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ABSTRACT

AUTOMATING INHABITANT INTERACTIONS IN HOME AND

WORKPLACE ENVIRONMENTS THROUGH DATA-DRIVEN

GENERATION OF HIERARCHICAL PARTIALLY-

OBSERVABLE MARKOV DECISION PROCESSES

Publication No.

Gregory Michael Youngblood, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professors: Lawrence B. Holder and Diane J. Cook

Markov models provide a useful representation of system behavioral actions and state

observations, but they do not scale well. Utilizing a hierarchy and abstraction through hierar-

chical hidden Markov models (HHMMs) improves scalability, but these structures are usually

constructed manually using knowledge engineering techniques. We introduce a new method

of automatically constructing HHMMs using the output of a sequential data-mining algorithm,

Episode Discovery, and apply it to solving automation problems in the intelligent environment

domain. Repetitive behavioral actions in sensor rich environments such as smart homes can be

observed and categorized into periodic and frequent episodes through data-mining techniques

utilizing the minimum description length principle. Utilizing this approach, we provide an ar-

chitecture and a set of algorithms for a pervasive computing system showing that inhabitant

interactions in home and workplace environments can be accurately automated through sensor

observation and intelligent control using a data-driven approach to automatically generate hi-

vii



erarchical inhabitant interaction models in the form of HPOMDPs and these models may be

modified using temporal-difference reinforcement learning techniques to continually adapt to

changes in the inhabitant’s patterns until a new model should be generated. We present our

life-long learning system and apply this work in our MavPad and MavLab environments where

we have been successful at automating up to 40% of the life of a real inhabitant and 76% of a

virtual inhabitant as well as dynamically adapting to concept changes over time. Findings from

several case studies are provided to show the feasibility of this approach.
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CHAPTER 1

INTRODUCTION

Most of the computers that participate in embodied virtuality will be invisible

in fact as well as in metaphor. Already computers in light switches, thermostats,

stereos and ovens help to activate the world. These machines and more will be

interconnected in a ubiquitous network.

—Mark Weiser,The Computer for the 21st Century

Imagine a future of humans interacting with machines that are able to anticipate their

needs and desires and fulfill them without command. Now imagine the pervasive computing

future where all of these machines are ubiquitous and integrated into the environments of the

world. This seems a distant reality from the current state of things, but research in understand-

ing human environmental interactions and systems to anticipate and automate those actions can

help move society in this direction.

Automation through anticipation, learning, decision-making, and adaptation falls into

the category of intelligent systems research. It can be viewed as an agent problem [42], where

an agent perceives the environment through a set of percepts (e.g., sensors), reasons about the

information (e.g., decision-making), and acts upon the environment (e.g., automation). The

goal of this agent would be to fulfill the desires and needs of a human or group of humans. The

agent must anticipate actions to automate before the human performs that action by predicting

the occurrence in advance. It must also be able to learn human patterns through observation

and historical precedence. Decisions to automate actions need to be correct in order to avoid

creating work for humans by causing them to correct wrong actions and perform their own

1
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desired actions. As all things undoubtedly change, so will the humans that a system is seeking

to automate; therefore, an agent must be able to adapt to the changing needs and desires of the

humans it seeks to assist.

Americans spend the majority of their time in either their home or workplace environ-

ments [144] so automating humans in these environments would have an immediate impact on

their lives. Creating these “intelligent environments” could have many positive implications

such as assisting the handicapped and elderly, improving safety, and reducing resource con-

sumption. The overall goals of these environments should be to maintain safety and security

and maximize the comfort of the inhabitants.

Work in intelligent environments is an important step in the forward progress of tech-

nology. As computing becomes more pervasive and people’s lives become busier, advances

in intelligent environments can aid by automating the simple things (e.g., lighting and HVAC

control), work to actively conserve resources (reducing cost), and improve safety and security.

Environments that sense their own well-being and can request repair or notify inhabitants of

emergencies can save property and lives. Homes that can increase their own self-sufficiency

over time can augment busy or aging inhabitants allowing people to live in their homes longer

(potentially alleviating some health care system burdens) and free time to allow people to focus

on other aspects of their lives.

Intelligent environments with humans in the loop present a real-world domain with

unique features. The domains need to be sensor rich for perception but will still not provide a

fully observable environment. How could one ever know what goes on in someone’s mind? If

humans are creatures of habit, interactions should follow activity patterns with some regularity.

However, human behavior can also be unpredictable at times providing a level of uncertainty.

In order to automate features of an intelligent environment, we must make automation deci-

sions in these uncertain, partially observable, and individually unique environments.
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The unique properties of environments containing numerous sensors andautomatable

objects (objects that have control capability and are therefore able to be automated) create a

large state domain. The ability to manually design data structures and model data for tasks in-

volving large state domains will become an intractable problem. The ability to learn structures

and models from data automatically would enable an increased capacity for working with large

data domains and provide fertile areas for autonomous learning without human-influenced bias

on structure.

This research examines the problem of learning human inhabitant behavioral models

and their interactions in intelligent environments (i.e., smart homes and offices). By observing

human-subject interaction data, we can create user models for the development of intelligent

automation systems.

Work in decision-making under uncertainty has popularized the use of Hierarchical Hid-

den Markov Models (HHMMs) [54] and Partially Observable Markov Decision Processes

(POMDPs) [189, 94]. Although the Hierarchical POMDP (HPOMDP) fits well for the in-

telligent environment domain, current work in the field requiresa priori construction of the

HPOMDP. Given the large size of our domain, we need to seed our model with structure au-

tomatically derived from observed inhabitant activity data. As a result, we look to the data-

mining community for a possible solution since work in that community has been successful

at finding patterns of activity in large amounts of data.

Hierarchical structures can be built through increased abstraction of discovered patterns

building patterns of patterns in a tree-like structure until no further abstractions can be made.

This creates a HHMM from the observed Markov chains. Extensions adding actions and re-

wards to this model create a HPOMDP. A combination of this user-model with a current obser-

vation data stream, a probability of current episode membership, and a prediction of events to

occur develops a belief state and a possible chain of events to follow and potentially automate.
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The accuracy of this technique can be measured by observing a reduction in the required

manual interactions required of an inhabitant in an environment over a consistent set of inter-

actions. Such a system is valuable if conditions never change and inhabitant patterns remain

consistent; however, few things in life remain static and any useful automation system should

be able to dynamically adapt to change.

Reinforcement learning based on inhabitant and system feedback used in the HPOMDP

framework can be used to create adaptation to changing environmental interaction patterns.

When an inhabitant corrects an incorrect action or takes an action not predicted and automated,

an automation system should be able to respond by learning that change. The use of embedded

safety and security rules should also be able to be learned so that any such system will not

issue contradictory action decisions just to have a safety system prevent their action. Unsafe,

insecure, and incorrect actions should be avoided by the decision process.

Given this background, motivation, goals, and approach, the work in this dissertation

focuses around the following central hypothesis.

Inhabitant interactions in home and workplace environments can be accurately auto-

mated through sensor observation and intelligent control using a data-driven approach to au-

tomatically generate hierarchical inhabitant interaction models in the form of HPOMDPs, and

these models may be modified using reinforcement learning techniques to continually adapt to

changes in the inhabitant’s patterns until a new model should be generated.

The ability to adapt to a dynamic environment can be evaluated through empirical obser-

vation of adaptation scenarios in which an automation system can maintain accuracy through

a minimal amount of inhabitant interactions even in the presence of change. Learning of the

embedded safety and security rules can be measured by a reduction in the number of violations

of those rules over time.

We seek to validate our hypothesis by conducting empirical case studies using real and

virtual inhabitants in a home and workplace setting in order to minimize inhabitant-initiated
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interactions and the violation of safety and security rules as well as user preference rules.

Additional evaluation test cases will be performed on the various aspects of the approach in

order to better understand pattern discovery, automated model construction, and adaptation

learning.

This research goes beyond the home and workplace environments and encompasses all

environments (even virtual ones) in which observations can be perceived through sensors, those

observations can be reasoned about by the system, and actions can be taken to automate features

of that environment. However, we focus on these specific environments in order to bound this

work for better evaluation and understanding and to support our hypothesis.

This work is done in conjunction with the MavHome (Managing anAdaptiveVersatile

Home) Project at The University of Texas at Arlington and utilizes the facilities of the MavLab

as a workplace and the MavPad as a home. The MavLab (a.k.a., the AI Lab or Learning and

Planning Lab) is a research lab that incorporates offices, research space in the form of a living

room and a kitchen, and a conference room area. The MavPad is an on-campus apartment that

hosts a student living in the facility full-time for the benefit of research.

This dissertation begins with an overview of the current work in intelligent environments,

provides a perspective of the developed architecture for learning including a discussion of the

system framework and architecture specifics, covers the details of the methodology from data

collection through automation and adaptation, examines the experimental findings from a series

of test cases and case studies, and finishes with a set of conclusions and a glimpse of future

work.



CHAPTER 2

INTELLIGENT ENVIRONMENT WORK

Nine-fifteen, sang the clock, time to clean.

Out of warrens in the wall, tiny robot mice darted. The rooms were acrawl

with the small cleaning animals, all rubber and metal. They thudded against chairs,

whirling their mustached runners, kneading the rug nap, sucking gently at hidden

dust.

Then, like mysterious invaders, they popped into their burrows. Their pink

electric eye faded. The house was clean.

—Ray Bradbury,There Will Come Soft Rains

2.1 Introduction

Observing, learning, automating, and adapting in the intelligent environment domain

crosses several areas of active research. There are many intelligent environments projects

around the world, each focusing on a different aspect of the overall problem. This chapter

focuses on the work of others and how it relates to the work presented in the upcoming chapters

and covers areas and techniques from which our work is inspired. Other areas of related work

are covered with the material presented in subsequent chapters to provide improved context

and understanding.

6
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2.2 Intelligent Environments

The work in this dissertation focuses on the emerging domain of intelligent environments

or smart homes and buildings. Generally, these environments are defined by the way in which

people interact with them or in the way that these places interact with the inhabitants. The

community generally recognizes value in either type of interaction. Benefits include providing

comfort and productivity for inhabitants and generating cost savings for utility consumption.

There are many researchers working on interesting problems in this domain. We classify these

projects into six groups (framework, application and gadget, industry, healthcare, learning and

adapting, and others) in order to discuss their approach and contributions.

2.2.1 Framework Projects

Middleware and framework support for building intelligent environments has been the

focus of many of the initial research endeavors in this area. These projects pioneered the ideas

that fuel many of the newer and ongoing projects by providing software support and ideas that

are useful in developing intelligent environments and related research.

Out of the MIT Artificial Intelligence Lab comes the AIRE (Agent-based Intelligent

Reactive Environments) group. The AIRE group is engaged in research involving pervasive

computing designs and people-centric applications and have constructed “AIRE spaces” in the

forms of an intelligent conference room, intelligent workspaces, kiosks, and “oxygenated1”

offices. To assist in their research and to integrate their research technologies, they have devel-

oped middleware called Metaglue and an extension, Hyperglue [6].

Metaglue is an extension to the Java programming language to allow the creation of intel-

ligent environment-controlling software agents. It provideslinguistic primitivesthat facilitate

the interconnection and management of a large number of disparate components (hardware

1Derived from the MIT Project Oxygen which is focused on pervasive, human-centered computing that is as
abundant at oxygen. Oxygenated refers to projects that incorporate the ideas and work of the MIT Project Oxygen.
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and software), real-time operations, agent management, resource allocation, dynamic config-

uration, dynamic components, and state capture mechanisms. Metaglue provides an inher-

ited agentclass to Java objects, a post-compiler to generate new Metaglue agents from Java-

compiled classes, and aMetaglue Virtual Machineinfrastructure to be run on all supporting

computing equipment. The Metaglue authors claim that the infrastructure creates a negligi-

ble amount of overhead and is more efficient than CORBA or KQML (Knowledge Query and

Manipulation Language) because it provides both communication and control with a lighter-

weight solution [34].

Hyperglue extends Metaglue by providing a society communication model and discov-

ery system for Metaglue agents in a new infrastructure layer. Metaglue allows for agents to

be segmented into small groups calledsocieties. Hyperglue provides a communication layer

for societies to communicate with each other and to find needed service-providing societies

through resource managers and society ambassadors [152].

In addition to infrastructure for intelligent environments, the AIRE group is focused on

developing collaboration support tools to support meetings by capturing information and facil-

itating the meeting, using sketch understanding for information capture, developing algorithms

for the arrangement of information to foster a better understanding of the data, and extending

instant messaging beyond the desktop to the physical environment. They are also involved

in investigating novel human-computer interfaces that utilize technologies such as gaze-aware

interfaces, streaming media, and multi-modal sketching which involves capturing speech with

white-board sketching and gestures in order to capture the full meaning of the intended dis-

course. Recent work includes the development of applications to support plan-based proactive

computing which can store and manipulate knowledge about user plans, habits and needs in

order to execute actions of a user plan on request [6].

The work in this dissertation shares little with the work done by the AIRE group. Their

focus is more on an enabling infrastructure which is designed to support HCI and collaborative
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work in their intelligent environments than in automation, thus the direction for infrastructure

in this dissertation did not utilize Metaglue or Hyperglue due to the learning overhead and focus

difference. The AIRE technologies could be used in conjunction with our work to provide more

collaboration support in environments such as our workplace environment.

The AMBIENTE division of the Fraunhofer-IPSI Research Institute in Germany is work-

ing on a number of intelligent environment-related projects. As a partner of the fifteen member

European AMIGO project [9], they are focused on creating ambient intelligence (a paradigm

that promotes the empowerment of people through environments that are aware of their pres-

ence and respond to their needs [69]) for the networked home environment where home au-

tomation, consumer electronics, mobile communications, and personal computing come to-

gether under complete integration. AMIGO seeks to research and develop open, standardized,

interoperable middleware and intelligent user services for these environments. The goal of

AMBIENTE’s i-LAND is to create “intelligent user services” which will provide experience

enriching services that will make the system seem intelligent. They are focusing these services

on home care and safety, home information and entertainment, and the extended home envi-

ronment. AMIGO is just in the beginning stages of life, but it draws from work on Ambient

Agoras [57], i-Land [10], and other related precursor projects.

Ambient Agoras2 is a project involving the development of situated services, place-

relevant information, and a feeling of the environment in workplaces. It does this through

ambient displays and user communication services as part of smart artifacts that are available

in an invisible and ubiquitous manner. The goal is to develop environments into social market-

places oragoras[57].

i-LAND, an Interactive LANDscape for creativity and innovation, seeks to create coop-

erative buildings out ofroomwarecomponents such as an interactive electronic wall, interac-

tive table, and computer-enhanced chairs in order to create the offices of the future.[10] The

2Agora is the greek word for a marketplace.
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research focus is on theseroomwarecomponents, but they are connected through integration

on the COAST [179] cooperative hypermedia framework. COAST is groupware and heralds

from research done in the Computer Supported Coopertive Work (CSCW) field. COAST is an

object-oriented (SmallTalk) toolkit that supports the creation of synchronous groupware.

In the realm of producing devices, artifacts, and environments with a “coolness” factor

to them, AMBIENTE research is a clear leader [197], but most of their work involves creating

gadgets and exploring issues related to human-computer interaction. The items they create

provide great insight for intelligent environment researchers to see what lies ahead in the future.

Their middleware components are also more HCI-oriented and are not of current use to the

work in this dissertation; although, work from AMIGO made publicly available in the coming

years may prove valuable to many intelligent environment researchers.

At Stanford University, the Interactive Workspaces project is exploring work collabo-

ration technologies in technology-rich environments with a focus on task-oriented work such

as design reviews or brainstorming sessions. Their experimental facility is called “iRoom”

where they are investigating integration issues with multiple-device, multiple user applica-

tions, interaction technologies, deployment software, and component integration.[193] To an-

swer the integration and interactive workspace building challenge they have developed iROS,

a middleware system for interactive workspaces. iROS is comprised of three subsystems: the

EventHeapwhich provides coordination, theDataHeapwhich provides data movement and

transformation, andICrafter which provides user resource control. Through iROS they seek

to provide a middleware layer that provides true platform portability, application portability

and extensibility, robustness, and simplicity [160]. Current work at Stanford has shifted fo-

cus to the area where HCI meets the system in the development, deployment, and operation

of iRoom human interfaces. They are studying issues with eye contact in videoconferencing,

wall-display interaction, and information fusion issues.
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Interactive Workspaces is another example of a project that created some middleware

and then focused on the HCI aspect in a conference room workspace. The work in this dis-

sertation does not utilize ideas from this project because of a difference in focus; however, the

work could be utilized to complement our research by enhancing the user’s experience through

sophisticated HCI techniques.

The Laboratory for Communication Engineering (LCE) at Cambridge University (origi-

nally in conjunction with AT&T Laboratories Cambridge) is pursuing their Sentient Computing

project with the focus of simulating computer perception in computing systems that detect, in-

terpret, and respond to facets of a user’s environment [17]. Research has involved a deployed

ultrasonic location system, advancements in world modeling including spatial considerations,

and sentient computing applications such as world model browsing, remote desktop displays

that follow users, smart posters using context-aware information retrieval, and ubiquitous user

interfaces [25]. The omniORB CORBA package and VNC (Virtual Network Computing) both

originated from the AT&T Labs, Cambridge, research.

The Sentient Computing group no longer uses omniORB in favor of middleware that

can support context-aware multimedia applications called QoSDREAM, also under research

and development at the LCE. QoSDREAM supports multiple types of sensors and provides

a simple spatial model for representinglocatable entities, real-time model and sensor data

integration, an event mechanism for notifying applications of location information, a query-

able location database, and an ease of extensibility. QoSDREAM is based on providing Quality

of Service guarantees and takes a location-centric approach to the services it provides [136].

The work from this project as well as other projects that were originated from the AT&T

Laboratories Cambridge includes some of the pioneering efforts in ubiquitous computing.

Many current projects use technology and ideas that originated from these groups. The ac-

tive badge location system (or BATS) was a fully developed, deployed, and tested inhabitant

location system that was used in office workspaces to forward phone calls and information.
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OmniORB and VNC are used throughout the world on many other projects today including

some of the work in this dissertation though mostly in terms of support technologies. Many

other interesting projects were also developed and the interested reader is encouraged to review

the online information at www.xorl.org.

The Gaia project at the University of Illinois at Urbana-Champaign [216] involves the

creation of active spaces for ubiquitous computing. Their focus has been on creating mid-

dleware to support environments that sense inhabitant actions and assist them with different

tasks—referred to by this work as an “active space.” In support of this goal they have de-

veloped the Gaia OS which is a meta-operating system that has been customized for specific

physical spaces in order to support application development in those domains. Gaia supports

mobile user-centric active space applications by managing the resources and services of an ac-

tive space and providing services for location, context, events, and storage of information. Gaia

consists of the Gaia Kernel, the Gaia Application Framework, and Gaia Applications. The ker-

nel consists of an event manager which distributes events in the active space, a context service

which provides contextual information in the form of first order logic and boolean algebra, a

presence service which is resource-aware and provides information, a space repository to store

information, and a context file system to make personal data available to applications, organize

data, and retrieve data in a format based on the context of user preferences or device character-

istics. The application framework provides mechanisms to develop, execute or accommodate

existing applications to active spaces and is comprised of a distributed component-based in-

frastructure which provides a model, view, controller, and coordinator; a mapping mechanism

which customizes applications to different active spaces, and a group of policies to customize

the applications [172]. Gaia applications include a presentation manager to present slideshows

on one or many displays in an environment, ConChat which is a context-aware chat program, a

calendar program, meeting attendance task recorder, media players, speech engines, PDA inter-

faces, and other presentation and workgroup centric applications [216]. The Gaia researchers
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have limited their domains to spaces used for teaching such as classrooms, offices, and lecture

rooms.

Gaia is mostly about infrastructure with a number of conference/lecture room applica-

tions. The work in this dissertation does not utilize any of this work mostly because of the

difference in focus as is the case with projects similar to Gaia. There are a number of com-

monalities in the work that is presented here and Gaia, namely the concepts of object-oriented

encapsulation for real objects in the virtual world representations, component-centric views,

object-oriented communication (i.e., CORBA), and the focus on context to provide service

value.

The Unites States’ National Institute of Standards and Technology (NIST) has estab-

lished the Smart Space Laboratory to “address the measurement, standards, and interoperabil-

ity challenges” [139] forsmart spaces. This group has established a two-phase approach to

addressing their interests in pervasive computing. In the first phase they are identifying areas

for standardization, creating real experiences in which to identify applicable measurements,

and identifying security measures to ensure the privacy and integrity of systems. The second

phase involves developing specific metrics, tests, and comparative data sets for the community,

providing reference implementations of designed system ideas, collaborating with industry to

form standard specifications, establishing industry and academic partnerships, and integrat-

ing the phase 1 technologies to explore distributed issues with the technologies. From these

goals they are working to create a test-bed containing a defined middleware component that

provides real-time data communications, a connection broker for sensors, and containers for

processing data. NIST has already released their Smart Flow System that provides a data flow

server, graphical interface, and control console as well as audio, video, and voice recognition

interfaces [139].

Development by NIST in the Smart Spaces Laboratory has been stagnant since 2000 with

only active work continuing to date with their smart flow system. Their work can be classified
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with the groups focusing on conference/lecture workplaces, but their research on video and

audio systems and tracking could be very beneficial to projects using these types of sensor

arrays. The work in this dissertation does not use video or audio information and therefore

does not use any NIST technology.

Researchers at the University of Florida are building the Gator Tech Smart House with

the goal of creating assistive environments that can perceive themselves and their residents

and utilize telematics to provide services. Drawing on their previous knowledge gained from

experimentation in their Matilda Smart House laboratory, they have constructed a full house

in Gainesville, Florida. This home features such technologies as a smart mailbox that senses

mail, a smart front door to control access, a driving simulator in the garage to evaluate elderly

driving abilities, smart blinds, a smart bed, a smart closet that helps with clothing choices, a

smart laundry, a smart bathroom mirror to display information, a smart bathroom that controls

water temperature and features bioinformatic capture, smart displays throughout the home, a

smart microwave, a smart refrigerator and pantry, smart cameras for security, ultrasonic lo-

cation detection, a smart floor for localization, a smart phone, smart wall plugs for electrical

items, smart thermostats (i.e., HVAC control), smart leak detectors in areas with water, a smart

stove, a smart display projector for information, a home security monitor, an emergency but-

ton, and cognitive assistance through visual and audio cues to help the inhabitants remember

medications, appointments, and other important items. Their current key contribution is the

development of a middleware architecture which includes a physical layer of devices, a sensor

platform layer to convert readings into service information, a service layer to provide features

and operators to components, a knowledge layer that offers ontology and semantics, a context

management layer to provide context information, and an application layer to support a rich

set of features for inhabitant living. The state of the project is still focused on integration and

the middleware development, but they are beginning to focus on issues with eldercare and the

aging in place initiatives [76].
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2.2.2 Application and Gadget Projects

A number of intelligent environment projects focus on applications or gadgets that im-

prove the experience in those environments. Often these elements are focused at developing

context awareness in order to augment the inhabitant experience in that context. Location

also plays an important factor in understanding inhabitant context and providing value-added

services in the new breed of intelligent environments.

The Aware Home Research Initiative (AHRI) at the Georgia Institute of Technology is

conducting research looking to answer the question, “Is it possible to create a home environ-

ment that is aware of its occupants whereabouts and activities?” [5] Efforts of this group are

focused in the areas of interactive experience applications, technology, software engineering,

and an investigation of the social implications involved with aware home living.

Their interactive experience applications have been developed in the areas of social com-

munication, memory aids, and home assistants. The digital family portrait project has produced

an application that provides well-being information in the form of sensed activity levels and

home environmental conditions about a remotely monitored individual. The “dude’s magic

box” project has focused on improving the connection between geographically separated peo-

ple and between grandparents and grandchildren in particular. This project involves the captur-

ing and sharing of imagery and voice-note interactive annotations about physical objects such

as a child’s play item. A child would place an object in a capture facility where an image can

be captured and relayed to the grandparent who can then ask questions or make remarks about

the object (in essence playing with the child) while not having physical presence. In the area

of memory aids, their work has been focused on the cook’s collage project which involves the

image capture of cooking steps from initial observation and subsequent playback during repet-

itive use of the recipe in order to provide visual cues for repeatability. Other work in this area

includes the memory mirror project which seeks to capture and record short repetitive events

that are performed frequently (e.g., feeding a pet) and maintain a record so that users can use it
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to remember if they performed an action or not. The gesture pendant is a home assistant device

that a user wears around their neck and performs hand motions (i.e., gestures) in front of in

order to interact with their environment. The system can also be used to monitor the user to

detect hand tremors or the loss of motor skills over time.

Technology development by the AHRI has involved an indoor location service and an

activity recognition algorithm. AHRI has focused on the problem of sensing location and

as a by-product have produced the Location Service infrastructure which seeks to provide a

robust and accurate location service, performs sensor fusion transparently for the user, and

supplies reusable and extensible techniques to application programmers so that they may uti-

lize location information in application-relevant ways [2]. The specific technologies used in

this service involve RFID (Radio Frequency IDentification) tags, smart tiles that sense pres-

sure placed upon them, and computer vision systems. Activity recognition methods are being

developed by AHRI to monitor the general activities of the inhabitants and includes low-level

tasks such as reading a newspaper or watching TV, and high-level tasks such as cooking or us-

ing a health monitor. Other technology projects being developed at AHRI include multi-camera

eye/head tracking, audio and video sensor fusion, open-air microphone speaker identification,

automated separation of sound sources, large-scale projective displays, and controlling multi-

ple distributed displays.

In the area of software engineering, the AHRI researchers have conducted research de-

veloping two toolkits, INCA and the Context Toolkit, as well as a location service. INCA is

the Infrastructure for Capture and Access, and it provides the means for creating systems that

capture life experience details and preserve them for future access. INCA provides capture,

storage, format-conversion, and access support [214]. The Context Toolkit provides abstrac-

tions and support for context-aware development. This Java toolkit consists of widgets as an

encapsulation object, aggregators to create meta-widgets, and interpreters to translate low-level

context information into higher levels all communicating via XML over HTTP [178]. Other
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software construction projects being developed by AHRI include secure storage for manag-

ing personal information, space-time memory abstraction for interactive multimedia, and the

impact of industry standards (e.g., UPnP) on an aware environment infrastructure.

The work done by AHRI has been pioneering in the area of intelligent environment

research, but has mainly focused on infrastructure for the support and development of specific

applications, most of which are geared more toward HCI and assistive technologies than home

automation. Since the work in this dissertation focuses on the latter, it does not use AHRI

work. The only similarity are the needs for location and context awareness. Since our work

does not involve video or audio, employ location tiles, or use RFIDs, the location work does

not fit. Also since the focus is different the context-awareness work does not fit; however, many

of AHRIs technologies are very complementary to areas of our own active research and would

help augment our environments and improve the inhabitant experience if incorporated.

MIT Media Lab’s Consortia on Things That Think (TTT) and their special-interest group

on Counter Intelligence are primarily focused on single applications such as an augmented

reality kitchen, context-aware tables, dishmaker, food oracle, SmartSink, hand-washing com-

pliance, InVision, living food, Mcam, Sensa/ible dishware, synaesthetic recipes, talking trivet,

and waterbot. They have also been involved in developing smart architectural surfaces, an in-

telligent spoon, and have also produced a distributed agents platform called Hive [103]. The

augmented reality kitchen projects informational displays onto existing counters, cabinets, and

appliances in order to improve ease of use, efficiency, and safety. Context-aware tables are

physical tables that change their purpose by height (e.g., display picture book photos when

raised and food menus when lowered). Dishmaker is an appliance designed to replace cup-

boards and dishwashers with a home manufacturing system that produces dishes on demand,

and then recycles them when you are done using them. The Food Oracle is a set of tools that

combines learning and reasoning about cooking and food into a system to help people explore

creative and intuitive cooking. The system reasons about recipe-sensitive ingredient substitu-
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tions and the intentions of recipes, and uses a database of food and culture to create an adaptive

and dynamically generated smart recipe system based upon a wealth of information about food.

SmartSink is a context-aware sink that adjusts to user height as they approach and adjusts the

temperature of water based on what is put in the sink. It also illuminates the water stream

with color by temperature (i.e., red for hot and blue for cold). Hand-washing compliance

assistance in conjunction with the smartsink has been developed in order to perform local-

ized environmental automation (e.g., turning on lights) to facilitate maintaining clean hands

in such environments as hospitals. InVision examines user visual perception and observation

patterns to infer context in order to provide context-aware application assistance to the user’s

task. Living food is a refrigerator replacement for fresh fruits, vegetables, herbs, and spices

that seeks to prolong their storage life. MCam is a milk-carton camera that is used to com-

municate pictures of the inside of a refrigerator to an Internet-connected appliance. Sensa/ible

dishware is focused on adding sensors to everyday dishware in order to learn usage patterns,

food information, and the user’s eating habits. Synaesthetic recipes is a visual search program

which allows users to enter imaginative textual descriptions (e.g., something light, fresh, easy

to make, but not creamy), and uses these to produce recipe recommendations from a large

recipe database. Talking trivet/oven mitt provide digital enhancements to existing household

objects in order to communicate information such as cook time, temperature, and faults to

external components. Waterbot is a persuasive technology to motivate water conservation by

providing context-sensitive feedback to users in order to change user behavior to promote wa-

ter conservation while using the bathroom sink. Water usage information is collected and used

to initiate unobtrusive user prompts using several persuasive techniques (e.g.,law of contrast,

positive reinforcement, variable schedule of reinforcement, social validation, scarcity, curios-

ity, and challenge) in order to modify user behavior. Smart architectural surfaces focuses on

the creation of modular computational elements which can be used to build sensor and display

equipped intelligent spaces. Elements such as smart video tiles, advanced image projectors,



19

camera tracking systems, and object-based media characterize this work. The intelligent spoon

is another example of a sensor laden utensil that can relay temperature, acidity, salinity, and

viscosity information back to a computer. There are a dozen or more such projects as these

undergoing varying levels of development, research, and testing at the MIT Media Lab [103].

Hive is a Java-based framework that provides ad-hoc agent interactions, mobility, on-

tologies, and a graphical user interface to the entire distributed system. Hive is composed of

three elements:cells which exist on each machine in the distributed system and provide the

infrastructure connectivity,shadowswhich are the local resource encapsulation mechanism in

each cell, andagentswhich utilize local resources through shadows and exist in one cell at a

time. Hive has been used to develop a smart kitchen, a jukebox, and other applications [128].

The MIT Media Lab is focused on gadget creation and specific implements of the future.

Many of these projects could be incorporated into an intelligent environment to enhance the in-

habitant’s experience, but they probably will not be commercially available for another decade.

The work in this dissertation does not incorporate any MIT Media Lab technology or gadgets

primarily due to their availability and the significant amount of engineering effort that would

be required to duplicate and integrate their work; however, specific ideas such as those in the

augmented reality kitchen, localized context awareness, and the interactive nature of many of

their projects could be incorporated into our environments.

2.2.3 Industry Initiatives

Industry is very interested in the pervasive computing future that society is moving to-

wards, and they recognize that the home is a place where there exists fertile ground for offering

products and services to improve the lives of people. To this end there are a number of industry

initiatives that explore technologies and concepts in this arena.

The Pervasive Computing Lab at IBM Research in Austin, Texas, is performing work

involving speculative integration to createproof of conceptdemonstrations utilizing modern
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technology to create such things as an advanced media living room, a networked kitchen, and

integrated automobiles. Although not developing new technologies, they are combining exist-

ing technologies in new and interesting ways to show what is possible. For the designer and

integrator it should be of interest that they use IBM Websphere, Java servlet technology, and

Lotus Notes [226].

The Vision Group at Microsoft Research were in the process of developing a proto-

type architecture and associated technologies for intelligent environments in their Easy Living

project (no updates since 2001). Their research was concerned with using computer vision

for inhabitant tracking and visual gesture recognition, sensor fusion, context-aware computing

using geometric models, automatic sensor calibration, dynamic and adaptable user interfaces,

generalized communication and data protocols, and system extensibility [65]. To provide in-

tegration for their research systems the Easy Living project used middleware called InConcert

which was being developed at Microsoft Research in conjunction with other groups there.

InConcert was created out of a need for middleware that can provide communication in a dis-

tributed environment, but they feel is better suited for the real-time and unusual needs of an

intelligent environment than DCOM, Java, or CORBA [23].

Microsoft also has a demonstration home on their Redmond campus that features a six

room home enclosed in a building where they demonstrate what they perceive to be technology

in the five to ten year out window. Featured technology involves the integration of Microsoft

products and services such as their digital music and video offerings. Recent demonstrations

show the integration of RFIDs on clothing and a mirror with a built in display that provided

care instructions as well as garment matches from the user’s wardrobe [48].

Other industry initiatives include British Telecom’s Telecare project which established

10 “millenium homes” for aged people where an array of sensors monitored environmental

conditions, notified the inhabitants to correct potentially dangerous conditions, and notified

care providers on necessity [24]. CISCO Network’s Internet Home explores the impact of the
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Internet on the home by showcasing Internet-dependant technologies and wireless web pad in-

terfaces [33]. Intel Corporation’s Proactive Health Lab is exploring technologies to help seniors

“age in place” in order to help the increasing health care burden of the rapidly aging population

of the United States by anticipating inhabitant needs through observation with wireless sensors

and taking action to meet those needs through available control and interactive systems [92].

Siemens AG is promoting “living made easy” home automation products which include a full

range of components for automating almost all of the common items in a home and integration

systems as part of their smart home technology initiative [182]. Royal Philips is involved with

exploring ambient intelligence and user experience in their HomeLab experiments involving

people living in an apartment and being observed by a research team [153]. Finally, Accenture

is focusing on elder care and lifestyle with their room of the future which examines activ-

ity monitoring and interactive furniture and objects that are meant to improve the inhabitant

experience while allowing for aging in place [3]. Many other companies enter and exit the

domain offering products and services for a time then moving on to other business opportuni-

ties. Besides the companies previously mentioned here there are also a number of commercial

retail companies selling products to make people’s homes “smart.” The most prominent of

these companies is SmartHome (www.smarthome.com). There are also a number of local and

regional installers and contractors that will perform custom integration of items into homes.

Many of these are involved with the home security market. In general, industry initiatives are

aimed at showing how a particular group of products or services can be integrated in order to

solve a particular problem such as aging in place or an immersive Internet-based information

experience for the home user. Some of the materials used in the implemented environments

in this dissertation use equipment purchased and/or donated from companies pursuing smart

home technologies.
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2.2.4 Healthcare Initiatives

Advances in technology are prolonging the life expectancy of people. Coupled with a

large rapidly aging population born in the post World War II era (i.e., baby boomers), a rising

problem is emerging in the increased need for eldercare. Trends in the healthcare community

are placing more of a burden for this increased care on family and friends while there is a

simultaneous desire by the aged to remain independent. These conflicts present a strong need

for research to investigate the possibilities of a maintained independence for elders who wish

to “age in place” while alleviating the healthcare and caregiver burdens. Technologies such

as reminder systems, cognitive assistance, telematics (monitoring information sent to remote

locations where interested parties are informed), safety monitoring, and other types of systems

are under active research. There is also research underway to assist in understanding the effects

of these technologies, their need, their benefit, and ways to match the needs of the aged to the

appropriate technologies. This is an area of growth that will become more and more important

as the aging population approaches a critical mass. Several research groups have already begun

to address the myriad of issues in this emerging problem.

The Medical Automation Research Center (MARC) smart house project at the University

of Virginia is focused on the issue of in-home monitoring for the elderly in order to promote the

concept of aging in place. Their homes are equipped with low-cost, non-invasive sensors (they

do not allow cameras or microphones), and a data logging and communications to establish

telematics to authorized individuals (e.g., family and their personal physician). They have de-

veloped data analysis tools to observe general health and activity levels and have developed the

metrics of Activities of Daily Life (ADL), most Instrumental Activities of Daily Life (IADL),

the index of well-being, and a measure of ability decline. System feedback to prompt the in-

dividual to remain active is also being explored. The MARC In-Home Monitoring System has

been deployed in several case study homes. Its key features are the low cost technology, the
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ability to retrofit it into existing homes, and the data-mining health status report components

[116].

The Robert Gordon University CUSTODIAN (Conceptualization for User involvement

in Specification and Tools Offering the efficient Delivery of system Integration Around home

Networks) project has an objective to develop technology and services for disabled and elderly

people through information and communication technologies in order to improve the qual-

ity, effectiveness, and efficiency of services which support their independence in living and

maintained integration in society. To this end they are focused on maintaining and restoring

functional capabilities through assistive technologies, electronics products, and systems around

a home network in smart houses. They have designed and established a demonstration house

called the Dundee Flat to perform experimentation for the personal care services. Their current

work involves case studies that observe process facilitators that try to match individual needs to

technology in an attempt to improve the way recipients are fit to technology [51]. Their work

addresses the issues of proper fit, deployment, and usage of the technologies of smart home

with the disabled and elderly.

In the last section, many of the industry initiatives (e.g., Intel, Accenture) have focused

their intelligent environment research initiatives at the aging in place problem. Growth in this

area is sure to bloom as groups finishing their initial intelligent environments research turn

their attention to this area of specific need and valuable impact. The growing need of a rapidly

aging population in developed countries, the health care system burdens, and the lack of care

providers signal a warning of troubled times ahead that research now may help curb by allowing

the aged to live independently longer, healthier, and safer while maintaining a high quality of

life and alleviating the burdens on society.
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2.2.5 Learning and Adapting Initiatives

Beyond just context inference comes the desire to learn from the inhabitant of an in-

telligent environment, often in order to automate parts of their routine in order to improve

the inhabitant’s experience. Along with the initial learning comes the desire to provide lifelong

learning, or adaptation over time, in the environments so that they can move through the phases

of life with their inhabitants in order to provide a long-term improvement in the environmental

living experience.

