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Abstract

Mechanism of Hairpin Vortex Formation by Liutex

Yifei Yu, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Chaoqun Liu

Turbulence is still a mystery for human after more than one century’s development of fluid

dynamics. Hairpin vortex formation is regarded as an essential process for a laminar flow transition

to the turbulent flow. A new correct third generation vortex identification method, Liutex, was

proposed in 2018, which can represent local rotation direction and reveal the local angular speed

correctly. Using this powerful tool, the mechanism of hairpin vortex formation is re-examined. This

dissertation (1) explains the mechanism of hairpin vortex formation by solving Orr-Sommerfeld

equation using Chebyshev spectrum method (2) observes the DNS result of flat plate boundary

layer transition (3) develops objective Liutex (4) finds correlations between Liutex and other popular

vortex identification methods (5) defines principal coordinate and principal decomposition (6)

defines Liutex core line. Formation of hairpin vortex usually goes through three stages: (1)

spanwise vortex (2) A-vortex (3) hairpin vortex. Spanwise vortex is formed because the Blasius

solution has unstable 2D mode which is called Tollmien—Schlichting wave and this mode leads to

the spanwise vortex. 3D mode enforced in DNS case is originally stable for Blasius solution profile,

however, with the development of the flow, the base flow velocity profile is changed. Use the new
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velocity profile as the base flow, we will find the 3D mode becomes unstable. A-vortex appears with

the growth of the 3D perturbation. The “eject” and “sweep” motion of A-vortex generate strong

shear region. This region is unstable and results in the hairpin vortex. The A-and hairpin vortex roll

up since z-component of Liutex is positive. Principal decomposition decomposes velocity gradient

tensor into parts with clear physical meanings. Objective Liutex can obtain Liutex structure in an

inertial frame from the data collected in the non-inertial frames. Liutex core line method is threshold-

free and provides a unique vortex structure. Correlation analysis between Liutex and other methods

show other methods are contaminated by shear or stretching.



Table of Contents

ACKNOWIEAGEMENTES ... i
ADSETACT. .. iv
List Of HIUSEratioNS. ..o iX
List Of TADIES ... Xiii
Chapter? INTrOAUCTION .........oiiiiiiiiiiiiiii ettt a e e e e s ebeebeebeeneeennes 1
Chapter2 Direct Numerical SImuIation ................oiiiiiiiiiiiiiiiiiiiiiiiiie e eeeeeeeeeeee 9
2.1 Governing €QUALIONS........oooi i 10
2.2 Numerical MethOdS. ..........cuiiiiiiiie e 12
G I B | NN S R o7 1YY= o 13
2.4 Code ValIdAtION......ceiiiiiiii e 15
2.5 Chapter SUMMAIY .....coooiiiiiiiiie s e e e e e e e e e e e e e e ta e r e e e e e eeeeaanaaaeeaeeees 16
Chapter 3 Three Generations of Vortex definitions and Identification methods ........................... 17
3.1 First- and second-generation Methods..............i s 17
3.2 Common problems of the second-generation methods.............ccooeeiiiiiiiiiiiiiiiieieieecenn 21
3.3 Liutex—third generation method ... 21
3.4 Validation Of LIUEX........oi i e e 24
3.5 LIULEX COIE lINES ... s 24
3.6 Principal coordinate and principal decomposition .............ccoouiiiiiiiiii i 26

Vi



3.7 Correlation between Liutex and some popular previous vortex identification methods ...28

3.8 Chapter SUMIMAIY ........uuuiiiiiiiiiiiiiiiiiii s 29
Chapter 4 ODJECHVE VOITEX........uiiiiiiiiiiiiiiiiiiiii ettt eeeeeneeeeenennes 31
4.1 Galilean iINVarianCe .........oooo oo 32
4.2 ODJECHVE LIUIEX ..o 34
4.3 Numerical EXampIes ..o 37
4.4 Chapter SUMMAIY .o 41
Chapter 5 Stability thEOTY ..........uiiiiiiiiiiii e e e e eeeeseeraeaee 43
5.1 Orr-Sommerfeld €qUALION ...........ooeuiiiiiii e 43
5.2 Solve Orr-Sommerfeld qQUAatioN..........cooiiiiiiiiiiiis e e e e 46
Lo TRC I @7 0 T=To | (= oYU [ 10 =1 /2 49
Chapter 6 Mechanism of Hairpin Vortex formation by Liutex ...........ccccviiiiii i, 50
6.1 DNS result 0bServation ... 50
6.2 Spanwise VOrteX formation............ouuiiii i e 77
6.3 A-vOrteX fOrMAatioN ..o 81
6.4 Hairpin Vortex formation ............oooiiiiiiiii i 84
6.5 Chapter SUMIMAIY ... ..uuuuiiiiiiiiiiiiiiiiiiii s 90
L0 o= o1 =Y S 10 410 0 =1 PRSP PPPPPPNS 91
Appendix Algorithm to find principal coordinate.............cccoe i, 93
REFEIENCE: ...ttt e e et e e e e e e e e e bbb e e e e e e e e e 97

vii



BIOGRAPHICAL INFORMATION

viii



List of lllustrations

Figure 1-1 vortex region and vortiCity INES...........oooiiii i 3
Figure 1-2 A side view of the Liutex core line for early transition stage .......................c 5
Figure 2-1 Physical domain of boundary layer flow transition simulation................................ 14
Figure 2-2 Schematics of coordinate transformation ...............cccooooiii e, 15
Figure 2-3 Log-linear plots of the time-and spanwise-averaged velocity profile in wall unit ......... 16
Figure 3-1 Couette flOW ......cooooiiiii 18
Figure 3-2 Coordinate transformation. ... 22
Figure 3-3 Liutex core lines of the plat plate boundary transition without iso-surface .................. 25
Figure 3-4 Liutex core lines of the plat plate boundary transition with iso-surface........................ 26
Figure 3-5 Correlations between Liutex and vorticity, Q, Aci, A2 and A..............cceiii. 29
Figure 4-1 Streamline in the original coordinate system ..o, 31

