
1 

 

Artificial Intelligence Assisted Residual 

Strength and Life Prediction of Fiber 

Reinforced Polymer Composites 

Partha Pratim Das1 
The University of Texas at Arlington, Arlington, TX, USA 76019 

Muthu Elenchezhian2 
Purdue University, West Lafayette, IN USA 47906 

Vamsee Vadlamudi3  and Rassel Raihan.4 
The University of Texas at Arlington, Arlington, TX, USA 76019 

Institute of Predictive Performance Methodologies, UTA Research Institute, Fort Worth, TX 

With the increased use of composite materials, researchers have developed many 

approaches for structural and prognostic health monitoring. Broadband Dielectric 

Spectroscopy (BbDS)/Impedance Spectroscopy (IS) is a state-of-the-art technology that can 

be used to identify and monitor the minute changes in damage initiation, accumulation, 

interactions, and the degree of damage in a composite under static and dynamic loading. This 

work presents a novel artificial neural network (ANN) framework for fiber-reinforced 

polymer (FRP) composites under fatigue loading, which incorporates dielectric state variables 

to predict the life (durability) and residual strength (damage tolerance) from real-time 

acquired dielectric permittivity of the material. The findings of this study indicate that this 

robust ANN-based prognostic framework can be implemented in FRP composite structures, 

thereby assisting in preventing unforeseeable failure.  

I. Introduction 

 Fiber-reinforced polymer (FRP) composite structures are a complex system of materials that have been 

implemented extensively in aviation and marine sectors and consumer-level products, sports goods, and medical 

equipment. Although they are lightweight yet strength-wise comparable to traditional metal components, FRP 

composites exhibit vulnerability in terms of the unpredictable nature of damage generation, progression, and ultimate 

failure. Dynamic loading (i.e., fatigue, etc.) is a critical loading case for a composite structure that promotes different 

stages of damage initiation and propagation during its service life. Reifsnider et al. observed that though initiation and 

damage development are progressive in nature in the composites, it can trigger a sudden death phenomenon which, if 

undetected, can be catastrophic and irreversible (Fig. 1) [1]. As observed in Fig. 1, matrix cracks are the firsts to 

initiate at different locations until they reach a saturated state when fiber-matrix debonding and delaminations come 

into perspective. This saturation state is defined as a Characteristic Damage State (CDS) that is a precursor for severe 

damage. As a composite reaches CDS, its stiffness drops though it retains strength [2]. In laboratory-based research, 

the global and local stiffness degradation at CDS can be identified from state-of-the-art mechanical characterization 
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techniques (i.e., destructive fatigue test of coupons, strain measurement using digital image correlation, fiber optics 

sensors, extensometers, and strain gauges). However, in real-life structures, identifying damage states requires 

incorporating external or internal sensors to monitor the structural health in situ non-destructively.  

 

Fig. 1 Damage progression in composites and relation of remaining strength, global stiffness with life [3] 

 Because of the rising complexity and demand for high reliability and efficiency of composite parts, traditional 

maintenance approaches for assessing material state are becoming obsolete. Given the unpredictable nature of damage 

progression in composites, artificial intelligence (AI) based predictive models can be trained to identify the damage 

precursors from extensive sensor data throughout the service life of a composite [4]. Over the past few decades, 

different AI models have been developed and trained for composite diagnostics and prognostics, including but not 

limited to linear and multivariate regression models [5,6], support vector machine [7,8], tree-based methods [9,10], 

unsupervised clustering algorithms [11–14], hybrid models [15,16]. However, with the advancement of artificial 

neural network (ANN) based algorithms, modeling damage and prognostics have been more efficient and accurate 

[17–20]. In a recent publication, Elenchezian et al. presented a comprehensive literature review of the ANN models 

developed over the past few decades in structural health monitoring and prognostic health management of FRP 

composites [21].  

