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Abstract 

A COMPREHENSIVE ANALYSIS OF THE EVOLUTION OF  

 

COASTAL FLOODING IN TEXAS AND LOUISIANA 

  

FOR APPLICATION IN RISK ASSESSMENT 

 

Joshua Pulcinella 

University of Texas at Arlington, 2022 

Supervising Professor: Dr. Arne Winguth 

Coastal communities of the northern Gulf of Mexico have historically been at risk of flooding 

from tropical cyclone induced storm surge and extreme precipitation. Relative sea level rise 

resulting from a combination of increasing global mean sea level and regional subsidence 

presents an escalating threat that requires a comprehensive assessment of changing flood risks 

for the area. This study examines how coastal flooding events are changing and focuses on the 

future risks to communities and infrastructure in Texas and Louisiana. Utilizing historic tide 

gauge observations, tropical cyclone records, and associated storm tide data, the frequency, 

duration, and magnitude of events exceeding existing flood threshold levels are quantified, return 

periods estimated, correlations with climate oscillations tested, and trends analyzed.  

To assess forecasting relative sea level rise, a seasonal autoregressive integrated moving 

average (SARIMA) model based on raw tide gauge observations is compared to probabilistic 

projections based on background subsidence rates, global climate models and anthropogenic 

emissions scenarios. Projections are utilized to map inundation under a range of future scenarios 

for mean high tide and added to SLOSH storm surge model output under current sea level to map 

future storm tide inundation under multiple hurricane categories. Probabilistic projections appear 

to be more suitable for use in risk assessments than SARIMA modeling as they forecast a range 

of possible sea level rise acceleration scenarios that address the uncertainties inherent in the 

climate system, climate models, and anthropogenic emissions, while SARIMA lacks the ability 

to model acceleration.  

Inundation mapping using probabilistic scenarios revealed the impacts from relative sea level 

on mean high tide flooding risk will be seen in the lowest elevations as early as 2040 under all 

scenarios and the addition of sea level rise to modeled storm surge increases the area of 

inundation farther inland effecting populations and infrastructure not previously threatened. 

Additionally, non-tidal residuals associated with storms were found to be the primary influence 

on flood threshold exceedance over the last 40 years. Estimated peak surge return periods based 

on 30-year averages from 1900-2020 suggest an increase to the 100-year peak surge of ~2.5 

meters. This study found relative sea level rise, rather than changes in tropical cyclone 

climatology or climate oscillations, is the key factor contributing to more frequent, longer 

lasting, and greater magnitude coastal flooding events observed in the record and will continue to 

present an increasing risk as global temperature rises. Moreover, relative sea level rise is 

increasing the probability of high tide, or nuisance, flooding not associated with storms and 

impacts that were historically rare are becoming more common and lasting longer, particularly at 

locations with higher tidal ranges. 
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 Results suggest that coastal flood risk assessments can be improved to include the enhanced 

risks associated with accelerating relative sea level rise rather than relying on historic 

observations. These improvements include using localized sea level projections that reflect 

varying subsidence rates, estimating future surge return periods based on observed changes, 

accounting for previously rare events such as high tide flooding and inland storm surge 

inundation, and recognizing social vulnerability as an additional risk.      
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Chapter 1: General Introduction and Objectives 
 

 1.1 General Introduction 

Coastal communities have historically experienced occasional flooding events from storm 

surges and anomalously high astronomical tides. Sea level, which remained stable for ~2000 

years prior to the industrial revolution, has been rising in the past century with acceleration from 

anthropogenic perturbation of the climate since the 1990s. This has a direct effect on the 

frequency and severity of coastal flooding by decreasing the gap between mean sea level and 

fixed coastal infrastructure. The rise in global sea level is attributed to rising ocean heat content 

causing thermal expansion and the melting of glaciers, ice caps, and the large ice sheets of 

Antarctica and Greenland. Rising global temperature related to increased anthropogenic 

greenhouse gas emissions is responsible for these effects and the impact on sea level rise will 

continue into the coming centuries regardless of efforts to reduce emissions. Sea level rise 

observed at a specific coastal location can differ significantly from the global average depending 

on regional ocean dynamics, changes in gravity caused by melting ice sheets, and localized 

vertical land movement. This study focuses on the risk associated with this relative sea level rise 

(RSLR) to communities and infrastructure on the coast of Texas and Louisiana where rates of 

RSLR are faster than the global average. 

 Located in the northern Gulf of Mexico, the Texas and Louisiana coasts are characterized by 

deltaic environments, barrier islands, and low sloping beaches. The area is home to nearly 10 

million residents and supports major industrial, commercial, fishing, and tourism practices. 

While rates vary by location, subsidence caused by sediment compaction, glacial isostatic 

adjustment, and subsurface water and hydrocarbon extraction, is causing the land to sink while 

the sea level rises. This represents an increasing risk of flooding in the area that has historically 

observed some of the most devastating impacts from tropical cyclones including the Great 

Galveston Hurricane of 1900, Hurricane Katrina (New Orleans, 2005), and Hurricane Harvey 

(Houston, 2017). Because of this history, and the fact that many communities and industry are 

situated at low elevations or below sea level, flood defenses such as sea walls and levees have 

been engineered to protect from historic extreme water levels. However, RSLR, and the 

uncertain rate of acceleration of global sea level rise requires an assessment of future risk to 

ensure communities located in areas of historic risk will be protected and that areas that have not 

previously been considered vulnerable are accounted for. Additionally, RSLR may lead to the 

emergence of hazards associated with coastal flooding events not previously observed in the 

record.  

Coastal flood risk assessments often use historical observations to derive statistics that inform 

decision making and design criteria. This frequently includes return periods that estimate how 

often a major hurricane can be expected to make landfall (in number of years), and the 100-year 

peak surge recurrence interval. Storm surge is frequently assessed based on models that simulate 

surge under current sea level and sea level rise is considered separately. When sea level is 

considered, global sea level rise scenarios, often from the IPCC, are utilized to project future 

risk. However, the IPCC bases its projections on a likely range (67% probability) while the 

highest 17% of possible effects are not accounted for, nor is subsidence. Relying solely on 

historical data and changes in global sea level leaves unanswered questions associated with 

future risk to Texas and Louisiana coastal communities. This study seeks a comprehensive 

assessment of future flood risks that addresses these questions, such as, what are the dominant 

factors contributing to coastal flooding under future relative sea level rise projections? What is 
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the coastal risk in response to the combined natural and anthropogenic induced sea level 

extremes for the future? And how can coastal flood risk assessments be improved upon to 

communicate the increasing risk of more frequent and severe flooding? 

This study utilizes a combination of historical data, statistical analysis, trend analysis, and 

future projections to assess the risks of coastal flooding in Texas and Louisiana to 2100. The data 

include but are not limited to observations recorded by tide gauges operated by the National 

Oceanic and Atmospheric Administration (NOAA) at various fixed locations, the Gulf of 

Mexico Peak Surge Database, the Atlantic Hurricane Database (HURDAT2), vertical land 

movement rates derived from published literature, and modeled storm surge (SLOSH) output. 

How this data is used to produce results used in this analysis is detailed in the Methodology 

sections for each chapter of the dissertation.  

Chapter 2 presents a future flood vulnerability assessment for Harris County, Texas, in the 

wake of devasting flooding from Hurricane Harvey in 2017. The storm made landfall as a 

category 4 hurricane and produced over 1000 mm (~40 inches) of rain over five days in the 

Houston metro area as the storm stalled and continued to draw in tropical rainfall from the Gulf 

of Mexico. This led to inundation of major roadways in one of the most auto-dependent regions 

of the US. The study focuses on identifying areas susceptible to flooding from extreme 

precipitation and storm surge and assesses the transit demand and availability within these 

vulnerable neighborhoods. The assessment uses geographic information system (GIS) overlay 

analysis of the FEMA 100- and 500-year floodplains, SLOSH modeled storm surge maps, transit 

maps, and US Census demographics to locate transit-dependent populations within flood hazard 

zones. A sea level rise scenario of ~2.5 meters by 2100, based on representative concentration 

pathway (RCP) 8.5 consistent with the highest emissions scenarios in the literature, is added to 

the modeled storm surge. Combining a future sea level rise scenario with the modeled category 5 

storm tide allows for identification of populations that may be susceptible to flooding from the 

maximum storm tide by 2100. 

While the study presented in Chapter 2 is adequate to assess maximum possible risk by 2100 

using the high-end scenario of global sea level rise, local officials and city planners desire site-

specific projections of sea level rise over varying time horizons. For this purpose, Chapter 3 

focuses on RSLR (defined as the sum of global sea level rise, regional non-linear processes, and 

local vertical land movement) and future projections. First, RSLR rates (mm/year) derived from 

monthly mean sea level observations at nine tide gauges in Texas and Louisiana with adequate 

records are analyzed. Varying rates of RSLR, all higher than the global average, reflect the site-

specific subsidence rates at different locations within the study area. Second, RSLR projections 

using a seasonal autoregressive integrated moving average (SARIMA) model are compared to a 

probabilistic methodology previously developed and utilized by NOAA in national assessments. 

Forecasts using SARIMA can be derived solely from raw (unsmoothed) tide gauge data with low 

computational costs and incorporate the long-term linear trend as well as the annual seasonal 

cycle. Unfortunately, unless acceleration is inherent in the data (i.e., the long-term trend is non-

linear) SARIMA does not forecast acceleration that is likely over the coming decades. 

Probabilistic projections utilize the Coupled Model Intercomparison Project 5 (CMIP5) global 

climate models under varying RCP acceleration scenarios imposed on the background vertical 

land movement rates to derive projections by decade to 2100. While this method does include 

acceleration, the complex nature of the global climate and uncertainty inherent in global climate 

modeling need to be addressed for proper use of the projections.  



 

3 
 

The greatest uncertainties related to sea level rise attributed to anthropogenic-induced climate 

change are associated with the dynamics of the melting cryosphere, specifically the Greenland 

and Antarctic ice sheets. Tipping points of the collapse of Greenland and West Antarctic 

Icesheets in response to accelerated anthropogenic-induced global warming are not well 

understood. Although advances are being made in this field to incorporate new knowledge of ice 

sheet dynamics into global climate models, the topic remains uncertain from a risk assessment 

standpoint. Additionally, the output from global climate models can vary greatly from small 

changes in the initial conditions, boundary conditions, and parameters used. Another source of 

uncertainty is the future of anthropogenic emissions of greenhouse gases. The anthropogenic 

uncertainty is addressed by using multiple RCPs derived from population projections, gross 

domestic product, energy efficiency, land use, and other factors that contribute to anthropogenic 

radiative forcing. Thus, probabilistic projections provide a range of possible outcomes in the 

form of multiple scenarios (i.e., “Intermediate”, “High”, “Extreme”) that relate to global sea 

level rise while incorporating the subsidence rate unique to each location. The best use of the 

RSLR scenarios in risk assessment to account for uncertainty is to select two scenarios that have 

less than 50% probability of exceedance by 2100 whose envelope of outcomes defines the design 

range, and a scientifically plausible extreme scenario. This method has broad applications in risk 

assessments as inundation maps utilizing projections can provide temporal and geospatial results 

of high tide water levels under each scenario. This is most useful for engineers, designers, and 

planners making key decisions about how much RSLR will impact new or existing 

infrastructure. For infrastructure where flooding represents a particular danger to the public (e.g., 

nuclear power plants; wastewater treatment facilities; etc.), projects with long planning horizons, 

or infrastructure with limited adaptability, failure to include low-probability, high-risk scenarios 

in decision making may result in higher future risk. 

This methodology using probabilistic projections of RSLR is applied in a case study of New 

Orleans, LA, and Galveston, TX. The intermediate, intermediate-high, and extreme scenarios are 

considered for mapping the inundated areas over time (20-year periods) and for mapping height 

above ground by 2100. Thus, populations and infrastructure within the predicted area of 

inundation can be identified and the timing and severity of impacts analyzed. For example, 

results indicate that under the intermediate scenario, the lowest elevations located on the back 

bay side of Galveston Island will begin to experience impacts from RSLR at high tide by 2060, 

and by 2100 the inundation at high tide will be 1.2-1.5 meters above ground in that location.  

RSLR reduces the gap between mean high tide and existing flood threshold levels set at each 

tide gauge location. Coastal flooding events are defined as any exceedance of the flood threshold 

elevation whether it be one hour from a high tide or 24 hours from a hurricane. Generally, a 

coastal flooding event can be caused by several phenomena including perigean spring tides, 

seasonally higher water levels resulting from El Niño southern oscillation (ENSO), surge from 

tropical and extratropical storms, tsunamis, changes in currents, swells from distant storms, and 

others. In Chapter 4, hourly tide gauge data from six locations in Texas and Louisiana is 

examined for flood threshold exceedance from 1980-2019 and the various factors contributing to 

said exceedances is determined along with the seasonality of the occurrences. In this way, all 

possible coastal flood risks that impact the study area will be accounted for and those that do not 

can be eliminated from risk analysis. For example, extratropical storms do not occur in the Gulf 

of Mexico, and this is confirmed by the lack of a wintertime peak in maximum daily water levels 

observed in the record. For this purpose, spectral analysis is employed to decompose the 40-year 
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hourly tide gauge data into the seasonal mean sea level cycle, the astronomical tide without the 

solar annual and semiannual components, and the remaining non-tidal residuals. 

Analysis reveals that high tide flooding events are increasing in frequency and duration as 

relative sea levels have risen over the past 40 years. Results from all locations show peaks in 

flood threshold exceedance coinciding with the seasonal sea level maxima during September and 

October superimposed with peaks in non-tidal residuals associated with hurricane season. The 

analysis indicates the solar tidal constituents influence the seasonal sea level cycle with no direct 

effects from ENSO in the Gulf of Mexico, and no peaks above threshold coincided with perigean 

spring tides. It should be noted that a 30-day smoothing is applied to the data to emphasize 

patterns rather than individual events, and the overall pattern shows that peaks over flood 

threshold are primarily driven by the non-tidal residual component associated with storms. Thus, 

trends in tropical cyclone activity and associated storm surge are examined to determine if 

changes in tropical cyclone climatology and associated climate oscillations represent an 

additional increasing risk to coastal Texas and Louisiana.  

From an extensive history of tropical cyclones and storm surges it is determined that Atlantic 

basin tropical cyclone frequency is increasing and that half of the largest storm surges over the 

Texas and Louisiana record are observed in the past two decades. The analysis does not find any 

trends or patterns in landfalling storms within the study area, nor does it indicate any correlations 

between landfalls and peak surge with the Atlantic Multidecadal Oscillation or ENSO, both of 

which are correlated with total Atlantic basin activity. However, peak surge return periods 

estimated from changes in 30-year averages from the baseline (1930-1960) in surge frequency 

and magnitude suggest an increase of the 100-year peak surge of ~2.5 meters. Additionally, 

probability density functions of annual hourly tide gauge data show an increase in the probability 

of exceeding flood thresholds over past decades, particularly in the upper tails of the densities. 

The analysis in Chapter 4 confirms that RSLR is the primary factor leading to increased risk of 

coastal flooding in Texas and Louisiana. This risk arises from RSLR-enhanced storm tides by 

increasing the surge magnitude relative to the storm strength so that lower category storms 

produce surges equal to a higher category hurricane. An additional risk from high tide, or 

“nuisance” flooding, is also identified in locations with higher tide ranges (Port Isabel and 

Corpus Christi, TX) and has increased significantly at all locations so that as RSLR continues, all 

locations may experience the compounding risk in the future. 

To determine the combined natural and anthropogenic sea level extremes for the future, a case 

study of RSLR-enhanced storm tide inundation in the Baton Rouge, LA, and Houston-Galveston, 

TX, areas is presented. Utilizing the site-specific RSLR probabilistic projections of Chapter 3, 

projections are added to SLOSH modeled storm tides similarly to Chapter 2. Following the 

methodology laid out in Chapter 3 to account for deep uncertainty and to address the needs of 

planners and policy makers, the “Intermediate”, “Intermediate-High”, and “Extreme” RSLR 

scenarios are added to the category 1, 3, and 5 storm tides to identify areas and populations 

vulnerable to flooding by 2100. The study includes an additional social risk by identifying 

populations within inundated areas that, according to the Center for Disease Control’s Social 

Vulnerability Index, are in the top 90th percentile for (1) poverty, (2) disabilities, (3) age 65 and 

older, (4) age 17 and younger, (5) mobile homes, and/or (6) no access to vehicle. Inundation 

mapping is used to identify total population affected, the increase in inundated area, and the 

change in the number of particularly vulnerable populations affected by each category storm tide 

under the three RSLR scenarios.  



 

5 
 

In summary, the results of this dissertation offer some answers to the questions previously 

mentioned above. Coastal flooding events in Texas and Louisiana are dominated by tropical 

cyclone induced storm tides enhanced by the seasonal mean sea level cycle of the northern Gulf 

of Mexico. Relative sea level rise represents an increasing risk by reducing the gap between the 

mean high tide and the flood threshold level. The probability of flood threshold exceedance is 

increasing and will continue to increase as sea levels rise. Therefore, high tide flooding that in 

the past occurred rarely will become a regular hazard in the coming decades. Non-tidal residuals 

associated with storms are the main driver of flood threshold exceedances observed from 1980-

2019. This study finds that relative sea level rise, rather than changes in tropical cyclone 

climatology or climate oscillations, is the primary factor contributing to flood threshold 

exceedance and will continue to present an increasing risk of more frequent, longer lasting, and 

greater magnitude coastal flood events. 
 

1.2 Hypothesis and Objectives 

This dissertation seeks to test the following hypothesis: 

 

Sea level rise is increasing the frequency, magnitude, and duration of coastal flooding events in 

Texas and Louisiana representing an increasing risk to currently vulnerable locations and a 

future risk expanding to areas not historically affected.  

 

In this study, the causes of coastal flooding in Texas and Louisiana were examined utilizing 

historical observations, future sea level projections, and storm surge model output. The focus is 

primarily on the risk of flooding to populations and infrastructure as well as the future outlook of 

said risk with climate change induced sea level rise. The goals of this study were to analyze the 

following:  

 

I. What are the dominant factors contributing to coastal flooding under future sea level rise 

projections? 

 

Global mean sea level rise has accelerated since the preindustrial era with projections of 

increased acceleration into the future. Due to increasing global mean temperature, thermal 

expansion of sea water and melting of land ice, projections of up to 2.5 meters of sea level rise 

relative to 1991-2009 may be expected by 2100. In Texas and Louisiana, subsidence exacerbates 

the rise in global sea level making the rate of relative sea level rise faster than the global average. 

Coastal flooding can occur from tropical cyclone induced storm surge, swells from distant 

storms, spring tides, tsunamis, and anomalies attributed to oceanic processes. The objective in 

this study is to identify which of these factors contribute most to coastal flooding events in Texas 

and Louisiana and analyze potential changes to the frequency and magnitude of these events 

under future sea level projections. This is achieved by addressing the following: 

I.1 Is the probability of exceeding flood thresholds leading to high tide flooding increasing over 

time as relative sea level rises and is this consistent at all locations in Texas and Louisiana?  

I.2 How do astronomical tides, seasonal sea level cycles, and non-tidal residuals contribute to 

exceedance of flood thresholds? 

I.3 How have frequency and magnitude of storm tides changed over the historical record and 

what changes are projected for the future? 
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I.4 Are climate oscillations and historical changes in tropical cyclone climatology correlated to 

increased flooding via non-tidal residuals? 

 

II. What is the coastal risk in response to the combined natural and anthropogenic induced sea 

level extremes for the future? 

 

Communities along the coast of Texas and Louisiana have been under risk of coastal flooding 

since people began residing there. Records indicate that at least 135 storm surge events have 

been recorded over the last 140 years (1880-2020) in these locations. Thus, infrastructure has 

been designed with this historic risk in mind and includes built flood defenses such as levees and 

seawalls. A consequence of rising sea levels relative to the fixed elevations of current 

infrastructure include increased inundation during extreme events. Another observation in the 

historical record is an increase in exceedance of minor flood thresholds leading to high tide 

flooding. These lesser extreme events have historically occurred occasionally but have become 

much more frequent since 2010. The objective in this study is to define the natural and 

anthropogenic factors influencing the increase in high tide flooding risk and identify areas, 

populations, and infrastructure at future risk from storm surge enhanced by relative sea level rise. 

This is achieved by addressing the following:   

II.1 What is the primary factor contributing to an increased risk of flood threshold exceedance?  

II.2 How do different relative sea level rise scenarios affect inundation risk from modeled storm 

tides of varying magnitude? 

 

III. How can coastal flood risk assessments be improved upon to communicate the increasing 

risk of more frequent and severe flooding? 

 

Risk assessments of coastal flooding commonly use historic observations and statistics to 

inform decision making and design criteria, such as the 100-year flood return period and historic 

storm surge heights. Changes in frequency and magnitude of coastal flood events over the past 

twenty years and projected increases into the future are under accounted for. Due to 

compounding uncertainties in the climate system, climate models, and anthropogenic emissions, 

projections of future coastal flood risks are complex. The objective in this study is to develop a 

methodology to effectively communicate the increasing risks while accounting for uncertainty in 

future projections. This is achieved by addressing the following: 

III.1 What method of projecting future relative sea level can provide an appropriate range of 

possible outcomes for use in risk assessment? 

III.2 How do return periods change when accounting for changes in frequency and magnitude of 

storm tides? 

 

For the case that coastal flood risk assessments are extended beyond the historical data to include 

future projections of relative sea level, changes in probability and duration of high tide flooding, 

and projected changes in tropical cyclone activity with storm surges enhanced by relative sea 

level rise, then the evolution of future flood hazards in the region will be fully captured. Due to 

varying subsidence rates within the study area, localized projections provide a more accurate 

forecast for risk assessors and policymakers. 
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Chapter 2: Analysis of Flood Vulnerability and Transit Availability with a Changing 

Climate in Harris County, Texas 
 

Abstract 

Hurricanes and other extreme precipitation events can have devastating effects on population and 

infrastructure that can create problems for emergency responses and evacuation. Projected 

climate change and associated global warming may lead to an increase in extreme weather events 

that results in greater inundation from storm surges or massive precipitation. For example, record 

flooding during Hurricane Katrina or more recently, during Hurricane Harvey in 2017, led to 

many people being cut off from aid and unable to evacuate. This study focuses on the combined 

impact of storm tides and extreme rainfall under climate change for areas of Harris County, TX, 

and evaluates the transit demand and availability in those areas. Future risk of flooding in Harris 

County will be assessed by GIS mapping of the 100-year and 500-year FEMA floodplains and 

most extreme category 5 storm tide and global sea level rise. The flood maps have been overlaid 

with population demographics and transit accessibility to determine vulnerable populations in 

need of transit during a disaster. It was calculated that 70% of densely populated census block 

groups are located within the floodplains including a disproportional amount of low-income 

block groups. The results also show a lack of transit availability in many areas susceptible to 

extreme storm surge exaggerated with sea level rise. Further study of these areas to improve 

transit infrastructure and evacuation strategies will improve the outcomes of extreme weather 

events in the future.  
 

2.1 Introduction                            

 Extreme weather events such as hurricanes have had devastating impacts on communities and 

infrastructure and affected the most vulnerable populations in flooded areas. For example, 

category four Hurricane Harvey, generated 103 storm-related deaths, widespread flooding of 

more than 50,000 homes and over 500,000 vehicles, more than 17,000 water rescues, and 126 

billion dollars of economic damages in Texas (Blake and Zelinsky, 2018). Rainfall of over 1000 

mm (~40 in) in the Houston metropolitan area, in particular in Harris County led to extreme 

flooding because of slow movement of the storm system. The effect of this storm on the Houston 

metropolitan area is unique because ~91% of the commuters in the Houston Metro area travel 

alone by car, making it one of the most auto-dependent places in the United States. Inundation of 

major roadways require evacuation strategies that adapt to these conditions. The projected 

extreme weather events amplified by climate change require a risk assessment of how vulnerable 

populations and infrastructure are affected by flooding from sea level rise, storm surge, and 

extreme rainfall events. 

  

2.1.1 Sea Level Rise 

Assessing global and regional sea level rise (SLR) due to global warming is of great interest 

to coastal populations, such as those along the Gulf of Mexico, due to increased tidal flooding 

and storm surges (Hellgatte et al., 2013). Global mean temperature is expected to increase over 

3℃ by 2100 due to anthropogenic-induced greenhouse gas emissions into the atmosphere 

(Stocker et al., 2014) that lead to an increase in global mean sea level (GMSL) by melting of ice 

sheets, in particular the Greenland ice sheets and associated ice shelves, glaciers, and thermal 

expansion by increased global sea temperatures (Wuebbles et al., 2017). The geologic record of 

the last million years suggests that during ice ages, GMSL is low due to build-up of ice sheets 

and glaciers, and thermal contraction (Dutton et al., 2015). 
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Vertical land movement is a significant factor in regional sea level change. Subsidence 

resulting from extraction of groundwater or other resources can effectively raise the sea level by 

lowering the land elevation. In addition, sediment deposition in the Gulf of Mexico originating 

from the Mississippi River runoff enhances this subsidence. 

Projected SLR is characterized by substantial uncertainties, because of the range of future 

changes in radiative forcings as defined by representative concentration pathways (RCP), and 

because of the uncertain rate of melting of ice sheets and mountain glaciers. In the most extreme 

scenario, the RCP 8.5 “business as usual” scenario, sea level is predicted to change by 2.4 m or 

~8 feet due to massive melting of the Greenland ice sheet, glaciers, and thermal expansion 

(Wuebbles et al., 2017). 

