
PRACTICAL INDIRECT CONTROL
FLOW ANALYSIS FOR BINARY

EXECUTABLES

Haotian Zhang

Supervising Committee: Jiang Ming

Yu Lei

Shirin Nilizadeh

Mohammad A. Islam

Department of Computer Science and Engineering
The University of Texas at Arlington

This dissertation is submitted for the degree of
Doctor of Philosophy

May 2023

Abstract

Resolving indirect control flow is one of the fundamental challenges in binary analysis. Im-
proving the accuracy of the indirect control flow analysis is vital to the binary analysis domain.
Many analysis algorithms and security techniques rely on a precise indirect control flow result,
such as recursive disassembling, control flow integrity, data-flow analysis, etc. Incorrect or even
inaccuracy indirect control flow analysis results can compromise or even break the assumptions
of these analyses. This thesis explores this topic from two directions, altering the indirect
control flow analysis to make it more suitable for different scenarios and improving the accuracy
of indirect control flow analysis with deep learning.

In the first part, we explore the potential trade-off that can be made in debloating scenarios.
Static software debloating often requires an accurate indirect control flow result. However,
previous works resolve indirect control flow utilizing the address-taken function, which has
too many false positives to debloat the program efficiently. During our observation, debloating
does not require the individual indirect control flow result but a set of indirect control flow
results mixed together. Instead of solving each indirect control flow, we focus on how the
target is loaded from memory. The loaded target can be used in any of the following indirect
control flows. We build a novel tool with this methodology to debloat the shared library in
MIPS firmware.

In the second part, we explore how deep learning can be applied to indirect control flow
resolving problems. Unlike text or picture, which has a more straightforward data relation
structure, binary is much more complex, especially in the control flow structure. The graph
is a natural representation used in the program analysis domain. We utilize the graph neural
network in our augmented control flow graph to learn how to predict indirect callees. We
translate the indirect callee prediction problem into a graph’s edge prediction problem.

Table of contents

1 General Introduction 1

2 One Size Does Not Fit All: Security Hardening of MIPS Embedded Systems via
Static Binary Debloating for Shared Libraries 3
2.1 Introduction . 5
2.2 Background & Related Work . 8

2.2.1 Code-Reuse Attacks on IoT Devices 9
2.2.2 Software Debloating . 9
2.2.3 MIPS Architectural Support . 11
2.2.4 Indirect Control Flow . 11

2.3 Overview . 12
2.4 Library Dependency Graph . 14
2.5 ICFG Construction . 15

2.5.1 Address Loading Classification . 16
2.5.2 Detect AT Blocks/Functions via Symbolic Execution 18

2.6 Evaluation . 20
2.6.1 Code Reduction and Correctness . 22
2.6.2 µTrimmer vs. Static Linking . 23
2.6.3 Gadget Reduction . 24
2.6.4 Firmware Image Debloating . 25

2.7 Discussion and Future Work . 26
2.8 Conclusion . 28

3 Indirect Call recovery using Augmented Control Flow Graphs with GNN 29
3.1 Background & Related Work . 29

3.1.1 Graph neural network . 29
3.1.2 Deep learning in binary analysis . 30
3.1.3 Information loss . 31

vi Table of contents

3.2 Overview . 32
3.2.1 Key insight . 32

3.3 Model . 34
3.3.1 Dataset and Ground truth collection 34
3.3.2 Preprocessing . 34
3.3.3 Heterogeneous Graph Neural Networks 36

3.4 Evaluations . 37
3.4.1 Evaluation Setup . 37
3.4.2 Performance . 39

3.5 Discussion and Limitations . 41
3.5.1 Ground truth collection . 41
3.5.2 Indirect jumps . 41

3.6 Conclusion . 42

4 Conclusions 43

References 45

Chapter 1

General Introduction

The control flow of a program refers to the order in which the statements of the program
are executed. Control flow can be direct or indirect. In direct control flow, the execution of
statements proceeds in a linear fashion, following a predetermined order. In contrast, indirect
control flow allows for non-linear execution, where the order of execution is determined
dynamically at runtime. Indirect control flow can be challenging to analyze and understand,
but it is essential for writing efficient and flexible programs.

Indirect control flow can arise in various programming contexts, including function pointers,
callbacks, and exception handling. In such situations, the execution of the program can
depend on external factors or user input, leading to non-deterministic behavior. As a result,
understanding indirect control flow is crucial for writing robust and reliable software.

The resolution of indirect control flow is a central problem in program analysis and opti-
mization. Resolving indirect control flow involves identifying the possible targets of control
transfers, such as function calls or exception handlers. This process can be challenging because
the possible targets of a control transfer may not be known until runtime.

Several techniques have been developed for resolving indirect control flow, including static
analysis, dynamic analysis, and hybrid approaches. Static analysis involves analyzing the
program code without executing it, while dynamic analysis involves observing the program’s
behavior during execution. Hybrid approaches combine both static and dynamic analysis
techniques to achieve better accuracy and performance.

In the first part, we explore the potential trade-off that can be made in debloating scenarios.
Static software debloating often requires an accurate indirect control flow result. However,
previous works resolve indirect control flow utilizing the address-taken function, which has
too many false positives to debloat the program efficiently. During our observation, debloating
does not require the individual indirect control flow result but a set of indirect control flow
results mixed together. Instead of solving each indirect control flow, we focus on how the

2 General Introduction

target is loaded from memory. The loaded target can be used in any of the following indirect
control flows. We build a novel tool with this methodology to debloat the shared library in
MIPS firmware.

In the second part, we explore how deep learning can be applied to indirect control flow
resolving problems. Unlike text or picture, which has a more straightforward data relation
structure, binary is much more complex, especially in the control flow structure. The graph
is a natural representation used in the program analysis domain. We utilize the graph neural
network in our augmented control flow graph to learn how to predict indirect callees. We
translate the indirect callee prediction problem into a graph’s edge prediction problem.

Chapter 2

One Size Does Not Fit All: Security
Hardening of MIPS Embedded Systems
via Static Binary Debloating for Shared
Libraries1

Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming
University of Texas at Arlington

1Used with permission of the Association for Computing Machinery, 2022. Haotian Zhang, Mengfei Ren,
Yu Lei, and Jiang Ming. 2022. One size does not fit all: security hardening of MIPS embedded systems via
static binary debloating for shared libraries. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’22). Association for
Computing Machinery, New York, NY, USA, 255–270. https://doi.org/10.1145/3503222.3507768

Abstract

Embedded systems have become prominent targets for cyberattacks. To exploit firmware’s
memory corruption vulnerabilities, cybercriminals harvest reusable code gadgets from the
large shared library codebase (e.g., uClibc). Unfortunately, unlike their desktop counterparts,
embedded systems lack essential computing resources to enforce security hardening techniques.
Recently, we have witnessed a surge of software debloating as a new defense mechanism
against code-reuse attacks; it erases unused code to significantly diminish the possibilities of
constructing reusable gadgets. Because of the single firmware image update style, static library
debloating shows promise to fortify embedded systems without compromising performance and
forward compatibility. However, static library debloating on stripped binaries (e.g., firmware’s
shared libraries) is still an enormous challenge.

In this paper, we show that this challenge is not insurmountable for MIPS firmware. We
develop a novel system, named µTrimmer, to identify and wipe out unused basic blocks
from shared libraries’ binary code, without causing additional runtime overhead or memory
consumption. We propose a new method to identify address-taken blocks/functions, which
further help us maintain an inter-procedural control flow graph to conservatively include library
code that could be potentially used by firmware. By capturing address access patterns for
position-independent code, we circumvent the challenge of determining code-pointer targets
and safely eliminate unused code. We run µTrimmer to debloat shared libraries for SPEC
CPU2017 benchmarks, popular firmware applications (e.g., Apache, BusyBox, and OpenSSL),
and a real-world wireless router firmware image. Our experiments show that not only does
µTrimmer deliver functional programs, but also it can cut the exposed code surface and
eliminate various reusable code gadgets remarkably. µTrimmer’s debloating capability can
compete with the static linking results.

2.1 Introduction

Over the past few years, the spotlight has been on the Internet of Things (IoT) market due to the
sheer amount being deployed worldwide [58]. With the IoT boom taking place, cyberattacks

6 Static Binary Debloating for MIPS Shared Libraries

on embedded devices, which surged 300% in 2019 [76, 95], are now accelerating at an
unprecedented rate. The vulnerabilities in firmware, a class of software that is written to an
embedded device to control user applications and various hardware functions, leave embedded
systems open to attacks [28, 42, 30]. Although memory corruption vulnerabilities [104]
have been around for decades, they also dominate the share of top-rated threats in embedded
devices [33]. Besides, return-oriented programming (ROP) techniques enable attackers to
chain together short instruction sequences (i.e., code gadgets) already present in the program’s
memory to bypass the executable-space protection [92].

Firmware developers rely on C and C++ shared libraries (e.g., uClibc [7]) for fast prototyp-
ing and development [115]. Due to the “one-size-fits-all” design, although firmware typically
requires a small number of library functions, it has to load the entire library code into memory
at runtime. For example, libc code are only used 5% on average by a program [86]. Com-
pared with the small codebase of firmware, the large code space of shared libraries provides
enough reusable code gadgets to create Turing-complete malicious programs [92]. Embed-
ded devices are known to have limited hardware resources in terms of CPU performance,
storage capabilities, and memory size. Besides, as firmware has to interact with a multitude
of low-level peripherals, a robust firmware dynamic execution framework is still an open
problem [117, 23, 41, 25, 19]. Therefore, these limitations restrict the adoption of expensive
ROP countermeasures to secure embedded systems [2, 5].

Recently, software debloating emerges as a new security hardening solution to reduce
the attack surface by removing consumer-unwanted features or unused code, generating a
large body of literature [60, 88, 86, 54, 100, 15, 9, 90, 84, 46, 3, 83, 24, 47, 17, 85, 114]. In
particular, library debloating techniques [86, 3, 83] have demonstrated their security impact by
eliminating a large number of reusable code gadgets from shared libraries. Furthermore, they
can significantly reduce the amount of code to be analyzed by other security techniques, such
as continuous code re-randomization [112] and control-flow integrity schemes [64, 18].

Static library debloating reveals unique benefits to embedded systems. First, it safeguards
firmware without incurring additional runtime overhead or memory footprint. Second, unlike
PC software, static library debloating does not compromise firmware forward compatibility.
Embedded devices typically have no interface for an end-user to install new application
packages; instead, the update mechanism is the single firmware image update: users download
a new firmware image from the hardware manufacturer and re-flash it to the device. As a
result, the post-deployment library debloating does not interfere with the new firmware image.
However, existing library debloating approaches rely on a number of assumptions that are not
met by embedded systems. Piece-wise [86] and BlankIt [83] rely on application source code
and runtime support (e.g., a custom loader or Intel Pin), while Nibbler [3] leverages debug

2.1 Introduction 7

symbols to identify and erase unreachable functions. In contrast, firmware’s source code and
unique build toolchains are typically missing, and most firmware images are stripped from
debug information to save space [30].

In this paper, we move one step forward to explore the static debloating of library binaries
on MIPS architecture, which holds a hefty share of the embedded market [8]. We admit
that the static analysis of stripped binaries suffers from several long-standing challenges [10,
75, 59, 91] in the general case, such as distinguishing code from data and indirect control
flow resolution. Our key observation is that, compared with ARM, MIPS Application Binary
Interface (ABI) [105] makes static binary code analysis much easier, though not enough to make
detecting unused library code straightforward. MIPS ABI specifies standard conventions in
low-level machine code, such as special purposes registers, stack frame organization, function
parameter passing, and position-independent code (PIC) metadata. Mainstream compilers all
follow MIPS ABI [45, 71].

We develop an input-profiling-agnostic, static debloating system for MIPS stripped binaries,
named µTrimmer, to eliminate unused code present in shared libraries. Note that the effects
of multi-entry functions and tail call optimization [75] obscure function boundaries, so our
debloating granularity is basic blocks rather than functions. Starting from the imported library
functions by firmware applications, we explore library interdependencies and maintain an inter-
procedural control flow graph (ICFG), which over-approximates all basic blocks that could be
potentially used. Statically resolving accurate indirect control flow targets (e.g., calls using
pointers and C++ virtual function dispatch) is proven to be an undecidable problem [66, 87].
We circumvent this challenge by proposing a general method to significantly narrow down
the possible address-taken blocks/functions—their addresses are very likely to be referenced
by indirect jump/call instructions. Our approach covers all indirect jump/call cases, such as
callback functions, jump tables, C++ virtual function tables, and exceptions. After the ICFG
recovery, all basic blocks that are not present in this ICFG can be safely debloated. At last,
µTrimmer overwrites unused basic blocks with trapping instructions [29] and delivers thinned
libraries.

We build µTrimmer on top of angr [101] and evaluate the efficacy of µTrimmer with a
set of experiments. We run µTrimmer to debloat supporting libraries for SPEC CPU2017
benchmarks, popular firmware applications (e.g., Apache, BusyBox, OpenSSL, and Perl), and
a real-world wireless router firmware image. We demonstrate that µTrimmer safely removes
unused code by running the officially-provided test suite—the debloated program reveals the
same results as the original program’s executions. For SPEC CPU2017 Integer suite, our
security experiments show that µTrimmer can cut the exposed code surface by 53.4% to 79.9%
and eliminate various reusable code gadgets by 56.2% to 78.9%. The dead code elimination

8 Static Binary Debloating for MIPS Shared Libraries

Table 2.1 Comparison of representative library debloating approaches.