 This work presents a novel ANN-based prediction framework, which incorporates acquired in-situ dielectric data 

from Dielectric Spectroscopy (DS) to predict the life and residual strength (RS) of polymer composites under fatigue 

loading. DS is a material characterization technique simulating a parallel plate capacitor setup where the sample is 

considered the dielectric material. An alpha analyzer employs an AC voltage across the sample, and dielectric 

properties are analyzed from the measured impedance. Dielectric state variables (i.e., real permittivity, etc.), the direct 

indicators of damage development during fatigue, are effectively utilized as the in-situ rate of change of these state 

variables can be correlated with the rate of damage interaction and stiffness degradation at a specific time [22]. In this 

study, Fiber optic sensors (FOS) have been used to monitor stiffness degradation during fatigue. FOS based on Fiber 

Bragg Gratings (FBGs) is a state-of-the-art strain sensing technology that can be multiplexed and installed in 

composite parts to achieve a quasi-distributed strain measurement. This prediction framework consists of two coupled 

ANN-based multilayer perceptron (MLP) models. The first developed model predicts the life of the composite solely 

from in situ dielectric permittivity data, and the output is passed through a second developed model that can predict 

the RS of the composite part with high accuracy. This paper comprehensively outlines the proposed framework and 

reports the relevant prediction accuracies.  

II. Experimentation 

A. Test Material Preparation 

In this study, composite laminates were fabricated using unidirectional epoxy-impregnated E-glass fiber prepregs. 

Each laminate consisted of 8 plies with stacking sequence [-45°/0°/+45°/90°] s to make a quasi-isotropic laminate. The 

manufacturing was done using the out-of-autoclave process in a Despatch composite curing oven. The laminate was 

cured at 135° C. Protomax water jet cutter was used to prepare the specimens in 254 mm × 38.1 mm as per the ASTM 

D3479 standard [23]. The specimens had an average thickness of 2 mm. 

 



3 

 

 

Fig. 2 Experimental setup for fatigue and residual strength tests with dielectric data acquisition 

B. Experimental Design and Proposed Framework 
Initially, randomly selected specimens were subjected to quasi-static tensile loading to determine the sample 

batch's mean ultimate tensile strength (UTS) as per ASTM D3039 [24]. The tests were carried out at a rate of 0.03 

mm/s. Once the mean UTS was determined from the tests, Weibull analysis was utilized to obtain the 95% confidence 

levels, as shown in Table 1. From the mean UTS and mean cross-sectional area (73.25 mm2), the mean breaking load 

was calculated to be 23 KN. This initially acquired data is used to design the tension-tension fatigue experiments for 

different mean stress levels (25%, 50%, and 75% of UTS), as described in Table 2. Then, initial fatigue tests were 

performed to determine respective 95% confidence intervals for each mean stress level (Table 3). The frequency of 

the tests has been predefined as 2 Hz. 

Table 1: Results of quasi-static tensile tests 

Mean Ultimate 

Tensile Strength 

(MPa) 

Scale 

Parameter 

(MPa) 

Shape 

Parameter 

95 % Confidence 

Limit – Lower 

(MPa) 

95% Confidence Limit 

– Upper 

(MPa) 

314.12 323.54 16.37 314.71 332.62 

Table 2: Fatigue test parameters 

Mean Stress % Mean Stress (MPa) Max Stress (MPa) Min Stress (MPa) R ratio 

75 % 235.58 298.41 172.76 0.578 

50 % 157.06 219.88 94.23 0.428 

25 % 78.53 141.35 15.70 0.111 

Table 3: Weibull analysis of initial fatigue test results 

Mean Stress % 

Condition  

Shape 

Parameter 

 

Mean Cycles to 

Failure –  

Scale Parameter 

95 % Confidence 

Limit – Lower 

95% Confidence 

Limit – Upper 

75 % 1.7392 764.70 500.51 1168.34 

50 % 2.6236 60504.49 49756.22 73574.57 

25 % 4.2211 456882.75 390979.68 533894.37 

 

Secant Stiffness and dielectric permittivity data, considered state variables in this work, were captured utilizing 

embedded fiber optics and dielectric spectroscopy sensors. Fig. 2 shows the experimental setup for one test with 

dielectric data acquisition using extremely conductive silver epoxy adhesive and copper electrodes. Secant stiffness 

and dielectric permittivity data were then normalized to their initial values at the end of the quasi-static ramp up phase. 

The fatigue life was also normalized to the number of cycles to failure. Hence a unit value indicates the failure of the 

individual specimen. The first and second derivatives of these normalized parameters' curves were acquired from a 
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5th-order polynomial fit of the respective entities. In this case, the first-order derivative displays the instantaneous rate 

of change, and the second-order derivative explains the acceleration of the individual parameters' changes.  