 

2.1.2 Storm Surge and Storm Tide  

In the past decades, low sloping beaches and near-coastal areas of the Gulf Coast of the U.S. 

have been affected by an increase in intense tropical storms with associated storm tides and 

heavy precipitation (Wahl et al., 2015). Storm surges, and associated erosion and landscape 

changes, threaten critical infrastructure such as roads and bridges and can cause wide-scale 

flooding. Understanding storm surge and storm tide and how it will increase with climate change 

is essential to protecting vulnerable areas into the future. 

A storm surge is a rise in water produced by a storm above the normal tide level, while a 

storm tide is that storm-generated surge on top of the astronomical high tide. While coastal 

locations are particularly vulnerable, storm surge inundation from hurricanes can move inland 

significantly. The magnitude of the storm surge depends on a variety of factors including the 

wind stress from the storm, slope of the beach, water depth, bottom friction, wave height, 

precipitation, atmospheric pressure, and other factors (Harris, 1963). 

Water masses in the Gulf of Mexico are pushed onshore in a multifaceted process that is 

dependent on intensity, speed, size of the storm, angle of approach, and central pressure as well 

as the shape and topography of the basin (NHC, 2018). Surface waves generated by winds move 

in the direction of the winds and can be a source of significant transport of water masses to the 

shore (Harris, 1963). The buildup of water masses on the downwind side of a basin known as 

“wind set-up” effectively raises the sea level on the coast if the wind is directed toward the coast, 

and water penetrates the basin comparable to the tides. Separate from wind set-up, “wave set-up” 

can also occur when water carried toward the shore by breaking waves piles up near the shore 

and contributes to an overall higher surge (Longuet-Higgins, 1983). 

The atmospheric pressure of a hurricane is a major contributing factor in the intensity of the 

storm. A deeper low pressure center results in a significant pressure gradient force which, 

combined with the Coriolis force, leads to higher geostrophic winds and tighter counterclockwise 

rotation. Sea level rise due to atmospheric pressure plays a less significant role in storm surge 

than wind, but nonetheless contributes to the height of the storm surge. In theory, the sea level 

rises directly under the low-pressure center 1 foot for every 1-inch drop in mercury reading. 

Hurricane Katrina had a central pressure of 27 inches of mercury, with 30 being average. This 

means that the sea level under the hurricane was elevated approximately 3 feet simply due to the 

low-pressure system (Anderson and Battjes, 2007).  

The significant precipitation that occurs with tropical cyclones is also a contributing factor to 

coastal flooding. Heavy precipitation reaching 1500 mm (60 in) in a short period has been 

observed with Hurricane Harvey and led to rapid flooding of rivers, reservoirs, and low-elevated 
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areas. Reducing or reversing the drainage of rivers by the storm surge can amplify the flooding 

(Harris, 1963).  
 

2.1.3 Storm Surge Modeling 

In order to model hurricane storm surge to predict inundation heights and locations, the 

National Weather Service (NWS) developed the Sea, Lake, Overland Surges from Hurricanes 

(SLOSH) model. The model integrates terrain, bathymetry, and physical barriers along with the 

physics equations of motion to show how surge waters flow inland with landfall of a hurricane 

(Jelesnianski et al., 1992). SLOSH incorporates specific data from hurricanes such as 

atmospheric pressure, direction, and speed to model the winds and storm surge along the coasts. 

Geographically specific polar grids are applied to basins, and there are SLOSH basins to cover 

the entire coast from Maine to Texas. Each basin represents inland topography; waterways such 

as bays, lakes, and rivers; and a section of continental shelf (Jelesnianski et al., 1992). SLOSH is 

capable to simulate hurricane maximum envelopes of water (MEOWs) based on input 

parameters (pressure, speed, direction, size), or maximum of MEOWs (MOMs) that represent a 

worst-case scenario. MEOWs and MOMs are generated through computing the maximum surge 

for thousands of theoretical storms with varying parameters within each basin (Zachry et al., 

2015). MOMs are available as a mean-tide product or a high-tide product where high tide values 

are added to the storm surge height. SLOSH can also simulate historical models of past hurricane 

storm surges that compare well to the historical data. 

SLOSH uses the equations of motion as developed for wind tide (eq. 2.1-2.3) by Platzman 

(1963) and modified by Jelesnianski (1967) for storm surge to include bottom stress. The 

equations are: 

 
𝜕𝑈

𝜕𝑡
= −𝑔(𝐷 + ℎ) [𝐵𝑟

𝜕(ℎ−ℎ0)

𝜕𝑥
− 𝐵𝑖

𝜕(ℎ−ℎ0)

𝜕𝑦
] + 𝑓(𝐴𝑟𝑉 + 𝐴𝑖𝑈) + 𝐶𝑟𝑥𝜏 − 𝐶𝑖𝑦𝜏                               (2.1) 

𝜕𝑉

𝜕𝑡
= −𝑔(𝐷 + ℎ) [𝐵𝑟

𝜕(ℎ−ℎ0)

𝜕𝑦
− 𝐵𝑖

𝜕(ℎ−ℎ0)

𝜕𝑥
] − 𝑓(𝐴𝑟𝑉 + 𝐴𝑖𝑈) + 𝐶𝑟𝑦𝜏 − 𝐶𝑖𝑥𝜏                               (2.2) 

𝜕ℎ

𝜕𝑡
=

𝜕𝑈

𝜕𝑥
−

𝜕𝑉

𝜕𝑦
                                                                                                                                   (2.3) 

where U,V denotes the meridional transport of water masses, g is the gravitational acceleration 

constant, D is the depth of quiescent water relative to a common datum, h denotes the  height of 

water above datum, ℎ0 is the hydrostatic water height, f  denotes the Coriolis parameter, 𝑥𝜏, 𝑦𝜏 

are surface stresses, and  𝐴𝑟 , … . , 𝐶𝑖 are bottom stresses. The surface stress (𝜏) represents 

meteorological data with many variables, and the bottom stress term represents frictional forces 

with many variables. Coefficients for these terms are derived using empirical data from past 

storms and surges. There are some coefficients such as surface drag and vertical eddy viscosity 

coefficients that cannot be empirically determined and must be specified (Jelesnianski et al., 

1992). Topographic data are acquired from U.S. Geological Survey (USGS) three-dimensional 

elevation program in 1 arc second segments and incorporated into SLOSH for inundation 

modeling. 

 

2.1.4 Storm Surge Measurement 

Storm surge data have been collected by utilizing a combination of tide gauges, high water 

marks, and pressure sensors. Tide gauges operated by the National Oceanic and Atmospheric 

Administration (NOAA) that measure water levels at 175 locations along the coast can be used 
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to recover storm surge height data (NHC, 2018). The United States Geological Survey (USGS) 

measures high water marks after a storm surge event. The marks indicate the maximum water 

level of the surge and are used to determine inundation height. Trained personnel are disbursed 

in the area following a storm surge to identify and measure mud lines, seed lines, foams lines and 

other indications of high water (Koenig et al., 2016). Prior to a predicted storm, USGS deploys 

temporary sensors to the area expected to be inundated that collect data on water level and 

barometric pressure. Some of these sensors use water pressure to determine the water level while 

others measure water level directly while also recording the barometric pressure (McCallum et 

al., 2012). 

As noted in the National Hurricane Center Tropical Cyclone Report on Hurricane Harvey, the 

storm tide produced inundation levels of 6 to 10 feet during landfall. Tide gauge data indicated a 

maximum of 6.7 feet above mean high water at Port Lavaca, Texas, while temporarily installed 

sensors at Hynes Bay indicated a water level of 8.7 feet above mean high water. Surveys of high-

water marks conducted in the area indicated inundation of 11-12 feet but were likely influenced 

by waves (Blake and Zelinsky, 2018). 

  

2.1.5 Floodplains 

Flood risks from extreme rainfall include riverine flooding, coastal flooding, and shallow 

flooding. Floodplains have been developed to assess the risk of potential flooding in riverine and 

watershed areas, coastal areas, and other topographically low-lying areas. Riverine flooding 

occurs in watershed areas and is defined as any event when water rises over the banks of a 

channel and flows into a floodplain. Overbank flooding is the most common form of riverine 

flooding and occurs when the downstream channels receive more water from the watershed than 

normal (O’Connor and Costa, 2003). The topography of the region plays a large role in the 

extent, depth, and velocity of the flood. Flash flooding occurs when a particularly large amount 

of rain falls in a short period of time that overwhelms the banks of the channels. Urban areas 

with little permeable surfaces are particularly vulnerable to flash flooding. In addition to 

channels being inundated with water masses, the increased velocity of water masses during a 

flood promotes erosion of the riverbanks that can enhance flooding. In depressed areas, shallow 

area flooding can be enhanced by holding-up, slow permeation of soil, or damming of water 

masses referred to as ponding. 

The Federal Emergency Management Agency (FEMA) utilizes the National Flood Insurance 

Program (NFIP) classifications of floodplains to develop Flood Insurance Rate Maps (FIRMs) 

for almost every community in the nation (FEMA, 2018). These maps typically show floodways, 

a 100-year floodplain, a 500-year floodplain, as well as any other flood hazard areas such as 

coastal flood zones. Riverine flooding, shallow flooding, and coastal flooding are all considered 

when assessing floodplain classification. 

A floodway is a river or stream channel that carries most floodwaters where building is 

limited. The 100-year floodplain refers to a probability of one percent that a flood of that 

magnitude will occur in any given year and is also referred to as the one-percent annual chance 

flood. Similarly, the 500-year floodplain is the 0.2% probability that a flood of that magnitude 

will occur in any given year. The different types of flooding are studied in detail by FEMA 

scientists and engineers to generate FIRMs that show the locations of the floodplains and 

floodways. Floodplains are derived by combining elevation mapping with hydrology studies to 

determine the floodwater elevation above ground. These FEMA floodplain maps are useful tools 

to determine flood risk, but extreme weather events such as Hurricane Harvey produced a flood 
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that exceeded the 500-year flood and was in fact a 0.1% probability flood or 1000-year flood 

(Blake and Zelinsky, 2018). A study conducted for FEMA to analyze the effects of climate 

change and population growth on floodplain classification predicted an average increase in the 

100-year floodplain area of up to 45% by 2100, with 70% of that change attributed to climate 

change alone (AECOM, 2013).  

 

2.1.6 Transit Availability 

Flooding makes roads impassable therefore complicating evacuation efforts during disasters. 

Many people reliant on public transit may be stranded in the case of a flooding emergency due to 

lack of transit availability, or a lack of knowledge that their home is in a floodplain. Low-income 

neighborhoods rely the most on public transit and these neighborhoods are most likely to be 

located within a floodplain. 

  Research indicates limited transportation options exist in low-income, sprawling areas, and 

this restricts employment opportunity and upward mobility as well as access to medical care. 

Low-income households are less likely to own a vehicle or enough vehicles to transport all 

members of the household. Addressing transit deserts is important for engaging broader social 

issues such as inequity and welfare dependence (Jiao and Dilivan, 2013). A transit desert is 

similar to the widely studied topic of a “food desert” which has had great influence on planning 

and policy. Transit dependent populations require transit service more than others and include 

individuals who are too young, too old, or physically unable to drive as well as individuals who 

cannot afford to (Jiao and Dilivan, 2013).  

Demographic changes that occur in metropolitan regions are geographic, shifting between 

urban and suburban. Many middle class and affluent families are moving to the urban centers 

with access to services, amenities, and public transportation. The poor are moving to the outlying 

areas where services and transportation are lacking. Services in the outer urban neighborhoods 

are limited due to the false assumption that people who choose to live in those areas own 

vehicles. Transit deserts, therefore, are locations of inequity where those who own cars are not 

affected by the inadequacy of transit while those who have no vehicle are disadvantaged (Allen, 

2017). 

Transit desert communities present dilemmas that fall outside of existing demand forecasting 

parameters. Catalytic forecasting operates dynamically in the opposite realm of demand 

forecasting, evaluating areas based on the full potential of urban dwellings. Numbers based upon 

the maximum frequency of use force communities to plan for accurate and meaningful efforts 

towards accessible public transportation. Catalytic forecasting can be deemed a subjective 

method in that it puts demand at every parcel in a transit shed, although traditional transportation 

planning requires objective forecasting to be useful. Transit deserts are the results of subjective 

policy and market forces which created areas that lack transit access and hold an invisible 

population. Demand forecasting privileges a certain population and catalytic forecasting is a way 

to more accurately reflect the kinds of systems that should be produced to create equity (Allen, 

2017).  

 

2.2 Objectives                                                                 

To increase efficient evacuation during extreme weather events, areas of vulnerability will be 

identified through analysis of the impacts of flooding from hurricane storm surge in a rising sea 

and increasing rainfall events in a warming climate. The area of focus for this project is Harris 

County, Texas, which was devastated by floods during Hurricane Harvey in 2017. The overall 
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aims of the research are to identify areas prone to flooding from storm surge or extreme 

precipitation and evaluate the transit availability of those areas. The results of this project will be 

used for future studies involving FEMA and NWC to evaluate the evacuation response to 

disasters and how the transportation infrastructure is affected by flooding. 

    

2.3 Methods                           

 A Geographic Information System (GIS) was employed, and several map layers were utilized 

including a Digital Elevation Model (DEM), FEMA National Flood Hazard Layer (NFHL), and 

storm tide inundation (SLOSH) with SLR along with demographic and transit data to focus on 

vulnerable populations and infrastructure of Harris County, Texas.   

The DEM layer was compiled from tiles of the USGS national elevation data set (NED) in 1/3 

arc-second n31w096 1 x 1-degree ArcGrid 2018 and NED n30w096 1/3 arc-second 2013 1 x 1-

degree ArcGrid resolution. The tiles were then combined using the mosaic to new raster function 

of ArcGIS and the final DEM was clipped to include only Harris County. The layer was then 

converted from meters to feet and values expressed in increments to better visualize the low 

elevation areas. 

The floodplain map obtained through the FEMA map service center was from the 2015 NFHL 

that included the latest updates and modern floodplain classifications. The layer combined all the 

areas of 1% chance annual flood, 0.2% chance annual flood, floodways, and coastal flood hazard 

areas as well as areas of minimal flood risk. The map layer’s symbology was altered to remove 

areas of minimal flood risk and visualize the 1% and 0.2% chance annual flood or 100-year and 

500-year floodplains. A new layer was created after removal of areas of minimal flood risk so 

the layer could be used to join and relate data from demographics and infrastructure such as 

population and roads. 

Storm surge inundation data, not including SLR, was obtained through NOAA and the 

National Hurricane Center (NHC) and was originally published in the American Meteorological 

Society Journal of Weather, Climate, and Society in 2014. NHC used the SLOSH model output 

for MOM at high tide along with the latest elevation model from USGS to create a seamless 

inundation layer for use in GIS that covers the Atlantic coast from Maine to Texas. The category 

five high tide scenario was chosen to show the maximum possible inundation in the area and the 

category three high tide was displayed to demonstrate that significant risk exists with weaker 

hurricanes as well. 

Sea level rise of 8 feet in response to climate change was chosen to add to the category 5 

storm tide layer to visualize the storm surge potential into the future. The highest elevation 

inundated by the storm tide layer was identified using the identify tool of ArcGIS. Raster 

calculations were used to select the elevations from the DEM that corresponded with the addition 

of 8 feet to the highest elevation inundated by the storm tide. These layers were then overlaid on 

the storm tide layer and symbolized to emphasize the change in the inundation area with climate 

change by 2100. 

Data on roads were obtained through Texas Department of Transportation (TxDOT) and 

overlaid on the floodplain and storm tide layers for spatial analysis. Public transit routes 

including light rail lines, bus routes, bus stops, and transit centers were mapped in GIS in order 

to evaluate the transit availability and vulnerability to flooding. Population density and mean 

household income data obtained from U.S. Census were also mapped in GIS by census block 

group and overlaid on the floodplain and storm tide layers. ArcGIS was utilized to create a new 

layer of low-income populated areas from selecting block groups that had population density 
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over 3000 per square mile and had median household income of less than $30,000. To highlight 

the low-income block groups susceptible to flooding, a selection was made of any low-income 

block groups that were within the FEMA 100-year and 500-year floodplains. To assess risk due 

to storm surge, populated areas that overlaid the storm surge layer, as well a low-income block 

groups were selected to form a layer that represented that risk. That layer was then overlaid with 

the Houston Metro and TxDOT data layers to assess transit availability. 

  A transit desert map of Harris County, TX, was compiled in GIS to determine walking times 

from each parcel to the nearest transit center, park and ride, or bus stop. These data were then 

displayed as a map layer showing walking times of 5, 10, and 15 minutes to determine the 

locations of transit desert neighborhoods and evaluate those locations for flood vulnerability.  

 

2.4 Results 

The elevation map overlaid with the FEMA floodplain map displays a correlation between 

areas of low elevation and areas within the 100-year and 500-year floodplains (Figure 2-1). The 

floodways are in the river channels and the floodplains are in areas of low elevation adjacent to 

the river channels. The map demonstrates which areas would be flooded by an extreme rainfall 

event that represents a 1% chance annual flood or a 0.2% chance annual flood.  

The FEMA floodplain map was overlaid on the population density map to analyze block 

groups within the floodplains (Figure 2-2). The map indicates that the floodplains exist in many 

densely populated areas demonstrating the need to assess the demographics and transit 

infrastructure of these areas. Densely populated block groups of Harris County within the 

floodplains are identified and mapped with the population density. Although the entire block 

group may not be within the floodplain, the entire block groups are selected if the floodplain 

exists within that block group. 

The transit map of Houston shows the available bus routes and stops, transit centers, and the 

light rail lines along with the low-income block groups of Harris County (Figure 2-3). According 

to Houston Metro data, the system covers approximately 2/3 of the county and offers 

approximately 370,000 services per day including 1,236 active buses and 76 light rail vehicles. 

The most used light rail line, the northern route, carries 55,000 passengers daily. Low-income 

block groups that contain either the 100-year or 500-year floodplains are highlighted to 

demonstrate the most vulnerable populations in need of transit.  

The storm tide map shows the area of inundation from a category 5 and category 3 hurricane 

making landfall during high tide (Figure 2-4). The inundation layer corresponds well with the 

elevation map to demonstrate the vulnerability to storm surge in low-lying areas. As the map 

shows, areas of low elevation have higher inundation levels and the opposite is true for higher 

elevation areas. The figure also shows how the storm tide flows up the river channels that can 

compound riverine flooding during a hurricane. Sea level rise was added to the category 5 storm 

tide to display the expansion of the inundation under RCP 8.5 SLR scenario (Figure 2-4). The 

map shows that areas that are not currently susceptible to the maximum storm surge may be so in 

the future. 
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Figure 2-1. The elevation map, in feet, of Harris County, Texas, showing the FEMA 100-year 

and 500-year floodplains. The National Flood Hazard Layer (NFHL) 2015 was accessed through 

the FEMA Map Service Center. The Digital Elevation Model (DEM) was accessed through the 

USGS national map and includes two 1 x 1-degree grids. 

 

 Densely populated block groups affected by the category 5 storm tide as well as low-income 

block groups are mapped along with the transit map to evaluate areas exposed to surge (Figure 2-

5). Although the storm tide layer may not inundate the entire area within each block group 

highlighted, the entire block groups affected in some way by the surge were chosen for 

evaluation. Selections of block groups within flood hazard regions of Harris County were 

overlaid on the transit map to display areas that have dense populations and low income (Figure 

2-5). The map shows several densely populated areas within the 100-year or 500-year 

floodplains as well as many densely populated areas within the storm tide that have no transit 

availability. The figure also identifies low-income block groups in the flood hazard zones. 

The transit desert map of Harris County, Texas, demonstrates the great need for transit 

availability in areas prone to flooding and/or storm surge (Figure 2-6). Locations that are more 

than ½ mile away from a transit stop should be considered for transit desert classification when 

overlaid with demographic data. 
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Figure 2- 2. The FEMA floodplain map of Harris County, Texas, overlaid on the population 

density map highlighting block groups with dense populations that are within the 100-year and 

500-year floodplains. 

    

2.5 Discussion 

The strategy of detecting flood hazards through identification of vulnerable areas prone to 

flooding has been used in many studies. A GIS-based analysis of Harris County, TX, utilized a 

weighted overlay of elevation, slope, land cover/land use, normalized difference vegetation 

index, rainfall, flow accumulation, rivers, and roads to identify flood prone areas. While, in this 

case, flood risk from storm tide was neglected, the study was able to identify areas susceptible to 

flooding from rainfall, that indeed did flood during Hurricane Harvey, that were outside of the 

FEMA flood hazard zones such as downtown Houston and others (Mukherjee and Singh, 2020).  

As results of our study suggest, the analysis presented by Mukherjee and Singh (2020) highlights 

the need for updated FEMA flood hazard maps and the importance of discouraging development 

in flood zones.  

 The SLOSH model output was used along with GIS methods to identify areas vulnerable to 

storm tide with SLR because these resources are commonly used, available at no cost, and have 

low computational requirements. 
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Figure 2- 3. The transit map of Houston Metro area highlighting low-income block groups and 

low-income block groups located in the 100 and 500-year floodplains. Median annual household 

income data acquired from U.S. census and displayed in block groups. The dark green colored 

block groups are areas with low income located within the floodplains. 

 

However, there are limitations to using SLOSH output and GIS in this application. First, SLOSH 

output defines inundation area with no depth component making DEM raster calculations 

necessary to describe depth of inundation. This method may result in deriving inundation in 

areas that are not hydrologically connected and outside of what SLOSH represents as likely. The 

resolution of the DEM limits the scale at which analysis can be conducted. For instance, a 

higher-resolution LiDAR elevation model, if available for the particular study area, could resolve 

analysis of individual structures, roads, etc. As more LiDAR data is made available, more precise 

analysis can be conducted. Second, the SLOSH output does not incorporate SLR scenarios. 

Researchers would prefer to incorporate SLR scenarios to create custom MEOWs and MOMs, 

but custom SLOSH runs require software and resources not widely available to the public. For 

this reason, GIS is often employed to “add” SLR to the storm tide inundation layer through raster 

calculations (Frazier et al., 2010; Shepard et al., 2012; Tate and Frazier, 2013) assuming a linear 

relationship. 
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Figure 2- 4. The storm tide map of Harris County, TX, displaying inundation area for Cat 3 and 

Cat 5 hurricanes. The National Storm Surge Hazard Map was accessed through the National 

Hurricane Center and clipped to Harris County. SLR scenario of 8 feet displayed to demonstrate 

how the storm tide area increases with the rising sea. 

 

This method may also result in identifying hydrologically disconnected inundation areas 

requiring further classification and removal from analysis and may lead to errors in the 

estimation of effects of SLR on inundation area and depth (Smith et al., 2010).  

Efforts to protect vulnerable coastal cities with levees and seawalls may reduce the frequency 

of nuisance tidal flooding, but considerations should be taken to be sure these barriers can 

safeguard the population into the future. The effectiveness of levees in a warming climate will 

mostly depend on SLR, storm tide, and wave action. As seen in New Orleans in 2006 during 

Hurricane Katrina, storm tides can lead to levee breach with disastrous outcomes. When levees 

are overtopped by waves or storm surge, the landward side of the levee experiences a highly 

turbulent flow of water that leads to erosion. If the overtopping event is prolonged, the levee may 

decrease in height or fail altogether (Hughes 2009). In the aftermath of Hurricane Katrina, it was 

found that most of the earthen-levee destruction could be attributed to wave overtopping and 

storm surge overflow, and most of the damages were to the levee crest and the landward-side 

slopes (Anderson and Battjes, 2007).  
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Figure 2- 5. The transit map of Harris County displaying the areas at risk of flooding and storm 

tide inundation along with highlighted areas of Median Household Income of less than $30,000. 

 

With sea level rise predictions of up to 2.5 meters (Wuebbles et al., 2017) with the 

expectations of an increased proportion of major hurricanes (Emanuel et al., 2008), coastal 

communities are wise to reassess levee construction to prepare for the changing climate. 

Hurricanes pose a particular threat of flooding from the combination of high winds and rain with 

storm surge and low pressure. Levees constructed in the past may need to be raised higher or 

reassessed for durability and areas currently not leveed may need to be reevaluated for 

construction. 

This study connects transit deserts with difficulties in evacuating transit-dependent 

populations. The following discusses the use of public transit in evacuation planning and how 

public transit operates during an emergency. Those who rely on public transport, notably those 

who have no vehicle, the elderly, and individuals with disabilities present a challenge for 

municipalities and emergency managers in the event of an evacuation. Busing has been used 

most commonly with emergency management agencies contracting local transit operators, school 

districts, and charter buses to provide transport and activating National Guard vehicles to 

supplement (Wolshon et al., 2005). These operations take place prior to the storm strike as roads 
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become inaccessible during the storm. Reviewing the evacuation procedures from Hurricanes 

Katrina and Rita in 2005, Litman (2006) found, with Katrina, a failure to plan to evacuate the 

~200,000 transit-dependent residents with buses led to many being unable to evacuate while 

during Rita, one month after Katrina, a large number of buses were utilized to evacuate residents, 

but severe traffic congestion and heat led to ~90 deaths (Zachria and Patel, 2006). The poor 

outcomes of these evacuation strategies reveal a need to focus future plans on non-automobile 

evacuation and prioritize critical transportation assets during emergency procedures. The key to 

hurricane evacuation using public transportation is planning. Evacuation zones, pick-up and 

shelter locations, and routes (including number of trips) must be pre-planned and congestion 

reducing procedures such as contraflow need to be accounted for (Swamy et al., 2017). Although 

local transit authorities often do not have enough capacity to account for all transit-dependent 

residents, having a pre-existing transit grid that has been designed placing demand at all parcels 

represents a first step in planning to use public transit in equitable evacuation strategies (Allen, 

2017). 