The Adaptive House project at the University of Colorado at Boulder under the direc-

tion of Michael Mozer tackles the issue of overcoming the programming problem with home

automation (i.e., where someone must program the rules for automation and reprogram them

over time as the inhabitant’s lifestyles change). Their work involves developing a system that

controls the HVAC, water heater, and interior lighting of a home, learning how to control these

features based on the lifestyle and desires of the inhabitants, and adapting the control policy

over time in an environment with a minimal user interface. This project uses an actual resi-

dence called the neural network house (Mozer’s own home which is a converted historic old

school house in Marshall, Colorado) equipped with 75 sensors that monitor temperature, ambi-

ent light levels, sound, motion, door and window openings as well as actuators that control the

furnace, space heaters, water heater, lighting units, and ceiling fans [132]. The control systems

in this work are based on neural network, reinforcement learning, and prediction techniques

called ACHE.

The ACHE (Adaptive Control of Home Environments) system uses a combined sys-

tems approach for home control. Q-learning (a reinforcement learning technique [203]) uses

event-based segmentation over clock-based in order to make the problem tractable and initiates

actions based on perceived state and reward. In order to simplify the state space the automa-

tion task was decomposed into zones and a heuristic based determination of event separation

factors was used to partition the experience into events for the event-based control system. The
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control policy involved a mixing of inhabitant comfort and energy conservation goals. The

system used a state estimator to form high-level state representations which were based upon

inhabitant activities (through an occupancy model and an anticipator which was neural network

based and provided a prediction of occupancy of a space) and light levels in each zone (through

a natural light estimator). This information and the decomposition of spaces were utilized with

multiple Q controllers to automate the home. Their work also involved some exploration in

order to reduce energy consumption by occasionally testing the inhabitant by altering the con-

trol policy unless counteracted by the inhabitant. A single experiment was conducted in the

adaptive house and no formal evaluation of the system was ever conducted [133].

The adaptive house involved a lot of knowledge engineered into the system in the form

of event partitioning heuristics, look-up tables for Q-values, and human-directed partitioning

of the system into multiple Q-learners controlling specific areas of the house. The sensors

used were sparse and prone to admitted error. In relation to the work in this dissertation, the

anticipator and occupancy models are not necessary in our systems due to a better hardware

design and implementation. We agree with the vision and premise of the adaptive home—that

an intelligent environment should adapt to the needs, lifestyle, and desires of its inhabitants

[131]. We also agree with the idea of using a minimal and natural interface as well as focusing

on the goal of solving the user programming problem. Many of the heuristic decisions and

partitioning schemes in the adaptive house are avoided by learning the requirements for de-

compositional and hierarchical construction of a control policy through observation. In earlier

versions of our work we utilized Q-learning with CMAC tiling in a control mechanism similar

to Mozer’s work [39]; however, we also discovered similar state space abstraction problems

in automation and a need for better sensor information in order to accomplish our goals. The

work in this dissertation can be seen as a direct extension of this shared vision towards creating

environments with control policies observed from their inhabitants, but we do not currently

perform energy saving learning activities directly at this time.
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Researchers from the Intelligent Inhabited Environments Group (IIEG) at the University

of Essex in the United Kingdom are creating anambient-intelligenceenvironment using em-

bedded agents called theiDorm [88]. Their approach involves the use of a fuzzy logic based

Incremental Synchronous Learning(ISL) system to learn and predict inhabitant needs. Their

testbed environment, a dorm room, involves the access of 11 environmental parameters and

nine effectors (mostly lights). The use of parallel fuzzy logic controllers (FLC) in a hierarchy

is used to learn and encode rules. Each FLC has a single modifiable parameter and is used

to learn a particular aspect of the environmental control. The FLCs are either static (i.e., pre-

seeded with knowledge) or dynamic (i.e., observed from the inhabitant). In combination all

of the FLCs form the ISL system and encode the desired control behavior of the environment.

Other management systems prune down the number of FLCs by observing factors of redun-

dancy and low usage to keep the system computationally manageable. The researchers have

presented evidence via empirical evaluation of iDorm inhabitants that the system can perform

initial and lifelong learning of inhabitant needs over a 132 hour experiment [69].

The iDorm project has many similarities to the work presented in this dissertation. The

notion that there first needs to be an observation period followed by usage and learning has

been a part of our systems. The general focus on learned automation is also the same. Besides

the obvious difference in approach we seek to learn the hierarchy as well and not engineer it

through heuristics. We agree that it is an important feature of intelligent environment control

systems to have specific rules for automation and not generalized ones which tend to not au-

tomate the environments correctly, this issue is on how to deal with environments with large

state spaces in order to perform real-time calculations and decision tasks with the correct level

of particularization. iDorm has only been tested on environments a fraction of the size of the

ones presented in this dissertation; however, as our respective work continues we may find

commonalities that may prove to be better in combination in order to satisfy our shared vision.
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2.2.6 Other Initiatives

Architectural focus, the psychological aspects of smart home living, integrated device

and appliance based smart home projects, emerging consortiums, and other unique aspects

characterize a number of intelligent environment projects focusing on specific niches in the

areas of research. They all contribute to the collective knowledge we are learning about these

new breeds of environments.

The Department of Architecture’s Changing Places/Housen project at MIT is focused

on how technology, materials, and design strategies can create dynamic, evolving places that

respond to the lives of their inhabitants. Using the one bedroom condominium called the

PlaceLab, researchers use sensors spread throughout the environment to observe the environ-

ment and develop innovative user interfaces for control of the spaces, resource management,

and to maintain their health and activity levels. Current projects also include participation

in the Open Source Building Alliance (OSBA) where key components of a more responsive

model for creating living spaces are being developed: home chassis design to make building

a home similar to industry standards for building vehicles or electronics, integrated interior

infills which replace interior walls with customizable cabinetry-like components, design and

configuration tools to promote the ease of design of these new types of structures, just-in-

time persuasive user interfaces for promoting healthy behaviors by encouraging a more active

lifestyle, context-sensitive measurement of physical and sedentary activities, context aware ex-

perience sampling which attempts to learn inhabitant activities from observed sensor readings,

portable wireless sensors for studying behavior in natural settings, proactive health displays

for health assessment and self reflection, idle moment detection for proactive health activities

using personal and environmental sensors and interfaces, and many others [129].

Much of the work done on the Housen project focuses on architecture and measurement.

The work in this dissertation also uses environmental measurement, but we are also concerned

with automation so the sensed information focus differs from their approach. There are still
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many insightful pieces of information coming from their project in the area of context aware-

ness especially in the area of health and activity monitoring which may be useful for future

work.

The Australian Commonwealth Scientific and Industrial Research Organization (CSIRO)

and the University of Technology Sydney NanoHouse project is working on a demonstration of

nanotechnology applied to advanced building materials and their incorporation into the build-

ing of homes. Their focus is on energy conservation by developing transparent materials that

allow light to pass but reflect heat, building materials that are more environmentally friendly,

and other building technologies in order to create an ultra-efficient house [41].

The Digital World Research Centre (DWRC) at the University of Surrey is involved with

psychological impact studies and cover how people communicate, live, play, shop and work

[49]. DWRC has studied how families react to living in an intelligent environment and have

documented the lessons learned for the future development of smart homes and smart home

technologies [70]. Much of their work is confidential and not available to the public.

Tampere University of Technology Institute of Electronics in Finland started the eHome

research project in 1999 and created the smart living room in 2002. Their research is focused on

the design and construction of ubiquitous electronic devices in a smart home environment. In

their environment they have developed a wired and wireless sensor network, lighting control,

speech control, and user interfaces. Unique features include a plant monitoring system that

senses water and light needs, user identification with infrared tags, air quality measuring, and

floor sensors for occupancy [207].

In Japan, efforts by the National Institute of Information and Communications Technol-

ogy (NiCT) and their Keihanna Human Info-Communications Research Center are focused

on the development and testing of the Ubiquitous Home. Their research goal is to support

and optimize the usage of information appliances in the home across the users regardless of

age or lifestyles. They are developing many technologies which include middleware in the



29

form of a distributed collaborative infrastructure for the home appliances to interact, an in-

teractive field model for context-sensitive services to enhance the user-appliance interaction,

a distributed environment action database to store and recall information about interactions,

and event interactive robotics that provide context-sensitive interaction. In league with many

Japanese technology companies, their research aims to improve the relationship between hu-

mans and household appliances. Efforts for evaluation of case studies involving human family

participation in their Ubiquitous Home are just beginning [138].

Besides AMIGO on the European continent, the United Kingdom Equator Interdisci-

plinary Research Colloboration comprised of eight members (The University of Bristol, The

Lancaster University, The Royal College of Art, The University of Sussex, The University of

Glasgow, The University of Nottingham, The University of Southhampton, and The University

College London) and supported by the UK Engineering and Physical Sciences Research Coun-

cil (EPSRC) is another supergroup of researchers working on pervasive/ubiquitous computing

and intelligent environment related work. They are focused on the integration of physical and

digital interaction in order to bridge the gap between reality and virtual reality. This combined

effort aims to search for a better understanding of what it means to live in an age when digital

and physical activities not only coexist but co-operate and interoperate. Their list of publica-

tions cover almost all areas of related research (e.g., HCI, location systems, sensors, and so

forth), but do not seem to currently be focused on developing specific intelligent environments

or automation and inhabitant context learning [53].

Two other examples of integrated components and HCI work for interaction in intelli-

gent classrooms are the Northwestern intelligent classroom [56] and the smart classroom at

Tsinghua University in China [181].

In a more specific use of smart rooms, the UCLA HyperMedia Studio is investigating the

use of intelligent environment sensors and other ubiquitous computing technologies to provide

services for film production in those environments [215].
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The Multi-Agent Systems Lab at UMASS has investigated the use of a multi-agent sys-

tem for the control of a simulated intelligent home called IHome. Their research is focused

on applying a multi-agent system to the domain and examining issues of resource coordination

and temporally shared resource activities among agents [109].

The PRIMA project at INRIA is concerned with the scientific foundation for interactive

environments. Their mission is to develop and integrate systems with the ability to perceive

and model an environment and its contents, to act in/upon this environment, and to interact

with the occupants. Their research focus is on multi-modal observation and tracking of people,

new forms of man-machine integration, control and integration of perceptual processes, and

context guided learning and recognition [89]. They have an augmented meeting room testbed

for their experimentation that is equipped with cameras and a microphone array. This group is

a member of the AMIGO project.

There are many other intelligent environment projects in academia, government, indus-

try, and even amongst the enthusiastic general population and home hobbyists. We have cov-

ered many of the current and historical efforts in this area. The current trend is that many

groups are combining their efforts to eliminate redundancy of effort and focus on the research

challenges. These super efforts from groups such as Equator in the UK and AMIGO on main-

land Europe are beginning to produce large quantities of results and forward knowledge in

intelligent environment research. If the research community in the United States does not form

such research cooperatives in the very near future, we will soon loose our standing as a re-

search leader in this area [77]. New projects such as the Gator Tech House host promising new

research facilities, but will researchers in this area start large-scale collaborations or remain

islands to themselves?
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2.3 Pervasive and Ubiquitous Computing

The creation and development of intelligent environments involves the integration of

computation into the environment, a notion that is referred to today as ubiquitous computing

or pervasive computing. Ubiquitous computing owes its origins to Mark Weiser who was the

Chief Technologist at Xerox PARC until his untimely death from cancer in 1999. His 1991

Scientific American paper entitled “The Computer for the 21st Century” [221] is considered

the seminal paper in this emerging area of research. In that paper, Weiser forwards the idea

of “calm computing” or “ubiquitous computing” where the technologies that have the most

impact on our lives are an integral part of the fabric of our lives, disappear as technology itself,

and become the things that we as humans take for granted to work in a way that enriches our

lives and makes us productive, satisfied, or entertained. His original vision contains many of

the technology paradigms employed in intelligent offices, meeting rooms, and classrooms (e.g.,

interactive white boards, PDAs, gesture devices, and so forth) and that explains why so many

projects focus on this environment. The idea of ubiquitous computing is still far off in our

future. The road to that future is unclear and is why there are so many ideas currently under

investigation. This is a healthy start though to a promising future.

This area of research is so new that there are still a number of dual-monikers being used

to describe the same ideas. One point of confusion is the very name of the area of research.

Is it ubiquitous or pervasive computing? Reviewing the literature published in the proceedings

of the UbiComp, Pervasive, and PerCom conferences yields no clear direction either since the

same general areas are included across all of them. An idea forwarded by the 2005 PerCom

conference keynote speaker, Roy Campbell (project director for the UIUC Gaia project), was

that based on the definition of ubiquitous “being present everywhere at once” [163] and per-

vasive “spreading throughout,” [163] ubiquitous computing is the end result (and the goal of)

pervasive computing—the journey to ubiquity is through pervasive technologies. In this dis-
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sertation, we will use the term pervasive over ubiquitous as we feel that we are contributing to

the spread of computing with a goal of being ubiquitous.

Research in pervasive computing includes sensor networks, location management, en-

ergy efficiency, device creation, wireless networks, service discovery, security, middleware

services and platforms, context and system support, mobile services and protocols, applica-

tions, and so forth. Many of these technologies are used in this research, and we have made

some contributions in those areas (especially in sensor networks, service discovery, middle-

ware, and context services) which are or will be covered in other avenues of publication, but

the core work of this dissertation focuses on our work in decision-making and areas related to

user modeling and context understanding.

2.4 Conclusions

Many of the intelligent environment projects offer complementary areas of research that

are all a piece of a large puzzle that can be assembled in order to create a complete intelligent

environment, building, neighborhood, city, and so forth. The work in this dissertation differs

from the related work presented in this chapter by providing a completely data-driven approach

to learning a model of user activity. The HPOMDPs created by this technique are unique

compared to the current practices of hand-generation or heuristic creation. This work differs

from most intelligent environment work in the adaptability over time of our models. The

MavHome project also hosts the longest running human experiments and captured information

to date of any intelligent environment project. We hope that our findings and the approaches

taken in this dissertation provide useful scientific information to the community researching

and developing intelligent environments.



CHAPTER 3

A LEARNING ARCHITECTURE

We can only see a short distance ahead, but we can see plenty there that needs

to be done.

—Alan Turing,Turing Test

The work in this dissertation focuses on learning to automate the intelligent environment.

In this chapter we introduce the problem, present how the problem will be solved, provide an

overview of the system framework, and then introduce the core system architecture. This

chapter will end with a presentation of the environments used for testing and evaluation. The

purpose of this overview is to familiarize the reader with the system we have developed, the

names and functionalities of the major components, and the domain to which we are applying

this work.

3.1 The Problem

The motivation for this work is the development of systems to automate intelligent envi-

ronments in an accurate and efficient manner. There are a number of significant challenges in

this work in order to meet our goals.

3.1.1 Goals

The goals of our system are to learn a model of the inhabitants of the intelligent envi-

ronment, automate devices to the fullest extent possible using this model in order to maximize

the comfort of the inhabitant while maintaining safety and security, and adapt this model over

33
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time to maintain these requirements. In order to accomplish these goals, we must first learn a

model of inhabitant activities, and then incorporate this into an adaptive system for continued

learning and control.

Our development goal is to create an agent based system as shown in Figure 3.1. The

very essence of this system is to perceive the environment through sensors, reason about this

information in order to make decisions on whether or not an action should be taken to change

the state of the environment in which the agent is situated, and then perform this action through

actuators which will affect the perceived state continuing the cyclead infinitum. This work fo-

cuses on an agent based system centered around a known single inhabitant in our environment.

Figure 3.1. Basic agent architecture.

3.1.2 Perception

This work explores beyond simulated worlds and into real home and workplace environ-

ments. In order to develop correct theories and algorithms, we must be able to perceive the real
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and virtual testing environments in the same manner. The challenge lies in being able to ob-

serve accurately enough of the real world to have sufficient information from which to observe

and reason about acting. It must also be sufficient enough to model the real world with enough

precision in the simulation environments in order to conduct longer term and more controlled

experimentation. The type, number, and placement of sensors as well as data collection issues

present an important layer of information. This work will focus on the perception of appli-

ance state (e.g., lights, fans, mini-blind position, and so forth) as well as environmental data

such as humidity. Perception in our environments comes from the X-10 system as discussed in

Appendix A and the Argus sensor networks discussed in Appendix B.

3.1.3 Reasoning

Information regarding the current environmental state space and an understanding of the

character of the observed data perceived coupled with a good representation of the behavioral

activities of an inhabitant in an environment can be used for making decisions about future

actions that follow the inhabitant model. These future actions may be automated by the system.

The inhabitant model is difficult to hand generate, so automatic methods for deriving the model

from observed behavior can provide a valuable contribution. A model focused on dynamic

inhabitants must also be able to adapt to model changes over time to maintain the value of the

model. A good model and representation can support proper reasoning and action execution in

an environment.

3.1.3.1 Character of an Intelligent Environment

The sensing and control capabilities of our intelligent environments fit into the general-

ized models of any sensed and controlled system. The sensors, and for that matter all objects,

in our environments are designated with a zone-number combination (e.g., A1) for uniqueness.

In our environments, there is a one-to-one correspondence between state and action (e.g., an
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action such as turning on a light produces the state change of that light being on). The state of

objects in these environments is determined by the last action performed upon the object such

as the state of a lamp being on corresponding directly to the action of turning it on and not

some other mechanism. In some domains, states and actions do not correspond directly (e.g.,

in a robot domain a specific positional state is related to the action of motion through motor

control which is not always consistent with achieving the same state since motor control can

lead to other robot positions). This one-to-one correspondence between state and action is an

attribute shared by many systems such as the click-stream of a computer graphical management

environment and interaction of users with desktop elements, but certainly not all. Inhabitant

interaction in our environments produces a constant stream of time-ordered data.

Environments of this nature provide significant challenges. The largest involves the curse

of dimensionality [94]. The state space of an intelligent environment is enormous. For exam-

ple, if we were to examine a very small environment with ten motion sensors and five lights

for a total of fifteen objects and each of these objects has only two states (they are binary) that

would give us 215 = 32,768 unique states. If we can reason about each one for 0.01 seconds it

would take 5.46 minutes to make a decision. The environments in this dissertation have state

spaces closer to the size of 2150 or 1.43x1045 unique states. The size of the problem space

makes it difficult to develop real-time reasoning for intelligent environments.

The second largest problem is the curse of generalization [156]. Most approaches to

state space reduction involve generalization techniques that reduce the state spaces into simi-

lar groups; however, in the intelligent environment domain where inhabitants are involved in

specific local activities generalizing will often produce undesirable results. For example, if an

inhabitant reads, listens to music, and watches television all in the same room, and the com-

monality between these events is that the same light is on in the room, all that a generalized

approach will provide is an automation of that light, missing the desired automation of the CD

player and television as appropriate. The challenge is to develop a solution that can maintain



37

a small state space for macro reasoning, but still maintains the details for micro reasoning and

automation.

3.1.3.2 Representing the Inhabitant

The assumptions we make are that peopleare creatures of habit and will provide some

periodicity and/or frequency to a number of activities they perform in any given environment,

that these patterns can be observed through sensor perception, and that these patterns can be

represented as Markov chains. We support this as a valid assumption since any and all observed

events occurring in our environments appear as a time-ordered sequence of observable state

changes which can always be represented as a Markov chain. The underlying mechanisms

may not be understood or complete since we may not observe all possible patterns, but this

representation can capture all observed state changes and is sufficient for our work. The base

pattern representation of a Markov chain in our work represents a certain identifiable pattern

of activity orepisode.

Episodes may be abstracted into higher-level episodes that represent a grouping of re-

lated episode activity. It should be noted that we will violate the Markov property in this work

by adding in a limited amount of history. The Markov property states that “the transition prob-

abilities from any given state depend only on the state and not on the previous history [175].”

In order to distinguish pattern permutations when building hierarchies we add history to the

transitions to determine the correct transition probabilities—this will be discussed in further

detail in upcoming sections.

Figure 3.2. Watching television Markov chain.
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As a basic example, Figure 3.2 shows a typical Markov chain of inhabitant activity,

namely the pattern of watching television. Patterns similar to watching television such as

listening to music and reading a book can be grouped together because they occur in the same

space in an environment. Furthermore, activities that occur on that side of the house could be

grouped together and eventually all activities in a house fall under the root node as shown in

Figure 3.3.

This location-based hierarchical decomposition of activities illustrates the type of infor-

mation we are trying to learn about the inhabitants of an environment—how they utilize the

environment. The model influenced by location is typical of human partitioned state spaces,

but in this work we seek to learn the structure automatically through observation. Hierarchical

decomposition of the Markov activity model will be guided by how the inhabitant interacts in

the environment. In other words, the hierarchies we learn are based upon observed patterns

so that if the inhabitant eats then watches television followed by a period of sleep then those

activities are more likely to be grouped together because at a higher level they form a pattern.

Regardless of the decomposition policy, in the intelligent environment domain the root node

indicates events that occur in the purview of that particular intelligent environment.

In the real world the current state of our environments is never fully understood. We

can make observations and infer about the general state of the environment, but the environ-

ment is still only partially observable—we cannot observe what takes place in peoples’ minds,

in the ductwork, behind the couch, inside the television, and so forth. In our environments

what we actually learn are Hidden Markov Models (HMMs). HMMs still describe a process

that goes through a series of states, but each state has a probability distribution of possible

transitions [175]. Each state also represents a perceived observation that encapsulates many

possibly unseen events that arehiddenfrom the observer. In our work, we also depart from the

traditional state-based chains of the Markov model which typically represent the entire world

state in favor of an event-based chain, one in which the world state is represented only by the
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Figure 3.3. Basic hierarchical Markov model.

single change observed at that point in time. Since our model focus is on a single inhabitant,

we concentrate on the changes made to the world state by that individual and assume that the

rest of the world has not changed. Our model as such represents a chain of events where each

event represents the observation that we make at a given point. Each event encapsulates all of

the hidden acts that may occur as well. Our approach will also build HMMs into a hierarchy,

called a Hierarchical Hidden Markov Model (HHMM). If you tie actions and rewards to the

transitions between states this model becomes known as a Hierarchical Partially-observable

Markov Decision Process (HPOMDP) which will be discussed in further detail in upcoming

sections. This work will focus on single inhabitants or multiple inhabitants treated as a single

grouped inhabitant—this is a single inhabitant based system.
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3.1.3.3 Learning from Observation

The core challenge of this work is to learn an inhabitant model solely from observation.

The learned model can only utilize data from the perception of the environment and designed

mechanisms for converting that data into a useful knowledge representation. The model should

be computationally tractable, accurately reflect the interactivity patterns of the inhabitant, and

provide for the accurate and efficient automation of the environment.

3.1.3.4 Interactive Life-long Learning

Learning past the initial model is the secondary challenge. Automation systems for in-

telligent environments are only useful in the real world if they can adapt to the ever changing

lifestyles of the inhabitants to whom they cater. The system should accommodate for both a

slow drift in patterns and for dramatic shifts. The system should adapt quickly while minimiz-

ing the loss of accuracy and efficiency. The goal is to provide for the life-long adaptation of

the system with the inhabitant of the environment.

3.1.4 Actuation

Automation can only occur when the systems can actuate objects in the real world in

order to affect state and therefore affect perception. The type and number will be determined by

off-the-shelf availability and environmental needs. This work will focus on lights, fans, limited

appliances, and mini-blind control actuation systems mostly through X-10 based control as

discussed in Appendix A.

3.2 Solving the Problem

Data streams from the sensors of the environment into software components which con-

tain algorithms that learn, predict, and generate knowledge. These components are controlled
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by a single entity that seeks to organize structures that model the inhabitant of the target en-

vironment in an effort to maintain their safety and security and to cater to their needs by au-

tomating the mundane tasks in their lives. These structures must also be modified over time to

adjust for the lifestyle changes of the inhabitant they model in the given environment.

3.2.1 The Approach

There are three distinct phases to our approach. The first phase as shown in Figure 3.4 is

theKnowledge Discovery and Initial Learningphase which involves the decision-maker utiliz-

ing the data-miner to produce hierarchical knowledge of inhabitant activity patterns, creating

a model, and training the prediction and episode membership algorithms. In that flow dia-

gram, solid lines represent the flow of processing control and data in the direction of the arrow,

dashed lines represent the transformation of data into different forms from the source to the

product following the direction of the arrow. The second phase as shown in Figure 3.5 is the

Operationalphase which involves observing the event stream and providing current observa-

tion data and then receiving next observation and membership probability information from

the predictor and episode membership algorithms in order to form a belief state in the inhab-

itant model. This information is used to potentially make an automation decision. The rules

engine is constantly running during this phase. The third phase as shown in Figure 3.6 is the

Adaptation and Continued Learningphase which involves feedback from the rules engine to

adjust the transition probabilities in the model to improve performance, monitoring of system

performance, and the monitoring of data-mined inhabitant activity patterns to observe shifts in

the inhabitant’s activities. Together this system is designed to learn a model of the inhabitants

of the intelligent environment, automate devices to the fullest extent possible using this model

in order to maximize the comfort of the inhabitant while maintaining safety and security, and

adapt this model over time to accommodate shifts and drifts in the inhabitant’s life patterns.
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Figure 3.4. Phase 1: Knowledge discovery and initial learning phase.
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Figure 3.5. Phase 2: Operational phase.



44

Figure 3.6. Phase 3: Adaptation and continued learning phase.

3.2.2 Data-mining

The better the quality of information, the better the model, and the better the control

policy. Central to our approach is the necessity to recognize the Markov chain patterns of the
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life of an inhabitant in one of our environments and to recognize the patterns of the abstract

patterns, comprising a sequence of the low-level patterns—all from observation data. The

large quantities of observed data and the desire to extract the patterns from it have led us to the

data-mining community. If we could employ a data-mining technique to discover the periodic

and frequent episodes of behavioral patterns in the data, we could use that knowledge to build

our inhabitant models. We utilize the work by Ed Heierman in his Episode Discovery (ED)

technique [75] as a tool for extracting the desired knowledge from the data stream.

3.2.3 Belief State Support

If a data-mining technique can generate knowledge to create a hierarchical model, then

in order to be able to use it for automation we will require information that will provide a

mapping from the real world observations to the specific location within our model. The event

stream coming into the system provides one clue as to which pattern we are currently observ-

ing, but may be insufficient to truly pinpoint the exact chain of current activity. What we need

to develop is a belief in which state the current world is engaged in order to utilize our learned

model to automate future events. Understanding what is the most probable next event to occur

would assist in this belief. A prediction algorithm trained on our observation data sets and with

reasonable accuracy could be used to provide this type of information. In addition, since our

approach is to create hierarchical layers that are labeled as groups of events, there will always

be a probability of membership given an observation data stream to these groupings. An al-

gorithm that produces a probability of membership given the current event stream to learned

groups would provide information that could narrow the choices of specific patterns in current

practice and improve the belief of which state the system is currently engaged. The combina-

tion of the current event stream, a membership probability across the hierarchical layers, and

a prediction of the next event to occur yield a belief state of where in the derived model the

current inhabitant is interacting. If we look ahead in the model we can determine events that
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will occur in the near future, and if these events are within the control of the system it can issue

actions to automate them.

3.2.4 A Rules Engine

Invariably, there will be events that escape periodic or frequent patterns, but are desired

items for automation. The notion of encoding safety, security, and user preferences into the

system is also important to our system goals. In order to accommodate these needs, we are

employing the use of a rules engine that will maintain a knowledge base of user preference,

safety, and security rules and constraints. These rules would incorporate knowledge such as

not opening the mini-blinds at night or turning on exhaust fans at high humidity levels. It can

also accommodate user preference that could specify rules such as to not automate particular

items perhaps because it is their favorite lamp or they just do not feel comfortable with the

automation for a particular device. These rules can also be used to incorporate desired events

outside the realm of normal observation by the system. For example, patterns that cannot be

performed by the inhabitants such as turning off all of the lights when the inhabitant leaves the

environment can be encoded as a rule.

Since our goal is to learn how to automate the intelligent environment, the rules engine

can also serve as a feedback mechanism. Whenever a rule is violated or fires, feedback can

be given to the learning mechanisms of the decision-making component to incorporate into its

knowledge for the future. Ideally, the decision-maker would learn not to violate the safety and

security rules and automate the inhabitant-designed rules as well.

3.2.5 Decision-making

The decision-maker is the core control policy component. Our approach is to develop

an overall control algorithm in a three-phase system. The first phase will extract the appro-

priate observation data from a database and control the data-mining algorithm in order to find
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patterns and patterns of patterns to build a hierarchical hidden Markov model. This HHMM

will be extended with actions and rewards to form a HPOMDP model of the inhabitant for

the environment under evaluation. The observation data will also be used to train a prediction

algorithm. The observation data and data-mined patterns will be used to train an episode mem-

bership algorithm. After the initial information is processed, the model is derived, and useful

components are trained, we can move into the next phase.

The second phase involves the operational use of the components under the direction of

the decision-maker to automate the environment. The decision-maker takes the incoming data

stream and provides the information to the predictor and the episode membership algorithms

to receive a predicted state and membership probabilities. Based upon the current event, the

recent history, the next state prediction, and the probabilities of membership the decision-maker

will develop a belief state of where in the learned HPOMDP model the inhabitant’s activities

are currently engaged. If the belief is strong enough and exists in a series of non-abstract

events (i.e., there is sufficient evidence and probability that current observations are part of a

known low-level Markov chain), then the decision-maker will look ahead and make an action

decision if one exists. These action decisions automate the environment. While the second

phase continues to automate the environment, as feedback is returned from the rules engine

and the inhabitant interacting in the environment, we enter the third phase.

The third phase involves adaptation and learning by the decision-maker altering the

transition probabilities between events based on feedback in order improve automation per-

formance. These local changes to the model accommodate for minor changes in the activity

patterns of the inhabitant over time. The decision-maker will also continue to periodically reex-

amine the historical data using the data-mining tool to determine if new patterns are emerging

with the goal of detecting shifts in the patterns. Large lifestyle changes in the inhabitant may

lead to a breaking of the current model. In order to accommodate such shifts the decision-maker

must evaluate performance and pattern change information in order to contemplate potential
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reset of the entire system in order to accommodate a major change in the inhabitant’s patterns.

These three phases are designed to initiate, operate, and maintain a system for the automation

of the intelligent environment.

3.3 The System Framework

Given the problem and our chosen approach, it is important to develop a framework

in which to support our work. Our system framework is designed of modular components

and open source software. Modularity is chosen over a monolithic system to promote ease

of maintenance and replacement. The architecture is designed to allow components to be

swappable, potentially even hot-swappable, in order to create a robust and adaptive system.

We present the framework first in a functional abstract view and then in a detailed concrete

form.

3.3.1 Abstract View

The system framework shown in Figure 3.7 consists of four cooperating layers. Starting

at the bottom, thePhysicallayer contains the hardware within the environment. This includes

all physical components such as sensors, actuators, network equipment, and computers. The

Communicationlayer is available to all layers to facilitate communication and service dis-

covery between components. The communication layer includes the operating system, device

drivers, low-level component interfaces, device proxies, and middleware. TheInformation

layer gathers, stores, and generates knowledge useful for decision making. The information

layer contains prediction components, databases, user interfaces, data mining components,

resource utilization information providers, and high-level aggregators of low-level interfaces

(e.g., combined sensor or actuator interfaces). TheDecisionlayer takes in information, learns

from stored information, makes decisions on actions to automate in the environment, deter-
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mines if faults occur and correlates them back to responsible components, and develops poli-

cies while checking for safety and security.

Figure 3.7. Abstract framework.
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Perception is a bottom-up process. Sensors monitor the environment and make informa-

tion available through the communication layer to information layer components. The database

stores this information while other information components process the raw information into

more useful knowledge (e.g., predictions, abstractions). New information is presented to the

decision layer components upon request or arrangement. The decision layer uses learned ex-

perience, observations, and derived knowledge to select an action (which may be empty). The

decision is checked for safety and security concerns and, if allowed, signals the beginning

of action execution. Action execution flows top-down. The decision action is communicated

to the information layer which records the action and communicates it to the physical layer.

The physical layer performs the action, thus changing the state of the world and triggering a

new perception. The process repeatsad infinitumwith periodic retraining of the decision layer

components, policy development, database archiving, and component maintenance.

3.3.2 Concrete View

The abstract layers of the system framework are realized through a set of concrete func-

tional layers. These concrete layers are shown with components in Figure 3.8. The base layer

is the Physical Componentslayer which consists of all real devices utilized in the system.

These devices include powerline control interface hardware, sensor networks, input devices,

cameras, and so forth, with the exception of the computer with which equipment is interfaced.

The physical computer(s) and associated network this system resides on is considered the host

of all layers above the physical. TheComputer Interfacelayer contains the hardware interfaces

to physical devices (e.g., PCI card interfaces, USB, Firewire), device drivers to utilize the hard-

ware, the operating system of the computer, and all software interfaces that provide services or

APIs for hardware access. It should be noted that since all components of above layers reside

and utilize operating system services, these services are shown to extend to all layers. In the

Logical Interfacelayer, the hardware device services and APIs are utilized to create simple,
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light-weight programs that create a series of atomic services around each sensor and effector

in the system. Theselogical proxiesprovide information and control via socket and shared

memory based interfaces in a modular design. All of the lower layers are based on simple sin-

gle application components, but in higher layers the components become more complex. The

Middlewarelayer provides valuable services to the upper layers of the architecture to facili-

tate communication and service discovery. The MavHome architecture specifies middleware

that provides both point-to-point (done through CORBA) and publish-subscribe (done through

multicast messaging utilizing OS socket services and the IP stack) types of communication

and naming/service discovery provisions. TheServiceslayer utilizes the middleware layer to

gather information from lower layers and provide information to system applications above.

Services either store information, generate knowledge, aggregate lower-level components, or

provide some value-added non-decision making computational function or feature (e.g., user

interfaces). TheApplicationslayer is where learning and decision-making components oper-

ate. Not all components that appear in Figure 3.8 are utilized in this research, but are used

throughout the MavHome project in general.

3.3.3 Implementation

To provide the reader with a better understanding of the system framework we employ,

we will discuss some implementation-specific details. More information on our systems and

environments can be found in the appendices.

Lighting control is the most prominent effector in most intelligent environments. We

currently use X-10-based devices in the form of lamp and appliance modules to control all

lights and appliances. The CM-11A interface is used to connect computers to the power system

to control the devices. Radio-frequency based transmitters (in remote control form factor) and

receivers are also used for device interaction. X-10 was chosen because of its availability and
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Figure 3.8. Concrete framework.

low price. Many home users also utilize X-10 technology, so immediate benefits to the current

home user are possible. Refer to Appendix A for more information on X-10.
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Perception through light, humidity, temperature, smoke, gas, motion, and switches is per-

formed through a sensor network we developed. The Argus network system is a PIC16F877-

based system comprised of a master board that interfaces to the computer via a serial interface

and connects up to 100 slave boards that host up to 64 sensors each, ganged in groups of four

on a sensor dongle. Special masters have also been developed for high speed digital and mixed

digital/analog sensing applications. A stepper-motor master has also been developed to control

up to four mini-blinds. Refer to Appendix B for more information on the Argus networks.

A key element in perception is inhabitant localization. The Argus Digital Master is used

in conjunction with passive infrared (PIR) sensors placed on the ceiling in traffic areas to detect

motion. The sensors have a 60° field of view and are placed between eight and ten feet from

the ground depending on the height of the ceiling. In order to reduce the sensing area, tubes

are placed over the sensors to reduce the floor footprint to a three to four foot sensing circle.

Tests in our environments show a consistent single inhabitant location detection rate of 95% or

better accuracy. Multiple inhabitant studies will require augmenting technology, so our focus

is on single inhabitants.

All system framework components interface through either serial, USB, or firewire in-

terfaces. The system framework and components have been developed on Intel-based PCs

(Pentium 4) and use the Linux operating system (SuSE 9.1).

The logical interfaces for all X-10 and Argus-based components have been written as

light-weight configurable modules. The proxies maintain the current state of each device and

provide a mechanism for reading and, if applicable, control. The communication protocols for

X-10 devices and Argus components are well defined and interface availability is advertised

through zero configuration (ZeroConf [87]) technology.

Components desiring to find X-10 or Argus components merely need to perform a link-

local query for devices that follow the defined MavHome X-10 and Argus protocols and a list

of available devices will be presented to the requester. Contact information is returned to the
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requester to allow connection to the logical proxy. Through this mechanism no configuration is

required and the system is very adaptive and dynamic. New proxies advertise their availability

and older ones remove theirs before they shut down. We have had a high level of success using

ZeroConf technology with very few problems once the components were developed. When

we were using a CORBA name server we had close to a 50% component communication or

discovery failure rate at any given time.

The system framework uses two main middleware packages. Communication between

high level components is performed using the Common Object Request Broker Architecture

(CORBA) due to the clarity of interface design provided by the Interface Description Language

(IDL), ease of integration, maturity and stability of the technology, and object-oriented design

compatible with ourC++ implemented components. Zero configuration technologies are used

for replacing the CORBA naming service and providing service discovery. They are provided

by the Apple Multicast DNS responder and adherence to the ZeroConf standard.

Implemented services include a PostgreSQL database that stores information, user in-

terfaces, prediction components, data mining components, and logical proxy aggregators (e.g.,

the projector screen aggregator that takes simple “up” or “down” commands to coordinate the

efforts of a timed control of three switches to place the screen in the proper position). Resource

utilization services monitor current utility consumption rates and provide usage estimates and

consumption queries, but are not used in this work.

The core of this work resides at the application layer which along with some of the

services comprise the core system architecture of this approach. Other applications such as a

fault tolerance correlation application as shown in Figure 3.8 exist, but are not currently used

in this work.
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3.4 The System Architecture

Inside the system framework exists the core system architecture for our approach. In

section 3.2 we outlined the components we utilize in our work and place those in a framework

in section 3.3. At this point the exact mechanisms have remained nameless in order to provide a

better understanding through an overview path that will continue to present the ideas, approach,

and design in increasing detail. We will now present the specific core architectural elements

we utilize that will be completely analyzed in the next chapter.

