐿𝑦  are the lengths of the computational domain in streamwise and spanwise directions 
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respectively, and 𝐿𝑧𝑖𝑛 is the height of the inlet. The details are listed in table 1. The dimension of grid 

is 1920×128×241 which is the number of grid points in streamwise, spanwise, and wall normal 

directions. The grid is stretched in the normal direction and uniform in the streamwise and spanwise 

directions. The length of the first layer of grid in the normal direction at the entrance is found to be 0.43 

in wall units (z+ = 0.43). The Jacobian coordinate transformation is employed from the physical domain 

to the computational domain, as shown in Fig.2-2. The inflow parameters, including Mach number, 

Reynolds number, etc. are listed in table 2. At the wall boundary on the flat plate, adiabatic and non-

slipping conditions are used. The non-reflecting boundary conditions are applied at the far field and the 

outflow boundaries. The inflow is given in the form of 

 𝑞 = 𝑞𝑙𝑎𝑚 + 𝐴𝑡2𝑑𝑞2𝑑
′ + 𝐴𝑡3𝑑𝑞3𝑑

′  (2.31) 

where 𝑞  represents , , ,u v w p  u, v, w, p, and T , while 𝑞𝑙𝑎𝑚  is the Blasius solution for a two-

dimensional laminar flat plate boundary layer. 𝑞2𝑑
′ and 𝑞3𝑑

′  are the 2-D and 3-D Tollmien-Schlichting 

(T-S) waves which are added into inflow as enforced perturbations.  

 

Figure 2-1 Physical domain of boundary layer flow transition simulation 
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Figure 2-2 Schematics of coordinate transformation 

 

𝑥𝑖𝑛 𝐿𝑥 𝐿𝑦 𝐿𝑧𝑖𝑛 

300.79𝛿𝑖𝑛 798.03𝛿𝑖𝑛 22𝛿𝑖𝑛 40𝛿𝑖𝑛 

Table 1 Geometry parameters 

 

 

𝑀∞ 𝑅𝑒 𝑇𝑤 𝑇∞ 

0.5 1000 273.15K 273.15K 

Table 2 Inflow parameters 

2.4 Code validation 

The DNS code, “DNSUTA”, has been validated by UTA researchers[38, 40, 41] and NASA 

Langley. And the detailed code validation has been reported by Liu et al.[42]. We only provide a 

brief code validation here. Fig. 2-3 shows the time and spanwise-averaged streamwise velocity 

distribution in two different grid levels with the log law result. This comparison shows the DNS result 

matches the log law and the grid convergence has been achieved. 



 

16 

 

 

(a) Coarse Grids (960x64x121)                                (b) Fine Grids (1920x128x241) 

Figure 2-3 Log-linear plots of the time-and spanwise-averaged velocity profile in wall unit 

2.5 Chapter Summary 

This chapter is on the case set up of the DNS, including the governing equations, numerical 

methods and validation. Governing equations are the compressible N-S equations. Sixth order 

compact scheme and Runge-Kuntta method are used as the numerical methods for spatial 

discretization and time discretization respectively. Code validation shows the DNS result is reliable.   
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Chapter 3 

Three Generations of Vortex definitions and Identification methods 

This chapter is on vortex detection. It first introduces some existing popular vortex identification 

methods and the third-generation method—Liutex. After that, the correlations between these 

methods are exhibited which shows the first- and second-generation methods are contaminated by 

shear or stretching/compression. Principal coordinate and principal decomposition are proposed to 

find a decomposition of velocity gradient tensor that have clear physical meanings.  

3.1 First- and second-generation methods 

Vorticity method is the first-generation vortex identification method. 

Definition 1: The Vorticity vector 𝑟𝑜𝑡𝑣⃗ is defined as: 

 𝑟𝑜𝑡𝑣⃗ =  ∇ × 𝑣⃗ =

[
 
 
 
 
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦 ]
 
 
 
 

 (3.1) 

where ∇  represents Hamilton operator. Initially, people believe the direction of vorticity 

represents rotation direction and the magnitude of vorticity represents twice angular speed. 

Helmholtz first introduced the vorticity tube/filament concepts in 1858 and used them as 

measurements of vortices. He also gave the definitions of vortex lines and vortex filaments based 

on the vorticity vector. Vortex lines are the lines whose tangential direction at each point coincides 

with the direction of the rotation axis. Vortex filament is really an infinitesimal vorticity tube-like 

structure formed by vortex lines through all points of a closed circumference. Lamb[43] said, “If 
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through every point of a small, closed curve we draw the corresponding vortex-line, we mark out a 

tube known as vortex-tube.” 

In practical applications, scientists and researchers found that vortices detected by vorticity do 

not match the actual situations very well. Robinson[44] reported that strong vorticity regions and 

actual vortices have weak correlations. Wang[10] observed a similar result that vorticity is small 

inside the Λ-vortex but big outside. Epps[45] found that vorticity may be unable to distinguish 

between a vortex region and a strong shear region. Some counterexamples that vorticity does not 

match the actual vortex can be immediately provided, e.g. the Couette flow. In a typical Couette 

flow, the flows are all straight lines without any curves. Apparently, there does not exist vortices, 

but vorticity is large if u is large. . 

 

Figure 3-1 Couette flow 

To find out more appropriate vortex identification methods, scientists developed the second-

generation methods around 1990s. ∆  criterion[12], Q criterion[11] and 𝜆𝑐𝑖  criterion[14] will be 

introduced in this section.  

Definition 1(∆  criterion[12]): Let the characteristic equation of the velocity gradient tensor 



 

19 

 

𝑔𝑟𝑎𝑑𝑣⃗ is in the following format. 

 𝜆3 + 𝐼1𝜆
2 + 𝐼2𝜆 + 𝐼3 = 0 (3.2) 

where  𝐼1 , 𝐼2 , and 𝐼3  represent the first, second, and third principal invariants of the 

characteristic equation respectively and have the following expressions. 

 𝐼1 = (𝜆1 + 𝜆2  + 𝜆3) = 𝑡𝑟(𝑔𝑟𝑎𝑑𝑣⃗) (3.3) 

 𝐼2 = 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 = −
1

2
[tr(𝑔𝑟𝑎𝑑𝑣⃗2) − tr(𝑔𝑟𝑎𝑑𝑣⃗)2] (3.4) 

 𝐼3 = 𝜆1𝜆2𝜆3 = det(𝛻𝑣⃗) (3.5) 

where 𝜆1, 𝜆2 𝑎𝑛𝑑  𝜆3 are the eigenvalues of the Eq. (3.2). ∆ criterion is defined by 

 𝛥 = (
𝑄̃

3
)
3

+ (
𝑅̃

2
)
2

 (3.6) 

where  

 𝑄̃ = 𝐼2 −
1

3
𝐼1

2 (3.7) 

 𝑅̃ = −𝐼3 −
2

27
 𝐼1

3 + 
1

3
𝐼1𝐼2 (3.8) 

If the 𝛥 >  0, it means the point is inside a vortex region.  

Definition 2(Q criterion[11]): Q criterion is defined by 

 𝑄 =
1

2
(‖𝐵‖𝐹

2 − ‖𝐴‖𝐹
2) (3.9) 

where A and B refer to symmetric and anti-symmetric part of the velocity gradient tensor 

respectively. ‖∙‖𝐹 represents Frobenius norm. 

 𝐴 =
1

2
(𝑔𝑟𝑎𝑑𝑣⃗ + 𝑔𝑟𝑎𝑑𝑣⃗𝑇) =

[
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

 (3.10) 
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 𝐵 =
1

2
(𝑔𝑟𝑎𝑑𝑣⃗ − 𝑔𝑟𝑎𝑑𝑣⃗𝑇) =

[
 
 
 
 0

1

2
(
𝜕𝑢

𝜕𝑦
 −  

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 0

1

2
(
𝜕𝑣

𝜕𝑧
−

𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
−

𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 0 ]

 
 
 
 

 (3.11) 

For Q criterion, 𝑄 > 0 implies the existence of vortices and the bigger Q is, the stronger vortex 

is. Q criterion realizes that vorticity is contaminated, and the contamination should be removed from 

vorticity. However, ‖𝐴‖𝐹
2  used by Q criterion to estimate the contamination is not accurate. More 

detailed discussion can be found in section 3.7. 

Definition 3(𝜆𝑐𝑖 criterion[14]): 𝜆𝑐𝑖 criterion defines the vortex strength by the imaginary part 𝜆𝑐𝑖 

of the complex eigenvalue of the velocity gradient tensor 𝑔𝑟𝑎𝑑𝑣⃗. 

The definition of 𝜆𝑐𝑖 criterion comes from the idea that time-frozen streamlines exhibit the flow 

structure if the velocity gradient tensor 𝑔𝑟𝑎𝑑𝑣⃗ has a pair of conjugate complex eigenvalues and a 

real eigenvalue. Under such a situation, 

 𝑔𝑟𝑎𝑑𝑣⃗ = [𝑣⃗𝑟 𝑣⃗𝑐𝑟 𝑣⃗𝑐𝑖] [
𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖

0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] [𝑣⃗𝑟 𝑣⃗𝑐𝑟 𝑣⃗𝑐𝑖]
−1 (3.12) 

where 𝜆𝑟 , 𝑣⃗𝑟 represent the real eigenvalue and corresponding real eigenvector, 𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖 and 

𝑣⃗𝑐𝑟 ± 𝑖 𝑣⃗𝑐𝑖 are the pair of complex conjugate eigenvalues and corresponding eigenvectors. In the 

curvilinear coordinate system {𝑐1, 𝑐2, 𝑐3} spanned by {𝑣⃗⃗𝑟, 𝑣⃗⃗𝑐𝑟, 𝑣⃗⃗𝑐𝑖}, the streamlines’ equations are  

 𝑐1(𝑡) = 𝑐1(0)𝑒
𝜆𝑟𝑡 (3.13) 

 𝑐2(𝑡) = [𝑐2(0) cos(𝜆𝑐𝑖𝑡) + 𝑐3(0) 𝑠𝑖𝑛(𝜆𝑐𝑖𝑡)]𝑒
𝜆𝑐𝑟𝑡 (3.14) 

 𝑐3(𝑡) = [𝑐3(0) cos(𝜆𝑐𝑖𝑡) + 𝑐2(0) 𝑠𝑖𝑛(𝜆𝑐𝑖𝑡)]𝑒
𝜆𝑐𝑟𝑡 (3.15) 

Eq. (3.13)-(3.15) implies 𝜆𝑐𝑖 indicates rotation strength.  
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𝜆𝑐𝑖 criterion may not correctly reveal the strength of rotation because the translation made by 

Eq. (3.12) is a similar translation but not an orthogonal translation (eigenvectors are linearly 

independent but not orthogonal) which means the new space is distorted compared with the original 

one. And this distortion leads to the inaccuracy.  