Piece-wise [86] Nibbler [3] BlankIt [83] µTrimmer

No Source Code Needed ✓ ✓
No Debug Symbols Needed ✓
No Sample Inputs Needed ✓ ✓ ✓
No Runtime Support Custom Loader ✓ Intel Pin ✓
Architecture x86/x86-64 x86-64 x86/x86-64 MIPS/MIPS64
Debloating Granularity Function Function Function Basic Block
Load-time Slowdown ∼20X 0% ∼10X 0%
Runtime Slowdown 0% 0% ∼18% 0%
Code Reduction Amount Medium Medium Large Medium

caused by static linking is taken by recent work [86, 3] as an upper bound of library debloating;
µTrimmer’s debloating capability competes with the static linking results and outperforms
piece-wise [86] and Nibbler [3]. In a nutshell, this paper makes the following contributions:

• Unlike PCs and Servers who can afford a myriad of security protections, embedded
devices with limited computing resources are sensitive to deploy advanced software
hardening techniques. Our research shows that static binary debloating for shared li-
braries, which incurs zero runtime overhead, has distinctive strengths to secure embedded
systems.

• CFG construction is the cornerstone of static binary debloating; but without source code
or debug symbols, it is known to be a challenging problem. Our study shows that, by
taking advantage of MIPS ABI and PIC specifications, we can find a practical solution to
circumvent this challenge and safely erase unused code.

• We evaluate µTrimmer’s correctness and security impact with large benchmark programs
and real-world embedded system applications. µTrimmer’s debloating capability is on a
par with the static linking’s code downsizing results.

Open source. µTrimmer’s demo video is available at YouTube. We have released µTrimmer’s
source code and non-proprietary dataset to facilitate reuse at Zenodo.

2.2 Background & Related Work

In this section, we present the background information needed to understand our work’s
motivation and novelty. We summarize the existing literature on software debloating. We focus
on the recent papers on library debloating because they are the works most germane to our
research. Then, we present MIPS’s advantage for binary code analysis and the challenge (i.e.,
indirect control flow) that we aim to overcome.

2.2 Background & Related Work 9

2.2.1 Code-Reuse Attacks on IoT Devices

The proliferation of the IoT market makes embedded devices a lucrative target for cyber-
criminals. For example, critical security vulnerabilities in WiFi routers and smart home
devices allow remote attackers to completely take over the device and enter the home net-
work [51, 21, 80, 78, 98]. Among various attacks against the IoT ecosystem, code-reuse
attacks [92] can bypass executable-space protection, leading to catastrophic consequences, such
as remote code execution. The potential potency of code-reuse attacks hinges on the variety
of code gadgets in the victim program’s executable memory. As shared libraries are designed
to contain the union of API code required by all possible applications, their large codebase is
always the best place to harvest different reusable code gadgets [99].

As IoT devices have substantially less computation and storage capability than conventional
computers, developers are using a small C standard library (e.g., uClibc) intended for Linux
kernel-based OS on embedded/mobile devices. The total size of uClibc is only about 7% of
glibc [39]. Even so, uClibc is still a fertile land to search ROP gadgets [4, 116]. Our study
shows that only 17.3% of functions in uClibc are used by firmware on average. Bloated shared
library code provides adversaries a large code-reuse attacking surface.

2.2.2 Software Debloating

As software is continuously becoming more sophisticated, software debloating is an effective
defense to minimize attacking surface. A variety of schemes have been contrived to remove
consumer-unwanted features or unused code [60, 88, 86, 54, 100, 15, 9, 90, 84, 46, 3, 83,
24, 47, 17, 85, 114]. The debloating targets range from program binaries [90, 84, 46], Java
applications [60, 17], Docker containers [88], mobile/web applications [15, 9, 85], UEFI
firmware [24], Bluetooth stacks [114], and shared libraries [86, 3, 83]. Most existing works
assume the availability of source code, sample inputs as the usage profile, or runtime support.
For example, DECAF [24] attempts to debloat a maximum set of UEFI firmware modules
so that the OS can still be successfully booted. It treats finding such a removable set as an
optimization problem and approximates the optimal solution via iterative dynamic testing
and metaheuristic search. Unfortunately, these approaches are hardly employable to meet our
requirement: an input-profiling-agnostic, static binary debloating technique that incurs no
extra runtime overhead or storage costs.

Shared Library Debloating In the literature, several techniques have been recently
proposed to detect and remove unused code from shared libraries [86, 3, 83]. We compare them
with our work in Table 2.1. It lists different assumptions (e.g., source code, debug symbols, and

10 Static Binary Debloating for MIPS Shared Libraries

sample inputs), debloating granularity, performance penalty, and the amount of code reduction.
Obviously, our work has fewer assumptions. Below, we discuss their strengths and limitations.

Piece-wise [86] This work first performs a large-scale study to report that library code
bloating is pervasive. 95% of glibc code is never used on average. Given the source code
of the application and its dependent libraries, piece-wise contains two steps: 1) an LLVM
pass generates a full-program dependency graph; 2) a custom loader dynamically loads the
functions that are present in the dependency graph. The first step adopts inter-procedural static
value-flow analysis [103] to resolve indirect code pointer dependencies within a library. The
second step masks unused library functions when loading the library, resulting in an extra
load-time slowdown (∼20X). In addition to the load-time slowdown, piece-wise works on each
application individually, and thus each application has to load its own custom library code.
When piece-wise is applied to multiple applications, the union size of all debloated library
versions will far outstrip gains from piece-wise’s debloating.

Nibbler [3] This work aims to debloat non-stripped library binaries and then create reduced
versions. By removing unused code from allowable control flows, Nibbler demonstrates
the efficiency boost of continuous code re-randomization [112] and control-flow integrity
defenses [18]. However, Nibbler still depends on a strong assumption: library binary code is
not stripped from debug symbols. Nibbler takes advantage of these additional information to
identify function boundaries, construct library function call graphs, and detect address-taken
functions that could be targeted by indirect calls. Unfortunately, all program binaries installed
on Linux are stripped of symbols by default. Even worse, to further reduce firmware size, many
developers take a more aggressive stripping method to remove binary code’s section headers;
this will frustrate the tool objdump used by Nibbler.

BlankIt [83] At the other end of the spectrum, BlankIt only loads the set of library functions
needed at a given call site and wipes out all remaining library functions. BlankIt’s just-in-time
loading strategy requires the application source code and sample inputs to train a decision tree
predictor, which predicts the chain of library functions that are expected to occur at a given
call site. This predictor will guide BlankIt’s demand-driven loading at runtime. Compared
with static debloating approaches, BlankIt’s aggressive style shows a very high percentage of
code reduction, because only a small portion of library functions are visible during any given
runtime window. However, the access to application source code, the deployment environment
of dynamic binary instrumentation, and the high runtime overhead make BlankIt impractical to
resource-limited embedded systems.

2.2 Background & Related Work 11

Firmware Image

Preprocess

Application

Binaries

Shared

Libraries

DLL
DLL

DLL

Library

Dependency

Graph

uClibc

libcrypto

libssl ICFG

Construction

Basic Block

Erasure

Thinned Libraries

DLL
DLL

DLL

Erased Code

...

010100

100111

000000

BIN

010100

100111

000000

BIN

010100

100111

000000

BIN
APIs Required by

Firmware

 µTrimmer

1 2 3 4

Address-taken Blocks/

Function Detection

Address Loading

Classification

Context-sensitive

Symbolic Execution
Address-taken

Jump Tables;

C++ Vtables;

Exceptions;

...

Fig. 2.1 The overview of the µTrimmer. The whole process consists of four steps.

2.2.3 MIPS Architectural Support

As both ARM and MIPS dominate the share of embedded systems, a natural question is
whether µTrimmer can work on both architectures. Our work is built on top of two non-trivial
pipelines: disassembling binary code and extracting control flow graphs. Our contribution
lies in how to identify unused library code without resolving indirect control flow targets.
However, the reliability of the initial stage of the pipeline (i.e., code disassembly) actually
affects the reliability of the overall approach. The recent study on ARM disassembly tools
has demonstrated that two complex problems, which are inline data in code sections and a
mixture of ARM, 16-bit Thumb-1, and 32-bit Thumb-2 instruction sets, bring serious challenges
to disassembling stripped ARM binaries [59]. In contrast, MIPS binaries do not have such
complicated properties, making reliably disassembling MIPS binaries a solved problem.

Furthermore, MIPS Application Binary Interface (ABI) [105] specifications provide handy
hints to optimize the address-taken blocks/functions detection. For example, a shared library is
position-independent code (PIC), in which most control flow targets are accessed or calculated
through the global offset table (GOT) [44]. MIPS ABI specifies two special-purposes registers:
1) $gp register stores the GOT’s base address, and 2) $t9 register stores the callee function’s
address. Monitoring the access to these two registers provides a short cut to explicitly identify
the access patterns to the GOT. In contrast, ARM binaries do not have such an advantage—they
can use any general-purpose register to calculate and store the GOT indexing. The use of
general-purpose registers for address calculations requires us to perform an expensive dada
flow analysis (e.g., backward slicing) to achieve the same goal.

2.2.4 Indirect Control Flow

Library debloating requires precise detection of unused code and not missing legitimate code
dependencies. We need to keep not only library call chains that are explicitly invoked by
firmware but also potential callback functions via pointers. Although MIPS ABI makes static

12 Static Binary Debloating for MIPS Shared Libraries

binary code analysis much easier, constructing a complete CFG is still the biggest obstacle.
Failure to identify indirect control flow targets is very likely to incorrectly exclude used code.
Previous works have adopted two techniques to mitigate this problem.

Value-set Analysis Balakrishnan and Reps proposed value-set analysis (VSA) tech-
nique [10] to identify a tight over-approximation of values in memory slots or registers.
VSA is often used to understand the possible targets of an indirect control flow. Redini et
al. [90] augment VSA via a new abstract model: signedness-agnostic strided interval. They also
apply this new VSA algorithm to binary code debloating, but they only evaluate two very tiny
programs with 555 LOC and 192 LOC. The value set obtained by VSA is over-approximated,
and its accuracy is subject to the lack of runtime information and path explosion. Therefore,
VSA results suffer from a high false positive rate [70]. Our evaluation also demonstrates that
VSA is too imprecise for practical binary code debloating.

Address-taken Function Instead of statically resolving indirect control flow targets, a
conservative approach is to detect address-taken (AT) functions, whose addresses are referenced
as constants somewhere within a module (e.g., executable and shared object). Therefore, they
are possible targets of indirect jump/call instructions. Control flow integrity [1] takes all
relocation table entries as AT functions. Unfortunately, as all library functions have to be
relocated due to PIC, this simple strategy will cause most library code not to be debloated.
Nibbler [3] improves the detection strategy by removing AT functions only invoked in unused
functions. However, Nibbler’s method suffers from two serious limitations: 1) compiler
optimization effects can result in arithmetic calculations for function addresses, while Nibbler
does not consider such cases; 2) it also misses the complex AT functions caused by C++ virtual
functions and read-only global function pointers. As a result, Nibbler may both miss some
debloating opportunities and incorrectly remove some used functions.

2.3 Overview

µTrimmer is a sample-input-agnostic, static library debloating technique that works directly
on MIPS binaries. The cornerstone of our approach is to construct an inter-procedural control
flow graph (ICFG) for each library. Some edges in the ICFG could be missing because
we do not attempt to resolve indirect control flow targets. Nevertheless, our address-taken
blocks/functions detection ensures that we can find all library basic blocks that could be used.
Then, we attach them into the ICFG; that means there are no missing vertices in the ICFG,
which is sufficient for the debloating purpose.

Key Insight As the global offset table (GOT) stores relocated addresses, most of the code
addressing in position-independent code (PIC) has to rely on reading constant addresses from

2.3 Overview 13

the GOT. Library code is PIC as well. Therefore, the vast majority of indirect control flows
interact with the GOT: the target address is either directly loaded from the GOT or calculated
from a GOT entry. The core of our address-taken blocks/functions detection is to analyze the
address loading patterns of the GOT and decide all legitimate addresses that could be referenced.
The only exception we observed is using function pointers as read-only global variables; their
relocated addresses are stored in the “.data.rel.ro” section. We handle this corner case with a
special treatment.

Figure 2.1 illustrates the architecture of µTrimmer. 1 ∼ 4 represent the following four
workflow steps.

1. Preprocess Given a firmware image, we adopt Binwalk [65] to extract the filesystem
from the firmware image so that we can obtain application binaries and shared libraries. We
also disassemble binary code using the linear scan strategy [75] for the following steps.

2. Library Dependency Graph Then, we collect the APIs required by firmware applica-
tions from different sources. As multiple libraries also have inter-module dependencies, the
required APIs and the already-extracted libraries are composed to form a library dependency
graph. The topological sorting of this graph decides the prioritization of Step 3.

3. ICFG Construction Given the APIs required by its predecessors in the library depen-
dency graph, we construct an ICFG for each library. We categorize different indirect control
flows (e.g., jump table and virtual table) according to how they load relocated addresses from
the GOT. We apply symbolic execution and capitalize on MIPS ABI and PIC features to
determine address-taken blocks/functions for each category. Our fine-grained method signifi-
cantly narrows down the potential targets and covers all indirect control flow cases, including
complicated cases from C++ libraries that cannot be handled by the existing work.

4. Basic Block Erasure The basic blocks that are not included in the ICFG can be safely
removed. Our strategy is to simply overwrite these extra basic blocks using a single-byte illegal
instruction “0xFF.” The benefit of doing so is that any attempt to run the erased code will
trigger an exception, and we are immediately aware of implementation errors. Recent binary
rewriting works [110, 108, 6, 113, 36, 74] offer an option to decrease the program size as well
by deleting unused binary code. Unfortunately, they bear several limitations and trade-offs that
can compromise soundness, such as updating code/data references, ignoring computed code
pointers, requiring a custom loader to perform runtime address resolution, and non-negligible
runtime overhead. We leave it as our future work.