Figure 4-2 Streamline in the moving coordinate system at the same velocity of the selected point

Figure 4-3 Relation between the velocity in the inertial and non-inertial frames ......................... 34

Figure 4-4 Vortex structure in the inertial original coordinate with Liutex=0.07 iso-surface (a) overall

(D) frOM the (0P e 38

Figure 4-5 Vortex structure in the observer’s coordinate with Liutex=0.07 iso-surface (a) overall (b)

LT 0T TN (o] o ST 39

Figure 4-6 Objective Vortex with Liutex=0.07 iso-surface (a) overall (b) from the top................. 40

¢



Figure 4-7 Inertial, objective and non-inertial Liutex values at different x positions with y=10 and

4 R T RSP RR 41
Figure 6-1 spanwise vortices and Liutex magnitude distribution ...................... 50
Figure 6-2 distribution Of du/dz .........ooooiiiiii i 51
Figure 6-3 distribution Of dW /dx.........ooooiiiii i 51
Figure 6-4 distribution Of W ... 52
Figure 6-5 Spanwise vortices and Liutex magnitude ..............ccccoooii 52
Figure 6-6 Spanwise vortices with Liutex core liNes ..., 53

Figure 6-7 Contour of velocity at two spanwise slices (Sy1 and Sy2) and seven streamwise slices

(Sx1~Sx7): (a) u in slice Sy1 and Sy2; (b) v in slice Sy1 and Sy2; (c) w in slice Sy1 and Sy2; (d) u

in slice Sx1~Sy2; (e) v in slice Sx1~Sy2; (f) w slice iN SX1~SyY2; .....ccoeeviiriiiiiiii i, 56

Figure 6-8 Contour of velocity derivatives at two spanwise slices ( Sy1 and Sy2 ) and seven

streamwise slices (Sx1~Sx7): (a) derivatives of streamwise velocity in slice Sy1 and Sy2; (b)

derivatives of spanwise velocity in slice Sy1 and Sy2; (c) derivatives of normal velocity in slice Sy1

and Sy2; (d) derivatives of streamwise velocity in slice Sx1~Sy2; (e) derivatives of spanwise

velocity in slice Sx1~Sy2; (f) derivatives of normal velocity in slice Sx1~Sy2;..........cccoeeiiiiiiiinnn. 61
Figure 6-9 Typical shape of Ring like hairpin-vorteX ............ccccceeiiii 62
Figure 6-10 Typical shape of Ring like hairpin-vortex packet.............ccccco, 62

Figure 6-11 The distributions of flow parameters near the top of the A-vortex head: (a) positions of

slices; (b) streamtraces in the slices; (c) the distribution of streamwise velocity; (d) the distribution



of normal velocity; (e) the derivative of streamwise velocity in the two slices; (f) the derivative of

normal velocity in the tWO SIICES.........oooi i 68

Figure 6-12 The iso-surface of vortices and profiles of the three velocity components in plane across

the first ring-like vortex at (a) t=6.1T; (b) t=6.25T; (c) t=6.50. The black close curves are the cut

section of iso-surface of ring-like vortex plotted by Q=0.52..............ooimiiiiiiiiiiiiiiiiiieeiae 72
Figure 6-13 roll up of A-vortex and hairpin VOrteX...........oooo 73
Figure 6-14 roll up angle of A-vortex and hairpin Vortex ..........ccccoo 74
Figure 6-15 The growth of disturbance velocity along streamwise direction................................ 75

Figure 6-16 The development of the maximum and minimum velocity in spanwise direction along

F == 10 AT T N 76

Figure 6-17 The development of the maximum and minimum velocity in normal direction along

SETEAIMWISE ... e ettt e e e et e e e e e e e e e e e e e e e e e e e e e e e e s 76
Figure 6-18 Eigenvalues of 2D MOAES ........ccoovuiiiiiiii i e s 77
Figure 6-19 Eigenfunction of the unstable 2D modes(v=0)..........cccceeeeeiiiiiiiii, 78
Figure 6-20 Spanwise vortex dir€CHON ..........cooeiiiiiii i 79
Figure 6-21 Eigenvalues of 3D modes atinlet...........ccoooiiiiiii 80
Figure 6-22 Eigenvalues of 3D modes at X=400...........coooiiiiiiiiiiiiie, 81
Figure 6-23 Eigenfunctions of 3D modes at Xx=400...........cccoeiiiiiiiiiiii, 81
Figure 6-24 Angle between A-vortex and spanwise direction without iso-surface....................... 83
Figure 6-25 Angle between A-vortex and spanwise direction with iso-surface............................ 84

Xi



Figure 6-26 shear region between two A-VOrtiCeS ..............coovviiiiiiiiiii e, 85

Figure 6-27 Shear region between two A-vortices (10p VIEW) ..o 86
Figure 6-28 Shear region between two A-vortices (Side VIEW) ..o, 87
Figure 6-29 Modes at the shear region ... 88
Figure 6-30 Eigenfunctions of the unstable mode at shear region ..................cc, 88
Figure 6-31 Rz distribution at the Slice ... 89
Figure 8-1 Rotation around the Z-axiS ... 93
Figure 8-2 Rotation around the y’-aXiS .........oooeeiiiiiiii i 94

Xii



List of Tables

Table 1 GeoMeEtry PAramEtErsS ......cooviiiiiii e e

Table 2 Inflow parameters

Xiii



Chapterl

Introduction

Vortex is a widely existing phenomenon in the world such as tornado, turbulence and star

vortex in Galaxy. People usually intuitively recognize vortex as rotational motion of fluids, however,

not until recently there is a rigorous vortex mathematical definition. Vortex was first defined by