 

2.6 Conclusion 

Of the total population block groups in Harris County, 30.5% are densely populated, and 

among these block groups, 70% are within the FEMA 100-year and/or 500-year floodplain 

(Figure 2-2). The total number of income block groups with median annual household income of 

less than $30,000 represents only 5.3%. However, 66% of low-income block groups are within 

the FEMA 100-year and/or 500-year floodplain (Figure 2-3). This indicates many of the low-

income population of Harris County live in areas that are susceptible to flooding during extreme 

rainfall events. People living in low-income communities rely on public transit in the case of an 

evacuation, and of the 1970 bus stops within these communities 66.4% are in the floodplain and 

will be unusable in the case of flooding. 

Within the category 5 storm tide, 171 population block groups represent 8.8% of block groups 

in Harris County that are affected by maximum surge inundation. About half that number, 4.1%, 

are at risk from a category 3 storm tide (Figure 2-4). Of the 103 low-income block groups, 24 are 

within the inundation area. This represents 23.3% of the low-income block groups located within 

the storm tide. Of the 171 block groups affected by inundation, less than half, or 46.2% do not 

have any bus stops, light rail, or metro centers. This represents a high risk of being stranded by 

floodwaters in the event of a hurricane in those regions of Harris County. With future SLR 

scenarios included in the storm tide, the inundation area increases by 21% to cover an additional 

36 high density population block groups in the worst-case scenario of 8 feet of SLR.          

The transit desert map shows the supply of transit and demand by parcel with walking times to 

transit stops. The need for public transit is greater in low-income neighborhoods and many of these 

areas seen in Figure 2-5 are within the transit desert. Many areas in southwest Harris County have 

no transit access at all which leaves the population with little options for evacuation prior to a 

hurricane, and limits accessibility by responders due to lack of an existing transit grid. 

The results establish the locations most exposed to flood risk from storm surge or extreme 

precipitation in Harris County and reveal that many low-income neighborhoods reliant on public 

transit are located within those flood hazard zones (Figure 2-5). Southeastern Harris County is 

particularly susceptible to storm surge inundation while possessing little in the means of public 

transit. Areas east and southeast of downtown Houston are prone to flooding by extreme rainfall 

events, while containing many low-income neighborhoods in need of public transit. Further study 
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of these areas, as well as any areas currently adjacent to the 100-year or 500-year floodplains will 

be considered to improve evacuation efforts to get residents to safety in the event of flooding. 

 

Figure 2- 6. The transit desert map of Harris County, TX, displays Houston Metro Transit 

information with walking times to available transit in minutes.  

 

2.7 Future Outlook 

To address transit availability and flooding susceptibility, communities should plan transit-

oriented development, including affordable housing with multimodality of green infrastructure to 

build sustainability of the area. Efforts should be made to provide equitable access to transportation 

options including connected pedestrian, bicycle, and transit routes. Communities should develop 

guidelines and provide signage to follow during evacuation to help people reach transit. New 

technologies including electric vehicles should be supported and applied to design strategies to 

achieve lower carbon emissions. Municipalities and regions should develop climate resistance 

plans and require climate change analysis of existing laws and regulations. To address public 

health impacts of climate change in vulnerable communities, transit access to health care centers 

should be provided before, during, and after a disaster. Building in floodplains should be limited 

or prohibited to protect life, property, and floodplain function, and natural vegetative buffers 

should be protected and enhanced. Cities should promote mixed-income housing and mixed-use 

development that provides access to essential services and promotes green, permeable spaces. 

Buildings that exist in floodplains should have codes updated to require every first floor to be built 

of concrete to retain the structure when flooded.  
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Chapter 3: Assessing Relative Sea Level Rise in the Northern Gulf of Mexico for Effective 

Risk-Based Planning 

 
Abstract 

Communities along the Gulf coast of Texas and Louisiana face an increasing risk of flooding due 

to sea level rise associated with global warming that is expected to accelerate throughout the 

remainder of the century. Analysis of tide gauge observations between 1904 and 2021 indicate 

that the relative sea level rise rates at these locations exceed the sea level rise rate through 

regional subsidence. Therefore, it is necessary to include projections of relative sea level rise 

over time when assessing risk to lives, infrastructure, and ecosystems in this northern Gulf of 

Mexico. Many mathematical and statistical methods have been used to estimate trends and 

forecast relative sea level. In this study, Seasonal Autoregressive Integrated Moving Average 

(SARIMA) and Probabilistic Projections based on Monte-Carlo analysis, are applied to assess 

the utility of these methods in risk assessment. While SARIMA modeling provides a detailed 

forecast fit to the seasonality and linear trend of the observations in the short-term (10 years), it 

does not project acceleration. Additionally, this study finds Probabilistic Projections based on 

global climate model projections imposed on a background vertical land movement rate can 

include acceleration scenarios, but multiple scenarios must be included in risk assessment to 

account for various contributors to uncertainty. A case study in the region found Probabilistic 

Projections useful in producing flood maps that predict how much inundation will occur at a 

location decade by decade to 2100 under multiple acceleration scenarios.  

 

3.1 Introduction 

3.1.1 Relative Sea Level in the Gulf of Mexico 

Global mean sea level (GMSL) has risen substantially since pre-industrial times with an 

increasing rate that, since 1900, has been faster than any other time over the past 2800 years 

(Kopp et al., 2016). The rate of sea level rise (SLR) at a particular coastal location can either 

increase or decrease relative to the global SLR rate based on non-climactic regional effects and 

vertical land movement. While the global trend of rising oceans is driven primarily by thermal 

expansion and melting of ice sheets and glaciers due to increasing global mean temperature, 

regional sea surface height (SSH) may be influenced by ocean circulation oscillations such as the 

Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO; Sweet et al., 2017). 

Additionally, relative sea level (RSL) changes result from localized vertical land movement 

resulting from natural processes such as sediment compaction or glacial isostatic adjustment, as 

well as from anthropogenic influences on subsidence such as groundwater and hydrocarbon 

extraction (Sweet et al., 2017).  

In the northern Gulf of Mexico (GOM), (Figure 3-1) RSL rise rate is greater than GMSL rise 

rate at all tide gauge locations. The gradual collapse of the forebulge of the Laurentide Ice Sheet 

contributes to subsidence through glacial isostatic adjustment, while depression of the 

lithosphere due to sediment loading from the Mississippi, Atchafalaya, and Brazos Rivers also 

contributes to the sinking land surface (Gonzales et al., 2006). Compaction of Holocene 

sediments in the northern GOM is another factor in the vertical land movement of the region 

(Ivins et al., 2007). Hydrocarbon and groundwater extraction, particularly during peak 

production rates from 1970-1979, contributes to subsidence along the Texas and Louisiana 

coasts (Gonzales et al., 2006). 
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Subsidence rates in the northern GOM were derived by Kolker et al. (2011) by using the tide 

gauge records of Grand Isle, LA, and Galveston, TX, located in sedimentary environments and 

comparing them to the Pensacola, FL, tide gauge located on a stable carbonate platform with 

little vertical land movement. The long-term subsidence rates (1947-2006) were determined to be 

7.59 ± 0.23 mm/yr at Grand Isle and 4.71 ± 0.21 mm/yr at Galveston, while breaking the rates 

into short terms reveals that subsidence rates at both locations were highest during the period of 

1959-1974 when subsurface fluid withdrawal was at its peak, suggesting a strong anthropogenic 

influence in the region (Kolker et al., 2011). 

 

 
Figure 3- 1. Processes driving subsidence in the Mississippi Delta region of the GOM. (Figure 

from National Academic Press 2018). 

 

Although riverine sediment loading can contribute to subsidence, studies indicate these 

sediments are necessary to sustain and build the coastal wetlands. In the Mississippi delta, 

sediment loads have been reduced up to 50% over the past few centuries due to building of dams 

and levees which leaves the area vulnerable to submersion from SLR (Blum and Roberts, 2009).      

 

3.1.2 Modeling and Forecasting of Relative Sea Level Rise 

Accurate forecasts of RSL rise for selected locations have been desired by planners and policy 

makers and is an important topic of research that has been explored in several ways. However, 

due to uncertainties in ice sheet melting dynamics and future greenhouse gas emission rates, 

forecasts of RSL must be presented as a range of probable results. For risk mitigation and 

adaptation in coastal communities, it is important to include these uncertainties to ensure that 

high-risk, low probability events are not underestimated. 

The first approach discussed here is based on derived location-specific RSL scenarios by 

using Monte-Carlo resampling of gridded climate data from Perrette et al. (2013) and Kopp et al. 

(2014) and applied vertical land movement rates derived from GPS and tide gauge platforms 

(Hall et al., 2016; Sweet et al., 2017; Figure 3-3). The processes explored by these studies 

include ice sheet mass changes, glacier mass changes, thermal expansion, atmosphere-ocean 
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dynamics, steric and dynamic oceanographic processes, land-water storage, glacial isostatic 

adjustment, tectonics, and sediment compaction (Sweet et al., 2017). The non-climatic 

background rate is analyzed as the sum of three processes. Kopp et al. (2013) defines the three 

processes as: (1) a globally uniform sea level rise, (2) regional linear processes, and (3) 

regionally non-linear processes. Since vertical land movements are considered linear processes, 

the background RSL rate is determined from that process using a Gaussian process regression 

method (Kopp et al., 2014 supplementary information) to separate the three components. Other 

climatic processes included in the determination of RSL are land water storage, ice sheet 

melting, glaciers, and icecaps (GIC), surface mass balance (SMB), static-equilibrium, and 

oceanographic processes, all of which are derived from global climate (GCM) and other models 

or literature. A schematic of the processes adapted from Kopp et al. (2014) is shown in Figure 3-

2. 

 

 
Figure 3- 2. Flow-chart schematic for processes used to derive localized RSL projections. 

Adapted from Kopp et al. (2014). 

 

Probabilities of the different scenarios are useful for planning for the future with uncertain 

magnitude of sea level rise. Since satellite altimetry measures the current global rate of sea level 

change at 3mm/year, 0.3 meters by 2100 is used for the “Low” scenario while Intermediate-Low 

(0.5 m), Intermediate (1.0 m), Intermediate-High (1.5 m), High (2.0 m), and Extreme (2.5 m) are 

consistent with 0.5-meter increments used by Hall et al. (2016), Kopp et al. (2016), and Sweet et 

al. (2017). Radiative forcing from greenhouse gas concentrations is represented by 

Representative Concentration Pathways (RCPs) adopted by the Intergovernmental Panel on 

Climate Change (IPCC) for the fifth Assessment Report (AR5). Although the scenarios are 

placed at simple intervals, they do relate different likelihoods of RCP2.6, RCP4.5, and RCP8.5 

as modeled by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate model. 

The RSL changes that arise locally under each GMSL scenario occur due to climate-related 

processes as well as non-climatic vertical land movement processes and can be expressed as  
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Δ𝑅𝑆𝐿 (𝑥, 𝑡) = 𝐶𝑙𝑖𝑚𝑎𝑡𝑖𝑐 Δ𝑅𝑆𝐿 (𝑥, 𝑡) + 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑅𝑆𝐿 𝑟𝑎𝑡𝑒 (𝑥)(𝑡 − 𝑡0) 

 

where Δ𝑅𝑆𝐿, the RSL change relative to RSL at time 𝑡0 in the scenario, is defined for locations x 

and times t, and background (non-climatic) rate is assumed to be linear with time (Sweet et al., 

2017). The rates of GMSL rise derived from the 2100 scenario heights used for projections (Figure 

3-3) can be seen in Table 3-1 with interpretations of the scenarios in Table 3-2 explaining the 

connections between the scenarios and the RCP experiments. 

 

Table 3-1. GMSL rise rates relative to scenario heights by 2100 (Sweet et al., 2017). 

GMSL Scenario 

Rise Rates 

(mm/year) 

2010 2020 2030 2040 2050 2060 2070 2080 2090 

Low 3 3 3 3 3 3 3 3 3 

Intermediate-Low 4 5 5 5 5 5 5 5 5 

Intermediate 5 6 7 9 10 12 13 14 15 

Intermediate-High 5 7 10 13 15 18 20 22 24 

High 6 8 13 16 20 24 28 31 35 

Extreme 6 10 15 20 25 30 35 40 44 

 

Table 3-2. Interpretations of GMSL rise scenarios from U.S. Interagency Sea Level Rise Task 

Force (Sweet et al. 2017a). Probabilistic projections of GMSL for RCP2.6, RCP4.5, and RCP8.5 

scenarios were applied to the site-specific RSL (Figure 3-2). Note that relative uncertainties used 

in risk assessment of Sweet et al. (2017). 

Scenario Interpretation 

Low Continuing current rate of GMSL rise, as calculated since 1993 from 

satellite altimetry. 

Low end of very likely range under RCP2.6 

Intermediate-Low Modest increase in rate. 

Middle of likely range under RCP2.6 

Low end of likely range under RCP4.5 

Low end of very likely range under RCP8.5 

Intermediate High end of very likely range under RCP4.5 

High end of likely range under RCP8.5 

Middle of likely range under RCP4.5 when accounting for ice cliff instability 

Intermediate-

High 

Slightly above high end of very likely range under RCP8.5 

Middle of likely range under RCP8.5 when accounting for ice cliff instability 

High High end of very likely range under RCP8.5 when accounting for ice cliff 

instability 

Extreme Consistent with estimates of physically possible “worst case” 
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Figure 3- 3. The RSL rise scenarios for locations by Sweet et al. (2017) with the median-value 

RSL under the six scenarios (Low, Intermediate-Low, Intermediate, Intermediate-High, High, 

and Extreme). Tide gauge observations are shown (in black) relative to the year 2000.     

 

The second approach used in this study follows the approach of Srivastava et al. (2016) who 

combined satellite altimetry datasets with exponential smoothing state space models (ESMs) and 

seasonal autoregressive integrated moving average (SARIMA) to forecast SLR in the Arabian 

Sea (Figure 3-4). The SARIMA model has been applied to the South China Sea also using 

satellite altimetry datasets (Fernandez et al., 2017) as well as Manila South Harbor using tide 

gauge datasets (Fernandez et al., 2018). These methods have been shown to be statistically 

significant for short-term RSL forecasts but lack the ability to predict future acceleration of RSL 

rise rates.  

Nonlinear smoothing methods have been applied to SLR using Monte Carlo singular 

spectrum analysis (MC-SSA) (Jevrejeva et al., 2008) and modified Lowess smoothing (Foster 

and Brown, 2014) with a 30-year window. These methods can estimate the rate of sea level 

change and indicate an acceleration of said rate in the 21st century. The 30-year window fitted 

model using Lowess smoothing was compared by Foster and Brown (2014) to the previous sea 

level reconstruction of Church and White (2011) that indicates a good model fit for global SLR 

(Figure 3-5). 
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Figure 3- 4. Scatter plot and forecast results for Arabian Sea level rise 1994–2010 from three 

modelling approaches with prediction intervals. (a) Scatter plot for validation datasets; (b) 

double exponential smoothing state space model (ESM); (c) triple ESM; and (d) autoregressive 

integrated moving average (ARIMA). Figure from Srivastava et al. (2016). 

 

Estimating projected SSH for a specific region can be useful to those planning infrastructure 

improvements on the city or state level in areas at risk of coastal flooding and storm surges. 

Based on tide gauge data, Galveston, as well as other locations along the northern GOM, has a 

RSL rise rate (~6.51 mm/ year) of more than twice the rate of GMSL rise (~3.00 mm/ year). 

Consequently, projecting RSL is more appropriate for this area than projections of GMSL that 

may underestimate the impacts of SLR locally. For planning purposes, it may be necessary to 

assess multiple scenarios of RSL projections as there is great uncertainty in SLR rates into the 

future involving the dynamics of the Greenland and Antarctic ice sheets that are not yet fully 

understood. 
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Figure 3- 5. Modified Lowess smooth (red line) with a 30-year window fit to the global sea level 

reconstruction of Church and White (2011) and the estimated rate of change (“velocity”) from 

Foster and Brown indicating an acceleration of GMSL rise (2014). 

 

3.2 Hypothesis and Objective 

Due to local geologic processes of subsidence and the acceleration of global sea level rise, 

coastal flood risk assessments on the Texas and Louisiana Gulf coast can be improved by 

analyzing relative, rather than global, sea level forecasts that capture the acceleration of sea level 

rise. Because future acceleration scenarios are uncertain due to climate variability and 

anthropogenic influences on radiative forcing (e.g., greenhouse gas emissions), a forecasting 

methodology is required that provides a range of possible outcomes for use in risk assessment. 

The goal of this study is to assess coastal flood risks on the Texas and Louisiana Gulf coast 

caused by local geologic processes (e.g., subsidence by sedimentary load from rivers) and 

accelerating rates of global sea level rise. Northern GOM relative SLR appears to be 

substantially faster than the globally averaged rate based on tide gauge measurements and 

previous publication. For this purpose, we utilize SARIMA and probabilistic RSL projections to 

provide a flood planning and risk assessment for communities along the northern GOM. Results 

from the analysis of these two methodologies at the specific locations of tide gauge station will 

be compared and provide a case study in assessing coastal flood risks. A range of possible future 

flood risks will be spatially and temporally mapped by the overlay analysis. Thus, regional SLR 

projections provide a more effective assessment of coastal flood risk compared to the global SLR 

estimates. This research contributes to better understanding of regional and temporal differences 

and uncertainties in future RSL that could be practical guiding tools for stakeholders and 

decision makers.   

 

3.3 Methodology 

3.3.1 Data 

Monthly mean sea level (MSL) data with seasonality removed was collected from the 

National Oceanic and Atmospheric Administration (NOAA) tides and currents 

(https://tidesandcurrents.noaa.gov/sltrends/) for all Texas tide gauge locations as well as for 

Grand Isle, Louisiana for use in the probabilistic projections. For SARIMA modeling, monthly 

MSL data including seasonality was collected from the Permanent Service for Mean Sea Level 

https://tidesandcurrents.noaa.gov/sltrends/)
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(PSMSL) for all tide gauge locations in Texas as well as Grand Isle, Louisiana. Satellite 

altimetry measurements of mean sea level of the GOM were gathered from the NOAA 

Laboratory for Satellite Altimetry and consist of measurements initiated by TOPEX and 

Poseidon in 1993 and continued to the present with the JASON project.  

 

3.3.2 Probabilistic Projections  

 Global positioning system (GPS) data interpolated to 1° x 1° horizontal geographic grid 

derived by Sweet et al. (2017) were combined with NOAA tide gauge data to provide RSL 

trends for the northern GOM at specific tide gauge locations. The background SLR scenarios 

based on the work of Kopp et al. (2016) and Sweet et al. (2017) that improved upon previous 

projections by Parris et al. (2012) were incorporated with yearly averaged tide gauge data trends 

that include vertical land movement to provide RSL rise scenarios beyond the global average. 

Relative sea level rise (RSLR) scenarios for the future were derived from background GMSL 

changes based upon greenhouse-gas emissions represented by RCPs (Table 3-1). RSLR 

scenarios were calculated by decade based on the acceleration by decade determined by previous 

studies (Perrette et al., 2013; Kopp et al., 2014; Hall et al., 2016; Sweet et al., 2017) Using the 

NOAA tide gauge observations relative to the 1991-2009 datum epoch (centered at 2000), 

scenarios were applied for all stations along the northern GOM. 

 

3.3.3 ARIMA and its seasonal version SARIMA 

ARIMA models are used to forecast time series data based on correlation of observed values 

in the series. ARIMA is made up of two terms, the autoregressive (AR) term represents the lags 

of the differenced series, and the moving average (MA) term represents the lags of the forecast 

errors (Srivastava et al., 2016). ARIMA models typically utilize three terms notated as p, d, q 

where p is the number of autoregressive terms, d is the number of differences, and q is the 

number of forecast error lags. The non-seasonal ARIMA (p, d, q) prediction is represented by the 

following equation (eq. 3.1; Box et al., 2015): 

 

𝜙(𝐿)(1 − 𝐿)𝐷𝑦𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡                                            (3.1)    

 

where 𝜀𝑡 is a white noise process with variance 𝜎2 and zero mean, c is a function representing 

random walk with drift, 𝐿 is the backshift operator, and 𝜙 and 𝜃 are polynomials of order p and 

q, respectively (Srivastava et al., 2016). Equation (2.1) is modified to a seasonal version named 

SARIMA (eq. 3.2), when seasonality is detected in the time series, otherwise known as 

multiplicative ARIMA (p, d, q)(P, D, Q)m,  

 

Φ(𝐿)𝑚𝜙(𝐿)(1 − 𝐿𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + Θ(𝐿𝑚)𝜃(𝐿)𝜀𝑡                       (3.2) 

 

where 𝛷 and 𝛩 are polynomials of orders P and Q, respectively. P and Q refer to the 

autoregressive and moving average terms for the seasonal part of the ARIMA model. D 

represents the order of seasonal-differencing and m is the period of seasonality (Srivastava et al., 

2016; Box et al., 2015).  

The Box-Jenkins method for time series forecasting was followed utilizing tools in MATLAB 

(2019a) to generate a SARIMA model of tide gauge data for forecasting RSL. Assessing the 

parameters, (p, d, q)(P, D, Q)m, of the SARIMA model was executed through qualitative analysis 

of plots of the autocorrelation function (ACF) and partial autocorrelation function (PACF). The 
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ACF shows the correlation of sequential observations, i.e., the correlation between the first and 

second observation, while the PACF shows the correlation of ordered pairs and the observations 

between them, i.e., the correlation between the first and third observation while considering the 

second observation (Fernandez et al., 2017). In the case of monthly MSL used in this study, a 

seasonal first differencing of period 12 was applied to the data and a SARIMA (1,0,0)(0,1,1)12 

model was identified through plots of the ACF and PACF. Diagnostic statistics were used to 

determine the goodness of fit of the model and included the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC), as well as residual diagnostics utilizing a residual 

histogram, quantile-quantile plot, ACF and PACF. A Ljung-Box Q-test was performed to 

determine if the model was fit for forecasting. The SARIMA model was used to produce 5 and 

10-year forecasts that include the seasonal trends for all tide gauge locations analyzed in this 

study. All forecasts were modeled on the observed historical data excluding the most recent 24 

month-period which was used to validate the model.    

 

3.4 Results 

3.4.1 RSL Rates and Probabilistic Projections 

RSL rates obtained from long-term tide gauge data (Figure 3-6) are displayed in Table 3-3 

and reveal that the rates along the northernmost locations of the GOM (Grand Isle, Sabine Pass, 

Galveston) are substantially higher than the GMSL rise rates measured by satellite altimetry, and 

all locations observe a rate at least slightly higher than the global rate.  

 

Table 3-3. Relative Sea Level Rise Rates at Tide Gauge Locations of the Northern GOM. 

Tide Gauge Station Relative Sea Level Rise Rate (mm/yr) 

Grand Isle, LA 9.08 ± 0.42 

Sabine Pass, TX 5.86 ± 0.74 

Galveston Pier 21, TX 6.51 ± 0.22 

Galveston Pleasure Pier, TX 6.62 ± 0.69 

Freeport, TX* 4.43 ± 1.05 

Rockport, TX 5.62 ± 0.48 

Corpus Christi, TX 4.65 ± 1.06 

Port Mansfield, TX 3.19 ± 0.73 

Port Isabel, TX 4.00 ± 0.33 

Padre Island, TX 3.48 ± 0.75 

*Data contains vertical datum inconsistencies and was not used for further study. 

 

Background RSL rates derived from GPS and tide gauge observations used in probabilistic 

projections for all tide gauge locations along the Texas and Louisiana coasts are shown in Figure 

3-7. Comparison with Table 3-3 indicates that the high rates of RSL observed at Grand Isle, 

Sabine Pass, and Galveston are due mostly to this background vertical land movement rate.  
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Figure 3- 6. Plots of NOAA tide gauge observations and RSL rates (linear trend) for stations 

along the Texas and Louisiana coasts. 

 

The map of background RSL rates (Figure 3-8) interpolated for geospatial analysis highlights 

the locations in the GOM that have the highest vertical land movement rates. The locations that 

have the highest rates are areas that have historically received the most sediment load. Therefore, 

subsidence in these areas is dominated by lithospheric loading and sediment compaction. The 

tide gauge location with the highest RSL rates is Grand Isle, located near the Atchafalaya River 

delta, an area that has historically received a large sediment load (Ivins et al., 2007; Blum and 

Roberts, 2009).  
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Figure 3- 7. Background RSL rates derived from tide gauge and vertical land movement data as 

reported by Sweet et al. 2017.  