µTrimmer’s output is a set of new thinned libraries that can be repackaged into the firmware
image. In the following two sections, we present details of our library dependency graph and
inter-procedural control flow graph (ICFG) construction.

14 Static Binary Debloating for MIPS Shared Libraries

libpcre libaprutil

libpcre import table (18):

strchr toupper

tolower malloc

free ...

libpcre import table (15):

strchr toupper

tolower malloc

free ...

APIs Required by

httpd

libapr libexpat

uClibc

(a) Library Dependency Graph

32.7% of

libpcre code

are debloated

(b) The Difference of Imported

APIs before/after Debloating

libpcre

libaprutil

libapr

libexpat
uClibc

(c) Library Debloating Prioritization

Fig. 2.2 Library dependency graph of httpd (Apache).

2.4 Library Dependency Graph

The starting point of µTrimmer’s debloating is to collect the library functions needed by
firmware applications. The required functions mainly come from two sources. First, we
analyze the application binary’s import table to obtain imported APIs, which are explicitly
invoked by the application. Instead of visiting the import table, a program may also manually
load APIs via dlopen() and dlsym(). In all of our tested programs, we only find one
such case for Apache, in which the arguments of dlopen() and dlsym() are stored in a
configuration file. Therefore, we add the APIs defined in the configuration file in the set of
required APIs. Second, we also include initialization and cleanup routines needed by shared
libraries themselves (e.g., .init, .init_array, and .fini) [56]; these functions are
defined as arrays of function pointers, which are called by the dynamic linker/loader.

As a library’s function may also call the APIs defined in other libraries, given the APIs
required by firmware, we need to keep all functions invoked in the library call chain. Therefore,
we build a library dependency graph, and its topological ordering schedules which library to be
debloated earlier. The root of the library dependency graph is the required APIs by firmware,
and leaf node is typically uClibc because other libraries all depend on C standard library.

Figure 2.2(a) shows the library dependency graph of httpd (Apache). We take libpcre
as an example. Libpcre depends on uClibc, and the import table of libpcre contains 18
APIs from uClibc. However, not all of these 18 APIs should be kept. After we debloat
libpcre library based on the httpd’s imported APIs, only 15 uClibc’s APIs are still used in the
remaining code (Figure 2.2(b)). Libc’s strchr, toupper, and tolower are only used by
libpcre’s pcre_maketables function, but httpd does not call pcre_maketables. After
debloating a library, we collect its imported APIs that are still needed and pass them to the

2.5 ICFG Construction 15

A GOT Entry

Intra-module loading

Inter-module loading

Exception handling (.gcc_except_table)

Virtual table as an API's parameter

*(GOT_ptr + Offset_const); e.g., calls using pointers

*[*(GOT_ptr + Offset1_const) + Offset2]; jump table

*[*(GOT_ptr + Offset1) + Offset2_const]; virtual function

Address Loading
Classification

1

2

3

Load from outside GOT Function pointers as read-only global variables

Func (a GOT entry); Func () is a linear function
Arithmetic
Calculation

4

6

5

Fig. 2.3 Six address loading patterns according to how indirect control flow targets are loaded
from memory.

---calling convention for qsort---
lw $a3, comparator($gp) # comparator
li $a2, 4 # size
move $a1, $a0 # num
move $a0, $v1 # base
lw $v0, qsort($gp)
move $t9, $v0
jalr $t9 # call qsort

MIPS Disassembly

void qsort (void* base, size_t num, size_t size, int
(*comparator)(const void*, const void*));

a

Fig. 2.4 An example of callback function.

successor nodes as the input of ICFG construction. Figure 2.2(c) shows the prioritization of
library debloating, which follows the topological ordering of Figure 2.2(a).

2.5 ICFG Construction

At this point, we can use the library dependency graph extracted from the previous step to
prioritize the ICFG construction for each library. The input to a library’s ICFG construction is
the required API list from this library’s predecessors. Starting from each required API function’s
entry point, we construct a control flow graph by detecting basic blocks and connecting the
edges between them. All individual CFGs will be composed as a whole ICFG for this library.
Please note that we did not differentiate whether an edge is inter-procedural or intra-procedural
to determine function boundaries. The reason is that certain compiler optimizations (e.g.,
multi-entry functions, non-contiguous functions, and tail calls) [75] make transitions between
functions implicit.

We mitigate the challenge of statically resolving indirect control flow targets by detecting
possible address-taken (AT) blocks/functions. Therefore, the ICFG actually consists of multiple
disconnected subgraphs. Unfortunately, the previous works [3, 1] lack a complete picture of

16 Static Binary Debloating for MIPS Shared Libraries

moduleB:
void bar(base& b)
{
 b.f();
}

---In moduleA----
lw $v0, off_410E40($gp) # load class d's vptr from the GOT
sw $v0, 0x28+var_10($fp)
addiu $v0, $fp, 0x28+var_10
move $a0, $v0 # the pointer to vptr as an argument
lw $v0, bar($gp) # load bar's address
move $t9, $v0
jalr $t9 # call bar(base &)
---In moduleB----
sw $a0, 0x20+arg_0($fp)
lw $v0, 0x20+arg_0($fp)
lw $v0, 0($v0) # obtain vtable address
lw $v0, 0($v0) # obtain virtuan f() address
lw $a0, 0x20+arg_0($fp)
move $t9, $v0 # $t9 stores the callee’s address
jalr $t9 # call f()

moduleA:
void foo(){
 derived d;
 bar(d);
}

C++ Source Code MIPS Disassembly

class base {
public:
 virtual void f()
 {...}
}

class derived:
public base {
public:
 void f()
 {...}
}

b

c

a

Fig. 2.5 An example of inter-module address loading from libstdc++. We simplify the code
snippet for the easy presentation purpose. The moduleA only loads a virtual table’s address and
passes it as an API’s argument. Only the moduleB loads the virtual function’s address from the
moduleA’s virtual table (within the scope of moduleA’s GOT).

AT function types, hindering their effectiveness. We present a new, comprehensive taxonomy
that covers all types of indirect jumps/calls.

2.5.1 Address Loading Classification

In the PIC code, most indirect control flows have to load constant values from the GOT to
recalculate their addresses. Therefore, we classify the address loading patterns according to how
indirect control flows interact with the GOT. In Figure 2.3, Type 1 ∼ Type 5 either directly
load the target address from the GOT or calculate it based on a GOT entry. Our classification
significantly narrows the hunting zone for possible AT blocks/functions in a binary file. Now
the problem boils down to identifying the GOT’s access patterns, thereby producing more tight
ICFGs. Besides, MIPS ABI also favors our approach: intra-module access to the GOT has to
visit a special-purposes register $gp, which is always used for GOT entry lookup, even if under
different compiler optimizations.

Intra-module Loading Each module (executable or shared library) has its own GOT.
When the address loading happens within the same module, the most common access pattern is
GOT-relative addressing (Type 1 in Figure 2.3). Function calls using pointers (e.g., callback
functions) also belong to this type. As shown in Figure 2.4, when a variable is assigned as
a function pointer, the compiler generates instructions to obtain its address via GOT-relative
addressing (a in Figure 2.4). Type 2 and Type 3 are corresponding to jump tables and C++
virtual functions, respectively. Both of them occupy a contiguous data area, and they have a
similar “pointer to pointer” access pattern. The difference is that the “Offset2” in Type 2 is a
variable because it is decided by the switch-case input. In contrast, the “Offset1” in Type 3 is

2.5 ICFG Construction 17

Table 2.2 The distribution of address loading types (see Figure 2.3) in SPEC CPU2017’s shared
libraries.

1 2 3 4 5 6

uClibc 84.1% 4.7% 0% 0% 10.5% 0.7%
libstdc++ 84.6% 1.6% 3.4% 8.6% 1.8% 0%
libgcc 79.1% 17.1% 0% 0% 3.8% 0%

a variable because a different class has a different virtual table, while a virtual function has a
fixed offset in the virtual table.

Inter-module Loading We find that the libraries written in C++ (e.g., libstdc++) may
have two complex cases, in which a module’s GOT can be accessed by a different module’s
instructions. Figure 2.5 shows a simplified example of inter-module address loading from
libstdc++ library. The moduleA only loads a virtual table’s address and passes it as an API’s
argument (b in Figure 2.5), but the moduleA has no instructions to load the virtual function
address. At runtime, the moduleB will load the virtual function’s address from the moduleA’s
virtual table, which is also within the scope of moduleA’s GOT (c in Figure 2.5). Due to the
lack of a global view, the AT function detection in the moduleA does not know which virtual
functions are eventually used. We will take a conservative solution to include all possible
virtual functions. Another example is C++ exception handling; the real exception handlers’
addresses are loaded by a GCC library.

Arithmetic Calculation Compiler optimizations may perform arithmetic on a GOT entry
to compute the target address between multiple instructions, hence data-flow analysis is required
to detect such a case.

Read-only Global Function Pointers The vast majority of indirect control flow targets
come from the GOT. The only counterexample we observed is function pointers used as read-
only global variables. They are stored in the “.data.rel.ro” section and initialized to a function’s
address by the compiler. Our treatment for this case is to label all relocated addresses in the
“.data.rel.ro” section as AT functions.

Distribution Table 2.2 shows the distribution of the six address loading types in SPEC
CPU2017’s shared libraries. Type 1 is the most common type, but other types also occupy
non-negligible portions. Virtual function loading and inter-module loading only happen in
libstdc++, and only uClibc uses function pointers as read-only global variables. The portion of
used code targeted by each address loading type is analogous to its distribution. Nibbler’s AT
detection [3] only covers Type 1 and Type 2 —missing any type could lead to incorrectly
removing used code.

18 Static Binary Debloating for MIPS Shared Libraries

2.5.2 Detect AT Blocks/Functions via Symbolic Execution

Our address loading classification guides us to detect address-taken basic blocks and functions
using symbolic execution. Given an initial CFG of a library’s function, our symbolic execution
traverses each CFG node to detect the GOT’s access patterns. As $t9 register stores the callee
function’s address, we also use this value to set the initial state of symbolic execution. Any
detected AT blocks/functions are added to our working list, and we perform symbolic execution
until no more CFG nodes are discovered. For the most common GOT-relative addressing type
(Type 1), as both $gp and the offset are immediate values, our symbolic execution can easily
detect the AT blocks/functions loaded from the GOT. In the following subsections, we discuss
how to detect AT blocks/functions related to other address loading types.

Jump Tables

Jump tables are an intra-procedural binary structure to implement switch-case statements.
Typically, we mark all target addresses from the jump table as AT basic blocks. When our
symbolic execution recognizes the GOT’s access pattern like Type 2 , in which “Offset2” is a
symbolic variable, we recover the structure used for switch-case control transfer. We adopt a
mature jump table recovery method [67, 34, 26], which involves three steps:

1. Identify the jump table’s indirect jump.

2. Perform a backward slicing from the indirect jump to calculate the base address and
offset range of the jump table.

3. Extract all target addresses from the table.

Note that due to certain compiler optimizations, the extracted target address may not be a valid
code address but a constant offset to the GOT. The benefit of doing so is to reduce relocation
entries and load-time overhead. When we find such a case, we obtain the real address-taken
basic blocks by adding the $gp value to the jump table entries.

Virtual Functions

In Figure 2.5, we have presented the challenge of inter-module address loading caused by using
virtual table pointer as an API’s argument. Due to the nature of runtime method binding, even if
a virtual function invocation happens within the same module, statically resolving all required
virtual functions is still an undecidable problem.

In spite of this, a virtual table’s creation in PIC is traceable. Each class maintains its own
virtual table. When creating a class instance, the program loads a virtual table pointer from the

2.5 ICFG Construction 19

GOT and saves it in the stack for future use. The type of virtual table pointer loading is either
GOT-relative addressing (e.g., a in Figure 2.5) or via arithmetic calculation, and our symbolic
execution can capture both of them. Therefore, we take a conservative strategy to deal with the
undecidable virtual function addressing problem:

1. We first find all possible virtual tables stored in a library’s binary code.

2. If a virtual table pointer is loaded from the GOT, we treat all virtual functions from this
virtual table as AT functions.

In particular, we utilize C++ ABI’s definition to identify virtual tables and their scopes in
the data section. C++ ABI defines two mandatory fields at the entry of a virtual table: run-time
type information (RTTI) and OffsetToTop. RTTI field contains either zero or a pointer to
typeinfo; OffsetToTop field contains zero or a negative offset to the primary virtual table. These
two mandatory fields are a good indicator to recognize potential virtual tables. After that, our
symbolic execution monitors whether a virtual table pointer is loaded from the GOT; if yes, we
will label all virtual functions from this virtual table as address-taken functions.

Exception Handling

C++ exception breaks the normal control flow and then executes a pre-registered exception
handler. C++ exception handling mechanism relies on both C++ and GCC libraries. The address
loading type of the exception handler belongs to inter-module loading—it is loaded from a
GCC library. The exception handler information is stored in .gcc_except_table, .eh_frame,
and .eh_frame_hdr sections. For C++ binary code (e.g., libstdc++), we parse the exception
table and match the connection between try-catch blocks. If our symbolic execution finds a
basic block registered in the exception table is used, we will mark the corresponding exception
handler code as AT basic blocks.

Listing 2.1 Address loading via arithmetic calculation. The binary code snippet is from uClibc
function “re_search_internal.”