Helmholtz[1] as the vortex tubes and vortex filaments which are essentially vorticity tubes. We call

the vorticity and vorticity related vortex identification methods as the first generation (G1). Vorticity

method comes from the fact that vorticity does represent rotation for ideal rigid body. However, Gao

et al.[2] found that vorticity actually is made up of rigid body rotation and shear deformation. There

is no shear deformation for ideal rigid body, thus vorticity can reveal the rotation very well. However,

when it comes to fluid for which shear deformation can exist, vorticity is no longer accurate

especially in the region where there is strong shear. Yu et al.[3] did research on the correlation

between Liutex[4, 5] (third generation method and will be introduced later) and some popular vortex

identification methods including vorticity. It is found that in the boundary layer region where shear

is strong, the correlation between Liutex and vorticity is weak but, in the region far away from the

boundary where shear is small, the correlation is strong. G1 methods have been adopted by almost

all textbooks for more than one century. It is pointed out by Nitsche[6] in the Encyclopedia of that

“A vortex is commonly associated with the rotational motion of fluid around a common centerline.

It is defined by the vorticity in the fluid which measures the rate of local fluid rotation”. Wu et al.[7]

stated in their textbook that “vortex is a connected fluid region with high concentration of vorticity
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compared with its surrounding”. In Ref [8], he gave a clearer definition that “a vortex is a vorticity

tube surrounded by irrotational fluid”. However, many evidences showing vortex is not vorticity

arouse scientists’ attention. In 1989, Robinson et al.[9] pointed out that “the association between

regions of strong vorticity and actual vortices can be rather weak in the turbulent boundary layer,

especially in the near wall region” Wang et al.[10] found that the vorticity lines are not align vortex

regions and vorticity is even small inside vortex region but big outside as shown in Fig.1-1. Some

counter examples can also be immediately provided. For the laminar channel flow whose analytical

velocity profile is u(y) = 4y(1 — ), it is easily to calculated out that vorticity in non-zero, but the

streamlines are all parallel straight lines, and no vortex can be found. Around 1990s, researchers

gradually recognized the problems of vorticity and started to find better vortex identification

methods. In the trend of finding better vortex identification methods, some popular methods have

been proposed including Q criterion[11], A criterion[12], A, criterion[13], A.; criterion[14] and etc.

These methods are classified as the second generation[4]. The appearance of the second-

generation methods itself is a strong evidence that vortex is not vorticity as there is no need for

human to develop new methods if vorticity works well. Although, these methods perform better than

vorticity, they share some common problems. Firstly, they are all scalar methods which lose the

important information about rotation axis. Secondly, the relation between the values provided by

these methods and the real angular velocity is unclear, i.e., these methods reflect relative rotation

strength. It is very common that for the same case, different second-generation methods can give

vortex strengths with orders difference. Thirdly, to visualize the vortex, a threshold needs to be
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chosen to draw the iso-surface. However, the choice of threshold is empirical and different threshold
choice will lead to different conclusions on vortex for the same case. For example, if the threshold
is big the vortex breaks down, but if the threshold is small, the vortex is continuous. Then, here
comes the problem, the vortex indeed breaks down or not. Fourthly, the second-generation
methods are not accurate and are more or less contaminated by shear or stretching/compression.
A good vortex identification method should satisfy the following criterions simultaneously[15]:(1)
absolute strength (2) relative strength (3) local rotational axis (4) vortex rotation (5) vortex core size
and (6) vortex boundary. To overcome previously-mentioned drawbacks, Liutex[5], which is
classified as the third generation method, was proposed by Liu et al. Liutex is a vector whose
magnitude is twice angular speed and whose direction reveals the local rotation axis direction.
Liutex represents pure rigid body rotation which is not contaminated by shear or
stretching/compression.

'm
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Figure 1-1 vortex region and vorticity lines[16]

The definition of Liutex direction (local rotation axis) comes from the basic idea that the local



rotation axis can only be stretched or compressed align its direction, i.e., dv = gradv -7 = A7
where d¥ is the velocity increment and 7 is the local rotation axis. The definition of Liutex magnitude
comes from extracting rigid rotation part from the velocity gradient tensor and can be evaluated by
the following formula[17]:
R=®&-7— [(B-7)%—42%

Detailed explanation can be found in section 3. Apart from Liutex, some other progress has
been made on vortex identification. Liutex core line method[18] can provide a unique vortex
structure which avoid choosing threshold. It shows the strength of vortex by different colors

meanwhile.
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(a) without iso-surface



(b) with iso-surface

Figure 1-2 A side view of the Liutex core line for early transition stage

Although the Liutex core line method is currently best method to exhibit the vortex structure,
people have not developed an ideal program to automatically draw Liutex core lines. Xu et al[19,
20] attempted to solve the problem by selecting seed points and achieved good success, but for
different cases, parameters need to be adjusted. Right now, the most convenient vortex
visualization is still by iso-surface. To avoid adjusting the threshold, modified Liutex-Omega
method[21] which develops from Omega[22] method is proposed. Omega method is a scalar vortex
identification method whose advantage is that the proper threshold for drawing iso-surface is
always around 0.52. Considering the range of Omega method is [0.5,1], it is much easier to find
the proper threshold method compared to the second-generation methods. Liutex-Omega[21]
method uses Liutex to remove the shear contamination from Omega method and yields a more

accurate method at the same time keeps the original advantages.
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Since the appearance of Liutex, many researchers have tested and analyzed Liutex method,

and the correctness of Liutex definition has been repeatedly verified. Guo et al.[23] compared

vortex predicted by Liutex and other methods based on the observation of a vortex evolution

experiment result, and found that Liutex matches the experiment best. Cuissa[24] tested Liutex

based on the Lamb-Oseen vortex which has analytical solution. He found that Liutex is the only

one that correctly indicated the vortex region and the only one that coincides with the analytical

rotational period. In the paper published in Space Science Reviews[25], it states that “it (Liutex) is

the only reliable quantity for the extraction of physical information about a vortex, such as the

rotational period and the curvature radius”. Borisov et al.[26] from Russian Academy of Sciences

used Liutex to analyze vortex structures in the supersonic flow around a tandem of wings.