For the life prediction model, fatigue tests were carried out up to failure for each mean stress level. However, for 

residual strength prediction, a training dataset has been generated from fatigue tests for 50% mean stress level, which 

was done up to predefined cycle counts (less than 95% lower confidence 49756 ~ 50000 cycles). Once the predefined 

fatigue test is completed, the specimen is unloaded to zero load, and a quasi-static tensile test is done to obtain the 

residual strength. For all the fatigue tests, in situ dielectric permittivity data at 100 Hz frequency was acquired with 

the Novocontrol Broadband Dielectric Spectrometer. Then, two Artificial Neural Network (ANN) models were 

developed and coupled from the acquired data to form a framework that incorporates these parametric changes and 

predicts the life and residual strength of the specimens before the failure occurs. In summary, the proposed prediction 

framework is shown in Fig. 3. 

 

Fig. 3 Proposed framework to predict life and residual strength 

III. Model Development and Analysis 

A. Initial Fatigue Results 

Fatigue experiments have been carried out for the samples in force control mode. After a predefined number of 

cycles is reached for fatigue, a residual strength test is carried out. Fig. 4a shows the input axial force response over 

time for a fatigue test run up to 5000 cycles. Fig. 4b shows the output strain response for the sample. From the strain 

response in Fig. 4b, it is evident that stiffness degrades over time in fatigue. The phenomenon can be attributed to the 

damage development during fatigue that decreases inter-molecular attraction and creates free volume and interfaces 

in the material. 

Consequently, the dielectric response for the test is shown in Fig. 5. It can be seen that the dielectric response 

correlates with the strain response. During the fatigue phase of the test, the dielectric permittivity value has an 

accelerated ramp-down at the beginning that continues at a steady pace similar to stiffness evolution. In the residual 

strength test phase, the dielectric permittivity value decreases as well, but at a higher rate than in the fatigue phase. 

This phenomenon can be attributed to the increased number of damage interactions of the damage modes developed 

during the fatigue phase. 
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Fig. 4 Mechanical response during fatigue and residual strength test; a) force response, b) strain response 

 
Fig. 5 Dielectric response during fatigue and residual strength test 
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B. Analysis of State Variables 

Figure 6 represents the mechanical (stiffness), and dielectric (permittivity) response during the fatigue loading of 

a specimen tested at 50% mean stress level up to failure. The stiffness vs. life curve (normalized) is similar to 

observations made in the literature (Fig. 1), except for a few artifacts. A sharp decrease in the beginning and end of 

the fatigue is notable, primarily due to the 50% mean stress level. At this stress level, and considering the amplitude 

of fatigue loading, the material would have attained the CDS (Characteristic Damage State), resulting in this initial 

sharp decrease in stiffness, unlike the behavior in Fig. 1. From Fig. 6, it is also evident that there is an accelerated 

decrease in the permittivity starting at about 75% of the life, which can serve as a precursor for indicating the beginning 

of the material's end of life. 

 
Fig. 6 Stiffness and permittivity response over normalized life during fatigue 

 
Fig. 7 1st and 2nd derivatives of a) stiffness and b) permittivity over normalized life 

Figure 7 represents the derivatives for the representative state variables. As described before, the first derivative 

represents the rate of a property change, whereas the second derivate represents the acceleration of the change. The 

representative acceleration of stiffness and permittivity are normalized concerning their maximum values and 

compared, as shown in Fig. 8. It can be observed that the acceleration of mechanical and dielectric state variables 

follows a similar trend until about 50% of life. For both stiffness and permittivity values, the magnitude of the 

acceleration is higher in the beginning and starts to decrease gradually, leading to a saturation phase. However, the 
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second inflection point in the acceleration curves shows that the magnitude of acceleration in the dielectric response 

increases earlier than the mechanical response. Here, permittivity acceleration starts to increase around 70% of life. 

In contrast, stiffness acceleration starts to increase after 75% of life. Thus, the dielectric response provides an earlier 

warning of the beginning of the failure of the material. This second point of inflection served as the basis for 

determining the percentage of life and, consequently, the number of cycles at that instance. For instance, the average 

life percentage and number of cycles are 68.78% and 53655, respectively, based on permittivity, at which the failure 

is imminent for this laminate under the given loading conditions. However, based on the second point of inflection 

calculated from stiffness, the average life percentage and number of cycles are 71.74% and 59669, respectively. 