3.2 Common problems of the second-generation methods 

Some problems of specific second-generation methods have been stated in section 3.1, and 

this section is on some common problems of these methods. 

1. Although second-generation methods have their own theoretical foundation, the angular speed 

in the original coordinate system is still unclear. For the same case, the values of second-

generation methods can vary greatly.  

2. Second-generation methods are all scalars which do not included the information of rotation 

axis. Rotation axis is a vector and cannot be revealed from a scalar. Therefore, the only way 

to display the vortex structure is by iso-surface. Since the values of second-generation 

methods are scalars, visualization requires a threshold, and the thresholds chosen by different 

second-generation methods can be greatly different.  

3. The values of second-generation methods are not pure rigid-rotation. They are more or less 

contaminated by shear or stretching/compression. Detailed can be found in section 3.7. 

3.3 Liutex—third generation method 

Definition 4 (Liutex[5]): Liutex 𝑅⃗⃗⃗ = 𝑅𝑟⃗ is a vector whose direction indicates the local rotation 

axis and whose magnitude is the twice angular speed. Its direction 𝑟 is the real eigenvector of the 

velocity gradient tensor 𝑔𝑟𝑎𝑑𝑣⃗  that satisfies 𝜔⃗⃗ ∙ 𝑟 > 0  where 𝜔⃗⃗   represents vorticity vector. Its 

magnitude[17] can be evaluated by  

 𝑅 = ω⃗⃗⃗ ∙ 𝑟 − √(ω⃗⃗⃗ ∙ 𝑟)2 − 4𝜆𝑐𝑖
2  (3.16) 
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where 𝜆𝑐𝑖 is the imaginary part of the complex conjugate eigenvalues of 𝑔𝑟𝑎𝑑𝑣⃗. 

Liutex direction comes from the basic idea that the velocity increment in the local rotation axis 

direction should be only stretching or compression, i.e. d𝑣⃗ = 𝑔𝑟𝑎𝑑𝑣⃗ ∙ 𝑟 = 𝜆𝑟  which implies local 

rotation axis is the eigenvector of 𝑔𝑟𝑎𝑑𝑣⃗ . One eigenvector can have positive or negative two 

direction, so to further constrain the local axis direction, the condition 𝜔⃗⃗ ∙ 𝑟 > 0 is applied. As for the 

magnitude, it originally comes from finding the minimal rotation matrix among all possible 

coordinates systems. Since Liutex direction (local rotation axis) can be determined by finding the 

real eigenvector, a 3D rotation can be simplified to a 2D rotation by choosing a new coordinate 

system whose z-axis is parallel to the Liutex direction as shown in Fig. 3-2. Therefore, we discuss 

the Liutex strength in the 2D situation.  

 

Figure 3-2 Coordinate transformation. 

If a rigid body is doing rotation, its velocity distribution can be described as  

 𝑣⃗(𝑥, 𝑦) = 𝐴𝑉⃗⃗⃗⃗  ⃗ × 𝑟 = [
(𝐴𝑉)𝑦𝑧 − (𝐴𝑉)𝑧𝑦

(𝐴𝑉)𝑧𝑥 − (𝐴𝑉)𝑥𝑧
] (3.17) 

Here, 𝐴𝑉⃗⃗⃗⃗  ⃗ represents angular velocity vector. The reason not using the commonly used symbol 

𝜔⃗⃗  for angular velocity is 𝜔⃗⃗  has been used for vorticity. Since the rotation is two dimensional, i.e., 

(𝐴𝑉)𝑦 = 0, the velocity distribution can be simplified to  
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 𝑣⃗(𝑥, 𝑦) = [
−(𝐴𝑉)𝑧𝑦
(𝐴𝑉)𝑧𝑥

] (3.18) 

Hence, the rigid rotation matrix is 

 [

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

] = [
0 −(𝐴𝑉)

𝑧

(𝐴𝑉)
𝑧

0
] (3.19) 

So, the typical feature for rotation matrix is diagonal entries being zeros and the other two 

entries are opposite numbers to each other. If the motion is pure rotation, then it is easy to figure 

out the angular speed directly from its velocity gradient tensor. The problem is that in practical, the 

motion is not pure rigid body rotation, and it can also have deformations for fluids. In this situation, 

people need to decompose the rigid rotation matrix from the velocity gradient tensor. Consider the 

following velocity distribution case.  

 {
𝑢 = 2𝑦
𝑣 = 0

 (3.20) 

Its velocity gradient is  

 𝑔𝑟𝑎𝑑𝑣⃗ = [0 2
0 0

] (3.21) 

Apparently, it does not satisfy the feature of rigid body rotation matrix. One way to decompose 

the rigid body rotation matrix is what vorticity does.  

 𝑔𝑟𝑎𝑑𝑣⃗ = 𝐴 + 𝐵 (3.22) 

where A and B are defined by Eq. (3.10) and (3.11). In this case, 

 𝐵 = [ 0 1
−1 0

] (3.23) 

which indicates the rotation strength by vorticity is 1. However, the flows are all straight without 

any curves and there should not be any vortex in it.  
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Liutex, on the other hand, decomposes 𝑔𝑟𝑎𝑑𝑣⃗ by choosing the minimal of absolute values of 

the anti-diagonal elements, i.e.  

 𝑔𝑟𝑎𝑑𝑣⃗ = [0 0
0 0

] + [0 2
0 0

] (3.24) 

where [
0 0
0 0

] is the rotation matrix. It indicates the rotation strength is zero which coincides 

with the physics. The expression of the velocity gradient matrix relies on the choice of coordinate 

systems. So, in reality, the minimal of the anti-diagonal entries can be different under different 

coordinate systems. In this situation, Liutex chooses the smallest one as the rotation strength and 

Liutex magnitude is set as the twice rotation strength. An explicit expression to evaluate Liutex 

magnitude was first proposed by Wang as shown in Eq. (3.16).  

3.4 Validation of Liutex 

After Liutex appears, it has been used and tested by various scientists and researchers. Guo 

et al.[23] compared Liutex and other vortex identification methods with an experimental result and 

found Liutex matches the vortex regions best. In Ref [46], Liutex is said as “the most reliable 

criterion for the extraction of physical information from vortical flows”. Cuissa et al.[24] tested Liutex 

by Lamb-Oseen vortex which has analytical solution. It shows Liutex exactly matches analytical 

solution. Borisov et al.[26] used Liutex to investigate vortex structure in the supersonic flow around 

a tandem of wings. A lot of applications have proven the correctness of Liutex. 

3.5 Liutex core lines 

Although, Liutex is a vector definition on rotation, it still needs iso-surface to display the vortex 
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structure. In this section, Liutex core line method[18] is developed which can provides the vortex 

core lines.  

Definition 5 (Liutex core line[18]): The Liutex core lines are defined as lines formed by points 

that satisfy the condition  

 ∇𝑅 × 𝑟 = 0,   𝑅 > 0 (3.25) 

where 𝑅 and 𝑟 are Liutex magnitude and direction respectively.  

The assumption of Liutex core lines is the rotation strength at the vortex core should be the 

largest in the plane perpendicular to the rotation axis. The necessary condition for a point being 

maximum in the plane is that the projection of its gradient to the plane has to be zero, or, in another 

word, its magnitude gradient direction can only be perpendicular to the plane. And we know the 

plane is perpendicular to the 𝑟. Therefore, the gradient ∇𝑅 has to be parallel to the 𝑟 as described 

by Eq. (3.25). Fig. 3-3 and 3-4 show the Liutex lines in a flat plate boundary layer DNS simulation.  

 

Figure 3-3 Liutex core lines of the plat plate boundary transition without iso-surface 
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Figure 3-4 Liutex core lines of the plat plate boundary transition with iso-surface 

3.6 Principal coordinate and principal decomposition 

The traditional decomposition of the velocity gradient tensor is Cauchy-Stokes decomposition 

which decomposes velocity gradient tensor into symmetric part and anti-symmetric part. As shown 

in section 3.4, the physical meaning of Cauchy-Stoke decomposition actually is not as what people 

used to consider. To find a decomposition that can correctly represent rotation, shear and 

stretching/compression parts, principal coordinate and principal decomposition[47] are proposed.  

Definition 6(principal coordinate[47]): Principal coordinate is the coordinate under which the 

minimal anti-diagonal entry described in section 3.4 can be achieved. It satisfies the following 

conditions. 

1. Its Z-axis is parallel to the 𝑟 (direction of Liutex) and 𝜔⃗⃗⃗ ∙ 𝑍 > 0 

2. The velocity gradient tensor under this coordinate is in the form of: 
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 𝑔𝑟𝑎𝑑𝑣⃗ =

[
 
 
 
 𝜆𝑐𝑟 −

𝑅

2
0

𝜕𝑉

𝜕𝑋
𝜆𝑐𝑟 0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌
𝜆𝑟]

 
 
 
 

 (3.26) 

where 𝜆𝑐𝑟 , 𝜆𝑟 and R are the real eigenvalue and real part of the conjugate complex eigenvalue 

pair of the velocity gradient tensor and Liutex magnitude, respectively, for rotation points. 

3. 
𝜕𝑈

𝜕𝑌
< 0 and |

𝜕𝑈

𝜕𝑌
| ≤ |

𝜕𝑉

𝜕𝑋
|. 

4. The rotational angle of the X-Y coordinates around the Z-axis must be smaller than 

900 or −900 < 𝜃 ≤ 900 

The algorithm to find principal coordinate can be found in appendix. The purpose to give 

principal matrix is to define a unique matrix for the velocity gradient tensor. A tensor is unique but 

its corresponding matrix is uncertain, depending on the coordinate systems. 

Rewrite Eq.(3.26) in the following form.  

 𝑔𝑟𝑎𝑑𝑣⃗ = [

𝜆𝑐𝑟 −
1

2
𝑅 0

1

2
𝑅 + 𝜀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟 

] (3.27) 

Definition 7(principal decomposition[47]): Principal decomposition is the decomposition in the 

principal decomposition s.t.  