 
Figure 3- 8. Map displaying the combined GPS and tide gauge derived non-climatic background 

RSL rates (mm/year) interpolated to visualize areas of greatest downward vertical land 

movement. 
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Table 3-4. Relative Sea Level Projections at Tide Gauge Locations of the Northern GOM 

Tide Gauge 

Location 

Relative Sea Level (m) Projections for Low, Intermediate (Int) and 

Extreme (Ext) Scenarios 

 2040 2060 2080 2100 

Low Int Ext Low Int Ext Low Int Ext Low Int Ext 

Grand Isle, 

LA 

0.43 0.57 0.85 0.65 0.93 1.60 0.86 1.34 2.55 1.05 1.79 3.78 

Sabine Pass, 

TX 

0.29 0.43 0.71 0.44 0.71 1.39 0.57 1.05 2.27 0.69 1.43 3.41 

Galveston 

Pier 21, TX 

0.33 0.47 0.76 0.51 0.79 1.47 0.66 1.15 2.37 0.80 1.55 3.53 

Galveston 

Pleasure Pier, 

TX 

0.34 0.48 0.77 0.51 0.79 1.47 0.66 1.15 2.37 0.80 1.55 3.53 

Rockport, TX 0.30 0.44 0.72 0.46 0.74 1.40 0.59 1.08 2.30 0.72 1.46 3.46 

Corpus 

Christi, TX 

0.26 0.40 0.68 0.39 0.67 1.34 0.50 0.99 2.20 0.61 1.37 3.35 

Port 

Mansfield, 

TX 

0.21 0.35 0.62 0.31 0.59 1.27 0.40 0.90 2.12 0.48 1.24 3.24 

Port Isabel, 

TX 

0.22 0.36 0.63 0.34 0.62 1.30 0.44 0.94 2.16 0.52 1.28 3.29 

Padre Island, 

TX 

0.23 0.37 0.61 0.35 0.63 1.16 0.44 0.94 1.90 0.53 1.29 2.82 

 

Probabilistic projections results for all tide gauge locations are presented in Figure 3-9 showing 

the median values for all six scenarios seen in Table 3-2 and Table 3-4 presents the values for 

20-year increments for the low, intermediate, and extreme scenarios. 

 

3.4.2 Application of SARIMA to the northern GOM 

The time series from tide gauge observations of monthly MSL at Galveston Pleasure Pier 

(Figure 3-10) was utilized to fit the SARIMA model by applying tools in MATLAB (2019a). A 

12-month seasonal cycle can be observed in Figure 3-10 with sea level highest in September and 

lowest in January. The ACF of the monthly MSL time series (Figure 3-11) indicates the need for 

differencing of the time series to remove the seasonal trend to fit the data.  

The autocorrelation, seen in Figure 3-11, repeats every twelfth lag which confirms the 12-

month seasonality and the need for first seasonal differencing with a 12-month period. With the 

seasonal trend removed, the differenced time series ACF and PACF (Figure 3-12) suggests a 12-

month seasonality with a moving average order of 1. Assessing the parameters, (p, d, q)(P, D, 

Q)m, of the model, the need for a first seasonal differencing dictates D = 1 while the seasonality 

indicates the need for, Q = 1, and m = 12. Therefore, a SARIMA (1,0,0)(0,1,1)12 was tested for 

goodness of fit to the original time series as seen in Figure 3-13. 
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Figure 3- 9. Probabilistic RSL projections for tide gauge locations along the northern GOM for 

the six RCP-based scenarios as seen in Table 3-2.    

 

 
Figure 3- 10. (a) The tide gauge time series of monthly mean sea level observations from 

Galveston Pleasure Pier from 1995 to 2011. The time series was used to develop the SARIMA 

model for forecasting RSL for the northern GOM. (b) The annual seasonal cycle of monthly 

mean sea level at Galveston Pleasure Pier from NOAA is similar to other tide gauge locations in 

the northern GOM. 
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Figure 3- 11. The autocorrelation function (ACF) for the time series of monthly mean sea level 

before differencing to remove the seasonal trend. The ACF does not decay to zero, therefore, 

seasonal differencing is necessary to make the time series stationary. 

 

 

 

 
Figure 3- 12. The ACF (a) and partial auto correlation functions (PACF) (b) for the monthly 

mean sea level time series after seasonal differencing. The ACF indicates a 12-month seasonal 

cycle and the PACF decays after the first lag indicating a seasonal moving average of order 1 

with a 12-month period. 
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Figure 3- 13. Quantile-Quantile Plot (a), residual plot (b), and model-fit (c) of the SARIMA 

(1,0,0)(0,1,1)12 model indicating a reasonable model fit for the SARIMA parameters. 

 

Test statistics, seen in Table 3-5, test the null hypothesis that the modeled series is different from 

the original time series, and all tests show that the null hypothesis can be rejected and that the 

model if fit for forecasting. 

 

Table 3-5. Statistical parameters for the SARIMA (1,0,0)(0,1,1)12 model  

Parameter Value Standard Error t Statistic P-Value 

Constant 0.0012446 0.0018856 0.66007 0.50921 

AR(1) 0.37863 0.062471 6.0609 1.3533e-09 

SMA(12) -0.68369 0.055955 -12.2185 2.4769e-34 

Variance 0.0057187 0.00050396 11.3475 7.6294e-30 

AIC -452.5759  

BIC -439.6945 
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3.4.3 SARIMA Forecast Results 

 The 5- and 10-year forecast results demonstrate that autoregressive models such as SARIMA 

can be used to forecast RSL based on tide gauge data with accuracy for short periods of time. In 

the 24-month periods in which the forecasts overlap the observed data, all the observations fall 

within the 95% confidence interval of the forecasted model and validates the accuracy of the 

model. However, as the forecast length is increased, the uncertainty in the model increases, 

indicating this model is useful for short-term forecasts, but may not estimate long-term forecasts 

accurately. As seen in Figures 3-14 and 3-15, the SARIMA (1,0,0)(0,1,1)12 model retains both 

the seasonal and linear trends of the modeled data providing a month by month forecast of RSL 

at each tide gauge location. Since the annual cycle of sea level is similar throughout the northern 

GOM, the same model parameters can be applied for each location in this study if the model is 

estimated on the observed data unique to each tide gauge station. 

  

 
Figure 3- 14. SARIMA forecast results for Galveston Pleasure Pier, TX. 

 
Figure 3- 15. SARIMA forecast results for Freeport, TX. 

 

Results varied based on the length of the observed time series that the model is estimated 

from. For example, the Corpus Christi tide gauge record dates to 1998 and the results seen in 

Figure 3-16 demonstrate how the uncertainty increases more quickly than Galveston Pier 21, 

whose record dates to 1904 (Figure 3-17). Analysis of the forecast from Galveston Pier 21 

(Figure 3-18) reveals the details of the model output validated by the 24-month observation 

period. As seen in Figure 3-18, the uncertainty does not increase as quickly over the forecasted 

timeframe as Corpus Christi and Sabine Pass. For Sabine Pass, Figure 3-19, uncertainty 
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increased with time as well suggesting that length of the time series as well as consistency in the 

record (Sabine Pass contains many months with missing data) affects both the accuracy and 

uncertainty of the model.    

 
Figure 3- 16. SARIMA forecast results for Corpus Christi, TX. 

 

 
Figure 3- 17. SARIMA forecast results for Galveston Pier 21, TX. 

 
Figure 3- 18. Detailed results from Galveston Pier 21 from 2010. 
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Figure 3- 19. SARIMA forecast results for Sabine Pass, TX. 

 

3.5 Risk assessment of SLR: Case studies Galveston, Texas, and New Orleans, Louisiana 

Uncertainties exist in sea level rise future estimates for planning purposes for example 

associated with earth system model’s initial and boundary condition, e.g., associated with 

anthropogenic emissions results, and model parameterizations (Hall et al., 2016). Prediction of 

sea level estimates by extrapolation from linear regression models of tide gauge or satellite 

altimetry data is limited due to non-linear characteristics of future sea-level evolution. Thus, 

high-risk scenarios have been the most accepted method to manage deep uncertainty regarding 

the sea level forecast (Sweet et al., 2017; Hinkel et al., 2015; King et al., 2015; Ranger et al., 

2013). Generally, this consists of using a plausible extreme scenario of low probability as the 

upper-bound scenario and defining two mid-range scenarios that consider future changes in 

climate and emissions that define the design range (Sweet et al., 2017; Hinkel et al., 2015).  

Such a methodology has been applied for example in a coastal risk-management application 

for the cities adjacent to the Thames estuary for the year 2100 as described in the TE2100 Project 

for London, England (Ranger et al., 2013). The project established an upper bound of 2.7 meters 

of SLR by combining observations of rates of SLR from the last interglacial period from Rohling 

et al. (2008), glaciological arguments from Pfeffer et al. (2008), as well as regional and local 

factors. This high-end scenario was used along with a most likely range, with the most likely 

range informing the short-term (30 years) adaptation decisions, and the high-end scenario 

informing what further actions may be necessary into the future, as well as offering a motivation 

for monitoring. This combination of numerical models and expert judgement to develop SLR 

scenarios for the TE2100 project resulted in adaptation pathways for the worst-case scenario and 

alternative pathways if SLR was lower. This method allowed for a strategy of investing in near-

term solutions while keeping longer-term options open, monitoring SLR, and based on 

monitoring, updating the assessment of the long-term, high-end scenario, and implementing 

alternative measures as needed.  

The approach listed above and assuming a community along the Gulf of Mexico would desire 

a low level of risk, an example case study was conducted using GMSL rise scenarios with 

exceedance probabilities of less than 50% based on the probabilistic analysis of Kopp et al. 

(2014). Using Table 3-6 as a guide, the Intermediate and Intermediate-High scenarios were 

selected as the lower and upper bounds respectively for the design range. The extreme scenario 

was also chosen as a scientifically plausible worst-case scenario, or upper bound (Hinkel et al., 

2015).  
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Table 3-6. Probability of exceeding GMSL scenarios in 2100 based on Kopp et al. (2014). 

GMSL rise scenario RCP 2.6 RCP 4.5 RCP 8.5 

Low (0.3 m) 94% 98% 100% 

Intermediate-Low (0.5 m) 49% 73% 96% 

Intermediate (1.0 m) 2% 3% 17% 

Intermediate-High (1.5 m) 0.4% 0.5% 1.3% 

High (2.0 m) 0.1% 0.1% 0.3% 

Extreme (2.5 m) 0.05% 0.05% 0.1% 

 

Applying the scenarios to the northern GOM tide gauge locations’ RSL projections and 

utilizing map layers developed by NOAA (tides and currents), a visualization of RSL in 2100, 

Figure 3-20, was created to explore the potential impacts to the region. In many areas, the 

extreme scenario results in increased depth of water rather than increased area of flooding due to 

topography, and in some areas, such as New Orleans, flood defense systems protect the area 

from inundation.    

 
Figure 3- 20. A map of northern GOM RSL in 2100 based on the Intermediate, Intermediate-

High, and Extreme scenarios. Projections of RSL by region broken down by scenarios are 

provided within the boxed areas.   
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Figure 3-21 demonstrates that the New Orleans East Bank Levee System, made up the 

Mississippi River Levees and the Hurricane and Storm Damage Risk Reduction System and 

updated post Hurricane Katrina, protects the area from SLR of 3 meters despite most of the area 

being below 3 meters elevation. According to the United States Army Corps of Engineers 

(USACE), the system has a maximum average height of 26 feet (~8 meters) and protects nearly 

850,000 people who live within the levees (USACE, 2020).  

Communities located directly on the GOM coast such as Freeport, Sabine Pass, and Galveston 

Island are impacted the most from the increased RSL. Forecasted RSL for the City of Galveston 

revealed that its 17-foot (~ 5 meter) seawall protects the most populated areas of the city from 

flooding along the beachfront, but the city has low elevation and a lack of flood protection on the 

back bay side. Despite attempts to increase Galveston’s elevation (Figure 3-22) after it was 

devastated in the Great Galveston Hurricane of 1900, future RSL scenarios seem to cause at 

least, nuisance tidal flooding and, in the extreme scenario, almost total inundation from SLR by 

2100 (Figure 3-23). Inundation mapping of RSL scenarios can help determine when, where, and 

how much flooding will occur if the model projections come about, and the maps can be    

 

 
Figure 3- 21. New Orleans, Louisiana digital elevation model overlaid with ~3 meters (10 feet) 

SLR layer from NOAA tides and currents and the New Orleans East Bank Levee System from 

USACE demonstrating the system’s ability to protect from the extreme RSL scenario despite 

most of the city being below 3 meters elevation.  
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overlaid with infrastructure and/or demographics for sea level rise risk assessments (Figure 3-

24). This type of assessment can be useful in illustrating the height and locations of high-tide or 

nuisance flooding that would be expected to occur regularly under the RSL scenarios chosen 

rather than assessments of extreme water levels resulting from rare but devastating storm surges 

from hurricanes. While extreme water levels can and should be considered and will likely be 

enhanced by RSL rise, the regular occurrence of high tide and the robust evidence for sea level 

rise observed in the tide gauge records indicates locations within the study area will be most 

impacted by the effects of nuisance flooding due to RSL rise, especially when this flooding 

begins to occur on a regular basis. 

 

 
Figure 3- 22. Galveston, Texas digital elevation model with the Seawall (purple line) indicated. 

 

Under the Intermediate scenario, Figure 3-23a shows the effects of RSLR will be experienced 

first in areas of lowest elevation on the back bay side of the island by 2060. By 2100, inundation 

from high tides (Figure 3-24a) will impact residential and commercial areas close to the harbor 

and in the southwest portion of the study area with a range of < 30.5 cm (1 ft) to 61 cm (2 ft) 

above ground. This is likely to cause temporary minor flooding of roads and low-lying 

topography, but unlikely to pose a risk to above-ground infrastructure. Under this scenario, most 

of the island’s population and infrastructure will not be directly impacted by flooding due to 

RSLR. However, the lowest lying areas are projected to experience high tide inundation of ~122 

cm-155 cm (4 ft-5 ft) by 2100.   



 

45 
 

Both the Intermediate-High and Extreme scenarios (Figures 3-23b and 3-23c) indicate the 

effects of RSLR in the lowest elevations will be seen earlier, by 2040, and will impact a larger 

area. By 2080, the medical district (two hospitals in Figure) will also begin to experience the 

effects. Under the Intermediate-High scenario, most of the residential and commercial area 

adjacent to the harbor which includes the main fire and police departments as well as two schools 

will experience up to ~122 cm (4 ft) of water above ground by 2100 (Figure 3-24b). The 

residents located in the southwest quadrant of the study area, including four schools, will 

experience up to ~153 cm (6 ft) of inundation by 2100. These inundation levels will cause roads 

to be temporarily inaccessible during the highest tides and may cause flooding of low-lying 

residential and commercial buildings. While the specifics of structural engineering are not the 

focus of this study, it is of note that many, but not all, residential buildings in the lowest 

elevations of Galveston are raised on piers.  

The Extreme scenario impacts the entire study area by 2100 except for the highest ground 

located adjacent to the seawall (Figure 3-23c) and effects in the harbor area and the southwest 

quadrant will be seen by 2060 rather than 2080 in the previous scenarios. By 2100, up to ~244 

cm (8 ft) of inundation is projected for these areas of great commercial and residential interest. 

Inundation in the medical district is projected at ~91.5 cm-183 cm (3 ft-6 ft) by 2100 and up to 

eight additional schools will be within the area of inundation of ~30.5 cm-122 cm (1 ft-4 ft). This 

scenario may result in impacts beyond a “nuisance” level including regular flooding of 

commercial and residential structures, road closures and damages, and flooding of sewage and 

drainage systems.   

This case study demonstrates the application of Probabilistic Projections of RSL rise to flood 

inundation mapping to identify potential areas of concern over time in the study area. Although 

New Orleans and Galveston were used as examples, this method can be applied to any specific 

location along the northern GOM for use in risk assessment and planning. SARIMA modeling 

was not used in this case study due to the lack of accuracy in the long-term (beyond 10 years) 

forecast and the inability to include acceleration scenarios.  

 



 

46 
 

 
Figure 3- 23. (a) Intermediate, (b) intermediate-high, and (c) extreme RSL scenarios by 20-year 

increments for Galveston, Texas. Infrastructure included are schools, hospitals, police, and fire 

stations.  

 

 
Figure 3- 24. (a) Intermediate, (b) intermediate-high, and (c) extreme RSL scenarios for high tide 

inundation in 2100 for Galveston, Texas. 
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3.6 Analysis and Discussion 

In the following, differences between the two RSL projection methods, the SARIMA estimate 

and the probabilistic projection will be discussed. Forecasting RSL using a SARIMA model 

provides an autoregressive integrated approach that resolves seasonal fluctuations but does not 

account for any future acceleration of the RSL rise rate. This may have a reasonable forecast 

skill for predicting tidal flooding or forecasting RSL in the near future of up to 10 years 

(Srivastava et al., 2016), but does not include any processes that is not reflected in the historic 

record, such as sudden rapid climate changes. To account for possible acceleration of RSL in tide 

gauge records, exponential smoothing models, such as the Holt-Winters model, also known as 

exponential triple smoothing, have been utilized for short-term forecasting of RSL with 

statistical accuracy and computational efficiency (Imani et al., 2013). Parker et al. (2013) used 

linear, parabolic, and sinusoidal fitting methods to analyze trends in Australian tide gauge data 

but found no evidence of acceleration while noting that the length of the timeseries (100 years) 

was not adequate to detect acceleration. In Florida, a linear second order polynomial model was 

used to forecast accelerating RSL to 2080 with the parameters of the model being based solely 

on seasonally detrended monthly sea level (Walton, 2007).  

Acceleration of GMSL rise can occur due to increases in radiative forcing from anthropogenic 

emissions, as projected in the RCPs chosen for this study, or from accelerated Greenland and 

Antarctic ice sheet melting. These two factors contribute to deep uncertainty in GMSL 

projections as do uncertainties of initial conditions, boundary conditions and model 

parameterizations inherent in global climate models used. The RCPs used in this study were 

developed for use in global climate models, including those utilized in CMIP5, using projections 

of population, gross domestic product (GDP), energy per unit income, emissions per unit energy, 

land use, aerosols, and other factors that contribute to radiative forcing (Vuuren et al., 2011). 

These variables include socio-economic, geo-political as well as technological uncertainties that 

include reducing emissions or going on with business as usual.  

The freshwater input from Antarctic and Greenland ice sheets are also uncertain with 

projected contributions to SLR by 2100 complicated by incomplete knowledge of the forcings on 

surface mass balance, calving of icebergs, the dynamics of discharge, runoff, and 

percolation/basal lubrication, ocean warming effects, as well as the unknown possible tipping 

points that could lead to runaway melting (Pritchard et al., 2009; Rignot et al., 2011; Pattyn et 

al., 2018; Pattyn et al., 2020). While natural causes of subsidence are thought to be mostly 

constant or linear, anthropogenic influences on subsidence can contribute to acceleration or 

deceleration of RSL rise rates locally (Kolker et al., 2011). It is recommended that dynamic RSL 

predictions should consider such sea level rise accelerations for long-term risk-based planning 

efforts (e.g., Kopp et al., 2016; Foster and Brown, 2015; Church and White, 2011; Jevrejeva et 

al., 2008). 

A case study of New Orleans suggests that efforts of an improved flood protection system 

increased the resilience the city’s flooding by RSL rise inundation. However, groundwater 

flooding is expected to increase due to the water table being linked to the sea level in coastal 

locations (Rozell, 2021). Groundwater flooding can cause flooding of storm sewers and 

basements, corrosion of underground infrastructure, and minor street flooding that often requires 

pumping. While often overlooked in coastal climate vulnerability studies, modeled SLR-driven 

groundwater flooding was found to be significant and widespread in Northern California coastal 

plains under 1- and 2-meter SLR scenarios (Hoover et al., 2017).  Groundwater flooding of 

properties can also occur with relatively low return period flood events of 10-25 years 
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(Macdonald et al., 2012). In New Orleans, groundwater flooding is generated by high 

groundwater tables in shallow sands that are recharged by surface water located in areas not 

adjacent to the Mississippi River including properties neighboring Lake Pontchartrain, the Lower 

Ninth Ward, and others near canals (Yang and Tsai, 2020). Groundwater flow modeling in 2018 

indicated 40% of the metropolitan area may have groundwater levels above ground surface year-

round and that areas of under-seepage of groundwater coincide with locations of breached levees 

during Hurricane Katrina (Yang and Tsai, 2020). 

In the following, the community-level impacts of RSLR on transportation, property damage, 

and public health hazards are discussed. While the impacts of RSLR in coastal locations do not 

pose an acute threat to life and property, over time the cumulative effects of regular minor 

flooding can disrupt regular functions of an area, cause infrastructure problems with storm 

sewers and transportation networks, result in property damage, and can increase hazards related 

to human health. Regarding transportation, a minimal flood depth of 30 cm (~1 ft) is considered 

the “floating limit” for stationary small passenger cars at which point the vehicle may be washed 

away depending on the velocity of the water (Cox et al., 2010). Road closures due to flooding 

interrupt the regular flow of traffic resulting in loss of productivity and income, and decrease 

efficiency of emergency response (Moftakhari et al., 2018). Furthermore, flooding of roads, 

sidewalks, and crosswalks limits the ability of public transit, cyclists, and pedestrians, and 

disproportionately affects those with disabilities. Property damage from flooding is dependent on 

the depth of water above the first “finished floor” which vary and are regulated by local building 

codes (Scawthorn et al., 2006). Commercial areas are typically developed with buildings that 

have doorways at ground level leaving them susceptible to intrusion by floodwaters that overtop 

street curbs and residential buildings with the first floor at ground level are similarly vulnerable 

(Moftakhari et al., 2018). Although major structural damages result from forces and erosion 

associated with the combination of high-water depth and velocity not seen with flooding 

accompanying RSLR (Kelman and Spence, 2004), flood resilient construction can protect 

against damages caused by nuisance-level flooding such as to electrical components (Proverbs 

and Lamond, 2017). Regular flooding from RSLR poses a threat to public health by providing 

habitat for disease vectors, causing indoor mold, and possibly contaminating water supplies. 

When sewage systems are affected, flood waters have been found to contain toxic chemicals and 

bacteria that cause illness. The contaminated water can spread the effects well beyond the point 

of origin through runoff into waterbodies, and this flood water can contain fecal bacterial levels 

similar to raw sewage (ten Veldhuis et al., 2010). 

 

3.7 Conclusion 

This study aimed to provide a methodology for assessing RSLR beyond the observational 

record that incorporates subsidence and the acceleration of global SLR with the ability to provide 

a range of possible future outcomes over time at coastal locations in the northern GOM. Through 

literature review and tide gauge data analysis, it is shown that all tide gauge stations in the 

northern GOM measure rates of RSLR higher than the global average (~3.0 mm/yr) due to 

geologic and anthropogenic induced subsidence. Furthermore, results indicate that SARIMA 

modeling provides a short-term forecast ability with a 95% confidence interval that may be 

useful for risk assessment of high tide (nuisance) flooding over the next decade but lacks the 

ability to simulate likely acceleration of GMSL rise over time. Probabilistic Projections of RSL 

developed by Parris et al. (2012) and improved upon by Kopp et al. (2014) and Hall et al., 

(2016), however, provide a range of acceleration scenarios over time out to 2100. By selecting 
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scenarios based on probability of exceedance, uncertainty can be addressed by choosing low and 

high design-range scenarios as well as a scientifically plausible extreme scenario for analysis. 

This method has broad applications in risk assessments as inundation maps utilizing projections 

can provide temporal and geospatial results of high tide water levels under each scenario. This is 

most useful for engineers, designers, and planners making key decisions about how much RSLR 

will impact new or existing infrastructure. For infrastructure where flooding represents a 

particular danger to the public (e.g., power plants, refineries, chemical plants, wastewater 

treatment facilities, etc.), projects with long planning horizons, or infrastructure with limited 

adaptability, failure to include low-probability, high-risk scenarios in decision making may result 

in higher future risk. An inundation mapping case study shows that RSLR represents a risk to 

Galveston, TX, of up to ~1.55 m (5 ft), ~2.22 m (7.3 ft), and ~3.53 m (11.5 ft) under the 

intermediate, intermediate-high, and extreme scenarios respectively. While these projections do 

not include extreme water levels caused by storm surges or excessive precipitation, they do 

provide estimates of RSL over time that are beneficial to assessing risk of tidal flooding that may 

occur rarely today but will likely become a regular hazard in the future.  

 

3.8 Future Work 

Planners and policy makers in the northern GOM need to consider all the risks of flooding 

into the future with a changing climate and associated alteration of coastal morphology. 

Therefore, improvements on risk assessments should not only include locally significant RSL 

projections but other factors that may separately or synergistically affect flooding such as 

extreme precipitation or storm surge enhanced by RSL. The USGS utilizes the Coastal 

Vulnerability Index (CVI) to assign a risk value (Low to Very High) based on a matrix of both 

qualitative and quantitative parameters that include geomorphology, shoreline erosion/accretion 

rates, coastal slope, RSL rise rate, mean significant wave height, and tidal range (Pendleton et 

al., 2010). These types of matrices to assign an index value are excellent tools for planners and 

policy makers that can be improved to include RSL projections (assuming all other parameters 

are linear or static), hurricane return periods, and a quantitative probability of exceedance for 

nuisance flooding. Extreme precipitation also plays a role in flooding but is not unique to coastal 

locations and therefore should not be included in a coastal risk matrix, rather risk assessors 

should analyze this parameter separately. Many anthropogenic influences other than greenhouse 

gas emissions will affect flood hazards into the future such as population growth in flood prone 

areas, increased impervious surfaces (land-use changes), the building of flood protection barriers, 

and various socioeconomic and political factors. While consideration should be given to these 

parameters and possibly others by planners and policy makers, this future research will focus on 

enhancing flood risk assessment by including the climate factors of hurricanes and storm surge, 

quantifying the probability of minor flooding, and analyzing changes in precipitation (if any) in 

the northern GOM.   
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Appendix 3-A 

 

Table 3-A-1. Background RSL rates derived from tide gauge and vertical land movement data. 