 
Fig. 8 Comparison of the 2nd derivatives of stiffness and permittivity throughout life 

Figure 9 shows how the acceleration of the permittivity changes for the three different loading conditions. It can 

be observed that, for all three different loading conditions, the inflection point is identified at about 75-80% of the 

material's life, indicating the beginning of the end of failure of the composite specimen. 

 
Fig. 9 Acceleration of permittivity throughout the life of the composite 

C. ANN Analysis for Life Prediction 

Until now, we discussed the physics-based approach of using real permittivity value and the stiffness value over 

life. This section explains the development of an AI algorithm using the in situ real permittivity data for each specimen, 

obtained over time, estimating the life at that instant and predicting the future. 
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At first, the input normalized real permittivity, and life data were converted to finite time steps of data to develop 

the MLP regression model for life prediction. The developed neural network architecture consists of three hidden 

layers and an output layer of 500 nodes. The grid search cross-validation method was adopted with a 5-fold cross-

validation technique to find the optimal hyperparameters for the model. This method searched for the best mean R2 

score for a combination of different hyperparameters. The optimal hyperparameters for the developed model are 

presented in Table 4. This model is named "ANN_1" in this paper hereafter for convenience.  

Table 4: Tuned hyperparameters for the life prediction model (ANN_1) 

Hidden Layer 

Sizes  

Activation 

Function 

Solver Learning Rate Maximum Iterations 

900, 200, 800 Rectified Linear 

Unit (ReLU) [25] 

Adam [26] 0.0001 5000 

This model's test data comprises 12 specimens tested up to different cycles below the 95% confidence level of 

cycles to fail for 50% mean stress level (i.e., 50000 cycles depicting whole fatigue life). For example, a fatigue test is 

carried out for a specimen up to 10000 cycles, and in situ dielectric data is recorded and converted to a vector of 

dielectric permittivity data at scaled timesteps (i.e., 100 timesteps ~ 10000 cycles or 0.20 normalized life). The 

remaining unknown dielectric permittivity values for the rest of the timesteps (i.e., 101 to 500 timesteps ~ 10001 to 

50000 cycles or 0.2 to 1.0 normalized life) are then padded by zero (0) to make it interpretable for the model. Then 

the curated permittivity vector is provided to the developed model as a test observation to predict the specimen's life 

at the current state (i.e., 10000 cycles or 100th timestep) and future timesteps (i.e., any cycle counts greater than 10000 

cycles or 101 to rest of the timesteps). This way, the output prediction curves were obtained from the ANN model for 

each test specimen, and a visual representation of the same is provided in Fig. 10.  

 
Fig. 10 Data curation methodology for model development and testing 

Figure 11 shows the life prediction for 6 test specimens under fatigue for different predefined cycles compared 

with actual data. The average R2 value for the 12 test specimens is 0.9326. It can be seen that the model does not 

perform very well for lower cycle dielectric permittivity inputs (i.e., for 10000 cycles where only the first 100 timestep 

data were input). However, as more dielectric data is available, the model performs well in predicting fatigue life.  
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Fig. 11 Prediction of life from in-situ dielectric data using ANN_1 

D. ANN Framework for Residual Strength Prediction 

 Fatigue generates damage in the composite structure, but if it doesn't fail, it can still withhold some strength, 

defined as the residual strength. A composite under service may face different loads that can generate damage inside. 

So, monitoring residual strength is of utmost importance. This work proposes a novel framework that can predict the 

residual strength of a composite part damaged due to fatigue. In this study, the proposed framework has coupled two 

ANNs together. The first model is the one that has already been described in the previous section. Specimens were 

tested in fatigue for different cycles, and their dielectric permittivity changes were recorded in situ. Then the residual 

strengths of the specimens were obtained using a quasi-static tensile test. From this, a new dataset is formed where 

input data consists of the normalized life, and the output data consists of the residual strength of the individual 

specimen. Fig. 12 shows the training dataset for this ANN model comprising normalized life as input and residual 

strength as output.  