After having the powerful tool for detecting vortex, we will revisit a classical topic in fluid

dynamics, the mechanism of hairpin vortex formation which is an essential step for the laminar flow

transition to turbulence. Turbulence is a natural phenomenon that can be widely observed, and

most practical flows are turbulent. However, the mechanism of turbulence generation and

development and the turbulence structure are still mysterious. Usually, people believe that flow

transition from laminar to turbulent flow in a boundary layer includes four main stages: (i) receptivity,

(i) linear instability, (iii) non-linear growth, and (iv) vortex breakdown to turbulence. Many direct

numerical simulation (DNS) results and experiments show that straight spanwise vortices appear

first and then they are gradually distorted followed by the formation of A-vortex. After that, hairpin

vortex will be formed and then the flow will become turbulence.



The most famous early study of laminar flow transition was conducted by Reynolds[27].
Reynolds did research on the transition of pipe flow and found the transition is highly related

to % which is named as Reynolds number in memory of his extraordinary contribution. At that

time, people commonly thought that inviscid dynamics governs the phenomena at high
Reynolds number. In 1880, Lord Rayleigh[28] proposed the linear stability theorem for inviscid
parallel flow which successfully explained the “roll-up” instability of inflectional shear flows but
not yet solved the problem of wall-bounded flow, e.g., Blasius boundary-layer solution and
Poiseuille flow. It is because viscosity which plays a necessary role in the instability was not
taken into consideration. Taylor[29] perhaps first noticed this reason and Prandtl[30]
emphasized it later. According to Rayleigh’s inviscid stability theory, existence of an inflection
point is the necessary condition for plane-parallel shear flow to have unstable modes. However,
experiments together with the observations from people’s daily life show that Poiseuille flow,
pipe flow, which do not contain any inflection points, are unstable if their Reynolds number are
sufficiently high. To find a more accurate instability theory, Orr[31] and Sommerfeld[32]
developed the incompressible viscous stability theory which is called Orr-Sommerfeld equation
by today’s scientists. Orr-Sommerfeld equation is not easy to solve. Even for the simplest flows,
researchers faced huge difficulty to analyze Orr-Sommerfeld equation for the large Reynolds
numbers at which transition occurs. To solve the Orr-Sommerfeld equation, Heisenberg[33],
Schlichting[34], Lin[35] and others proposed complicated asymptotic techniques. With the
development of computer technique and numerical methods, it is not difficult to get numerical
solution of the Orr-Sommerfeld equation. Malik[36] proposed a fourth order compact scheme
and successfully achieved high accuracy. Orszag[37] suggested using Chebyshev polynomial

expansion and achieved good results as well.



In this dissertation, the author reviews the three generations of vortex identification
methods and compares Liutex with other widely used methods, finding those methods are
contaminated by shear or stretching/compression; the author develops principal coordinate
and principal decomposition which can decomposes velocity gradient tensor into parts with
clear physical meanings; the author participates in defining, as the auxiliary contributor, Liutex
core line which is threshold free and can provide unique vortex structure; the author proposes
the steps to obtain objective Liutex which can get Liutex structure in the inertial frame from
non-inertial kinematic data; the author explains the mechanism of hairpin vortex formation.

This dissertation is organized as follows. In chapter 2, the direct numerical simulation
(DNS) of flat plate boundary layer transition set up is introduced, including governing equations,
numerical methods, and parameters. This DNS was done by Chen et al.[38] and Wang et
al.[10], and its result will be used in the following chapters as the numerical example. Chapter
3 introduces three generations of vortex identification methods and exhibits the advantages of
Liutex. In chapter 4, the method to obtain objective Liutex based on a zero-vorticity reference
point is provided. Chapter 5 introduces stability theory and the way to solve the equation. The
mechanism of hairpin vortex formation is explained in chapter 7. This dissertation content is

summarized in chapter 7.



Chapter2

Direct Numerical Simulation

This chapter introduces the direct numerical simulation (DNS) of the flat plat boundary layer

transition including the governing equations, numerical methods and code validation. This

simulation was done by Chen[38] and Wang[10], and the author uses the result to do analysis in

the following chapters. DNS is a computational technique used in fluid dynamics to numerically

solve the Navier-Stokes equations, which describe the motion of viscous fluids such as water and

air. In DNS, all small vortices are resolved by extremely small mesh sizes and small time steps and

high order numerical schemes. For a simple problem, tens of millions grid points and millions of

time steps are required. The equations are solved without any approximations or simplifications,

making it a highly accurate and detailed method for studying fluid flows.

DNS involves discretizing the Navier-Stokes equations in space and time and solving them

numerically on a computer. This requires high-performance computing resources and efficient

algorithms to handle the large amount of data generated in the simulation.

DNS can provide detailed information on the flow field, including the velocity and pressure

distributions, turbulence statistics, and the interaction between different fluid structures. This level

of detail is particularly useful for understanding complex fluid phenomena such as turbulent flows,

which are notoriously difficult to model and analyze using other techniques.



2.1 Governing equations

Navier-Stokes equations (N-S equation), which are a set of partial differential equations are
the governing equations of fluid dynamics. These equations were first derived by Claude-Louis
Navier and George Gabriel Stokes in the early 19" century, and therefore these equations are
named after them. The 3D compressible N-S equations in curvilinear coordinates can be written in

the following conservation form.