1 l a $v0 , loc_10000 ($gp)
2 / / l o a d r e l o c a t e d a d d r e s s o f "0 x10000 " from GOT i n t o $v0
3 nop
4 a d d i u $v0 , (p o p _ f a i l _ s t a c k − 0 x10000)
5 / / (p o p _ f a i l _ s t a c k − 0 x10000) i s a compi l e r − g e n e r a t e d c o n s t a n t v a l u e ; a f t e r t h e add

o p e r a t i o n , $v0 s t o r e s t h e f u n c t i o n a d d r e s s o f " p o p _ f a i l _ s t a c k . "
6 sw $v0 , 0x1B8+var_8C ($sp)
7 / / s ave t h e f u n c t i o n a d d r e s s i n t h e s t a c k f o r f u t u r e use

20 Static Binary Debloating for MIPS Shared Libraries

Firmware Filesystem

2

QEMU-MIPS64 Processor

Linux Host Debugging Tools

1

./bin

./lib/libc.so.0
Testing Tools:
 shell, make, Perl,
 …

libc

./testlib/libc.so.0
libc

SPEC CPU2017,
Firmware Applications,
…

Thinned Library

3

Fig. 2.6 Testing environment setup.

Arithmetic Calculation

In Table 2.2, 10.5% of uClibc’s control flow target addresses are calculated from a GOT entry.
Listing 2.1 shows such an example from uClibc. Instead of directly loading the function address
from the GOT, the program first loads the relocated address of “0x10000” from the GOT. Then,
this value is added to an offset to get the relocated address of function “pop_fail_stack.” Note
that the relocated address of “pop_fail_stack” does not exist anywhere in the binary code. Many
control flow integrity methods [1] simply use all relocation table entries as possible indirect
control flow targets, and Nibbler [3] only scans load instructions without performing data-flow
analysis. Unfortunately, all of them will miss AT functions like “pop_fail_stack.” If our library
debloating do not consider this address loading type, four debloated benchmarks of SPEC
CPU2017 will crash at runtime. Our symbolic execution traces the arithmetic calculation based
on the loaded address from the GOT. If the computation result is a valid code address, we will
mark this address as a potential reachable target.

2.6 Evaluation

We developed µTrimmer on top of a binary code analysis platform, angr [101]. We reuse
angr’s disassembly and symbolic execution engine and contribute 3K lines of new code to
angr’s codebase. Our experiments are performed on a machine with an Intel i9-7900x processor
(8-core3.30Ghz) and 16GB memory, running Ubuntu 20.04 LTS.

2.6 Evaluation 21

We evaluate µTrimmer from four dimensions. First, we provide code reduction metrics
and demonstrate µTrimmer can deliver functional thinned libraries. Second, we show that
µTrimmer’s code elimination is very close to the static linking result, which is generally
recognized as the optimal library code reduction rate. The third experiment reports ROP gadget
reduction results. At last, we debloat a real-world wireless router firmware image to show that
µTrimmer can be applied on an entire embedded system.

Table 2.3 The debloating results of SPEC CPU2017 Integer and firmware applications. The
data in “Library Statistics” mean the number of libraries each program depends on, the total
number of library functions, and the size of library binary code. “#Full” and “#Partial” present
the number of functions are fully and partially removed, respectively. “Partial Size” indicates
the removed code size from partially-removed functions. “Size” shows the code reduction size
in total. All of the size data are in KB. “Time” column lists µTrimmer’s running time (hours).

Library Statistics Code Reduction Metrics
Time (h)

#Lib. #Total Func. Size #Full #Partial Partial Size Size Ratio
SPEC CPU2017 Integer
502.gcc_r 1 1,903 519.4 1,488 11 0.3 393.1 75.7% 1.5
505.mcf_r 1 1,903 519.4 1,541 10 0.4 406.2 78.2% 1.2
520.omnetpp_r 3 7,152 1,278.4 4,476 18 0.5 682.7 53.4% 6.2
523.xalancbmk_r 3 7,152 1,278.4 4,599 16 0.3 719.8 56.3% 5.2
525.x264_r 1 1,903 519.4 1,500 10 0.4 390.7 75.2% 1.2
531.deepsjeng_r 3 7,152 1,278.4 4,727 15 0.4 751.7 58.8% 3.8
541.leela_r 3 7,152 1278.4 4,615 15 0.4 736.4 57.6% 5.4
557.xz_r 1 1,903 519.4 1,550 11 0.4 414.9 79.9% 1.1
Mean 2 4,527 898.9 3,062 13 0.4 561.9 66.9% 3.2
Firmware Applications
Apache 5 3,378 945.5 1,421 35 2.5 378.3 40.2% 2.5
BusyBox 1 1,903 519.4 1,092 17 0.8 262.0 50.5% 5.6
Perl 1 1,903 519.4 1,290 16 0.3 345.6 66.5% 2.1
OpenSSL 4 9,400 2,243.3 3,583 38 6.3 607.9 27.1% 5.4
nano 2 2,617 651.7 1,970 13 0.3 444.8 68.3% 1.9
unzip 1 1,903 519.4 1,512 13 0.4 405.1 78.0% 1.7
Mean 2.3 3,517 899.8 1,811 22 1.8 407.3 55.1% 3.2

Environment Setup As shown in Figure 2.6, we build our testing environment using
QEMU [14] to emulate a MIPS64 processor. We set up two file system environments in
the virtual machine: a generic Linux filesystem and the firmware filesystem. Linux host
environment runs debugging tools and the package manager (1 in Figure 2.6), which are
necessary to efficiently develop µTrimmer. All of our experiments, including thinned libraries,
run in the firmware filesystem.

Running test suite for empirical correctness evaluation may require additional utility soft-
ware. For example, running Apache test cases requires shell, make, and Perl, but they
also rely on some libc code that is not used by Apache. Therefore, we have to separate the
library usage between testing tools (2 in Figure 2.6) and target programs (3) by customizing
target programs’ run-time search path. We found that this intricacy was not addressed by the
previous work [86, 3].

22 Static Binary Debloating for MIPS Shared Libraries

Dataset Our test cases include three kinds: SPEC CPU2017 integer benchmarks (four of
them are written in C++); popular third-party applications used in router firmware, including
Apache, busybox, OpenSSL, Perl, nano, and unzip; a real-world wireless router firmware
image, which contains 75 applications and 25 shared libraries. We select SPEC benchmarks
because they are often used as complicated evaluation cases for binary code research in the
past decade. All target programs are compiled by the optimization level -Os, which is the most
common optimization option in embedded systems. We fail to compile two SPEC benchmarks
(perlbench and exchange2) due to a known cross-compilation issue [102]. For our router
firmware image experiment, we did not have the option to choose any compiler, so µTrimmer
works on compiled library code as-is.

2.6.1 Code Reduction and Correctness

Code Reduction Metrics Table 2.3 summarizes the code reduction metrics achieved by
µTrimmer on our dataset. The average shared library code reduction ratio for SPEC CPU2017
and firmware applications is 66.9% and 55.1%, respectively. The peak value happens at the data
compression benchmark 557.xz_r, in which almost 80% of library code is debloated. SPEC
CPU2017 benchmarks depend on three C/C++ libraries, and their per-library debloating results
are shown in Table 2.4.

Table 2.4 Per-library code reduction ratio of SPEC CPU 2017 integer benchmarks. “N/A”
means this library is not used. “Time” column lists µTrimmer’s running time for each library.

uClibc libstdc++ libgcc
Overall

Ratio Time Ratio Time Ratio Time
502.gcc_r 75.7% 1.5 h N/A N/A N/A N/A 75.7%
505.mcf_r 78.2% 1.2 h N/A N/A N/A N/A 78.2%
520.omnetpp_r 64.9% 1.8 h 41.4% 4.4 h 72.7% 38 s 53.4%
523.xalancbmk_r 69.5% 0.7 h 42.9% 4.5 h 76.2% 34 s 56.3%
525.x264_r 75.2% 1.2 h N/A N/A N/A N/A 75.2%
531.deepsjeng_r 72.6% 1.1 h 45.2% 2.7 h 76.4% 39 s 58.8%
541.leela_r 74.0% 1.0 h 41.9% 4.4 h 76.2% 36 s 57.6%
557.xz_r 79.9% 1.1 h N/A N/A N/A N/A 79.9%
Mean 73.8% 1.2 h 42.9% 4.0 h 75.4% 36.8 s 66.9%

We also report the number of functions and code size that are partially removed. A non-
negligible number of functions do not distribute in a continuous code area. Instead, they may
have multiple chunks at different areas or even share some blocks with other functions, such as
fdopen, fopen, fopen64, and _authenticate in uClibc. Table 2.3’s data justify our
choice of basic blocks as debloating granularity. The last column shows µTrimmer’s end-to-end
running time, which varies from 1.1 hours to 6.2 hours. Symbolic execution is a well-known

2.6 Evaluation 23

Table 2.5 Per-library debloating capability comparison with static linking for Apache web
server. All “Size” data represent the remaining binary code size in KB.

Library
Dynamic µTrimmer Static

Size Size %Redu. Size %Redu.
uclibc 519.4 176.8 66.0% 163.2 68.6%
libpcre 80.4 54.1 32.7% 53.9 32.91%
libaprutil 115.0 114.3 0.57% 112.4 2.2%
libapr 131.5 130.3 0.9% 125.3 4.8%
libexpat 99.2 91.7 7.6% 91.4 7.9%
total 945.5 567.2 40.0% 546.2 42.2%

performance bottleneck, and the total running time is positively correlated with the number of
libraries.

Empirical Correctness Testing We validate target programs and their debloated versions
using officially-provided test suite, and then we compare their execution results to evaluate
whether µTrimmer correctly removes only unused code. For SPEC CPU2017, we use the
ref workload as input, which represents robust correctness testing. The test suite of Apache
is collected from the official Apache HTTP Test project [43]. We collect test cases for the
remaining programs from their official repositories. All debloated versions pass the correctness
testing, and no illegal instruction exception is triggered at runtime.

Value-set Analysis Instead of running our AT blocks/functions detection method, we also
tested Redini et al.’s new VSA algorithm [90] to resolve possible targets of an indirect control
flow. However, the experiment resul on SPEC CPU2017 is dissatisfactory. Each benchmark
has multiple undecidable control flows that have no constraints to limit their targets. If we do
not consider such unsolvable control flows, the debloated libraries will incorrectly exclude used
code, and none of them can pass our correctness testing.

2.6.2 µTrimmer vs. Static Linking

The effect of static linking represents an upper bound for dead code elimination. However,
static linking does not allow memory sharing across processes and may lead to a significantly
larger disk footprint, and thus it has been discouraged by many OSs. For example, Solaris
removed all static versions of libc in 2004 [40], and Red Hat Enterprise Linux 8 does not
support static linking anymore [89]. We compare µTrimmer with static linking to highlight our
debloating capability.

As the Apache web server relies on a maximum number of shared libraries in our dataset,
we select it for comparison. Table 2.5 shows the per-library debloating results. The second
column shows the binary code size of the original shared libraries. The third column lists the
binary code size of the thinned shared libraries. The fifth column shows the binary code size

24 Static Binary Debloating for MIPS Shared Libraries

Table 2.6 The reduction ratio of three common gadget types: syscall, stack pointer update
(SPU) and jump-oriented programming (JOP).

Program %Code Redu. Total Syscall SPU JOP
SPEC CPU2017 Integer
gcc_r (75.8%) 76.0% 79.2% 75.4% 75.5%
mcf_r (78.2%) 78.3% 81.8% 77.7% 77.8%
omnetpp_r (53.4%) 56.2% 77.2% 53.7% 55.4%
xalancbmk_r (56.3%) 58.6% 78.1% 55.6% 57.8%
x264_r (75.2%) 76.4% 81.5% 76.3% 75.8%
deepsjeng_r (58.8%) 60.9% 79.0% 58.4% 60.2%
leela_r (57.6%) 58.2% 79.1% 55.5% 57.4%
xz_r (79.9%) 78.9% 81.9% 78.4% 78.5%
Mean (66.9%) 67.9% 79.7% 66.4% 68.5%
Firmware Applications
Apache (40.2%) 32.1% 60.1% 35.3% 30.6%
BusyBox (50.5%) 51.5% 62.7% 54.6% 50.0%
Perl (66.5%) 67.0% 68.5% 67.2% 66.8%
OpenSSL (27.1%) 25.3% 71.1% 28.0% 24.5%
nano (68.3%) 63.8% 77.9% 66.6% 62.6%
unzip (78.0%) 76.0% 79.4% 76.9% 75.5%
Mean (55.1%) 52.6% 69.9% 54.8% 51.7%

after static linking. Note that the Apache web server heavily uses two shared libraries (libapr
and libaprutil), thus both µTrimmer and static linking can only remove a small portion of code
from them. Overall, static linking removes 42.2% of library binary code, while µTrimmer’s
code reduction is very close to static linking’s result by a small gap of 2.2%. Upon further
investigation, we find that the gap of 2.2% is caused by our conservative strategy on handling
read-only global function pointers (Type 6 in Figure 2.3), while static linking can correctly
remove functions in the “.data.rel.ro” section.

Directly comparing related library debloating work [86, 3, 83] is infeasible because of
their specific assumptions (e.g., source code and runtime support) and different platform
requirements. Fortunately, both piece-wise [86] and Nibbler [3] also compare their debloating
results with static linking. We measure the difference value of code reduction ratio with static
linking as an indirect evaluation. Piece-wise removes 3.9% less code than static linking, and
this difference value for Nibbler is 10%. Compared with piece-wise and Nibbler, µTrimmer
has fewer assumptions but still outperforms them.

2.6.3 Gadget Reduction

We use ROPgadget [93] to measure three common gadget types: syscall [99], stack pointer
update (SPU) [49], and jump-oriented programming (JOP) [16]. Note that MIPS does not
contain return instructions and instructions like “call *(memory),” thus conventional gadget
types, such as ret-based gadgets [99] and call-oriented programming (COP) gadgets [20],
are not available in MIPS. As shown in Table 2.6, µTrimmer seems to be very effective in
removing the syscall gadget class, whose reduction ratio is much higher than the respective

2.6 Evaluation 25

Table 2.7 The shared libraries’ debloating results for TP-Link Archer A10(V1) firmware. The
data in “Library Statistics” mean the number of user-applications requiring this library, the
number of other libraries requiring this library, the total number of library functions, and
the size of this library binary. “#Full” and “#Partial” represent the number of functions are
fully and partially removed, respectively. “Partial Size” indicates the removed code size from
partially-removed functions. “Size” shows the code reduction size in total. All of the size data
are in KB. “Time” column lists µTrimmer’s running time for each library.