3.4.1 ProPHeT

Decision making is performed in the ProPHeT (Providing Partially-observableHier-

archical (HMM/POMDP) based decision Tasks) component. The world representation at

this level is the Hierarchical Hidden Markov Model (HHMM) [54] based upon a hierarchy

of episodes of activity mined from stored observations. Episode Discovery (ED) is used to

generate low-level episode Markov chains and build the hierarchy of abstract episodes under

the direction of ProPHeT. Learning is performed by extending the HHMM to a hierarchical

Partially Observable Markov Decision Process (HPOMDP) and applying temporal-difference

learning. Constant feedback from ARBITER is used for continuous learning using TD(0) re-

inforcement learning [203]. Action decisions are made by using the incoming event stream,

recent history, the stream episode membership features of Episode Membership (Epi-M) to

provide input into the current belief state in the model, and the Active LeZi (ALZ) prediction

of the next event to chose the appropriate transitional action.

3.4.2 Episode Discovery (ED)

The Episode Discovery (ED) data-mining algorithm [73] discovers interesting patterns

in a time-ordered data stream. ED processes a time-ordered sequence, discovers the interesting

episodes that exist within the sequence as an unordered collection, and records the unique
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occurrences of the discovered patterns. Because the framework is capable of processing the

interactions incrementally, it can be used as part of a real-time system. These features make

ED a suitable algorithm for mining an intelligent environment data stream.

Our approach to state space reduction from the large number of potential environment

observations is to abstract inhabitant activity to episodes that represent the current task of

involvement. Given the inhabitant task episode, observations not related to the task can be

pruned. A difficult problem is how to discover these episodes. After discovering the episodes,

it is also desirable to be able to classify streamed observations to episodes in real time.

We use ED to find inhabitant episodes in the collected data and for episode classifica-

tion of streamed observations. ED mines device activity streams trying to discover clusters of

interactions that are closely related in time. Significance testing is performed on discovered

clusters to generate sets of significant episodes based on the frequency of occurrence, length,

and regularity. Further processing using the Minimum Description Length (MDL) principle

[171] and greedy selection produces sets of significant episodes. These are labeled and directly

correspond to an inhabitant task.

When an inhabitant is first introduced to an intelligent environment, no automation

should occur for an initial observation period. This allows the building of a database of po-

tential episodes of normal task activity. This is inhabitant centric and the observation period

duration is determined by data compressibility which is used to determine the stability of the

data with relation to episode discovery. A stable, consistent data compression as reported by

ED indicates an end to the initial observation period. Identification of concept drift and shift

is performed by continued monitoring of streaming data and compressibility. Changes in com-

pressibility indicate a need to reevaluate the discovered episodes.

Episode discovery, classification, and identification are utilized to reduce the state space

of an intelligent environment to a set of inhabitant-centric tasks. Thus, the MavHome architec-

ture is inhabitant-centric.



57

3.4.3 Active LeZi (ALZ)

An intelligent environment must be able to acquire and apply knowledge about its in-

habitants in order to adapt to the inhabitants and meet the goals of comfort and efficiency.

These capabilities rely upon effective prediction algorithms. Given a prediction of inhabitant

activities, MavHome can decide whether or not to automate the activity or even find a way to

improve the activity to meet the system goals.

Specifically, the MavHome system needs to predict the inhabitant’s next action in order

to automate selected repetitive tasks for the inhabitant. The system will need to make this pre-

diction based only on previously-seen inhabitant interaction with various devices. It is essential

that the number of prediction errors be kept to a minimum–not only would it be annoying for

the inhabitant to reverse system decisions, but prediction errors can lead to excessive resource

consumption. Another desirable characteristic of a prediction algorithm is that predictions be

delivered in real time without resorting to an offline prediction scheme.

MavHome uses theActive-LeZialgorithm (ALZ) [61] to meet our prediction require-

ments. ALZ is a predictor based on text compression methods. It has been well-investigated

that good compression methods are also good predictors, and according to Information Theory,

a predictor that builds a model whose entropy approaches that of the source achieves greater

predictive accuracy. It has also been shown that a predictor with an order that grows at a rate

approximating the entropy rate of the source is an optimal predictor. ALZ is based upon these

characteristics. By characterizing inhabitant-device interaction as a Markov chain of events,

we utilize a sequential prediction scheme that has been shown to be optimal in terms of pre-

dictive accuracy. Active-LeZi is also inherently an online algorithm, since it is based on the

incremental LZ78 data compression algorithm.



58

3.4.4 Episode Membership (Epi-M)

Effective utilization of the derived HHMM/HPOMDP-based inhabitant model requires

an understanding of how to map the current observation stream into the derived abstractions.

Episode Membership (Epi-M) performs this function by using the information learned from

Episode Discovery to build internal correlation tables and further augment those tables with

time-based occurrence information based on circular probability capture from the same data

stream. Data stream observation over the specified time window supplied to ED can be used to

generate match probabilities with the episode sets over each layer of abstraction. Augmenting

the probability with the likelihood of occurrence based on the observed occurrence time distri-

bution for each of the discovered episodes with relation to the current time further improves the

accuracy of possible episode membership reporting. For example, if the current observation

stream matches with 90% probability either reading a book or the pattern of sleeping on the

couch, but the inhabitant has never slept on the couch at this time of day, then the probability

of sleeping can be discounted to promote reading as the most probable episode of membership.

Epi-M output is used by ProPHeT to determine belief state in the operational phase for the

current event observations.

3.4.5 ARBITER

When issues of safety and security are of the highest importance in a system there is

the need for an enforcer of rules before actions are made. This system works by using a

knowledge base of rules and evaluating each action event against these rules to determine if the

action violates them. Actions in violation will be prevented from occurring and feedback will

be sent back to the originating system (i.e., the decision-maker). Rules are not required to be

just of a safety and security type, any type of rule can be used in order to guide the behavior of

the system. Cases where system behaviors are desired but will never be trained by streaming
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data or interactions can be handled by the addition of rules to provide feedback and facilitate

learning of the desired behavior.

Before an action is executed it is checked against the policies in the policy engine, AR-

BITER (A Rule-BasedInitiaTor of Efficient Resolutions). These policies contain designed

safety and security knowledge and inhabitant standing rules. Through the policy engine the

system is prevented from engaging in erroneous actions that may perform such activities as

turning the heater to 120° F or from violating the inhabitant’s stated wishes (e.g., a standing

rule to never turn off the inhabitant’s night light).

ProPHeT performance depends on ARBITER preventing the violation of rules and relay-

ing feedback information so ProPHeT can learn. When ARBITER performs correctly it can

improve ProPHeT performance through proper feedback and prevent incorrect ProPHeT de-

cisions from being executed. Conversely, if ARBITER performs incorrectly, despite correct

actions from ProPHeT, bad rules could prevent helpful automations and degrade system per-

formance.

These components work in concert to learn, adapt, and automate the inhabitants’ lives in

an intelligent environment.

3.4.6 The Core

The core of this work lies in the data-mining–decision-making–belief–rule/feedback

chain or in what we call the EPBA chain comprised of the Episode Discovery (ED), ProPHeT,

belief through Active LeZi and Episode Membership (Epi-M), and the ARBITER components.

Information and action flow through the system according to the three main system

phases. These phases as previously stated can be restated asInitialization, Operation,and

Adaptation.

The operation and adaptation phases occur simultaneously until interrupted by the adap-

tation phase, usually to return through the initialization phase. All components in blue with a
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bold, solid border in the architecture Figures 3.9, 3.10, and 3.11 represent components that are

developed as part of this work, yellow items with a dashed border are components developed

on the MavHome project but were developed by others, and components in other colors with

thin borders represent data or storage.

Figure 3.9. Core system architecture in initialization phase.

The structure of the core components in the initialization phase and the flow of informa-

tion are shown in Figure 3.9. During initialization information flows from the database through

ProPHeT into ED. As many instances of ED as are necessary to process the data into a hierarchy

of discovered patterns are started by ProPHeT. An instance of ED is needed for each successive

layer in the hierarchy from the lowest productions nodes through each layer of higher abstrac-

tion until reacing the root node when no further abstract patterns can be found. The multiple

instances of ED return information on the discovered patterns to ProPHeT. ProPHeT then trains
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ALZ over the same observation data from the database. ProPHeT determines what information

to pull from the database based on available observation data and an observation of episode

discovery and compression over time (discussed in Section 4.3.1) and performs the necessary

data conversions and filtering for each component to accept the data and perform computa-

tion within a reasonable amount of time. After ALZ, ProPHeT trains Epi-M with the same

observation data and the hierarchical data returned from ED. After deriving the data from the

target observation data set and training the belief supporting components, ProPHeT generates

the HHMM and subsequent HPOMDP models.

Figure 3.10. Core system architecture in operation phase.

The structure of the core components in the operation phase and the flow of information

are shown in Figure 3.10. During operation information flows from events generated in the

environment and perceived by the logical proxies and presented to ProPHeT. ProPHeT relays

these events to ALZ and Epi-M and receives prediction and membership information. Based

upon the incoming event, history, prediction, membership probabilities, and the HPOMDP

model an action decision may be made. Any action decisions, or at a minimum the current
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event, will flow through to ARBITER to be checked for rule violations. If a satisfactory action

is to be performed, ARBITER will contact the appropriate logical proxy to initiate the action.

Figure 3.11. Core system architecture in adaptation phase.

The structure of the core components in the adaptation phase and the flow of information

are shown in Figure 3.11. During adaptation information flows from the event stream through

ProPHeT to ARBITER, often accompanied with an action. Rule violations and any other feed-

back are relayed back to ProPHeT from ARBITER including inhabitant feedback correlation to

countermanded automation. Action correlation is performed through observation in a tunable

time window. Each system action is recorded with the label of the node within the HPOMDP

that initiated it. If the system performs an action and the action is undone by observing the in-

coming environmental data stream, then feedback is correlated to the label of the node within

the HPOMDP that caused the incorrect action. ProPHeT uses feedback from ARBITER to

adjust the HPOMDP structure to improve performance and accommodate for pattern drift. In-
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ternally ProPHeT is evaluating performance based on feedback and usage. Information also

flows into and out of ED as ProPHet will periodically evaluate the continuously-growing ob-

servation database—it should be noted that in our system the database component has an event

listener that logs all events into the database—for changes in patterns and hierarchy (the mech-

anism is to be discussed in the next chapter) in order to detect pattern shift. ProPHeT will

decide based upon performance as well as indications of pattern shift and drift whether a reset

of the decision-maker is required. The reset is essentially a reboot of the system using a new

set of observations—one that will hopefully better fit the inhabitant.

The framework and architecture presented in this chapter are fully expanded and ex-

plained in detail in the next chapter. This approach and system is applied to the MavPad and

MavLab environments in order to automate inhabitant activities.

This is only one possible approach to developing a solution given the problem and goals.

There are many other possible approaches, some of which we discuss in chapter 2, but oth-

ers remain to be explored. We are exploring this method because it had not been previously

explored in this domain. We present this work to the scientific community in order to further

knowledge and understanding.

3.5 The Environments under Examination

This work uses two real environments and their simulated counterparts. The MavPad is

an on-campus apartment, and the MavLab is the workplace of the researchers of this project.

ResiSim is an in-house developed “residential simulator” for interactive simulation of intelli-

gent environments.

3.5.1 The MavPad

The MavPad is an on-campus apartment located at the University Village on The Univer-

sity of Texas at Arlington campus and sponsored by the UTA College of Engineering that hosts



64

a full-time student occupant that participates in the project allowing us to learn about them and

automate their life in accordance with approved UTA IRB Protocol # 04.136. The MavPad

hosts automation capability through 25 X-10 controllers (three fans, thirteen lights, one HVAC

unit, and seven electrical outlets) and two ArgusM mini-blind control systems. Sensing ca-

pability is provided by the ArgusMS and ArgusD systems that provide eighteen light, eleven

temperature, four humidity, four leak detection, four door open/close, three window open/close,

two seat occupancy, four HVAC vent position, two smoke detectors, two CO detectors, and 36

motion sensors. The MavPad has been operational for over a year and has hosted three inhab-

itants. For specific information on the MavPad refer to Appendix C. Information on X-10 can

be found in Appendix A and Argus sensor network information can be found in Appendix B.

3.5.2 The MavLab

The MavLab is the project name for the Artificial Intelligence Lab (a.k.a., Learning and

Planning Lab) located in Nedderman Hall at The University of Texas at Arlington which is

base of operations for this research. The MavLab is a workspace setting with offices, cubi-

cles, a break area (MavKitchen), a lounge (MavDen), and a conference room. The MavLab

hosts automation capability through 54 X-10 controllers (49 light, five appliances, a projection

screen) and fourteen ArgusM mini-blind control systems. Sensing capability is provided by

the ArgusMS and ArgusD systems that provide 36 light, ten temperature, three humidity, two

door open/close, six seat occupancy, and 25 motion sensors. MavLab has been in various oper-

ational states for the last two years. For specific information on the MavLab refer to Appendix

D.

3.5.3 ResiSim

It is important that this work be well grounded in reality and in dealing with the real

world, especially with the goals being directed to the intelligent environment domain. This
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research work is aimed at real-time decision-making in the real-world. However, it is not

always feasible to study interactions solely in the real world. A tool for interactive simulation

and data visualization was needed. Since this is a relatively new area of study there are not

any available simulation tools designed for intelligent environments or home simulation, so the

development of a tool became an important issue for performing this type of work.

ResiSim is a residential simulation environment tool. It is designed to provide a simu-

lation environment for any indoor environment where people would typically spend time. It

features Markov model-based virtual inhabitants that interact with the environment and can

react to changes in that simulation. It can also provide real inhabitant data playback and lim-

ited interaction. As an evaluation tool it can track automation and its source whether from an

external system, playback, or elsewhere.

ResiSim is comprised of three basic parts. The first part is the logical proxies of the en-

vironment itself. ResiSim environments are comprised of individual Zeroconf-enabled objects

that represent either real-world, simulated, or hybrid objects that include the actual environ-

ment itself as an object. It is based upon the theory that in the future all objects will have some

level of self-awareness and controllability (even if just to provide limited self-information).

The second part is the server that collects all of the individual objects and assembles the en-

vironment. The server controls the time and interactions of the simulation and coordinates

and reports all changes to attached clients. The server provides a 2D overview display and an

interface GUI. The third part is the client which provides a 3D interactive interface with the

environment. This application aims to provide a photo-realistic experience in either interactive

mode where the user can interact with the environment or in observer mode where the user can

watch the interactions of others (either live or playback). ResiSim uses information learned

from the development, utilization, and interaction with our real environments to accurately

simulate or emulate the real world. Simulation of this fidelity is invaluable to understanding
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the environments, sensors, inhabitant interactions, and ability of systems to interact with an

intelligent environment. For more information on ResiSim refer to Appendix E.



CHAPTER 4

DETAILED METHODOLOGY

I believe I can see the future, because I repeat the same routine.

—Trent Reznor,Every Day is Exactly the Same

In the last chapter, we covered the architectural view of this work leaving out many de-

tails. The purpose of this chapter is to walk through those details of the core system architecture

in a data flow driven manner. Throughout this chapter, we will use a running example as we

describe and discuss the specific methods employed in our approach to intelligent environment

automation. This example involves a virtual inhabitant, MavHome Steve, who works in the

MavLab.

MavHome Steve, the virtual researcher, has a routine for his work in the MavLab. This

routine contains six unique patterns. These patterns include 1)lab entry to deskas shown in

Figure 4.1, 2)going on breakas shown in Figure 4.2, 3)going off breakas shown in Figure 4.3,

4) go to alternate workstationas shown in Figure 4.4, 5)return from alternate workstationas

shown in Figure 4.5, and 6)leave lab from deskas shown in Figure 4.6. These patterns occur

with a probability defined by the Hierarchical Hidden Markov Model shown in Figure 4.7 in

which no production nodes are presented to simplify this figure and to allow it to be viewed

on a single page. The production nodes are presented in the individual pattern figures. In the

HHMM figure, each oval represents an abstract node and the square an end node. Probabilistic

transitions are shown as solid arrows with the probability of transition labeled near the head

of each arrow. Automatic transitions are shown as dashed arrows and show a transition that

is always taken once reaching a node—always an end node in HHMMs. Using ResiSim (see

67
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Appendix E), we simulate MavHome Steve’s actions in the MavLab over time to produce

data and to interact with Steve with our system to automate his routine. Steve’s patterns are

designed to be simple and straightforward to provide a baseline understanding and measure of

performance for our approach.

Figure 4.1. MavHome Steve Pattern 1: Lab entry to desk.
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Figure 4.2. MavHome Steve Pattern 2: Going on break.

Figure 4.3. MavHome Steve Pattern 3: Going off break.



70

Figure 4.4. MavHome Steve Pattern 4: Go to alternate workstation.

Figure 4.5. MavHome Steve Pattern 5: Return from alternate workstation.
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Figure 4.6. MavHome Steve Pattern 6: Leave lab from desk.

Figure 4.7. MavHome Steve HHMM structure—abstract nodes only.

The sensors starting with ‘V’ are motion sensors or door sensors. The other sensors

are X-10 units. A description of the sensors can be found in Appendices A, B, and D. Items
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listed in the Markov chains that are inred bold italicsareautomatableactions (i.e., the system

can control those items and set them in the state indicated). Figure 4.8 presents an expanded

abstract node showing the production node chain including an automatable production node.

Each object is designated with an unique letter-number identification (e.g., v24) followed by

an underscore and a state (e.g., ‘OFF’). The automatable actions are the ones that should be

controlled by our system. The Markov chains represented in these example patterns are repre-

sentative of those in our sensed environments and are based on actual observed Markov chains

for these actions in the MavLab. The only differences between simulated and actual patterns is

the variability of the timings between events, the purity of the pattern (i.e., sometimes humans

will slightly deviate from an exact pattern, but are intent on the same goal), and sensor noise.

We do introduce some variability in timings, but order is preserved. Noise can be injected, but

is specifically mentioned when applied.

Figure 4.8. MavHome Steve HHMM structure pattern 2 abstract node expansion showing the
production nodes and the automatable node in grey-fill.

4.1 The Data and Flow

The sensing and control capabilities of our intelligent environments fit into the general-

ized models of any sensed and controlled system. In our environments, there is a one-to-one

correspondence between state and action (e.g., an action such as turning on a light produces

the state change of that light being on). Inhabitant interaction in these environments produces a

constant stream of time-ordered data. This data flows from the perception sensor logical prox-
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ies as described in the last chapter to online objects (e.g., ProPHeT and ARBITER) listening

to the data stream and indirectly to offline objects through storage objects (i.e., a database) as

shown in Figure 4.9.

Figure 4.9. Data flow from sensors to online and offline objects.

4.1.1 The Character of Intelligent Environment Streaming Data

Data streams from the logical proxies reflecting changes in the state of the objects they

represent. Our intelligent environment data streams are formally defined as a 6-tuple〈t, z, n, l,

r, p〉 where

• t is the timestamp of the event (DD-MM-YYYY HH:MM:SS)

• z is the device or sensor zone

• n is the device or sensor number

• l is the level or value of the new state

• r is the source of the event (e.g., sensor network, powerline control)

• p is the specific inhabitant initiating the event (if identifiable)
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An example of streaming data captured in our database can be seen in Table 4.1. The

data corresponds to the 6-tuple definition, but it also hosts an additional fieldstatewhich is a

Boolean representation oflevelwhere 100 = 1 and anything else is 0. We use this for conve-

nience and that is why it appears in our data streams. Also note that theinhabitant tagmerely

states “inhabitant.” This is because we do not employ technology to distinguish inhabitants,

but this field is left in the data stream for future separation of activities by inhabitant.

In analyzing common data streams in our intelligent environments, the most frequently

occurring data is the sensed light, temperature, and humidity levels that are not used specifically

by the focus of this research, but for other systems in the intelligent environment. However,

we do use some of those sensors in combination with simple reasoning software to create

other simple sensors. For example, by observing the average relative humidity over time we

can determine the mean and standard deviation—a simple sensor that would indicate ‘ON’

for levels above two standard deviations could be easily employed as an indicator to trigger

exhaust fans. The next frequent sensor information comes from the motion sensors followed

by the reed sensors (i.e., door openings and sitting on furniture detection) which are both of

interest. Interspersed in the data stream are the inhabitant interactions with objects that can be

automated—objects such as lights, blinds, and appliances. Figures 4.10, 4.11, 4.12, and 4.13

provide examples of the distribution of sensor readings from inhabitant interaction. Repetition

of these patterns over time (days, weeks, months, and years) makes them easier to identify,

but also corresponds to the repetitive nature of human life. The inhabitant’s interactions in the

environment over time create temporal patterns of their activity in the database.
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Table 4.1. Data-stream from inhabitant interaction in a MavEnvironment

Timestamp Zone Number State Level Source Inhabitant Tag

2005-01-04 01:51:26 V 20 0 0 ArgusD inhabitant

2005-01-04 01:51:26 i 4 0 0 X-10 inhabitant

2005-01-04 01:51:27 V 24 1 100 ArgusD inhabitant

2005-01-04 01:51:28 V 24 0 0 ArgusD inhabitant

2005-01-04 01:51:29 V 24 1 100 ArgusD inhabitant

2005-01-04 01:51:31 V 24 0 0 ArgusD inhabitant

2005-01-04 01:51:31 a 1 0 0 X-10 inhabitant

2005-01-04 01:51:31 V 20 1 100 ArgusD inhabitant

2005-01-04 01:51:32 V 19 1 100 ArgusD inhabitant

2005-01-04 01:51:32 V 20 0 0 ArgusD inhabitant

2005-01-04 01:51:35 V 20 1 100 ArgusD inhabitant

Figure 4.10. Kitchen motion over a sample day in the MavPad.
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Figure 4.11. Dining room light usage over a sample day in the MavPad.

Figure 4.12. Couch usage over a sample day in the MavPad.

Figure 4.13. Fan usage over a sample hour in the MavPad.
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4.1.2 System Data Pathways

Data flows from the observing sensors through the sensor-specific hardware into a com-

puter using an interface driver and eventually becomes represented as state in the logical prox-

ies of our architecture. Data flows freely through multicast broadcast from the logical proxies

into ProPHeT which will pass the information on to other components and a database logger

which captures all events for later recall, use, and analysis. This data flow is illustrated in

Figure 4.9. ProPHeT provides information to ActiveLeZi (ALZ), Episode Discovery (ED),

and Episode Membership (Epi-M) and also accesses the database for historical information.

Software objects may query the state of the logical proxies for all environmental objects (i.e.,

sensors, switches, and so forth) as well. This is useful for determining the initial state of avail-

able objects in an environment.

ProPHeT consumes data from the online data stream and from the database. It will filter

and convert data as necessary for each component to which it provides information—namely

ALZ, ED, and Epi-M. ProPHeT through ARBITER will issue commands to alter the state of

the environment in order to satisfy the system goals. Thus, ProPHeT-ARBITER is a producer

of data. Other producers include ALZ (which generates predictions), ED (which generates

significant episodes), and Epi-M (which generates episode membership probabilities).

Actions taken by the system flow back in through the observing sensors. Internally,

feedback is provided by ARBITER to ProPHeT for rule violations. Externally, feedback is

provided by the inhabitant through their interactions with the environment. Environmental

interactions make the inhabitant a producer of information. Figure 4.14 illustrates the flow of

data through the architectural components of our approach.
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Figure 4.14. Dataflow through architectural components.

4.2 Overall Control

In the last chapter, Figures 3.4, 3.5, and 3.6 presented the knowledge discovery and initial

learning phase (Phase 1), operational phase (Phase 2), and adaption and continued learning

phases (Phase 3) of the control algorithm. These comprise the modes of operation for our

approach in which ProPHeT is the central broker for data flow and system and information

control. The algorithm for overall control flow is presented in Algorithm 1.

After the logical proxies for all perception and actuation objects in an environment

have been established and the database is available for SQL interaction, ProPHeT is exe-

cuted. ProPHeT begins by loading all configuration items, initializes all variables and nec-

essary memory, and then uses Zeroconf to locate, configure, and connect to the logical proxies

and database. While intelligent environmental automation is desired, ProPHeT starts with

knowledge discovery and initial learning bringing ALZ, ED, and Epi-M online, training them,

and preparing them for system operations. After Phase 1, Phase 2 and 3 are started concur-

rently. Phase 2 uses the learned HPOMDP model from ED, ALZ, and Epi-M with the incoming
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stream of data to make environmental automation decisions. Simultaneously, Phase 3 is con-

cerned with examining feedback to improve the HPOMDP, monitoring system performance,

and communicating with ED to explore the conditions for a concept shift from the current set

of learned concepts. Phase 2 and 3 continue until Phase 3 determines that performance has

degraded below a defined threshold and that clear indications of a concept shift have occurred

in which Phase 1 must be initiated (i.e., arebootconducted), the system must be trained on

new data, and the process starts again. The rest of this chapter will explore the three phases of

operation in more detail.

Algorithm 1 ProPHeT Overall Control Algorithm
Require: MavHome logical proxies operational, database loaded and available
Ensure: Satisfaction of system goals

1: Load configuration file
2: Initialize all variables
3: Discover all logical proxies using ZEROCONF
4: Discover database using ZEROCONF
5: while environmental automation desireddo
6: Perform Phase 1: Knowledge Discovery and Initial Learning (see Algorithm 2)
7: while reboot not requireddo {Perform these operations in parallel threads}
8: Thread Perform Phase 2: Automation Decision-making Operations (see Algorithm 7)
9: Thread Perform Phase 3: Adaptation and Continued Learning (see Algorithm 12)

10: end while
11: end while
12: Cleanup and restore utilized resources

4.3 Training and Learning

The first step in automating our intelligent environment is to discover the inhabitant’s

activity patterns in order to derive a working model and to train the prediction and membership

components. The results of this process affect the performance of the system, so it is important
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that the best possible set of episodes be derived from the data and that the supporting systems

be properly trained in order to develop as accurate a model of the inhabitant as possible.

4.3.1 ProPHeT Control

Phase 1, knowledge discovery and initial learning control, follows Algorithm 2. This al-

gorithm begins by retrieving observation data from the database and filtering out unnecessary

information. The data set to extract from the database is determined by observing the com-

pression of the data over time as shown in Figure 4.15 and the number of interesting episodes

reported by ED, as shown in Figure 4.16. The compression ratio represents the minimum

description length compression compared to the original size of the data achieved by the ED-

discovered model, and reflects how well the model describes the input sequence [75].

Algorithm 2 Phase 1: Knowledge Discovery and Initial Learning
Require: Database is online and available for SQL queries
Ensure: HPOMDP derived, Predictor and Episode Membership trained

1: Initialize all variables
2: Retrieve observation data from database
3: Filter data as necessary
4: Format data as necessary for components
5: Train prediction algorithm (Active LeZi) using data
6: Perform knowledge discovery in data for patterns and abstract patterns of inhabitant activ-

ity (Episode Discovery)
7: Filter interesting discovered episodes
8: Format interesting discovered episodes
9: Train episode membership algorithm (Episode membership) using data

10: Create HHMM using interesting discovered episodes
11: Extend HHMM to HPOMDP
12: Cleanup and restore utilized resources

When ProPHeT observes a relatively consistent compression of the data (i.e.,±3%) and

number of discovered interesting episodes (i.e., episodes of activity that exhibit a periodicity
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or frequency of appearance in the data stream), the duration time is established for database

observation data. This evaluation is performed with a consistent window capacitycw and time

spantw which are the two main configurable parameters of ED. Window capacity is the maxi-

mum length of the longest pattern that can be identified as an episode. Window time span is the

maximum duration in seconds of the longest pattern that can be identified as an episode. These

tunable parameters are used to limit the length of the patterns both in events and temporal du-

ration. The other two configurable parameters in ED are the autocorrelation thresholdβAC and

the interval toleranceβt which provide control over the preciseness of the periodic and frequent

information discovered [75]. Since these values are independent of the input sequence, and we

achieve reasonable results from an unmodified ED, we left them set to the default values. After

a level of consistent compressions and discovered episodes, the selection of proper window

size and time span is determined by evaluating first the maximum compression ratio for a set

of window sizes as shown in Figure 4.17 and then the maximum compression ratio for the

maximum window size from the first step for a set of window time spans as shown in Figure

4.18. The window size/span (e.g., 15/300) with the maximum compression ratio indicates the

settings that best represent the data and therefore will most likely yield the best set of episodes.
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Figure 4.15. Episode Discovery data compression over time (MavHome Steve Patterns).

Figure 4.16. Episode Discovery interesting episode discovery over time (MavHome Steve
Patterns).
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Figure 4.17. The effects of different window sizes upon the compression ratio using Episode
Discovery.

Figure 4.18. The effects of different window time spans upon the compression ratio using
Episode Discovery.

Data from the database is filtered by ProPHeT to remove sensor data that is not useful

for automation decisions. Data from the temperature, light level, and other such sensors that
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are used in fault correlation and for other systems is removed. The data is also cleaned to

remove duplicates and other anomalies if present. Despite this basic pruning, data sets in

our environments average tens of thousands of sensor events daily. Since ED’s complexity

in the worst case is exponential, we further filter the data to isolate the patterns of interest—

namely those that include automatable actions. This filtering is performed by using the learned

appropriate window capacity and time span to move a sliding window over the data, removing

all data that does not fall into a window which contains an automatable action. In this manner,

pockets of useful information are isolated and maintained while large amounts of data not

useful for automation are discarded. Note that this information may still have value, but not to

our automation system. In application, the most appropriate window capacity and time span

are not knowna priori. We use a standard window capacity of 20/500 which is the maximum

capacity we have found to find episodes without excessive overfit—most environment data sets

peak at 15/300 as shown in Figures 4.17 and 4.18 which were taken by running a simulation

based upon our example MavHome Steve activities over a period of a month. The general

approach is to filter first with a less restrictive filter to prevent important information loss, and

when the best window values are learned by observation of the resulting data from ED, we can

narrow the filtering.

After the data set has been extracted from the database, filtered, and formatted as nec-

essary for each component, Active LeZi is actually trained first with the data (this order is not

important though), then ED processes the data to find interesting episodes. As ED discovers

episodes in the data set it produces another data set of abstracted patterns with a timestamp

of mean time that the pattern occurred. This data set is processed by ED to find the usage

statistics of the abstract patterns. With each subsequent processing of a data set by ED another

data set at a higher level of abstraction is produced. The process is repeated until no further

interesting episodes are discovered. In empirical data, we have not seen more than five layers

of depth to any of our learned models, but more complex data may yield deeper results. At
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the production of each set of interesting episodes they are filtered to remove patterns without

automatable actions since there is no value in retaining them—this improves performance by

having fewer patterns to match. Upon completion of ED processing, ProPHeT combines the

discovered episodes output from each layer of abstraction into a single episode discovery file.

The data source file and the discovered episodes file are used to train the Episode Membership

algorithm. After all the components have processed the data and have been trained, then the

hierarchical models can be built which will be discussed in the Section 4.4; however, first we

will explore ED, ALZ, and Epi-M in more detail.

4.3.2 Episode Discovery Learning

Inhabitant interactions can be viewed as a time-ordered sequence, and several works ad-

dress the problem of discovering patterns in such sequences. Variations of the Apriori property

can be used for mining sequential patterns from time-ordered transactions [4]. When the data

is not transactional in nature, frequent parallel and serial episodes can be discovered by sliding

a window of user-defined size over an event stream [115]. However, the important patterns

in a time-ordered data stream captured from an intelligent environment may not be the ones

that occur with the most frequency, but rather the ones that occur with the most regularity.

Therefore, we employ a technique that evaluates patterns for frequency, size, and regularity

[73]. This data-mining technique is used to find frequent and periodic repetitious patterns in

the inhabitant data.

This work utilizes the dissertation work of Ed Heierman [75] as a tool for extracting

the desired knowledge from a data stream. The rest of this section goes over a few details

of Episode Discovery for the interested reader, for detailed information about the Episode

Discovery algorithm please refer to the referenced source material.

The Episode Discovery (ED) data-mining algorithm discovers interesting patterns in a

time-ordered data stream. ED processes a time-ordered sequence, discovers the interesting
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episodes that exist within the sequence as an unordered collection, and records the unique

occurrences of the discovered patterns. Because the framework is capable of processing the

interactions incrementally, it can be used as part of a real-time system. These features make

ED a suitable algorithm for mining an intelligent environment data stream.

An input streamO processed by ED consists of a time-ordered sequence of events{s,t},

wheres is a symbol representing an interaction andt is a time stamp. Given an input streamO,

ED follows Algorithm 3.

Algorithm 3 Episode Discovery (high-level)
Require: An input streamO of a time-ordered sequence of events{s,t}

1: PartitionO into Maximal EpisodesEmax
2: Create CandidatesC from the Maximal Episodes.
3: Compute a Compression ValueV for each candidate.
4: Identify Interesting EpisodesP by evaluating the Compression Value of the candidates

Each 6-tuple (see 4.1.1) of the intelligent environment data stream is transformed into

an event by constructing a symbols from the concatenation ofz, n, andl, and usingt as the

timestamp. The other information items (i.e., source and inhabitant) are not used by ED since

they provide information for filtering activities by other [future] components. Each atomic

device interaction is represented by a unique symbol with this approach.

The algorithm processes the sequence of events as follows. First, ED partitions the input

sequence into overlapping clusters, or episodes, of symbols that are closely related in time by

collecting the events in a window. Once the window accumulates the maximum number of

interactions that occur within the window time frame, the contents are converted to a maximal

episode. These maximal episodes cannot currently overlap in the data stream. The maximum

number of interactions accumulated by the window, as well as the time span of the window, is

determined by analyzing the compression statistics computed by the algorithm. A candidate
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is created to represent each unique maximal episode, and additional candidates are generated

from the subsets of these candidates [74].

Next, a periodic compression value is computed for each candidate by the use of an

evaluation function, based on Minimum Description Length (MDL) principles [171], that in-

corporates regularity (predictable periodicity, such as daily, weekly, or monthly), in addition to

frequency and size. Using autocorrelation techniques, the algorithm identifies the best periodic

or frequent pattern that describes the episodes represented by the candidate. A compression

value is then computed based on this pattern. The larger the potential amount of compression

a pattern provides, the greater the regularity demonstrated by the pattern, and the greater the

impact that results from automating the pattern.

Once all of the candidates have been evaluated and sorted in descending order, the algo-

rithm greedily identifies the episodes by selecting from the sorted list the candidate with the

largest compression value. After selecting a candidate, the algorithm marks the events repre-

sented by the interesting episode. To avoid selecting overlapping candidates, the second and

subsequent candidates are rejected if any of the interactions represented by the candidate are

already marked. These steps are repeated until all candidates have been processed, resulting in

a collection of interesting episodes. Because periodicity is evaluated, the interesting episodes

that are periodic can be identified. Frequent interesting episodes are also identified.

Thek uniquely-identified interesting episodesP output by ED are formally defined as a

3-tuple

〈 Φ, ρ, Ψ 〉:

• Φ is the unordered set of symbols represented byP

• ρ is the number of instances ofP in the dataset

• Ψ is the set of unique ordered occurrences ofP in the dataset, and is defined as a 2-tuple

〈 ϒ, ϕ 〉:

– ϒ is an ordered set of symbols
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– ϕ is the number of occurrences of this unique pattern out of the total number of

instances,ρ

The performance of ED is dependent upon the input stream quality. Input streams that

contain data with little noise and clearly identifiable patterns will result in faster learning rates

and better discovery of periodic and frequent patterns. In the cases shown in Figures 4.16, 4.19,

and 4.20, we observe the varying learning rates of ED over similar data, but with different en-

vironments and/or inhabitants. Episode discovery performance in the intelligent environment

domain appears to exhibit consistent behavior. As more input data is processed, more episodes

are discovered until a plateau is reached. In the process of episode discovery, patterns are first

discovered by frequency and through repetition over time they usually become identified as

periodic, but because this is a consistent trend we have observed in our data processing we

consider both frequent and periodic episodes to be interesting for our work. Continued pro-

cessing over time will yield some variances in the numbers of discovered episodes, but after a

plateau is reached we have observed the deviation to be consistently within±15% for our eval-

uated environments. The gradual discovery as illustrated is inherent in the process, but often

discovered episodes will peak and then decay. This phenomenon is due to the data processed

at that point indicating frequent patterns above the reportable compression threshold of ED,

but as more data is processed they disappear because they are often short lived repetitious pat-

terns. This is advantageous in our work, because we do not desire to learn localized, short-term

behaviors, but would rather focus on the consistent behaviors of inhabitant life.
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Figure 4.19. Episode Discovery interesting episode discovery over time (MavPad Inhabitant 2
Patterns).

Figure 4.20. Episode Discovery interesting episode discovery over time (MavPad Inhabitant 3
Patterns).

Processing time is an issue with ED. Since it runs in polynomial time for most test

cases (and is anticipated to stay within this bound for most datasets) or exponential time in the
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worst case [75], ED can take an intractable amount of time to discover episodes. Figure 4.21

illustrates the impact that the size and complexity of data have upon runtime. While exhibiting

polynomial runtime behavior, the amount of data and unique characteristics caused ED to take

three days (255,325 seconds or 70 hours 55 minutes 25 seconds) to process a filtered seven

weeks of inhabitant data. Without the filtering of ProPHeT, ED’s processing time requirements

would make it too costly to use. Given this information, it is important to accommodate and

plan for sufficient resources and time when discovering episodes with ED.

Figure 4.21. Episode Discovery processing time (MavPad Inhabitant 3 Data).

Noise in the data input stream also causes a significant challenge to ED. Figures 4.22,

4.23, and 4.24 show the effects of noise on episode discovery. The baseline discovery in a

noiseless environment is shown in Figure 4.16. Noise between patterns in the data stream does

not interfere with the patterns; however, noise in the patterns themselves causes the patterns to

look different and thus appear inconsistent, preventing them from being frequent or periodic.