10Q |, 0(E-Ey) , 9(F-F,) | 9(H-Hy) _
7T tTam s 0 1)

The vector of conserved quantities @, inviscid flux vector(E, F,H), and viscous flux vector

(E, F, H,) are defined as

p
pu

Q= pv (2.2)

pw

e

pU
pul + pé,
pvU +pé, (2.3)
pwU + pé&,
(e+p)U

pV
puV + pn,
pvV +pn,, (2.4)
pwV +pn,
(e+p)V

pWw
puW + pdl,
pvW +pd, (2.5)
pwW +pdq,
(e+p)w

0
Txxfx + Tyx fy + szfz

E, =>| Tayx T Tyyéy + 1598, (2.6)
szfx + Tyz S;y + Tzzfz
Gxéx + 4ySy + 458,
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0
Tuxlx + Tyxny + T2
Fv = % Txynx + Tyyny + sznz (27)
TxzMx + Tyzny + 75,7,
AxMx + AyNy + 427,

0
Txx(x + Tyx(y + Tzx {z
Ev = % Txycx + Tyy(y + sz{z (28)
sz(x + Tyz(y + T2z {z
4xSx + a5y + 9,8,

where ] is the Jacobian of the coordinate transformation between the curvilinear (¢,7,¢) and
Cartesian frames (x,y,z), and &, &, &, Mx Ny Nz Gy §y, §, are coordinate transformation
metrics. The contravariant velocity components (U, V, W) are defined as U = ug, + v, + wé,, V =
umn, +vn, +wn,, U =ul, +v{, + w{,. e is the total energy and defined as
e=}%1+§(u2+v2+wz) (2.9)
The components of viscous stress and heat flux are denoted by 7., Tyx, Tz Tays Tyys Tzys Taz

Tyz Tzz @Nd qy, qy, q, respectively. Their expressions are

IGY

Qx = UTyy + UTyy, + WTy, — G DPIE Re o (2.10)
1 (1) 6T
qy = UTyy, + UTyy + Wiy, — mMRe ay (211)
1 (1) aT
q; = UT,, + UTyZ + wt,, — m#R—eE (212)
u(T) ( u ) u 4 dv 4 ow 4 Ju 4
v ow u v ow
My oy 25, H g H 4514501 (2.13)
_u(T) 2( 4 6v+ ) N v+ 6W+ 6u+
Tyy - Re [ fy af ny an Zy az 3 (fx af S;y af S;z af T’X a,r’
v ow
Ny a + nz 577 Zx a¢ + Zy a¢ zz g)] (2-14)
_u(T) ( 6W 4 W) Ju N dv N ow N du N
Tzz = Re [ fZ f a ZZ aq 3 (S;x af fy af fZ af M an

11



v ow ou v ow
ny5+nzz+€x§+qy&+§zg) (215)

#(T) 61;
- [ex 9& ey s nx an ny an + {x ¢ {y 6{] (216)
(1)
_# [ex +€z af+nxa +nza +{x FX¢ +{za{:| (217)
(T) ov ow v ow ov
- [fy fza_g+nya+nz£+{y§+{z§:| (218)

For the purpose of dimensionless, 8;,,, Pc, Uss, Teo @nd p,UZ are reference values for length,
density, velocity, temperature and pressure, where §;, is the inflow displacement thickness. Mach

number M, Reynolds number Re, Prandtl number Pr and specific heat ratio y are

U

My = 2 (2.19)

Re = P Ufin (2.20)
pr = b= (2.21)
y==2 (2.22)
where R represents ideal gas constant, C, and C, represent Specific Heat at Constant

Pressure and Specific Heat Capacity respectively. Viscosity coefficient is evaluated by Sutherland

formula,
3
__ T2(1+S)
=—— (2.23)
where
S = 11;"3’( (2.24)

2.2 Numerical Methods

Compact schemes are able to achieve high order of accuracy with fewer grid points compared
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to non-compact schemes. A sixth order compact scheme is used for the space discretization in the
streamwise and wall normal directions. Lele[39] proposed a series of compact schemes which have
the following general expressions,
B-fi_ata_fis+f taifiy +Biffsa= %(b_fj_2 +a_fjoy +cfj +ayfje +byfi2)(2.25)
where f; are the derivative at point j. For the sixth order scheme used in this simulation,
1 7 7

1 1 1
ﬁ_:o’a_ ZE'B"' :0'a+ :g'b_:—g'a_ :—g' a+ :;,b+:§

(2.26)
In spanwise direction, the pseudo-spectral method is used because it has periodic boundary
conditions in the spanwise direction and pseudo-spectral itself satisfies periodic conditions and can

achieve higher accuracy.

For time discretization, a total variation diminishing (TVD) third order Runge-Kuntta method is

applied.
Q© = o (2.27)
QW = Q© 4 AtR© (2.28)
Q@ = ZQ(O) +iQ(1) +2AtR(1) (2.29)
Q@+ ng(o) +§Q<z) +§Am2 (2.30)

2.3 DNS case set up

The Direct Numerical Simulation method is used to study the process of the boundary layer flow
transition on the plate plane. The physical domain and coordination system are illustrated in Fig. 2-1,
where x;, represents the distance between leading edge of plate and inlet of physical simulation domain,

Lyand L, are the lengths of the computational domain in streamwise and spanwise directions
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respectively, and L,;,, is the height of the inlet. The details are listed in table 1. The dimension of grid
is 1920x128%241 which is the number of grid points in streamwise, spanwise, and wall normal
directions. The grid is stretched in the normal direction and uniform in the streamwise and spanwise
directions. The length of the first layer of grid in the normal direction at the entrance is found to be 0.43
in wall units (z+ = 0.43). The Jacobian coordinate transformation is employed from the physical domain
to the computational domain, as shown in Fig.2-2. The inflow parameters, including Mach number,
Reynolds number, etc. are listed in table 2. At the wall boundary on the flat plate, adiabatic and non-
slipping conditions are used. The non-reflecting boundary conditions are applied at the far field and the
outflow boundaries. The inflow is given in the form of
4 = Qiam + A2a92q + At3a%5a (2.31)

where g represents U,V,W, P u, v, w, p, and T , while q4,, is the Blasius solution for a two-
dimensional laminar flat plate boundary layer. q;4and g3, are the 2-D and 3-D Tollmien-Schlichting

(T-S) waves which are added into inflow as enforced perturbations.