𝑔𝑟𝑎𝑑𝑣⃗ = [

𝜆𝑐𝑟 −
𝑅

2
0

𝑅

2
+ 𝜀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟

] = [

0 −
𝑅

2
0

𝑅

2
0 0

0 0 0

] + [
0 0 0
𝜀 0 0
𝜉 𝜂 0

] + [
𝜆𝑐𝑟 0 0
0 𝜆𝑐𝑟 0
0 0 𝜆𝑟

] = 𝑅 + 𝑆 + 𝐶(3.28) 

Here R, S, C are matrices of rotation, shear and stretching/compression respectively.  
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3.7 Correlation between Liutex and some popular previous vortex identification methods 

In the solid mechanics, people believe that the direction of vorticity is the rotation axis, and one 

half of the vorticity magnitude represents the rotation strength. According to the solid mechanics 

knowledge, the velocity 𝑣⃗ of a fixed axis rotation can be expressed as 

 𝑣⃗ = 𝐴𝑉⃗⃗⃗⃗  ⃗ × 𝑟 =  [

(𝐴𝑉)𝑦𝑧 − (𝐴𝑉)𝑧𝑦

(𝐴𝑉)𝑧𝑥 − (𝐴𝑉)𝑥𝑧
(𝐴𝑉)𝑥𝑦 − (𝐴𝑉)𝑦𝑥

] (3.29) 

where 𝐴𝑉⃗⃗⃗⃗  ⃗ represents angular velocity vector. Vorticity 𝜔⃗⃗  can be written as  

 𝜔⃗⃗ = ∇ × 𝑣⃗ = [

2(𝐴𝑉)𝑥
2(𝐴𝑉)𝑦
2(𝐴𝑉)𝑧

] = 2𝐴𝑉⃗⃗⃗⃗  ⃗ (3.30) 

From the above derivation, people strongly believe that 𝜔⃗⃗  is the twice angular velocity vector 

and it has solid mathematical foundation. The problem is that in the above derivation the 

prerequisite is the velocity gradient tensors are the same at all the points which fluid do not satisfy. 

The case provided in section 3.4 shows vorticity can be contaminated by shear. Liutex magnitude 

formula can be understood as removing the shear contamination part √(ω⃗⃗⃗ ∙ 𝑟)2 − 4𝜆𝑐𝑖
2   from the 

vorticity ω⃗⃗⃗ ∙ 𝑟. 

The expressions of vorticity, ∆ criterion, Q criterion and 𝜆𝑐𝑖 criterion in the principal coordinate 

system can be written as  

 𝛥 =
1

243
[9 (

𝑅

2
)
3

(
𝑅

2
+ 𝜀)

3

− 6(
𝑅

2
)
2

(
𝑅

2
+ 𝜀)

2
(𝜆𝑐𝑟 − 𝜆𝑟)

2 +
5𝑅

2
(
𝑅

2
+ 𝜀) (𝜆𝑐𝑟 − 𝜆𝑟)

4] (3.31) 

 𝜔⃗⃗ = [
𝜂
−𝜉

𝑅 + 𝜀
] (3.32) 

 ‖𝜔⃗⃗ ‖ = √𝜂2 + 𝜉2 + (𝑅 + 𝜀)2 (3.33) 

𝑄 =
1

2
(‖𝐵‖𝐹

2 − ‖A‖𝐹
2) 
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=
1

2
[2 (

𝑅

2
+

𝜀

2
) + 2(

𝜉

2
)
2

+ 2(
𝜂

2
)
2

] −
1

2
[2 𝜆𝑐𝑟

2 + 𝜆𝑟
2 + 2(

𝜀

2
)
2

+ 2(
𝜉

2
)
2

+ 2(
𝜂

2
)
2

] 

 = (
𝑅

2
)
2

+
1

2
𝑅 ∙ 𝜀 − 𝜆𝑐𝑟

2 −
1

2
𝜆𝑟

2 (3.34) 

 𝜆𝑐𝑖 = √
𝑅

2
(
𝑅

2
+ 𝜀) (3.35) 

Eq. (3.31)-(3.35) show that vorticity, ∆ criterion, Q criterion and 𝜆𝑐𝑖 criterion contains elements 

in the shear, or stretching/compression matrices.  

 

Figure 3-5 Correlations between Liutex and vorticity, Q, 𝜆𝑐𝑖, 𝜆2 and Δ  [3] 

3.8 Chapter summary 

In this chapter, first, second and third generation vortex identification methods are reviewed. 

Why Liutex is reasonable is explained in section 3.4. Principal coordinate and principal 

decomposition are defined to decompose rotation, shear and stretching/compressing part from 



 

30 

 

velocity gradient tensor. It also exhibits the relations between Liutex and some other methods. The 

result shows first- and second-generation methods are contaminated by shear or 

stretching/compression.  
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Chapter 4 

Objective Vortex 

This chapter derives the steps to get Liutex in inertial frames from non-inertial data. This 

process is fully based on kinematics aspect and there is nothing related to dynamics involved. 

Objectivity refers to the ability to keep invariant under different coordinate systems. Most of the 

popular vortex identification methods are not objective. This may cause the confusion about the 

vortex structure which should be unique. For example, people intuitively reckon that curved 

streamlines reflect vortices. However, the shape of streamlines depends on the choice of the 

coordinates. Streamlines can look like a straight line in one coordinate system and have obvious 

spiral shape in the other. As shown in Fig.4-1 and 4-2, the two coordinates are the same except 

the one in Fig. 4-2 is doing translation motion at the velocity of the selected point.  

 

Figure 4-1 Streamline in the original coordinate system 
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Figure 4-2 Streamline in the moving coordinate system at the same velocity of the selected point 

Similar situation happens to other vortex identification methods. Unfortunately, Liutex is not 

objective as well although it is Galilean invariant which means it is invariant under initial coordinate 

systems. To eliminate the influence of coordinate systems, this chapter introduces a method to 

obtain objective Liutex. In section 4.1, it first shows that Liutex is Galilean invariant. Next the 

question can be simplified to how to find Liutex in any one inertial coordinate system from the data 

collected in the non-inertial coordinate system.  

4.1 Galilean invariance 

Wang proves the Galilean invariance of Liutex[48] in 2018. The Galilean transformation 

between two inertial frames is  

 [
𝑥′
𝑦′

𝑧′

] = 𝑄
𝑐
[
𝑥
𝑦
𝑧
] + 𝑐⃗1𝑡 + 𝑐⃗2 (4.1) 
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where 𝑄𝑐  is an orthogonal 3 × 3  matrix, 𝑥, 𝑦, 𝑧  are the coordinates in one inertial frame and 

𝑥′, 𝑦′, 𝑧′ are the coordinates in another inertial frame. For simplicity, we assume the time variable is 

identical for these two frames. So, the velocities in these two frames have the following relation. 

 [
𝑢′
𝑣′
𝑤′

] = 𝑄𝑐 [
𝑢
𝑣
𝑤

] + 𝑐1 (4.2) 

where 𝑢, 𝑣, 𝑤 and 𝑢′, 𝑣′, 𝑤′ are the velocity components in the two frames. Eq. (4.2) implies 

 𝑔𝑟𝑎𝑑𝑣⃗′ = 𝑄𝑐(𝑔𝑟𝑎𝑑𝑣⃗)𝑄𝑐
−1 (4.3) 

where 𝑔𝑟𝑎𝑑𝑣⃗ and 𝑔𝑟𝑎𝑑𝑣⃗′ are the velocity gradient tensor in the two frames. 

Let 𝑟 be the Liutex direction vector, so  

 𝑔𝑟𝑎𝑑𝑣⃗ ∙ 𝑟 = 𝜆𝑟𝑟 (4.4) 

 𝑄𝑐(𝑔𝑟𝑎𝑑𝑣⃗) ∙ 𝑟 = 𝑄𝑐(𝑔𝑟𝑎𝑑𝑣⃗)(𝑄𝑐
−1𝑄𝑐) ∙ 𝑟 = [𝑄𝑐(𝑔𝑟𝑎𝑑𝑣⃗)𝑄𝑐

−1] ∙ (𝑄𝑐𝑟) = 𝑔𝑟𝑎𝑑𝑣⃗′ ∙ (𝑄𝑐𝑟) (4.5) 

Substitute Eq. (4.4) into Eq. (4.5) 

 𝑔𝑟𝑎𝑑𝑣⃗′ ∙ (𝑄𝑐𝑟) = 𝜆𝑟(𝑄𝑐𝑟) (4.6) 

which indicates 𝑄𝑐𝑟 is the Liutex direction in the other inertial frame.  

Suppose  

 𝑟 = [

𝑥1

𝑦1

𝑧1

] − [

𝑥0

𝑦0

𝑧0

] (4.7) 

And the corresponding vector 𝑟′ after Galilean invariant is  

 𝑟′ = (𝑄𝑐 [

𝑥1

𝑦1

𝑧1

] + 𝑐1𝑡 + 𝑐2) − (𝑄𝑐 [

𝑥0

𝑦0

𝑧0

] + 𝑐1𝑡 + 𝑐2) (4.9) 

 𝑟′ = 𝑄𝑐([

𝑥1

𝑦1

𝑧1

] − [

𝑥0

𝑦0

𝑧0

]) (4.10) 
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 𝑟′ = 𝑄𝑐𝑟 (4.11) 

So, 𝑄𝑐𝑟  is the corresponding vector after Galilean transformation and Liutex direction is 

Galilean invariant. As for the Liutex magnitude, it is Galilean invariant as well since all elements in 

Eq. (3.16) are Galilean invariant.  

Therefore, both direction and magnitude of Liutex are Galilean invariant.  

4.2 Objective Liutex  

Let upper-case letters denote the variables in the inertial frame and lower-case letters denote 

the variables in the non-inertial frame. Based on the knowledge of kinetics, 𝑉⃗⃗  and 𝑣⃗  have the 

following relation (see Fig.4-3), 

 𝑉⃗⃗(𝑃⃗⃗) = 𝑣⃗(𝑝) + 𝑉⃗⃗𝑡(𝑡) + 𝑉⃗⃗𝑎(𝑡) × 𝑝 (4.12) 

where 𝑉⃗⃗, 𝑃⃗⃗, 𝑉⃗⃗𝑡 , 𝑉⃗⃗𝑎 are the velocity vector, position vector, translation velocity of the non-inertial 

frame and the angular velocity of the non-inertial frame in the inertial frame, respectively. 𝑣⃗, 𝑝 are 

the velocity vector and position vector in the non-inertial frame.  