As illustrated, noise as low as 20% in the data stream can completely prevent useful episode

discovery. It should be noted that previously six episodes were discovered in the clean data,

but with 5% noise only three were found (a 50% reduction), two with 10% noise, and only
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one with 20% noise. Noise causes severe problems with the data preventing the discovery of

episodes. Noise injected into the patterns causes the patterns to be split into parts where con-

sistent sections are discovered, but the noise in the middle prevents them from being identified

as complete episodes. Even when patterns are discovered in noisy sensor environments, they

differ from those found in clean data environments—particularly, the patterns have a tendency

to be shorter and will often force the automatable actions to the beginning of a pattern which

causes a problem for actually automating the pattern. Problems with episode discovery at the

production node level will affect the abstract episode discovery since the data for discovery

is generated from the source data—in observation of test cases, noise usually causes a drastic

decrease in depth of the layers of abstraction due to the decrease in finding episodes and the

breaking of the chains of consistent observed activity on all levels. In our work we utilize ED

as our data mining tool, other sequential data mining tools could be utilized such as Significant

Interval Discovery (SID) [192]. However, we have found that the current version of SID incurs

longer runtimes and does not find as many patterns as ED. Sequential data-mining is still a

developing area of research and new discoveries in this area could benefit our work.

Figure 4.22. Effect of noise in the data stream on episode discover in MavHome Steve patterns
using 5% random noise interference in the data input stream.
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Unfortunately, the episode discovery algorithm is detrimentally susceptible to noise in

the input data stream. It is important to design sensor networks and the natural flow of inter-

action in the environment to minimize the introduction of noise. Filtering and conditioning of

the data stream can also be an effective means of preparing the data for episode discovery. The

cleaner the data and the more frequent or periodic the patterns within, the better the results of

episode discovery. ProPHeT applies filters to the data in order to reduce the amount of data

to improve processing time and to remove noise which improves the data quality. In addition,

ED’s ability to abstract away noise in the discovered instances could improve performance, al-

though this would represent lossy compression. Advanced filtering techniques and ED’s ability

to handle noise is an area of future work.

Figure 4.23. Effect of noise in the data stream on episode discover in MavHome Steve patterns
using 10% random noise interference in the data input stream.



93

Figure 4.24. Effect of noise in the data stream on episode discover in MavHome Steve patterns
using 20% random noise interference in the data input stream.

A well-designed environment with a sensor network logging inhabitant data that is fil-

tered to reduce complexity and improve data quality can produce a data set suitable for use with

the Episode Discovery algorithm. Controlled usage of ED by ProPHeT provides this data, en-

sures its timely processing, and the results are filtered to remove episodes without automatable

actions or that contain other anomalies (e.g., too short episodes). A useful set of learned in-

teresting episodes is then gained. Multiple iterations of data from each level of abstraction is

then used to find episodes at each level of abstraction until no further episodes are discovered.

All resultant episodes discovered are then combined by ProPHeT into a single file describ-

ing the episodes associated with a specific inhabitant in a specific environment over a defined

observation period.

Episode Discovery was developed by Ed Heierman and Dr. Diane Cook at The Univer-

sity of Texas at Arlington. Interested readers should refer to the referenced material for more

information on ED [73, 74, 75].
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4.3.3 Active LeZi Learning

In an event-driven system there is a need to predict the next action in order provide a

clear picture of the current belief state. The system will need to make this prediction based

only on previously-seen interaction data. It is essential that the number of prediction errors be

kept to a minimum in order to maximize the belief probability of being in the correct state.

Another desirable characteristic of a prediction algorithm is that predictions be delivered in

real time without resorting to an offline prediction scheme.

We use theActive LeZi(ALZ) algorithm [61] to meet our prediction requirements be-

cause it is a compression-based algorithm that, in accordance with Information Theory, should

converge on an optimal solution as it is a predictor with an order that grows at a rate approx-

imating the entropy rate of the source. By characterizing inhabitant-device interaction as a

Markov chain of events, we utilize a sequential prediction scheme that has been shown to be

optimal in terms of predictive accuracy. Active-LeZi is also inherently an online algorithm,

since it is based on the incremental LZ78 data compression algorithm.

Active LeZi is an enhancement of LZ78 andLeZi Update[20] that incorporates a sliding

window approach to address the drawbacks of these approaches. LZ78 suffers from a loss of

information crossing phase boundaries in LZ parsings of an input string (possibly incurring

the loss of significant patterns that cross the phase boundaries) and a slow convergence rate

to the optimal predictability.LeZi Updateaddressed slow convergence by keeping track of all

possible contexts within a given phrase, and not just the prefixes—leaving the phase crossing

drawback open. The ALZ solution to the phase crossing drawback involves maintaining a vari-

able length window of previously-seen symbols. They gather statistics on all possible contexts

within this window and use them to build a better approximation to the order-k Markov model.

ALZ uses prediction by partial-match (PPM) to combine data from different contexts sizes to

make the final prediction. ALZ gains a better convergence rate to optimal predictability as well
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as greater predictive accuracy because it has captured information about contexts in the input

sequence that cross phrase boundaries [61].

An intelligent environment must be able to acquire and apply knowledge about its inhab-

itants in order to adapt to the inhabitants and meet the goals of comfort and efficiency. These

capabilities rely upon effective prediction algorithms. Given a prediction of inhabitant activi-

ties, we can decide whether or not to automate the activity or even find a way to improve the

activity to meet the system goals.

Figure 4.25. ALZ learning rate for MavHome Steve data.

Each 6-tuple (see 4.1.1) of the intelligent environment data stream is transformed into

a two-part event, consisting of an identifier and state, by constructing a symbols from the

concatenation ofz andn for the identifier and usingl for the state. This event is provided as

input to ALZ. In the training phase, a data set of these two-part events is used to create the

trie and learn the data. During prediction operations, a single two-part event (i.e., the currently

observed event) is provided and the prediction of the next event is returned in the same two-part
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event format. Time and other information elements are not used because they are not currently

used by ALZ.

ProPHeT first trains the ALZ algorithm and then uses the predictions in real time. A

typical learning rate for ALZ is shown in Figure 4.25. ALZ processed the MavHome Steve

simulation generated and filtered observation data and converged to 99.99% accuracy on data

repeated 10 times to convergence—results are similar for real data in the MavLab and MavPad

environments. Each training event set contains 33,088 events for the MavHome Steve data set.

These are typical training results for our intelligent environment data.

ALZ is not used directly for decision-making because of it does not perform with suffi-

cient accuracy to automate an intelligent environment alone. The primary problem with train-

ing a predictor in an intelligent environment is that there is not enough training data for it

to see enough activity cases in the environment to gain acceptable accuracy. Coupled with

an ever-changing inhabitant model, a predictor may never observe enough data for successful

automation. We utilize information from the predictor to assist in belief state because when

limited to specific Markov chains the performance of ALZ is sufficient to aid in belief state

determination.

Active LeZi was developed by Karthik Gopalratnam and Dr. Diane Cook at The Univer-

sity of Texas at Arlington. Interested readers should refer to the referenced material for more

information on ALZ [61].

4.3.4 Episode Membership Learning

Due to the hierarchical abstractions that contain sequences of observations in the envi-

ronment, another useful tool to assist with decision-making is one that provides the knowledge

of what is the most likely episode the system is currently observing in each layer of abstraction.

The Episode Membership algorithm (Epi-M) provides this data. Epi-M takes the current obser-

vation event and the recent observation history and returns the probability of membership for
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the top number of specified episodes for each layer of abstraction. It performs this by matching

the current event stream against the learned patterns from ED and ordering the results by high-

est percentage of pattern match. Because our systems are not temporally grounded, we take

advantage of time in Epi-M to provide a method of temporal differentiation between patterns.

We do this by employing the technique of storing and utilizing circular statistics of episode

occurrence.

The same data that is mined by ED and used to train ALZ is also used by Epi-M to build

a probability of episode occurrence around a circle using circular probabilities [15]. This circle

represents the most probable time of occurrence in a 24-hour period. First, the patterns are

matched to their respective episode from the training data and the mean time of the events that

occur in that episode is stored. Time in secondst is converted to degreesφ , based on 360°per

day, by Equation 4.1.

φ = t ·0.004167 (4.1)

The time in degrees orobserved anglesfor each occurrence of the episode is used to derive the

the rectangular coordinates of the center of mass using Equations 4.2 and 4.3.

x̄ =
1
n∑

i
cosφi (4.2)

ȳ =
1
n∑

i
sinφi (4.3)

The length of themean vectoris found by applying Equation 4.4, and themean angleis deter-

mined from Equation 4.5 which describes the normal and exception cases.

r =
1
n
(x̄2 + ȳ2) (4.4)
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φ̄ =



arctan( ȳ
x̄), if x̄ > 0

180+arctan( ȳ
x̄), if x̄ < 0

90, if x̄ = 0 and ȳ > 0

270, if x̄ = 0 and ȳ < 0

undetermined, if ¯x = 0 and ȳ = 0

(4.5)

Through these equations we can understand the mean time of occurrence for a specific episode,

and by using Equation 4.6 we can derive theangular deviationof the occurrences.

s(degrees) =
180
π

√
2(1− r) (4.6)

Equations 4.1-4.6 and the circular probability technique are derived from the work of Batschelet

[15]. This information can be used to understand when episodes normally occur by reporting

the mean and angular deviations of the prior observations of the episodes.

Figure 4.26. Example circular probability of two events occurring at different times of the day.
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The use of circular statistics to differentiate between similar episodes separated by minor

pattern differences but major temporal differences is valuable in proper episode membership

identification. Figure 4.26 provides a generic example of two episodes that occur at different

times. If the patterns in the episodes were similar, perhaps only differing by as few as one

event, the current event stream prior to that singular change may yield similar probabilities for

both episodes; however, if there were a temporal difference this could be used to weight the

probability of match higher for the one with a temporal match (i.e., a matching episode that

occurs at the same clock time as previous episodes of that type). Thus, a higher accuracy in

proper episode membership reporting can be gained through the addition of temporal informa-

tion. The use of circular probability is a mechanism for the efficient tracking and representation

of time.

Algorithm 4 defines the training process for storing the episodes from ED and learning

the temporal occurrences (i.e., when in time each episode occurs).

ED contains a mechanism for episode membership that simply uses percentage of pat-

tern match without considering any temporal issues, but its usage was discontinued because of

software reliability issues. We performed a test case of the difference in performance between

ED-Episode Membership (ED-EM) and Epi-M in which we used the MavHome Steve patterns

in simulation and modified pattern 4 to turn on light a14 if after midnight and before noon

(pattern 4a); otherwise, the pattern substituted light a16 for light a14 (pattern 4b). Ten pat-

terns were performed during the course of a simulated 24 hour period including pattern 4a in

the morning and pattern 4b in the afternoon. ED-EM classified eight patterns with the proper

probability ranking after at least 50% of the pattern had been observed, but patterns 4a and 4b

both indicated the same probability when 4a should have been more probable in the morning

and 4b in the afternoon. Epi-M classified all ten patterns with the proper probability ranking,

again after at least 50% of the pattern had been observed. This minor improvement by Epi-M
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Algorithm 4 Episode Membership Training
Require: Derived episodes file from ED and the input data stream used for ED and ALZ

1: Λn← episodes from file
2: κ ← empty{History of events}
3: n← number of episodes
4: {Store mean time (in seconds) for each episode instance in the episode}
5: while eventsε in input filedo
6: κ ← κ + ε {Add current event to history}
7: for all n do
8: if Λn = κ then
9: {Episode match! Add time to list of times}

10: Λn[φi+1]← mean(κ(t)) ∗0.004167
11: end if
12: end for
13: end while
14: {Store circular statistics with each episode}
15: for all n do
16: x̄← 1

n ∑i cosΛn[φi ]
17: ȳ← 1

n ∑i sinΛn[φi ]
18: r = 1

n(x̄2 + ȳ2)
19: if x̄ > 0 then
20: Λn[φ̄ ]← arctan( ȳ

x̄)
21: else if x̄ < 0 then
22: Λn[φ̄ ]← 180+arctan( ȳ

x̄)
23: else if ȳ > 0 then
24: Λn[φ̄ ]← 90
25: else if ȳ < 0 then
26: Λn[φ̄ ]← 270
27: else if x̄ = 0 andȳ = 0 then
28: Λn[φ̄ ]← undetermined
29: else
30: Trap error!
31: end if
32: Λn[s]← 180

π

√
2(1− r)

33: end for

in proper probability of membership reporting provides a better belief state to ProPHeT for

HPOMDP automation. Details of the process for providing membership probabilities and how

the circular probability information is used are presented in Section 4.6.3.
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4.4 Model Generation

Research into building hierarchical models has been an ongoing effort since the early

1990’s [185]. In order to provide the reader with an overview of the work in this area and how

it has evolved, we present two notable and heavily cited papers. The first is “Reinforcement

Learning with a Hierarchy of Abstract Models” by Satinder Singh [185] and the second “Hi-

erarchical Solution of Markov Decision Processes using Macro-actions” by Milos Hauskrecht,

Nicholas Meuleau, Craig Boutilier, Leslie Pack Kaebling, and Thomas Dean [72]. We provide

an overview of the evolution of the approaches presented in these papers in order to provide

some background for our work and to provide useful information for the interested reader wish-

ing to pursue a deeper understanding. We will discuss more relevant work after this exploration,

but first provide a historical perspective.

In “Reinforcement Learning with a Hierarchy of Abstract Models” by Satinder Singh

[185], he presents a hierarchical approach to reinforcement learning based on a common TD

approach at each level. A two-level, hand-generated hierarchy is presented and evaluated in

a typical robot grid world. Abstract nodes are created as experimenter-selected aggregates of

lower-level production states. The world is order 0 Markov and completely observable. All

actions and states are finite and the policy at each level is defined byπ : S→ A. The system

controls all action decisions and causes all state transitions [184, 186] . This work has become

the basis and reference point for many other pieces of work. Figure 4.27 shows the evolution

diagram for this paper.

There are a number of referential papers. Sutton [202] presents an extension through

equation improvements and generalization for representing temporal differences throughout

the same structure (VRTM). Thrun and Schwartz [213] present the SKILLS algorithm pro-

viding a use of the temporal abstraction mechanisms. Donnart and Meyer [47] extend the

hierarchal approach by mixing reactive and deliberative components. Koenig and Simmons

[100] perform a complexity analysis of these techniques and make suggestions for enhanced
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Figure 4.27. The Evolution of “Reinforcement Learning with a Hierarchy of Abstract Models”
by Satinder Singh. The source paper appears as a heavy circle, other papers are in a bowed
rounded rectangle, papers in a heavy square are other evolved papers expanded in our discus-
sion. Each paper representation graphic includes the author names and year of publication. An
arrow is drawn from a paper to another with the arrow head pointing to the referred to paper
and the tail at the referring paper. Clouds with internal numbers indicate a large number of
citations for the paper that the arrow from it points to. Time flows historically from the upper
right corner to the lower left corner. Self referential papers and direct derivative works by the
same author appear to the right of the source paper. A shaded paper indicates a survey paper.
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performance tuning by better reward structures and strategies. Kaebling, Littman, and Moore

[95] present a survey of reinforcement learning techniques at that point in time. Kohri, Mat-

subayashi, and Tokoro [102] forward an automated extension to modular Q-learning. Koenig

and Simmons [101] present some additional complexity analysis. McGovern and Sutton [123]

perform some additional supporting empirical analysis of this approach. Sutton, Precup, and

Singh [204] present a major evolution of VRTMs into an MDP with closed-loop polices called

options to form Semi-Markov Decision Processes (SMDPs). Jonsson and Barto [93] adapt the

U-Tree algorithm to build option-specific state abstractions improving hierarchical learning

systems. Barto and Mahadevan [14] present an updated survey of recent advances in hierarchi-

cal reinforcement learning.

Many papers reference Sutton [202]. Hauskrechtet al. present the work that is examined

in detail next. Sun and Sessions [198, 199] explore self-segmentation—building the reinforce-

ment hierarchies autonomously through segmentation based on reinforcement received during

task execution. They present an algorithm for segmenting sequences in order to reduce non-

Markovian temporal dependencies. This is accomplished by segmenting around Q-learning

control policies. Self-segmentation is provided generic structures (specified number of levels)

in which to develop the hierarchies. They apply this to robot maze problems. Wiering [222]

extends Q-Learning into Hierarchical Q-Learning (HQ-Learning) and uses it on POMDPs.

Many papers also reference Thrun and Schwartz [213]. Sun [198] is working on self-

segmentation. McGovern, Precup, Ravindran, Singh [124] explore the extension of options

which are closed-loop policies over a temporal partition in an MDP.

A multitude of papers reference Kaebling, Littman, and Moore [95]. Tadepalli and Diet-

terich [206] forward work on Hierarchical Explanation-Based Reinforcement Learning which

are the first hierarchical extensions to EBRL. Andre [11] discusses how to learn systems of hi-

erarchical behavior. Stone and Veloso [195] explore layer learning, which is explores mapping

inputs to outputs in problems of intractable size by performing hierarchical task decomposi-
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tion, performing learning on each layer, and integrating the learning across layers. The task

decomposition mechanism is provided by experimenter-selection. They apply this to robotic

soccer problems.

The new basis extension work of Sutton, Precup, and Singh [204] is often referenced.

Reid and Ryan [170] present the RL-TOPS Hierarchical Reinforcement Learning System and

an extension that uses Inductive Logic Programming (ILP) to bridge the gap between tempo-

ral abstractions to improve performance. Makar, Mahadevan, and Ghavamzaadeh [114] ex-

tend MAXQ (a hierarchical reinforcement learning approach) to the multi-agent case. Ravin-

dran and Barto [169] work on minimizing MDP by taking advantages of redundancies and

extend this model minimization to options. Guestrin and Gordon [67] explore distributed plan-

ning in HMDPs. Theocharus and Mahadevan [209] perform exploratory work in Hierarchical

POMDPs in robot navigation tasks. Hengst [78] examines safer aggregation of reusable sub-

task states through a supporting decomposed discount function. He also forwards an HRL

modification to help solve infinite horizon problems in which a sub-task must persist in order

to achieve an optimal policy.

Ghavamzadeh and Mahadevan [60] extend MAXQ to handle continuous-time reward

SMDPs.

The evolution of Singh’s work can be summarized in the following steps:

1. Singh presents idea of hierarchy of abstract models

2. Sutton formalizes and generalizes

3. Kaebling includes in a survey

4. Minor improvements, application, and empirical performance work

5. Sutton, Precup, and Singh take VRTMs→ SMDPs (Big Event)

6. New work focuses some auto segmenting, more minor incremental improvements, more

applications

7. MAXQ comes out and unifies this through the work of Sutton [202] and Hauskrecht [72]
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8. HPOMDP and SMDP work in active research

In “Hierarchical Solution of Markov Decision Processes using Macro-actions” by Milos

Hauskrecht, Nicholas Meuleau, Craig Boutilier, Leslie Pack Kaebling, and Thomas Dean [72],

the authors present a series of approaches for solving complex MDPs. Through the use of

temporally abstracted macro-actions, a hierarchical MDP can be constructed by augmenting

an MDP action space with macro-actions, abstracting an MDP by replacing all of the actions

with the macro-actions and removing all but the boundary states to those actions, or by creating

a hybrid MDP using an abstract MDP with an expansion of the original MDP in areas of recent

dynamic change. Automated generation and construction techniques for macros are discussed.

Empirical performance on robot navigation tasks is presented. This work has become the basis

and reference point for many other pieces of work. Figure 4.28 shows the evolution diagram

for this paper.

There are a number of referential papers. McGovern and Sutton [123] perform some ad-

ditional supporting empirical analysis of this approach. McGovern [122] proposes the acQuire-

macros algorithm for automatically finding macro-actions online in a reinforcement learning

framework.

Laroche, Charpillet, and Schott [107] use a directed graph to automatically generate in-

formation that is utilized to improve the communication between regions. Parr [145] discusses

hierarchical control and learning for Markov decision processes and the use of an abstract

probabilistic plan called the Hierarchical Abstract Machines (HAM). Singer and Veloso [183]

present bias techniques to improve the speed of macro-action learning. Sutton, Precup, and

Singh [204] present an major evolution of VRTMs into an MDP with closed-loop polices called

options to form Semi-Markov Decision Processes (SMDPs). Dietterich [45, 44] presents a new

approach to HRL (hierarchical reinforcement learning) based on the MAXQ decomposition of

the value function. MAXQ unifies the previous work of Singh, Kaebling, and Dayan and

Hinton. Huber [82] presents a hybrid architecture for adaptive robot control which considers



106

Figure 4.28. The Evolution of “Hierarchical Solution of Markov Decision Processes using
Macro-actions” by Milos Hauskrecht, Nicholas Meuleau, Craig Boutilier, Leslie Pack Kae-
bling, and Thomas Dean (see Figure 4.27 for nomenclature details).
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hierarchical action spaces. Ryan and Reid [170] present the RL-TOPS Hierarchical Reinforce-

ment Learning System and an extension that uses Inductive Logic Programming (ILP) to bridge

the gap between temporal abstractions to improve performance. Bernstein and Zilberstein [18]

present work in applying micro-actions to weakly-coupled MDPs in a planetary rover scenario.

Lane and Laebling [104] explore the application of well-understood deterministic optimization

techniques that can benefit MDP solutions techniques. Guestrin and Gordon [67] explore dis-

tributed planning in HMDPs.

Dietterich’s [45, 44] work has been widely accepted and taken in as part of active re-

search because of its unification of existing HRL work. Work referencing Dietterich follows.

Josson and Barto [93] adapt the U-Tree algorithm to build option-specific state abstractions

improving hierarchical learning systems. Sun [198] is working on self-segmentation. Hengst

[79] examines the addition of heuristics to HMDPs to improve performance. Pineau [157]

explores the application of HPOMDPs to solving robotic dialog problems. Ghavamzadeh and

Mahadevan [60] extend MAXQ to handle continuous-time reward SMDPs. Makar, Mahade-

van, and Ghavamzedeh [114] extend MAXQ (a hierarchical reinforcement learning approach)

to the multi-agent case. Pineau and Gordon [158] propose an automatic, lazy algorithm which

plans in a bottom-up approach and finds good abstractions for high-level planners. Hengst [78]

examines safer aggregation of reusable sub-task states through a supporting decomposed dis-

count function. He also forwards a HRL modification to help solve infinite horizon problems in

which a sub-task must persist in order to achieve an optimal policy. Kersting and De Raedt [97]

explore improved abstractions by integrating MDPs with Logic Programs (LOMDPs). Barto

and Mahedevan [14] present an updated survey of recent advances in hierarchical reinforce-

ment learning.

The evolution of the work by Hauskrechtet al. can be summarized in the following

steps:

1. Minor refinements in theory, generalization, and improvements in speed.
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2. Work on auto segmentation and auto learning of macro-actions

3. Sutton, Precup, and Singh develop SMDPs

4. Dietterichs MAXQ unifies hierarchical MDP work

5. Further refinements and applications apply to MAXQ

6. HPOMDP and SMDP work emerges

The growth in research exploring the utilization of hierarchy and abstraction in stochastic

models has led to the current explorations in HHMM and HPOMDP work. None of the work

presented in the model generation section thus far involves data-driven learning of hierarchical

structure.

Hierarchical Hidden Markov Models (HHMMs) [54] and Partially Observable Markov

Decision Processes (POMDP) [189, 94] have been popular techniques for making decisions

under uncertainty. These are natural extensions of a long chain of HMM and MDP work that

proceeds them [164, 117, 16] and evolved from the work previously discussed. The expansion

of these models with features for abstraction and hierarchy is allowing for more application

potential over the traditional flat, uniform scale models which perform poorly in large state

space domains.

Recently there have been some published hierarchical extensions that allow for the parti-

tioning of large domains into a tree of manageable POMDPs. Joelle Pineau while at Carnegie-

Mellon University investigated hierarchical approaches to POMDP planning and execution by

taking advantage of the structure inherent in the problem domain and finding modular poli-

cies for complex tasks. Her work partitioned the action space into groups of related actions

and created a HPOMDP. This approach was applied to Sondik’s parts manufacturing prob-

lem, Dietterich’s taxi task, and a robot dialogue interface and proven to significantly improve

time performance while maintaining accuracy [156]. Georgios Theocharous while at Michigan

State University introduced the Hierarchical POMDP as an extension to the Hierarchical HMM

with the addition of actions and rewards. His work involved the planning and learning for robot
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navigation using the HPOMDP which was updated using a hierarchical Baum-Welch algorithm

(a.k.a, the Forward-Backward algorithm). His work converged on a policy for successful robot

navigation, but used a pre-constructed HPOMDP model [210]. In follow-on work he continued

work in robot navigation of spatial environments and investigation of manual modeling of these

environments and the improvements by using hierarchical over flat models [211]. In work that

takes a similar approach to ours, Lühret al. at the Curtin University of Technology in Australia

used a HHMM to represent kitchen activities from observed sensor data by hand-coding the

model. Evaluation of the model proved to correctly classify observed human activity in the

same domain [113].

The work performed by these researchers has developed and explored the powerful rep-

resentation model of the HHMM/HPOMDP, although, there is a noticeable problem—current

work in the field assumes sufficienta priori knowledge to pre-construct the HHMM/HPOMDP

where the work focuses on learning the model and the appropriate transition probabilities be-

tween states. Given the potential size of the state space in intelligent environments, the unique-

ness of each, and the desire to minimize model contamination from knowledge engineering, we

will need to seed our decision-making systems with structure derived through domain knowl-

edge gained from collected data in these given environments. In this data rich domain we need

to discover this knowledge in our database of inhabitant observations.

There are some examples of current work in automating the generation of HHMMs.

Lexing Xie et al. from Columbia University/Mitsubishi Electric Research Labs are involved

in the learning of HHMMs through unsupervised Bayesian learning techniques in combination

with filter and wrapper methods for feature selection in video structures. Differences in activity

during a recorded soccer game were discovered [225]. Skounakis, Craven, and Ray of the

University of Wisconsin have used information extraction techniques to automatically extract

instances of specified relations or classes from text and then construct a HHMM from the

extracted data. They train their derived model using the forward-backward algorithm and use
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the Viterbi algorithm to predict tuples in the test sentences. The authors also extend the HHMM

to a Context hierarchical HMMto represent additional information about sentence structure

within phrases. They have applied this work in empirical studies using biomedical literature

text and have extracted several instances of biomedical relations [187].

Our research supports previous work in harnessing the strength of the HHMM/HPOMDP

as an appropriate model for human activity and extends previous approaches for automated

building of these models. We will show that a data mining technique can automatically con-

struct such a model, and we will demonstrate that our data-driven technique can be used to

automate facets of an intelligent environment.

4.4.1 Automated HHMM Construction

An HHMM is defined as a set of statesS, which includeproductionstates (leaves) that

produce observations1, abstractstates which are hidden states (unobservable) representing en-

tire stochastic processes, andend (child) stateseS which return control to a parent node; a

horizontal transition matrixT, mapping the probability of transition between child nodes of

the same parent; a vertical transition vectorΠ, that assigns the probability of transition from

an internal node to its child nodes; a set of observationsZ; and a mapping of a distribution

probability set of observations in each product stateO. Thus, it is formally defined as a 5-tuple:

〈 S, T, Π, Z, O 〉. The jth child of states is found using the functionc(s, j) which is used in the

horizontal transition functionTs(c(s, i),c(s, j)) to denote the transition probability between the

ith and jth child of states. We utilize a common set of nomenclature for better understanding

and consistency in the field, for detailed discussions of the HHMM the interested reader should

refer to work reported by Fine and Theocharous [54, 210].

From a collection of data that contains many repetitive patterns, data-mining techniques

can automatically discover these patterns and provide statistical data on pattern permutations

1In the intelligent environment domain there is a one-to-one correspondence between action and observation.
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within a given set of members and over the entire data set. This information can be utilized

to create abstract states from the identified patterns and production states from the pattern

sequences. Repeating the data-mining process to discover episodes of episodes can be used to

create a hierarchical organization. As previously described, we utilize the Episode Discovery

algorithm to perform the knowledge discovery process.

The 3-tuple data provided by ED is converted to a 5-tuple HHMM by taking each peri-

odic episodek and performing Algorithm 5.
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Algorithm 5 ProPHeT HHMM Construction
Require: 3-tuple data provided by ED for the hierarchy

1: for all abstract nodesdo
2: Create an episode labeledabstractnodesn if one does not exist
3: for all sets inΨ do
4: if Ψ contains production statesthen
5: Create an observation labeledproductnodesm for each observation inϒ
6: else{Ψ contains abstract states}
7: if abstractnode does not existthen
8: Create an episode labeledabstractnodesm

9: else
10: Insertsn into the location ofsm {All nodes connected tosm should be reconnected

to sn as this is an abstracted replacement representation}
11: end if
12: end if
13: Ts(c(s, i),c(s, j))←ϕ/ρ {Assign the horizontal transition matrix value between each

node}
14: Ts

ε (c(s, i),c(s, j))←Ψ0×Ψm {Store history with each transition}
15: Create anendnodeen

16: Assign the last node in the sequence fromΨ a horizontal transition value to theend
nodeen of

17: if another transition exists from this nodethen
18: Ts(c(s, i),c(end))← ϕ/ρ

19: else
20: Ts(c(s, i),c(end))← 1
21: end if
22: end for
23: Assign the vertical transition vector value
24: if sm = Ψi(ϒ0) then {Appears as a first node inΨ}
25: Πs←Ψi(ϕ/ρ)
26: else
27: Πs← 0
28: end if
29: Connect theabstractnodesn to the root nodes1 {Special Case: If Ψsn contains all

lower tierabstractnodes thensn = s1 }
30: Connect allabstractnodes not connected to anotherabstractnode to anendnode di-

rectly connected to theroot node{This ensures complete transition paths for all nodes}
31: end for
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Figure 4.29. Example HHMM.

The vertical transition vector values between abstract nodes is assigned from episode

occurrence information from ED. Horizontal transition matrix data between abstract nodes

of the same level is captured by repeating the episode discovery process on the discovered

episodes on each level in order to learn the abstractions of the next higher level. ED can take

the abstract episodes from one level and mine the data for patterns of those abstractions found

from the previous mining activity. This can be repeated until no abstractions are found, in

which case the root level is established. Each abstract state is partially represented by the

observation sequences it contains in its child nodes. Due to the sequential nature of episode

occurrence in these observation sequences between parent abstract nodes, abstract nodes group

into hierarchies. After this process ann-tier HHMM is automatically created from learned data.

The hierarchy is thus data driven and learned automatically from observation of inhabitant data.

Figure 4.29 illustrates a derived HHMM.

In application, the ordered sets inΨ contain permutations of the same basic episode

pattern that are used to create connected product states and a horizontal transition matrix. In
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intelligent environment work, a dominant Markov chain does not promote good automation.

We extend the HHMM with a bounded violation of the Markov assumption by addingε-deep

history to each horizontal transition as shown in equation 4.7 and bounded by equation 4.8. The

first equation states that the number of history elements in a node is determined by the number

of preceding nodes in the event chain per permutation up to a maximum length, as set in the sec-

ond equation, of the permutation event chain. Moving away from an order 0 to a mixed-order

Markov model allows for the ability to differentiate from among alternative Markov chains

making automation decisions clear while maintaining the strengths of this representation.

ε
s
i = instances(s,Ψ) (4.7)

length(εs) <= max length(Ψ) (4.8)

This technique accounts for the automatic construction of the HHMMS, T, andΠ. Z is

the set of all observations inΦk. From the last paragraph discussion on abstract state represen-

tations of observations, it can be seen howO can be easily calculated (whereO(s,z)→ (0,1):

the probability of observingz in states). This process creates a HHMM representation of the

observed patterns of an inhabitant in an intelligent environment.

As a test case we will provide a walk-through of the generation of a section of the

HHMM created from observation data of our simulated inhabitant, MavHome Steve, and his

six patterns as defined at the beginning of this chapter. Eight weeks of observation data were

generated using ResiSim and the MavHome Steve model from Figure 4.7. Steve was modeled

to enter and leave the MavLab 3–5 times a day (i.e., morning, lunch, and two classes) and

while in the lab take 4–6 breaks and work from the alternate workstation 1–3 times per day.

Random motion noise was injected into the data, but was not inserted between the events in the

specific patterns—this was done to better simulate the environment. What resulted is a data set
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of 33,088 events which when filtered contained 19,880 pattern related events (≈355 per day).

ED was used to process the data into episodes and found all six MavHome Steve episodes (it

also found five other episodes, but they did not contain automatable events and were filtered)

and two layers of abstraction.

ID = 67348
11 v 30 1 a 14 0 v 30 0 v 28 1 v 25 1 v 28 0 v 22 1 v 25 0 v 24 1
v 22 0 c 12 1
NumberOccurrences = 112
NumPatterns = 1
v 30 1 a 14 0 v 30 0 v 28 1 v 25 1 v 28 0 v 22 1 v 25 0 v 24 1 v 22 0
c 12 1 112

Figure 4.30. Episode Discovery reported episode segment.

A single episode of data (extracted from the complete set) produced by ED is shown in

Figure 4.30. Using Algorithm 5 an abstract node 67348 is created, which decomposes into

eleven production nodes and one end node. There are no permutations, so the vertical tran-

sition functionΠ only contains a single entryCv 30 1→ 1. The horizontal transition matrix

contains transitions between each node connected in the episode sequence each with a tran-

sition probability of 1 also due to no permutations. The resultant HHMM from adding this

node is shown in Figure 4.31 and corresponds to MavHome Steve pattern 5 (i.e., return from

alternate workstation).
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Figure 4.31. HHMM derived from ED data for MavHome Steve pattern 5 (single abstraction
layer).

ID = 237845
2 pe 62435 pe 67348
NumberOccurrences = 112
NumPatterns = 1
pe 62435 pe 67348 98
pe 62435 pe 67348 pe 62435 pe 67348 14

Figure 4.32. Episode Discovery reported abstract episode segment.

To build a hierarchy, the input data is compressed by replacing each discovered episode

with a timestamp for the episode, then is processed again by ED to discover sequences of

episodes. Figure 4.32 shows a single episode of data (extracted from the complete set) pro-

duced by ED in the second pass. The “pe” prefix is used by ED to denote aperiodic episode

versus afrequent episode(see [75]), but what is important to note is the trailing episode num-

ber. The 67348 should look familiar, it is MavHome Steve pattern 5. Episode 62435 is pattern

4. Thus, ED has discovered abstractly the pattern ofalternate workstation work(i.e., 237845)

which consists of the two abstract episodesgo to alternate workstation(i.e., 62435) andreturn
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from alternate workstation(i.e., 67348). In the data there were 112 occurrences of this pattern,

but of interest is that ED discovered a permutation of this pattern that involved 14 occurrences

of back-to-back repetition. The probability of transitioning back to repeat the pattern instead

of ending is 0.125 and of just ending after one execution of the sequence is 0.875. The resul-

tant HHMM in combination with the previously-discovered episode in Figure 4.31 is shown in

Figure 4.33.

Figure 4.33. HHMM derived from ED data for MavHome Steve pattern 5 (double abstraction
layer).

The learned HHMM from the MavHome Steve simulated inhabitant data is shown in Fig-

ure 4.34. For comparison against a real data-derived HHMM Figure 5.8 presents the HHMM

from the MavPad inhabitant 3. The slight differences in nomenclature are due to hand editing

of the Figure 4.34 visualization file to include readable names—Figure 5.8 is the raw graphical

output from ProPHeT. Both figures present only abstract nodes due to space considerations and

readability issues with presenting the full models with production nodes. It can be seen from
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these examples that given consistent sequential patterns in a data, these interesting episodes

can be mined and used to cteate a HHMM.

Figure 4.34. HHMM derived from ED data for MavHome Steve (complete abstract model, no
production nodes).

Figure 4.35. HHMM derived from inhabitant 3 data.

4.4.2 Markov Model Learning

Analysis of the model visualized in Figure 4.34 reveals some interesting observations.

Comparing this data-derived model with the designed model as presented in Figure 4.7 shows

some deviations between them. The designed and observed transition probabilities are differ-

ent due to the actual stochastic process that generated the data from the design model. The
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observed model accurately reflects the transition probabilities observed in the data and indeed

generated by the simulated inhabitant. The design model was human created and based upon

the desired transition probabilities in a stochastic environment. Inspection of the transition

values does reveal similar probabilities in most cases except where a deviation in transition

structure was discovered. The data-derived model found a number of pattern loops, particu-

larly in the take a break, alternate workstation work, and between thelab entry to deskand

leave lab from deskepisodes. These loops are explained by the fact that they were actually ob-

served and did generate those patterns and fall within the design model—trace a route through

theendnode through the abstraction and back to the episode beginning. Self-referential loops

in thetake a breakandalternate workstation workepisodes were also discovered and reflect an

accurate model of the simulation behavior. ED often discovers and identifies loops in episodes

that commonly repeat themselves. The use of history aids in maintaining an understanding of

where in the event chain the current state exists and what transitions are available. Overall,

the design and data-derived models are essentially the same, supporting the hypothesis that

inhabitant models can be learned through our process.

Evaluating the correctness of real human models is much more difficult because the

design model is not available. The proper automation of an inhabitant’s environment is the only

measure we can use to validate the correct user model. The better the automation accuracy the

better the model. For inhabitants with a high degree of observable regularity, modeling and

automation should be more accurate than for individuals who lead an unstructured lifestyle. If

all humans are creatures of habit and those habits are regular, we should be able to build an

accurate model of an observed human.

Several sections of this chapter have touched on the aspect of modeling inhabitants.

There is an abundant amount of research in the user modeling area. An entire research field of

user modeling exists with a dedicated conference,International Conference on User Modeling

which is in its tenth year in 2005, and journals such asUser Modeling and User-Adapted In-



120

teraction(UMUAI) published by Springer and theInternational Journal of Human-Computer

Studiesby Academic Press Ltd. UM’05 is co-located with IJCAI’05 showing the ties to the

AI community. In fact, AAAI, IJCAI, and other AI conferences usually have user modeling

sections in their conferences and proceedings. Related work in user modeling was previously

presented in this chapter.