Tide Gauge Location Background RSL rate (mm/year) 

Grand Isle, LA 7.07 ± 0.25 

Sabine Pass, TX 3.54 ± 0.47 

Galveston Pier 21, TX 4.59 ± 0.13 

Galveston Pleasure Pier, TX 4.64 ± 0.13 

Rockport, TX 3.75 ± 0.25 

Corpus Christi, TX 2.68 ± 0.30 

Port Mansfield, TX 1.39 ± 0.32 

Port Isabel, TX 1.83 ± 0.19 

Padre Island, TX 1.92 ± 0.20 
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Chapter 4: Sea Level Rise-Induced High Tide Flooding and Extreme Water Levels of the 

Northern Gulf of Mexico in Response to Climate Change 

 
Abstract 

Relative sea level has increased over the last 120 years with an acceleration since the 1990s 

leading to more frequent exceedance of flood threshold levels, increasing the probability of high 

tide flooding and enhancing the risk of extreme water levels along the coast of Texas and 

Louisiana. Understanding the changing risk associated with flood threshold exceedance, trends, 

and seasonality and the mechanisms that lead to increased frequency and magnitude of coastal 

flooding is of importance to community planners and policymakers. Here, the probability of 

flood threshold exceedance and the factors contributing to said exceedances are assessed. While 

sea level-enhanced storm tides represent the greatest risk to life and property, increased 

frequency of high tide flooding may prove to be a great disruption and cost to locations in the 

study area. In national assessments, the National Oceanic and Atmospheric Administration 

(NOAA) uses a common impact flood threshold level to estimate high tide flooding impacts for 

all U.S. assets. In this study, statistical and spectral analysis of hourly tige gauge data from 1980-

2019 and site-specific flood threshold levels are utilized to analyze frequency and duration of 

high tide flooding and the tidal and non-tidal components that contribute to it. Results indicate an 

increase in high tide flooding days and hours, particularly since 2010, with the greatest increases 

at locations with higher tidal ranges, occurring seasonally (September-October) with main 

contributors from the seasonal mean sea level cycle driven by the annual and semiannual solar 

constituents and non-tidal residuals associated with storms. The National Hurricane Center 

Atlantic Hurricane Database and the Louisiana State University Gulf of Mexico Peak Surge 

Database were updated to include verified data through 2020 to examine trends in peak surge 

and tropical cyclone activity associated with non-tidal residuals. Return periods, estimated based 

on changes from the baseline (1930-1960) in frequency and magnitude of storm tides suggest an 

increase in the 100-year surge event from ~8 to ~10.5 meters. Atlantic tropical storms, 

hurricanes, and major hurricanes are increasing (Mann Kendall trend test p-value <0.05) and a 

positive correlation between the Atlantic Multidecadal Oscillation and Atlantic tropical cyclones 

is verified with Spearman correlation (p-value <0.05). However, results of these tests are not 

statistically significant to verify trends and correlations in frequency of landfalls and magnitude 

of surge in Texas and Louisiana. Additionally, the Tropical Hazard Index calculated over 40-

year periods beginning in 1901 does not show a consistent increase indicating that relative sea 

level rise is contributing to increased storm tide magnitude observed in the surge record. A case 

study in which relative sea level rise scenarios based on probabilistic projections are added to 

storm tide modeled under current sea level conditions reveals the greatest increase in storm tide 

inundation risk due to relative sea level rise in the Baton Rouge, LA, area occurs with category 1 

hurricanes, while in the Houston-Galveston, TX, area the greatest change in risk is associated 

with increased inundation from major hurricanes.    

4.1 Introduction 

4.1.1 Relative Sea Level Rise and Hide Tide Flooding Background  

RSLR recorded by National Oceanographic and Atmospheric Administration (NOAA) tide 

gauges, is of interest to coastal populations and infrastructure because it combines the global sea 
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level rise (SLR) driven by climate change (e.g., thermal expansion, melting of ice sheet and 

mountain glaciers) with regional sea level effects driven by climate oscillation interactions at 

varying timescales, and local vertical land movement (VLM; Sweet and Park, 2014). Coastal 

locations in Texas and Louisiana experience RSLR rates greater than the global SLR average, by 

subsidence and thus there is high risk from storm and tide-driven flooding as the climate 

continues to warm. While coastal flooding from extreme storm tides is the greatest risk for 

coastal communities, the effects of high tide flooding (HTF), also referred to as nuisance 

flooding, poses an additional risk to these communities by means of road closures, disruptions to 

business, and damage to infrastructure (Thompson et al., 2021). HTF event rates, defined as 

exceedances over local NOAA National Weather Service (NWS) minor flood thresholds, are 

expected to accelerate on the U.S. East and Gulf coasts as RSLR continues to accelerate (Sweet 

and Park, 2014). Moreover, the duration of HTF events will extend over more hours and may 

cluster together for seasons or months causing greater cumulative effects (Thompson et al., 

2021). In this study, NOAA NWS flood thresholds that have been determined by the Weather 

Forecast Offices (WFOs) and local municipal emergency managers and are defined as height 

above mean higher-high water (MHHW) tidal datum at each gauge station are utilized. Tidal 

datums are standard elevations, defined by the tides, specific to each NOAA tide gauge station 

and include mean lower low water (MLLW), mean low water (MLW), mean sea level (MSL), 

mean high water (MHW), and MHHW. Each station also has a standard datum defined as 

elevation zero and all datums reference the 1983-2001 national tidal datum epoch (Scherer et al., 

2001). Figure 4-1 is an example of a NOAA tide gauge station water level time series with the 

tidal datum elevations and flood threshold elevation above MHHW. The difference between the 

flood threshold elevation and MHHW decreases with RSLR.  

 
Figure 4- 1. Schematic of NOAA tide gauge water levels, tidal datums, and flood threshold level 

demonstrating how RSLR reduces the difference between MHHW and the flood threshold level. 

Figure adapted from Sweet and Park (2014). 
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 Less than half of all NOAA tide gauges have official flood thresholds, therefore NOAA 

analyzes national HTF events using a common impact threshold or a derived flood threshold that 

may be greater or less than the official thresholds set by local WFOs (Sweet et al., 2018). HTF 

days estimated using the common thresholds are made available to the public via NOAA Tides 

and Currents Inundation Dashboard and are commonly used in risk analysis. In this study, the 

official flood thresholds determined by local knowledge of infrastructure vulnerabilities, 

topography, land cover, and existing flood defenses will be used to avoid either an 

overestimation or underestimation of the impacts of HTF.  

 At each tide gauge location, observed water levels result from a combination of a seasonal 

MSL cycle often influenced by variations in climatic forcings linked to El Niño Southern 

Oscillation (ENSO) and other climate oscillations, the astronomical tide, and a nontidal residual 

(NTR) associated with ocean and atmospheric forcing. The seasonal MSL component is caused 

by the combined effects of seasonal changes in atmospheric pressure, winds, ocean temperature 

and currents, salinity, and river discharge and is often driven by steric density changes of the 

water due to temperature and salinity (Zervas, 2006). Although annual MSL and HTF at 

locations along the U.S. West Coast and Northeast Coast have shown connections to ENSO and 

the North Atlantic Oscillation (NAO), these effects are not seen in the GOM (Sweet et al., 2014). 

The double peaked seasonal MSL cycle observed along the Texas and Louisiana coasts is lowest 

in January with a secondary peak in May-June, a secondary low in July-August and a rise to a 

maximum peak in September-October.  

 The tidal component of the observed water levels consists of the astronomical, otherwise 

known as gravitational tides and the shallow water tides known as overtides that are affected by 

tidal friction between the tide and sea floor. Tidal analysis and prediction are achieved using 

spectral analysis to decompose the signal into its individual harmonic constituents. These are 

primarily diurnal and semidiurnal, but also include solar annual and semiannual (Sa and Ssa) 

constituents as well as the higher frequency overtide constituents (Zervas, 2006). The long-

period solar constituents are modulations of the astronomical tides. The annual Sa tide 

modulation is generated by the yearly varying distance between the earth and sun due to 

eccentricity of earth’s orbit around the sun. The semiannual Ssa tide modulation is due to earth’s 

tilt and the sun’s biannual movement away from the equator (Ray et al., 2021). The Sa and Ssa 

components influence the seasonal MSL cycle. While as many as 37 constituents may exist, 

analysis of the eight largest astronomical tides (see Table 4-1) will encompass 95% of the full 

tidal range (Devlin et al., 2018). As sea levels rise, tidal friction rises with an increase in 

inundation on low-sloping coastlines of Texas and Louisiana, leading to increased amplitude of 

the overtide constituents and thus are relevant to include in analysis. 

 

Table 4-1. The eight largest tidal constituents and their definitions. 

Semidiurnal Diurnal 

Name Constituent Name Constituent 

M2 Principal lunar K1 Lunisolar diurnal 

S2 Principal solar O1 Lunar diurnal 

N2 Larger lunar elliptic Q1 Larger lunar elliptic 

K2 Lunisolar P1 Solar diurnal 

 

The NTR component of the observed water levels represents the remainder after the seasonal 

MSL cycle and astronomical tides are removed. The NTR in the GOM significantly contributes 
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to high water levels but displays no seasonal variability except for the occasional late-

summer/early-fall spike resulting from tropical cyclone activity (Sweet et al., 2014). These peaks 

in NTR occur concurrent to the maximum peak of the seasonal MSL cycle, exacerbating the 

effects of storm surges. 

 Tidal anomaly correlation of tidal and overtidal constituents with MSL variability are 

negative at gauge stations in the study area, meaning changes in tidal heights oppose MSL 

fluctuations and rising seas result in negative feedback from the shallow water overtides (Devlin 

et al., 2018). Thus, the NTR component, dominated by seasonal tropical cyclone activity, is of 

importance when analyzing HTF and extreme water levels in Texas and Louisiana. 

 

4.1.2 Risk of Increase in Storm Surges by Rise in Tropical Storms Frequency and 

Magnitude on Regional Sea Level Rise in the GOM 

In the following the impact of tropical storms on regional sea level rise is discussed. Tropical 

cyclones are low pressure, warm-core storms with cyclonic motion and strong winds that form 

over warm waters in the tropics. Tropical cyclones are categorized using the Saffir-Simpson 

scale based on sustained wind speeds as seen in Table 4-2. Tropical cyclones are a seasonal 

phenomenon and the NOAA National Hurricane Center (NHC) “Atlantic hurricane season” 

begins on June 1 and ends on November 30 with the first named storm typically forming in June, 

the first hurricane in early to mid-August, and first major hurricane forming in late-August to 

early-September (NHC, 2021). Note that historically about 70% of Atlantic basin tropical 

cyclones from 1851 to 2009 occurred in the Gulf of Mexico or the Caribbean Sea (Biasutti et al., 

2012). Hurricane frequency is also influenced by year-to-year variations that are common due to 

climate factors such as El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation, 

North Atlantic Oscillation, and other oscillations.  

 

Table 4-2. Saffir-Simpson Scale (Simpson and Riehl, 1981). 

Category m/s knots mph km/h 

Tropical Depression < 17 < 34 < 38 < 62 

Tropical Storm 18-32 35-63 39-73 63-118 

One 33-42 64-82 74-95 119-153 

Two 43-49 83-95 96-110 154-177 

Three 50-58 96-112 111-129 178-208 

Four 58-70 113-136 130-156 209-251 

Five > 70 > 137 > 157 > 252 

 

Tropical cyclones make landfall on the Texas and Louisiana coast. Favorable conditions for 

formation of tropical storms are sea surface temperature (SST) greater than ~26.5 °C, latitudes 

away from the equator, and vertical wind shear of horizontal winds is weak influenced (Emanual, 

2008). In the Atlantic Ocean, suitable conditions for tropical storm formation can be also 

attributed to a shallow disturbance in easterly trade winds also known as easterly wave. While 

most Atlantic tropical cyclones form from easterly waves, any low-level disturbance with 

sufficient vorticity and convergence, such as fronts or outflow boundaries can initiate tropical 

cyclogenesis (Landsea, 1993). 

Various arguments have been made suggesting anthropogenic climate change has significant 

influence on tropical cyclone activity. Recent research suggests a poleward migration of tropical 

cyclone tracks related to expansion of the Hadley circulation results in decreased distance from 
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land that the storm reaches maximum intensity and increasing landfalls (Wang and Tuomi, 

2021). Hurricane translation speed has also garnered much attention since Hurricane Harvey 

stalled over Harris County, Texas, in 2017 and caused significant and widespread flooding 

(Blake and Zelinsky, 2018). Conclusions regarding how global warming affects translation speed 

are mixed with some studies determining that translation speeds are slowing (Kossin, 2018) 

while others forecast an increase with warming (Yamaguchi et al., 2020). A region-specific study 

of steering winds indicates an increase of northward steering winds June through September in 

Texas by the end of the century that results in faster northern movement of landfalling tropical 

cyclones (Hassanzadeh et al., 2020). Greater consensus emerges in the discussion of how 

warming increases the water vapor capacity of the atmosphere resulting in increased 

precipitation rates globally and increased rain rates at the center of tropical cyclones (Emanuel, 

2006; Hartmann et al., 2013). Although some research indicates an increase in tropical cyclone 

frequency (Emanuel, 2013), Atlantic basin tropical cyclone frequency is projected to decrease 

slightly while the intensity of the storms will increase and the proportion of category four and 

five hurricanes will also increase (Hartmann et al., 2013; Knutson et al., 2020).  

 

4.1.3 Risks of Increasing Hurricane and Surge Return Periods  

The probabilities of recurrance for storm surges, known as return periods or recurrance 

intervals, estimate the average time betweeen storm surge of certain magnitudes such as the 100-

year and 500-year return periods. Hurricane return periods calculated for the Gulf of Mexico 

with respect to wind speeds equivalent to the strength of of a category 5 storm  (such as e.g. 

Hurricane Rita or Katrina) can be expected to occur every 21 years somewhere along the Gulf 

coast from Texas to Alabama (Elsner et al., 2006). Tropical storm, hurricane, and major 

hurricane return periods calculated from Texas to Maine gives similar results, estimating that a 

major hurricane should be expected to effect Texas and Louisiana sites every 26-52 years 

depending on the specific location (Keim et al., 2007). These results are also similar to the 

NHC’s estimated return periods for major hurricanes using data to 2010 as seen in Figure 4-2 

(Neuman, 1987).  

While hurricane return periods are useful for estimating winds, other factors such as size of 

the storm, storm track, slope of the coast, tides, and bottom friction that affect the magnitude of 

the storm surge are not accounted for in these estimations (Harris, 1963). Peak surge return 

periods for the Gulf of Mexico using the SURGEDAT database developed at Louisiana State 

University were calculated using data up to 2011 for the 100-, 50-, 25-, and 10-year return 

periods summarized in Table 4-3 (Needham, 2014). 

 

Table 4-3. Estimated Peak Surge Return Periods for the Gulf of Mexico (Needham, 2014). 

Return Period (yrs) 100 50 25 10 

Surge Height (m) 8.1  7.15 6.25 4.96 
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Figure 4- 2. Estimated return periods for major hurricanes (category 3 or above) from Texas to 

Maine from NOAA National Hurricane Center based on data form 1850-2010 (NHC, 2011). 

 

4.1.4 Coastal Risk from Tidal Surge in the Northern GOM 

While HTF in the Gulf of Mexico are gradual increasing, extreme water levels produced by 

tidal surges represent the most damaging and life-threatening risk in coastal locations. Maximal 

tidal surges occur when the tropical cyclone or hurricane-produced storm surge is combined with 

spring high tide. Storm surges are characterized by a combination of a wind-driven onshore 

current, waves that carry added shoreward momentum, runoff from heavy precipitation, low 

pressure-driven hydrostatic sea level rise (~1 m SLR per 100 hPa depression of pressure), and a 

tidal component that can either increase or reduce the strength of the surge (Wallace and Hobbs, 

2006). While tidal forecasts are well defined the exact timing when a tropical storm makes 

landfall remains uncertain (Wahl, 2017). RSLR reduces the gap between MSL and site-specific 

flood threshold elevations resulting in increased probability that lower magnitude storm tides 

will increasingly affect flooding over time (Sweet et al., 2014). A storm surge modeling study of 

southeast Louisiana found that, using hypothetical storms that produce 100-year water levels, in 

areas of maximum surge the impact of RSLR on surge was largely linear, or equal to the RSLR, 

while in areas of moderate surge, the impact of RSLR doubles the surge height (Smith et al., 

2010). However, analysis of observed data indicates trend differences in MSL and extreme water 

levels. Hence, an assumption of linearity in these trends could lead to substantial errors in the 

estimation of storm surge heights. For example, studies utilizing three-dimensional numerical 

ocean general circulation models (e.g., Arns et al., 2015) suggest that a 0.54 m of mean SLR can 

produce storm surges that are 0.15 m higher in the shallowest areas.  
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4.1.5 Climatic Variability and Surge Activity 

While it has been shown that ENSO and the NAO have insignificant effects on MSL and HTF 

in the GOM, these climate variabilities, as well as the Atlantic Multidecadal Oscillation (AMO), 

do have some effects on tropical cyclone activity in the Atlantic basin (Pielke and Landsea, 

1999; Emanuel and Mann, 2006; Colbert and Soden, 2012). ENSO affects the Atlantic basin 

remotely by changing the atmospheric circulation. During El Niño phases, upper tropospheric 

westerly winds increase the vertical shear over the basin contributing to a reduction in the 

number of tropical cyclones during hurricane season. La Niña phases are characterized by low 

wind shear and a less stable atmosphere that leads to an increase in tropical cyclone activity in 

the Atlantic (Piekle and Landsea, 1999). The NAO primarily affects the tracks of Atlantic basin 

tropical cyclones through an enhanced Bermuda High (Azores High) during positive phases that 

steers tropical cyclones closer to the coast thus enhancing the risk of landfall during that 

hurricane season (Colbert and Soden, 2012).  

 The AMO is characterized by SST anomalies in the Atlantic that occur over many decades as 

warm phases and cold phases that are believed to be due to internal variability of the ocean-

atmosphere system (Schlesinger and Ramankutty, 1994). Warm phases of the AMO are 

characterized by warm tropical Atlantic SSTs linked to enhanced number and intensity of 

tropical cyclones while cold phases have the opposite effect. Recent studies have concluded that 

there is no evidence that the AMO is a result of internal oscillations within the climate system 

but rather a result of competing radiative forcings from anthropogenic greenhouse gases and 

sulfate aerosols (Emanuel and Mann, 2006; Booth et al., 2012; Cane et al., 2017; Mann et al., 

2021). Others have concluded that the AMO is a climate system related oscillation that has been 

amplified since the industrial era (Moore et al., 2017). Atlantic tropical cyclone activity is linked 

to a positive phase of the AMO (Saunders and Lea, 2008). A higher occurrence of tropical 

storms has been attributed to La Niña, a positive NAO, and warm AMO conditions. Trends in 

future tropical storm frequency attributed to changes in ENSO, the NAO, and the AMO (see 

IPCC AR5, 2013) remain controversial. 

 

4.2 Objective 

This study aims to determine if the probability of high tide flooding is increasing in Texas and 

Louisiana and assess the factors contributing to flood threshold exceedance. As part of this study, 

the analysis of the tidal components and site-specific flood threshold levels and their changes 

will be extended for hourly and daily HTF events (Sweet et al., 2014) from relevant tide gauge 

stations in Texas and Louisiana for the period from 1980 to 2019. Additionally, this paper 

intends to determine whether RSLR is the main driver of increased risk from storm tide 

inundation in this area or not. Furthermore, this study attempts to estimate new peak surge return 

periods based on changes in frequency and magnitude of storm tides to the historical baseline 

(1930-1960) and to assess climate oscillations and changes in tropical cyclone climatology. A 

case study will present the addition of RSLR scenarios to modeled storm surge with the objective 

of identifying areas of increased risk of inundation from hurricanes by 2100 and locating socially 

vulnerable populations residing within those areas. 

 

4.3 Methodology 

4.3.1 High Tide Flooding 

Hourly water level data recorded by NOAA tide gauges was collected for the years 1940, 

1960, 1980, 2000, and 2020, or as far in the past as the tide gauge record allows, to capture the 
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evolution of water levels over the past decades. Tidal datum elevations of mean lower low water 

(MLLW), mean low water (MLW), mean sea level (MSL), mean high water (MHW), and mean 

higher high water (MHHW) were obtained from NOAA relative to the 1983-2001 (NAVD88) 

tidal datum. Flood threshold elevations were acquired from NOAA Advanced Hydrological 

Prediction Systems (AHPS). The maximum daily water levels were computed from the hourly 

data and fit to the Generalized Extreme Value (GEV) distribution. The scale, location, and shape 

parameters of the GEV distribution were estimated using routines in MATLAB. The probability 

density functions (PDFs; f(x)) of the maximum daily water levels were calculated using the 

equation (eq. 4.1), 

 

                  𝑦 = 𝑓(𝑥|𝑘, 𝜇, 𝜎) = (
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                  (4.1) 

 

where 𝜎 denotes the scale parameter, 𝜇 is the location parameter, 𝑘 is the shape parameter, and 𝑥 

denotes the water level. The PDFs were plotted together with the station’s unique flood threshold 

levels to analyze how water levels have increasingly approached the threshold for high tide 

flooding over the past decades. 

 Hourly water levels recorded by NOAA tide gauges relative to the 1983-2001 datum epoch 

were collected from stations in Texas and Louisiana that had at least 30 years of verified data 

(Table 4-4). Analysis of HTF hours above the flood threshold was conducted from 1980-2019 to 

quantify frequency and duration of HTF events. The total number of hours above the threshold 

were summed for each year of the analysis. HTF days were also calculated to diminish the 

influence of storms exceeding the threshold for many hours. Annual MSL trends were included 

to compare trends in HTF to trends in RSL. The results were plotted with NOAA’s estimated 

HTF days calculated using a common impact threshold rather than the station’s unique flood 

threshold. 

 To investigate the significance of the oceanic processes that lead to HTF events, spectral 

analysis of hourly tide gauge data was conducted for all locations in Texas and Louisiana over 

the same 40-year period (1980-2019) used in hourly HTF analysis. Using tidal harmonic analysis 

functions in MATLAB (Codiga, 2011), the data was decomposed into a seasonal MSL signal (Sa 

and Ssa tidal constituents) and the eight largest astronomical tides (Table 4-1) after Sa and Ssa 

are removed. What remained was the NTR component. The 40-year hourly predicted tides, MSL 

cycle, NTR, and maximum observed water levels were calculated for each calendar day of the 

year and a 30-day smoothing was imposed to focus on patterns rather than single occurrences. 

The components were then plotted together with the tide gauge station’s unique flood threshold 

levels to analyze contributions to high tide flooding. While worthy of future investigation, 

analysis of the overtide constituents is considered beyond the scope of this study. 
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Table 4-4. NOAA tide gauge locations used in analysis with station name, location, and year 

established. MSL trends (mm/yr) and NOAA AHPS flood threshold levels (m above MHHW). 

NOAA Tide 

Gauge 

Station 

ID 

Latitude Longitude Year 

Established 

MSL 

Trend 

(mm/yr) 

Flood 

Threshold 

(m, 

MHHW) 

Port Isabel, TX 8779770 26.065 -97.215 1944 4.25 0.34 

Corpus Christi, 

TX 

8775870 27.580 -97.217 1983 5.54 0.40 

Rockport, TX 8774770 28.022 -97.047 1937 5.94 0.67 

Galveston, TX 8771450 29.310 -94.793 1904 6.62 0.79 

Sabine Pass, TX 8770570 29.728 -93.870 1985 6.16 0.58 

Grand Isle, LA 8761724 29.263 -89.957 1979 9.18 0.51 

 

4.3.2 Tropical Cyclone and Storm Surge 

Tropical cyclone frequency, location, and magnitude from 1851-2015 were obtained from 

NOAA’s Atlantic Hurricane Database (HURDAT2; Landsea et al., 2015) and categorized as 

Tropical Storms, Hurricanes, and Major Hurricanes (> 50 m/s wind speed) for trend analysis 

using linear regression and a 10-year moving average. NHC’s tropical cyclone reports were used 

to update the dataset to the most recent verified year of 2020 to include this particularly active 

year in analysis. Total Atlantic tropical cyclones that made landfall were analyzed as well as 

those that only made landfall in Texas and Louisiana. The Mann Kendall trend test was utilized 

to test the null hypothesis that there is no trend in the time series. 

Storm surge/tide peak height and location data for 1880-2011 was obtained from Louisiana 

State University’s Gulf of Mexico Peak Surge Database (Needham and Keim, 2012) and updated 

using NHC’s verified tropical cyclone reports for the remaining years to the present using the 

maximum surge heights for storms that made landfall in Texas and Louisiana.  