 

Figure 4-3 Relation between the velocity in the inertial and non-inertial frames 

Since our purpose is to find the Liutex in any one inertial frame, a special inertial frame can be 
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chosen to simplify the calculation. Let the origin point and the X, Y, Z axes of the special coordinate 

system be the same as the non-inertial coordinate system, and the special coordinate system is 

doing the same translation motion as the non-inertial coordinate system. In short, the only 

difference between these two frames is the non-inertial frame can do rotation but the inertial one 

cannot. In this case,  𝑉⃗⃗𝑡 = 0 and 𝑃⃗⃗ = 𝑝. The Eq. (4.12) can be simplified to  

 𝑉⃗⃗(𝑃⃗⃗) = 𝑣⃗(𝑃⃗⃗) + 𝑉⃗⃗𝑎(𝑡) × 𝑃⃗⃗ (4.13) 

which can be rewritten as  

 [
𝑈
𝑉
𝑊

] = [
𝑢
𝑣
𝑤

] + [

𝑉𝑎𝑦𝑍 − 𝑉𝑎𝑧𝑦

𝑉𝑎𝑧𝑋 − 𝑉𝑎𝑥𝑍
𝑉𝑎𝑥𝑌 − 𝑉𝑎𝑦𝑋

] (4.14) 

Take partial derivatives with respect to  𝑋⃗(𝑥) 

 

[
 
 
 
 
𝜕𝑈

𝜕𝑋
𝜕𝑉

𝜕𝑋
𝜕𝑊

𝜕𝑋 ]
 
 
 
 

=

[
 
 
 
 
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑥
𝜕𝑤

𝜕𝑥 ]
 
 
 
 

+ [

0
𝑉𝑎𝑧

−𝑉𝑎𝑦

] (4.15) 

Similarly,  

 

[
 
 
 
 
𝜕𝑈

𝜕𝑌
𝜕𝑉

𝜕𝑌
𝜕𝑊

𝜕𝑌 ]
 
 
 
 

=

[
 
 
 
 
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑦]
 
 
 
 

+ [
−𝑉𝑎𝑧

0
𝑉𝑎𝑥

] (4.16) 

 

[
 
 
 
 
𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑍
𝜕𝑊

𝜕𝑍 ]
 
 
 
 

=

[
 
 
 
 
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑧 ]
 
 
 
 

+ [
𝑉𝑎𝑦

−𝑉𝑎𝑥

0

] (4.17) 

Therefore, the velocity gradient tensors in the inertial and non-inertial frames have the following 

relation. 



 

36 

 

 

[
 
 
 
 
𝜕𝑈

𝜕𝑋
𝜕𝑌

𝜕𝑋
𝜕𝑊

𝜕𝑋

𝜕𝑈

𝜕𝑌
𝜕𝑌

𝜕𝑌
𝜕𝑊

𝜕𝑌

𝜕𝑈

𝜕𝑍
𝜕𝑌

𝜕𝑍
𝜕𝑊

𝜕𝑍 ]
 
 
 
 

=

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

+ [

0
𝑉𝑎𝑧

−𝑉𝑎𝑦

−𝑉𝑎𝑧

0
𝑉𝑎𝑥

𝑉𝑎𝑦

−𝑉𝑎𝑥

0

] (4.18) 

where 𝑉⃗⃗𝑎 = 𝑉𝑎𝑥𝑋⃗ + 𝑉𝑎𝑦 𝑌⃗⃗ + 𝑉𝑎𝑧𝑍 is the angular velocity of the non-inertial frame measured in the 

inertial coordinate.  

It is noted that 𝑉𝑎𝑥 , 𝑉𝑎𝑦  𝑎𝑛𝑑 𝑉𝑎𝑧 do not rely on X, Y, Z since one non-inertial frame can only have 

one angular velocity. So, if 𝑉𝑎𝑥 , 𝑉𝑎𝑦 𝑎𝑛𝑑 𝑉𝑎𝑧 can be found from one single point, their values can be 

used for the whole space. The method to obtain objective Liutex comes from this idea. A zero-

vorticity reference point will be selected to find out 𝑉𝑎𝑥 , 𝑉𝑎𝑦 𝑎𝑛𝑑 𝑉𝑎𝑧. 

Theorem 1: If 𝑃⃗⃗ ,in the special inertial frame described above, is the point corresponding to 𝑝 

s.t. vorticity of  𝑃⃗⃗  measured in the inertial frame is zero, then [𝑉𝑎𝑥, 𝑉𝑎𝑦, 𝑉𝑎𝑧]
𝑇

= −
1

2
 [𝜔𝑥, 𝜔𝑦 , 𝜔𝑧]

𝑇
 

where 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧 are the vorticity components of 𝑝, which is measured in the observer’s frame.. 

Proof: Decompose 𝑔𝑟𝑎𝑑𝑉⃗⃗ into symmetric A and antisymmetric part B, 

 𝑔𝑟𝑎𝑑𝑉⃗⃗ = 𝐴 + 𝐵 (4.19) 

where 

 𝐴 =
1

2
[𝑔𝑟𝑎𝑑𝑉⃗⃗ + (𝑔𝑟𝑎𝑑𝑉⃗⃗)

𝑇
] (4.20) 

 𝐵 =
1

2
[𝑔𝑟𝑎𝑑𝑉⃗⃗ − (𝑔𝑟𝑎𝑑𝑉⃗⃗)

𝑇
] (4.21) 

B is a zero matrix because the vorticity is zero at the point. 

Substitute Eq. (4.19) into Eq. (4.18) 

 𝐴 = 𝑔𝑟𝑎𝑑𝑣⃗ + [

0
𝑉𝑎𝑧

−𝑉𝑎𝑦

−𝑉𝑎𝑧

0
𝑉𝑎𝑥

𝑉𝑎𝑦

−𝑉𝑎𝑥

0

] (4.22) 
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 𝑔𝑟𝑎𝑑𝑣⃗ = 𝐴 − [

0
𝑉𝑎𝑧

−𝑉𝑎𝑦

−𝑉𝑎𝑧

0
𝑉𝑎𝑥

𝑉𝑎𝑦

−𝑉𝑎𝑥

0

] = 𝐴 + [

0
−𝑉𝑎𝑧

𝑉𝑎𝑦

𝑉𝑎𝑧

0
−𝑉𝑎𝑥

−𝑉𝑎𝑦

𝑉𝑎𝑥

0

] (4.23) 

Obviously, [

0
−𝑉𝑎𝑧

𝑉𝑎𝑦

𝑉𝑎𝑧

0
−𝑉𝑎𝑥

−𝑉𝑎𝑦

𝑉𝑎𝑥

0

] is the vorticity matrix measured in the observer’s coordinate 

since A is a symmetric matrix. Thus, 

 [

𝑉𝑎𝑥

𝑉𝑎𝑦

 𝑉𝑎𝑧

] = −
1

2
[

𝜔𝑥

𝜔𝑦

 𝜔𝑧

] (4.24) 

where 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧 are the vorticity components of 𝑝. The theorem is proved.  

 

Steps to obtain objective Liutex: 

1. Pick a point with zero vorticity measured in the inertial frame. The point can be selected based 

on physical properties of the flow e.g., points in the inviscid region. 

2. Calculate vorticity at the selected reference point. Then [𝑉𝑎𝑥, 𝑉𝑎𝑦 , 𝑉𝑎𝑧]
𝑇

= −
1

2
 [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]

𝑇
. 

3. The velocity gradient tensor of all points in an inertial coordinate can be obtained from 

 𝑔𝑟𝑎𝑑𝑉⃗⃗ = 𝑔𝑟𝑎𝑑𝑣⃗ + [

0
𝑉𝑎𝑧

−𝑉𝑎𝑦

−𝑉𝑎𝑧

0
𝑉𝑎𝑥

𝑉𝑎𝑦

−𝑉𝑎𝑥

0

] (4.25) 

4. Calculate Liutex from 𝑔𝑟𝑎𝑑𝑉⃗⃗, which is objective or coordinate-independent, 

no matter the observer’s frame is inertial or non-inertial, which is particularly important 

for aerial survey or satellite measurement. 

4.3 Numerical Examples 

The DNS result in Chapter 2 is used to test provided objective Liutex method. The vortex 

structure in the original inertial frame shown by Liutex iso-surface is shown in Fig. 4-4.  
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(a) 

  

(b) 

Figure 4-4 Vortex structure in the inertial original coordinate with Liutex=0.07 iso-surface (a) overall (b) from the top 

We artificially apply an angular velocity 𝑉⃗⃗𝑎 = [0.009 0.008 0.007]𝑇 and generate a new non-

inertial data. The Liutex iso-surface in the non-inertial frame is shown in Fig. 4-5. The vortex  
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(a) 

  

(b) 

Figure 4-5 Vortex structure in the observer’s coordinate with Liutex=0.07 iso-surface (a) overall (b) from the top 

structure loses symmetry in the non-inertial frame while in the inertial frame, it has symmetry. 

The vorticity of the reference point (456.38,20.62,13.36)  is 

[−0.0179999905974 −0.0159999989568 −0.0140000715749]𝑇 . Based on Eq. (4.24), the 

angular velocity of the non-inertial frame is  

 [

𝑉𝑎𝑥

𝑉𝑎𝑦

𝑉𝑎𝑧

] = −
1

2
[
−0.0179999905974
−0.0159999989568
−0.0140000715749

] = [
0.0089999952986874916
0.0079999994783875872
0.0070000357874608187

] (4.26) 
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which is very close to the actual angular velocity.  

The apply step 3 and step 4 in section 4.4 and get the objective Liutex iso-surface shown in 

Fig. 4-6. 

 

  

(a) 

 

(b) 

Figure 4-6 Objective Vortex with Liutex=0.07 iso-surface (a) overall (b) from the top 

Compared with the original inertial Liutex iso-surface in Fig.4-4, the objective Liutex looks the 

same. Objective Liutex gets back the symmetry which is lost in the non-inertial frame. To further 
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analyze this method quantitively, ten points are selected to compare their Liutex magnitudes. These 

points are located at y=10 and z=0.5 from 400 to 500 with step 10. The result is shown in Fig. 4-7.  

 

 

Figure 4-7 Inertial, objective and non-inertial Liutex values at different x positions with y=10 and z=0.5 

The inertial line and the objective Liutex line are overlapped which exhibits the accuracy of the 

proposed objective Liutex method. 

4.4 Chapter summary 

This chapter derives steps to obtain objective Liutex from kinematic aspect. The basic idea is 

Liutex itself is a Galilean invariant variable which means it is invariant in all inertial frames. Then 

the problem is simplified to how to find Liutex in any one inertial frame from the data in the non-

inertial frame. For simplicity, a special inertial frame is choses s.t. the only difference between it 

and the non-inertial frame is the special inertial frame does not do rotation. Then the angular 

0
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velocity of the non-inertial frame can be evaluated through [𝑉𝑎𝑥 , 𝑉𝑎𝑦 , 𝑉𝑎𝑧]
𝑇

= −
1

2
 [𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]

𝑇
 based 

on a zero-vorticity reference point. After that, the velocity gradient tensor in the special inertial frame 

can be calculated and thus objective Liutex can be obtained. 
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Chapter 5 

Stability theory 

This chapter introduces linear stability theory and how to solve the Orr-Sommerfeld equation 

by Chebyshev polynomial expansions.  