4.5 Model Extension

Creating a HHMM is only the first step to developing a useful model in our process. In

order to perform automation actions in an environment we need to extend the HHMM into a

HPOMDP.

4.5.1 The HPOMDP

A HPOMDP follows the same base definition as an HHMM with the addition of a set

of actionsA that is used to transition between states, and a reward functionR defined on the

product states. Thus, it is formally defined as a 7-tuple:〈 S, A, T, Π, Z, O, R 〉. For detailed

discussions on the HPOMDP interested readers should refer to [210].

4.5.2 Action Extension

Due to the distinguishing characteristic of a one-to-one correspondence between action

and observation in our domain (i.e., intelligent environments), the transition action is merely

the action of that observation (e.g., if the observation is that the light came on then the action

is to turn the light on). In the class of domains these techniques are designed for there are

two types of observations: those that have corresponding actions and those that do not. For

example, in the intelligent environment domain we may control lights and appliances, but we

cannot control motion sensing or opening doors (yet). For those transitions that do not have

a corresponding action, the action is to do nothing (in practice we use zone ‘z’, number 0,
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and state OFF to represent this). The derived HHMM from the last section is extended to a

HPOMDP by adding the obvious actions to the state transitions and then by establishing a

reward (or cost) for transition using Algorithm 6.

The production nodes in the HPOMDP have two varieties: automatable and non-auto-

matable. Automatable production nodes are those in which an action can be performed by the

system prior to entering the state. Non-automatable nodes are those which can only be entered

into by environmental observation. It is important to set the actionA for each automatable

production node properly so that the correct action can be performed by the system; likewise, it

is equally important to set a non-action for all non-automatable production and abstract nodes.

The utilization of our HPOMDP model differs from traditional planning and control usage of

POMDPs due to the unique features of our domain. We will discuss how automation occurs

and how we use the HPOMDP in upcoming sections.

4.5.3 Reward Structure

The reward for a HPOMDP can be fixed, heuristic-based, or function-based (e.g., a func-

tion of utility cost changes for an action). HPOMDP policies generally follow a path with the

least cost or maximum reward. In our usage of the HPOMDP we take a more passive role

in that we must observe a sequence to occur, reason about a belief of where this observation

stream corresponds in our model, and look ahead to possible future observations. Our influ-

ence over the environment is limited and serves as augmented control to an inhabitant who is

in control. Unlike decision-making for control of an entity in an environment, we must mostly

observe, reason about the future, and automate with certainty during a narrow window of op-

portunity. To this end, we have found it useful to tie the reward to the transition probabilities

between states and use a function that seeks to utilize the maximum transition (reward) when

traversing between states. Initially all reward values are set to the transition probability values
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and then updated based upon feedback from ARBITER as described in Section 4.7.1. Algorithm

6 describes the reward assignment process.

Algorithm 6 ProPHeT HHMM Conversion to HPOMDP
1: for all Nodes in HHMMdo
2: {sn→ sn+1 denotes an edge from the current node to the next node}
3: if Node is anabstractnodethen
4: for all Edgessn→ sn+1 do
5: Asn→sn+1← z 0 0 {non-action zonenumberstate}
6: if Transition fromsn→ sn+1 is horizontalthen
7: Rsn→sn+1← Ts(sn,sn+1)
8: else{Transition fromsn→ sn+1 is vertical}
9: Rsn→sn+1←Πs(sn)

10: end if
11: end for
12: else ifNode is aproductionnodethen
13: for all Edgessn→ sn+1 do
14: if Nodesn+1 is automatablethen
15: Asn→sn+1← zone(sn+1) number(sn+1) state(sn+1)
16: else
17: Asn→sn+1← z 0 0
18: end if
19: if Transition fromsn→ sn+1 is horizontalthen
20: Rsn→sn+1← Ts(sn,sn+1)
21: else{Transition fromsn→ sn+1 is vertical}
22: Rsn→sn+1←Πs(sn)
23: end if
24: end for
25: else{No action or reward forendnodes}
26: for all Edgessn→ sn+1 do
27: Asn→sn+1← /0
28: Rsn→sn+1← /0
29: end for
30: end if
31: end for

Our system seeks to automate action transitions between states. The reward for per-

forming an automation is related to reducing the number of user interactions. Therefore, if
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the reward for automating the action in a situation where the inhabitant intended to manually

perform the action is 1 and there is no penalty (i.e., a reward of 0) to automating it and if the

inhabitant does not intend to issue them but does not mind them being issued (countermanding

action handling is introduced in section 4.7.1), then the expected reward for automating the

action is equal to the transition probability. It is for this reason that we initially seed reward

with the transition probabilities.

4.6 Events to Automation

In the intelligent environment domain, which is similar to a click-stream desktop appli-

cation interaction domain and other such domains where a human-in-the-loop interacts with

the environment in a partially observable fashion through interactive feature points (places

where interaction occurs, such as a lamp in an intelligent environment or a widget in a GUI

application), the unique features create the need for a different approach in decisions regarding

control. Most of the actions that cause observations and subsequent changes in environmen-

tal state are beyond system control, but the system must follow the observations in its model.

The decision to be made is opportunistic. It is a decision to perform an action to change the

state of the environment at the correct time in order to satisfy the goals of the system. In our

environments this must occur in real-time and in a narrow span of opportune time.

Our system is characterized by its staccato observation and control of our environments.

Similar to the Viterbi algorithm in using a HHMM for speech recognition by observing a

phoneme stream and providing the highest probable word match [175], we provide a set of

algorithms for the non-traditional use of the HPOMDP to observe the event stream. We de-

termine a belief state of where in the model the current environmental state corresponds based

upon episode membership, history, the current observation, and a prediction of the next obser-

vation in a model that was automatically created through a data-driven knowledge discovery
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process and algorithmic construction. By performing a look-ahead to determine if a goal sat-

isfying action can be made, we can issue a control command and observe feedback which will

be used to refine the HPOMDP to better converge on a policyπ that will best satisfy our goals.

4.6.1 ProPHeT Streaming Control Algorithm

Algorithm 7 shows how events and our derived HPOMDP are used to make automation

decisions in the intelligent environment. Events stream into the system where they are ob-

served and passed to ALZ and Epi-M to produce a next observation and a list of membership

probabilities for each layer in the HPOMDP hierarchy. A belief state is then calculated using

all available information in order to determine where in the HPOMDP the current observation

exists. If the current observation stream is identifiable within the HPOMDP, we look ahead

within a defined horizon to determine if an automation event should occur in the near future. If

automation should/can occur, a control action is initiated and checked for safety, security, and

inhabitant preference rule violations before initiating or declining the control event. Feedback

is issued and the process repeatsad infinitum.

4.6.2 Prediction

Prediction is a black box endeavor for our systems since we utilize ALZ. The trained

ALZ algorithm is provided with the current observationo and returns the predicted next obser-

vationχ. χ will be used for the belief state calculations.

4.6.3 Episode Membership

A trained Epi-M is used to determine the set of most probable membershipsΞ given the

current event observationo and event observation historyε. Ξ contains a specified top num-

ber of probabilities of membership from each layer of the HPOMDP and is generated through
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Algorithm 7 Phase 2: Automation Decision-making Operations
Require: HPOMDP model, event stream connection to logical proxies

1: Initialize all variables
2: loop
3: Observe event stream
4: Determine next state← prediction algorithm (ALZ)
5: Determine membership across hierarchy← episode membership algorithm (Epi-M)
6: Determine belief state in HPOMDP
7: if Incoming stream is in a recognizable event chainthen
8: if Automatable action within lookahead horizonζ then
9: Issue Action

10: Initiate ARBITER check
11: end if
12: end if
13: end loop
14: Cleanup and restore utilized resources

Algorithm 8. Hierarchical layers above the first abstraction ofproductionnodes generate obser-

vationsoi+1 from the highest probability-matched member of the next lower level. Combined

with the predictionχ, current observationo, andε observation history, the membership prob-

abilities in Ξ can be used to provide a belief of the current HPOMDP state. In Algorithm 8,

the tunable parametersk for angular deviation match and the positive match biasα+ and neg-

ative match biasα− values are determined experimentally by test case observation and hand

manipulation. The values presented perform well with our intelligent environment data to pro-

mote correct temporal matches, but they may need alteration for different environments and

domains.

4.6.4 Environment Automation

Context is defined as the “set of facts or circumstances that surround a situation or event

[163].” It is environmental information that provides clues as to what is occurring in a place

by the situated actors. The role of user context is an important aspect in developing systems
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Algorithm 8 Episode Membership Determination
Require: ε event observation history,o current observation event, trained Epi-M, numbern of

desired top membership probabilities per hierarchical level
1: Ξ← /0 {Membership set containingξ (hierarchy level, episode id, match probability)}
2: C← /0 {Working candidate set}
3: o0← o {0 becomes the bottom level observation}
4: k← 2 {Tunable number of angular deviations for match}
5: for all Abstractnodes that containproductionnodesdo
6: if o is contained insn then
7: ν ← number ofε matches fromo backwards insn

8: δ ← number of nodes insn

9: if o occurs withink angular deviations of the angular meanthen {Bias by circular
probability of occurrence at this time}

10: α+← 1.10{Tunable positive match bias}
11: else
12: α−← 0.90{Tunable negative match bias}
13: end if
14: Ξ← ξ (hierarchy level,sn.id, α

ν

δ
)

15: end if
16: end for
17: for all Hierarchical levels above theproductionnodesdo
18: oi+1←maxΞi {Next level higheroi+1 is the highest current probabilityo}
19: for all Abstractnodesdo
20: ν ← number ofεi+1 matches fromoi+1 backwards insn

21: δ ← number of nodes insn

22: Ξ← ξ (hierarchy level,sn.id, ν

δ
)

23: end for
24: end for
25: Sort topn membership probabilities inΞ per hierarchical level
26: ReturnΞ

that reason about human activity. Knowing the context of the user limits the scope of activities

in which they may engage or currently be participating and thus reduces the searchable state

space making prediction more tractable and yielding a higher probability of success. Context

is the key to understanding what services to offer or actions to automate [40].

At its core, the work presented in this dissertation provides a learned user context model

embedded in the automation system. Work in this area is very active and there are others work-
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ing on the problem of determining context based on learned, encoded, or inferred information.

As previously mentioned in Chapter 2, as part of the Georgia Tech Aware Home they devel-

oped a context toolkit to provide context widgets that identify user context by sensor readings

and convey this information to context-aware applications that need the information [178]. The

context toolkit for the Aware Home is a low-level tool and provides the same functionality as

the logical proxies and aggregators in our work—they simply provide a level of encapsulation

around sensor and actuator features and provide information about that object. Context in this

view is defined around single objects and is a view held by other projects such as iDorm (see

Chapter 2). The view of context taken by the work in this dissertation and shared by others

[27] is focused at a higher level, one around the tasks of everyday life that include many sensor

readings. Many of the projects described in Chapter 2 use some form of context-aware comput-

ing. Many of the research activities at the former AT&T Cambridge Labs are good examples

(i.e., call forwarding, teleporting, and so forth) [17, 27].

The area of context-aware computing encompasses many areas of active research. Appli-

cation information forwarding, active mapping, shopping assistants, advanced web browsers,

cyberguides, augmented reality systems, office assistants, conference assistants, location-aware

services, and the associated supporting architectures are just some examples. Current models

of context modeling for these systems include key-value models where context is provided as

a value to a key variable, markup scheme models where markup language based profiles are

provided for local objects, graphical models such as the Unified Modeling Language (UML)

provide visual representation of context, object-oriented models which break down context

into encapsulated models usually centered around sensors and build them up through aggre-

gation and abstraction, logic-based models which utilize formal logic to describe the context,

and ontology-based models which use ontologies (i.e., “explicit formal specifications of how

to represent the objects, concepts, and other entities that are assumed to exist in some area

of interest and the relationships that hold among them” [81]) to specify concepts and inter-
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relations that define context. The work in this dissertation uses the object-oriented model of

context modeling. The survey papers by Guanling Chen and David Kotz at Dartmouth College

[27] and Thomas Strang and Claudia Linnhoff-Popien at the German Aerospace Center (DLR)

and Ludwig Maximilians University respectively [196] provide good starting places for more

information in context-awareness and current work in context learning.

The work in this dissertation is initially about learning user activity patterns and pre-

dicting the most likely event to occur next as we observe the modeled user. Related work

in this area includes that of Cielniak, Bennewitz, and Burgard who utilized the Expectation-

Maximization (EM) algorithm to learn and utilize the motion behaviors of people in a typical

office environment from clustered trajectories using laser range finders to collect motion pat-

terns. They also derived HMMs from the motion pattern data and compared the approaches.

Their EM models were empirically proven to be better predictors of motion [32] than the

HMMs. Similiar work performed outdoors using GPS information was conducted by Patter-

sonet al. at the University of Washington. Particle filters, a variant of Bayes filters, and the

EM algorithm were used to learn a traveler’s current mode of transportation as well as his most

likely route [150]. Liao, Fox, and Kautz continued that work and developed a hierarchical

Markov model to learn and infer the movements of people through the community. The hierar-

chy was used to create multiple levels of abstraction that bridged the distance between raw GPS

readings and injected high-level knowledge. Rao-Blackwellized particle filters were used for

efficient inference. The generated user models were used to detect abnormal behaviors (e.g.,

getting off at the wrong stop) [110]. There is much work in user activity prediction, but the

focus is more on feature learning, modeling, or anomaly detection. Our work focuses on the

automation of environmental objects in the activity stream of our modeled users.

Our approach entails using belief states based on current environmental observations that

map to states in the HPOMDP. We are using Epi-M to provide a set of membership belief states

and ALZ to provide additional belief through a next state prediction. From the given current
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belief state, the action with the largest reward, which in our case relates to the path of most

probable occurrence, should be chosen [94]. In our intelligent environment work, we look for

the nearest automatable action within a look-ahead horizon. Additional learning from feedback

or interaction data may be used to update the transition probabilities of the model with the goal

of improving convergence to the desired model [210].

Details provided in Algorithm 9 describe the belief state determination process. Different

from the traditional POMDP belief state view, which usually refers to a system’s belief about

its state by a probability distribution over states indicating a likelihood with which the system

is in each one of the states, we take a definition where our belief is based on the most likely

state of the system narrowed to a single state. There is a constant stream of observationso

coming into the system that becomeε observation event history. ALZ provides a predictionχ

of the next event to occur based on the current stream of events. Epi-M provides an ordered set

Ξ containing lists ofn current membership probabilitiesξi (consisting of a probability,p, and

episode identification,id), whereξ1 is the most probable current episode andξn the least for

each layer in the hierarchy. Belief state is initially assigned a zero pointer and strength value.

The strength valueβvalue is a numerical indicator of the strength of beliefβvalue→ [0,1] for a

given match. For each of the topn membership probabilities inΞ, a match attempt is made

to align the horizontal transitions acrossζi—there must be a valid path from the root of the

HPOMDP to the lowest level of abstraction. Path transition matches that provide a clear path

to a set of production nodes are evaluated on a first-find basis for a production node match to

o, ε, andχ. If an alignment match is made, then belief stateβ is set to point at the current

observed state. In order to filter out poor matches, the belief strength is assigned a value that

accounts for the percentage of horizontal and vertical match as shown in Equation 4.9.

βvalue←
(match(ε+o+χ)

pattern length +∑n
i=0

prob(ξi)
i )

2
(4.9)
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In implementation, we have found that the first-find is the best match. Ifβvalue is greater than

or equal to the defined belief thresholdς then the belief state is not filtered and a valid pointer

is returned. The belief thresholdς is experimentally determined by hand tuning. It could

also be given control of by the inhabitant. Lowς values promote more risky decisions to be

initiated since the belief state would be low. High values ofς promote a more conservative

system which will not issue decisions without a high level of belief.ς should be set to the

desired comfort level of the inhabitant which can only be determined experimentally with each

individual inhabitant. The belief state is used to make an automation decision.

Algorithm 9 ProPHeT Belief State Determination
Require: o current event observation,ε event history,Ξ membership sets,χ next observation

prediction, HPOMDP model
1: β ← /0 {Belief state}
2: βvalue← 0 {Numerical strength value of belief}
3: ς ← x wherex is a real and 0.0≤ x≤ 1.0 {Tunable belief threshold}
4: {Find belief state in HPOMDP}
5: for all Ξi do {Find valid path and state match in HPOMDP from top 1 ton until first

match}
6: Matchξi for each level in HPOMDP
7: if Ξ horizontal transitions validthen {Must be a valid vertical function of the learned

HPOMDP}
8: if Matcho with ε history andχ next observationthen {Find match state}
9: β ← si {Assign pointer to belief state}

10: βvalue←
(match(ε+o+χ)

pattern length+∑n
i=0

prob(ξi )
i )

2 {Strength of belief calculation}
11: break{Found first match}
12: end if
13: end if
14: end for
15: {Found belief state strength value must exceed the cut-off threshold}
16: if βvalue≥ ς then
17: returnβ

18: else
19: returnβ ← /0
20: end if
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Automation decisions are made by the process detailed in Algorithm 10. For action

determination, action transitions are examined based on 1)ε history and 2)β belief state.

If β is not a valid pointer (i.e., empty) then there is no decision to be made because there

is no current belief state. Given the stateβ an action decision needs to be made. Firstβ

is found in the HPOMDP by simply following the pointer. Then, the edges leading fromβ

to other state observations are examined and the path of highest utility, givenε history, is

followed until an automatable action is incurred or the look-ahead horizon is exceeded. The

look-ahead horizon is a tunable parameter that is experimentally determined be observing the

desired results of automation in the target environment. We employ different horizons for

“ON” (or not-off for more than binary state objects) and “OFF” actions from experimentation

in the intelligent environments domain. Specifically, we found that it is more acceptable to turn

on an object (e.g., a light) slightly before the normal sequential occurrence so that the object

appears to be in the correct state when desired (i.e., the light is on in the room just prior to

entry). Conversely, it is not acceptable to turn off objects prematurely, users preference tends

to require off automations to occur more closely to the observed sequence (e.g., do not turn

the light in the room off until the inhabitant has just about left the room). A vector of different

look-ahead horizons could be established—one for each potential state type. When the path

is followed and finds the first automatable action, it is returned as an action decision. If no

automatable action is found, then no action will be taken (i.e., the action returned is empty).

In order to facilitate discussion and a better understanding, the following scenario and

example HPOMDP are presented from our MavHome Steve scenario. An example of the

generated section of the HPOMDP is presented in Figure 4.36. MavHome Steve is currently

engaged in pattern 4.o is v25 OFF, ε = {v28 ON, v22 OFF, v25ON, v24 OFF, v22ON,

v24 ON, v24 OFF, c12OFF, v24ON}, χ = v30 ON, andΞ = {ξ1:0.769(62435), 0.0(67348),

... ; ξ2:1.0(237845), ... ;ξ3: 0.0(1), ...}. Using Algorithm 9 with aς ← 0.70 (a typical value
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Algorithm 10 ProPHeT Automation Decision
Require: β belief state,ε event history, HPOMDP model

1: ζON← x wherex is an integer{Tunable horizon for “ON” automations}
2: ζOFF← x wherex is an integer{Tunable horizon for “OFF” automations}
3: a← /0 {Action to automate}
4: if β = /0 then
5: returna
6: else
7: Find stateβ in HPOMDP
8: while Following highest probability edges given current stateβ and ε history up to

max(ζ ) look-ahead horizon stepsdo
9: if next state is an automatable actionthen

10: a← automatable action
11: break
12: end if
13: end while
14: end if
15: returna

for our environments and data stream), we can find a match in episode 62435 (Go to alternate

workstation) with a direct trace from episode 237845 and none back to episode 1 (i.e., not

tracing back to root is valid for this pattern) through episode membership. A match ofo, ε, and

χ fits to a belief state three observations before the end of the pattern. The strength of belief

is shown in Equation 4.10 which indicates thatβvalue≥ ς ; therefore,β ← oi which is returned

as the belief state. Given the evidence, it should be obvious that this is correct. However, not

all outcomes are as clear, especially when patterns appear very similar so theς parameter must

be tuned to minimize false belief states. Also, the match function forε may be relaxed slightly

from exact match in order to accommodate noise and slight imperfections in the observation

data stream.

βvalue← 0.94225←
(9+1+1)

11 + 0.769+1.0)
2 )

2
(4.10)
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Figure 4.36. MavHome Steve pattern 4 belief state determination HPOMDP.
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The belief state, history, and HPOMDP are used in Algorithm 10 to determine an au-

tomation. We typically useζON← 3 andζOFF← 1, so these will be used for this example.β

in not empty, so if we examine the transitions fromβ in episode 62435 (Go to alternate work-

station), we see a first transition to v30ON which has no automation, a second step to v28OFF

which has no automation, and a third step to a14ON which is automatable and within the ON

look-ahead horizon; therefore,a← a14ON. A decision has been made and will be submitted

for action.

These examples should make it clear how this system behaves in a similar fashion to

Viterbi in determining phonemes for speech recognition, but with a data-driven learning of

the context-providing episodes. Given the previous empirical performance of ALZ [61], ED

[73], and Epi-M as well as the derived HPOMDP structure, this is sufficient for automation

on the merits of a match from theε history for the automated actiona from the belief stateβ .

However, this action is currently unchecked and may violate safety, security, or user preference

and also may be wholly insufficient if the inhabitant begins to change their patterns which is

inevitable in the real world. The HPOMDP structure requires a mechanism that can check for

validity and furthermore accommodate change for the growth of the system.

4.6.5 Rule Intersection and Feedback

Validating ProPHeT-generated actions is performed by the ARBITER component. AR-

BITER (A Rules-BasedIniTiator ofEfficient Resolutions) contains three sets of rules: system-

defined safety and security rules,ℜSDSS, which are coded into the system by the developer

to provide a base set of these types of rules for the system; user-defined safety and security

rules,ℜUDSS, which the user specifies; and user-defined activity rules,ℜUDA, which simply

stated provide ado as I say and not as I domechanism for the injection of behaviors into the

system that are put in the event stream from rule-firings rather than by inhabitant interaction.

The former types of rules prevent the system from operating objects in an unsafe, insecure, or
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undesired manner while the latter rules provide a mechanism for training the system for desired

behavior which may not be produced by the inhabitant (but obviously desired)—this type of

rule came from our experimentation and the problem of how to train the system for behavior

that is often difficult for an inhabitant to perform. In our case, we wanted to train the MavPad

to turn off the lights when the apartment was unoccupied, but once we left we could not turn

off the lights ourselves.

Algorithm 11 provides the basic operation of ARBITER rule checking. Rules encoded

in ARBITER are simple conditional rules that check for the existence of a condition. In the

case ofℜSDSSandℜUDSSrules, a matched condition would prevent the ProPHeT action from

being executed. For example, the MavPad contains a halogen light b3 which is never to be

automated since if it is left on too long it may become a fire hazard. If ProPHeT issues an

action to turn on light b3, the system will prevent the action and issue a negative feedback. In

the case ofℜUDA rules, actions are initiated by ARBITER from a set of conditions that when

met fire an automation rule. For example, if there is no motion in the MavPad then turn off

all lights. ℜSDSSandℜUDSSrules provide positive and negative feedback in order to be used

for HPOMDP adaptation and policy convergence; whereas,ℜUDA rules are anticipated to be

learned as patterns from Episode Discovery and added to the HPOMDP at the next reboot, but

may be learned through perceived inhabitant-induced feedback. ProPHeT does not consider

time, but instead relies upon events in order to progress decision-making, which facilitates the

need for a alternate system (e.g., a rule system) for handling non-event based or non-observable

event trigger conditions.

4.6.6 User Feedback

Another source of system feedback comes directly from the inhabitant and potentially

from theℜUDA rule firings. ProPHeT stores a queue of executed actions,A. When an incoming
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Algorithm 11 ARBITER Rule Check
Require: o current event observation,a action request,ℜSDSSsystem-defined safety and secu-

rity rules,ℜUDSSuser-defined safety and security rules,ℜUDA user-defined activity rules
1: εARBITER: ARBITER-maintainedo history
2: f ← 0 {Feedback variable}
3: if a violatesℜSDSSthen
4: f ← negative feedback
5: else ifa violatesℜUDSSthen
6: f ← negative feedback
7: else
8: Perform action through logical proxies
9: f ← positive feedback

10: end if
11: if o with εARBITERmeetℜUDA firing criteriathen
12: Perform action through logical proxies
13: end if
14: εARBITER← o
15: return f

observationo appears to contradict one of the recent actions inA, a negative feedback inversely

proportional to the time lapsed since the automation, up to a defined maximum time span, is ap-

plied to the part of the HPOMDP that initiated the action. A small positive feedback is applied

to actions not contradicted (or, as we say, countermanded). In addition to countermands, we

also observe substitutions. For example, our system turns on light a1 after which we observe

that a1 is immediately turned off and light a2 is turned on. The countermand causes a nega-

tive feedback to the system, but the substituted action a2ON is also noted. These feedback

mechanisms play an important role in adapting the HPOMDP inhabitant model for life-long

learning.

4.7 Adaptation

Human inhabitants may be creatures of habit, but those habits are likely to change. As

people progress through life they undergo many changes in lifestyle. As they undertake their
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journey through life, it is important that any lasting system that seeks to automate a part of

their dynamic journey must also change with the inhabitant. Adaptation is the key to life-

long learning and assisting the inhabitant to age-in-place. Our system has been designed to

accommodate adaptation, both in a near-term and a long-term manner.

The three pillars of adaptation in our architecture center around feedback for near-term

adjustment of the current HPOMDP model, monitoring system performance, and continual

mining of the data stream to detect new and changing patterns. Algorithm 12 is the main control

sequence for the adaptation and continued learning phase. Feedback is used with temporal-

difference learning to adjust to drift (i.e., a continual change at a slow rate) in the data patterns.

Performance monitoring and continual data-mining using ED are used to adjust to a shift (i.e.,

a sudden dramatic change) in the data pattern.

4.7.1 Continued Learning with Temporal-Difference

The work in this dissertation involves the use of a reinforcement learning technique

called temporal difference (TD) learning and in particular we use TD(0)—temporal difference

learning without an eligibility trace. Tabular TD(0) first appeared in work by Ian Witten [223]

and later in its more commonly used form by Sutton [201]. We use the Sutton form and do not

offer an extension to the work, but use it in combination with the other techniques in our system

to create a more useful combinational approach. For more information on reinforcement learn-

ing the interested reader should consult Richard Sutton and Andrew Barto’sReinforcement

Learning: An Introduction[203].

The goal of the system is to learn the control policyπ that 1) minimizes user interactions,

2) eliminates safety and security rule violations, and 3) reduces user preference rule violations.

The former two are determined by critic feedback, while the latter is determined by inhabitant

system interaction. Resource consumption control learning could be addressed by influencing
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Algorithm 12 Phase 3: Adaptation and Continued Learning
1: reboot⇐ false
2: repeat
3: {Concurrent loop 1}
4: loop
5: Receive feedback
6: Examine feedback
7: Correlate feedback to recent actions
8: Adjust appropriate event transition based upon feedback
9: end loop

10: {Concurrent loop 2}
11: loop
12: Monitor performance
13: Collect information on feedback, performance, and inhabitant pattern changes
14: Determine if concept shift has occurred
15: if concept shift has occurredthen
16: Reboot the system (see Algorithm 1)
17: end if
18: end loop
19: {Concurrent loop 3}
20: loop
21: Get observation data
22: Run sliding window of data through ED to look for concept shift
23: Set warning in the case of a concept shift
24: end loop
25: until reboot= true

proper behavior of the environment by the users and rule influences but will not specifically be

explored here.

The learning issues are characterized by Figure 4.37. In this example there is an area of

contention in the learned model from ED that must begin and eventually be fully resolved in

the HPOMDP because ED will not recognize changes in data patterns until they begin to occur

with sufficient regularity. Waiting for these changes would be intolerable to the inhabitant of

such an environment and would thus cause an increased amount of interaction. The adaptive

learning mechanism in the HPOMDP must be able to handle the following situations:
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1. Countermand (Deletion): Adapt to a feedback-generated countermanded automation.

For example, if the pattern normally turns light a14 on but one day the inhabitant decides

that they no longer desire that light to be on and begin turning it off every time it is

automatically turned on, the system should recognize this feedback and learn the new

preference. This is a change in an existing pattern.

2. Insertion (Replacement):Adapt to pattern insertion candidates which include the class

of substitution (replacement) candidates (alternate actions). For example, the inhabitant

may decide that they prefer light a16 on instead of a14 while working at the alternate

workstation. Replacement often, but not always, follows a countermanded action.
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Figure 4.37. MavHome Steve pattern 4 focused HPOMDP with contention area.



141

In Figure 4.37, the light a14 is subject to a replacement by a16 in thego to alternate

workstationepisode (episode # 62435). The approach for adaptation is to create two parallel

states: a16ON and NOACT[ION] (i.e., do nothing). The NOACT[ION] state is introduced

in both situations listed above. When an event is in contention (i.e., it is either being counter-

manded or inserted) the first action is to no longer automate it—so the NOACT[ION] state

acts as a shunt around the area of contention. In the countermand (deletion) situation this state

should become the new replacement state thus preventing a consistently countermanded state.

In the insertion (replacement) situation, the NOACT[ION] acts as an alternative to the new

automation until sufficient reinforced observation feedback causes the inserted state to become

the dominant state and issue an automation. The new states reconnect back into the chain to

all possible downstream states in the chain and through observation learn what the appropriate

connection should become.

What the system needs to do is to learn a policyπ that takes into account the current ob-

servationo, the probability of episode membershipΞ, ε history, and the current predictionχ in

order to select the best action to take, if any. Sinceo corresponds to a state in this environment

o = si . So, the learning task can be summarized as the need to learnπ : (S,ε,χ,Ξ)→ A.

The principle mechanism for learning in this system is based on evaluative feedback from

the environment inhabitant and ARBITER rule feedback.π is determined by user feedback and

the arbitration rules.π is guided by the current belief state using Epi-M episode membership

probabilities and the current observation as well as recent history, the predicted next event,

and the utility for performing an action. Temporal-difference learning [203], TD(0), is used to

update state-action utility using equation 4.11 after each action feedback.V(s) is the update to

the estimated value for current state,α is the step-size which influences the rate of learning,r

is the reward,γ is the discount factor (typical value is 1, no discount), andV(s′) is the update to

the estimated value for the next state. A simplified formula based on a step-size and discount

factor of one is shown in Equation 4.12.
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V(s)←V(s)+α[r + γV(s′)−V(s)] (4.11)

V(s)← r +V(s′) (4.12)

Feedback learning in ProPHeT is guided by Algorithm 13. Feedback is either returned

from ARBITER after submitting an action or through observing an inhabitant or ARBITER-

based action in the environment. Direct ARBITER feedback provides either a negative feedback

(we commonly use -0.1) for prevented actions or a small positive reward (we commonly use

0.05) for allowed actions. This feedback is applied to the reward transition that issued the

action. A NOACTION node is also inserted around the action to allow an alternative action if

negative feedback is provided—this allows for preventing inappropriate or undesired actions.

Proper actions are promoted.

Observed action feedback is determined from a countermanded action (i.e., overturning

an action by external initiation of the opposite command action) or an action initiated by an

inhabitant in a currently observed event stream (e.g., a new user action is performed in an

already observed and recognized pattern of activity). In these cases, a NOACTION node

is inserted either around the countermanded (or deleted) action or in conjunction with a new

action node. Feedback is applied to support the proper path by decreasing the value on paths

not taken and increasing the value of the one taken. In these cases, the amount of feedback

is dependent upon the time the feedback occurst f since the actionta within a maximum time

allowed tmax such thatf ← tmax−t f
tmax

× r—this provides a time weighted reward so that quick

feedback is weighted more heavily than late feedback (i.e., quick feedback is more important

and thus given more consideration). The time-weighted feedback is motivated by inhabitant

behavior in which when an inhabitant disagrees with an automation they are usually quick
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to correct the system and if they do not care they eventually may correct the system. Thetmax

bound is established so that the sytem does not have to wait indefinitely to resolve any feedback.

We typically use values oftmax← 60 seconds (this minimizes difficulties in determining which

action to associate with the feedback since automations are usually observed to be spaced more

than 60 seconds apart),rpositive← 0.05, andrnegative← 0.10. Through this system of feedback

and utility adjustment the system alters the HPOMDP transition values to align with the desired

system behavioral policy as guided by the ARBITER rules and the inhabitant.
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Algorithm 13 ProPHeT Feedback Learning
Require: f feedback,t f time feedback occurred

1: if f was returned from ARBITER then
2: {Feedback directly related to action just issued to ARBITER}
3: if f < 0 then
4: Insert NOACTION node aroundsa {If one does not exist}
5: if New NO ACTION node insertedthen
6: AssignV(sNO ACTION)← 0.5×V(sa)
7: end if
8: end if
9: r ← f

10: V(sa−1)←V(sa−1)+α[r + γV(sa)−V(sa−1)]
11: else{Feedback came from inhabitant orℜUDA user-defined activity rules}
12: Correlate feedback to action recently taken
13: if associated actiona found AND t f − ta≤ tmax then
14: if f is a countermands (deletion) ata then
15: Insert NOACTION node aroundsa {If one does not exist}
16: if New NO ACTION node insertedthen
17: AssignV(sNO ACTION)← 0.5×V(sa)
18: end if
19: {Negative reward to countermanded action}
20: r ← fnegative

21: V(sa−1)←V(sa−1)+α[r + γV(sa)−V(sa−1)]
22: {Small positive reward to NOACTION}
23: r ← fpositive

24: V(sa−1)←V(sa−1)+α[r + γV(sNO ACTION)−V(sa−1)]
25: else if f is an insertion(replacement) ata then
26: Insert NOACTION node aftersa {If one does not exist}
27: if New NO ACTION node insertedthen
28: AssignV(sNO ACTION)← 0.5×max(V(s))
29: end if
30: Insert f node aftersa {If one does not exist}
31: if New f node insertedthen
32: AssignV(sf )← 0.5×max(V(s)) {Assign the new node the value of half of the

amount of the current highest transition}
33: end if
34: {Small positive reward to inserted(replacement) action}
35: r ← fpositive

36: V(sa−1)←V(sa−1)+α[r + γV(sf )−V(sa−1)]
37: end if
38: end if
39: end if
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As a test case, we ran ProPHeT in simulation using MavHome Steve data and employing

an ARBITER rule that will not allow light c16 to turn on (for not-so-obvious safety reasons).

Pattern 1Lab entry to deskturns this light on as a learned part of the HPOMDP. When ProPHeT

submits the c16ON action to ARBITER, ARBITER will prevent the action and provide a neg-

ative feedback of -0.1. Given the initial HPOMDP production node transitions of v24ON to

c16 ON with a value of 1.0 and a transition of c16ON to v24OFF with a value of 1.0, the

first rule violation inserts a NOACTION node between v24ON and v24OFF in parallel with

c16 ON and transition values of 0.5 and 1.0 respectively. The transition value of v24ON to

c16 ON is lowered by negative feedback to 0.9. With each rule violation, which normally

occurs 3-5 times per day, the transition value from v24ON to c16ON is lowered until after

five violations the transition utility is lower than NOACTION as shown in Figure 4.38. After

five violations, the HPOMDP has been altered to not turn c16 ON anymore, unless subsequent

operations positively reinforce turning c16 ON. It takes approximately two days to learn the

rule due to the frequency of pattern occurrence.

Figure 4.38. MavHome Steve c16OFF ARBITER rule learning.
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In a slightly more complex test case, we used the virtual inhabitant MavHome Steve to

turn on light c11 which is located on the desk behind Steve, but controlled from Steve’s desk,

whenever light c12 is turned on. This should affect patterns 1 and 5 which involve a c12ON

action. Steve is programmed to turn the c11 light on between 1 to 15 seconds after c12 is

turned on. When Steve first turns on c11 seven seconds after c12 is automatically turned on,

the system associates the c11 with the c12 action and inserts a NOACTION node between

c12 ON and theend node with value 0.5 (since the value of c12ON → end was 1.0). A

c11 ON node is also inserted at the same location with value 0.25 plus(60−7)
60 ×0.05= 0.044

for a value of 0.294. Both new nodes are connected to theendnode with a value of 1.0. Steve’s

average response time of 7.5 seconds will cause the change for automation to take effect after

six interactions—longer if the response is slower as the reinforcement learning takes longer

to overcome the NOACTION value. This occurs for patterns 1 and 5, both requiring around

six inhabitant interactions associated with the particular pattern in order to insert and reinforce

the node for automated action. Figure 4.39 shows the inhabitant c11ON interactions and the

associated rule in which the action is being added/reinforced. It takes two days to add the action

to pattern 1 and four days to add it to pattern 5 due to frequency of pattern occurrence. The

added actions in this process must always be automatable actions. This process can be used in

the limit since there is no limit on the growth of patterns; however, it is highly unlikely (based

upon observation of real environmental actions) of this growing without bound—inhabitants

will not constantly interact with objects.The regularity in learning is somewhat biased by the

regularity of the simulated inhabitant, real inhabitants have been observed to be much more

inconsistent as seen in the next chapter.

The astute reader may notice an apparent flaw in the function of the adaptation learning

mechanism for inserting new action observations—the chances for mismatch may insert nodes

in various locations in the HPOMDP. This may indeed occur, but due to the consistency re-

quired to reinforce the action in order for it to be automated means that either the nodes are
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Figure 4.39. MavHome Steve inhabitant feedback initiated learning of c11ON.

placed in the correctly perceived location to become automated actions or they become clutter

in the HPOMDP. Clutter is handled by pruning.