 
Fig. 12 Training dataset for ANN_2 

 An MLP regression model comprising three hidden layers and one output layer with a single node is generated 

from this training dataset. The hyperparameters of this model are tuned using grid search cross-validation and 5-fold 
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cross-validation techniques. Table 5 includes the optimal hyperparameters for the model to have the best mean R2 

score in the training set. This model is named "ANN_2" in this paper hereafter for convenience. 

Table 5: Tuned hyperparameters for the residual strength prediction model (ANN_2) 

Hidden Layer 

Sizes  

Activation 

Function 

Solver Learning Rate Maximum Iterations 

58,30,77 Rectified Linear 

Unit (ReLU) [25] 

LBFGS [27]  0.00011 5000 

  
Fig. 13 Performance of residual strength prediction framework 

 In this study, the proposed framework couples ANN_1 and ANN_2 for residual life prediction. As a first step, the 

measured real permittivity data was passed through the ANN_1 model to estimate a specimen's current life at limited 

cycle fatigue. The output estimated life is then passed through the ANN_2 model, and the model predicts the residual 

life of the specimen. In total, 12 specimens under different cycle count fatigue were tested in this framework. Fig. 13 

compares the actual residual strength and the predicted residual strength of the test specimens. The framework works 

reasonably well in residual strength prediction, as shown in Fig. 13, with an R2 value of 0.9613. To summarize, this 

residual strength framework can be used to determine the present residual strength of a fatigue specimen based on the 

material's in situ dielectric permittivity response. 

IV.Conclusion 

This study presents a novel framework for prognostics utilizing artificial neural network algorithms. The 

framework can predict the current and future life and residual strength from in situ dielectric response of polymer 

composites during fatigue. Under fatigue loading, a composite part can develop progressive damage inside, leading to 

sudden, unavoidable failure under continued service conditions. The initiation and propagation of the damage can be 

correlated with the dielectric permittivity changes as they can interact with the morphological changes in materials. 

In this study, Dielectric Spectroscopy (DS) has been used to measure the permittivity values at 100 Hz during fatigue 

loading. Here, Two ANN-based multilayer perceptron models (namely life prediction model or ANN_1 and residual 

strength prediction model or ANN_2) have been developed and coupled. The first model is trained from dielectric and 

life data of specimens tested in fatigue up to failure. The second model is trained from the current life, and residual 

strength data for specimens tested in fatigue for different cycle counts. Then the life and residual strength of the test 

specimens were predicted from the proposed framework. The following conclusions can be drawn from this study: 

• During fatigue, the material's stiffness degrades, which has a similar rate and acceleration of change as the 

dielectric permittivity, as both of these variables evolve due to damage growth and interactions. However, 

dielectric permittivity can predict the beginning of the end of life earlier than the stiffness degradation model.  

• The life prediction model can predict the current life and future life span from dielectric permittivity with 

reasonable accuracy (average R2 value of 0.9326 in the test dataset).  
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• The residual strength prediction framework can predict the residual strength of a specimen with an R2 value 

of 0.9613. The framework takes in situ dielectric permittivity response and predicts current life using the life 

prediction model, followed by residual strength prediction from the residual strength prediction model.  

To conclude, the proposed method can obtain good accuracies in predicting a composite part's life and residual 

strength from in situ dielectric response of the material under fatigue loading. However, the method includes different 

statistical data curation techniques, which need to be optimized. The investigated dataset is comparatively small; hence 

a much more comprehensive model developed with big data would be more effective, which is a scope of future study. 

Also, these shallow neural networks' computational times are not satisfactory. So, as a scope of future work, deep 

neural network-based sophisticated algorithms, such as recurrent neural networks (RNN), can be developed with big 

data to address these issues and move a step forward in composite prognostics health monitoring. 

Acknowledgments 

The authors would like to acknowledge and thank the scholars and the staff at the Institute for Predictive 

Performance Methodologies at the University of Texas at Arlington Research Institute for their tremendous support 

of this research work. 