Library
Library Statistics Code Reduction Metrics

Time
#Bin. #Lib. #Total Func. Size #Full #Partial Partial Size Size Ratio

libcurl.so.4.3.0 2 0 458 225.78 142 1 1.3 77.02 34.1% 9.8 h
libcmm.so 24 0 1,545 653.73 197 17 7.0 78.00 11.9% 32.5 m
libixml.so 1 0 185 71.48 82 0 0 27.36 38.3% 30 s
libupnp.so 1 0 367 227.08 86 7 1.7 55.21 24.3% 9.6 m
libcutil.so 14 1 84 38.91 31 4 0.0 16.53 42.5% 12 s
libthreadutil.so 1 0 83 33.36 58 0 0 27.19 81.5% 2 s
libos.so 22 2 47 8.73 7 0 0 0.91 10.4% 4 s
libiw.so.29 4 0 62 22.91 7 0 0 3.76 16.4% 27 s
libcJSON.so 5 1 66 15.73 20 0 0 2.88 18.3% 33 s
libssl.so.1.0.0 4 1 709 276.36 158 3 0.8 35.06 12.7% 24.3 m
libcrypto.so.1.0.0 4 2 4,563 1,085.77 1,525 31 3.1 215.49 19.8% 3.1 h
librt-0.9.33.2.so 7 1 20 2.03 18 0 0 1.69 83.3% <1 s
libutil-0.9.33.2.so 1 0 6 1.58 5 0 0 1.22 77.2% <1 s
libstdc++.so 2 0 2,641 468.13 1,246 2 0.2 182.52 39.0% 5.9 h
libdl-0.9.33.2.so 5 2 10 4.94 2 0 0 0.52 10.5% 4 s
libxml.so 0 1 28 9.53 9 0 0 3.79 39.8% 6 s
libgcc_s.so.1 1 0 1,325 117.88 1,233 1 0.2 82.95 70.4% 1.0 m
libnsl-0.9.33.2.so 1 0 1 0.01 1 0 0 0.01 100.0% <1 s
liblzo2.so.2.0.0 1 0 151 111.34 117 0 0 73.29 65.8% 1.0 m
libcrypt-0.9.33.2.so 3 0 14 7.08 0 1 0.02 0.02 0.3% 8 s
libz.so.1.2.6 0 0 113 65.16 113 0 0 65.16 100.0% <1 s
libresolv-0.9.33.2.so 0 3 1 0.01 1 0 0 0.01 100.0% <1 s
libm-0.9.33.2.so 9 2 166 80.70 127 1 1.5 52.03 64.5% 1.1 m
libpthread-0.9.33.2.so 13 4 214 33.53 77 0 0 8.88 26.5% 1.3 m
libuClibc-0.9.33.2.so 75 23 1,490 315.89 601 8 1.2 115.19 36.5% 1.6 h
Overall 14,349 3,877.65 5,863 75 17.0 1,126.67 29.1% 21.7 h

code reduction. We find that most erased syscall instructions come from unused functions
in uClibc. The reduction data for SPU and JOP types are analogous to our achieved code
reduction. This experiment indicates that µTrimmer can prohibitively increase adversaries’
costs on launching code-reuse attacks.

2.6.4 Firmware Image Debloating

Piece-wise [86] is designed to debloat each application individually, while µTrimmer can be
applied on an entire system. We conduct a separate experiment with a real-world embedded
device: a wireless router Archer A10 from TP-Link.

This router’s firmware image contains 25 shared libraries and 75 applications. The top
four libraries in code size are libcrypto, libcmm, libstdc++, and uClibc. The shared libraries
libnsl.so and libresolv.so from uClibc are only stubs, containing only one “return” instruction.
That is why their executable code size is only 0.01 KB. None of libraries are dynamically
loaded via dlopen() in this firmware image. Given the whole firmware image as input,

26 Static Binary Debloating for MIPS Shared Libraries

µTrimmer automatically delivers a set of new thinned libraries that can work with all firmware
applications. Table 2.7 summarizes the per-library code reduction achieved by µTrimmer and
its running time.

µTrimmer first collects the APIs required by 75 firmware applications and generates a
library dependency graph. Then, it starts symbolic execution on each library’s binary code
according to the topological sorting of the library dependency graph. The time data in Table 2.7
represent the processing time for each library, including the time taken to identify unused code.
Without the debug symbol information, function recognition in stripped binary code is still an
open question [75]. We use IDA Pro’s function recovery heuristics [55] to report the number of
functions that are fully and partially removed. Next, we report some interesting observations
from our experiment.

Two applications are C++ programs, and the others are C programs. C++ programs depend
on the bulky libstdc++ library, which is also the only library written in C++. Table 2.7’s Column
2 and Column 3 reflect which libraries are commonly depended. Almost all applications and
libraries require uClibc. Even so, we can still remove 36.5% of uClibc’s executable code. Code
bloat is not equally distributed in libraries. In the worst case (libz.so), we found that it was
never used by any firmware application so that µTrimmer can remove the entire library. A
potential configuration error during the compilation of cURL includes libz.so by mistake. In
the best case (libcrypto.so), we only removed 0.3% of its code size, indicating most of APIs
from libcrypto.so are used.

Four sophisticated libraries (libcurl, libcrypto, libstdc++, and uClibc) occupy 94% of
µTrimmer’s running time, because their binary code contains a large number of conditional
branches. The overall running time of µTrimmer is 21.7 hours. Considering µTrimmer is
an automated tool without affecting runtime performance, the overhead is acceptable. After
µTrimmer’s debloating, we repackage the debloated filesystem back into the firmware image
and flash it into a router. We deployed this debloated router device in a university laboratory,
and it has run smoothly since September 2020.

2.7 Discussion and Future Work

Library debloating for embedded systems shows promise, but µTrimmer is still in its infancy.
This section discusses µTrimmer’s limitations and its applicability to other platforms

Static Analysis Limitations Our approach bears similar limitations with static analysis
in general. For example, the challenge of disassembling stripped ARM binaries [59] severely
limits µTrimmer’s adoption in the ARM platform. When a virtual table pointer is loaded
from the GOT, we conservatively include all virtual functions from this virtual table. Besides,

2.7 Discussion and Future Work 27

the various obfuscation techniques [27, 11] will undoubtedly deter extracting an accurate
control flow graph from binary code. However, the firmware running on resource-constrained
embedded devices is rarely obfuscated, because code obfuscation can result in a non-negligible
performance drop. For manually loaded APIs via dlopen() and dlsym(), now we can
handle them when these two API arguments can be statically decided (e.g., they are hard-coded
in binaries). However, the arguments of dlopen() and dlsym() can also be dynamically
generated, and µTrimmer cannot guarantee the safety of library debloating in this case. Piece-
wise [86] and Nibbler [3] share the same limitation. One possible mitigation is profiling
firmware applications with common workloads to reveal the dynamically generated arguments
of dlopen/dlsym.

Applicability to Other Architectures Binary disassembly concerns aside, our proposed
technique is a general approach to identify reachable code for position-independent code by
monitoring GOT’s access patterns rather than statically solving each indirect control flow. We
want to clarify that our approach is not tied to a specific ABI. Utilizing MIPS ABI provides hints
to explicitly identify the access operations to the GOT and thus optimizes the address-taken
blocks/functions detection, but the overall methodology to detect unused library code also
applies to other architectures, including ARM, X86, and RISC-V. For example, X86 may use a
stub call to get the current function address instead of $t9 register in MIPS, and we can handle
it with small engineering efforts.

No Soundness Guarantee We empirically learned the address loading patterns for indirect
control flows, and they are general to the PIC of other ISAs. We did not claim the soundness
of our approach because in the binary code analysis domain, theoretical guarantees can be
weakened by the toolchain. For example, the underlying binary code symbolic execution
is heuristics-based and not sound. We empirically evaluated the correctness by running the
officially-provided test suite, which is common for most software debloating papers.

Security Evaluation Metrics Debloating techniques using ROP reduction as security met-
rics has caused controversy, because only removing unwanted features or unused code cannot
prevent code-reuse attacks entirely. Skilled adversaries can still search available ROP gadgets
from the remaining codebase, albeit in a more limited form. As µTrimmer achieves the goal
of removing code involved in allowable control flows with zero runtime performance penalty,
a possible enhancement is to combine µTrimmer with continuous code re-randomization
and control-flow integrity techniques; Nibbler [3] has demonstrated such a combination is a
promising direction.

Delete Unused Code Embedded devices have limited computation resources, and firmware
images form a closed software world. These characteristics make static debloating particularly
attractive. Currently, we rewrite unused code with illegal instructions to help us quickly locate

28 Static Binary Debloating for MIPS Shared Libraries

any implementation errors. Our correctness testing has demonstrated µTrimmer’s result is
reliable. Deleting unused code from library binaries also benefits embedded systems, because
less shared library code size means better instruction cache performance and faster loading time.
One of the key challenges in binary rewriting is to update code pointers and data references,
which requires resolving indirect control flow targets accurately. This undecidable problem
is also what we try to circumvent in our paper. Currently, no tools can guarantee a successful
binary rewriting in practice [110, 108, 6, 113, 36, 74]. Therefore, our future work is to explore
binary rewriting to achieve the goal of code size reduction.

2.8 Conclusion

Static binary debloating for shared libraries is a promising but also challenging research
task; it can significantly reduce the code-reuse attacking surface without incurring extra
performance or storage costs. In this paper, we demonstrate that static library debloating is not
an insurmountable obstacle on MIPS architecture. The potential customers of our proposed
solution are individuals and companies who want to secure embedded systems via automated
binary hardening [50].

Chapter 3

Indirect Call recovery using Augmented
Control Flow Graphs with GNN

3.1 Background & Related Work

3.1.1 Graph neural network

Graphs are widely used to model complex data structures such as molecular structures, social
networks [48, 94, 77, 32, 22], or control flow graph, data flow graph, abstract syntax tree in the
field of program analysis. In contrast to traditional data structures such as arrays or matrices,
graphs are characterized by their non-linear and irregular structure. This makes it challenging to
apply traditional machine learning techniques to graph data. The basic idea behind GNNs [96]
is to propagate information across the graph structure, enabling the model to extract useful
features and make predictions.

Typically, GNNs have two phases: the message passing phase and the readout phase. In the
message passing phase, information is propagated across the graph structure through a series of
local operations. Each node aggregates information from its neighbors, and this information
is combined with the node’s own features to produce a new feature vector. This process is
repeated iteratively until the information has propagated across the entire graph. In the readout
phase, the final node representations are used to make predictions. This can be done through
a variety of methods, such as averaging the node representations to produce a graph-level
representation, or using a graph-level classification model to classify the entire graph.

30 Indirect Call recovery using Augmented Control Flow Graphs with GNN

Heterogeneous graph

A heterogeneous graph is a graph that contains nodes and edges of multiple types. This means
that the nodes and edges in the graph represent different types of entities and relationships,
rather than a uniform set of entities and relationships. An illustration of a heterogeneous graph
can be observed when a graph is required to represent multiple types of information, such as
code and data, or control flow and reference relationships. Recent research in heterogeneous
graph analysis [97] has focused on developing new techniques for graph embedding, which aim
to map the nodes in the graph to a low-dimensional space while preserving the graph structure
and the heterogeneity of the nodes and edges [52]. This can be achieved through the use of
heterogeneous graph neural networks (HGNNs), which extend the traditional graph neural
network models to handle heterogeneous graphs.

Graph Positional Encoding

Graph positional encoding (GPE) is a technique used in graph neural networks (GNNs) to
incorporate the position information of nodes in a graph. The basic idea behind GPE is to
assign a unique position vector to each node in the graph, which captures its relative position
with respect to other nodes in the graph [38, 37]. By incorporating position information into
the node representations, GPE can help the model better understand the structure of the graph
and capture the local and global relationships between nodes.

3.1.2 Deep learning in binary analysis

Traditionally, binary analysis has been performed using static and dynamic analysis techniques.
However, these methods have limitations in their ability to handle the complexity and diversity
of programs. Deep learning, on the other hand, has shown promising results in addressing
these challenges by providing a flexible and scalable approach to binary analysis. Many
different tasks in binary analysis are covered by deep learning, such as debug information
revcovery(Debin [53]), binary similarity detection(Trex [81]), type recovery(Stateformer [82]),
function name prediction(SymLM [61], NERO [31]). However, their approach only focus on
the assembly code itself and also suffer limitations of natural language processing domain.

Natural language processing

For binary program, it can be represented as the machine code or assembly language. Both
of them are hard to be used in machine learning. Word embedding from Natural language
processing comes handy. An embedding is a method that can translate high-dimension text into

3.1 Background & Related Work 31

low-dimension vectors and groups similar properties of different instructions. BERT [62] is the
state-of-the-art model for word embeddings. There are also many works which have been done
to embed the binary programs, such as Instruction2Vec [68], InnerEye [119], Asm2Vec [35],
and PalmTree [69]. PalmTree is a general-purpose instruction embedding model based on the
BERT model and outperforms the other models. It is a self-supervised model and capable
capture the relationship between instructions. In our work, we apply PalmTree for instruction
embedding processing.

3.1.3 Information loss

There are several information loss pitfalls in binary from the previous approaches, notably data
information, out of vocabulary issue and path explosion.