4.7.2 Pruning

In order for state space reduction to occur, episodes and individual states are given atime-

to-live counter that is refreshed with each traversal of that section of the HPOMDP. Unused

sections of the HPOMDP will be pruned for increased efficiency. This assists in removing

unused episodes and clutter inserted from feedback learning that may have been placed without

sufficient continued reinforcement. Maintaining as clean and dynamic a structured HPOMDP

as possible helps promote policy convergence.

4.7.3 Policy Convergence

Our current learning goal is to develop the HPOMDP policyπ such that it converges

with the policyπArbiter established by the ARBITER rules and the policyπinhabitant of the inhab-

itant and how they live their life—remember that until augmenting technology makes specific
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inhabitant identification and pattern separation possible, this is just a single-inhabitant tech-

nique. The system rule violations and inhabitant feedback should be minimized asπ converges

with πArbiter + πinhabitant. If either of these policies change, then the system will adapt while

incurring violations and feedback as necessary to converge with the policy changes.

The learning task in this work is divided into two areas: learning within episodes that

have production states and learning within episodes that have abstract states. The learning re-

quirements for production states are described in this section. Learning between abstract states

is determined by re-evaluation of discovered episodes through data-mining due to performance

and data-compression changes.

4.8 Concept Transformation

The compression of continually-observed data is monitored by ProPHeT in order to de-

tect concept drift and shift. Upon significant shift in data the system will be directed to relearn

(i.e., reboot), a new HPOMDP will be generated, and it will replace the current working one.

This will accommodate for new learned patterns and overall corrections and cleaning of the

structure.

4.8.1 Drift and Shift Identification

Drift is a slow change in the patterns of observations in the data stream over time. Shift

is a sudden change in the patterns of observations. Drift occurs naturally in a continually-

changing system such as an intelligent environment where the inhabitant gradually forms new

habits, stops old ones, interacts differently with their environment, and partakes in the journey

of life. Shift occurs when there is a significant departure from the previous patterns of life—

change of job, position, stature, injury, and so forth may cause a shift. The key indicators

for detecting drift and shift are the compression of the observed data and the performance of
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the system. Drift is compensated for by the learning mechanisms discussed previously in this

chapter, but shift indicates a departure from the existing model and a need to learn a new one.

System performance measured by the number of correct automations over the total num-

ber of device interactions (both by the system and by the inhabitant) when combined with

compression observation can be used to determine drift and shift. Dramatic changes in com-

pression but a steady system performance is an indicator of drift. In this case, the system should

be allowed to continue functioning without interruption. Counter-intuitively, a sudden change

in the compression of the observation data is not an indication of shift, but rather of drift since

minor changes in the observed patterns tend to unravel the patterns backward in time reducing

compression by expanding their description. Minor changes in compression due to the addition

of new, emerging patterns (the shift) are not noticed since their compression will not become

prevalent while the old patterns exist and continue to be compressed. If compression remains

consistent and performance begins to drop significantly, this is an indicator of shift—actions

are not being automated correctly, so the model is incorrect. However, system performance

should not be judged too quickly, but should be evaluated over a span of time that will allow

for a day or so of differing inhabitant behavior. The threshold for shift detection duration is

tunable by the willingness of the inhabitant to be subjected to incorrect automations. After a

specified period, if system performance continues to degrade then a reboot should be initiated

in order to relearn a new model.

Figure 4.40 illustrates the appearance of shift created using the MavHome Steve virtual

inhabitant. At event 3000, half of the six patterns (patterns 4–6) were replaced with their

reverse. The result yielded three new patterns that did not significantly change compression, but

executed foreign patterns that could not be automated which caused an increase in inhabitant

interactions. In this case, over half of the model no longer fits the data patterns. If this incurs

prolonged poor performance, then a new model should be learned (i.e., reboot initiated). It is

useful to note that in our experience such massive changes to the model are difficult to correct
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for through the temporal-difference learning and feedback mechanisms—a reboot and relearn

is more efficient.

Figure 4.40. MavHome Steve pattern shift example.

4.8.2 Shift Reboot

Complicated measures could be employed to correct a model that no longer provides

sufficient automation performance for the currently observed data stream and reflective inhab-

itant patterns. However, when the model no longer fits the inhabitant it is best to learn a new

model by resetting the system and returning to the observation phase to collect more data—new

activity pattern data. After the observation period, the system can begin again with Phase 1.

Periodic reboot and relearn provides a mechanism for continual life-long learning beyond sim-

ple drift compensation and policy convergence through feedback-based reinforcement learning

techniques. When performance suffers from improper model fit, the system can relearn and

retry—a good human learning concept.
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4.9 Complexity

Algorithm performance is an important issue. The computational complexity must be

tractable, especially for the components that must run in real-time or near real-time. We provide

an analysis of the theoretical complexity of the three main algorithmic phases of our approach

and discuss the performance influences associated in each phase.

4.9.1 Initialization/Learning

The Knowledge Discovery and Initial Learningphase (Phase 1) starts with retrieving

observation data from the database, then filtering and formatting it. Ifd items were retrieved,

then the worst case complexity would beO(d). ALZ is then trained and is reported to have

complexity ofO(n
3
2) [62] in the training phase wheren is the number of training events. ED

is then used to discover the episodes in the data. ED reports a complexity as shown in the

polynomial Equation 4.13 for all six phases of the ED algorithm, but with an overall worst case

of O(2m) [75].

O(l)+O(n(logq)m)+O(mq2)+O(m(logm)qn2)+O(q2(logq)l)+O(q) (4.13)

l : number of events in the input sequence

m : maximum length of all of the symbolic patterns

n : number of episodes generated by the event-folding window

q : number of candidates evaluated by the algorithm

Next, thei interesting episodes are filtered and formatted for a worst case complexity ofO(i).

Epi-M is then trained with thei episodes over the inputd for a worst case complexity ofO(id).



152

The HHMM is created from thei discovered episodes with a maximum window size ofw

and maximum number of pattern permutationsp for a worst case complexity ofO(iwp) and

extended to a HPOMDP with complexityO(iwp) for a combined worst-case complexity of

O(iwp). The Phase 1 overall complexity is shown in Equation 4.14 and is mostly affected by

ED followed by ALZ.

O(d)+O(n
3
2)+O(2m)+O(i)+O(id)+O(iwp)⇒O(2m) (4.14)

Actual runtime performance is characterized in Figures 4.21, 4.41, and 4.42 which shows

the runtime costs for Phase 1 on MavPad inhabitant 3 data. This data is representative of

typical real-world environment data and some of the more complex data for the system to

process. Evaluation of seven weeks of filtered data takes nearly 3 days (70 hours 55 minutes

25 seconds) for ED, 8 seconds for ALZ (note that this performance is usually multiplied by

the number of times the data set is repeated to converge to an acceptable training level which

is usually near 5 making the actual training time closer to 40 seconds for complex data), and

6 seconds for Epi-M. The discovered episodes (14) take less than a second to process into a

HPOMDP by ProPHeT. ED is the largest time consuming component.

Figure 4.41. ALZ processing time (MavPad Inhabitant 3 Data).
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Figure 4.42. Epi-M processing time (MavPad Inhabitant 3 Data).

4.9.2 Operational Runtime

In operation, ProPHeT employs two parallel phases. TheAutomation Decision-making

Operationsphase (Phase 2) runsad infinitumuntil the process is stopped. Processing occurs

with each received observation event which is used to first determine the prediction of the next

observation from ALZ with complexityO(n) [62]. Epi-M membership is then calculated with a

worst case complexity ofO(iwph) wherei is the discovered episodes with a maximum window

size of w and maximum number of pattern permutationsp and maximum history lengthh.

Belief state is determined with worst case complexity ofO(mw) wherem is the number of

membership matches. The automation decision is made inO(1) time and the ARBITER checks

require timeO(r + c), wherer is the number of rules in the ARBITER rule base andc is the

conditions per rule. The Phase 2 complexity as shown in Equation 4.15 is mostly affected by

ALZ, Epi-M, and the Belief-state determination.

O(n)+O(iwph)+O(mw)+O(1)+O(r +c)⇒O(n) (4.15)
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TheAdaptation and Continued Learningphase (Phase 3) also runsad infinitumuntil the

process is stopped. This phase is characterized by three concurrent loops. The first receives

and handles feedback which operates with a worst case complexity ofO(a) wherea is the

action history that must be searched to correlate the feedback—the rest of the algorithm runs

in constant time. The second monitors performance to observe and identify shift and reboot

the system based on encode heuristics which run with a constant complexityO(1). The third

loop continually runs ED over the constantly updated stored observations to observe signs of

shift. Due to utilizing ED, this loop runs with a worst case complexity ofO(2m). The Phase 3

overall complexity is shown in Equation 4.16, but is mostly affected by ED.

O(a)+O(1)+O(2m)⇒O(2m) (4.16)

Actual runtime performance for Phase 2 and 3 computation take less than a second to

process each incoming event through all steps on our deployed equipment (Intel 3 Ghz Pen-

tium IV and IBM 2.5 GHz PPC 970) with one exception—ED. Additional ED processing is

performed in the background with runtime performance as shown in Figure 4.21.

Slowdowns in the system occur due to the processing requirements of ED to discover

episodes, but this cost is initially only paid at system startup (which can take several days).

Once ALZ and Epi-M are trained their performance is suitable for real-time operations. Search

engages most of the computational complexity, but the compact representation and use of the

hierarchy reduce search time to accommodate real-time operations.

4.10 Summary

The detailed methodology of the three-phase ProPHeT algorithm is presented in this

chapter with supporting examples and selected test case and case study information. Data

flows from sensor and actuator objects in the intelligent environment into a storage database of
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observation data. In Phase 1,Knowledge Discovery and Initial Learning, ProPHeT selects data

from the observation database and trains a predictor, Active LeZi (ALZ), in order to provide

next-observation predictions in the next phase; sets the Episode Discovery (ED) algorithm in

motion to employ a minimum description length (MDL) data-mining technique to find inter-

esting episodes in the data (those that exhibit either frequent or periodic regularity); trains the

Episode Membership (Epi-M) algorithm to identify episode membership of observed events

for the next phase; creates a Hierarchical Hidden Markov Model (HHMM) user model from

the discovered episodes; and extends this model to a Hierarchical Partially-observable Markov

Decision Process (HPOMDP). In Phase 2,Automation Decision-making Operations, ProPHeT

receives streaming event observation data and develops a belief state of the current observation

in the HPOMDP model based upon the current ALZ prediction, the Epi-M indicated member-

ships across the hierarchy, and the observation history. This belief state is used to look-ahead

in the model following the path of highest utility within a look-ahead horizon to determine if

an automation action should be issued. Issued actions are checked for safety and security, as

well as user preference, by the ARBITER rule engine which executes valid actions and pro-

vides appropriate feedback. In Phase 3,Adaptation and Continued Learning, the ARBITER

and inhabitant feedback is used with temporal-difference learning and expansion algorithms

to update transition utilities and pathways in the HPOMDP in order to converge on a policy

to satisfy the inhabitant’s desires and ARBITER rules which define the system goals. Concur-

rent monitoring of observation data compression and system performance is used to monitor

concept drift and detect concept shift which will lead to a system reboot and relearning of a

new inhabitant model. Complexity of this system is dominated by the ED component, but can

operate in real-time once knowledge is generated. In the next chapter, we will examine case

studies involving the use of this methodology in home and workplace environments with real

and virtual inhabitants.
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EXPERIMENTAL FINDINGS AND DISCUSSION

The true method of knowledge is experiment.

—William Blake,All Religions are One

Through focused experimentation and usage case studies we seek to validate our ap-

proach as established in Chapter 3 with the methodology presented in Chapter 4 of this dis-

sertation. Exploratory test cases shall evaluate each component, illuminate an understanding

of dependencies, and provide insight into the integrated system. Case studies will establish an

applied understanding of system performance. Our goal is to provide an evaluation of our work

that validates our approach and provides an understanding of what we have observed.

5.1 Experimentation

Experimentation for this work occurs in isolated test cases and case studies involving

both real and virtual environments and inhabitants. All experiments have been conducted in

the intelligent environment domain and in either the MavPad (see Appendix C) or MavLab (see

Appendix D) real or virtual environments.

Our studies involving our system architecture and associated algorithms and integrated

approach take a three phase approach. In general, we are in search of exploratory information

on the overall strength of our approach, and where this strength comes from in the different

components, as well as the computational and runtime complexity involved. Strength of ap-

proach is being proven pervasively through this dissertation to be summarized in Chapter 6

and complexity was presented in Section 4.9. Evaluation of isolated test cases was embedded

156
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in the methodology discussions of Chapter 4 so that concepts are more easily understood by

providing contextual evidence of operation. We summarize these findings in Section 5.3. Our

case studies provide some of the best insight into our work as well as our biggest challenges.

We will examine our case study findings in-depth in this chapter.

In our case study experimentation, we discovered that in order for our system to work

we needed to deploy in three distinct phases. The first phase is theobservation phasewhere

we simply observe the inhabitant and their normal activities in the environment—capturing

their interactions over time. This phase lasts as long as necessary to collect sufficient data for

data-mining the inhabitant patterns and varies from inhabitant to inhabitant. In Chapter 4, we

discussed that this phase persists until there is a consistent compression rate of the data and the

number of mined episodes. A good observation phase provides a good inhabitant model. The

more consistent the inhabitant, the shorter the observation phase and the better the model fits

to the inhabitant lifestyle.

The second deployment phase is called the ARBITER rule phaseand involves the es-

tablishment of the ARBITER safety, security, inhabitant, and behavioral rules. In this phase,

some behavioral-driven automation begins—automation that may or may not be learned by

the system at a later time. The ED, ALZ, Epi-M, and ProPHeT components are not activated.

The purpose of this phase is to check ARBITER performance and ensure that the rules engine

is working properly in the environment. Once all issues are resolved and the rules engine is

stable, we can enter phase three. Historically, phase two takes between 2-4 weeks depending

on the inhabitant and their desires.

The third deployment phase is theautomation phase. This involves full system activation

and operation of all components as described in the previous chapters. This phase continues

until a reboot is required in which the system will revert back to phase one. We revert back

to phase one because if a reboot is required the inhabitant model was incorrect and needs to

be rebuilt from new observed data—phase one is where the new inhabitant model observation
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data is collected. After phase three has been initiated, phase two should not have to be entered

unless the ARBITER rules are changed in which case a repeat of phase two would be optional.

Life-long usage should only require moving between phases one and three with occasional

uses of phase two. We have also observed that prior to entering phase one that it is helpful to

allow the inhabitant a week or two of acclimation to the environment and the control interfaces

before beginning phase one; otherwise, the observation phase will capture some of the inhab-

itant learning of the new environment which does not reflect continued normal environmental

interaction—think about when people first move into a new place how they fumble with the

light switches for a while before they find the correct one, after a while they eventually learn

all of the environmental idiosyncrasies and can turn on the right switch despite often strange

wiring and switch positions.

5.1.1 Human Studies

The MavPad has hosted three real inhabitants who have lived in the apartment on a

full-time basis. The first inhabitant helped establish and test the perception capabilities of the

environment providing valuable insight into how to collect data, sensor requirements (type,

number, and placement), and automation control capabilities. They also helped to capture

data which was mined to find the first sets of consistent patterns of life in our intelligent envi-

ronment. The second inhabitant provided the sets of solid patterns from observing their life,

correcting sensor and system shortcomings from our first inhabitant. Good data sets were col-

lected from the observation phase of inhabitant two. They were also the first to participate

in the second phase by providing and living under some ARBITER rules. We have run simu-

lation experiments based on the collected data from inhabitant two. The third inhabitant has

undergone all three deployment phases, and was the first to be involved in full automation and

subsequent adaptation. Currently the observation phase is lasting 2-3 months, the ARBITER

phase 1-2 weeks.
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The MavLab hosts 4 to 20 researchers on any given day, but we have concentrated on

single real and virtual inhabitant studies. This environment serves mostly as our test case

proving ground and experimental focal point for new ideas and equipment, as well as our base

of operations. We experiment with the real/virtual bridge in this environment more than in the

MavPad and thus most of our experimentation involves either hybrid interaction (e.g., virtual

inhabitants mimicking real inhabitants or vice versa) or strictly simulation—sometimes we

have the virtual inhabitants affect real objects turning them on and off throughout the lab. The

real inhabitant in the MavLab is the author.

All human studies in this dissertation were conducted following approved protocols from

The University of Texas at Arlington Office of Research.

5.1.2 Simulation

Virtual inhabitants augment the human studies and are used to isolate specific events,

change the speed of events departing from real time to scaled faster or slower time, and under-

stand the human trial data. Simulation will be used to first perform isolated test cases before

they are explored in actual environments. Simulation will also be used to perform a longer

term case study based on patterns observed in the real environments. The Markov model ba-

sis for the virtual inhabitants can also be used to validate the learned patterns. For all of our

virtual simulations we utilize the ResiSim residential simulation engine which is described in

Appendix E.

5.2 Evaluation

MavHome systems have the goal of maximizing the comfort of the inhabitants and main-

taining safety and security. We have established metrics to measure the accomplishment of

these goals. Inhabitant comfort is measured by the number of inhabitant interactions performed

with devices that can be automated. The system should continually strive to reduce the number
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of inhabitant initiated interactions. Safety and security are measured by the number of safety

interventions from the policy engine, or in other words, the number of rule violations. The

system should minimize the number of policy engine interventions (i.e., rule violations should

decrease over time). Where applicable we also provide a comparison to other systems in our

testing and evaluation.

5.3 Isolated Test Case Summary

The isolated test cases presented in the last chapter help in analyzing the viability and

character of our approach. Most of these tests used the MavHome Steve scenarios presented

at the beginning of Chapter 4. The Episode Discovery learning rate was explored in Section

4.3.2, illustrated in Figures 4.15, 4.16, 4.19, and 4.20, and revealed that over time the number

of discovered episodes will plateau with compression rate as the existing patterns in data are

discovered. We have observed that this is tied to the consistency of the inhabitant and subse-

quent observation data as to the number of events before reaching a somewhat steady state. The

more consistent the inhabitant the quicker to convergence and usually the higher the number of

discovered episodes. However, in all examined cases, both real and virtual, we have observed

ED to eventually find the frequent and periodic patterns in the data. In virtual trials where the

number of embedded patterns is known, ED has found 100% of the patterns as illustrated in

Section 4.4.2. ED finds patterns that exhibit frequency and/or periodicity and is not limited

in the number of patterns it can find. In all cases ED finds patterns in the observation data

that do not contain automatable events or patterns of interest to an automation system and they

must be filtered to avoid adding unnecessary patterns to the inhabitant model. This filtering

is performed with knowledge of the automatable objects in the environment and removes any

patterns that do not contain any of those objects.
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Automated HHMM construction was presented in Section 4.4.1 which described the

process in detail and provided examples of generated HHMMs in Figures 4.29, 4.31, 4.33, 4.34,

and 5.8. This description also provided a walkthrough of a generated HHMM from MavHome

Steve scenario data as well as providing an example from our case studies. The ED-ProPHeT

combination of mining and model construction has been effective at automatically generating

HHMMs from observation data in our experimentation.

Virtual inhabitant Markov model learning evaluation in Section 4.4.2 discussed how the

MavHome Steve Markov model was learned through observation, data-mining, and HHMM

generation using ED-ProPHeT. It was noted that the internal model and the learned model

were nearly identical (with minor exceptions due to the stochastic nature of the model and

some extra edges discovered that directly related to how the model was actually executed by

our simulator), thus showing that our system can learn correct models of inhabitant behavior

and that they can be captured in the HHMM structure.

Adaptation learning was combined with rule learning in a MavHome Steve example in

Section 4.7.1 that showed the system learning a rule initiated by ARBITER and not part of the

originally learned model. As shown in Figure 4.38 our system was able to adapt and learn

this rule. Another example in that section on adaptation learning from inhabitant feedback as

shown in Figure 4.39 further illustrates our system’s adaptive learning capabilities. Concerning

the addition of behavioral rule patterns from ARBITER we have noticed that these actions are

largely ignored by the system since they do not usually correspond to a local action pattern

and are therefore discarded as feedback. However, we have observed that behavioral ARBITER

actions appear in the learned episodes when ARBITER is allowed to run during the observa-

tion phase. On subsequent system reboots, behavioral ARBITER episodes may be learned and

incorporated into the desired inhabitant model.

The issue of reboot due to changes in concept shift and drift is covered in Section 4.8.1.

Concept drift is compensated by our adaptive learning mechanisms using temporal-difference



162

learning. Concept shift presents a significant problem to our model, such that it may render it

useless as system performance degrades rapidly. Examination on the tracking and discovery of

shift and drift is presented in Figure 4.40. With an understanding of how to identify concept

shift or under cases of poor system performance, we can initiate a reboot of the system rolling

back to an observation phase in order to learn a better model of the inhabitant—hopefully

one with a better fit and higher performance. A smoother transition may be preferred, but

since the model is generated from observation data an incorrect model can only be currently

replaced by learning a new one. During the learning of the new inhabitant model, systems

should not interfere with the inhabitant in order to prevent model contamination. Exploration

for alternatives to provide a smoother transition from phase three to phase one is left to future

work.

The positive results of these test cases illustrate how our system can learn interesting

patterns of activity through Episode Discovery, automatically create a HHMM that closely

relates to the inhabitant, can adapt to changes in the desired environmental interaction through

inhabitant and rule engine feedback, and identify and adapt the system for concept shift and

drift in order to participate in life-long learning.

5.4 Case Studies

A great amount of effort has been expended in reaching the current state of the ideas,

theories, and infrastructure components for this work. In our case studies we have had the

chance to test our hypothesis in real and simulated environments. These case studies center

around three real inhabitants that participated in lengthy studies in the MavPad and the author

combined with our virtual inhabitant, MavHome Steve, in the MavLab.
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5.4.1 MavPad Inhabitant 1

Our work began with a number of ideas based upon the notion that humans are creatures

of habit, that they would generate consistent patterns of activity if observed in an environment,

and these patterns could be sensed and recorded. We also hypothesized that these patterns

could be mined from the observed data.

Work on the MavPad began in November 2003, and our first inhabitant took occupancy

in January 2004. Fortunately, our first inhabitant was also one of the main designers of our

Argus sensor network which was wrapping up development at that time. By February 2004, we

had installed a full Argus network complete with an overhead, down-looking passive infra-red

motion sensor array, temperature, light, humidity, and reed sensors, and mini-blind controllers.

We also hosted a complete X-10 deployment which controls lights and fans as well as the

HVAC unit. Additionally, we installed HVAC outlet dampers and a water leak detection unit

around area with water (e.g., under sinks, by toilet, and so forth). Four computers were installed

to interface with the sensors and controls, provide computational capacity, and storage capacity

for logging data.

In March 2004 we began the process of collecting data from the sensors, but ran into

issues with stability in hardware and software. Work continued through April to improve the

system through software and hardware changes and testing. In late April 2004, we were able to

start reliable data collection and proceeded to collect observation data from our first inhabitant.

In May 2004, the first set of data from the MavPad processed by Episode Discovery revealed

that inhabitant activity patterns could be mined from the observation data—a technique that we

had only previously believed worked because it worked on synthetically-generated inhabitant

data. However, real data appears to be quite different from the synthetically generated data we

created at that time (you could almost humanly read the patterns from that data, but not from

real data). That first set of discovered episodes revealed motion patterns between the rooms

of the apartment, the turning on of the entry light when the inhabitant entered the apartment,
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the turning on of the closet light when in the closet, and a half-dozen other motion-light in-

teractions. The important discovery was the characterization of inhabitant activity related to

movement, place, and object interaction that could be observed and when it exhibited a level of

periodic or frequent occurrence in the data set, it could be discovered as an interesting episode

through a data-mining technique. From these initial discovered episodes, the idea of incorpo-

ration into a Markov-based framework took root which eventually led to the use of HHMMs.

Initial experimentation with reactive controlled automation based on observation rules

began at this point which eventually led to our work on ARBITER. It became obvious at this

point that a phased implementation of any developed system would be necessary and also that

there would always be automations that probably could not be demonstrated, so that any system

that essentially learned by observation would not be able to learn those desired behaviors. This

solidified our position on needing a component such as ARBITER which would be able to

augment our observation-taught system.

Since our first inhabitant was graduating, his time to move on ended this case study. At

the end, we had achieved a complete environment with sensors and controls, had the computing

and logging infrastructure to support our work, gained a better understanding of the character

of the data in this type of environment, and validated our ideas that a data-mining technique

could discover inhabitant activity episodes in real data.

5.4.2 MavPad Inhabitant 2

In June 2004, our next inhabitant arrived. Our second inhabitant would only be a summer

participant. After a short acclimation phase (something we learned would be important at the

time), we began collecting observation data. Not soon after we started on our second case

study, we discovered more stability issues (or instability issues really) with our X-10 sensing

and control systems, logging processes (the process kept stopping), and minor issues with the

ArgusMS network. Additional engineering effort corrected most of these or made them stable
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enough to continue. In July 2004, we were able to collect 16 days of data which was reduced

to 10 due to minor sensor network dropout problems and days where the inhabitant was away.

During this time in 2004, our systems were still under development in our lab and were

not in deployable condition. From the inhabitant 2 data collected, we evaluated a typical day

in the inhabitant’s life with the goal of reducing the inhabitant’s interactions with the lighting

in the MavPad. The data was restricted to just motion and lighting interactions which account

for an average of 10,310 events per day. The number of events posed a problem for timely

processing by ED, so instead of just using all of the data we made a decision to filter out

periods of motion data where no lighting interaction existed. This reduced the data down to

approximately 420 events/day. Filtering has now become an important part of the process

in order to make the data computationally tractable by ED. There are on average 18 lighting

device interactions a day in this filtered data with the remainder being motion information.

Using our ResiSim tool which exactly replicates the real MavPad, we trained ALZ and ED on

real data and then repeated that typical MavPad inhabitant day in the simulator to determine if

the system could automate the lights throughout the day in real-time.

Figure 5.1. ALZ training convergence for inhabitant 2 data.
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ALZ processed the entire unfiltered data set and converged to 99.99% accuracy on test

data from the data set that was repeated five times for consistency with the ED training set

and then repeated to convergence as shown in Figure 5.1. When the system was run with

automation decisions being made by ALZ alone, it was able to reduce interactions by one

event as shown in Figure 5.5. ALZ performance on streaming data maintained between 40-

60% accuracy as shown in Figure 5.2. Performance on streaming data is significantly lower

than on training data because the state space is very large and the examples in the observation

data that are used to train ALZ initially are only a small fraction of the possible combinations of

events. Coupled with some noise and a stochastic inhabitant, performance on streaming data

is adversely affected. However, given the difficulty of predicting possible next events, ALZ

performs well.determination.

Figure 5.2. ALZ accuracy for inhabitant 2 trial.

ED processed the data and found 10 interesting episodes that correspond to automatable

actions as shown in Figure 5.3—three episodes were filtered and the data set was repeated five

times in order to enhance frequency for Episode Discovery. It was found that repeating the

data five times was the minimum necessary to allow ED to discover the episodes. From this
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experiment we learned to filter episodes that did not contain any automatable actions and to

ensure that there is sufficient data in the observation period to discover interesting episodes

without having to artificially increase frequency.

Figure 5.3. Interesting Episode Discovery over time.

The discovered episodes were abstracted through ED to three abstract nodes. A HHMM

was constructed in ProPHeT. Figure 5.4 shows this model without the production nodes (it is

difficult to show the full models because even the simple models when printed take over seven

feet of paper in order to be legible). This system was able to reduce interactions by 72.2% to

five interactions. As a comparison, the HHMM produced was flattened and the abstract nodes

removed to produce a flat HMM. This HMM was still able to reduce interactions by 33.3% to

12. Comparative results are shown in Figure 5.5.

We also expanded the experiment beyond the automation of just a single day of real in-

habitant data to a full ten days under the same conditions. ED was used to process the data and

found 12 interesting episodes after filtering. ALZ was retrained and used with similar results.

Performance dropped to a 54.9% reduction (83 automations out of 184) for ProPHeT, 26.6%
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Figure 5.4. Learned HHMM from MavPad inhabitant 2 data.

Figure 5.5. MavPad Inhabitant 2 interaction reduction (1 day trial).

(49/184) for a flat HMM, and 10.9% (20/184) for ALZ as shown in Figure 5.6. Missed au-

tomations by ProPHeT were due to insufficient belief state for automation due to some pattern

performance inconsistencies and two patterns that began with an automatable action. Pattern

inconsistencies, as well as inhabitant activity patterns that were not discovered originally be-

cause they lacked sufficient frequency or periodicity, are a feature of the real data .

The improvement in performance from the hierarchical model over the flat comes from

the enhanced contextual clarity of the hierarchical model which allows replication of nodes
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Figure 5.6. MavPad Inhabitant 2 interaction reduction (10 day trial).

that produce the same observation (and if automatable, the same related action) in the HHMM,

where each node represents a unique context of inhabitant activity. In the flat HMM, there is

only a single node representation for each observation regardless of the context. In a flat HMM,

we must rely solely on the probabilistic framework for action transitions taking the route of the

most likely next action-observation. In our experimentation, we do apply the same governing

lookahead restrictions to the flat HMM as with the HPOMDP in order to provide similar limita-

tions and control without completely following the probabilistic pathways to completion—this

is required since our systems are not the primary controller of the environment. Using a hi-

erarchy, we can partition the state space so that context information is encoded in the abstract

levels. Using belief state determinations, we can move around the model more freely instead

of being locked into the probabilistic transitions. This also aids in temporal handling, since

our system can simply wait for observations as they occur without being forced down a prob-

abilistic path too early—we govern the traversals by limiting the lookahead range from the

current belief state. As described in Chapter 4, this staccato approach works well in an event-

based environment where a system is not the primary controller of the environment, but rather

a selective assistant.
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The experimentation and analysis presented here is mostly hybrid in nature using real

data from the MavPad and integrating it with ResiSim to perform automation in simulation.

It was mostly conducted in October and November 2004 after the second inhabitant had left.

This was important work in being able to process the data and perform initial automations in

simulation. It also validated our hypothesis that using a HPOMDP with lookahead would be

able to produce automation decisions. Due to our close connection between the real and virtual

worlds, only a slight configuration change is needed to automate the real environment. After

the data observation phase, we did perform some additional experimentation with our second

inhabitant.

Inhabitant 2 was the first not only to provide a data set that we used for automation, but

also field tested the first version of an ARBITER engine. Seven behavioral automation rules

were deployed that included turning on the entry light when opening the front door from the

outside, turning on the bathroom light upon bathroom entry, and other similar patterns. It was

during this time that we discovered that initial programming of the behavioral rules did not

always yield the desired results and needed to be tuned. This discovery led us to establish the

deployment phase two strategy of an ARBITER rule break-in period. We were also considering

ways to incorporate safety and security concerns both from a system and a user standpoint

into the system. Our work with ARBITER made this an obvious choice for implementation

of these concerns as rules where they could also be easily configured and exist even if the

decision-making systems were offline.

At the conclusion of our inhabitant 2 trials, we had learned that our system could mine

the observation data for interesting episodes and abstract episodes, these could be converted to

a HHMM, and using ALZ prediction and episode membership (from ED during these trials)

a belief state could be generated and automation actions issued that reduced inhabitant inter-

actions. We also advanced our work in developing ARBITER, and the MavPad environment

became more stable.
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5.4.3 MavPad Inhabitant 3

Moving into the MavPad during late August 2004, our third inhabitant has currently

lived in the apartment for ten months undergoing various levels of observation and automation.

During the course of this time we have worked closely with the inhabitant to develop good AR-

BITER rules from a safety and security standpoint, user preference, and some general desired

behavioral automations not captured by Episode Discovery. In comparison to our first two in-

habitants, inhabitant 3 is a very busy person with an erratic schedule that made experimentation

very interesting.

We allowed inhabitant 3 some time to acclimate to life in the MavPad and began their

observation period in mid-September 2004. We observed the inhabitant through the holiday

season until the end of January 2005. We used this extended observation period to collect a

good set of data. During this period we also upgraded our Argus sensor network software and

completed conversion of all temporary systems over to the architecture described in Chapter 3.

Deployment phase two began with the start of February 2005. Inhabitant 3 specified

an initial set of 8 rules that grew to 13 and over the course of two months of tweaking ended

up at seven behavioral ARBITER rules. During the ARBITER break-in phase, some of the

operating systems that had been in operation for nearly a year started posing problems with the

new programs we had developed. A system-wide operating system upgrade and a number of

stability improvements had to be made. Firmware updates, improved drivers, and the addition

of many fault-tolerant algorithms to our system greatly improved system responsiveness (e.g.,

the new X-10 interface driver improved response times by 100%) and stability.

We mention these engineering issues to capture our experience during our work and to

provide information to those interested or currently involved in this kind of research. In applied

science, there is usually a significant amount of time dedicated to strictly engineering issues—

our work has not been an exception. In a 24-7 real-time system, stability is very important.

We have effectively deployed a system with a high availability requirement using free software
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(e.g., Linux and open source projects), but have often had to deal with the shortcomings of

what our systems can actually support. For those embarking on this type of research the caveat

here is that there is a significant amount of engineering work behind our systems and software

to keep them in constant operation. However, we have experienced hardware and software fail-

ures, data dropouts, and anomalies at times—especially during the Texas storm season where

our local power companies often find it challenging to maintain residential power service.

Figure 5.7. Inhabitant 3 interesting episode discovery over time.

Figure 5.8. HHMM derived from inhabitant 3 data.
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After completing the deployment phase two and starting in late-April 2005, a three week

full automation experiment was conducted in the MavPad with inhabitant 3. Seven weeks of

data from our observation period was used to train ED which in the raw form consisted of

4,371,179 events (approximately 89,000 events/day, approximately 6,800 events/day exclud-

ing temperature, light, and humidity sensors) with 2,163 automatable events and was reduced

to 21,863 events (approximately 446 events/day) with 1952 automatable events by filtering un-

necessary and noisy data—our filters key on the automation areas and filter out large spans of

data where no automations occur, we also filter some duplicate data and data inconsistencies.

We learned to filter from our inhabitant 2 case study and have become adept at filtering out

unnecessary information.There are on average 40 device interactions a day in this data which

include lights, fans, and mini-blinds (tri-state) with the remainder being motion information.

ED processed the data for over 96 hours to find 14 production node-filled abstract episodes

and three hierarchical abstractions of those resulting in a three-tier HHMM. The model was

extended to a HPOMDP, and ARBITER was loaded with two safety and security rules, one in-

habitant preference rule, and seven general behavioral automation rules. ALZ and Epi-M were

trained—ALZ trained to within 99% as previously observed (the curve is nearly identical to

that in Figure 5.1). ALZ performed with between 16% and 67% accuracy over the 4,371,179

events with results similar to those shown before. The performance difference in training and

streaming data by ALZ is due to some initial overfit in ALZ and the limited training data

compared to possible patterns of streaming activity.

The full system was allowed to automate the environment and was able to automate

39.98% (345/863) of the inhabitant’s life as shown in Figure 5.9. Note that over the course of

the 21 day case study that nearly two million raw events occurred (1,842,336 events to be exact)

with 143,543 events occurring excluding temperature, light, and humidity sensors with many

spans of motion activity that involved no automation events. The unnecessary sensors and

spans of motion activity were filtered to accentuate the data and provide a better understanding
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Figure 5.9. MavPad inhabitant 3 interaction reduction.

of the performance difference. Figure 5.9 shows a reduction in the number of interactions that

the inhabitant would have performed.

The system learned the two programmed ARBITER safety and security rules and the

inhabitant preference rule within six violations with ARBITER feedback. Those rules were all

based on preventing specific lights from being automated. The system learned two of the seven

general automation rules because they were modifications of existing episodes, but the others

were not learned because they did not correspond to existing episodes. With regularity those

rules should be found by ED and eventually added to the system on a reboot—we did observe

one of the seven show up as a frequent episode in the continuous ED checks for shift and drift.

Figure 5.10 shows the reduction of rule firing during the study. Note that in that figure the

rule violation curve slope decreases over time as the system learns rules and the number of

violations decreases over time. At the beginning of the study a consistent average of five rules

per day were fired for what would have been a total of 112 over the experiment, but due to the

reduction in violations from the learned rules only 81 actually fired yielding a 27.7% reduction

in rule violations.
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Figure 5.10. MavPad inhabitant 3 rule violation reduction.

This study brought forth some interesting observations. Inhabitant patterns for turning

off household items (particularly lights) are much more consistent than turning them on. Object

off patterns make up approximately 60% of the episodes and are also more easily learned by

the system—all of the adaptations involved turning objects off. Inhabitants are slow to correct

the system, and are willing to accept incorrect actions. There is a definite need to work more

in a partnership with the inhabitant to meet system goals.

With inhabitant 3, we noticed a new phenomenon in the course of our experimentation—

the system did more training of the inhabitant than the inhabitant did to the system. There

seemed to be a reluctance to give prompt feedback on the inhabitant end. On interview, the

inhabitant said that they were learning to “live in the dark” because it was too bothersome to

correct the system. This is probably human nature. We also observed a few fights between the

system and the inhabitant over control that ultimately were won by the inhabitant by changing

the ARBITER rule causing the problem, but for a short duration the system caused some duress

to the inhabitant—not a desired effect.

At the conclusion of our inhabitant 3 trials, in addition to what we had learned in the

inhabitant 2 trials we had learned that our system could automate the MavPad environment in
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accordance with the desires of the inhabitant and adapt to feedback to learn rules. Inhabitant

feedback was insufficient to change system behavior mostly due to timeliness, consistency, and

interference from ARBITER rules (which were the automations mostly fought by the inhabitant

but are governed by a different set of rules—namely they are set by the inhabitant themselves)

which indicates a need for an improved mechanism for communication between the inhabitant

and the system. In general, our system works as designed and can successfully automate a

single inhabitant intelligent environment as shown by the 40% reduction of inhabitant initiated

actions due to system automations.