Figure 2-1 Physical domain of boundary layer flow transition simulation
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Coordinate
Transformation

Figure 2-2 Schematics of coordinate transformation

Xin Lx Ly Lz,
300.798;, | 798.038;, | 226 406,
Table 1 Geometry parameters
Moo Re TW Too
0.5 1000 273.15K | 273.15K

Table 2 Inflow parameters

2.4 Code validation

The DNS code, “DNSUTA”, has been validated by UTA researchers[38, 40, 41] and NASA

Langley. And the detailed code validation has been reported by Liu et al.[42]. We only provide a

brief code validation here. Fig. 2-3 shows the time and spanwise-averaged streamwise velocity

distribution in two different grid levels with the log law result. This comparison shows the DNS result

matches the log law and the grid convergence has been achieved.
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Figure 2-3 Log-linear plots of the time-and spanwise-averaged velocity profile in wall unit

2.5 Chapter Summary

This chapter is on the case set up of the DNS, including the governing equations, numerical

methods and validation. Governing equations are the compressible N-S equations. Sixth order

compact scheme and Runge-Kuntta method are used as the numerical methods for spatial

discretization and time discretization respectively. Code validation shows the DNS result is reliable.
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Chapter 3
Three Generations of Vortex definitions and Identification methods
This chapter is on vortex detection. It first introduces some existing popular vortex identification
methods and the third-generation method—Liutex. After that, the correlations between these
methods are exhibited which shows the first- and second-generation methods are contaminated by
shear or stretching/compression. Principal coordinate and principal decomposition are proposed to

find a decomposition of velocity gradient tensor that have clear physical meanings.

3.1 First- and second-generation methods

Vorticity method is the first-generation vortex identification method.

Definition 1: The Vorticity vector rotv is defined as:

ow _ov
ay 0z
N - ou ow
rotv = VXv=|———— 3.1)
v _ou
lax 6yJ

where V represents Hamilton operator. Initially, people believe the direction of vorticity
represents rotation direction and the magnitude of vorticity represents twice angular speed.
Helmholtz first introduced the vorticity tubeffilament concepts in 1858 and used them as
measurements of vortices. He also gave the definitions of vortex lines and vortex filaments based
on the vorticity vector. Vortex lines are the lines whose tangential direction at each point coincides
with the direction of the rotation axis. Vortex filament is really an infinitesimal vorticity tube-like

structure formed by vortex lines through all points of a closed circumference. Lamb[43] said, “If
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through every point of a small, closed curve we draw the corresponding vortex-line, we mark out a
tube known as vortex-tube.”

In practical applications, scientists and researchers found that vortices detected by vorticity do
not match the actual situations very well. Robinson[44] reported that strong vorticity regions and
actual vortices have weak correlations. Wang[10] observed a similar result that vorticity is small
inside the A-vortex but big outside. Epps[45] found that vorticity may be unable to distinguish
between a vortex region and a strong shear region. Some counterexamples that vorticity does not
match the actual vortex can be immediately provided, e.g. the Couette flow. In a typical Couette
flow, the flows are all straight lines without any curves. Apparently, there does not exist vortices,
but vorticity is large if u is large. .

y direction
A

veloccity u

[
S S

Figure 3-1 Couette flow

To find out more appropriate vortex identification methods, scientists developed the second-
generation methods around 1990s. A criterion[12], Q criterion[11] and A criterion[14] will be
introduced in this section.

Definition 1(A criterion[12]): Let the characteristic equation of the velocity gradient tensor

18



gradyv is in the following format.
B+L12+LA+1=0 (3.2)
where [, I,, and I; represent the first, second, and third principal invariants of the

characteristic equation respectively and have the following expressions.

L=Q;+ A, + A3) = tr(gradv) (3.3)
L=242, + 1,25 + A3, = —% [tr(gradv?) — tr(gradv)?] (3.4)
I = A A, 05 = det(V) (3.5)

where 1,,1, and A5 are the eigenvalues of the Eq. (3.2). A criterion is defined by

~\ 3 =\ 2
0 R
2=(5) +() G0
where
~ 1 2
Q =12_§I1 (3.7)
R' = _13 _22_7 113 + %I].IZ (3.8)

Ifthe 4 > 0, it means the point is inside a vortex region.
Definition 2(Q criterion[11]): Q criterion is defined by

Q = IBIZ - NlAl3) (3.9)
where A and B refer to symmetric and anti-symmetric part of the velocity gradient tensor

respectively. |||| - represents Frobenius norm.

ou 1[0u v 1(0u ow
P ;(a+a) G450
_1 > STY l(a_” a_“) [l l(a_" a_"")
A= (gradv + gradv’) =[S (- + 3 % A CrRars (3.10)
1 [ow ou 1 [(ow v ow
1G5 +5) 5(§+5) oz
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0 1(6u 61;) 1(6u aw)
2 \dy ox 2 \0z ox

B = %(gradﬁ — gradv’) = %(g—z— Z_Z) 0 %(Z_Z - Z_‘:) (3.11)
:G-%) G- o

For Q criterion, Q > 0 implies the existence of vortices and the bigger Q is, the stronger vortex
is. Q criterion realizes that vorticity is contaminated, and the contamination should be removed from
vorticity. However, [|A]|2 used by Q criterion to estimate the contamination is not accurate. More
detailed discussion can be found in section 3.7.

Definition 3(1,; criterion[14]): A,; criterion defines the vortex strength by the imaginary part 1.;
of the complex eigenvalue of the velocity gradient tensor gradv.