Data vs Code

Many previous works [81, 82, 61] only use assembly information to present a binary file
used in machine learning. However, the data section of a binary file contains additional vital
information such as function pointers, jump table targets, initial variable values, and string
information. Function pointers and jump table targets are crucial for constructing control flow
while the initial variable values and string information are useful for type-based matching
analysis. Regrettably, these significant pieces of information have been neglected in previous
works.

Out of vocabulary

The vocabulary of a language model typically consists of a fixed set of words that have been
pre-defined during the training process. This set of words is typically limited to the most
frequent words in the training data. Out of vocabulary (OOV) is a common problem in natural
language processing (NLP) and refers to words that are not included in a given language
model’s vocabulary. OOV words can be problematic as they can result in errors or inaccuracies
in NLP tasks. Address and symbols are OOV examples in binary analysis scenarios. One of
the common approach is replacing uncommon number or symbols with a special token, such
as [num] or [sym] [68, 69]. Unlike the approach only encode numbers or symbols into one
single token, Callee [118] tries to encode unlimited number or symbols into a fixed number of
symbols, they set the hyperparameter to 10 in their work. However, both of these don’t solve
the problem, their are still dramatic information lost during this embedding process.

32 Indirect Call recovery using Augmented Control Flow Graphs with GNN

Source
Code

TyPro

Analysis

Compile

Indirect Call
Targets
Ground
Truth

O0, O1,
O2, O3
binaries

GCC

LLVM

Disassemble

ICFG

Symbolization

Disassemble

ICFG

Symbolization

Augmented
Control Flow

Graph

Laplacian
Position
Encoding

Laplacian
Position
Encoding

Relational Graph
Convolution Network

Relational Graph
Convolution Network

Fig. 3.1 The overview of this indirect call prediction work.

Path explosion

The input of NLP models typically assumes a linear relationship among the inputs, which
results in the loss of critical control flow information. Existing approaches, as described in
[118, 81, 82, 61], typically rely on linear inputs that either represent the function’s semantic
regarding paths or just the address order. However, it is challenging to represent a graph using
a limited number of paths.

3.2 Overview

3.2.1 Key insight

As mentioned in Section 3.1.3, encoding and learning arbitrary numbers using NLP embedding
is a challenging task for deep learning models. However, in the context of binary analysis,
unique large numbers, such as addresses, share a special property of being references. These
references can be easily represented as edges in a graph. To better represent the program, we
augmented the control flow graph with reference edges to capture these important relationships.

To incorporate data information, we introduce a data node into the control flow graph and
connect it with the reference edges. This allows us to capture not only the control flow but also
the data flow of the program.

By representing the program as a graph, the issue of path explosion is also resolved, as
we no longer need to constrain the input to a linear representation. Therefore, graph-based
representations provide a more comprehensive and effective approach to representing programs
for binary analysis.

3.2 Overview 33

.text:006A9A1 mov rax, cs:0D6368h

.text:006A9A8 test rax, rax

.text:006A9AB jz 0x6AA0D

.text:006A9AD mov rdx, cs:0D6368h

.text:006A9B4 mov rax, [rbp-18h]

.text:006A9B8 mov rdi, rax

.text:006A9BB call rdx

.text:006A9BD mov [rbp-8], eax

.text:006A9C0 jmp 0x6AA0D

.text:006A9A1 mov rax, cs:module_ssl_proxy_enable

.text:006A9A8 test rax, rax

.text:006A9AB jz short loc_6AA0D

.text:006A9AD mov rdx, cs:module_ssl_proxy_enable

.text:006A9B4 mov rax, [rbp-18h]

.text:006A9B8 mov rdi, rax

.text:006A9BB call rdx

.text:006A9BD mov [rbp-8], eax

.text:006A9C0 jmp short loc_6AA0D

(A) Disassemble (B) Symbolization

mov rax, cs:module_ssl_proxy_enable
test rax, rax
jz short loc_6AA0D

mov rdx, cs:module_ssl_proxy_enable
mov rax, [rbp-18h]
mov rdi, rax
call rdx ; module_ssl_proxy_enable
mov [rbp-8], eax
jmp short loc_6AA0D

loc_6AA0D:
nop

(C) Control Flow Graph

mov rax, cs:module_ssl_proxy_enable
test rax, rax
jz short loc_6AA0D

mov rdx, cs:module_ssl_proxy_enable
mov rax, [rbp-18h]
mov rdi, rax
call rdx ; module_ssl_proxy_enable
mov [rbp-8], eax
jmp short loc_6AA0D

loc_6AA0D:
nop

data:
cs:module_ssl_proxy_enable

Func: ap_setup_ssl_optional_fns
...
mov cs:module_ssl_proxy_enable, rax
...

(D) Augmented Control Flow Graph

Fig. 3.2 Data processing example of this work. This code piece is picked from apache web
server ap_ssl_bind_outgoing function.

Figure 3.1 is the overview of this work. We will cover how we collecting source code data,
preprocessing binaries, RGCN details in the next chapter.

In figure 3.2, (A) is the partial disassemble result of the apache web server’s ap_ssl_bind_outgoing
function. As we can notice the data is loaded at cs:0D6368h data section and the jump target is
0x6AA0D. To avoid the OOV problems, we can not encode any address as we want. During
the assembly encoding process, the numeric data will be replaced by a special token, such as
[data] [82, 81]. The connection between the address is lost. (B) is the symbolization process of
the disassembly code. The address of the data section and code section is represented as special
edges in graph. In the following process, we will distinguish reference source and target by
assigning different types of edges, which will give a strong hint for a relation reference. (C)
is the control flow graph without solving the indirect call. (D) is the augmented control flow
graph. A data node is added into the graph and as you can see, from the new data reference
edges, a new connection to ap_setup_ssl_optional_fns functions is revealed. This function is
the setup function to prepare the indirect callees.

34 Indirect Call recovery using Augmented Control Flow Graphs with GNN

3.3 Model

3.3.1 Dataset and Ground truth collection

There is no "ground truth" in the world of indirect control flow resolving. Dynamic methods like
Intel PT or QEMU simulator tracking can collect execution traces. However, due to the limit
of the input, dynamic methods can not guarantee coverage or false negative. Static methods,
on the other hand, currently can not avoid false positives. Nowadays, the "state-of-practice"
method is Clang-CFI, which already applies to many real-world applications, such as Linux
Kernal. However, it is still imperfect, as it can not guarantee either soundness or completeness.
Two following works are trying to complement the limitations of the Clang-CFI. TypeDive [72],
which implements the Multi-Layer Type Analysis, uses additional type hierarchy structure
information to further refine the valid target of each indirect call. Successfully reduced the
false positives of the Clang-CFI. While instead of directly matching the type information,
Typro [12] suggests collecting type propagation rules can reduce the false negative compared
with Clang-CFI.

Information such as type and prototype is lost during the compilation process from the
source code to binary. It is less accurate and harder for binary-level analysis than source
code-level analysis. We treat the source code-level analysis as the best possible result we can
get during binary-level analysis. We aim to train a binary-level indirect control flow resolver as
good as the source code level. Both TypeDive and Typro are excellent work analyzing indirect
calls at the source code level, which can be used as the ground truth in our deep learning
training. We value more on the fewer false negative in indirect control flow resolving. So we
choose Typro’s analysis result as our ground truth. We apply Typro to analyze the collected
project’s indirect call and treat it as the ground truth of our binary-level prediction. If the project
is failed to be analyzed by Typro (mainly due to can not being compiled by Clang), we drop
these projects.

3.3.2 Preprocessing

Symbolization

Symbolization is another open problem and creates massive difficulty in binary rewriting
areas [111, 109]. The first paper "reassemble disassembly" [111] tries to deal with the sym-
bolization challenge, suggest if all the symbols can be resolved, the disassembled assembly
can be compiled back to a workable binary. Which means without the address information,
fully symbolized code and data can fully present the binary. However, as summarized in SoK
paper [79], binary rewriting tools and binary analysis tools(including IDA pro), still heavily

3.3 Model 35

rely on heuristics and assumptions, which introduce the false positive and false negative. But
the overall precision is 99.92 on average. As the address itself introduce OOV issues in deep
learning. Using symbolization as a replacement is an essential decision to conservative most
information of the binary.

Then we perform symbolization with these heuristic rules the same as angr.

• Exclude data units that are floating points

• Brute force operands and data units

• Pointers in data have machine size

• Pointers in data or referenced by other xrefs can be non-aligned

• Enlarge boundaries of data regions

• While scanning data regions, use step-length based on type inference

Augment data information into the control flow graph

We introduce the data node type, code-to-code reference edge type, code-to-data reference edge
type, data-to-data reference edge type, and data-to-code reference edge type into the control
flow graph. A data node is after we symbolize all the to-data references. We divide the data
sections with these labels into each data node. For code-to-code reference, the code label is
added to the assembly code, and the corresponding edge is handled during the control flow
graph construction. For code-to-data reference, we add a data-being-referenced edge from the
referenced data node to the referencing basic block node. For data-to-code reference, we add a
code-being-referenced edge from a referenced basic block node to the referencing data node.
For data-to-data reference, we add a data-being-referenced edge from the referenced data node
to the referencing data node.

Position Encoding in GNNs

Traditional message passing GNNs suffer from poor performance when there is a lack of
positional information of nodes, especially in tasks such as cycle detection. To address this
issue, node positional encoding has been proposed and has shown to effectively improve the
performance of many tasks, including social network analysis and molecule analysis. [38]

Node positional encoding annotates the structural position of nodes within a graph. In our
work, we apply Laplacian eigenvectors as node positional features in the form of Laplacian
Positional Encoding [13]. To achieve this, we first transfer the heterogeneous graph to a

36 Indirect Call recovery using Augmented Control Flow Graphs with GNN

homogeneous graph and apply Laplacian Positional Encoding on the homogeneous graph.
Then, we add the node positional encoding back into the heterogeneous graph.

One strength of this method is that Laplacian Positional Encoding is network agnostic,
meaning it encodes the position into the node features. However, there are some downsides to
this approach, including the fact that it does not consider the relationship between different
types of nodes and edges. Additionally, this method has a large overhead on very large graphs.
Despite these limitations, the use of Laplacian Positional Encoding has shown promising results
in various graph-related tasks.

3.3.3 Heterogeneous Graph Neural Networks

The graph becomes a heterogeneous graph with the introduced node types and edge types. We
apply a relational graph convolutional network (R-GCN). Our augmented control flow graph is
defined as

G = (V,E,R,T)

. vc is the basic block nodes, vd is the data nodes, where

V = {vc,vd}

. We seperate the call edges rc with the other control flow transfer edges rt . The rcc denotes
code-to-code reference edge. The rcd denotes code-to-data reference edge. The rdc denotes
data-to-code reference edge. The rdd denotes data-to-data reference edge.

R = {rc,rt ,rcc,rcd,rdc,rdd}

. The edge is defined with the source node, relation edge type and destination nodes.

(vi,r,v j) ∈ E

.
The message passing function defined as

h(l+1)
v = f (∑

r∈R
∑

u∈Nr
v

1
cv,r

W (l)
r h(l)u +W (l)

0 h(l)v)

. hl
u is the feature representation at layer l. W l

r is the weights at layer l. cv,r is the normalized by
node degree of the relation.

3.4 Evaluations 37

For predicting whether an indirect call rc exist between the indirect callsite vi and a potential
callee blocks. frc denotes the probability output of the model. ht denotes a true target callee.
h f denotes a false target. The loss function is defined in two parts for the indirect call edge
predictions.

l =−log frc(hi,ht)− log(1− frc(hi,h f))

We maximize the prediction while minimize the false edges.

3.4 Evaluations

3.4.1 Evaluation Setup

Experiments are performed on a Windows 10 machine with subsystem for Ubuntu 20.04 LTS.
The machine has an Intel(R) Xeon(R) Gold 6144 CPU @ 3.50GHz, two NVIDIA Quadro RTX
6000 GPUs and 512GB RAM. The Python 3.6.8 is with dgl 0.9.1 and PyTorch 1.10.2.

Datasets

This study employed a Github crawler [57] to collect the programs used for training and
testing purposes. In total, 8,533 projects were gathered from Github. The ground truth indirect
callsite used for both training and evaluation were generated by applying a source code level
CFI method. Specifically, the Typro [12] tool was used for this purpose. Further discussion
regarding the collection of ground truth data can be found in Section 3.5.1. After filtering
out programs that failed to compile and those that lacked indirect control flow, a dataset of
6,431 programs remained. These programs contained a total of 12,267,610 valid indirect call
targets, which were used for training and evaluation purposes. For each program, negative
examples were selected online. This involved randomly selecting the same number of functions
that were not part of the calling target. For instance, if a program contained 100 functions
and one of the indirect calls had four potential targets (Func01, Func03, Func22, Func44),
during training or testing, four functions were randomly selected as negative examples, such as
(Func02, Func15, Func28, Func35). This approach ensured that the training and evaluation
datasets had a balanced number of positive and negative examples, while also introducing a
degree of variability. By employing this methodology, the training and evaluation datasets
were optimized for machine learning purposes, thus improving the overall performance and
accuracy of the models. We randomly split the dataset into three set. 80% for training, 10%
for validation and 10% for testing. Callee claims they have severe overfiting issues when only
splitting binaries into different groups, F1 drops sharply to 53.7%. So they randomize the pairs

38 Indirect Call recovery using Augmented Control Flow Graphs with GNN

across binaries, which means the model has seen the callsite in training data, then gives the
final result. [118] We doubt this approach disclose the encoding of the callsite in testing , which
can not measure the model’s generalibility. We only randomlize binaries, and ensure all the
callsite and callee in other set is never seen in training set.