5.1 Orr-Sommerfeld equation 

The Orr-Sommerfeld equation is a fundamental equation in fluid mechanics that describes the 

linear stability of parallel, incompressible flows. It was first introduced by Vincencio Orr and Arnold 

Sommerfeld in the early 20th century. The equation is derived from the Navier-Stokes equations, 

which can be written as  

 {
𝜕𝑢⃗⃗⃗

𝜕𝑡
+ (𝑢⃗⃗ ∙ ∇)𝑢⃗⃗ + ∇𝑝 =

1

𝑅𝑒
∇2𝑢⃗⃗

∇ ∙ 𝑢⃗⃗ = 0
 (5.1) 

where 𝑢⃗⃗ represents velocity vector, 𝑝 represents pressure, 𝑅𝑒 represents Reynolds number, ∇ 

is Hamilton operator and ∇2 is the Laplace operator.  

The flow stability refers to whether disturbances can decay after the base flow is perturbed at 

a certain moment. If the disturbance can decay, it is stable, otherwise it is unstable. So, to analyze 

instability, we suppose the base flow has perturbations. 

 {
𝑢⃗⃗ = 𝑢⃗⃗0 + 𝑢⃗⃗′

𝑝 = 𝑝0 + 𝑝′
 (5.2) 

where 𝑢⃗⃗0 and 𝑝0 are the solution of the base flow and 𝑢⃗⃗′ and 𝑝′ are the velocity disturbance 

and pressure disturbance respectively. 

𝑢⃗⃗, 𝑝 and 𝑢⃗⃗0, 𝑝0 all satisfy the governing equation Eq. (5.1), so we have  
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 {
𝜕𝑢⃗⃗⃗0

𝜕𝑡
+ (𝑢⃗⃗0 ∙ ∇)𝑢⃗⃗0 + ∇𝑝0 =

1

𝑅𝑒
∇2𝑢⃗⃗0

∇ ∙ 𝑢⃗⃗0 = 0
 (5.3) 

 {
𝜕(𝑢⃗⃗⃗0+𝑢⃗⃗⃗′)

𝜕𝑡
+ [(𝑢⃗⃗0 + 𝑢⃗⃗′) ∙ 𝛻](𝑢⃗⃗0 + 𝑢⃗⃗′) + ∇(𝑝0 + 𝑝′) =

1

𝑅𝑒
∇2(𝑢⃗⃗0 + 𝑢⃗⃗′)

∇ ∙ (𝑢⃗⃗0 + 𝑢⃗⃗′) = 0
 (5.4) 

Use Eq. (5.3) to simplify Eq.(5.4), we get  

 
𝜕𝑢⃗⃗⃗′

𝜕𝑡
+ (𝑢⃗⃗0 ∙ 𝛻)𝑢⃗⃗′ + (𝑢⃗⃗′ ∙ 𝛻)𝑢⃗⃗0 + ∇𝑝′ =

1

𝑅𝑒
𝛻2𝑢⃗⃗′ − (𝑢⃗⃗′ ∙ 𝛻)𝑢⃗⃗′ (5.5) 

 ∇ ∙ 𝑢⃗⃗′ = 0 (5.6) 

Eliminating the second order terms of 𝑢⃗⃗′, Eq. (5.5) becomes  

 
𝜕𝑢⃗⃗⃗′

𝜕𝑡
+ (𝑢⃗⃗0 ∙ 𝛻)𝑢⃗⃗′ + (𝑢⃗⃗′ ∙ 𝛻)𝑢⃗⃗0 + ∇𝑝′ =

1

𝑅𝑒
𝛻2𝑢⃗⃗′ (5.7) 

 ∇ ∙ 𝑢⃗⃗′ = 0 (5.8) 

Since Orr-Sommerfeld equation analyzes parallel flow, 𝑢⃗⃗′  and 𝑝′  are waves with 

eigenfunctions which are only dependent on z, and independent on t, x, y. 𝑢⃗⃗′ and 𝑝′ can be written 

in the following format. 

 𝑢⃗⃗′ = 𝑢̂⃗⃗𝑒𝑖(𝛼𝑥+𝛽𝑦−𝜔𝑡) + 𝑐. 𝑐. (5.9) 

 𝑝′ = 𝑝̂𝑒𝑖(𝛼𝑥+𝛽𝑦−𝜔𝑡) + 𝑐. 𝑐. (5.10) 

where 𝑐. 𝑐. represents conjugate complex. Substitute Eq. (5.9) and (5.10) into Eq. (5.7) and (5.8), 

 𝐿𝑢̂ = 𝑅𝑒(𝐷𝑢0)𝑤̂ + 𝑖𝛼𝑅𝑒𝑝̂ (5.11) 

 𝐿𝑤̂ = 𝑅𝑒(𝐷𝑝̂) (5.12) 

 𝐿𝑣 = 𝑖𝛽𝑅𝑒𝑝̂ (5.13) 

 𝑖(𝛼𝑢̂ + 𝛽𝑣) + 𝐷𝑤̂ = 0 (5.14) 

where 𝐿 = [𝐷2 − (𝛼2 + 𝛽2) − 𝑖𝑅𝑒(𝛼𝑢0 − 𝜔)] and 𝐷 represents 
𝜕

𝜕𝑧
.  
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If perturbation is two dimensional, i.e. 𝑣 = 𝛽 = 0, then above equation system can be further 

simplified to  

 𝐿0𝑢̂ = 𝑅𝑒(𝐷𝑢0)𝑤̂ + 𝑖𝛼𝑅𝑒𝑝̂ (5.15) 

 𝐿0𝑤̂ = 𝑅𝑒(𝐷𝑝̂) (5.16) 

 𝑖𝛼𝑢̂ + 𝐷𝑤̂ = 0 (5.17) 

where 𝐿0 = [𝐷2 − 𝛼2 − 𝑖𝑅𝑒(𝛼𝑢0 − 𝜔)]. 

If the perturbation is three-dimensional, Squire transformation can be used to make it in the 

format of two dimensional. Squire transformation is  

 𝛼1𝑢1 = 𝛼𝑢̂ + 𝛽𝑤̂,       𝑣1 = 𝑣,         𝑝1𝑅𝑒1 = 𝑝̂𝑅𝑒 (5.18) 

 𝛼1𝑅𝑒1 = 𝛼𝑅𝑒,     
𝜔1

𝛼1
=

𝜔

𝛼
,       𝛼1

2 = 𝛼2 + 𝛽2 (5.19) 

After removing 𝑝̂  term in Eq. (5.15) by using Eq. (5.16) and removing 𝑢̂  term by using Eq. 

(5.17), the Orr-Sommerfeld equation which is a fourth order ordinary differential equation is 

obtained. 

 {(𝐷2 − 𝛼2)2 − 𝑖𝛼𝑅𝑒 [(𝑢0 −
𝜔

𝛼
) (𝐷2 − 𝛼2) − 𝐷2𝑢0]} 𝑤̂ = 0 (5.20) 

Suppose the interval of the domain is [−1,1], then the boundary conditions should be  

 𝑤̂(±1) = 𝑤̂′(±1) = 0 (5.21) 

Generally, the 𝛼, 𝛽  and 𝜔  in Eq. (5.18)-(5.20) can be all complex numbers. However, in 

practice, people classify the solution of O-S equation problems into temporal or spatial problems. 

For the temporal stability analysis, 𝛼 and 𝛽 are supposed to be real-valued numbers and complex 

eigenvalue 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖  is calculated. In this case, real part 𝜔𝑟   determines the disturbance 
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frequency while the imaginary part controls the temporal growth of the corresponding eigenmodes. 

On the other hand, for the spatial stability problem, 𝜔 and 𝛽 are supposed to be real numbers and 

the complex eigenvalue 𝛼 = 𝛼𝑟 + 𝑖𝛼𝑖 . The real part of 𝛼  describes the streamwise disturbance 

wavenumber and the imaginary part reflects the spatial wave-magnitude growth rate in the 

streamwise direction. 

5.2 Solve Orr-Sommerfeld equation 

Chebyshev polynomials are a set of orthogonal polynomials that are named after the Russian 

mathematician Pafnuty Chebyshev. We will solve the O-S equation through Chebyshev polynomial 

expansion.  

Definition 8(Chebyshev polynomial): Chebyshev polynomials are defined on the interval 

[−1,1] and their expressions are 

 𝑇𝑛(𝑧) = 𝑐𝑜𝑠(𝑛 𝑐𝑜𝑠−1(𝑧)) (5.22) 

where 𝑛 is the order of polynomials. 

For example, 

 𝑇0(𝑧) = 1 (5.23) 

 𝑇1(𝑧) = 𝑧 (5.24) 

 𝑇2(𝑧) = 2𝑧2 − 1 (5.25) 

 𝑇3(𝑧) = 4𝑧3 − 3𝑧 (5.26) 

We expand 𝑤̂ in Chebyshev series 
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 𝑤̂(𝑧) = ∑ 𝑎𝑛𝑇𝑛(𝑧)∞
𝑛=0 ≈ ∑ 𝑎𝑛𝑇𝑛(𝑧)𝑁−1

𝑛=0  (5.27) 

where 𝑁 is the number of Chebyshev polynomials. Then𝐷2𝑤̂(𝑧) can be expressed as 

 𝐷2𝑤̂(𝑧) ≈ ∑ 𝑎𝑛𝑇𝑛
′′(𝑧)𝑁−1

𝑛=0  (5.28) 

The Gauss-Lobatto collocation points are selected as the interpolation points. The Gauss-

Lobatto collocation points are 

 𝑧𝑘 = 𝑐𝑜𝑠 (
2𝑘+1

2𝑁
𝜋) ,      𝑘 = 0,1,… ,𝑁 − 1 (5.29) 

The discretized boundary conditions are 

 ∑ 𝑎𝑛𝑇𝑛(1)
𝑁−1
𝑛=0 = 0                  ∑ 𝑎𝑛𝑇𝑛(−1)𝑁−1

𝑛=0 = 0 (5.30) 

 ∑ 𝑎𝑛𝑇𝑛′(1)
𝑁−1
𝑛=0 = 0                  ∑ 𝑎𝑛𝑇𝑛′(−1)𝑁−1

𝑛=0 = 0 (5.31) 

First, we solve the temporal stability problem. Substitute Chebyshev expansion of 𝑣 into Eq. 