 

4.3.3 Climate Variabilities 

To qualify connections between trends in Atlantic tropical cyclone activity and climate 

oscillations, a simple analysis of the number and severity of tropical cyclones was conducted for 

different phases of said oscillations. The AMO index timeseries was collected from NOAA 

Physical Science Laboratory (PSL) and categorized into cold phases (1900-1925; 1963-1994) 

and warm phases (1923-1962; 1995-2020). The number of total tropical storms, hurricanes, and 

major hurricanes (defined as Saffir-Simpson category 3 or higher) were summed for each time 

period. The same procedure was used for storms that made landfall in Texas and Louisiana. The 

AMO index timeseries was plotted with the 10-year moving averages of Atlantic basin tropical 

storms and hurricanes to further visualize the trends. Correlation between the AMO and Atlantic 

tropical cyclone activity as well as with landfalling tropical cyclones was calculated using the 

Spearman correlation coefficient. To analyze the effects of ENSO, the Multivariant ENSO Index 

(MEI) was obtained from NOAA PSL and categorized into cold (La Niña), neutral, and warm 

(El Niño) years. The number of tropical storms, hurricanes, and major hurricanes, as well as 

Texas and Louisiana landfalling storms were summed for each year.   
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4.3.4 Return Periods 

Peak surge return periods were calculated using data from the SURGEDAT Gulf of Mexico 

database (updated to 2020 using NHC tropical cyclone reports) excluding all data from states 

besides Texas and Louisiana. All surge values were ranked to construct a partial duration series 

of peak surge heights of the last 120 years. Data prior to 1900 was excluded due to uncertinty, 

but data from 1900 to present was used to ensure the Great Galveston Hurricane of 1900 was 

included. The 120-year series contained the the 120 largest storm surges or storm tides with 

largest magnitude being 8.53 m from Hurricane Katrina (2005) and the smallest being 0.76 m 

from Hurricane Edith (1971). Peak surge return periods from the updated record were estimated 

using logarithmic plotting methods used in many return period studies (Huff and Angel, 1992; 

Needham, 2010; Needham, 2014). The exceedence probability was determined using the Weibull 

plotting position following the equation (4.2) 

 

                                                     𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑅𝑎𝑛𝑘

𝑛+1
                                     (4.2) 

 

where 𝑛 is the number of years in the dataset. Return periods were calculated using equation 4.3 

 

                                                𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 =
1

𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
                                 (4.3) 

 

and plotted using a log scale with magnitude on the y-axis and return period on the x-axis. A 

logarithmic regression was performed and resulting equation used to determine the 500-, 100-, 

75-yr, 50-yr, 25-yr, and 10-yr return periods.  

 Changes is frequency and magnitutde of peak surge were evaluated using 30-year averages 

over the peak surge series beginning with 1900-1930 and ending with 1990-2020. Percent 

change in frequency and magnitude was calculated using the present 30-year average and the 30-

year average from 1930-1960 due to data availability problems asociated with the 1900-1930 

time period and possible magnitude bias from the Great Galveston Hurricane of 1900. Percent 

change calculations were used to adjust return periods relative to the most recent time period to 

examine what future return periods may estimate following the formulas (eq. 4.4) 

 

                                                            𝑇2 =
𝜆1

𝜆2
𝑇1 𝑎𝑛𝑑 𝜂2 = 𝜂1

𝑃2

𝑃1
                                           (4.4) 

 

where 𝑇 is the return period, 𝜆 is the rate of storm occurrence per year, 𝜂 is surge magnitude, 𝑃 is 

the peak surge height, subscript 1 represents the 1930-1960 averages, and subscript 2 represents 

the 1990-2020 averages. 

 To investigate changes in tropical storm return periods from 1900 to 2020, the Tropical 

Hazard Index (THI; Keim and Muller, 2007) was calculated based on frequency and severity of 

storms over 40-year periods beginning in 1901 and ending in 2020. The index is derived by the 

summation of all storms during the time periods where a tropical storm landfall is given two 

points, category 1-2 hurricanes are given four points, and category 3-5 storms are given eight 

points. Along with the six tide gauge stations used in this study, two additional sites (Freshwater 

Canal Locks, LA, and Matagorda City, TX) were chosen to fill out spatial gaps in coverage. 

Utilizing NOAA’s historical hurricane tracks, a search was conducted for each location to 

determine the number of tropical storms, hurricanes, and major hurricanes that struck each 

location. Using a conservative assumption of storm size and total swath of winds, tropical storm-
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force winds would extend 80 km to the right of the center and 40 km to the left of the track, 

while hurricane and major hurricane-force winds would extend further from center. Assuming 

this and following the methodology of Keim and Muller (2007), a 120 km search diameter was 

used for tropical storms, while a 240 km and 360 km search diameter was used for hurricanes 

and major hurricanes respectively. The THI was calculated and mapped using graduated pie 

charts with each slice representing individual categories and the total size of the pie determined 

by the total THI.       

 

4.3.5 Case Study: Storm tide with RSLR mapping risk for vulnerable populations on Texas 

and Louisiana coasts. 

To visualize storm tide inundation area and height above ground, as well as the risk to 

vulnerable populations, a case study was conducted in the area just west of the leveed city of 

New Orleans, LA, west along the Interstate 10 corridor to Baton Rouge, LA, and the 

Houston/Galveston, TX, area. Although these areas were chosen for the case study, the same 

methods can be applied to any area along the Gulf coast. Since the latest version of the NHC’s 

National Storm Surge Risk Maps (Version 3, 2022; Zachry et al., 2015) includes all of Louisiana 

and Texas, the downloadable GIS data for storm tides was utilized. The map layers were 

developed by NHC using SLOSH model output for tens of thousands of hypothetical tropical 

cyclones for each basin and storm tides were a composite of Maximum Envelopes of Water 

(MEOWs) and Maximum of MEOWs (MOMs; see also Chapter 2.1.3). A 10-meter resolution 

USGS Digital Elevation Model (DEM) and major roads maps were overlaid with the category 1, 

3, and 5 storm tidal maps. To identify vulnerable populations within the inundated areas, the 

Center for Disease Control’s (CDC) Social Vulnerability Index (SVI) was included in the study. 

The SVI 2018 applied 15 variables under four categories at the US census tract level: (1) 

socioeconomic status, (2) household composition and disability, (3) minority status and 

language, and (4) housing type and transportation. In this study, tracts that have at least 2500 

estimated population in the top 10%, or 90th percentile, for the following variables were utilized 

to identify tracts with vulnerable populations: (1) below poverty, (2) age 65 or older, (3) age 17 

or younger, (4) civilians with disabilities, (5) mobile homes, (6) no vehicle. Tracts were 

classified as vulnerable if up to 3 variables applied, very vulnerable for 4-5 variables, and 

extremely vulnerable with >5 variables in the top 10%. To analyze storm tides enhanced by sea 

level rise, RSLR scenarios (Intermediate: 1.79 m, Intermediate-High: 2.46 m, Extreme: 3.78 m) 

for 2091-2100 based on probabilistic projections (Chapter 3, Figure 3-9) were applied to the 

storm tide map layers in GIS using raster calculations of the DEM. The probabilistic scenarios 

are centered at the midpoint of the 1991-2009 epoch (2000) and are based on representative 

concentration pathways (RCPs). The intermediate scenario is based on the high end of the very 

likely range under RCP4.5; the intermediate-high scenario is based on the middle of the likely 

range under RCP8.5 and the extreme scenario is consistent with estimates of physically possible 

worst case (see chapter 3, Table 3-2). The scenarios were chosen based on probability of 

exceedance of less than 50% established by the work of Kopp et al. (2014; see chapter 3, Table 

3-7). While this method assumes a linear relationship between storm tide height and sea level 

rise that may under- or overestimate the influence of SLR on storm tides, the topography of the 

region suggests the area of inundation is restricted even under the most extreme RSLR scenarios.  
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4.4 Results 

4.4.1 High Tide Flooding: PDFs 

In this section, HTF based on exceedance of the flood threshold levels and the progression of 

MSL at the center of the density is presented. The GEV PDFs of hourly water levels of the 

Galveston Pier 21 tide gauge for specified years (Figure 4-3) demonstrates the evolution of these 

water levels over the past 80 years relative to the current tidal datums and minor flood threshold 

elevation. The increase in MSL over time is represented at the centers of density and upper tails 

include water levels above the great diurnal range defined as the difference between MLLW and 

MHHW.  

 

 
Figure 4- 3. PDFs of hourly water levels measured at Galveston Pier 21 NOAA tide gauge 

station for 1940 (blue), 1960 (green), 1980 (pink), 2000 (magenta), and 2020 (red) plotted with 

the minor flood threshold elevation (black dashed line). 

 

Figure 4-4 shows PDFs of hourly water levels measured at Rockport, Texas, NOAA tide gauge 

for 1980, 2000 and 2020 are similar to Figure 4-3. For this location, MSL and extreme water 

levels approaching or exceeding the flood threshold have been increasing over the past 40 years. 
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Figure 4- 4. PDFs of hourly water levels measured at Rockport NOAA tide gauge station for 

1980 (pink), 2000 (magenta), and 2020 (red) plotted with the minor flood threshold elevation 

(black dashed line). 

 

The PDFs of hourly water levels for Port Isabel (Figure 4-5) from 1960, 1980, 2000, and 2020 

indicate a significant increase in water levels exceeding the flood threshold in the last 60 years. 

With the center of the density approaching the flood threshold level in 2020, Port Isabel may 

experience a considerable increase in HTF days in the coming decade. Seen in the PDFs for 1980 

for the three locations are the many hours spent above the flood threshold that year due to the 

influence of category 5 Hurricane Allen that made landfall near Port Isabel. With the center of 

the density representing MSL, 1980’s MSL was lower than the modern day, and this 

demonstrates the risk of exceeding the flood threshold from hurricane storm surge will certainly 

increase as MSL increases with RSLR.  

 While Grand Isle, LA, Sabine Pass, TX, and Corpus Christi, TX, tide gauges did not record 

hourly data for 1940, 1960, and 1980 and were therefore excluded from PDF analysis, analysis in 

the coming sections will provide more information on HTF at these locations.    
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Figure 4- 5. PDFs of hourly water levels measured at Port Isabel NOAA tide gauge station for 

1960 (green), 1980 (pink), 2000 (magenta), and 2020 (red) plotted with the minor flood 

threshold elevation (black dashed line). 

 

4.4.2 High Tide Flooding Days and Hours  

To quantify frequency and duration of HTF and analyze oceanic processes that lead to it, in 

this section, the results of analysis of hourly tide gauge data for HTF days and hours as well as 

the spectral analysis of processes influencing HTF are presented. The total annual HTF days at 

selected tide gauge locations that have defined flood threshold levels are presented in Figure 4-6 

from 1940, or when measurements began, to present. It is evident from the data that frequency of 

HTF days is increasing over the past 80 years at most selected locations with an observable 

acceleration of frequency since the 1990s. Although RSLR rates are fastest at Grand Isle and 

Galveston due to subsidence, HTF days are defined by exceedance of a unique defined flood 

threshold at each location which may be significantly different based on topography and tidal 

range of the location. As listed in Table 4-4, Port Isabel and Corpus Christi have substantially 

lower flood thresholds (0.34 and 0.4 m above MHHW respectively) than Grand Isle (0.51 m), 

Sabine Pass (0.58 m), Galveston Pier 21 (0.79 m), and Rockport (0.67 m). With Grand Isle and 

Rockport’s great diurnal tide ranges (0.323 and 0.111 m respectively) being lower than Sabine 

Pass (0.488 m), Galveston (0.429 m), Corpus Christi (0.499 m), and Port Isabel (0.418 m), fewer 

exceedance days are recorded at those locations. Therefore, the greatest increase in HTF days 

since the 1990s are observed at the locations with higher tidal ranges and lower defined flood 

thresholds such as Corpus Christi and Port Isabel.  
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Figure 4- 6. Total number of HTF days (defined as any day with one or more hourly water levels 

above the flood threshold) per year from 1940 to present at selected tide gauge stations in Texas 

and Louisiana. 

 

Figure 4-7 displays the analysis of HTF hours and days as well as the MSL trend at the 

Galveston Pier 21 tide gauge from 1980-2019. The number of hours and days of HTF have 

increased, particularly over the last decade. The influence of long-lived storms can be seen in the 

number of hours above threshold in 2017 because of Hurricane Harvey and in 2008 because of 

Hurricane Ike. While the hours of HTF are biased by these storms, the number of days with at 

least one hour of levels above threshold show an increasing trend with the increase in RSL 

observed by the tide gauge. In Galveston, HTF days are estimated by NOAA using a common 

impact threshold of 0.52 m above MHHW. This value is lower than the flood threshold set by 

local authorities and WFOs (0.79 m above MHHW), leading to higher HTF events than those 

calculated using the unique threshold. Note that data from NOAA’s Inundation Dashboard 

(https://tidesandcurrents.noaa.gov/inundationdb) generally exceed the total HTF in days per year 

compared to this study.  

 Results of spectral analysis of hourly tide gauge measurements at Galveston Pier 21 presented 

in Figure 4-8 show the maximum observed water levels for each calendar day of the year 

deconstructed into a tidal component, the seasonal MSL cycle, and the NTR. The double peaked 

seasonal MSL cycle is a result of the solar annual and semiannual (Sa and Ssa) tidal constituents 

 

https://tidesandcurrents.noaa.gov/inundationdb
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Figure 4- 7. HTF days (gray), HTF days estimated by NOAA (blue), and total hours above flood 

threshold (orange) with annual MSL for Galveston, Texas from 1980 to 2019. 

 

and the tidal component results from the eight most influential tidal constituents (excluding Sa 

and Ssa). The season with the highest frequency of HTF in Texas and Louisiana is late-

summer/early-fall, coinciding with the peak of hurricane season and exacerbated by the peak in 

seasonal MSL driven by solar constituents. The tidal component is out of phase with the other 

spectra, but its diminishing influence is negligible while the NTR, influenced by storms and 

nearby swells, greatly influences high water levels during this season. Together, the seasonal 

MSL cycle and the NTR are responsible for the peak in observed maximum water levels in 

September-October.  

 All locations in the study area reflect maxima in water levels during September-October. 

There is minor exceedance of the flood threshold value of smoothed observations from Grand 

Isle and Rockport’s NOAA tide gauge stations (Figures 4-9 and 4-10) that indicate little flood 

threshold exceedance over the past 40 years, although individual events over the same time 

period have certainly caused flooding at these locations. This is a result of the smaller tidal 

ranges at these locations and does not indicate a lower risk of future HTF as the RSLR rates at 

these locations are higher than average due to subsidence.  

 Analysis of observed maximum water levels for Port Isabel and Corpus Christi (Figure 4-10) 

reveal HTF that occurs both in spring and fall with the highest peak in September- 
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Figure 4- 8. Maximum observed water levels (black) per calendar day from 1980 to 2019 

decomposed into the seasonal MSL cycle (teal), the predicted tide without the Sa and Ssa 

harmonic constituents (blue) and remaining non-tidal residual (NTR; green) plotted with the 

minor flood threshold (red) for Galveston, TX. 

 

October. Without the influence of the NTR peak in fall, exceedances of the flood threshold in 

spring are a result of the tidal components and the seasonal MSL cycle being in phase with each 

other during that season. This is a result of the larger tidal ranges at these locations and 

represents a present and future risk of HTF with RSLR with little influence from other factors 

such as NTR.  
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Figure 4- 9. Hourly and daily high tide flooding (left panels) and maximum observed water 

levels (black) per calendar day from 1980 to 2019 decomposed into the seasonal MSL cycle 

(teal), the predicted tide without the Sa and Ssa harmonic constituents (blue) and remaining non-

tidal residual (NTR; green) plotted with the minor flood threshold (red; right panels) for Grand 

Isle, Sabine Pass, and Galveston. 
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Figure 4- 10. Hourly and daily high tide flooding (left panels) and maximum observed water 

levels (black) per calendar day from 1980 to 2019 decomposed into the seasonal MSL cycle 

(teal), the predicted tide without the Sa and Ssa harmonic constituents (blue) and remaining non-

tidal residual (NTR; green) plotted with the minor flood threshold (red; right panels) for 

Rockport, Corpus Christi, and Port Isabel. 
 

 The perigean spring tide’s influence on HTF is minimal at locations on the GOM compared to 

other U.S. coastal locations due to their relatively small tidal ranges. No significantly higher 

tides were observed in the hourly tide gauge records corresponding to perigean spring tides. 
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4.4.3 Tropical Cyclones and Storm Surge 

 In this section, tropical cyclone activity and associated storm surge frequency and magnitude 

is examined for trends that may lead to greater risk of exceeding flood thresholds. Note that the 

NTR component is driven by swells and surges from storms and is thus highest during hurricane 

season. 

Linear regression of the tropical cyclone data (Figure 4-11) suggests an increase in total 

tropical storms, hurricanes, and major hurricanes over the historic time-period and moving 

averages reveal a possible multidecadal trend. The increase observed in linear regression may be 

an artifact of inadequate data from early in the record as coefficients of determination (R2) are 

less than 0.3 for all three categories. A relatively active period is observed beginning in the 

1930s and ending in the late 1960s followed by a relatively inactive period from the 1970s to 

mid-1990s. Since then, the most active period has been observed with 2020 being the most active 

tropical cyclone season on record. Similar multidecadal trends in landfalls, seen in Figure 4-12 

are also observed suggesting that for any given hurricane season, landfalls can be considered 

proportional to total storms in the basin. 

 

 
Figure 4- 11. Total tropical storms (blue), hurricanes (orange), and major hurricanes (gray) of the 

Atlantic basin from 1850-present (HURDAT with updates to 2020). Solid curves are the 10-year 

moving averages and solid lines are linear trends. 
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Figure 4- 12. Total landfalling tropical storms (blue), hurricanes (orange), and major hurricanes 

(gray) of the Atlantic basin from 1850-present (HURDAT with updates to 2020). Solid curves 

are the 10-year moving averages and solid lines are linear trends. 
 

To investigate the risk associated with major hurricane landfalls in Texas and Louisiana, the 10-

year ratio of major hurricanes to total hurricanes (Figure 4-13) from 1860-2020 was calculated 

and plotted with total annual hurricane landfalls. A lower proportion of hurricanes that made 

landfall in Texas and Louisiana attained category 3 or higher during the relatively active period 

in the Atlantic basin between the 1930s and the 1960s. In comparison, a higher proportion of 

landfalling hurricanes attained major hurricane status from the 1960s to the 1980s. This high 

proportion is because many individual years during that time saw only one hurricane make 

landfall and those were major hurricanes. From 1990-2020, Atlantic basin tropical cyclone 

activity increased as seen in Figure 4-11 while the proportion of major hurricane landfalls in 

Texas and Louisiana returned to levels similar to pre-1930s, a period of relatively low Atlantic 

basin activity. This is of interest because historically, relatively high Atlantic basin activity 

(i.e.,1930s-1960s) is associated with a lower ratio and the opposite is true for low activity (i.e., 

1960s-1980s). This indicates that the modern active period (1990s-present) has produced more 

landfalling major hurricanes in Texas and Louisiana in proportion to total hurricanes compared 

to previous active periods. 
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Figure 4- 13. Total landfalling hurricanes (blue) of Texas and Louisiana from 1860-2020 

(HURDAT with updates to 2020) and the 10-year ratio (black) and 95% confidence interval of 

major hurricanes to total hurricanes smoothed with a 10-year moving average. 

 

Table 4-5. Results of the Mann-Kendall trend test for tropical cyclone frequency. 

 Increasing Trend? P-value 

Atlantic Tropical Storms Yes 2.62 × 10−12 

Atlantic Hurricanes (Cat 1-2) Yes 6.35 × 10−4 

Atlantic Major Hurricanes (Cat 3-4) Yes 4.57 × 10−8 

Atlantic Tropical Storm Landfalls No 0.618 

Atlantic Hurricane Landfalls No 0.249 

Atlantic Major Hurricane Landfalls No 0.917 

TX/LA Tropical Storm Landfalls No 0.876 

TX/LA Hurricane Landfalls No 0.507 

TX/LA Major Hurricane Landfalls No 0.895 

 

Results of the Mann-Kendall trend test (Table 4-5) indicate that an increasing trend exists (P-

value <0.05) in the Atlantic basin frequency of tropical storms, hurricanes, and major hurricanes 

over the past 120 years. The test could not reject the null hypothesis of no trend for all 

landfalling categories, suggesting that Atlantic basin tropical cyclone frequency increases may 

not dictate an increasing trend in landfalls to a statistically significant degree.   
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Figure 4- 14. Peak storm surge (blue) and storm tide (orange) height history of Texas and 

Louisiana (SURGEDAT 1880-2011 with updates to 2020).  

 

The peak surge history of landfalling tropical cyclones in Texas and Louisiana seen in Figure 4-

14 suggest that half of the highest measured storm surges/tides have occurred since 2005 with 

Hurricane Katrina, making landfall as a category 3 hurricane, being the maximum observed in 

the record. Note, that significant uncertainties in the surge estimates may exist for the Galveston 

1900 category 4 hurricane and New Orleans 1915 category 3 hurricane due to a lack of verified 

data. Hurricane Carla was the strongest tropical cyclone to make landfall in Texas and the last 

category 4 hurricane to do so on record. More recent storms that made landfall in the GOM are 

Hurricane Rita (a major category 3 hurricane), Hurricane Ike (a category 2 hurricane), and 

Hurricane Issac (a category 1 hurricane). Note that even category 1 hurricanes can produce 

extreme water levels. 

 

4.4.4 Effect of Climate Variations on Risk of Exceeding Floods 

In this section, climate variations and associated storm surge frequency and their risk of 

exceeding flood thresholds are discussed. Tropical cyclones in the GOM and associated surge 

activity in the GOM are affected by climate variations in both the Atlantic and Pacific Ocean. On 

the decadal scale, phases of positive Atlantic multidecadal oscillation (AMO) are correlated with 

active hurricane seasons with higher numbers of major hurricanes, while cool phases have the 

opposite effect (Goldenberg et al., 2001) and the same correlation applies for positive phases of 

the Pacific decadal oscillation (Chan and Shi, 1996). Particularly, the AMO influences tropical 
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cyclone development in the main development region of the North Atlantic and Caribbean Sea 

from 10°N to 20°N (Goldenberg and Shapiro, 1996). It is within this region that most easterly 

waves propagating from the African coast contribute to tropical cyclone formation which 

account for 85% of Atlantic basin major hurricanes (Landsea, 1993). The results for the AMO 

are listed in Table 4-6 and the trend is visualized for trend qualification in Figure 4-15 showing 

the AMO index timeseries along with the 10-year moving averages of the Atlantic tropical 

cyclone analysis (from Figure 4-11). While the AMO phase influences Atlantic basin storm 

frequency and intensity, there is no obvious correlation between landfall of tropical storms in 

Texas and Louisiana and the AMO index. 

 

Table 4-6. Atlantic basin tropical cyclone occurrence and Texas and Louisiana (TX/LA) 

landfalling storms in relation to the Atlantic Multidecadal Oscillation (AMO) index. Major 

hurricanes defined as Saffir-Simpson category 3 or above. 
AMO 

Phase 

Total 

Storms 

Atlantic 

Hurricanes 

Atlantic 

Major 

Hurricanes 

Atlantic 

Total 

Landfalls 

TX/LA 

Hurricane 

Landfalls 

TX/LA 

Major 

Hurricane 

Landfalls 

TX/LA 

1900-1925 

AMO Cold 

7.4 4.0 1.3 1.5 1.1 0.3 

1926-1962 

AMO 

Warm 

10.9 5.8 2.6 1.6 0.8 0.2 

1963-1994 

AMO Cold 

9.8 5.5 1.8 1.1 0.6 0.3 

1995-2020 

AMO 

Warm 

26.8 13.3 6.1 2.9 1.3 0.4 

 

Results from the Spearman correlation test (Table 4-7; Figure 4-16) indicate little correlation 

between the AMO and observed peak storm surge. However, a positive correlation (P-value 

<0.05) is confirmed between the AMO and Atlantic basin occurrences for tropical storms, 

hurricanes, and major hurricanes. As a result, one can expect increasing AMO values to 

correspond with increases in Atlantic tropical cyclone activity. Note, that the AMO is influenced 

by anthropogenic radiative forcing from GHGs and aerosols, as suggested by Mann et al. (2021).  

An increase in GHGs and decrease in anthropogenic aerosols may lead to consistently warm 

SSTs in the area of greatest hurricane formation over the Atlantic and thus favors a more positive 

AMO index. 

 

Table 4-7. Spearman test results for correlation of AMO with peak surge and tropical cyclone 

frequency. 

 Spearman R P-value 

AMO and Peak Surge 0.1279 0.162 

AMO and Atlantic Tropical Storms 0.5579 2.98 × 10−11 

AMO and Atlantic Hurricanes (Cat 1-2) 0.4244 1.23 × 10−6 

AMO and Atlantic Major Hurricanes (Cat 3-4) 0.5079 2.74 × 10−9 
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Figure 4- 15. The AMO index (red: warm phase, blue: cold phase) plotted with the 10-year 

moving averages of tropical storms (black), hurricanes (orange), and major hurricanes (gray) of 

the Atlantic basin from 1851-2020. 

 

Correlation between the phases of the MEI index and hurricane frequency (Table 4-8) shows 

a suppression of Atlantic basin tropical cyclone activity and intensity during warm ENSO phases 

(El Niño) compared to neutral and cold (La Niña) phases (see also Gray, 1984; Bove et al., 1998; 

Pielke and Landsea, 1999; Elsner et al., 2001). Additionally, there is a higher number of tropical 

storms, hurricanes, and major hurricanes during cold phases compared to neutral phases. This 

confirms ENSO’s teleconnection to the Atlantic basin hurricane seasonality, but results do not 

indicate a significant correlation between ENSO and landfalling storms in Texas and Louisiana.  
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Figure 4- 16. Correlation scatterplots for the annual average AMO index with (a) peak surge 

values, (b) number of tropical storms, (c) number of hurricanes, and (d) major hurricanes. 