The dataset was randomly divided into three sets, with 80% for training, 10% for validation,
and 10% for testing. However, there were concerns regarding overfitting issues in the training
process when the binaries were split into different groups. This led to a significant drop in
the F1 score, down to 53.7% [118]. To address this issue, they introduce where the pairs were
randomized across the binaries. In their approach, the model had already seen the callsite in
the training data, which could result in the encoding of the callsite being disclosed for testing.
As a result, the generalizability of the model could not be accurately measured. To overcome
this issue, we only randomize binaries, while ensuring that all callsites and callees in other
sets were not present in the training set. This approach allowed for the development of a more
robust and accurate model with improved generalizability.

Models and hyperparameters

The GNN model utilized in this study is a three-layer RGCN [97], with a three linear layer
link predictor. The model was trained using DGL front-end [107] on top of PyTorch. During
training, the input to each batch was a program’s graph, which was learned and tested across all
the ground truth pairs of that program. The network was trained for 10 epochs with a learning
rate of 0.001, and a hidden layer feature of 512. A dropout rate of 0.2 was also utilized to
prevent overfitting.

Evaluation metrics

To measure the performance of the model, we utilized commonly used metrics, including
Precision, Recall, F1-Score. These metrics were calculated based on the number of True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) generated
by the model’s predictions. Precision is the ratio of TP to the sum of TP and FP, which measures
the model’s accuracy in identifying only the relevant results. Recall is the ratio of TP to the
sum of TP and FN, which measures the model’s ability to identify all relevant results. F1-Score
is the harmonic mean of Precision and Recall, providing a balanced measure of both. These
metrics are commonly used to evaluate a model’s overall performance and allow for a more
nuanced understanding of the strengths and weaknesses of the model. In addition to Precision,
Recall, and F1-Score, we also report the Area Under the Receiver Operating Characteristic
Curve (AUROC) metric as a measure of the model’s performance. AUROC is a commonly

3.4 Evaluations 39

used metric for binary classification models, and it measures the model’s ability to distinguish
between positive and negative examples across a range of classification thresholds.

3.4.2 Performance

Overall performance

As shown in Setting 0 in Table 3.1, our model has an F1 of 94.25%, precision of 93.59%,
Recall of 94.95% and AUROC of 96.42%.

Ablation Studies

In order to evaluate the effectiveness of our proposed approach, we compare our model in
different settings by turning off specific features and analyzing their impact on performance.
Specifically, we investigate the effects of "Revedges," which determines whether we generate
reverse edges in our graph, "Data node," which determines whether we add the data node in the
graph, and "Func node," which determines whether we add a virtual node for each function
that connects all the function’s basic block nodes. We also evaluate the impact of "Ref Edges",
which correspond to adding reference edges for data and code references. Then, we analyze the
impact of treating call edges as a different type of edge than normal basic block edges. Finally,
we add the position encoding into each node to see if the position information will improve
the accuracy. We refer to these different settings as Setting 1 through Setting 6, respectively.
By comparing our model’s performance across these different settings, we can determine the
relative importance of each feature and how it contributes to the overall effectiveness of our
proposed approach.

We have made several observations regarding the performance of our proposed model, as
follows:

Firstly, we found that the presence of reverse edges is crucial in our Setting 1. As the
control flow graph and references are directed graphs, the propagation of information is limited
in one direction without the use of reverse edges. To address this, we added new reverse edge
types for each different edge type, allowing for backward propagation of execution traces to be
learned separately from forward execution traces.

Secondly, we observed in Setting 2 that the inclusion of data information is important
for resolving indirect calls. Upon removal of the data node, the performance of the model
significantly decreased.

Thirdly, we found that the addition of a virtual function node and separation of call edge
types had little impact on the model’s performance in both Setting 3 and Setting 5. This can be

40 Indirect Call recovery using Augmented Control Flow Graphs with GNN

considered as a good trade-off to reduce the model’s parameters, which would result in lower
hardware requirements.

Fourthly, we determined in Setting 4 that references are another crucial component. With
the aid of reference information, the model was able to achieve better results.

Lastly, the Laplacian Positional Encoding has bad influence in our testing. Most may due
to not capture the type information and relationships in the heterogeneous graph.

Transfer learning on direct calls

In this work, we adopt the direct call pretraining method proposed in Callee for predicting
indirect calls. This method involves training the model first on direct call targets and then
transferring the learned parameters to predict indirect call targets. However, we observed that
this approach did not lead to significant improvement in the results(Setting 8 in Table 3.1), as
reported in Callee. We speculate that there are two possible reasons for this. Firstly, we already
have a sufficiently large dataset for indirect calls, and additional learning material may not be
necessary. Secondly, the nature of direct calls is different from that of indirect calls. While
direct calls have matching argument information between the caller and the callee, the negative
examples sampled from functions that are not direct call targets can violate this principle and
introduce harmful biases to the model [73]. These factors may have limited the effectiveness of
the direct call pretraining approach in our experiments.

Comparision

We compare our model with the state-of-the-art approach Callee. Since it is not open source
yet. We use their report result for comparasion. Their best F1 score is 94.6%. We achieve a
very comparable result of F1 score of 94.25% without the leaked testing dataset concern (stated
in 3.4.1). BPA reports precision of 57.6% and recall of 100%, the F1 score is 73.1% [63].
TypeArmor precision of 35.1% and recall of 99.9%, the F1 score is 51.9% [106].

Time efficiency

The most time consuming part is generating control graph and inquiry asembly embedding
from palmtree. The average time to generate a program’s argumented control flow graph with
embedding takes 73.98s. The average inference time for a program in our GNN model is 0.17s.

3.5 Discussion and Limitations 41

Table 3.1 Ablation Studies on Model performance. "Revedges" refer to whether add reverse
edges in graph. "Data node" and "Func node" refer to add data or function node in graph.
"Ref Edges" refer to whether add the reference edges in graph. "Call Edges" refer to whether
assigning separated call edges type or replacing call edges with normal control flow edges.
"Position Encoding" refer to whether add position encoding for each node.

Setting Revedges Data node Func node Ref Edges Call Edges Position Encoding Transfer Learning
Test set Evaluation

F1 Precision Recall AUROC
0 True True True True True False False 94.25% 93.59% 94.95% 96.42%
1 False True True True True False False 90.41% 91.66% 89.19% 94.85%
2 True False True True True False False 92.00% 93.19% 90.83% 96.04%
3 True True False True True False False 93.80% 92.32% 95.33% 96.44%
4 True True True False True False False 91.10% 92.05% 90.17% 94.28%
5 True True True True False False False 93.78% 91.93% 95.71% 95.25%
6 True True True True True True False 93.58% 91.56% 95.70% 96.32%
7 False False False False False False False 89.61% 89.20% 90.01% 90.45%
8 True True True True True False True 93.91% 93.28% 94.55% 96.11%

3.5 Discussion and Limitations

3.5.1 Ground truth collection

Collecting ground truth for indirect control flow is a challenging task, and there is no perfect
solution to obtain accurate target sets. Generally, there are two ways to collect ground truth
data. One way is to use dynamic analysis approaches, which involve recording execution
traces using software or hardware methods such as Intel Processor Tracing. The ground truth
data collected using this approach is 100% accurate, but it may not cover all possible targets,
resulting in potential false negative ground truth data. Another method for collecting ground
truth is through static analysis. While static analysis may enlarge the set of indirect call targets,
it is still relative accurate at source code level. Therefore, we treat the state-of-the-art source
code level analysis results as our ground truth data, which we use for training and evaluating
our model. Although the ground truth data obtained through static analysis may not be 100%
accurate, we believe it provides a sufficient and reliable representation of the indirect call
targets for our purposes.

3.5.2 Indirect jumps

At present, the proposed model has only been trained to recover indirect calls. However, the
recovery of indirect jumps poses a significant challenge as there is no trustworthy data available
for training purposes. Many Control Flow Integrity (CFI) approaches do not adequately protect
against indirect jumps, or only provide coarse-grained protection as discussed in [18]. If the
training set problem can be addressed through source code level methods, it is possible that this
model could be used to solve the issue of indirect jumps, as the inclusion of data information is
crucial in this regard.

42 Indirect Call recovery using Augmented Control Flow Graphs with GNN

3.6 Conclusion

To summarize, in this study we have proposed a novel approach that represents both data and ref-
erence information using special nodes and edges in a graph, leading to improved preservation
of crucial information and achieving better results compared to previous methods. Moreover,
we conducted an investigation into the various components of constructing argumented control
flow graphs for graph neural networks (GNNs) and evaluated their relative importance. Overall,
our findings demonstrate the effectiveness of our proposed approach and provide insights into
the construction of argumented control flow graphs for GNNs. Further research in this area is
expected to lead to even more significant improvements in binary analysis using deep learning.

Chapter 4

Conclusions

In this paper, we have explored two different approaches for resolving indirect control flow
in programs. In the first part of the paper, we debloat the shared library without resolving
each indirect control flow. Instead, our observation is solving a set of indirect control flow is
enough for debloating purpose. Our results showed our method achieved similar debloating
performance with static linking and with practice correctness.

In the second part of the paper, we explored the use of graph neural networks (GNNs) for
resolving indirect calls. We presented a novel approach that represent reference as edges in a
augmented control flow graph to predict the targets of indirect calls. Our evaluation showed
that our approach achieves high accuracy and outperforms existing techniques.

Our work highlights the importance of resolving indirect control flow in programs for
various purposes and demonstrates that different techniques can be applied depending on the
specific context and requirements of the application. Our results also suggest that machine
learning techniques, such as GNNs, can be effectively used for resolving indirect control flow
in programs. However, there are still many open research challenges in this field. We hope that
our work will motivate further research in this area.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-Flow Integrity
Principles, Implementations, and Applications. ACM Transactions on Information and
System Security, 13(1), November 2009.

[2] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. Challenges in Designing
Exploit Mitigations for Deeply Embedded Systems. In Proceedings of the 4th IEEE
European Symposium on Security and Privacy (EuroS&P’19), 2019.

[3] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Georgios
Portokalidis. Nibbler: Debloating Binary Shared Libraries. In Proceedings of the 35th
Annual Computer Security Applications Conference (ACSAC’19), 2019.

[4] Onur ALANBEL. Developing MIPS Exploits to Hack Routers. BGA Information
Security Whitepaper, April 2015.

[5] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and Mathias Payer.
µRAI: Securing Embedded Systems with Return Address Integrity. In Proceedings of
the 2020 Network and Distributed System Security Symposium (NDSS’20), 2020.

[6] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and
Michael Franz. BinRec: Dynamic Binary Lifting and Recompilation. In Proceedings of
the 15th European Conference on Computer Systems (EuroSys’20), 2020.

[7] Erik Andersen. uClibc is a small C standard library intended for Linux kernel-based OS
on embedded systems and mobile devices. https://www.uclibc.org/, 2022.

[8] AspenCore. 2019 Embedded Markets Study. http://tiny.cc/a4mwtz, November 2019.

[9] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is More: Quantifying
the Security Benefits of Debloating Web Applications. In Proceedings of the 28th
USENIX Security Symposium (USENIX Security’19), 2019.

[10] Gogul Balakrishnan and Thomas Reps. WYSINWYX: What You See is Not What You
eXecute. ACM Transactions on Programming Languages and Systems (TOPLAS), 32(6),
August 2010.

[11] Sebastian Banescu and Alexander Pretschner. Chapter Five - A Tutorial on Software
Obfuscation. Advances in Computers. Elsevier, 2018.

46 References

[12] Markus Bauer, Ilya Grishchenko, and Christian Rossow. Typro: Forward cfi for c-
style indirect function calls using type propagation. In Proceedings of the 38th Annual
Computer Security Applications Conference. Association for Computing Machinery,
2022.

[13] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural computation, 15(6):1373–1396, 2003.

[14] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of the
2005 USENIX Annual Technical Conference (ATC’05), 2005.

[15] Ketan Bhardwaj, Matt Saunders, Nikita Juneja, and Ada Gavrilovska. Serving Mobile
Apps: A Slice at a Time. In Proceedings of the 14th European Conference on Computer
Systems (EuroSys’19), 2019.

[16] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-Oriented
Programming: A New Class of Code-Reuse Attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security (ASIACCS’11),
2011.

[17] Bobby Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim.
JShrink: In-Depth Investigation into Debloating Modern Java Applications. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’20), 2020.

[18] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler,
and Mathias Payer. Control-Flow Integrity: Precision, Security, and Performance. ACM
Computing Surveys, 50(1), April 2017.

[19] Chen Cao, Le Guan, Jiang Ming, and Peng Liu. Device-agnostic Firmware Execution is
Possible: A Concolic Execution Approach for Peripheral Emulation. In Proceedings of
the 36th Annual Computer Security Applications Conference (ACSAC’20), 2020.

[20] Nicholas Carlini and David Wagner. ROP is Still Dangerous: Breaking Modern
Defenses. In Proceedings of the 23th USENIX Conference on Security Symposium
(USENIX Security’14), 2014.

[21] Tim Carrington. Remote Code Execution (CVE-2018-5767) Walkthrough on Tenda
AC15 Router. https://fidusinfosec.com/remote-code-execution-cve-2018-5767/, Febru-
ary 2018.

[22] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré.
Low-dimensional hyperbolic knowledge graph embeddings. pages 6901–6914, July 2020.
doi: 10.18653/v1/2020.acl-main.617. URL https://aclanthology.org/2020.acl-main.617.

[23] Daming Dominic Chen, Manuel Egele, Maverick Woo, and David Brumley. Towards
Automated Dynamic Analysis for Linux-based Embedded Firmware. In Proceedings of
the 23rd Annual Network and Distributed System Security Symposium (NDSS’16), 2016.