(5.20) and move all terms involving 
𝜔

𝛼
 to the right-hand side and move other terms to the left-hand 

side. We get  

∑ [(−𝑢0𝛼
2 − 𝐷2𝑢0 −

𝛼4

𝑖𝛼𝑅𝑒
)𝑇𝑛 + (𝑢0 +

2𝛼2

𝑖𝛼𝑅𝑒
)𝑇𝑛

′′ −
1

𝑖𝛼𝑅𝑒
𝑇𝑛

′′′′] 𝑎𝑛
𝑁−1
𝑛=0 =

𝜔

𝛼
∑ 𝑎𝑛(𝑇𝑛

′′ − 𝛼2𝑇𝑛)𝑁
𝑛=0 (5.32) 

Denote  

 𝑊𝑛 = (−𝑢0𝛼
2 − 𝐷2𝑢0 −

𝛼4

𝑖𝛼𝑅𝑒
)𝑇𝑛 + (𝑢0 +

2𝛼2

𝑖𝛼𝑅𝑒
)𝑇𝑛

′′ −
1

𝑖𝛼𝑅𝑒
𝑇𝑛

′′′′ (5.33) 

 𝑄𝑛 = (𝑇𝑛
′′ − 𝛼2𝑇𝑛) (5.34) 

Then Eq. (5.32) can be written as  

 [𝑊0 𝑊1 ⋯ 𝑊𝑁−1] [

𝑎0

𝑎1

⋮
𝑎𝑁−1

] = [𝑄0 𝑄1 ⋯ 𝑄𝑁−1] [

𝑎0

𝑎1

⋮
𝑎𝑁−1

] (5.35) 

At each interpolation point 𝑦𝑗, the Eq. (5.35). is satisfied, so we have  
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 𝐴𝑎 =
𝜔

𝛼
𝐵𝑎 (5.36) 

where  

 𝐴 = [

𝑊0(𝑧0) 𝑊1(𝑧0) ⋯ 𝑊𝑁−1(𝑧0)
𝑊0(𝑧1) 𝑊1(𝑧1) ⋯ 𝑊𝑁−1(𝑧1)

⋮ ⋮ ⋮ ⋮
𝑊0(𝑧𝑁−1) 𝑊1(𝑧𝑁−1) ⋯ 𝑊𝑁−1(𝑧𝑁−1)

] (5.37) 

 𝐵 = [

𝑄0(𝑧0) 𝑄1(𝑧0) ⋯ 𝑄𝑁−1(𝑧0)
𝑄0(𝑧1) 𝑄1(𝑧1) ⋯ 𝑄𝑁−1(𝑧1)

⋮ ⋮ ⋮ ⋮
𝑄0(𝑧𝑁−1) 𝑄1(𝑧𝑁−1) ⋯ 𝑄𝑁−1(𝑧𝑁−1)

] (5.38) 

 𝑎 = [

𝑎0

𝑎1

⋮
𝑎𝑁−1

] (5.39) 

Eq. (5.36) describes a generalized eigenvalue problem and temporal stability problem can be 

solved. 

Temporal stability problem indeed solves a linear eigenvalue problem for 𝜔 but it becomes to 

a non-linear eigenvalue problem when solving for 𝛼  because 𝛼  has second power in the O-S 

equation. A common technique to deal with this problem is to extend the eigenvectors to Φ =

[𝑢̂ 𝑤̂ 𝑣 𝑝̂ 𝑖𝛼𝑢̂ 𝑖𝛼𝑤̂ 𝑖𝛼𝑣]𝑇 and we can get a generalised linear eigenvalue problem for 𝛼. 

 𝑖𝛼𝑀𝛷 = 𝑁𝛷 (5.40) 

where  

 𝑀 =

[
 
 
 
 
 
 
 
 
−1 0 0 0 0 0 0

−𝑢0 0 0 −1
1

𝑅𝑒
0 0

0 −𝑢0 0 0 0
1

𝑅𝑒
0

0 0 −𝑢0 0 0 0
1

𝑅𝑒

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0 ]

 
 
 
 
 
 
 
 

 (5.41) 
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 𝑁 =

[
 
 
 
 
 
 
0 𝐷 𝑖𝛽 0 0 0 0
𝜅 𝐷𝑢0 0 0 0 0 0
0 𝜅 0 𝐷 0 0 0
0 𝐷𝑣0 𝜅 𝑖𝛽 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

 (5.42) 

where  

 𝜅 = −𝑖𝜔 + 𝑖𝛽𝑣0 +
1

𝑅𝑒
(𝛽2 − 𝐷2) (5.43) 

By a process similar to what we do to solve the temporal stability problem, we can solve for 𝛼 

by Chebyshev expansion.  

5.3 Chapter summary 

This chapter introduces the governing equation of the perturbation and the method to solve it 

numerically. This method will be used in chapter 6 to explain the mechanism of Hairpin vortex 

together with Liutex criterion. 
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Chapter 6 

Mechanism of Hairpin Vortex formation by Liutex 

This chapter explains the mechanism of hairpin vortex formation. The DNS result observation 

is first provided in section 6.1, describing the development of the flow from laminar to turbulent. 

Then, O-S equation is used to explain the growth of perturbation. Although the DNS is compressible, 

its Mach number is small, and the effect of density is small. So, we can still use the incompressible 

O-S equation to analyze the perturbation growth.  

6.1 DNS result observation 

In the DNS result of the flat plate boundary layer transition, spanwise vortices first occur. As 

shown in Fig.6-1, spanwise vortices are a series of straight vortices align the spanwise direction. 

 

Figure 6-1 spanwise vortices and Liutex magnitude distribution 

Based on our discussion in section 3.3, the vortex exists if we can decompose non-zero 

rotation matrix from the velocity gradient tensor. The distribution of 
𝑑𝑢

𝑑𝑧
 and 

𝑑𝑤

𝑑𝑥
 are shown in Fig. 6-2 
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and 6-3 respectively. 
𝑑𝑢

𝑑𝑧
 are all positive in the bottom layer. Recall that to form a rotation matrix, 

𝑑𝑢

𝑑𝑧
 

and 
𝑑𝑤

𝑑𝑥
 should have different signs, so vortex can exist only at the locations where 

𝑑𝑤

𝑑𝑥
 is negative. 

In Fig. 6-3, we can see  
𝑑𝑤

𝑑𝑥
 have blue negative centers and yellow/red positive centers and the 

vortices will only occur at the blue negative centers. The iso-surface of Liutex is shown in Fig. 6-5 

which matches our prediction. If we observe the motion of fluid with the same velocity at the center 

of the vortex, the vortex can be shown as the closed streamlines, see figure 6-4 in which the vortices 

are shown by the black closed streamlines.  

 

Figure 6-2 distribution of 𝑑𝑢/𝑑𝑧 

 

 

Figure 6-3 distribution of 𝑑𝑤/𝑑𝑥 
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Figure 6-4 distribution of w 

As for the rotation strength, it increases with x, as shown in Fig. 6-5. It can also be seen that 

the region covered by the iso-surface is gradually increasing with the strength at the vortices core 

increase simultaneously.  

 

Figure 6-5 Spanwise vortices and Liutex magnitude 

Use the Liutex core line method, people can get the vortex core structure which is shown in 

Fig.6-6. The vortex core lines are straight for the first two single vortices and from the third vortex, 

the vortex core lines start to become curved. And later on, these curved spanwise vortices are 

stretched and become Λ-vortices. To show the distributions in detail, two spanwise slices (Sy1, Sy2) 

and seven streamwise slices (Sx1-Sx7) are extracted and the iso-surface of |R⃗⃗⃗| = 0.005  and 

contour line of |R⃗⃗⃗| = 0.075 (black or white circles) are plotted in the figures to illustrate the positions 

of Λ-vortex and spanwise perturbation structures, as shown in Fig. 6-7. One major difference 
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between Λ-vortex and the spanwise vortex is Λ-vortex has strong spanwise speed compared with 

spanwise vortex. And from the distribution of v and w, we can find the curved spanwise vortex is 

stretched and the Λ-vortex is received a stronger stretching. 

 

Figure 6-6 Spanwise vortices with Liutex core lines 
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(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 
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(f) 

Figure 6-7 Contour of velocity at two spanwise slices (Sy1 and Sy2) and seven streamwise slices (Sx1~Sx7): (a) u in 

slice Sy1 and Sy2; (b) v in slice Sy1 and Sy2; (c) w in slice Sy1 and Sy2; (d) u in slice Sx1~Sy2; (e) v in slice Sx1~Sy2; (f) 

w slice in Sx1~Sy2; 
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(a) 
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(b) 
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(c) 

 

(d) 
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(e) 
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(f) 

Figure 6-8 Contour of velocity derivatives at two spanwise slices ( Sy1 and Sy2 ) and seven streamwise slices 

(Sx1~Sx7): (a) derivatives of streamwise velocity in slice Sy1 and Sy2; (b) derivatives of spanwise velocity in slice Sy1 

and Sy2; (c) derivatives of normal velocity in slice Sy1 and Sy2; (d) derivatives of streamwise velocity in slice Sx1~Sy2; 

(e) derivatives of spanwise velocity in slice Sx1~Sy2; (f) derivatives of normal velocity in slice Sx1~Sy2; 

Hairpin vortex is also a common vortex structure. The typical shape of hairpin vortex usually 

consists of three parts: (i) two counter-rotating quasi-streamwise vortices, which are close to but 

not attached to the wall surface, known as two legs; (ii) Ring-like vortex named as vortex head, 

where the spanwise vorticity is dominant; (iii) Necks connect the head and legs, as shown in Fig. 

6-9. The head is always Ω-shaped and the term “vortex ring” is often used alternatively to describe 

the combination of head and necks. In the orderly flow transition, the hairpin vortices always appear 

in packets, as shown in Fig. 6-10, which is a typical hairpin-vortex packet. 

 



 

62 

 

 

 

Figure 6-9 Typical shape of Ring like hairpin-vortex 

 

 

Figure 6-10 Typical shape of Ring like hairpin-vortex packet 

After the Λ-vortex is well developed, its typical shape is shown as Fig. 6-9. At t=6.0T, a pair of 

Λ-vortices is located from x=428.3 to x=446.2 and two slices are created at x=444 and y=5.5, see 

Fig. 6-11(a).  The legs of Λ-vortex are two counter rotational cores and they can bring the low speed 

fluid near the bottom wall to the higher position between the legs and sweep the high speed fluid 

at the higher place to the wall, as shown in the Fig. 6-11 (b), (c) and (d) which give the stream 



 

63 

 

traces and the distribution of streamwise and normal velocity near the top of the Λ-vortex.  After the 

low fluid ejects from the bottom wall and meets the high-speed fluid, high strain rate region will be 

formed at the top of Λ-vortex head (see Fig. 6-11 (e) and (f)). It can be seen from distributions of 

the velocity derivatives that, at the top of Λ-vortex head,  
𝜕𝑢

𝜕𝑧
 is larger than zero and 

𝜕𝑤

𝜕𝑥
 is less than 

zero. From the DNS results, it can be seen that the hairpin vortex appears firstly at the top of Λ-

vortex head at time t=6.05T and it is separate from the head of Λ-vortex at the initial stage (see Fig. 