The definition of 4.; criterion comes from the idea that time-frozen streamlines exhibit the flow
structure if the velocity gradient tensor gradv has a pair of conjugate complex eigenvalues and a

real eigenvalue. Under such a situation,

L 0 0
gradﬁ = [1_7)1” ﬁcr ﬁci] [0 Acr Acil [ﬁr ﬁcr ﬁci]_1 (3.12)
0 —Au A

where 1., 7, represent the real eigenvalue and corresponding real eigenvector, 1., + i, and
¥, t [ U,; are the pair of complex conjugate eigenvalues and corresponding eigenvectors. In the

curvilinear coordinate system {c;, c,, c;} spanned by {v,,v.,, 7.}, the streamlines’ equations are

¢ () = ¢ (0)er" (3.13)
c,(t) = [c,(0) cos(A,t) + c3(0) sin(A;t)]etert (3.14)
c3(t) = [c3(0) cos(A,t) + ¢, (0) sin(At)]etert (3.15)

Eq. (3.13)-(3.15) implies 4,; indicates rotation strength.
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A criterion may not correctly reveal the strength of rotation because the translation made by
Eq. (3.12) is a similar translation but not an orthogonal translation (eigenvectors are linearly
independent but not orthogonal) which means the new space is distorted compared with the original

one. And this distortion leads to the inaccuracy.

3.2 Common problems of the second-generation methods

Some problems of specific second-generation methods have been stated in section 3.1, and

this section is on some common problems of these methods.

1. Although second-generation methods have their own theoretical foundation, the angular speed
in the original coordinate system is still unclear. For the same case, the values of second-
generation methods can vary greatly.

2. Second-generation methods are all scalars which do not included the information of rotation
axis. Rotation axis is a vector and cannot be revealed from a scalar. Therefore, the only way
to display the vortex structure is by iso-surface. Since the values of second-generation
methods are scalars, visualization requires a threshold, and the thresholds chosen by different
second-generation methods can be greatly different.

3. The values of second-generation methods are not pure rigid-rotation. They are more or less
contaminated by shear or stretching/compression. Detailed can be found in section 3.7.

3.3 Liutex—third generation method

Definition 4 (Liutex[5]): Liutex R = R¥is a vector whose direction indicates the local rotation
axis and whose magnitude is the twice angular speed. Its direction 7 is the real eigenvector of the
velocity gradient tensor gradv that satisfies w -7 > 0 where @ represents vorticity vector. Its

magnitude[17] can be evaluated by

R=%-7— (@ 7)? —4A (3.16)
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where 1,; is the imaginary part of the complex conjugate eigenvalues of gradv.

Liutex direction comes from the basic idea that the velocity increment in the local rotation axis
direction should be only stretching or compression, i.e. dv = gradv - # = A7 which implies local
rotation axis is the eigenvector of grad?. One eigenvector can have positive or negative two
direction, so to further constrain the local axis direction, the condition - 7 > 0 is applied. As for the
magnitude, it originally comes from finding the minimal rotation matrix among all possible
coordinates systems. Since Liutex direction (local rotation axis) can be determined by finding the
real eigenvector, a 3D rotation can be simplified to a 2D rotation by choosing a new coordinate
system whose z-axis is parallel to the Liutex direction as shown in Fig. 3-2. Therefore, we discuss

the Liutex strength in the 2D situation.

Figure 3-2 Coordinate transformation.

If a rigid body is doing rotation, its velocity distribution can be described as

(42— (0] 517

v(x,y) = AV XT = [(AV)ZX — (AV),z

Here, AV represents angular velocity vector. The reason not using the commonly used symbol
o for angular velocity is w has been used for vorticity. Since the rotation is two dimensional, i.e.,

(AV), = 0, the velocity distribution can be simplified to
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, —(AV),
v(x,y) = [ (Ew))xy ] (3.18)
Hence, the rigid rotation matrix is
du Ou ( )
I v 0 —(AV
ox 9yl _ z
av 4 = [(AV)Z 0 ] (3-19)
ox 0dy

So, the typical feature for rotation matrix is diagonal entries being zeros and the other two

entries are opposite numbers to each other. If the motion is pure rotation, then it is easy to figure

out the angular speed directly from its velocity gradient tensor. The problem is that in practical, the

motion is not pure rigid body rotation, and it can also have deformations for fluids. In this situation,

people need to decompose the rigid rotation matrix from the velocity gradient tensor. Consider the

following velocity distribution case.

u=2y
{v=0 (3.20)
Its velocity gradient is
L, 10 2
gradv = 0 0 (3.21)

Apparently, it does not satisfy the feature of rigid body rotation matrix. One way to decompose
the rigid body rotation matrix is what vorticity does.
gradv =A+B (3.22)
where A and B are defined by Eq. (3.10) and (3.11). In this case,
=[0I (3.23)
which indicates the rotation strength by vorticity is 1. However, the flows are all straight without

any curves and there should not be any vortex in it.
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Liutex, on the other hand, decomposes grad¥ by choosing the minimal of absolute values of

the anti-diagonal elements, i.e.
gradv = [8 8] + [8 (2)] (3.24)

where [8 8] is the rotation matrix. It indicates the rotation strength is zero which coincides
with the physics. The expression of the velocity gradient matrix relies on the choice of coordinate
systems. So, in reality, the minimal of the anti-diagonal entries can be different under different
coordinate systems. In this situation, Liutex chooses the smallest one as the rotation strength and
Liutex magnitude is set as the twice rotation strength. An explicit expression to evaluate Liutex

magnitude was first proposed by Wang as shown in Eq. (3.16).
3.4 Validation of Liutex

After Liutex appears, it has been used and tested by various scientists and researchers. Guo
et al.[23] compared Liutex and other vortex identification methods with an experimental result and
found Liutex matches the vortex regions best. In Ref [46], Liutex is said as “the most reliable
criterion for the extraction of physical information from vortical flows”. Cuissa et al.[24] tested Liutex
by Lamb-Oseen vortex which has analytical solution. It shows Liutex exactly matches analytical
solution. Borisov et al.[26] used Liutex to investigate vortex structure in the supersonic flow around

a tandem of wings. A lot of applications have proven the correctness of Liutex.
3.5 Liutex core lines

Although, Liutex is a vector definition on rotation, it still needs iso-surface to display the vortex
24



structure. In this section, Liutex core line method[18] is developed which can provides the vortex
core lines.