References 

  

[1]  Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W., and Duke, J. C. "DAMAGE MECHANICS AND NDE 

OF COMPOSITE LAMINATES." 1983, pp. 399–420. https://doi.org/10.1016/B978-0-08-029384-4.50032-

8. 
[2]  Vadlamudi, V., Shaik, R., Raihan, R., Reifsnider, K., and Iarve, E. “Identification of Current Material State 

in Composites Using a Dielectric State Variable.” Composites Part A: Applied Science and Manufacturing, 

Vol. 124, 2019, p. 105494. https://doi.org/10.1016/J.COMPOSITESA.2019.105494. 

[3]  Raihan, R., Adkins, J.-M., Baker, J., Rabbi, F., and Reifsnider, K. Relationship of Dielectric Property Change 

to Composite Material State Degradation. 2014. 

[4]  Chen, C. T., and Gu, G. X. "Machine Learning for Composite Materials." MRS Communications, Vol. 9, No. 

2, 2019, pp. 556–566. https://doi.org/10.1557/MRC.2019.32. 

[5]  Tiryaki, S., and Aydin, A. "An Artificial Neural Network Model for Predicting Compression Strength of Heat 

Treated Woods and Comparison with a Multiple Linear Regression Model." Construction and Building 

Materials, Vol. 62, 2014, pp. 102–108. https://doi.org/10.1016/J.CONBUILDMAT.2014.03.041. 

[6]  Tsao, C. C., and Hocheng, H. "Taguchi Analysis of Delamination Associated with Various Drill Bits in 

Drilling of Composite Material." International Journal of Machine Tools and Manufacture, Vol. 44, No. 10, 

2004, pp. 1085–1090. https://doi.org/10.1016/J.IJMACHTOOLS.2004.02.019. 

[7]  Das, S., Chattopadhyay, A., and Srivastava, A. N. "Classifying Induced Damage in Composite Plates Using 

One-Class Support Vector Machines." AIAA journal, Vol. 48, No. 4, 2010, pp. 705–718. 

https://doi.org/10.2514/1.37282. 

[8]  Sheng, W., Liu, Y., and Söffker, D. "A Novel Adaptive Boosting Algorithm with Distance-Based Weighted 

Least Square Support Vector Machine and Filter Factor for Carbon Fiber Reinforced Polymer Multi-Damage 

Classification." Structural Health Monitoring, Vol. 0, No. 0, 2022, pp. 1–17. 

https://doi.org/10.1177/14759217221098173/ASSET/IMAGES/LARGE/10.1177_14759217221098173-

FIG9.JPEG. 

[9]  Liu, H., Liu, S., Liu, Z., Mrad, N., and Dong, H. "Prognostics of Damage Growth in Composite Materials 

Using Machine Learning Techniques." Proceedings of the IEEE International Conference on Industrial 

Technology, 2017, pp. 1042–1047. https://doi.org/10.1109/ICIT.2017.7915505. 

[10]  Das, P. P., Rabby, M. M., Vadlamudi, V., and Raihan, R. "Moisture Content Prediction in Polymer 

Composites Using Machine Learning Techniques." Polymers, Vol. 14, No. 20, 2022, p. 4403. 

https://doi.org/10.3390/polym14204403. 

[11]  Elenchezhian, M. R. P., Vadlamudi, V., Raihan, R., and Reifsnider, K. “Unsupervised Learning Methods for 

Identification of Defects in Heterogeneous Materials.” Proceedings of the American Society for Composites - 

35th Technical Conference, ASC 2020, 2020, pp. 839–850. https://doi.org/10.12783/ASC35/34900. 

[12]  Tang, J., Soua, S., Mares, C., and Gan, T. H. "A Pattern Recognition Approach to Acoustic Emission Data 

Originating from Fatigue of Wind Turbine Blades." Sensors 2017, Vol. 17, Page 2507, Vol. 17, No. 11, 2017, 

p. 2507. https://doi.org/10.3390/S17112507. 



12 

 

[13]  Sawan, H. A., Walter, M. E., and Marquette, B. "Unsupervised Learning for Classification of Acoustic 

Emission Events from Tensile and Bending Experiments with Open-Hole Carbon Fiber Composite Samples." 

Composites Science and Technology, Vol. 107, 2015, pp. 89–97. 

https://doi.org/10.1016/J.COMPSCITECH.2014.12.003. 