6-12 (a)). The head of original Λ-vortex keeps moving up  

 

(a) 
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(b) 
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(c) 
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(d) 
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(e) 
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(f) 

Figure 6-11 The distributions of flow parameters near the top of  the Λ-vortex head: (a) positions of slices; (b) 

streamtraces in the slices; (c) the distribution of streamwise velocity; (d) the distribution of normal velocity; (e) the 

derivative of streamwise velocity in the two slices; (f) the derivative of normal velocity in the two slices. 

and this will make the shear layer stronger, strengthen the new formed vortex and make its scale 

larger. With the increase of size of the new formed vortex, it will meet the head of Λ-vortex and they 

will combine together and form a Ω-shape or ring-like vortex, see Fig. 6-12 (b), which shows the 

iso-surface of new generated ring-like vortex and velocity profiles of three components. Since the 

ring-like vortex rolls up, it will get a larger streamwise velocity than that of the original Λ-vortex’s 

heads and legs which will develop to the necks and legs of the new formed hairpin vortex. The 

speed difference between the ring-like vortex and the heads and legs of Λ-vortex will make the 

heads and the legs be stretched and form the first ring-like hairpin vortex, as shown in Fig. 6-12 (c). 
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This is also seen from Fig. 20 which shows the location changes of the ring-like vortex in x and z 

directions. From the process of the first ring-like vortex formation (Fig. 6-12), it can be observed 

that high strain rate region is formed following the first ring-like hairpin vortex, and the second and 

the third ring like vortex will generate in the new high strain rate regions with the same mechanism 

as the first one.  
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(a) 
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(b) 
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(c) 

Figure 6-12 The iso-surface of vortices and profiles of the three velocity components in plane across the first ring-like 

vortex at (a) t=6.1T; (b) t=6.25T; (c) t=6.50. The black close curves are the cut section of iso-surface of ring-like vortex 

plotted by Ω=0.52. 

As for the normal position of vortices, the spanwise vortices stay in the same height while the 
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Λ-vortex rolls up in a small angle. When the hairpin vortex is form, it rolls up in a around 45 degree 

angle. Fig. 6-13 and 6-14 shows the roll up of Λ- and hairpin vortices.  

 

Figure 6-13 roll up of Λ-vortex and hairpin vortex 
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Figure 6-14 roll up angle of Λ-vortex and hairpin vortex 

Fig.6-15 shows the streamwise growth of disturbance velocity components. It can be seen that 

the initial normal disturbance velocity have a amplitude about 1–2% of the free-stream velocity with 

initial streamwise disturbance slightly greater than it and initial spanwise disturbance lightly less 

than it. In the initial stage, from x=300 to x=360, the streamwise and normal disturbances increase 

slowly while the spanwise disturbance drops greatly to the level of 10−4. Then, streamwise and 

normal disturbances still  
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Figure 6-15 The growth of disturbance velocity along streamwise direction 

increase slowly but the spanwise disturbance increases rapidly from 10−4 to 10−2. When the 

spanwise disturbance reaches a certain amplitude of the order of 1%, all the perturbation velocity 

components will grow dramatically and reach an amplitude of around 30% of free stream velocity. 

The significant growth is completed in a limited streamwise distance of about 75. After this dramatic 

increase stage, the amplitudes of the disturbance velocity components reach a statistically steady. 

After five periods of development in a linear or weak nonlinear mode, the disturbance velocity 

components, especially in normal and spanwise direction, have a significant growth and the 

spanwise velocity will reach the same order of magnitude with normal velocity. To better illustrate 

the development of the perturbation velocity in normal and span-wise direction along the stream, 

the evolution of the maximum and minimum velocity components along x direction at t=5.0T is 

plotted in Fig. 6-16 and 6-17. For the magnitude of the initial perturbation in normal direction, there 

is not a great growth in the first five periods and the normal disturbance velocity component 

increases in a linear manner. However, though the absolute value of spanwise velocity is still very 
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small after an evolution in five periods, there is an exponential growth in its magnitude, from 10−4 

to 10−2.  

 

Figure 6-16 The development of the maximum and minimum velocity in spanwise direction along streamwise 

 

Figure 6-17 The development of the maximum and minimum velocity in normal direction along streamwise 

The interesting issues of the observations is why the spanwise perturbance decays rapidly in 

the initial stage and all perturbances grow quickly when the spanwise perturbance reaches the 

level of 1%. These questions will be explained in the following sections. 
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6.2 Spanwise vortex formation 

The formation of the spanwise vortices can be explained by solving the O-S equation with 

Blasius solution as the base flow. Blasius solution is an analytical solution of Navier-Stokes 

equation which provides the accurate velocity profile. Set 𝑅𝑒 = 1000 and 𝛼 = 0.29919, we can get 

the unstable mode and its corresponding eigenfunctions. The eigenvalues of the O-S equation are 

shown in Fig.6-18 and  

 

Figure 6-18 Eigenvalues of 2D modes 

there is an unstable mode 𝜔 = 0.3349 +  0.0094𝑖 with the eigenfunctions 
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Figure 6-19 Eigenfunction of the unstable 2D modes(v=0) 

The perturbations in unstable modes will be amplified with time and other stable modes will 

decay. In practice, the perturbations exist because there is noise in the environment, or the surface 

is rough. In our DNS, the initial perturbation is imposed artificially. 

Linear stability theory can explain the growth of velocity perturbations, but velocity 

perturbations do not necessarily lead to vortex. So, we use Liutex to link the velocity perturbations 

to vortex. According to the linear stability theory, the velocity distribution is  

 𝑢 = 𝑢0 + 𝑢̂𝑒𝑖(𝛼𝑥−𝜔𝑡) (6.1) 

 𝑤 = 𝑤0 + 𝑣𝑒𝑖(𝛼𝑥−𝜔𝑡) (6.2) 

 𝑣 = 0 (6.3) 

The velocity gradient tensor is 

 𝑔𝑟𝑎𝑑𝑣⃗ = [

(𝑖𝛼)𝑢̂𝑒𝑖(𝛼𝑥−𝜔𝑡) 0
𝜕𝑢0

𝜕𝑧
+

𝜕𝑢

𝜕𝑧
𝑒𝑖(𝛼𝑥−𝜔𝑡)

0 0 0

(𝑖𝛼)𝑤̂𝑒𝑖(𝛼𝑥−𝜔𝑡) 0
𝜕𝑤0

𝜕𝑧
+

𝜕𝑤̂

𝜕𝑧
𝑒𝑖(𝛼𝑥−𝜔𝑡)

] (6.4) 

Obviously, the Liutex direction which is the real eigenvector of 𝑔𝑟𝑎𝑑𝑣⃗ can only be [0 1 0]𝑇 or  
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[0 −1 0]𝑇 which is dependent on the vorticity direction. The vorticity direction is  

 𝜔𝑦 =
𝜕𝑢0

𝜕𝑧
+

𝜕𝑢

𝜕𝑧
𝑒𝑖(𝛼𝑥−𝜔𝑡) − (𝑖𝛼)𝑤̂𝑒𝑖(𝛼𝑥−𝜔𝑡) (6.5) 

At the beginning, the disturbance terms are small, so the sign of 𝜔𝑦  direction is dominated by 

the term 
𝜕𝑢0

𝜕𝑧
 which is positive for Blasius profile. Thus, the rotation axis direction is aligning positive 

y axis direction which coincides with the DNS result as shown in Fig.6-20.  

 

 

 

Figure 6-20 Spanwise vortex direction 
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In the spanwise vortex formation period, the spanwise perturbation experiences a rapid decay 

until x=330 and then begins increasing. That is because the 3D modes shown imposed at the inlet 

is stable and it has to decay. Fig 6-21 shows the modes when 𝛼 = 0.2405 and 𝛽 = 0.5712. It can 

be seen all modes are stable.  

 

Figure 6-21 Eigenvalues of 3D modes at inlet 

Since the linear stability theory is an approximation, its accuracy decreases with x increasing. 

We need used the local velocity profile as the base flow to keep the accuracy. When x reaches 400, 

the original imposed stable 3D mode becomes unstable because of the change of base velocity 

profile. Use the local velocity profile at x=400, test the same 3D mode. We can find the unstable 

3D perturbation mode and its corresponding eigenfunctions. 
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Figure 6-22 Eigenvalues of 3D modes at x=400 

 

 

Figure 6-23 Eigenfunctions of 3D modes at x=400 

6.3 Λ-vortex formation 

The core reason of the formation of Λ-vortex is 3D modes perturbation becomes dominant. 

The velocity distribution can be expressed as  
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 𝑢 = 𝑢0 + 𝑢̂2𝑑𝑒𝑖(𝛼2𝑑𝑥−𝜔2𝑑𝑡) + 𝑢̂3𝑑𝑒𝑖(𝛼3𝑑𝑥+𝛽3𝑑𝑦−𝜔3𝑑𝑡) (6.6) 

 𝑤 = 𝑤0 + 𝑤̂2𝑑𝑒𝑖(𝛼2𝑑𝑥−𝜔2𝑑𝑡) + 𝑤̂3𝑑𝑒
𝑖(𝛼3𝑑𝑥+𝛽3𝑑𝑦−𝜔3𝑑𝑡) (6.7) 

 𝑣 = 𝑣0 + 𝑣3𝑑𝑒
𝑖(𝛼3𝑑𝑥+𝛽3𝑑𝑦−𝜔3𝑑𝑡) (6.8) 

When 2D disturbance is dominated, the disturbance expression only has 𝛼  terms which 

indicates the distribution is uniformly in the spanwise and the vortex is straight as discussed in the 

previous section. With the increase of the 3D perturbation modes, 𝛽 plays a more important role in 

the vortex shape and then the difference in spanwise direction occurs. Suppose at some (x,y), the 

velocity gradient tensor generates rotation, then at the same phase of the cosine function, the 

velocity gradient tensor is similar. Being the same phase indicates  

 𝛼3𝑑𝑥 + 𝛽3𝑑𝑦 = 𝑐 (6.9) 

where c is the phase that generates vortex. 