Definition 5 (Liutex core line[18]): The Liutex core lines are defined as lines formed by points
that satisfy the condition

VRx#=0, R>0 (3.25)
where R and # are Liutex magnitude and direction respectively.

The assumption of Liutex core lines is the rotation strength at the vortex core should be the
largest in the plane perpendicular to the rotation axis. The necessary condition for a point being
maximum in the plane is that the projection of its gradient to the plane has to be zero, or, in another
word, its magnitude gradient direction can only be perpendicular to the plane. And we know the
plane is perpendicular to the 7. Therefore, the gradient VR has to be parallel to the 7 as described

by Eq. (3.25). Fig. 3-3 and 3-4 show the Liutex lines in a flat plate boundary layer DNS simulation.
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Figure 3-3 Liutex core lines of the plat plate boundary transition without iso-surface
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Figure 3-4 Liutex core lines of the plat plate boundary transition with iso-surface

3.6 Principal coordinate and principal decomposition

The traditional decomposition of the velocity gradient tensor is Cauchy-Stokes decomposition
which decomposes velocity gradient tensor into symmetric part and anti-symmetric part. As shown
in section 3.4, the physical meaning of Cauchy-Stoke decomposition actually is not as what people
used to consider. To find a decomposition that can correctly represent rotation, shear and
stretching/compression parts, principal coordinate and principal decomposition[47] are proposed.

Definition 6(principal coordinate[47]): Principal coordinate is the coordinate under which the
minimal anti-diagonal entry described in section 3.4 can be achieved. It satisfies the following
conditions.

1. lts Z-axis is parallel to the 7 (direction of Liutex) and @+ Z > 0

2. The velocity gradient tensor under this coordinate is in the form of:
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R
A -= 0
cr 2
av

gradv=|— A, 0 (3.26)

X
ow ow

x o M
where 1., , 1, and R are the real eigenvalue and real part of the conjugate complex eigenvalue
pair of the velocity gradient tensor and Liutex magnitude, respectively, for rotation points.
3. Z—5<0and |Z—: S|Z—Z.
4.  The rotational angle of the X-Y coordinates around the Z-axis must be smaller than
90° or —90° < 6 < 90°
The algorithm to find principal coordinate can be found in appendix. The purpose to give
principal matrix is to define a unique matrix for the velocity gradient tensor. A tensor is unique but

its corresponding matrix is uncertain, depending on the coordinate systems.

Rewrite Eq.(3.26) in the following form.

1

Ay iR 0
gradv = %R +e A, O (3.27)
$ oA

Definition 7(principal decomposition[47]): Principal decomposition is the decomposition in the

principal decomposition s.t.

R
A =5 O JO =2 0] [0 0 0] [As O O
gradi=[E, . 2 o|l=|2 o o|+|e 0 O[+]|0 A O[=R+S+cC(G28)
25( N A (2) 0 &En 0 0 0 2,
.

Here R, S, C are matrices of rotation, shear and stretching/compression respectively.
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3.7 Correlation between Liutex and some popular previous vortex identification methods

In the solid mechanics, people believe that the direction of vorticity is the rotation axis, and one
half of the vorticity magnitude represents the rotation strength. According to the solid mechanics

knowledge, the velocity ¥ of a fixed axis rotation can be expressed as

(AV)yZ - (AV)zy
B=AV x#= |(AV),x — (AV),z (3.29)
(AV)xy - (AV)yx

where AV represents angular velocity vector. Vorticity w can be written as

2(AV),
@=VxD=|2(4V),| = 24V (3.30)
2(AV),

From the above derivation, people strongly believe that w is the twice angular velocity vector
and it has solid mathematical foundation. The problem is that in the above derivation the
prerequisite is the velocity gradient tensors are the same at all the points which fluid do not satisfy.
The case provided in section 3.4 shows vorticity can be contaminated by shear. Liutex magnitude
formula can be understood as removing the shear contamination part /(@ - 7)? — 412, from the
vorticity @ - 7.

The expressions of vorticity, A criterion, Q criterion and A; criterion in the principal coordinate

system can be written as

243 2

A=—|9 (5)3 G+ s)3 -6 (§)2 G+ 8)2 Ao = 1) + 3 (34 ) Aer — Ar)‘*] (3.31)

n
5=[ —& ] (3.32)
R+ ¢
loll = yn? + &2+ (R + ¢)? (3.33)

1
Q = (1Bl — lIAllz)
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= % [2 (g +;) +2 (%)2 +2 (g)z] —%[2 Ay’ + 2,70 +2 (g)z +2 (%)2 +2 (g)z]
= (&) +1R-e- 2,7 -2 (3349
Ao = §(§+e) (3.35)
Eq. (3.31)-(3.35) show that vorticity, A criterion, Q criterion and 4.; criterion contains elements

in the shear, or stretching/compression matrices.
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Figure 3-5 Correlations between Liutex and vorticity, Q, 4., 4, and A [3]

3.8 Chapter summary

In this chapter, first, second and third generation vortex identification methods are reviewed.

Why Liutex is reasonable is explained in section 3.4. Principal coordinate and principal

decomposition are defined to decompose rotation, shear and stretching/compressing part from
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velocity gradient tensor. It also exhibits the relations between Liutex and some other methods. The

result shows first- and second-generation methods are contaminated by shear or

str