Future inhabitant studies involve improvements in our ability to log information across

all components and to provide a better means of communication with the inhabitant. The ability

for the inhabitant to provide system feedback needs to be improved through better means of

human-computer interaction so that addition learning can take place and system response can

be better evaluated. We need to utilize more of the sensed information and expand control

over the HVAC system and other controllable objects in the environment. In general, future

inhabitant studies need to help provide a better understanding of how people live and ways in

which automation can improve their experience in an intelligent environment.

5.4.4 MavLab Mixed Inhabitant

In order to evaluate our approach in an environment other than a home, we have evaluated

a simulated typical week (seven days) in an inhabitant’s life with the goal of reducing the

inhabitant’s interactions in the MavLab, a workplace. Our goal is to show a generalization of

our work across multiple environments—at least, home and workplaces for this dissertation.

The data was generated from a ResiSim virtual inhabitant using captured data from a real

inhabitant (i.e., the author) in the MavLab that was encoded into a virtual inhabitant model.

The patterns consist of daily activity patterns involving moving around the lab and interacting

with light similar to the MavHome Steve patterns in Chapter 4. Noise was injected between
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patterns, but not during the course of pattern activity. The activities were restricted to just

motion and lighting interactions which account for an average of 1400 events per day (filtered

to 250/day). There are on average 25 lighting device interactions a day with the remainder

being motion information. Using our ResiSim tool which exactly replicates the real MavLab,

we trained ALZ and ED on the simulation generated data and then repeated a typical week

in the simulator to determine if the system could automate the lights throughout the day in

real-time. A simulated five week observation period provides the training data set.

Figure 5.11. ALZ Accuracy for MavLab inhabitant.

ALZ processed the data and converged to 99.99% accuracy during training on test data

from the data set in 10 iterations. When the system was run with automation decisions being

made by ALZ alone, it was able to reduce interactions by 9.7% as shown in Figure 5.13. ALZ

performance on streaming data maintained between 24–56% accuracy converging to around

54% as illustrated in Figure 5.11. ALZ showed consistent performance as with previous stud-

ies.

ED processed the data and found 10 interesting episodes, which filter to 8 that correspond

to automatable actions (which are similar to those of MavHome Steve presented in Chapter 4).
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This was abstracted through ED to two abstract nodes. A four-tier HPOMDP was constructed

in ProPHeT and is shown in Figure 5.12. This system was able to reduce interactions by

76%. As a comparison, the HHMM produced was flattened and the abstract nodes removed to

produce a flat HMM. This HMM was still able to reduce interactions by 38.3%. Comparative

results are shown in Figure 5.13.

Figure 5.12. MavLab virtual inhabitant HHMM (production nodes omitted).

Figure 5.13. MavLab virtual inhabitant interaction reduction.
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The additional abstractions in the hierarchy coupled with a next state produced by ALZ

and a probability of membership from Epi-M provide input to the belief state to create a sys-

tem that improves automation performance over a flat model or prediction alone. This simula-

tion provided very clean data with consistent patterns which made for good episode discovery

results. Some of the patterns started with automatable events which make them almost im-

possible to automate because when ProPHeT believes that the episode is being observed, the

automatable event opportunity has already passed. This experiment represents some of the best

performance of this technique, but it does not include any ARBITER rules—only automation

through the learned model.

This MavLab study verifies the work previously discovered in the MavLab studies. What

is needed is a more in-depth case that incorporates the full system in a longer term experiment.

5.4.5 Long-term Virtual Inhabitant

There have been a number of our system design features that have not been exercised

by our case studies. In particular inhabitant-based feedback and shift detection followed by

a reboot has not been explored or tested. In order to provide a more comprehensive analysis

of our approach, we have established an extension of the reality-based MavLab virtual inhab-

itant experiment described in the last section. This study will involve a term of 1 year (52

weeks, 364 days) with approximately 250 events/day after filtering (1400 events/day before),

1 safety rule preventing the operation of an object (a countermand eliciting an action deletion),

1 behavioral pattern rule that initiates an additional object activation when a target object is

activated (eliciting an insertion), 1 feedback change initiated by the virtual inhabitant reversing

the activation of an object (a user initiated countermand), and a complete model switch at the

6 month point that includes an episode with the event that triggers the behavioral pattern rule,

but otherwise contains a completely different set of inhabitant activities. Deployment phases
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will transition from one to three with no break-in period for the ARBITER rules (the advantage

of a virtual inhabitant—they cannot complain).

The study was initiated by loading the virtual inhabitant model in ResiSim and com-

mencing deployment phase one in simulation to generate observation data. The data was re-

stricted to motion, lighting, switches, reed sensors, and mini-blind control interactions which

account for an average of 1400 events per day (filtered to 250/day)—we expanded the sensors,

but maintained the same parameters as our previous experiment. These are the same patterns

as used in the last MavLab case study with the exception of two patterns being replaced, one

with a sensed couch interaction and another with a mini-blind interaction. Again, noise was

injected between patterns, but not during pattern activity. This helps to separate periods of

activity by the virtual inhabitant, but also more accurately reflects the data stream of real en-

vironments providing a more accurate simulation. If we do not inject noise, the time window

in ED will usually prevent grouping the activity patterns into single episodes, but patterns that

frequently occur consecutively will usually be discovered as a new combined episode by ED.

Two different sets of activity patterns were generated for two complete models. The first in-

habitant model contains eight activities and the second seven. There are on average 25 device

interactions a day with the remainder being motion/switch information. We trained ALZ and

ED on the simulation generated data from a simulated five week observation period (49,084

events) and then established a year-long simulation (509,623 events total).

The first inhabitant model was used at the beginning of the study. At the six-month point,

we switched to the second inhabitant model after event 254,800. A four percent threshold

over a one week period was set as the performance indicator for initiating a system reboot.

Figures 5.14, 5.15, 5.17, and 5.18 reflect the impact of the reboot. Figure 5.14 shows the

4.5% reduction in performance over a one week period that triggered the reboot. Due to the

runtime requirements in comparison with the simulation speed (we ran this experiment over

six hours), ED was not continuously executed in the background to check for compression
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changes. We did test data over a two week window before, during, and after the model change

and discovered consistent compression values of 1.25± 0.03. Upon the initiation of reboot,

the system returned to the observation phase for an additional five weeks, but incorporated the

week of poor performance for a total of six weeks (58,807 events).

Figure 5.14. MavLab virtual inhabitant automation performance.

ALZ processed the data and converged to 99.99% accuracy during training on test data

from the data set during both automation phases. ALZ performance on streaming data main-

tained between 18–59% accuracy converging to 59.0% in the first automation phase and be-

tween 22–59.5% accuracy converging to 59.5% in the second automation phase as illustrated

in Figure 5.15. ALZ showed consistent performance as with previous studies.

ED processed the initial observation data set and found 10 interesting episodes, which

filtered to 8 that correspond to automatable actions as with the previous experiment. This

was abstracted through ED to two abstract nodes. A four-tier HPOMDP was constructed in

ProPHeT and is shown in Figure 5.12. After the reboot, ED processed the second observation

data set and discovered 11 interesting episodes, which filtered down to 7. ED discovered three

abstractions in those episodes for a ProPHeT-generated four-tier HPOMDP as shown in Figure

5.16.
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Figure 5.15. ALZ accuracy during long-term experimentation.

Figure 5.16. MavLab virtual inhabitant HHMM after reboot (production nodes omitted).

This system was initially able to reduce interactions by 69.9%—less than in the first

case due to the safety rule, behavioral pattern rule, and programmed feedback preventing some

automation as well as variance in the stochastic simulation process. After reboot, the sys-

tem was able to reduce interactions by 64.2% exhibiting some trouble with two patterns that

contained automations early in their pattern sequence—a consistent problem in episode dis-

covery and the nature of many interactive patterns. Clean data and inhabitant consistency aid

in the high automation rate. Figure 5.17 shows the effect of automations in reducing inhabitant

interaction—the period of automation failure before the reboot can be clearly seen as a marked

increase in the number of inhabitant interactions. There are no interactions between phase three
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trials since ProPHeT was quiescent during the phase one observation period in order to gather

data to construct a new model.

Figure 5.17. MavLab virtual inhabitant interaction reduction during long-term experimenta-
tion.

The ARBITER safety rule which was established to prevent turning on one of the lights in

one of the discovered episodes was quickly learned in six firings by model adaptation through

temporal-difference learning. The behavioral pattern rule which initiated the turning on of a

room light after a light located in the same room was turned on was also learned in six firings.

We also left this rule on during the second observation phase in order to force a rule-initiated

pattern every time the virtual inhabitant initiated the action (the pattern involving the light

was the only duplicate pattern in the two inhabitant models). In the second learned inhabitant

model, the rule-initiated light was indeed discovered every time with its associated trigger light

and was automatically incorporated in the model preventing the firing of ARBITER rules during

the second automation phase.

It is important to note that a race condition was discovered between the new automation

pattern and the ARBITER rule which initially masked the fact that the system had learned the

pattern. ARBITER was modified to allow two seconds to pass between a trigger condition being
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met and an action check of the incoming action request stream before firing the action directly

from ARBITER. This allows ProPHeT a chance to automate and does not pose a major change

in ARBITER operations.

The virtual inhabitant in this study was programmed to provide feedback for a pattern

where a light was turned on that the inhabitant did not desire to be turned on—despite the fact

that they had turned it on consistently in the observation phase. A variable amount of time

between the countermanded action was programmed into the virtual inhabitant, but always

within the 60 second window of negative reinforcement opportunity. This is an area where we

have had trouble with real inhabitants correcting the system. Upon automation phase initiation,

within the first eight automations involving that light, the virtual inhabitant had trained the

system to stop those automations through inhabitant-initiated negative feedback.

Figure 5.18. MavLab virtual inhabitant rule violations during long-term experimentation.

This study illustrated a typical inhabitant cycle over a period of a year where a sys-

tem reboot was incurred. Minor adaptation of the learned inhabitant models was conducted.

The system performed within operating parameters initiating the reboot when the set condi-

tions were met, adapting to concept changes, and maintaining a high level of system operation

through normal operation. Maintaining the ARBITER component in operation during the ob-
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servation phase after the reboot injected a sufficient pattern in the data stream to be discovered

in the data-mining activity and become incorporated in the new set of activity episodes in the

learned inhabitant model. Maintaining ARBITER active during the second observation phase

maintained a level of security, safety, and user desires in the system even when the primary

mechanism for learning and decision-making was inactive. This provides an interesting ob-

servation, important and consistent rules could be learned and added to the ARBITER rules

making it a much quicker and stable mechanism for automation while leaving the more tran-

sient automation and life-long learning to ProPHeT—something left to explore in future work.

5.5 Component Dependence

Our approach to developing a decision-making system for the intelligent environment in-

volves an integrated system with many components. It is often difficult to understand the con-

tribution of each component in such systems. In this section we will discuss our observations,

present known facts, and perform some limited experimentation to improve the understanding

of the component relationships and their dependence on each other.

5.5.1 Core Component Relationship Requirements

There are five main components in our system: ProPHeT, ED, ALZ, Epi-M, and AR-

BITER. During the initial learning phase ED relies on ProPHeT to provide the data set upon

which to perform data-mining and the setting of the widow capacity and time span. ProPHeT

takes episode output information from ED and spawns additional instances of ED to sequen-

tially mine the output of each ED instance in order to gain episode data. ED relies on ProPHeT

for control (since it is really just a tool). ProPHeT relies on the episodes discovered by ED

in order to produce an HPOMDP inhabitant model. ED finds all sorts of periodic and fre-

quent episodes in the data. The more regular patterns that actually exist in the data, the more

episodes found. Conversely, erratic data may produce few to no episodes. ProPHeT must filter
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ED episodes for those in which it has an interest—those with automatable actions. ProPHeT

cannot create an inhabitant model without ED.

ED discovered episodes may begin with an automatable action which is difficult for our

system to automate. This is because the belief that the system is in that state may not occur

until farther past the automatable action, and certainly too late to automate it. ED could use

automatable action information to find some regularity in patterns before those events to pro-

vide better episodes that do not begin with automatable actions. In simulation evaluation with

very regular inhabitants, ED-based models can automate in the 70th percentile, but this num-

ber drops significantly to the 40th percentile for real inhabitants which exhibit less regularity.

ED may be missing many episodes in more complex environments. In general, ED takes a

very long time to process data. It needs a speed improvement. ED may be too intensive as a

data-miner and other techniques may be able to provide the same information.

In the operation phase, ProPHeT relies on Epi-M and ALZ to provide information used

to determine belief state. Epi-M and ALZ only rely on ProPHeT to provide training data

and current observation data to provide their respective information to ProPHeT. Belief state

determination is heavily influenced by Epi-M and ALZ and is discussed in more detail in

Section 5.5.2.

All ProPHeT actions go through ARBITER to ensure no safety and security or user pref-

erence rules are violated. Without ARBITER, ProPHeT may perform potentially unsafe actions.

Removing ARBITER is possible, but would leave the environment potentially unprotected from

detrimental decisions by ProPHeT. Environments that do not have rule barriers could employ

a system without ARBITER; however, ARBITER also monitors user feedback. If there were

no system desires to adapt the learned inhabitant model or be bound by rules, ARBITER could

be removed as a component. ARBITER could also be improved over the current version by

being able to handle temporal-based rules, improvements in multi-modal inhabitant feedback

for actions, and methods to better incorporate user-tuning of rules.
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In the adaptation phase, the feedback to ProPHeT from ARBITER is crucial for model

modification through temporal difference learning. ProPHeT must have a feedback provider in-

order to learn. The ED-ProPHeT relationship also returns in this phase as ProPHeT instantiates

instances of ED to explore data compression values in-order to detect concept shift and drift.

ED could be replaced with a component that may be able to better identify concept shift.

5.5.2 Belief State Component Analysis

Belief state is determined using observation historyε, the current observationo, ALZ

predictionχ, and Epi-M membership probabilitiesΞ. Episode membership probabilities are

very important in determining which abstract episode the system believes it is currently ob-

serving and is tied to our HPOMDP representation. The system will not work without episode

membership probabilities. The current observation anchors our current belief and coupled with

history are the only absolutes we know at any given moment. History is used to support how

we have arrived at our current observation, and it is also used to differentiate permutation

branches in the Markov chain. For permutation branch direction determination history is in-

valuable; however, for episodes without multiple pathways through the Markov chain, it is not

necessary. ALZ prediction is used to support current belief by projecting the next most-likely

event to occur, but its usefulness could be evaluated.

In the course of belief state determination there are three areas of influence. The first

influence comes from Epi-M and the narrowing down of belief to a certain set of abstract

nodes with production nodes. At the beginning progression of a Markov chain comprised of

production nodes, a sufficient amount of episode membership has to exist before the belief can

be sufficiently strengthened by history, the current observation, and the next state prediction.

Once a sufficient level of episode membership in a Markov chain is achieved, the next dominant

terms are the current observation and the next state prediction because the history length is still

small. As the observation events increase history increases, and it becomes the dominant factor
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in belief state near the latter part of the Markov chains. Belief state is first guided by episode

membership to the production Markov chain at the beginning, the current observation and next

state prediction as the observations continue to support the chain near the middle, and then is

largely influenced by history near the end.

In order to evaluate the contribution of ALZ next state prediction on belief state we pro-

vide the following virtual inhabitant study. We established a short virtual inhabitant study using

ResiSim and the MavLab model involving a virtual inhabitant with five patterns. Two patterns

that would yield a single pattern with a permutation, two similar patterns, and another regular

pattern. All patterns were hand-generated with a length of 10 events and a single automatable

event near the sixth position in the chain. An attempt to make the permutation pattern branch

to separate automatable actions failed, because ED would identify them as separate patterns.

An interesting observation during this experiment was that ED would only generate permuta-

tions from cycles or reductions in the event chain and prefer to uniquely identify separate paths

involving a single unique event. This is a desirable feature, because complex permutations

could lead to automation decisions that conflict given the observed belief—ED prevented our

engineered attempt by discovering them as two patterns. We used those two patterns as the

similar patterns, and then generated one with a simple cycle over two events. This set of four

discovered patterns is representative of the typical patterns we observe in our environments

with one exception—we intentionally designed the episodes to focus on ALZ prediction as the

key factor in automation decisions by placing the automation decisions at a point where Epi-M

provided a path to the correct chain with sufficient probability, but not enough history existed

to dominate the belief state determination.

The four patterns were set to randomly fire five times a day. This generated 200 events

per day with 20 automatable events. Noise was injected between the patterns to raise the

daily event level to 300 and help separate the patterns. We generated 20 days of training

data involving 6000 events to perform Episode Discovery. We intentionally kept the patterns
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consistent and few in numbers to facilitate their discovery. ED discovered all four episodes and

the knowledge was used to build a simple 3-tier hierarchy—no additional abstractions were

performed. A test set of five days of data (1500 events) was generated that contained exactly

100 automatable events.

Our experimental focus was to determine the impact of prediction on automation by

focusing on the area of key contribution for prediction in belief state determination. Epi-M

was set to provide the single top membership from the four episode choices and was trained on

the training data and ED output. History and current observation would provide the same level

of support as in our earlier experiments. Since we are testing prediction accuracy, we removed

ALZ and used a component to provide predictions based upon a look-ahead into the event data

stream of the test data with a user-defined accuracy.

We ran an experiment over the test data to determine automation reduction under the

heavy influence of prediction in which we varied prediction accuracy from 10–100% in 10%

increments. Figure 5.19 shows the influence on prediction accuracy in automation reduction.

Figure 5.20 shows correct automations over prediction accuracy. The variability in Figures

5.19 and 5.20 is due to the predictive accuracy being established for all observations and per-

formance only being impacted by those that were correct near automatable actions.The better

the accuracy of prediction, the greater the reduction in inhabitant interactions when prediction

is the primary factor. If prediction were always 100% accurate it could automate the environ-

ment itself. This test provided a uniform distribution of predictive accuracy across all observa-

tion including the automatable events; however, in observing actual ALZ performance it tends

to gain accuracy from predicting localized repetitions (e.g., pacing patterns and noise patterns

with great regularity) and perform much worse over areas with automations. In general, any

improvements in prediction would improve our system, particularly if the improvements are in

predicting automations based upon observations.
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Figure 5.19. Interaction reduction from varying prediction accuracy.

Figure 5.20. Correct automations versus prediction accuracy.
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In general, our approach could be improved by enhancements in Episode Discovery (i.e.,

data mining) which would improve Epi-M selection and ProPHeT inhabitant modeling, as well

as ALZ (i.e., prediction) which would improve belief state and automation action selections.

Additional evaluation and testing will also yield additional improvements as our approach ma-

tures and is generalized to other domains.

5.6 Observations

There are a number of additional interesting observations we have made in the course of

design, implementation, and experimentation of the work. The more unique challenges have

come from working with our MavPad inhabitants. We did not automate our first inhabitant be-

cause we were still concentrating on sensor reading acquisition and determining if there was a

perceivable pattern to inhabitant activities—fortunately, therearediscoverable patterns. It was

observing the first inhabitant that made it clear that we needed a good period of observation and

that it would take several weeks if not months depending on the consistency of the inhabitant’s

lifestyle. Our second inhabitant participated for a summer and was automated for two weeks

using ARBITER in the MavPad and a very basic version of ProPHeT (without adaptation) in

simulation. This inhabitant lived a very regimented lifestyle—even taking showers at approx-

imately the same time every day (surprisingly between 1:00–1:30 A.M.). Our third inhabitant

lives a very chaotic lifestyle and has been a challenge for our systems.

Sensor network failure, unreliability, and general chaotic behavior at times forced a lot of

effort toward improving the systems by adding additional fault tolerance mechanisms, watch-

dog timers, performance monitors, and many additional software objects that focus on main-

taining high-availability. Sensor instability plagued the first couple of months (and periodically

throughout our experimentation), but those issues have been corrected and now the sensors are

very stable. One of the biggest problems on the project so far has been the stability of the
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power grid and power loss issues in the stormy seasons. Operating system application stabil-

ity for programs operating 24-7 has also been problematic. Recently, human interactions with

the machines (i.e., users turning off machines or forcing reboots) in the MavLab as well as

component failures have posed challenges.

A consistent problem we have with Episode Discovery is that many episodes actually

begin with the automatable event; thus, automation is difficult if not impossible given our

approach in those instances. Interestingly, ED finds many patterns that are filtered due to a

lack of automatable actions. There is often a large number of pacing patterns—back and forth

walking in the MavPad. The inhabitants, all students, have all admitted to this behavior when

they are “thinking.”

Issues with inhabitants not willing to provide timely feedback and allowing the system

to train them indicate a need for improved feedback mechanisms and more interaction between

the decision-making system and the inhabitant. A general mechanism across all systems that

prevent the system from fighting an inhabitant for control also needs to be designed and imple-

mented.

The many modes of human behavior, emotion, and desire that change not only through

life, but in many instances from day to day indicate a need for a combinational approach that

employs several techniques that work in concert where the best-fit decisions for a given mode

are chosen. A one-approach fits all solution will not work in an intelligent environment with a

human inhabitant.

There is additional work to be done in the analysis of our approach involving further

systemic exploration. More work on the effects of noise, its impact on system performance,

and methods for improvement under noisy conditions is needed. Exploration of the effects of

drift and shift involving the intensity, rate, and points of occurrence remain open. ProPHeT

sensitivity to the components from which it receives information and the impact on system

performance from degradation and improvements in those components would assist in better
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understanding of the system and aid in pinpointing the areas of most needed improvement.

These issues are left to future work.

Another area we also need to examine involves the issue of comparison of the ProPHeT

hierarchy with other means of hierarchy generation. The key ability in ED-ProPHeT is to gen-

erate and utilize a hierarchy that captures specific activity at the lowest level allowing for high-

resolution automation while abstracting those activities at the higher level in order to search in

a low-resolution space. Selecting a hierarchy at random would never work in our system since

the automation chains would be mangled. A manually-created hierarchy may be possible to

evaluate, but it would be very difficult to generate in our stochastic environments. The work

that needs to be investigated first involves developing a good measure of comparison of hierar-

chical models beyond more features than simple performance and second involves comparing

other techniques (i.e., data-mining techniques) to generate hierarchies for evaluation. This is a

significant amount of future work.

There is still much work to be done and many more hypotheses to test. With every

experiment and case study we learn more and more of what works and, more importantly, what

does not in the intelligent environment domain.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Science develops best when its concepts and conclusions are integrated into

the broader human culture and its concerns for ultimate meaning and value.

—Pope John Paul II,Letter to the Reverend George V. Coyne,

S.J. Director of the Vatican Observatory (1 June 1988)

As established in our first chapter, the work in this dissertation focuses around the fol-

lowing central hypothesis.

Inhabitant interactions in home and workplace environments can be accurately auto-

mated through sensor observation and intelligent control using a data-driven approach to au-

tomatically generate hierarchical inhabitant interaction models in the form of HPOMDPs and

these models may be modified using reinforcement learning techniques to continually adapt to

changes in the inhabitant’s patterns until a new model should be generated.

We started this dissertation with a statement of our mission and goals and went on to pro-

vide an introduction to past and current intelligent environment work that focused on a wide

range of projects and initiatives from frameworks to applications to gadgets to healthcare to

learning and adaption as well as including the bigger setting of a pervasive computing future.

We then conducted a presentation of our learning architecture that started with an analysis of

the intelligent environment problem, provided a solution that involves data-driven generation

of advanced user (inhabitant) models, provided an abstract and concrete framework for the

system, elaborated on a multi-component architecture that introduced our ProPHeT (decision-

maker), Episode Discovery (data-miner), Active LeZi (predictor), Episode Membership (mem-

194
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bership classifier), and ARBITER (rules engine) components, and ended with an introduction

to our experimentation environments.

We further described in detail the methodology of our work from data characterization

and flow through system control, training and learning in the components, model generation

of hierarchical hidden Markov models (HHMMs), model extension into hierarchical partially-

observable Markov decision processes (HPOMDPs), a walkthrough of events through system

automation, system adaptation through temporal-difference (TD) learning, observations and

handling of concept transformations involving concept shift and drift, and ending with an anal-

ysis of system complexity and runtime performance. To demonstrate these ideas, we provided

case studies and analysis discussions involving both real and virtual inhabitants in real and vir-

tual environments through both isolated test cases that examined Episode Discovery learning

rates, automated HHMM construction, virtual inhabitant Markov model learning, adaptation

learning, rule learning, and refactoring due to concept shift or drift, as well as case studies

involving three inhabitants in the MavPad, mixed real/virtual experimentation in the MavLab,

and a long-term simulation study.

The work presented, analyzed, and discussed in this dissertation supports satisfaction of

our hypothesis by our MavCore components and supporting infrastructure. We have shown

system-initiated light, fan, and mini-blind automation in both home (i.e., MavPad) and work-

place (i.e., MavLab) environments that corresponded with inhabitant desires by reducing the

number of manual inhabitant interactions over time. Automation decisions were made by min-

ing observation data and generating hierarchical inhabitant models. Furthermore, we have

shown adaption over time of these models to adjust to concept drift and identify concept shift

indicating that a new model should be generated.
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6.1 Conclusions

Overall, our approach, design, and experimentation provide a level of environmental

automation for both virtual and real inhabitants from a data-driven automatically learned model

that can adapt to user pattern changes over time. The key strength of our work is that it does

not require a human to create the model or for knowledge to be created in the system for

the model to be generated. A minimal amount of knowledge is required to automate and

adapt—namely the automatable actions. Our model is also not state restricted since we do not

consider all possible states but just the states actually observed. However, the challenges we

are faced with are difficult. Our data-driven model is only as good as the data that is used to

generate it. The less consistent the inhabitant, the less ability there is to automate their life.

Our techniques are also not very noise tolerant having difficulty discovering and identifying

episodes in noisy sensor environments. The intelligent environment domain presents some

very difficult problems. We have provided an approach with some success at automation and

insight into the unique challenges ahead.

6.1.1 Strengths

In general, our primary contribution is the automated generation of the inhabitant model

which attests for the general sound feasibility our approach. We have shown that by using a

data-mining technique (Episode Discovery) that we can identify patterns of regular periodicity

and/or frequency and that these correspond to consistent patterns of activity in the intelligent

environment domain. In fact, these patterns can be human identified as the normal activities

of life such as leaving a room, watching television, or even playing video games. Performing

data-mining on these discovered pattern sequences has also proven valuable in finding pat-

terns of these activities. Our data-driven, automated construction of inhabitant models from

observation data is a unique approach. Encapsulating this discovered information in a hierar-

chical structure suitable for modification through reinforcement learning techniques has proven
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valuable for 1) translating observations into a belief state within the structure for event automa-

tion using lookahead and 2) modifying the structure through temporal-difference reinforcement

learning (machine learning) techniques to adapt to minor concept changes (i.e., drift). Our abil-

ity to track performance and concept changes to initiate automatic system reset is an important

contribution to developing life-long learning systems.

The architecture we provide solves many long-standing issues. Our use of zero config-

uration technology reduces the construction time for new environments and presents unparal-

leled flexibility in design and application. Modular construction allows for rapid replacement

and testing of new or better components creating a pathway for streamlined improvements. We

have also solved the issue of how to bridge reality with virtual reality. Utilizing logical proxies

and zero configuration technology, our systems can interact in both real, virtual, or mixed envi-

ronments. Overall, our system design, architecture, and implementation provides the flexibility

needed for continued advancement of intelligent environment research.

6.1.2 Challenges

Our largest strength also presents our largest challenge. Episode Discovery (sequence

data-mining) is a very time intensive process that poses significant challenges in large domains

with large data sets. In some cases computation may be intractable causing our approach to be

invalid for these large environments. Our approach also depends on a level of inhabitant con-

sistency from observation to automation and beyond. Environments hosting inhabitants with

inconsistent lifestyles will require a different type of control system. Inconsistent inhabitants

present many challenges in the observation data used for learning since fewer patterns can be

mined and when automated may no longer be consistent with the current inhabitant behavior.

Our techniques are more suited to consistent inhabitants which usually consist of those later in

life.
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Noise in the data stream also poses a challenge as it masks identification of the current

episode of activity and interferes with belief state tracking and thus proper automation of an

environment. Improvements in environmental design, sensors, and improved noise cancellation

and filtering techniques pose significant research challenges.

The lack of interaction and pure following of probabilistic and learned models challenge

the automation capabilities of our system. Augmenting with careful interaction with the inhab-

itant could improve system performance by eliminating some of the guess work in automation.

This could also assist in better model refinement since some patterns are not possible to au-

tomate based on observation alone. This especially applies to episodes which begin with an

automatable event, which the system cannot automate because it has no prior context until the

event occurs. If inhabitants can provide interaction signals (e.g., spoken commands, gestures,

and so forth) as automation cues, automation decision accuracy could be improved.

Our work is just one possible approach in a new area of intelligent environment research.

We face many challenges now and ahead which serve as motivation for continued research in

this area.

6.1.3 Final Analysis

This work makes use of combined techniques in order to form a more powerful system

of techniques. None of the individual components of the system in the work of this dissertation

are powerful enough to solve the problem by themselves, but in combination using the strengths

of each approach in a unifying framework under intelligent control they are able in concert to

provide a particular solution to the problem at hand. We consider this a Gestalt system where

the whole is greater than the sum of its parts.

Observing the related work mentioned in this dissertation, the reader will observe many

system approaches to solving problems and even combinational approaches using several inter-

woven techniques. The integration of techniques to form more powerful systems is an emerging
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area in which we are making a contribution with this dissertation. We hope that more work of

a combinational nature will begin to surface in the artificial intelligence community as well as

studies into the science of integration.

We have presented a complete system including architecture, algorithms, and supporting

examples, test cases, and theory for the automation of single inhabitant home and workplace

intelligent environments. In our work, we provide a unique method for the automatic data-

driven generation of hierarchical inhabitant models and mechanisms that provide advantageous

use of the knowledge structure for environmental automation and life-long learning through

fine (adaptation) and coarse grain (reboot) learning. We have proven the effectiveness of this

approach in both real and simulated environments with real and simulated inhabitants. This

approach has been effective in home and workplace environment and should perform well in

any event-driven environment where an actor interacts with interactive feature points of the

domain. However, research in this area is still in the beginning stages, and we have yet to

realize the full potential of intelligent environments.

6.2 Future Work

There is much work to be done and much knowledge to be gained in the intelligent

environment domain. Our work has only scratched the surface of the possibilities, approaches,

and potential rewards of such work. At the very core of what we are working on is the chance

for a better world for humans to live, work, and play, both today and in the future. The promise

of a more interactive world that actively seeks to improve the human condition and our personal

experiences is a very powerful incentive to work in this area.

Throughout this dissertation we have discussed not only our approach, its basis, and

strengths but also its weaknesses and areas of other potential research. Our modular system

construction allows for easy replacement of the data-mining, prediction, and episode member-
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ship components in which improvements would benefit the system as a whole. In addition to

improvements in our existing components there are a number of fascinating directions that our

work could explore.

6.2.1 Resource Consumption Reduction

Beyond considering the gratification needs of the inhabitants of an intelligent environ-

ment, we could introduce goals to satisfy specific interests such as reducing resource consump-

tion. This may be a goal of the inhabitant, the inhabitant’s parents (if they are a dependent), or

an outside interest such as a company or government.

Energy efficiency in an increasingly energy-demanding world adds value to the intel-

ligent environment by reducing its cost over time. Based upon the work presented in this

dissertation, it is easy to see how electricity could be saved by only having lights on when

necessary, fans on as needed, and mini-blinds open to provide light instead of lamps. Adding

water heater control to heat water only when necessary could conserve electricity or natural

gas. Improvements in HVAC system control along with air distribution control (e.g., through

damper control) so that environments are only cooled and heated in occupied locations, as

needed, and maintained within desired temperature conditions could improve HVAC overall

system efficiency and electric/gas resource consumption. Water consumption reduction could

be achieved by recirculation piping and control systems as well as controllable faucets with

activity sensors. Any gains in energy efficiency will also need to be evaluated against the cost

of energy to run the sensors, actuators, and the computational reasoning systems.

Improvements in resource consumption reduction partly depend on advancements in

control and sensing systems, but there is also a need for innovative solutions that improve

the efficiency in which resources are consumed and minimize the rates of the consumption. As

we face a future of the depletion of some of our fossil fuels, better conservation of replacement

sources will ensure that the lights in our homes will continue to work in the future.
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6.2.2 Multiple Inhabitants

One drawback to our approach is that it is based on a single inhabitant. Unfortunately,

this paradigm is not how most of us live our lives. Very few people live completely alone, and

if they do, many have pets. Even bringing friends into our intelligent environments poses a

challenge because multiple inhabitant patterns will not match any of those previously learned.

It may be possible to learn a pattern initiated by a group of inhabitants, but this is challenging

since it is unlikely that several individuals will interact with the environment in a consistent

manner over a given periodicity. A good solution to maintaining environmental automation in

the presence of many inhabitants is to isolate the activities of each and associate their patterns

with their learned models (if available).

The key to isolating individual inhabitants is to localize them and associate the local

observations. Inhabitant localization is a very challenging problem. Wireless signal tracking,

vision processing, or electronic tagging methods can be applied similar to other projects as

mentioned in Chapter 2, but none of the current technology is perfect and there is still much

work to be done in this area. It would be interesting to start incorporating and testing such

technologies with our approach in order to discover solutions and challenges.

6.2.3 Health Care

At this point in our research we have primarily focused on environmental sensors, but

we could also include sensors that directly monitor the health and welfare of the inhabitant.

Health care is a major issue in our lives. One of the motivations for our intelligent environment

work is to help people live in their homes longer. A key aspect to that would be the identi-

fication and treatment recommendation for health issues. Most health care is reactive instead

of preventative, we go to the medical doctor when something is not working properly—often

much later than we should. Yet, early detection is very important for improving the survival
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rate of such afflictions such as cancer. The development of sensors that can monitor aspects of

our health, store that information, and reason about changes could help prolong our lives.

Imagine a future where all cancers are detected early enough that cancer deaths become

uncommon or are very well planned in advance. A future where your physician receives de-

tailed information on your health status (e.g., diet, heart rate, blood pressure, and so forth) for

as far back in the past as necessary to make a proper diagnosis. Outbreaks of diseases can

be tracked and proper immunizations and warnings deployed to minimize the spread. Mental

decline can be better understood, and automation can be increased to provide improved assis-

tance and safety. Technologies that can assist in understanding human health in non-invasive

manners are vital to realizing this future. However, this is still a very open area of invention

and research.

6.2.4 Synergistic Interaction

In our current work, our interaction with the user is through the control of objects in

the environment mostly based on what we believe to be the correct course of action due to

historical observation. However, we ignore a very important fact about the inhabitant—that

they already do know their desired course of action. Working more closely with the inhabitants

through natural language processing, intelligent interfaces, gesture recognition systems, and so

forth could enhance the experience for the inhabitant and minimize control error.

Our role as an automator may be incorrect. Most humans tend to want to interact more

closely with the systems, having them act as a direct enhancement of their clearly stated wishes

rather than relying on them to control their environment based on the best guess at the time.

The path to a more synergistic interaction seems more natural and should be examined in more

detail.
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6.2.5 Other Domains

Workplace and home environments are just two examples of environments that can be

automated, but just as there are already automated factories there are many more environments

to explore. Environments such as smart hospitals, restaurants, and the great outdoors provide

fertile ground for further intelligent environment research. Beyond other environments there

are also other domains in which our techniques may apply. The computer operating desktop

seems like a domain with similar qualities—a click stream of events around interactive feature

points of the environment. Workflow automation may also be possible in domains such as soft-

ware engineering where an engineering process guides sequences of events in the development

process. Domains characterized by a level of consistency in an event-driven space are good

candidates for application of our techniques and further study.

6.2.6 Intelligent Neighborhoods and Beyond

Extending beyond the home to the neighborhood, city, state, country, and world holds

the possibility for exploring intelligence on different granularities and decision boundaries. In-

telligent homes can be grouped into intelligent neighborhoods where shared resource concerns

can be addressed as well as community issues such as litter control, water, and sewage. In-

telligent neighborhoods cluster into intelligent cities that can reason and manage city services,

traffic control, and emergency management. Intelligent cities become valuable assets to in-

telligent states which control inter-city transportation, state laws, health and welfare, as well

as large-area emergency management. Extending to the intelligent country and eventually the

intelligent world, a future of better communication, better governance, coordinated resource

control, and improved emergency response awaits.
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6.2.7 Enhancement Technologies

Areas of technology improvements that would enhance this work include such items as

sensors, appliance control, object and personnel localization, wireless, broadband adoption,

and so forth. Advancements in home, control, and automation technologies provide ample

areas for further investigation. The aging X-10 system is in desperate need of a replacement

technology. Our Argus sensor networks could benefit from improved speed, wireless capa-

bilities, and improved flexibility. Home appliances are in need of control and information

interfaces. There is a wealth of opportunity in converting and improving everyday objects into

objects that could be controlled or provide information to an intelligent controller. These en-

hancement technologies are needed in order to advance work in the intelligent environment

domain.

6.2.8 Unprocessed Data

In our established environments not all sensor data is used. In fact, we filter out the

majority of data because our systems cannot currently utilize the information. However, there

is a lot of hidden value in the data that remains unused. For example, we can identify individual

sleep durations and restlessness, patterns of shower usage, HVAC configurations and usage,

room usefulness through time spent in each room, and many other potentially valuable nuggets

of information. We have become very adept at capturing data, but still have a lot of work in

utilizing all of it.

6.2.9 Security Issues

Security of the home and the data contained within the system is an important aspect

to all inhabitants. Work in how to utilize the automated systems to mimic the inhabitant(s)

when away from home and to detect possible intruders could assist in improving the security

of homes and workspaces. Security around the captured observation data and the learned in-
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habitant models needs to be safeguarded from those that could exploit the information, but also

shared with those who could use it in support of the inhabitant’s needs/desires. Thieves could

exploit regularities in the inhabitant’s activities for opportunistic gain; however, a personal

physician or caregiver could use the same information in order to evaluate the well-being of

the inhabitant. Work in this area should focus on ways to use inhabitant information to improve

home security while protecting inhabitant data from nefarious entities and making it accessible

to trusted ones.