Corresponding R values are listed in Table 4-7. 

 

Table 4-8. Atlantic basin tropical cyclone occurrence and Texas and Louisiana (TX/LA) 

landfalling storms in relation to the Multivariant ENSO Index (MEI). Major hurricanes defined 

as Saffir-Simpson category 3 or above. 

MEI 

Phase 

Total 

Storms 

Atlantic 

Hurricanes 

Atlantic 

Major 

Hurricanes 

Atlantic 

Total 

Landfalls 

TX/LA 

Hurricane 

Landfalls 

TX/LA 

Major 

Hurricane 

Landfalls 

TX/LA 

Cold 16.1 8.2 3.9 1.7 0.9 0.3 

Neutral 13.0 7.1 2.6 1.4 0.8 0.3 

Warm 8.1 3.4 1.1 1.2 0.3 0.0 

 

4.4.5 Return Periods 

Return periods based on historic data are commonly used to assess risk and inform design 

ranges, but recent and future changes to observed historic trends are not accounted for. In this 

section, historic peak surge return periods for Texas and Louisiana are estimated for 1900-2020 

and adjusted for observed percent changes in surge frequency and magnitude to estimate new 

return periods for use in assessing future risk. Peak surge magnitude and return periods are 

presented in Figure 4-17 with resulting return periods summarized in Table 4-9. The results are 
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similar to those estimated for the entire Gulf of Mexico (Table 4-3) with slightly lower 

magnitude surge height estimates corresponding to the 100-yr, 50-yr, 25-yr, and 10-yr periods. 

  

 
Figure 4- 17. Logarithmic plot of peak storm surge magnitude and return periods for Texas and 

Louisiana estimated using updated SURGEDAT data from 1900-2020. 
 

Table 4-9. Texas and Louisiana Peak Surge Return Periods. 

Return Period (years) Surge Height (meters) 

10 4.37 

25 5.79 

50 6.86 

75 7.48 

100 7.93 

500 10.42 

 

Averages taken over 30-yr periods from 1900 to 2020 are summarized in Table 4-10 and reveal 

average annual frequency of peak surge events has increased 40% and magnitude of peak surge 

increased by ~12% relative to the 1930-1960 baseline.  
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Table 4-10. 30-Year Averages for Frequency and Magnitude of Peak Surge. 

Time Period Average Frequency Average Magnitude (m) 

1900-1930 0.57 2.96 

1930-1960 1.00 2.01 

1960-1990 1.27 2.14 

1990-2020 1.40 2.14 

 

Accounting for percent changes from the baseline period, Figure 4-18 displays the adjusted 

return periods for peak surge events in Texas and Louisiana. Results summarized in Table 4-11 

reveal an increase of ~2.1 to 2.8m of peak surge magnitudes corresponding to the standard return 

periods. 

 

 
Figure 4- 18. Logarithmic plot of peak storm surge magnitude and return periods for Texas and 

Louisiana estimated using updated SURGEDAT data from 1900-2020 (blue) and estimated 

future return periods (orange) based on percent changes in 30-year averages of frequency and 

magnitude between 1930-1960 and 1990-2020. 
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Table 4-11. Return periods adjusted for percent change in frequency and magnitude from 1930-

1960 to 1990-2020 30-year averages. 

Return Period (years) Calculated Surge Height 

(meters) 

Historical Surge Height 

(meters) 

10 6.46 4.37 

25 8.05 5.79 

50 9.24 6.86 

75 9.94 7.48 

100 10.44 7.93 

500 13.22 10.42 

 

Calculating the THI for each location over 40-year time periods from 1901 to 2020 allows for 

investigation of how, and if, tropical cyclone activity at these locations has changed over the past 

120 years. Results, summarized in Table 4-12, reveal interesting spaciotemporal patterns in 

tropical cyclone activity when examining the total THI by location and return period. Locations 

in South Texas such as Port Isabel, Corpus Christi, and Rockport have THIs below 100 from 

1901-1940 and 1981-2020 but have THIs above 100 from 1941-1980. Except for Freshwater 

Canal from 1941-1980, all other locations have THIs above 100 during all time periods. 

Matagorda City and Galveston THIs fluctuate very little over the past 120 years and locations 

from the eastern Texas border east into Louisiana show some changes in total THI over time. 

Grand Isle has the highest THI from 1901-1940 and 1981-2020 while Sabine Pass had the 

highest THI during 1941-1980. In general, this indicates the central and eastern portions of the 

study area (Sabine Pass east to Grand Isle) have historically experienced the greatest hazards 

from tropical cyclones compared to southern Texas.  

 

Table 4-12. THI by location and return period. Percent contribution from tropical storms (TS), 

hurricanes (H), major hurricanes (MH) presented with the total (TOT) THI. 

Period 1901-1940 1941-1980 1981-2020 

Category TS H MH TOT TS H MH TOT TS H MH TOT 

Port Isabel 11 53 36 90 12 11 77 114 9 30 61 66 

Corpus Christi 9 48 43 92 15 17 68 118 23 23 55 88 

Rockport 7 34 59 82 15 15 70 104 26 21 53 76 

Matagorda 9 40 51 110 14 29 57 112 16 40 44 110 

Galveston 7 26 67 108 19 27 54 104 21 34 45 106 

Sabine Pass 8 28 64 100 17 34 49 130 16 40 44 110 

Freshwater Canal 16 25 58 110 19 38 43 94 7 38 55 116 

Grand Isle 13 33 53 120 21 36 43 112 16 27 58 180 

 

    With only two exceptions during the earliest return period, major hurricanes represent the 

greatest percent contribution to the weighted index for all locations and times. From 1901-1940, 

9 hurricanes of category 3 or higher, the most for that time, impacted Galveston. From 1941-

1980, Port Isabel had the most major hurricanes with 11, and from 1981-2020, Grand Isle ranks 

highest with 13 major hurricanes. This does not indicate any spaciotemporal pattern within the 

study area of the northern GOM for major hurricane strikes, leaving great uncertainty remaining 

about how often or where a major hurricane will make landfall in the northern GOM.  
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    Results of the THI are visualized in Figure 4-19 showing the contributions from tropical 

storms, hurricanes, and major hurricanes along with the total THI for each return period. While 

the peak surge return periods for the entire area (Figure 4-18) indicate an increasing risk of 

higher magnitude storm surges occurring more frequently overall, the THI for each location does 

not indicate any reliable trends or patterns in tropical cyclone activity to confirm this potential 

change in surge risk.  

 

 
Figure 4- 19. THI by location for (a) 1901-1940, (b) 1941-1980, and (c) 1981-2020. Colors 

represent the weighted contributions to the total THI from tropical storms (green), hurricanes 

(yellow), and major hurricanes (red) while the size of the pie represents the total THI. 
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4.4.6 Case Study: Baton Rouge, LA area 

In this section, results of the case study in southeastern Louisiana regarding storm tide risks to 

vulnerable populations are presented. The study area was chosen for its proximity to the two 

largest cities in Louisiana by population, New Orleans, and Baton Rouge. The city of New 

Orleans was not included due to its post-Katrina upgraded levee system. Figure 4-20 displays the 

study area with major roads and interstates overlaid over the map DEM. Inspection of the DEM 

reveals lowest elevations exist south of Interstate-12 with rapidly increasing elevation moving 

north of that highway. The cities of Baton Rouge and Hammond are placed in locations of 

relatively higher ground than Gonzalez, LaPlace, and New Orleans.  

 
Figure 4- 20. The case study area with locations, major roads and highways overlayed over the 

map of the 10-meter resolution USGS digital elevation model. 

 

Storm tide inundation maps under current sea level conditions (Figure 4-21) for category 1, 3, 

and 5 hurricanes reveal extensive inundation in the lower elevations of the study area. Category 1 

storm tides result in possible inundation up to 12 feet (~3.6 m) and impact an estimated 380,000 

people that live in the inundated area. Category 3 storm tide results in increased area and depth 

of inundation that affects ~630,000 people with inundation heights of up to over 15 ft (~4.6 m). 

While the category 5 storm tide inundation area increase from category 3 is modest due to 

elevation increases moving northward in the study area, the area with inundation heights of over 
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Figure 4- 21. Storm tide inundation map for (a) category 1, (b) category 3, and (c) category 5 

hurricane occurring at high tide. Map layers acquired from the National Storm Surge Risk Map 

Version 3 (NHC). 
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15 ft (~4.6 m) expand to affect an additional ~40,000 people. As RSLR occurs over time, storm 

tides will increase in height and will affect a greater area of inundation depending on topography.  

The maximum area of inundation from storm tides enhanced by the extreme RSLR probabilistic 

scenario is mapped in Figure 4-22 depicting the areas of inundation for category 1, 3, and 5 as 

well as the category 5 storm tide under the extreme RSLR scenario. Under this scenario a 

category 5 hurricane would produce a storm tide that potentially impacts all major highways, 

including Interstate-12, and populations in the cities of Hammond and Baton Rouge that would 

not be affected under current sea level conditions. Area of inundation increases significantly 

between the category 1 and 3 storm tides, but a relatively modest increase in area is observed 

between category 3 and 5, as well as with the addition of the RSLR scenario. Therefore, the 

maximum area of inundation under future scenarios is restrained by the topography of the region 

and RSLR will result in storm tides producing higher inundation above ground in areas currently 

at risk of flooding and a modest increase in area affected by up to 3 ft (~1 m) inundation. Maps 

for the three hurricane categories with the addition of the three RSLR scenarios are shown in 

Figure 4-23 and total population affected by category and scenario are estimated in Figure 4-24. 

 
Figure 4- 22 Storm tide inundation area resulting from hurricane category 1 (blue), 3 (yellow), 

and 5 (red) mapped with the extreme RSLR scenario (bright green) and 10-meter resolution 

DEM elevation map. Due to higher elevation north of Interstate 12, inundation area increases 

modestly with extreme sea level rise. 
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Figure 4- 23. Storm tide inundation map with RSLR projections for 2091-2100 relative to 1991-

2009 for (a) category 1, (b) category 3, and (c) category 5 hurricane occurring at mean high tide 

(MHHW) plotted with RCP-based RSLR scenarios estimating the increase in inundation area for 

each scenario. 
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These results indicate that storm tides will impact a greater number of people under RSLR 

with the largest changes observed in the category 1 storm tide enhanced by RSLR. While the risk 

of flooding from a major hurricane remains high, these results indicate the greatest change in risk 

with future RSLR scenarios comes from storm tides produced by lower category storms.  

 

 
Figure 4- 24. The estimated total population affected by maximum storm tide modeled on 

category 1, 3, and 5 hurricanes for the case study area (current) plotted with the estimated 

additional population affected with RSLR scenarios intermediate (Int), intermediate-high, (Int-

High), and extreme (Ext). Estimated populations based on SVI 2018 tracts. 

 

SVI tracts have been overlaid with the maximum area of inundation of the extreme RSLR 

scenario for the three hurricane classes (Figure 4-25) to examine the impacts of the vulnerability 

and risk of populations to flooding. The three SVI tracts containing the most vulnerable 

populations, seen in the map as orange and red colors, are located within the city of Baton Rouge 

at relatively higher elevations than the remaining vulnerable tracts. Of the tracts located in lower 

elevations, five are in the 90th percentile for mobile homes which are at higher risk of damage 

from flooding than traditional homes and three of those five are in areas that, under current sea 

level, can potentially receive up to 12 ft (~3.6 m) of flooding from a category 1 storm tide. The 

remaining vulnerable tracts are in the 90th percentile for disabilities, and populations above 65 or 

below 17 years of age. Under the extreme RSLR scenario, category 1 hurricane storm tide affects 

10 tracts  
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Figure 4- 25. Maps displaying vulnerable tracts based on SVI variables for (a) category 1, (b) 

category 3, and (c) category 5 hurricane storm tide under the extreme RSLR scenario.  
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classified as vulnerable, category 3 storm tide affects 13 tracts, and category 5 storm tide affects 

19 tracts. Table 4-13 describes the vulnerability classifications based on SVI 2018 variables (see 

also section 4.3.5).   

 

Table 4-13. Classification of vulnerability based on the 90th percentile of the Social Vulnerability 

Index variables of (1) below poverty, (2) age 65 or older, (3) age 17 or younger, (4) civilians 

with disabilities, (5) mobile homes, (6) no vehicle. 

Classification Vulnerable Very Vulnerable Extremely 

Vulnerable 

Number of variables 

in the 90th percentile 

1-3 4-5 >5 

 

 

4.4.7 Case Study: Houston/Galveston, TX Area 

 The study area was chosen for its high population and coastal proximity as well as the 

location’s history of flooding associated with storm tides. The study area contains two locations 

at Texas City and the Lake Jackson/Freeport area that were excluded from analysis due to the 

levees that surround them. Figure 4-26 shows the location of the study area relative to the GOM 

coast, landmark cities, major roads and interstates, and the DEM. Inspection of the DEM reveals 

 
Figure 4- 26. Harris county, Texas, 10-meter resolution USGS digital elevation with major cities, 

Texas and interstate highways. 
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the lowest elevations exist directly on the coast with gradual increase in elevation moving north 

and west from the coast. Houston, the most populated city in Texas, sits on relatively higher 

ground than coastal locations such as Galveston Island but is hydrologically connected to the bay 

through a series of rivers and bayous. 

The storm tide inundation maps under current sea level (Figure 4-27) show the relative 

flooding above ground for category 1, 3, and 5 hurricanes. A category 1 storm tide results in 

inundation up to 6 feet (~1.8 m) affecting ~380,000 people that live in the area directly on the 

coast while denser populations inland remain unaffected. 

Category 3 storm tide results in an increased area of risk representing ~1 million residents 

who live along the coast as well as the more densely populated cities along the Interstate-45 

corridor. The inundation depths for a category 3 storm tide are up to ~12-15 feet (~3.6-4.6 m) 

closest to the coast, including Galveston and ~6-12 feet (~1.8-3.6 m) in locations directly on the 

bay. The category 5 storm tide map reveals increased height of inundation up to over 15 feet 

(~4.6 m) that extends further inland to affect densely populated areas along the Interstate-45 and 

Interstate-10 corridors as well as the Houston metropolitan area. Storm tides of this magnitude 

would reverse the drainage of the streams and bayous leading to compound flooding from the 

intense precipitation of the hurricane. The maximum area of inundation from the three categories 

of storm tides and the category 5 storm tide enhanced by the extreme RSLR probabilistic 

scenario is mapped in Figure 4-28. The results indicate an increase in inundation area under the 

extreme scenario that affects areas of high population density including downtown Houston, 

eastern Harris County, and major highways. The estimated number of residents affected by a 

category 5 storm tide by 2100 under this scenario is ~2.4 million if population numbers do not 

change. In the Houston-Galveston area, elevation increases modestly from the coast resulting in 

an increase of inundation area with each category storm tide under each RSLR probabilistic 

scenario (Figure 4-28) rather than the moderate increase in area seen in the Baton Rouge, LA, 

area (Figure 4-22). Additionally, the results in Figure 4-29 suggest that the Intermediate and 

Intermediate-High scenarios that are more likely to occur than the extreme, significantly increase 

the inundation area for category 3 and 5 hurricanes in this region. Total population affected by 

category and scenario are estimated in Figure 4-30. 
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Figure 4- 27. Storm tide inundation map for (a) category 1, (b) category 3, and (c) category 5 

hurricane occurring at high tide. Map layers acquired from the National Storm Surge Risk Map 

Version 3 (NHC). 
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Figure 4- 28. The three categories of storm tide inundation area mapped with the most extreme 

RSLR hurricane category 5 scenario (bright green), category 5 areal flooding (red), category 3 

areal flooding (yellow), category 1 areal flooding (blue), and 10-meter resolution USGS DEM 

contour shading (brown to light grey). Area of inundation increases significantly with the 

extreme scenario due to low sloping coastline. 
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Figure 4- 29. Storm tide inundation map with RSLR projections for a hurricane a) category 1, b) 

category 3, and c) category 5 occurring at mean high tide (MHHW) plotted with RSLR scenarios 

estimating the increase in inundation area for each scenario. 
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Figure 4- 30. The estimated total population affected by maximum storm tide modeled on 

category 1, 3, and 5 hurricanes for the case study area (current) plotted with the estimated 

additional population affected with RSLR scenarios intermediate (Int), intermediate-high, (Int-

High), and extreme (Ext). Estimated populations based on SVI 2018 tracts. 

 

 Areas of inundation under the extreme RSLR probabilistic scenario for the three categories of 

storm tides are overlaid with vulnerable populations derived from the SVI in Figure 4-31. The 

Houston-Galveston area contains many vulnerable tracts as defined in section 4.3.5 including 

many with multiple variables in the 90th percentile visualized in orange and red colors on the 

maps. Tracts defined as extremely vulnerable are in the 90th percentile for below poverty, age 65 

or older, age 17 or younger, disabilities, mobile homes, and no vehicle as estimated by the SVI 

(2018). Under the extreme RSLR scenario a category 1 hurricane storm tide affects 30 tracts 

defined as vulnerable to extremely vulnerable, category 3 affects 73 tracts, and category 5 

impacts 94 tracts. U.S. Census tracts are small in densely populated regions, therefore Figure 4-

32 details the Houston metropolitan area and Galveston to visualize the number and locations of 

the vulnerable populations. In Galveston, the most vulnerable tracts are in areas of inundation of 

12 to over 15 feet with a storm tide of a hurricane category 5 under recent sea level indicating the 

need for evacuation during the event. These populations may have a combination of the elderly, 

the disabled, young people, households with no personal vehicle, and households of modest 

financial means. Therefore, it is important to identify these tracts and make provisions to aid in 

the evacuation process.  
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Figure 4- 31. Maps displaying vulnerable tracts based on SVI variables for (a) category 1, (b) 

category 3, and (c) category 5 hurricane storm tide under the extreme RSLR scenario.  
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In the Houston area, a large proportion of the most vulnerable tracts are located near the margins 

of the inundation area under the extreme scenario by 2100 where inundation heights of 1-3 feet 

(~0.3-1.0 m) would be expected. This suggests action is needed to mitigate flooding in these 

areas by 2100 to decrease the impacts to the most vulnerable populations and the total population 

in general.   

 

 
Figure 4- 32. Detailed maps of vulnerable populations affected by a category 5 storm tide under 

the extreme RSL scenario for Houston (top-right panel) and Galveston (bottom-right panel). 

 

 The differences seen in the results of the case studies of the Baton Rouge, LA, area and the 

Houston/Galveston, TX, area highlight the importance of location-specific analysis as 

topography plays a significant role in the area and height of inundation from storm tides. While 

the storm tide layers developed from the SLOSH model cannot be analyzed at the individual 

parcel level needed, for instance, to develop FEMA flood maps for flood insurance, they are 

useful on the community/city level for risk assessment and planning. Identifying vulnerable 

populations by tract at a city or county (parish) scale is the best use of the capabilities of the 

SLOSH model output. 
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4.4.7 Summary of Results 

 The PDFs of annual hourly tide gauge measurements recorded at Galveston, Rockport, and 

Port Isabel reveal an increasing MSL over the past decades to the present with the upper tails 

indicative of approaching or exceeding the flood threshold more frequently in modern times. 

This indication is examined in more detail with the results of daily and hourly HTF at six tide 

gauge locations with an adequate record. As MSL has increased over the past 40 years, the 

frequency and duration of HTF events has increased substantially with the greatest increase in 

locations with higher tidal rages. While these trends are equivalent to those calculated by NOAA 

using a common impact threshold, using the site-specific flood threshold levels produces more 

refined HTF days and hours. Spectral analysis results reveal that HTF events in the study area 

occur seasonally in late-summer to early-fall because of the superimposition of the peak of the 

seasonal MSL cycle with the peak in NTR resulting from peak hurricane season. This indicates 

the main influences driving HTF in the study area are RSLR and NTR, with tropical cyclone 

activity being the main contributor to NTR. 

 Trend analysis of tropical cyclone activity in the Atlantic basin reveals an increasing trend in 

tropical storms, hurricanes, and major hurricanes over the historical record. However, no 

statistically significant trends were found to indicate this increase in activity has led to an 

increase in landfalls, and therefore surge events, in the Atlantic or the northern GOM. In 

addition, the Atlantic tropical cyclone activity appears to be positively correlated with warm 

phases of the AMO. However, correlation between the AMO (and other climate variations) and   

tropical cyclones making landfall in the western GOM appears to be less obvious. Peak surge 

history does reveal that 4 of the 8 largest storm tides recorded in the study have occurred since 

2005 with Hurricane Katrina recording the highest water levels corresponding to a greater than 

100-year surge event.  

 Accounting for percent changes in storm surge frequency and magnitude from the 1930-1960 

baseline, adjusted return periods show that a surge of equal magnitude to Hurricane Katrina 

would correspond to a 25-50-year surge event if the trends of increasing frequency and 

magnitude continue. Investigating these trends regarding tropical cyclone activity, the THI 

results do not show significant trends that indicate an increase in hazards directly from tropical 

cyclone activity, but they do indicate total THI has been consistently higher in the central to 

eastern portions of the study area (Sabine Pass east to Grand Isle) over the last 120 years. 

Considering the changes observed in the peak surge history and lack of strong evidence to prove 

otherwise, the increase in RSL must be the main contributing factor to the increase in frequency 

and magnitude of surge events.  

 While case study results will vary depending on the topography, infrastructure, and existing 

flood defenses in the chosen area of interest, mapping the addition of RSLR scenarios to storm 

tides modeled under current sea level provides a method of identifying areas of potentially 

increased vulnerability over time as the RSL rises. The results for the Baton Rouge, LA, area 

indicate the greatest increase in inundation area from RSLR and storm tide arises from lower 

category hurricanes, while major hurricanes represent an increased height of flooding equal to 

the RSLR of maximum surge and a minimal increase in inundation area due to topographical 

restraints. Results for the Houston-Galveston area indicate the risk of inland inundation from 

major hurricanes increases under all RSLR scenarios to include densely populated areas. The 

topography of the Houston-Galveston area does not restrict inundation area, therefore as RSL 

rises, the area of inundation increases proportionately. The results of mapping storm surge with 

vulnerable populations reveal those populations at greatest risk of flooding from storms now and 
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into the future with increasing RSL. These vulnerable populations will be disproportionally 

affected by major flooding events and may require more assistance to evacuate prior to the event, 

making it important to identify these areas and plan actions necessary to evacuate the area, 

protect the area with flood defenses, or eventually relocate the population. 

 

4.5 Discussion 

Trends in frequency and magnitude of tropical cyclone activity are biased by the fact that 

satellite records of cyclones exist since 1961 while tide gauges have recorded data for up to 100 

years and provide a spatially incomplete record. Hence, multidecadal trends in tropical cyclone 

activity may not be completely captured by the record. Efforts in paleoclimatology have been 

made to observe tropical cyclone activity in the geologic record dating as far back as 10,000 

years, however dating of sedimentary layers remain uncertain due to bioturbation. On the Gulf 

coast, sediment cores of near-shore freshwater lakes revealed layers of coarse sediment, the most 

recent of which correspond to known category 4 and 5 storms (Liu and Fearn, 1993). When these 

storms track over the lakes, ocean water intrudes leaving these coarse sediments behind in 

episodic layers (Emanuel, 2006). Analysis of cores from four sites along the Northern Gulf coast 

established that, at these locations, the probability of a landfalling category 4 or 5 hurricane is 

0.1% from 5000 to 3800 years ago and during the past 1000 years (Liu, 2007). Additionally, it 

was determined that from 3800 to 1000 years ago, that probability was 0.5%, suggesting a 2800-

year period of much higher major hurricane activity in the area compared to the modern 

millennium (Liu, 2007). It is hypothesized that this period of increased hurricane activity was 

due to a southwesterly shift in the location of the Bermuda High resulting in more storms being 

channeled into the Gulf of Mexico during that time. A longer time series and high-resolution 

modeling may provide more insights in such a relationship. 

Increase in hurricane frequency during La Niña could have influenced more extreme water 

levels in the GOM over the last 150 years. However, the dominant ENSO phase appears to be 

out of phase with the Atlantic hurricane season (Kennedy et al., 2007). Analysis of the 

relationship between ENSO and GOM hurricanes is limited because the number of storms in the 

record are too few to confirm ENSO-related variability and further study is required to determine 

what, if any, influence ENSO has on flooding in the study area. It is also worth noting that 

research suggests ENSO has little influence on HTF events in the region (Sweet et al., 2014), 

therefore analysis of ENSO in this study is limited to its influence on the number and intensity of 

Atlantic basin tropical cyclones.   