[24] Jake Christensen, Ionut Mugurel Anghel, Rob Taglang, Mihai Chiroiu, and Radu Sion.
DECAF: Automatic, Adaptive De-bloating and Hardening of COTS Firmware. In
Proceedings of the 29th USENIX Security Symposium (USENIX Security’20), 2020.

References 47

[25] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David Fritz,
Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer. HALucinator:
Firmware Re-hosting Through Abstraction Layer Emulation. In Proceedings of the 29th
USENIX Security Symposium (USENIX Security’20), 2020.

[26] Lucian Cojocar, Taddeus Kroes, and Herbert Bos. JTR: A Binary Solution for Switch-
Case Recovery. In Proceedings of the 2017 International Symposium on Engineering
Secure Software and Systems, 2017.

[27] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection, chapter 4.4, pages 258–276. Addison-
Wesley Professional, 2009.

[28] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A Large-
Scale Analysis of the Security of Embedded Firmwares. In Proceedings of the 23rd
USENIX Conference on Security Symposium (USENIX Security’14), 2014.

[29] Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael Franz. Booby Trapping
Software. In Proceedings of the 2013 New Security Paradigms Workshop (NSPW’13),
2013.

[30] Yaniv David, Nimrod Partush, and Eran Yahav. FirmUp: Precise Static Detection of
Common Vulnerabilities in Firmware. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’18), 2018.

[31] Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of stripped bina-
ries using augmented control flow graphs. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–28, 2020.

[32] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with
graph neural networks in google maps. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 3767–3776, 2021.

[33] CVE Details. Security Vulnerabilities (Memory Corruption). https://www.cvedetails.
com/vulnerability-list/opmemc-1/memory-corruption.html, 2022.

[34] Alessandro Di Federico and Giovanni Agosta. A Jump-Target Identification Method for
Multi-Architecture Static Binary Translation. In Proceedings of the 2016 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems, 2016.

[35] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. Asm2vec: Boosting static
representation robustness for binary clone search against code obfuscation and compiler
optimization. In 2019 IEEE Symposium on Security and Privacy (SP), pages 472–489.
IEEE, 2019.

[36] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. Binary Rewriting without
Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI’20), 2020.

48 References

[37] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks
to graphs. arXiv preprint arXiv:2012.09699, 2020.

[38] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[39] Eta Labs. Comparison of C/POSIX Standard Library Implementations for Linux. http:
//www.etalabs.net/compare_libcs.html, 2022.

[40] Rod Evans. Static Linking - where did it go? https://blogs.oracle.com/solaris/post/
static-linking-where-did-it-go, December 2004.

[41] Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and Hardware-independent
Firmware Testing via Automatic Peripheral Interface Modeling. In Proceedings of the
29th USENIX Security Symposium (USENIX Security’20), 2020.

[42] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin.
Scalable Graph-based Bug Search for Firmware Images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS’16), 2016.

[43] The Apache Software Foundation. Apache HTTP Test Project. https://httpd.apache.org/
test/, 2018.

[44] GCC Manual. Options for Code Generation Conventions. https://gcc.gnu.org/onlinedocs/
gcc/Code-Gen-Options.html, 2022.

[45] GCC Manual. MIPS Options. https://gcc.gnu.org/onlinedocs/gcc/MIPS-Options.html,
2022.

[46] Masoud Ghaffarinia and Kevin W. Hamlen. Binary Control-Flow Trimming. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS’19), 2019.

[47] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.
Temporal System Call Specialization for Attack Surface Reduction. In Proceedings of
the 29th USENIX Security Symposium (USENIX Security’20), 2020.

[48] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International conference on machine
learning, pages 1263–1272. PMLR, 2017.

[49] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out
Of Control: Overcoming Control-Flow Integrity. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, 2014.

[50] GrammaTech. Office of Naval Research awards GrammaTech $9M
for Cyber-Hardening Security Research. https://news.grammatech.com/
onr-awards-grammatech-9m-for-cyber-hardening-research, October 2017.

[51] Aaron Guzman and Aditya Gupta. IoT Penetration Testing Cookbook: Identify Vulnera-
bilities and Secure Your Smart Devices. Packt Publishing, November 2017.

References 49

[52] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[53] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev. Debin:
Predicting debug information in stripped binaries. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 1667–1680,
2018.

[54] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Effective Program
Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS’18), 2018.

[55] Hex-Rays. The IDA Pro Disassembler and Debugger. https://www.hexrays.com/
products/ida/, 2021.

[56] Patrick Horgan. Linux Program Start Up—How the heck do we get to main()? http:
//dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html, 2022.

[57] Zecong Hu. GitHub Cloner and Compiler. https://github.com/huzecong/ghcc, 2021.

[58] Fortune Business Insights. Internet of Things (IoT) Market Analysis. http://tiny.cc/lsj1tz,
July 2019.

[59] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren. An
Empirical Study on ARM Disassembly Tools. In Proceedings of the 29th International
Symposium on Software Testing and Analysis (ISSTA’20), 2020.

[60] Yufei Jiang, Dinghao Wu, and Peng Liu. JRed: Program Customization and Bloatware
Mitigation Based on Static Analysis. In Proceedings of the 40th IEEE Annual Computer
Software and Applications Conference (COMPSAC’16), 2016.

[61] Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin. Symlm: Predicting function names
in stripped binaries via context-sensitive execution-aware code embeddings. 2022.

[62] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. 1:2, 2019.

[63] Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. Refining indirect call targets
at the binary level. In NDSS, 2021.

[64] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. Code-Pointer Integrity. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI’14), 2014.

[65] ReFirm Labs. Binwalk: Firmware Analysis Tool. https://github.com/ReFirmLabs/
binwalk, 2022.

[66] William Landi. Undecidability of Static Analysis. ACM Letters on Programming
Languages and Systems, 1(4):323–337, December 1992.

[67] William Landi. Recovery of Jump Table Case Statements from Binary Code. Science of
Computer Programming, 40, February 2001.

50 References

[68] Yongjun Lee, Hyun Kwon, Sang-Hoon Choi, Seung-Ho Lim, Sung Hoon Baek, and
Ki-Woong Park. Instruction2vec: Efficient preprocessor of assembly code to detect
software weakness with cnn. Applied Sciences, 9(19):4086, 2019.

[69] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: learning an assembly language model
for instruction embedding. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3236–3251, 2021.

[70] Jian Lin, Liehui Jiang, Yisen Wang, and Weiyu Dong. A Value Set Analysis Refinement
Approach Based on Conditional Merging and Lazy Constraint Solving. IEEE Access, 7,
2019.

[71] LLVM Project. Architecture & Platform Information for Compiler Writers. https:
//llvm.org/docs/CompilerWriterInfo.html, 2022.

[72] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call targets with multi-
layer type analysis. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pages 1867–1881, 2019.

[73] Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

[74] Xiaozhu Meng and Weijie Liu. Incremental CFG Patching for Binary Rewriting. In Pro-
ceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’21), 2021.

[75] Xiaozhu Meng and Barton P. Miller. Binary Code is Not Easy. In Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA’16), 2016.

[76] Melissa Michael. Attack Landscape H1 2019: IoT, SMB traffic abound. http://tiny.cc/
jsj1tz, September 2019.

[77] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael Bron-
stein. Fake news detection on social media using geometric deep learning. ICLR,
2019.

[78] Gianluca Pacchiella. CVE-2020-8423: Exploiting the TP-LINK TL-WR841N V10
Router. https://ktln2.org/2020/03/29/exploiting-mips-router/, March 2020.

[79] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios Portokalidis, Bing
Mao, and Jun Xu. Sok: All you ever wanted to know about x86/x64 binary disassembly
but were afraid to ask. In 2021 IEEE Symposium on Security and Privacy (SP), pages
833–851. IEEE, 2021.

[80] Alejandro Parodi. Exploiting Routers: Just Another TP-Link 0-Day. https://www.
secsignal.org/en/news/exploiting-routers-just-another-tp-link-0day/, November 2018.

[81] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. Trex: Learn-
ing execution semantics from micro-traces for binary similarity. arXiv preprint
arXiv:2012.08680, 2020.

References 51

[82] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David
Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana.
Stateformer: fine-grained type recovery from binaries using generative state modeling.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 690–
702, 2021.

[83] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. BlankIt Library
Debloating: Getting What You Want Instead of Cutting What You Don’t. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI’20), 2020.

[84] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke
Lee. RAZOR: A Framework for Post-Deployment Software Debloating. In Proceedings
of the 28th USENIX Security Symposium (USENIX Security’19), 2019.

[85] Chenxiong Qian, HyungJoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. Slim-
ium: Debloating the Chromium Browser with Feature Subsetting. In Proceedings of the
27th ACM Conference on Computer and Communications Security (CCS’20), 2020.

[86] Anh Quach, Aravind Prakash, and Lok Yan. Debloating Software through Piece-Wise
Compilation and Loading. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security’18), 2018.

[87] G. Ramalingam. The Undecidability of Aliasing. ACM Transactions on Programming
Languages and Systems, 16(5):1467–1471, September 1994.

[88] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick McDaniel.
Cimplifier: Automatically Debloating Containers. In Proceedings of the 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE’17), 2017.

[89] Red Hat Customer Portal. Static Linking Not Supported in Red Hat Enterprise Linux 8.
https://access.redhat.com/articles/rhel8-abi-compatibility, May 2019.

[90] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna, and
Christopher Kruegel. BinTrimmer: Towards Static Binary Debloating Through Abstract
Interpretation. In Proceedings of the 16th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA’19), 2019.

[91] Xiaolei Ren, Michael Ho, Jiang Ming, Yue Lei, and Li Li. Unleashing the Hidden
Power of Compiler Optimization on Binary Code Difference: An Empirical Study. In
Proceedings of the 42nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’21), 2021.

[92] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-Oriented Pro-
gramming: Systems, Languages, and Applications. ACM Transactions on Information
and System Security, 15(1), March 2012.

[93] Jonathan Salwan. ROPgadget - Gadgets finder and auto-roper. http://shell-storm.org/
project/ROPgadget, 2011.

52 References

[94] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec,
and Peter Battaglia. Learning to simulate complex physics with graph networks. In
International Conference on Machine Learning, pages 8459–8468. PMLR, 2020.

[95] Jason Sattler. Attack Landscape H2 2019: An Unprecedented Year for Cyber Attacks.
http://tiny.cc/esj1tz, March 2020.

[96] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

[97] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In The
Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece,
June 3–7, 2018, Proceedings 15, pages 593–607. Springer, 2018.

[98] Tara Seals. Critical Cisco Bug in VPN Routers Allows Remote Takeover. https:
//threatpost.com/critical-cisco-bug-vpn-routers/168449/, August 2021.

[99] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-Libc
without Function Calls (on the X86). In Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS’07), 2007.

[100] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. TRIMMER:
Application Specialization for Code Debloating. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE’18), 2018.

[101] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis. In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P’16),
2016.

[102] Standard Performance Evaluation Corporation. Building the SPEC CPU2017 Toolset.
https://www.spec.org/cpu2017/Docs/tools-build.html, 2017.

[103] Yulei Sui and Jingling Xue. SVF: Interprocedural Static Value-Flow Analysis in LLVM.
In Proceedings of the 25th International Conference on Compiler Construction, 2016.

[104] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory.
In Proceedings of the 34th IEEE Symposium on Security and Privacy (S&P’13), 2013.

[105] The Santa Cruz Operation. System V Application Binary Interface MIPS RISC Processor
Supplement, 3rd Edition. https://refspecs.linuxfoundation.org/elf/mipsabi.pdf, February
1996.

[106] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski, Xi Chen, Sanjay
Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano Giuffrida.
A Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary Level. In
Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P’16), 2016.

References 53

[107] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,
and Zheng Zhang. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

[108] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul
Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making Reassembly Great
Again. In Proceedings of the 24th Annual Network and Distributed System Security
Symposium (NDSS’17), 2017.

[109] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,
Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making reassembly
great again. In NDSS, 2017.

[110] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable Disassembling. In Proceed-
ings of the 24th USENIX Security Symposium (USENIX Security’15), 2015.

[111] Shuai Wang, Pei Wang, and Dinghao Wu. Reassembleable disassembling. In 24th
USENIX Security Symposium (USENIX Security 15), pages 627–642, 2015.

[112] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao
Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang, and William
Aiello. Shuffler: Fast and Deployable Continuous Code Re-Randomization. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’16), 2016.

[113] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Patterson,
Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. Egalito: Layout-
Agnostic Binary Recompilation. In Proceedings of the 25th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’20),
2020.

[114] Jianliang Wu, Ruoyu Wu Daniele Antonioli, Mathias Payer, Nils Ole Tippenhauer,
Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi. LIGHTBLUE: Automatic Profile-
Aware Debloating of Bluetooth Stacks. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security’21), 2021.

[115] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, and Philippe Gerum. Building
Embedded Linux Systems: Concepts, Techniques, Tricks, and Traps. O’Reilly Media,
second edition, August 2008.

[116] Lyon Yang. Exploiting Buffer Overflows on MIPS Architectures. Hack In The Box
Security Conference 2015 Whitepaper, October 2015.

[117] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and Davide Balzarotti. Avatar: A
Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares.
In Proceedings of the 2014 Network and Distributed System Security Symposium
(NDSS’14), 2014.

54 References

[118] W. Zhu, Z. Feng, Z. Zhang, J. Chen, Z. Ou, M. Yang, and C. Zhang. Callee: Recovering
call graphs for binaries with transfer and contrastive learning. In 2023 2023 IEEE
Symposium on Security and Privacy (SP) (SP), pages 1953–1970, Los Alamitos, CA,
USA, may 2023. IEEE Computer Society. doi: 10.1109/SP46215.2023.00112. URL
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00112.

[119] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
Neural machine translation inspired binary code similarity comparison beyond function
pairs. arXiv preprint arXiv:1808.04706, 2018.