Eq. (6.9) implies,  

 𝑡𝑎𝑛𝜃 = −
𝛽3𝑑

𝛼3𝑑
= −

0.5712

0.2405
≈ −2.375 (6.10) 

So 𝜃 is around 67°. This prediction coincides with the DNS result. 
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Figure 6-24 Angle between Λ-vortex and spanwise direction without iso-surface 
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Figure 6-25 Angle between Λ-vortex and spanwise direction with iso-surface 

Another evidence that Λ-vortex formation is caused by 3D mode is the Λ-vortex first appears 

after the 3D mode is excited. As mentioned in section 6.2, 3D mode is excited at x=400 and Λ-

vortex is formed right after it. 

6.4 Hairpin Vortex formation 

After the formation of Λ-vortex, the distance between two Λ-vortex becomes smaller and 

smaller since the two Λ-vortex are oblique. When the two Λ-vortex are close enough, it generates 
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a strong shear region as shown in because the rotation motion of the two Λ-vortices eject slow 

speed fluid from the bottom to the top and sweep the fast speed fluid from the top to the bottom. 

Use the principal decomposition introduced in section 3.6, we can get the shear distribution which 

is shown in Fig.6-26 to 6-28.  And this shear region is unstable. Use the velocity profile at the shear 

region, we can get an unstable mode as shown in Fig. 6-29 and its corresponding eigenfunctions 

shown in Fig. 6-30.  

 

Figure 6-26 shear region between two Λ-vortices 
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Figure 6-27 Shear region between two Λ-vortices (top view) 
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Figure 6-28 Shear region between two Λ-vortices (side view) 
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Figure 6-29 Modes at the shear region 

 

 

Figure 6-30 Eigenfunctions of the unstable mode at shear region 

The hairpin vortices roll up because 𝑅𝑧, which is the z direction component of Liutex vector. In 

Fig. 6-31, 𝑅𝑧 distribution in the selected slice is shown. 𝑅𝑧 is zero at the spanwise vortex becomes 

large at the hairpin vortex locations. This explains the reason why hairpin vortex rolls up while 

spanwise vortex not. 
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Figure 6-31 𝑅𝑧  distribution at the slice 
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6.5 Chapter summary 

In this chapter, the mechanism of hairpin vortex formation is explained. The spanwise vortex 

comes from the unstable 2D mode of O-S equation with Blasius solution as the base flow. The 

Liutex calculated from the velocity gradient tensor exhibits the spanwise vortices are straight and 

predicts the rotation direction clearly. The spanwise perturbation gradually increases as the 

spanwise vortex becomes curved which introduces 𝛽 in the disturbance. When x reaches 400, the 

unstable 3D mode is excited and gradually becomes dominant in the perturbation. After that, Λ-

vortex is formed and the angle between Λ-vortex and spanwise direction can be evaluated by the 

𝛼 and 𝛽 in the 3D modes. Hairpin vortex is formed because the Λ-vortices generate a strong shear 

region which is unstable. Λ-vortices and hairpin vortices roll up because 𝑅𝑧 is greater than 0. The 

roll up angle of hairpin vortices are larger than that of Λ-vortices since 𝑅𝑧 of hairpin vortices are 

larger than that of Λ-vortices.  

 

 

 

 

  



 

91 

 

Chapter 7 

Summary 

The third generation vortex identification method, Liutex, overcomes the drawbacks of the 

previous first generation and second generation methods. It can correctly reveal the direction and 

strength of the local rotation. With this powerful tool, we revisit the mechanism of the hairpin vortex 

formation. The spanwise vortices are formed by the unstable 2D mode of O-S equation, which is 

the governing equation of the perturbations. Liutex correctly predict the direction and shape of the 

spanwise vortex. The 3D mode enforced at the inlet is original stable, however, with the 

development of the flow, the base flow profile is change which results in this 3D mode becomes 

unstable. Thus, the spanwise disturbance grows and gradually reaches the same level as the 

disturbance in the other two directions. Then Λ-vortex is formed and the angle between Λ-vortex 

and the spanwise direction can be estimated by the 𝛼  and 𝛽  in the 3D modes. With the 

development of Λ-vortices, the distance between two Λ-vortices becomes smaller and it introduces 

a strong shear region because of the “sweep” and “eject” motions. This shear region is unstable 

and will become the hairpin vortex. The 𝑅𝑧 of spanwise vortex is zero, so spanwise vortex does not 

change in the normal direction. The 𝑅𝑧 of Λ-vortex and hairpin vortex are greater than 0, therefore 

these vortices roll up. 

Apart from the mechanism of hairpin vortex by Liutex, some of my other work during my Ph.D. 

student period is also included. To find a decomposition of velocity gradient tensor that can 

represent rotation, shear and stretching/compression part correctly, principal coordinate and 
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principal decomposition are developed. Based on this decomposition, the correlation between 

Liutex and some popular vortex identification methods are analyzed. The result shows the first and 

second generation methods are more or less contaminated by shear or stretching/compression. To 

avoid the influence of frame selection, the objective Liutex is proposed. Objective Liutex can obtain 

Liutex structure in the inertial coordinate system from the data collected in a non-inertial frame.  
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Appendix 

Algorithm to find principal coordinate[49] 

Step1: Rotate around the z axis. 

 
Figure 8-1 Rotation around the z-axis 

Suppose 𝑅⃗⃗ = (𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧). Angle 𝛼 can be calculated by 

 𝛼 = acos(
(𝑅𝑥,𝑅𝑦)∙(1,0)

√𝑅𝑥
2+𝑅𝑦

2
) (1) 

where (𝑅𝑥 , 𝑅𝑦) is the projection of 𝑅⃗⃗ in the xy-plane and (1,0) is the direction of x-aixs (Fig 7-

1). 

The rotation matrix around the z-axis 𝑄𝑥 is 

 𝑄𝑥 = [
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼 0
−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
] (2) 

Step 2: Rotate around the y’ axis. 
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Figure 8-2 Rotation around the y’-axis 

Angle 𝛽 can be calculated by 

 𝛽 = acos(
𝑅⃗⃗∙(0,0,1)

√𝑅𝑥
2+𝑅𝑦

2+𝑅𝑧
2
) (3) 

where (0,0,1) is the direction of z-axis. It is noted that the coordinates of 𝑅⃗⃗ and z-axis are both 

expressed in the original xyz coordinate system, since step 1 does not change 𝛽 (Fig 7-2). 

The rotation matrix around the y’-axis 𝑄𝑦′ is 

 𝑄𝑦′ = [
𝑐𝑜𝑠𝛼 0 −𝑠𝑖𝑛𝛼

0 1 0
𝑠𝑖𝑛𝛼 0 𝑐𝑜𝑠𝛼

] (4) 

In general, the rotation matrix Q is 

 𝑄 = 𝑄𝑦′𝑄𝑥 (5) 

By doing Q rotation, the z’’-axis is along the same direction of Liutex 𝑅⃗⃗. The velocity gradient 

tensor in the x’’y’’z’’ coordinate is 

 ∇𝑣′′⃗⃗ ⃗⃗ ⃗ = 𝑄(∇𝑣⃗)𝑄𝑇 (6) 

Step 3: Rotate around the z’’-axis. 

After making the z’’-axis along the same direction of Liutex 𝑅⃗⃗, the coordinate will be rotated 
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around the z’’-axis to make the velocity gradient tensor satisfy the part 2 and 3 of the principal 

coordinate definition. 

The velocity gradient tensor ∇𝑣′′⃗⃗⃗⃗⃗ is in the form of 

 ∇𝑣′′⃗⃗ ⃗⃗ ⃗ =

[
 
 
 
 (∇𝑣′′⃗⃗ ⃗⃗ ⃗)

11
(∇𝑣′′⃗⃗ ⃗⃗ ⃗)

12
0

(∇𝑣′′⃗⃗ ⃗⃗ ⃗)
21

(∇𝑣′′⃗⃗ ⃗⃗ ⃗)
22

0

(∇𝑣′′⃗⃗ ⃗⃗ ⃗)
31

(∇𝑣′′⃗⃗ ⃗⃗ ⃗)
32

𝜆𝑟]
 
 
 
 

 (7) 

Suppose it is required to rotate angle 𝜃. The rotation matrix is 

 𝑃 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] (8) 

The velocity gradient tensor after rotation ∇𝑉⃗⃗ (Gao et al. 2019a) is 

 ∇𝑉⃗⃗ = 𝑃∇𝑣′′⃗⃗ ⃗⃗ ⃗𝑃𝑇 =

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌
𝜆𝑟]

 
 
 
 

 (9) 

where 

 
𝜕𝑈

𝜕𝑌
= 𝑎 sin(2𝜃 + 𝜑) − 𝑏 (10) 

 
𝜕𝑉

𝜕𝑋
= 𝑎 sin(2𝜃 + 𝜑) + 𝑏 (11) 

 𝑎 =
1

2
√((∇𝑣′′⃗⃗ ⃗⃗ ⃗)

22
− (∇𝑣′′⃗⃗ ⃗⃗ ⃗)

11
)
2

+ ((∇𝑣′′⃗⃗ ⃗⃗ ⃗)
21

+ (∇𝑣′′⃗⃗ ⃗⃗ ⃗)
12

)
2

 (12) 

 𝑏 =
1

2
((∇𝑣′′⃗⃗ ⃗⃗ ⃗)

21
− (∇𝑣′′⃗⃗ ⃗⃗ ⃗)

12
) (13) 

 𝜑 =

{
 
 
 

 
 
 𝑎𝑐𝑜𝑠 (

1

2
((∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

22
−(∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

11
)

𝑎
),       (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

21
+ (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

12
≥ 0

 asin(

1

2
((∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

21
+(∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

12
)

𝑎
),     (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

21
+ (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

12
< 0, (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

22
− (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

11
≥ 0

asin(
−

1

2
((∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

21
+(∇𝑣′′⃗⃗ ⃗⃗ ⃗⃗ )

12
)

𝑎
) + 𝜋,         (∇𝑣′′⃗⃗ ⃗⃗⃗)

21
+ (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

12
< 0, (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

22
− (∇𝑣′′⃗⃗⃗⃗⃗⃗ )

11
< 0  

 (14) 

Recall that the fundamental Liutex magnitude expression (Liu et al. 2018) is 2(b-a), so when 
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2𝜃 + 𝜑 =
𝜋

2
, the velocity gradient tensor satisfies definition of principal coordinate. Therefore, 

 𝜃 =
1

2
(
𝜋

2
− 𝜑) (15) 

Then the value of each entry is known. 

 𝑃 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] (16) 

After that, the velocity gradient tensor in the principal coordinate is found. 

 ∇𝑉⃗⃗ = 𝑃∇𝑣′′⃗⃗ ⃗⃗ ⃗𝑃𝑇 = 𝑃𝑄(∇𝑣⃗)𝑄𝑇𝑃𝑇 (17) 
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