[14]  Sierra-Pérez, J., Güemes, A., and Mujica, L. E. "Damage Detection by Using FBGs and Strain Field Pattern 

Recognition Techniques." Smart Materials and Structures, Vol. 22, No. 2, 2012, p. 025011. 

https://doi.org/10.1088/0964-1726/22/2/025011. 

[15]  Ech-Choudany, Y., Assarar, M., Scida, D., Morain-Nicolier, F., and Bellach, B. "Unsupervised Clustering for 

Building a Learning Database of Acoustic Emission Signals to Identify Damage Mechanisms in Unidirectional 

Laminates." Applied Acoustics, Vol. 123, 2017, pp. 123–132. 

https://doi.org/10.1016/J.APACOUST.2017.03.008. 

[16]  Dia, A., Dieng, L., Gaillet, L., and Gning, P. B. "Damage Detection of a Hybrid Composite Laminate 

Aluminum/Glass under Quasi-Static and Fatigue Loadings by Acoustic Emission Technique." Heliyon, Vol. 

5, No. 3, 2019, p. e01414. https://doi.org/10.1016/J.HELIYON.2019.E01414. 

[17]  Tiryaki, S., and Aydin, A. "An Artificial Neural Network Model for Predicting Compression Strength of Heat 

Treated Woods and Comparison with a Multiple Linear Regression Model." Construction and Building 

Materials, Vol. 62, 2014, pp. 102–108. https://doi.org/10.1016/J.CONBUILDMAT.2014.03.041. 

[18]  Gebraeel, N., Lawley, M., Liu, R., and Parmeshwaran, V. "Residual Life Predictions from Vibration-Based 

Degradation Signals: A Neural Network Approach." IEEE Transactions on Industrial Electronics, Vol. 51, 

No. 3, 2004, pp. 694–700. https://doi.org/10.1109/TIE.2004.824875. 

[19]  Banerjee, P., Palanisamy, R. P., Haq, M., Udpa, L., and Deng, Y. "Data-Driven Prognosis of Fatigue-Induced 

Delamination in Composites Using Optical and Acoustic NDE Methods." 2019 IEEE International 

Conference on Prognostics and Health Management, ICPHM 2019, 2019. 

https://doi.org/10.1109/ICPHM.2019.8819426. 

[20]  Elenchezhian, M. R. P., Vadlamudi, V., Raihan, R. M., and Reifsnider, K. L. "Damage Precursor Identification 

in Composite Laminates Using Data Driven Approach." AIAA Scitech 2019 Forum, 2019. 

https://doi.org/10.2514/6.2019-0401. 

[21]  Elenchezhian, M. R. P., Vadlamudi, V., Raihan, R., Reifsnider, K., and Reifsnider, E. "Artificial Intelligence 

in Real-Time Diagnostics and Prognostics of Composite Materials and Its Uncertainties—a Review." Smart 

Materials and Structures, Vol. 30, No. 8, 2021, p. 083001. https://doi.org/10.1088/1361-665X/AC099F. 

[22]  Elenchezhian, M. R. P., Das, P. P., Rahman, M., Vadlamudi, V., Raihan, R., and Reifsnider, K. “Stiffness 

Degradation in Fatigue Life of Composites Using Dielectric State Variables.” Composite Structures, Vol. 273, 

No. June, 2021, p. 114272. https://doi.org/10.1016/j.compstruct.2021.114272. 

[23]  Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. 

https://www.astm.org/d3479_d3479m-12.html. Accessed May 13, 2022. 

[24]  Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. 

https://www.astm.org/d3039_d3039m-08.html. Accessed May 13, 2022. 

[25]  Hara, K., Saito, D., and Shouno, H. "Analysis of Function of Rectified Linear Unit Used in Deep Learning." 

Proceedings of the International Joint Conference on Neural Networks, Vols. 2015-September, 2015. 

https://doi.org/10.1109/IJCNN.2015.7280578. 

[26]  Kingma, D. P., and Lei Ba, J. "Adam: A Method for Stochastic Optimization." undefined, 2015. 

[27]  Saputro, D. R. S., and Widyaningsih, P. "Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

Method for the Parameter Estimation on Geographically Weighted Ordinal Logistic Regression Model 

(GWOLR)." AIP Conference Proceedings, Vol. 1868, No. 1, 2017, p. 040009. 

https://doi.org/10.1063/1.4995124. 

  