 Elevated precipitation and tsunamis may also cause flooding along the Texas and Louisiana 

coasts. According to the USGS and the National Tsunami Hazard Mitigation Program, tsunamis 

are rare in the GOM with three small tsunami events recorded by tide gauges over the last 120 

years (ten Brink et al., 2009). Tsunami events, triggered by subduction-induced earthquakes, 

local submarine landslides or disturbances by the Caribbean microplates could be a potential 

tsunami hazard in the GOM. Submarine landslides can occur due to many factors including rapid 

soil sediment deposition, weak soil layers, wave loading on bottom sediments by storms, and 

others, however research indicates earthquakes are the main trigger for a submarine landslide to 

produce a tsunami (Pampell-Manis et al., 2016). Although resulting submarine landslides are 

rare and were most active prior to 7000 years ago during a period of large sediment deposition, 

they are considered a potential flood hazard in the GOM with an estimated return period of 5000-

8000 years (Pampell-Manis et al., 2016).  
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 An increase in global surface air temperature due to anthropogenic-induced climate change 

causes an increase in thermal expansion of seawater of up to 2 m by the year 2100 (Rahmstorf, 

2010). Additionally, increased global mean temperature results in an increase of the water-

holding capacity of the atmosphere (Trenberth et al., 2003). Globally averaged, the increase in 

atmospheric water-holding capacity will lead to heavier precipitation when it rains and increases 

the risk of extreme rainfall, thus increasing the risk of flooding from precipitation events not 

necessarily associated with tropical cyclones. With the global hydrological cycle being balanced 

through the conservation of mass, an increase in heavy precipitation events implies a reduction 

of light/moderate rain events and/or a decrease in the overall frequency of rain events as found 

by Hennessey et al. (1997). Studies using a coupled atmospheric-ocean general circulation model 

showed that doubling the atmospheric carbon dioxide in model simulations resulted in a decrease 

in the frequency of rainfall intensities less than the 85th percentile while heavy precipitation 

events increased (Allen and Ingram, 2002). Future climate studies suggest that precipitation in 

Texas may increase by a 7% increase in the 100-year rainfall amount from 1960. This 

corresponds to an increase of 30% in the frequency of heavy precipitation exceeding the 100-

year threshold with projections to 2036 of an additional 6%-10% compared to 1950-1999 

(Nielson-Gammon, et al., 2021). According to the study, these changes would equate to a 30%-

50% increase in the probability of extreme precipitation in all of Texas compared to 1950-1999 

and thus raises the risk of flooding of coastal plains.  

 

4.6 Conclusion 

This study demonstrates that an increasing risk of exceeding flood threshold levels resulting 

in HTF due to the combination of the astronomical tides, RSLR, and storm-related non-tidal 

residuals in coastal locations of Texas and Louisiana exist. Additionally, this study aimed to 

establish RSLR as the main driver of increased risk of tropical cyclone-induced storm tide 

inundation in the study area and to investigate changes in tropical cyclone climatology that lead 

to an increasing threat of major hurricanes. RSL has increased since 1980, HTF days and 

cumulative hours above the flood threshold have increased, particularly at locations with higher 

tidal ranges, with an acceleration in the most recent decade. Spectral analysis of tidal 

components indicates that threshold exceedance is seasonal, peaking in the height of Atlantic 

hurricane season, due to the combination of the peak of the seasonal MSL cycle and the storm 

driven NTR. The results extend the analysis of Sweet et al. (2014) and demonstrate a clear 

acceleration of HTF by including the most recent data and improve the accuracy in estimations 

of total HTF days and hours by using site-specific flood threshold levels rather than a common 

impact threshold (Sweet et al., 2018).  

 Warm phases of AMO and La Niña events appear to favor tropical storm formation in the 

Atlantic Ocean but correlation to storm frequency and estimated tidal return periods in the 

western GOM appears to be more ambiguous. While tropical cyclone activity may be increasing 

globally, the western GOM is more influenced by RSLR. 

 A steady increase in RSLR resulting in HTF over the coming decades will be likely more 

substantial than historic “nuisance” flooding.  Flooding events will become more frequent, last 

longer, and cluster more together. Storm tides that currently represent the greatest flooding risk 

to life and property, will be higher in magnitude and affect a larger area as RSLR continues. This 

will be particularly evident as lower category storms that occur more frequently than major 

hurricanes will produce storm tides enhanced by RSLR with magnitudes like a major hurricane 

under current sea level conditions.  



 

101 
 

References 

 

Allen, M. R., and Ingram, W. J. (2002). Constraints on future changes in climate and the  

 hydrologic cycle. Nature, 419(6903), 228-232. 

 

Arns, A., Wahl, T., Dangendorf, S., and Jensen, J. (2015). The impact of sea level rise on storm  

surge water levels in the northern part of the German Bight. Coastal Engineering, 96, 118-

131. 

 

Biasutti, M., Sobel, A. H., Camargo, S. J., and Creyts, T. T. (2012). Projected changes in the       

 physical climate of the Gulf Coast and Caribbean. Climatic change, 112(3), 819-845. 

 

Blake E. S., and Zelinsky, D. A. (2018). National Hurricane Center Tropical Cyclone Report: 

 Hurricane Harvey. Publication AL092017. National Hurricane Center, Miami, FL, 3-12. 

 

 

Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N. (2012). Aerosols  

implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 

484(7393), 228-232. 

 

Bove, M. C., Elsner, J. B., Landsea, C. W., Niu, X., and O'Brien, J. J. (1998). Effect of El Niño  

on US landfalling hurricanes, revisited. Bulletin of the American Meteorological Society, 

79(11), 2477-2482. 

 

Cane, M. A., Clement, A. C., Murphy, L. N., and Bellomo, K. (2017). Low-pass filtering, heat  

 flux, and Atlantic multidecadal variability. Journal of Climate, 30(18), 7529-7553. 

 

Chan, J. C., and Shi, J. E. (1996). Long‐term trends and interannual variability in tropical  

 cyclone activity over the western North Pacific. Geophys. Res. Lett., 23(20), 2765-2767. 

 

Colbert, A. J., and Soden, B. J. (2012). Climatological variations in North Atlantic tropical 

 cyclone tracks. Journal of climate, 25(2), 657-673. 

 

Devlin, A. T., Pan, J., and Lin, H. (2019). Extended spectral analysis of tidal variability in the 

 North Atlantic Ocean. Journal of Geophysical Research: Oceans, 124(1), 506-526. 

 

Elsner, J. B., Bossak, B. H., and Niu, X. F. (2001). Secular changes to the ENSO‐US hurricane  

 relationship. Geophy. Res. Lett., 28(21), 4123-4126. 

 

Elsner, J. B., Jagger, T. H., and Tsonis, A. A. (2006). Estimated return periods for Hurricane 

 Katrina. Geophys. Res. Lett., 33(8). 

 

Emanuel, K. (2006). Anthropogenic effects on tropical cyclone activity. Position Paper, 

 Program in Atmospheres Oceans and Climate: MIT. 

 



 

102 
 

Emanuel, K., Sundararajan, R., and Williams, J. (2008). Hurricanes and global warming: Results 

 from downscaling IPCC AR4 simulations. Bulletin of the American Meteorological 

 Society, 89(3), 347-368. 

 

Emanuel, K. A. (2013). Downscaling CMIP5 climate models shows increased tropical cyclone 

 activity over the 21st century. Proceedings of the National Academy of Sciences, 110(30), 

 12219-12224. 

 

Goldenberg, S. B., and Shapiro, L. J. (1996). Physical mechanisms for the association of El Niño  

and West African rainfall with Atlantic major hurricane activity. Journal of Climate, 9(6), 

1169-1187. 

 

Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., and Gray, W. M. (2001). The recent  

 increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474-479. 

 

Gray, W. M. (1984). Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi- 

 biennial oscillation influences. Monthly weather review, 112(9), 1649-1668. 

 

Harris, D. L. (1963). Characteristics of the hurricane storm surge (No. 48). Department of 

 Commerce, Weather Bureau, 1-19. 

 

Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. 

 A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., 

 Thorne, P. W., Wild, M., and Zhai, P. (2013). Observations: atmosphere and surface. In 

 Climate change 2013 the physical science basis: Working group I contribution to the fifth 

 assessment report of the intergovernmental panel on climate change (pp. 159-254). 

 Cambridge University Press. 

 

Hassanzadeh, P., Lee, C. Y., Nabizadeh, E., Camargo, S. J., Ma, D., and Yeung, L. Y. (2020). 

 Effects of climate change on the movement of future landfalling Texas tropical 

 cyclones. Nature communications, 11(1), 1-9. 

 

Hennessy, K. J., Gregory, J. M., and Mitchell, J. F. B. (1997). Changes in daily precipitation  

 under enhanced greenhouse conditions. Climate Dynamics, 13(9), 667-680. 

 

Huff, F. A., and Angel, J. R. (1992). Rainfall frequency atlas of the Midwest. Bulletin (Illinois 

 State Water Survey) no. 71. 

 

Keim, B. D., Muller, R. A., and Stone, G. W. (2007). Spatiotemporal patterns and return periods 

 of tropical storm and hurricane strikes from Texas to Maine. Journal of climate, 20(14), 

 3498-3509. 

 

Kennedy, A. J., Griffin, M. L., Morey, S. L., Smith, S. R., and O'Brien, J. J. (2007). Effects of El  

Niño–Southern Oscillation on sea level anomalies along the Gulf of Mexico coast. Journal of 

Geophysical Research: Oceans, 112(C5). 

 



 

103 
 

Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C. H., Kossin, J., Mohapatra, M., 

 Satoh, M., Sugi, M., Walsh, K., and Wu, L. (2020). Tropical cyclones and climate change 

 assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American 

 Meteorological Society, 101(3), E303-E322. 

 

Kossin, J. P. (2018). A global slowdown of tropical-cyclone translation speed. Nature, 

 558(7708), 104-107. 

 

Landsea, C. W. (1993). A climatology of intense (or major) Atlantic hurricanes. Monthly 

 weather review, 121(6), 1703-1713. 

 

Liu, K. B., and Fearn, M. L. (1993). Lake-sediment record of late Holocene hurricane activities 

 from coastal Alabama. Geology, 21(9), 793-796. 

 

Liu, K. B. (2007). Uncovering Prehistoric Hurricane Activity: Examination of the geological 

 record reveals some surprising long-term trends. American Scientist, 95(2), 126-133. 

 

Mann, M. E., and Emanuel, K. A. (2006). Atlantic hurricane trends linked to climate change. 

 Eos,Transactions American Geophysical Union, 87(24), 233-241. 

 

Mann, M. E., Steinman, B. A., Brouillette, D. J., and Miller, S. K. (2021). Multidecadal climate 

 oscillations during the past millennium driven by volcanic forcing. Science, 371(6533), 1014-

 1019. 

 

Moore, G. W. K., Halfar, J., Majeed, H., Adey, W., and Kronz, A. (2017). Amplification of the 

 Atlantic Multidecadal Oscillation associated with the onset of the industrial-era warming. 

 Scientific Reports, 7(1), 1-10. 

 

Needham, H. (2010). Identifying historic storm surges and calculating storm surge return periods 

 for the Gulf of Mexico coast. 

 

Needham, H. F., & Keim, B. D. (2012). A storm surge database for the US Gulf Coast. 

 International Journal of Climatology, 32(14), 2108-2123. 

 

Needham, H. F. (2014). A Data-Driven Storm Surge Analysis for the US Gulf Coast. 

 

Nielsen-Gammon, J., Escobedo, J., Ott, C., Dedrick, J., and Van Fleet, A. (2020). Assessment of  

 historic and future trends of extreme weather in Texas, 1900-2036. 

 

Neumann, C. J. (1987). The national hurricane center risk analysis program (HURISK). NOAA 

 Tech. Mem. NWS NHC 38. National Hurricane Center, Coral Gables, FL. 56 pp. 

 

Pampell‐Manis, A., Horrillo, J., Shigihara, Y., and Parambath, L. (2016). Probabilistic  

assessment of landslide tsunami hazard for the northern Gulf of Mexico. Journal of 

Geophysical Research: Oceans, 121(1), 1009-1027. 

 



 

104 
 

Pielke Jr, R. A., and Landsea, C. N. (1999). La Nina, El Nino, and Atlantic hurricane damages in 

 the United States. Bulletin of the American Meteorological Society, 80(10), 2027-2034. 

 

Rahmstorf, S. (2010). A new view on sea level rise. Nature Climate Change, 1(1004), 44-45. 

 

Ray, R. D., Loomis, B. D., and Zlotnicki, V. (2021). The mean seasonal cycle in relative sea  

 level from satellite altimetry and gravimetry. Journal of Geodesy, 95(7), 1-21. 

 

Saunders, M. A., and Lea, A. S. (2008). Large contribution of sea surface warming to recent 

 increase in Atlantic hurricane activity. Nature, 451(7178), 557-560. 

 

Scherer, W., Stoney, W. M., Mero, T. N., O′ Hargan, M., Gibson, W. M., Hubbard, J. R., Weiss, 

 M. I., Varmer, O., Via, B., Frilot, D. M., and Tronvig, K. A. (2001). Tidal Datums and Their 

 Applications. NOAA Special Publication, CO-OPS 1. National Oceanic and Atmospheric 

 Administration, National Ocean Service, Silver Spring, MD 112 pp. 

 

Schlesinger, M. E., and Ramankutty, N. (1994). An oscillation in the global climate system of 

 period 65–70 years. Nature, 367(6465), 723-726. 

 

Smith, J. M., Cialone, M. A., Wamsley, T. V., and McAlpin, T. O. (2010). Potential impact of  

sea level rise on coastal surges in southeast Louisiana. Ocean Engineering, 37(1), 37-47. 

 

Sweet, W., Park, J., Marra, J., Zervas, C., and Gill, S. (2014). Sea level rise and nuisance flood 

 frequency changes around the United States. NOAA Tech. Rep. NOS CO-OPS 073. National 

 Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD. 58 

 pp.  

 

Sweet, W. V., and Park, J. (2014). From the extreme to the mean: Acceleration and tipping 

 points of coastal inundation from sea level rise. Earth's Future, 2(12), 579-600. 

 

Sweet, W. V., Dusek, G., Obeysekera, J. B., and Marra, J. J. (2018). Patterns and projections of 

high tide flooding along the US coastline using a common impact threshold. NOAA Tech. 

Rep. NOS CO-OPS 086. National  Oceanic and Atmospheric Administration, National 

Ocean Service, Silver Spring, MD. 44 pp. 

 

Ten Brink, U., Twichell, D., Lynett, P., Geist, E., Chaytor, J., Lee, H., Buczkowski, B., and  

Flores, C. (2009). Regional assessment of tsunami potential in the Gulf of Mexico, US 

Geological Survey Administrative Report. 

 

Thompson, P. R., Widlansky, M. J., Hamlington, B. D., Merrifield, M. A., Marra, J. J., Mitchum, 

 G. T., and Sweet, W. (2021). Rapid increases and extreme months in projections of United 

 States high-tide flooding. Nature Climate Change, 11(7), 584-590. 

 

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. (2003). The changing character  

 of precipitation. Bulletin of the American Meteorological Society, 84(9), 1205-1218. 

 



 

105 
 

Wahl, T. (2017). Sea-level rise and storm surges, relationship status: complicated!. 

 Environmental Research Letters, 12(11). 

 

Wallace, J. M., and Hobbs, P. V. (2006). Atmospheric science: an introductory survey (Vol. 92). 

 Elsevier, 366-370. 

 

Wang, S., and Toumi, R. (2021). Recent migration of tropical cyclones toward coasts. Science, 

 371(6528), 514-517. 

 

Yamaguchi, M., Chan, J. C., Moon, I. J., Yoshida, K., and Mizuta, R. (2020). Global warming 

 changes tropical cyclone translation speed. Nature communications, 11(1), 1-7. 

 

Zachry, B. C., Booth, W. J., Rhome, J. R., and Sharon, T. M. (2015). A national view of storm  

 surge risk and inundation. Weather, climate, and society, 7(2), 109-117. 

 

Zervas, C. E. (2009). Sea level variations of the United States, 1854-2006. NOAA Tech. Rep. 

 NOS CO-OPS 053. National Oceanic and Atmospheric Administration, National Ocean 

 Service, Silver Spring, MD. 76 pp. 

 

 

 

 

 

 

 

  



 

106 
 

Chapter 5: Concluding Remarks and Future Perspective 
 

5.1 Summary and Conclusion  

This dissertation addressed the hypothesis that sea level rise is increasing the frequency, 

magnitude, and duration of coastal flooding events in Texas and Louisiana representing an 

increasing risk to currently vulnerable locations and a future risk expanding to areas not 

historically affected. This was achieved through analysis of historical observations of water 

levels and tropical cyclones with associated storm surges, as well as storm surge model output 

and future projections of relative sea level rise and trends in tropical cyclone climatology. 

Water levels recorded by tide gauges since the early 20th century were utilized to quantify the 

rate of relative sea level rise, the number and duration of high tide flooding events from 1980-

2019, the evolution of mean sea level and the probability of flood threshold exceedance. Spectral 

analysis of hourly tide gauge data was employed to examine the tidal components that contribute 

to water levels above flood thresholds. Records of tropical cyclone activity, landfalls, and peak 

surge were updated with verified data to 2020 and used to detect trends in the record, examine 

correlations with climate oscillations, estimate peak surge return periods, and calculate the 

tropical hazard index. The National Weather Service’s SLOSH model provided maximum 

envelopes of water that were utilized to produce storm tide inundation maps to identify areas 

susceptible to flooding due to storm tides produced by varying categories of hurricanes. A 

seasonal autoregressive integrated moving average (SARIMA) model was applied to forecast 

relative sea level and results were compared to probabilistic projections based on published 

literature to determine what method of forecasting provides results most useful in risk 

assessment. Projections of relative sea level rise under six RCP-based scenarios from 2000 to 

2100 were used to develop inundation maps used to identify areas at future risk from flooding 

due to high tide as well as sea level-enhanced storm tides. 

This study assessed the flood vulnerability risk for Harris County, Texas, and reviewed recent 

papers that addressed sea level rise, storm surge, and extreme precipitation to better understand 

the mechanisms of flooding. This assessment identified US Census block groups that are 

vulnerable to flooding by extreme precipitation using the 100- and 500-year FEMA floodplains 

and storm tide enhanced by the maximum projected global mean sea level rise scenario of ~2.5 

meters by 2100 based on published literature. Additionally, the study utilized transit data and 

U.S. Census demographics to identify transit-dependent populations vulnerable to flooding with 

the objective of improving evacuation procedures that led to poor outcomes during Hurricane 

Harvey in 2017.   

Planners and policymakers at the state, city, and community level require location-specific sea 

level projections over varying time periods (e.g., over the coming 30 years) to analyze risk and 

assess flood defense infrastructure. To address these needs, this study evaluated relative sea level 

rise and methods of forecasting that could provide a range of localized temporal projections to 

better constrain the risk of coastal flooding in the western GOM. Relative sea level rise based on 

monthly mean sea levels recorded at tide gauge stations was found to be rising faster than the 

global average rate (~3.0 mm/yr) due to subsidence. Thus, relative sea level rise projections were 

required to provide location-specific rates. While SARIMA modeling was able to provide 5- and 

10-year forecasts of relative sea level that captured the seasonality and linear trend of the 

observations within a 95% confidence interval, it did not project possible acceleration and 

uncertainty in the model was highly dependent on the length and consistency of the tige gauge 

time series. Probabilistic projections based on global climate model projections imposed on a 
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background subsidence rate did include acceleration scenarios, but multiple scenarios needed to 

be included to account for various contributors to uncertainty. The probabilistic projections were 

used to map relative sea level rise mean high tide inundation risk to infrastructure under three 

RCP-based scenarios over 20-year increments to 2100. This method was determined to be most 

useful for planners and policymakers as it incorporated local relative sea level rise rates with 

multiple acceleration scenarios that can be applied over time and space as exemplified by the 

cases studies of New Orleans, LA, and Galveston, TX. 

To account for all possible coastal flood risks, the final chapter of this study examined hourly 

tide gauge data for flood threshold exceedance from 1980-2019 and determined the various 

factors contributing to said exceedances. Spectral analysis of astronomical tides, seasonal sea 

level cycles, and non-tidal residuals revealed that relative sea level rise is contributing to an 

increase in frequency and duration of high tide flooding events. Additionally, flood threshold 

exceedances occurred due to non-tidal residuals associated with the peak of tropical cyclone 

activity and the seasonal mean sea level cycle in September. Thus, trends in tropical cyclone 

activity and associated storm surge were examined to determine if changes in tropical cyclone 

climatology and associated climate oscillations represent an additional increasing risk to coastal 

Texas and Louisiana.  

The Mann-Kendall trend test detected a statistically significant increasing trend in frequency 

of Atlantic basin tropical storms, hurricanes, and major hurricanes. However, correlation 

between the Atlantic Multidecadal Oscillation or La Niña events and frequency of tropical 
storms that made landfall in western GOM was more ambiguous. Estimated peak surge return 

periods based on 30-year averages from 1900-2020 suggest an increase in frequency and 

magnitude of storm surge/tide resulting in an increase to the 100-year peak surge of ~2.5 meters. 

However, calculation of the Tropical Hazard Index for specific locations within the study area 

over 40-year periods from 1901-2020 revealed no spaciotemporal patterns for major hurricane 

strikes nor did it indicate any reliable trends or patterns to confirm the potential change in surge 

risk. Thus, relative sea level rise appears to be the main increasing risk for coastal inundation in 

Texas and Louisiana. Case studies were conducted in which relative sea level rise scenarios 

based on probabilistic projections were added to modeled storm surge under current conditions 

to examine the changing inundation risk by 2100 in the Baton Rouge, LA, and Houston-

Galveston, TX, areas.  

In conclusion, the work presented herein enhances the understanding of the various flood 

mechanisms that represent a future risk of coastal flooding in Texas and Louisiana. With this 

enhanced understanding comes the capability to improve upon risk assessment methods to 

include the combined natural and anthropogenic induced sea level extremes for the future. Thus, 

coastal adaptation and resilience measures can be developed for vulnerable areas and planners 

and policy makers can modify emergency response procedures appropriately. While this 

dissertation focused specifically on Texas and Louisiana due to high rates of relative sea level 

rise, the methods presented herein can be applied to any coastal region for which appropriate 

data is available. 

 

5.2 Future Perspective 

As the understanding of the mechanisms causing sea level rise improves, new projection 

scenarios emerge such as those released by the IPCC sixth assessment report (AR6) in 2021 

based on CMIP6 climate models that include improved ice sheet modeling. In addition to new 

global scenarios, methods of analyzing future extreme sea levels are being improved, for 
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example, to include a wave setup/run-up component (Arns et al., 2017; Vousdoukas et al., 2018). 

These periodic updates require risk assessments and associated adaptation strategies be regularly 

scrutinized and, if needed, updated to integrate new scenarios and/or methods. The publication of 

new results and methods, however, should not nullify previous assessments. Future assessments 

should include a high-end scenario associated with low probability and high risk, and monitoring 

to know if observations begin to deviate from the projections (Hinkel et al., 2019; Ranger et al., 

2013). Ideally, new projections would be included in a monitoring plan and only when new 

information suggests a major change should adaptation strategies be reassessed. However, this 

requires knowledge of how much sea level rise scenarios would have to change to invalidate 

previous assessments. This topic needs to be explored further to include a methodology for 

integrating new sea level knowledge beyond simply suggesting flexibility in adaptation measures 

(Nicholls et al., 2021). The research presented in this dissertation can be extended to consider 

such a methodology. One can propose that when a new scenario’s median value exceeds the 

uncertainty bounds of the previous scenario, adapting the assessment should be considered. 

However, further statistical analysis is required to propose a more thorough methodology.  

This study utilized a combination of the data from the National Weather Service including 

sea, lake, and overland surges from hurricanes (SLOSH) model of simulated storms and relative 

sea level rise projections (linearly added to the model output) to explore future risk of coastal 

inundation. SLOSH is a two-dimensional storm surge prediction model differed from the shallow 

water equations with a structured mesh grid. Additionally, SLOSH does not predict waves that 

are superimposed on the storm tide. Although SLOSH is used commonly to model storm surge 

due to its highly efficient computational cost and has adequately predicted the costal inundation 

(Lin et al., 2012), three -dimensional ocean general circulation models (OGCM) on the basis of 

the full Navier Stokes Equations may be a more adequate to predict coastal flooding under a 

changing climate. An example is the Advanced Circulation (ADCIRC) model, developed at the 

University of North Carolina, that has been applied to develop FEMA flood insurance rate maps 

in coastal regions and to simulate tropical storms, equivalent to the magnitude of Hurricane 

Katrina, to construct a more hurricane-resistant levee system for the city of New Orleans, LA. 

ADCIRC uses a time dependent, variable (unstructured), mesh grid which provides higher 

resolution along the coast (including high-resolution bathymetry) and is often coupled with the 

simulating waves nearshore (SWAN) model to predict the combined effect of waves and storm 

tides (Dietrich et al., 2011; Sebastian et al., 2014). ADCIRC has also successfully been coupled 

with high resolution (<5 m) urban inundation models to accurately model the extent and depth of 

flooding from storm surge (Yin et al., 2016). Additionally, mean sea level can be adjusted to add 

RSLR projections directly into the model (Smith et al., 2010). The application of ADCIRC to the 

study presented herein may improve the accuracy of the inundation mapping results by (1) 

allowing for non-linear effects of RSLR projections, (2) increasing the coastal resolution, (3) 

including the effects of waves, and (4) allowing for coupling with high resolution urban 

inundation models. One could suggest that an improved inundation forecast for highly complex 

urban areas, such as Harris County, TX, can be achieved if an OGCM like ADCIRC is applied. 

Note that storm surges are often accompanied by extreme rainfall that can have compounding 

effects on flooding. One could propose the use of an Earth System Model, like Community Earth 

System Model (CESM3), with similar features of ADCIRC and SWAN and flood-dependent 

varying runoff to predict more reliable coastal flooding. CESM3, run at high-resolution, and 

incorporating features of the Weather Research and Forecasting Model (WRF), can simulate 

regional sea level, coastal flooding, and hurricane forecasts. Similarly, the newly developed 
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Regional Community Earth System Model (R-CESM) includes the Regional Ocean Modeling 

System (ROMS) as an additional ocean component while incorporating WRF for the atmosphere 

and can be used for both global and regional modeling (Fu et al., 2021).   
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