This dissertation as a whole represents many years of hard work and dedication. The

work presented in this dissertation represents part of the beginnings in advanced intelligent

environment research. There is much more work to be done with great possibilities for an

immediate and long-lasting impact on the quality of life for everyone.
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A.1 Introduction

This appendix provides a basic introduction to power line control (PLC) with an empha-

sis on the X-10 system. X-10 is the PLC system utilized in the work of this dissertation. It is

intended to provide the interested reader with an understanding of these types of technologies

and to help provide a better understanding of this dissertation.

A.2 Experiment 10

In the late 1970s, Pico Electronics Ltd. was formed in Glenrothes, Scotland, to develop

advanced integrated circuits for the growing electronic calculator market. All experiments

at Pico were designated with an “X.” Experiments one through eight (i.e., X-1 through X-8)

concerned the development of increasingly more complicated integrated circuits for calcula-

tors. Experiment nine involved the development of a circuit to operate a programmable record

changer for the BSR (British Sound Reproduction) company. BSR also contracted Pico to de-

velop a wireless remote method to control their equipment. This was experiment ten or X-10.

In the late 1970s X-10 had expanded beyond BSR’s use and was marketed in the United States

by Radio Shack and Sears Roebuck and Company [99]. Today, Pico Electronics Ltd. is better

known as X-10 Ltd. who still retains Pico group in Scotland as a subsidiary for research and

development augmented with personnel in Hong Kong and China [224].

A.3 X-10 Theory

The X-10 system works by a transmitter sending a digital message over the power line

wires to a receiver that receives the message and performs the requested operation. The key

piece of technology that enables this to work is a zero crossing detector that senses when

the voltage sine wave crosses zero as shown in Figure A.1. Receivers listen for 0.6ms after

each zero crossing (120 Hz) for a 120 kHz pulse. The presence of a pulse is detected as a
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Figure A.1. Zero crossings in the 60Hz power sine wave.

binary “1” and the absence a binary “0.” Transmitters send a 1 ms 120 kHz pulse starting at

the zero crossing for each binary “1” they are transmitting in a frame. Figure A.2 illustrates

a transmitted bit pattern. The 0.4 ms difference between the transmit and receive durations

accommodates for tolerance differences in components [99].

Data frames have a minimum of six leading zero bits between them. This resets the shift

registers. The data frame starts with three binary ones followed by a zero (i.e., 1110). This

start code is followed by a four bit device letter code from table A.1. The letter codes are

not sequential in order to reduce similarity errors since most deployments utilize consecutive

numbers in zones physically close together. The letter code is followed by a four bit number

code to complete the X-10 address (e.g., A1, B10, and so forth). The number encoded is also

not binary sequential and is shown in table A.2. After the number code is a function bit that

when it is “0” indicates that the preceding nibble is a number code and when it is “1” indicates

that there is no number code. This is to handle commands such asall zone A lights off. This

frame which consists of a start code, a letter code, and a number code is repeated twice. A

three cycle pause occurs (six zero bits) and then another frame is sent. This new frame consists
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Figure A.2. Binary encoding of 120 kHz pulses in 60Hz power sine wave.

Figure A.3. Complete control message sequence.

of a start code, a letter code, and a command code. The command code specifies one of fifteen

commands to be issued (e.g., on, off, bright, dim, and so forth) as shown in table A.3. This

command frame is also sent twice. A complete control message sequence is shown in figure

A.3 and takes place over 47 cycles of AC power for a duration of 0.7833 seconds [99].

X-10 devices can either be stateful or stateless. Devices that maintain and can report

their state cost an order of magnitude more than the stateless versions, but they provide better

control and state transparency. All of the devices used in this dissertation work were stateless.

Device state was maintained by architectural components.
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Table A.1. X-10 Letter Codes

Letter Binary Code

A 0110

B 1110

C 0010

D 1010

E 0001

F 1001

G 0101

H 1101

I 0111

J 1111

K 0011

L 1011

M 0000

N 1000

O 0100

P 1100
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Table A.2. X-10 Number Codes

Number Binary Code

1 0110

2 1110

3 0010

4 1010

5 0001

6 1001

7 0101

8 1101

9 0111

10 1111

11 0011

12 1011

13 0000

14 1000

15 0100

16 1100
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Table A.3. X-10 Command Codes

Command Binary Code

ALL UNITS OFF 0000

ALL LIGHTS ON 0001

ON 0010

OFF 0011

DIM 0100

BRIGHT 0101

ALL LIGHTS OFF 0110

EXTENDED CODE 1 0111

HAIL REQUEST 1000

HAIL ACK 1001

EXTENDED CODE 3 1010

UNUSED 1011

EXTENDED CODE 2 1100

STATUS ON 1101

STATUS OFF 1110

STATUS REQ 1111

A.4 X-10 Equipment

There are many types of available X-10 modules and systems for home automation con-

trol. In our environments we have specifically used RF transceivers, computer interface mod-

ules, light modules, appliance modules, motion detectors, and an HVAC thermostat. The RF
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Figure A.4. X-10 lamp modules and connected lamps.

receivers are used to capture open air wireless radio frequency remote control signals, translate

the button commands into X-10, and transmit the command over the power line to an awaiting

receiver. The computer interface uses RS-232 to communicate with a personal computer for

both receiving and sending of X-10 protocol signals over the power line. The light modules

shown in figure A.4 allow for on/off control of incandescent lamps as well as 32 different dim

levels. Appliance modules are used for higher wattage appliances and fluorescent lights to turn

them on or off—theses modules may not be dimmed. Motion detectors use passive infrared

sensors that detect infrared changes with the assistance of a Fresnel lens. The motion detectors

work well, but have a two second or more delay in response and update due to transmitting

detection over RF. The HVAC system uses X-10 to set the mode of the air conditioning unit,

blower state, and current target heating or cooling temperature. These devices form the core of

the effectors for the intelligent environments presented in this dissertation.
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A.5 X-10 Problems

X-10 works well—most of the time. In the course of our experimental work we have

established two very large X-10-based deployments. We have encountered a number of diffi-

culties along the way due to some interesting problems.

After our first deployment of over fifty X-10 light modules we noticed that lights would

often go on and off for no apparent reason. The problem seemed to get worse at night making

it seem like we were hosting a prankster poltergeist. The problem seemed to come from the

setup. We had intermixed lighting and computer equipment on the same power line circuits.

The problem was that the low-voltage transformers used for the computer speakers and the

computers themselves trapped the X-10 signals and often would generate noise that mimicked

the X-10 protocol thus causing our apparent poltergeist. We exercised this demon from the

system by separating the X-10 devices from the computer equipment and also introduced noise

filters at the interface of these separate X-10 circuits and the main power supply circuit. After

these modifications were complete we no longer witnessed random light control.

Dealing with fluorescent lights is also a difficult issue with X-10. First, the light mod-

ules cannot be used because they do not allow for sufficient wattage to be drawn to support

starting the lights. Second, light modules regulate voltage to allow for dimming—have you

ever dimmed a fluorescent light?—which caused problems with the lights and precluded the

operation. Appliance modules can be used to successfully control fluorescent light, but the

voltage conversion inside the ballast units of these types of lights also traps the X-10 signal

and generates noise. Thus, we faced another poltergeist inherent to a device we actually sought

to control. Eventually, we just replaced all of the fluorescent lights with rope lights, but we did

observe that using an appliance module to power a noise filter with the fluorescent lamp on the

other end worked successfully and exercised another demon, but the cost of adding filters to

each light greatly exceeded just replacing them with an X-10 environment-friendly light.
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Figure A.5. Abnormal 60Hz 110V AC sine wave.

We have also had issues with some letter codes—they just stop working. We have had

several areas we call zones that are under a single letter designation quit working. The modules

still worked if we shifted them all to a different letter, but they would never work again on the

originally assigned number. We still have no explanation for this behavior, and our only work

around has been a permanent shift to a different letter designator for the affected zones.

In our second major deployment which is in an apartment, we encountered another inter-

esting problem. The installed bathroom fan introduced a significant amount of noise as shown

in Figure A.5 compared to a normal AC sine wave as shown in Figure A.6. It only introduced

the noise, obviously, when it was turned on. The noise as can be seen in Figure A.5 shows

voltage distortions that introduce additional zero crossings (explained earlier in this appendix)

and therefore disrupt any X-10 control signals by injecting zeros into the frames. The fans can

be turned on, but the noise prevents them from being turned off. We attempted to filter the

line noise from the fan, but because it actually affects the power line voltage at the controller

there is not an effective way to filter this anomaly. In the end, we developed a new computer-
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Figure A.6. Normal 60Hz 110V AC sine wave.

controlled circuit using our Argus system and discontinued X-10 control of this particular fan.

It should be noted that a floor fan and a ceiling fan in the same environment can be controlled

by X-10.

In general there is usually a delay of between one to four seconds in the normal opera-

tion of X-10. A number of our test inhabitants were impatient with the lights and felt they did

not work. Working with the remotes also often requires pressing the command buttons more

that once in order for the command to work. We have also noticed, especially with computer

control, that many electrical systems are not wired correctly, have minor shorts, or use different

phases from the 220V supply when it is split into 110V sections. These problems create un-

reachable areas and inconsistent power line signal reachability. We have often had to increase

the number of RF transceivers and use alternate plugs for equipment to solve such problems.

Despite the problems we have encountered, we have always been able to find a way to

adapt or work around the issues. X-10 does work and performs the job it was designed to do.



217

The ability to control household objects for the price at which X-10 modules are offered makes

for a strong value.

A.6 X-10 Middleware

Connecting a personal computer to the power line through a computer interface module

is as easy as plugging in the module into the power outlet and the line into the computer’s RS-

232 port. However, on a Linux system the next question is how to sense X-10 communication

and how to initiate X-10 control. We started by using a simple software package called Heyu

originally written by Daniel Suthers and later improved by Charles Sullivan which is based

on the program called “x10” by Larry Campbell as modified by Paul Fox for Linux. It is

freely available at heyu.tanj.com/heyu2 and contains a basic sensing daemon and command

line control of X-10 devices. This software worked very well for our initial needs, but we grew

to need something that seemed to be more integrated with our operating system. We have used

the “Linux X-10 Universal Device Driver” (a.k.a., Project WISH) written by Scott Hiles for

the last two years. WISH is publicly available at wish.sourceforge.net and takes a different

approach from the typical command operation and daemon monitoring system. WISH adds

X-10 devices to the /dev directory of the Linux OS and allows for X-10 devices to be treated

as attached peripheral character devices. This allows for ease of monitoring by just polling the

device handler and for control by simply setting the value of the device handler all in a very

intuitive and standard Linux way. WISH is a very fast and well-integrated piece of middleware.

A.7 Power Line Control Alternatives

X-10 and its form of amplitude shift keying (ASK) modulation technique is one of the

oldest PLC protocols. Other PLC protocols include the CEBus, LonWorks, and HomePlug.

CEBus uses frequency sweeping and a carrier sense multiple access with collision resolution
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and collision detection (CSMA/CRCD) protocol for synchronization, collision handling, and

sending data between peer-to-peer modules. This allows for rates of near 10 kb/s and a packet

communication method. LonWorks uses a narrowband spread spectrum and a CSMA tech-

nique for peer-to-peer communications. Current LonWorks power line implementations are

rated at 5 kb/s, but provide an Echelon Corporation patented noise cancellation technique that

minimizes errors in noisy environments. HomePlug (1.0) uses an orthogonal frequency divi-

sion modulation (OFDM) scheme to transmit information over a frequency band of 4.49 to

20.7 MHz with 128 subcarriers that yield a data rate from 1 to 14 Mb/s using a carrier sense

multiple access / collision avoidance (CSMA/CA) protocol. These technologies represent a

significant improvement over the 60 b/s X-10 protocol and are being used today to transmit

Ethernet packets between modules over the power line [108]. Despite the speed and bandwidth

advantages of these new technologies and protocols, there is a lack of affordable and available

home and business automation products. For now, the availability and price of X-10 makes it a

more reasonable system to work with since X-10 deployments are more likely found in homes,

and the work of this dissertation can be used more readily to make an improvement in peoples’

lives.
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B.1 Introduction

This Appendix is included to provide the interested reader information concerning the

design, construction, and operation of the Argus sensor network developed by researchers on

the MavHome project at The University of Texas at Arlington. We created this sensor network

in order to perceive motion, temperature, light, humidity, and door/window positions as well

as to sense and control mini-blinds. The cost of sensor networks and general availability to the

public persuaded us to pursue the option of building and designing our own at the lowest cost

possible. This Appendix covers the design, implementation, and deployment details necessary

to reproduce this affordable sensor network and its variants. Instead of patenting this work, we

have made a conscious decision to release it and our algorithms under the terms outlined in

Appendix F.

This Appendix includes many details and in some areas a step-by-step guide for setup.

It is included to make this dissertation a more complete work of the efforts, engineering, and

research conducted on the MavHome project. The prices as presented in this Appendix are

those at the time of manufacture and may differ from the current prices (usually they get less

expensive).

B.2 Hardware

The Argus Sensor Network is the main perception system for our work. Argus is com-

prised of a Master board that connects via a serial-based interface to a controlling personal

computer (PC), Superslave boards that host sensor suites and report to the Master via anI2C

serial bus, and Dongle boards that host individual sensors. In this Appendix, we present the

designs and costs for an extensible Master, a super slave capable of handling 64 sensors, and a

Dongle board capable of hosting four individual sensors, together called the ArgusMS (Master-

Slave) system. We also present three of these extensions to the Master called ArgusD (Digital),
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ArgusM (Motor), and ArgusAD (Analog and Digital). The Argus Sensor Network system has

been designed for deployment in the MavLab (see Appendix D) (including the MavKitchen),

MavPad (see Appendix C), and any future MavHome environments.

All components were purchased at a local electronics wholesaler, board masks were

made through a web order, and all designs were done in the freeware Eagle layout designer

(www.cadsoft.de). The Eagle project packages and software used in our deployments are pub-

licly available on the web at mavhome.uta.edu.

B.3 Software

We differentiate between three types of software; the software that is intended to directly

communicate with an Argus device and provide functionality as a service is calledHermes1,

any software intended to communicate with the Hermes drivers is known as aclient, and the

software intended to be flashed onto the device microcontrollers is calledArgus.

B.3.1 Hermes Software

Each Argus Master (including variants) communicates with a single interfaced host PC

using a serial line (RS-232). Software running on the host PC may send commands to the

Argus Master, retrieve data from the device, or send data to a remote PC. All software that

communicates directly with an Argus device is called Hermes, and should be run on the PC

to which Argus is physically connected. Hermes usually provides a mechanism to accept

commands from a third party, and parse these commands for the Argus device. Essentially,

Hermes is the driver program for an Argus device.

1Hermes slayed the 100-eyed Argus beast in Greek mythology
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B.3.2 Client Software

Client software is used to connect to Hermes and relay commands or receive information.

It must run on the same machine as Hermes, and may often converse with remote applications.

From the client’s point of view, Hermes is serving as a middleman between client and Argus.

B.3.3 Argus Software

Each Argus device operates off of software stored on-chip. This firmware may need to

be changed in case of software upgrade or microcontroller replacement. We program the mi-

crocontroller using a hardware programmer from CCS, called ICD-U. This ICD unit connects

one end to the computer via USB, and the other end to the Argus device via an RJ-11 socket on

the side. The Argus software (assumed to be already compiled as a .HEX file) is then loaded

into the device using ICD-U programmer software, also supplied by CCS. Each Argus device

class has its own .HEX file.

B.3.4 All Argus devices

These are the steps to setup Argus software (any Argus device):

1. Compile appropriate Argus source file using CCS’s IDE compiler (PCW C Compiler or

equivalent) as shown in Figure B.1

2. Connect ICD unit to both computer and Argus device

3. Power Argus Master device

4. Use the ICD programmer software/GUI to upload the appropriate .HEX file as shown in

Figure B.2. If the ICD unit is not properly attached to both computer and Argus device,

the programmer software will refuse to start.
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Figure B.1. PCW C Compiler.

B.4 Argus Sensor Networks

The low cost Argus networks are developed around a core Argus Master board. The Mas-

ter in combination with Superslaves (separate component boards that relay sensor information

to a Master board) and Dongles (separate component boards that host up to four sensors and

connect to Superslaves) form the Argus Master-Slave (ArgusMS) network. The Master with a

special daughter board for extending the system to allow only pure digital I/O form the Argus

Digital (ArgusD) network. The Master with a special daughter board for extending the sys-

tem to allow control of stepper motors form the Argus Motor (ArgusM) network. The Master

with a special daughter board for extending the system to allow a pure digital I/O bank and an
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Figure B.2. ICD Programmer Software.

analog bank form the Argus Analog + Digital (ArgusAD) network. These networks have been

deployed and working continuously for over a year in our test environments.

B.4.1 ArgusMS

ArgusMS is a branched spanning sensor network as shown in Figure B.3. The system

consists of an Argus Master device, which connects to many Argus Superslave devices, each

of which collects sensor data from its surroundings. The types of sensors that may be attached

to an Argus Superslave are varied and configurable. Ultimately the Master device polls the

Superslaves for their data and streams this data upward to a host PC on demand. Each Master

can host up to 100 Superslaves and each Superslave can host 16 Dongles which, in turn, can

host up to four sensors each for a total network capacity of 6400 sensors. In general, an

ArgusMS network has the following features:

• Single computer reads entire network
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• An Argus Master may connect to up to 100 Superslaves

• Supports up to 6400 analog sensors

• The serial communication bus uses CAT-5 Ethernet cable, which is plentiful and inex-

pensive

• Sensors may be added or detached from Superslaves while system is active

• Superslaves may be added or detached while system is active

• Cost effective, only one long serial bus needed to connect the Master to the Superslaves,

instead of a star network

• To be used when a large amount of analog or digital data is to be collected remotely

• System runs at 2Hz

Figure B.3. Overview of Argus Master/Slave network.
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B.4.1.1 Master

The Argus Master as shown in Figure B.4 is the centerpiece of the Argus network. All

other devices directly or indirectly connect to it, and in some configurations other devices

are not needed at all. All that is needed is a host PC with a serial line to interface to the

device. In the ArgusMS configuration, the Argus Master is connected with one or more Argus

Superslaves through anI2C serial bus. This Master collects analog data from the Superslaves

when prompted by its host computer. The Argus Master board serves as theI2C controller

for all attached Superslave boards. The Master interfaces with software on a PC to allow the

user to read any sensor on any slave through a hardware selector switch numbering address.

The four inch by three inch Master board circuit layout is shown in Figure B.5 and the circuit

schematic is shown in Figure B.6. Table B.1 shows the components required to build a Master

and the associated cost. A basic solder mask board can be ordered from www.pcbexpress.com

for 3-day process (coated with legend) with the following specifications and cost:

• Quantity: 20

• Size: 4.000” x 2.900”

• CAD System: Eagle EE

• Finished Copper Weight: 1.0 ounce

• Thickness (FR4 Laminate): .062”

• TOTAL = $404.00 ($20.20 each)

Table B.1: Argus Master Parts List.

Part Name Mouser Number Price/Unit Quantity Price

0.1uF Capacitor 581-SR215C104M $0.26 6 $1.56

47uF Capacitor 75-515D10V47 $0.12 3 $0.36

Zener Diode 78-1N4747A $0.07 1 $0.07
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Table B.1 – continued

Part Name Mouser Number Price/Unit Quantity Price

PIC16F877 DIP40 579-PIC16F87704P $8.40 1 $5.39

7805 Voltage Regulator 511-L7805ABV $0.60 1 $0.60

RS232 Drivers and Receivers 511-ST202CN $0.83 1 $0.83

Power Jack 163-5003 $0.64 1 $0.64

RJ-45 8pin Jack SIDE ENTRY 571-5551641 $0.56 2 $1.12

RJ-12 6pin Jack SIDE ENTRY 571-5551651 $0.53 1 $0.53

20Mhz crystal oscillator 520-TCH2000 $1.70 1 $1.70

47K Resistor 71-RN55D-F-47.5K $0.16 2 $0.32

BCD Rotary Dial 106-RI40012 $2.25 2 $4.50

24 Pin Header 538-26-48-1241 $1.47 2 $2.94

LED Lamp w5V resistor 606-4302F1-5V $0.49 3 $1.47

4.38x3.25x2.5 Enclosure 635-133-B $5.38 1 $5.38

DIP16 Socket 506-516AG11D-ES $0.90 1 $0.90

DIP40 Socket 506-540AG11D-ES $1.90 1 $1.90

RS232 Jack, Stereo Audio 161-3508 $0.74 1 $0.74

AC 12VDC 500MA 2.5X5.5M 412-112053 $5.89 1 $5.89

Total Cost $36.84

+ PCB $20.20

Grand Total Cost $57.04

The Argus Master board has two RJ-45 Ethernet jacks located on the side panels as

shown in Figure B.7 for theI2C serial bus for communication with the Superslaves. These

jacks are internally connected together, and have lines for data, power and ground. While the
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Figure B.4. Argus Master.

I2C serial bus is connected all boards share a common power connection and so an Argus device

without a power supply may still be powered through theI2C bus. However, doNOT leave the

system idle for long periods of time without a power supply for each and every individual Argus

Master or Slave. Each device without its own power supply will draw power from neighboring

devices, possibly causing an overload! The process for connecting and starting a Argus Master

and Superslaves is as follows:

1. Disconnect theI2C serial bus line from all Argus devices

2. Connect power to Argus Master

3. Connect power to all Argus Superslaves

4. Keep tabs on the status lights, to identify a faulty subsystem

5. ConnectI2C serial line from Master to a Superslave

6. ConnectI2C serial line from Superslave to Superslave, until all Superslaves and the

Master are connected in one long chain. Do not complete a loop from the last Superslave

back to the Master.

7. Connect RS-232 Serial cable into the Master’s 1/8 inch stereo socket

8. Connect RS-232 Serial cable to the host PC’s DB-9 serial socket

9. Check lights on Master and all Superslaves to verify systems are operational
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Figure B.5. Argus Master layout schematic (4 in. x 3 in.).

B.4.1.2 Superslave

The Argus Superslave shown on Figure B.8 is the backbone of the Argus network. The

Superslave is the device that directly reads sensor output for all sensors, converts them to binary

values, and stores this information for later retrieval. Upon request by an Argus Master, the

Argus Superslave will transmit its data to the Argus Master for processing. A Dongle system

groups sensors into clusters of four, and one Dongle connects four sensors to the Superslave—

efficiently using one port for four sensors. Multiple Superslaves can co-exist on the same serial

communication bus through a flexible addressing system, where the addresses are set manu-

ally by the user before power up. The Superslave featuring control of 64 individual sensors
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Figure B.6. Argus Master circuit schematic.

was designed to replace the eight individual sensor control standard slave we had previously

developed. Argus Superslaves have the following features:

• On board analog-to-digital converter

• The serial communication bus connects via CAT-5 Ethernet, using anI2C protocol

• Sensor Dongles also attach via CAT-5 Ethernet

• Supports up to 64 sensors per Superslave

• Allows convenient sensor placement and installation by placing the Superslave local to

the sensors, yet remote from the Master and host PC

• Addressable from 00–99, providing 100 unique IDs

• Wide variety of sensor types supported—any resistive or voltage-based sensor



231

Figure B.7. Argus Master side view.

Figure B.8. Argus Superslave.

The 6.5 inch by 4.5 inch Superslave board circuit layout is shown in Figure B.9 and the

circuit schematic is shown in Figures B.10, B.11, and B.12. Table B.2 shows the components

required to build a Superslave and the associated cost. A basic solder mask board can be

ordered from www.pcbexpress.com for 3-day process (coated with legend) with the following

specifications and cost:

• Quantity: 10

• Size: 6.500” x 4.500”

• CAD System: Eagle EE

• Finished Copper Weight: 1.0 ounce

• Thickness (FR4 Laminate): .062”

• TOTAL = $334.00 ($33.40 each)
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Figure B.9. Argus Superslave layout schematic (6.5 in. x 4.5 in.).

Table B.2: Argus Superslave Parts List.

Part Name Mouser Number Price/Unit Quantity Price

47uF Capacitor 75-515D10V47 $0.12 12 $1.44

Zener Diode 78-1N4747A $0.07 1 $0.07

LED Lamp w/5V resistor 606-4302F1-5V $0.49 3 $1.47

PIC16F877 DIP40 579-PIC16F87704P $8.40 1 $5.39

7805 Voltage Regulator 511-L7805ABV $0.60 1 $0.60

4051N DIP-16 8TO1 ANA MUX 511-M74HC4051M $0.84 8 $6.72

Power Jack 163-5003 $0.64 1 $0.64
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Table B.2 – continued

Part Name Mouser Number Price/Unit Quantity Price

RJ-45 8pin Jack TOP ENTRY 571-5202594 $0.51 16 $8.16

RJ-45 8pin Jack SIDE ENTRY 571-5551641 $0.56 2 $1.12

RJ-12 6pin Jack SIDE ENTRY 571-5551651 $0.53 1 $0.53

20Mhz crystal oscillator 520-TCH2000 $1.70 1 $1.70

47K Resistor 71-RN55D-F-47.5K $0.16 2 $0.32

4.7K 8bit Resistor Network 71-CSC10A01-47K $0.29 1 $0.29

BCD Rotary Dial 106-RI40012 $2.25 2 $4.50

24 Pin Header 538-26-48-1241 $1.47 2 $2.94

4.88x6.88x1.5 Enclosure 635-171-B $8.00 1 $8.00

DIP16 Socket 506-516AG11D-ES $0.90 8 $7.20

DIP40 Socket 506-540AG11D-ES $1.90 1 $1.90

AC 12VDC 500MA 2.5X5.5M 412-112053 $5.89 1 $5.89

Total Cost $58.88

+ PCB $33.40

Grand Total Cost $92.28

Each Superslave board has two RJ-45 Ethernet jacks located on the side panels forI2C

communications as shown on Figure B.14. These jacks are also internally connected together.

While connected to each other, all boards share a common power connection. Again, doNOT

leave the system running for long periods of time without a power supply for each and every

individual Argus Master or Superslave. There are 16 RJ-45 jacks located on the top panel for

Argus sensor Dongles as shown in Figure B.13. Sensors do not directly connect to the Super-

slave, but are instead loaded onto Argus Dongles which then send a raw or amplified sensor
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Figure B.10. Argus Superslave Circuit Diagram.

reading back to the Superslave. The process for connecting and starting Argus Superslaves and

Dongles is as follows:

1. Disconnect Superslave fromI2C serial bus

2. Set address ID dial to desired hardware ID. One dial is for tens, the other dial is for

ones, giving a range of 00-99. The Argus network may not function properly if two

Superslaves have the same ID. (The address dial may also be changed on the fly, if the

user pushes the reset button afterwards.)

3. Connect power to Argus Superslave

4. Keep tabs on the status lights

5. Connect Argus Dongles to the Superslave’s Dongle ports
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Figure B.11. Argus Superslave Circuit Diagram.

6. Check lights to verify that Superslave subsystem is up

7. Connect the Superslave to theI2C serial bus

8. Check lights again to verify systems operational

B.4.1.3 Dongle

The Argus sensor Dongle shown in Figure B.15 accepts up to four sensors for data col-

lection. The Dongle amplifies readings from a resistive sensor (the amplification of which

is user configurable) and transmits this amplified analog signal to the Argus Superslave for

processing and conversion. Digital signals can also be transmitted in the form of a high-low

steady signal, as well as unamplified analog signals (in the case of black-box sensor devices).
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Figure B.12. Argus Superslave Circuit Diagram.

The Dongle is a small packaged board used to reduce the complexity of the Superslave and

increase the sensor flexibility of the Argus sensor network. The Dongle incorporates circuitry

and input slots to accommodate four individual analog or digital sensors and associated resis-

tance networks. The two inch by 1.25 inch Dongle board circuit layout is shown in Figure

B.16 and the circuit schematic is shown in Figures B.17. Table B.3 shows the components

required to build a Dongle and the associated cost. A basic solder mask board can be or-

dered from www.barebonespcb.com whereUnitPrice = ($25.00+ Quantity∗XDim∗YDim∗

$0.50)/Quantityand for 50 units, price is $1.75 each ($87.50 for the order). Argus Dongles

have the following features:

• On board non-inverting amplifier circuit
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Figure B.13. Argus Superslave top view.

• Four sensor banks

• Amplifies signals from resistive sensors

• Accepts signals from digital input (i.e., switches)

• Modifiable for accepting unamplified analog input

• Wall mountable

Table B.3: Argus Dongle Parts List.

Part Name Mouser Number Price/Unit Quantity Price

0.1uF Capacitor 581-SR215C104M $0.26 1 $0.26

Op Amp 4-gate bipolar DIP-14 511-TSH24IN $1.28 1 $1.28

RJ-45 8pin Jack SIDE ENTRY 571-5551641 $0.56 1 $0.56

16 pin single row pin socket 517-974-01-16 $1.54 1 $1.54
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Table B.3 – continued

Part Name Mouser Number Price/Unit Quantity Price

36 pin double row pin socket 517-975-01-18 $1.55 1 $1.55

IC socket DIP-14 506-514AG11D-ES $0.88 1 $0.88

Bud Ind. Plastic Box 563-CU741MB $2.80 1 $2.80

Total Cost $8.87

+ PCB $1.75

Grand Total Cost $10.62

Each sensor Dongle has an RJ-45 Ethernet jack for connection to an Argus Superslave.

Each sensor Dongle also contains four banks of 12-pin sockets for sensor configuration as

shown in Table B.4, although with some configurations certain pins are optional. The pin

functions are as follows:

1. Out: Dongle output. The splices into the sensor feed going back to the Superslave.

The pin is used only for un-amplified sensors, when we want to bypass the amplifier

altogether.

2. GND: Superslave ground. Used as a reference ground.

3. Input: Sensor input. Feeds into the voltage divider part of an amplifier circuit. One leg

of a resistive sensor is to be placed here, although our usual configuration bypasses this.

4. Vcc: Superslave power. Used to power sensors or sensor devices.

5. R3, R4: Amplifier gain. Resistors are plugged in these to set the gain of the Op-Amp.

The gain is 1 + R3 / R4.

6. R2, R1: Pre-amplifier voltage divider. The voltage that is fed into the amplifier is deter-

mined by R2, R1, and the resistive sensor (Input).
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Figure B.14. Argus Superslave side view.

There are four such banks on an Argus Dongle, ordered from left to right, with each bank

having the configuration shown in Table B.4 and Figure B.18.

Table B.4. Single Argus Dongle bank

Out GND Input Vcc

R4 R3 R2 R1

R4 R3 R2 R1

Each Argus Dongle bank utilizes a non-inverting amplifier circuit as shown in Figure

B.19 (which may be bypassed if the sensor does not require analog amplification). In this

circuit, R1 shall represent the resistive sensor (actuallyR1 and the sensor are in series, but
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Figure B.15. Argus sensor Dongle with light sensor.

R1 is optional and usually bypassed, and we refer to the sensor asR1). R2 forms a voltage

divider along withR1. R3 andR4 change the gains on the operational amplifier. The output of

a Dongle sensor bank (amplified) is as follows:

• Ampli f ier input voltage(A) = (R2/(R1+R2))∗5V

• Ampli f ier gain(G) = 1+R3/R4

• Ampli f ier out put(O) = A∗G

• Argusconversion(C) = 255/5V

• Argusout put(X) = O∗C,or(A∗G∗C)

A quick way we use to calculate the raw reading that Argus returns is by using the

equation,X = (R2∗510)/(R1+R2), if given R1 (the sensor) andR2, and assuming gains is set

to 2 (R3 is equal toR4) SinceR1 is in the denominator, the Argus range is nonlinear compared

with the sensor’s range. That is, the larger the difference betweenR1 andR2, the less Argus

can differentiate the readings. This can be summed up as:

• WhenR1 < R2, we get the maximum reading from Argus.

• WhenR1 = R2, we get the maximum reading from Argus.
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Figure B.16. Argus Dongle layout schematic (2 in. x 1.25 in.).

• WhenR1 > R2, we get a decreasing reading from Argus, where the precision also de-

creases.

When choosing a resistance forR2, we want a value that is near the lower extreme of the

sensor’s desired range. For example, if we have a light sensor which reads from 500 ohms to

5000 ohms in our desired range, we would choose anR2 of 500. This does hurt our precision

badly at readings approaching 5000, but luckily the light sensor’s resistive values also increase

exponentially as it gets darker! However, this is not the case for all sensors. We may have

to sacrifice all readings at the low extreme in order to get more accurate readings at the high

extreme (i.e., choosing an R2 of 1000 instead cuts off all readings under 1000), but this gives

us a little better precision as it approaches 5000. A poor tradeoff, but we do have another

option which is to swapR1 andR2. The sensor goes whereR2 is slotted, andR2 goes where

the sensor is slotted. In which case our equation becomesX = (R1∗510)/(R1+R2). With a

corresponding swap in effect:

• WhenR1 < R2, we get a decreasing reading from Argus, where the precision also drops

off.
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Figure B.17. Argus Dongle circuit diagram.

• WhenR1 = R2, we get the maximum reading from Argus.

• WhenR1 > R2, we get the maximum reading from Argus.

That is, we now choose the maximum extreme, and decreasing resistances increasingly lose

precision. Readings are also inverted, so in the case of our light sensor, where high readings

used to correspond to more light, they now correspond to less light.

If one wishes to decrease the Argus range in trade for more precision, one can increase

the gains(1+ R3/R4). For example, anR3 of 200 and anR4 of 200 gives you a gain of

(1+200/200) = 2; while anR3 of 400 and anR4 of 200 gives you a gain of(1+400/200) = 3.

Assumably you could invert the gain, and get more range for less precision. Gain modification

has had little testing.
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Figure B.18. Argus Dongle sensor banks.

Figure B.20 is an example of a simple analog sensor circuit that requires an op-amp gain

circuit. Note that theR1 slot is optional. This is the typical configuration of temperature and

light sensors.

Figure B.21 is an example of a digital input. The digital input is directly attached to

output socket header. In certain devices (such as the CO2 sensors) it is important that the

positive line is not switched with the signal out. Positive is usually red or orange and signal

out is blue or black; otherwise, damage could be caused to the optoisolator. This is a typical

configuration for reed switches on doors, windows, and cabinets as well as pressure switches

placed in furniture seating surfaces.

Figure B.22 is an example of an analog sensor that supplies its own voltage output signal.

It doesNOT require the op-amp, so we bypass it. This is a typical configuration for humidity

sensors. This configuration may require modification to the op-amp circuit as shown in Figure

B.23. The following output pin must be lifted (i.e., bent) from the socket or the output pin on
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Figure B.19. Dongle amplification circuit.

the operational amplifier acts as a voltage divider and affects the reading. If one does not care

about losing minor output accuracy, this alteration need not be performed.

Table B.5 shows the recommended resistors for the particular sensors we use, although

the resistive values of sensors may vary wildly among manufacturers, or even among different

models in the same line. For these sensors we have decided to choose a value somewhat

higher than the lower extreme, but that still gave us good range among the possible readings

in the environment—the MavPad is unlikely to give a thermistor reading of freezing or boiling

temperatures. In all cases we experimented with the sensor first to get an idea of the possible

ranges in the environment in which we were interested.
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Figure B.20. Dongle loadout for a typical analog sensor.

Figure B.21. Dongle loadout for a typical digital sensor/switch.

Table B.5. Example resistor values for Dongle sensor loadout

Sensor Typical R4 Gain R3 Gain R2 Lower R1

Type Values Denominator Numerator Extreme Optional

Light sensor 500 to 3K ohms 1K ohms 1K ohms 200 ohms None

Thermistor 900 to 1.1K ohms 1K ohms 1K ohms 360 ohms None

Pressure 20K to 20M ohms 1K ohms 1K ohms 33K ohms None

Figure B.22. Dongle loadout for a “blackbox” analog sensor device.
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Figure B.23. Output pins on operational amplifier.

Interested implementers should visit the MavHome project website at mavhome.uta.edu

to download all of the appropriate eagle files, latest information, documentation, and Argus-

Hermes software for ArgusMS. We also provide example application clients to interface with

the Hermes drivers.

B.4.2 ArgusD

The Argus Master may be modified to collect only digital data at a very high rate of

speed. With an add-on daughterboard, the Master has extra ports to both connect to and power

digital sensors (or switches) and is called ArgusD for Argus Digital as shown in Figure B.24.

The daughterboard schematic is shown in Figure B.25 and the layout schematic in Figure B.26.

ArgusD has the following features:

• No Superslave required

• Supports up to twenty digital sensors or switches

• Fast rate of data collection—8 Hz

• Supports long lengths of cable to the sensors (100+ ft.)
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• Requires only a software change

• Feeds data directly to a host computer

• To be used when only digital data is needed

Figure B.24. Argus Digital with motion sensor loadout.
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Figure B.25. Argus Digital circuit schematic.
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Figure B.26. Argus Digital layout schematic.

Each high speed analog board has 20 RJ-12 jacks located on the top panel for sensor

input. To setup ArgusD for operation follow these steps:

1. Connect power to the Argus Digital

2. Keep tabs on the status lights

3. Connect digital sensors to Digital ports (RJ-11 phone sockets)

4. Connect RS-232 serial cable to the Master’s 1/8 inch stereo socket

5. Connect RS-232 serial cable to the host PC’s DB-9 serial socket
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Interested implementers should visit the MavHome project website at mavhome.uta.edu

to download all of the appropriate eagle files, latest information, documentation, and Argus-

Hermes software for ArgusD. We also provide example application clients to interface with the

Hermes drivers.

B.4.3 ArgusM

The Argus Master may also be modified to control stepper motors. When installed with

an add-on daughter board, the Master may power and control up to four stepper motors in a

setup we call Argus Motors (ArgusM) as shown in Figure B.27. The schematic for ArgusM

is shown in Figure B.28 and the layout schematic in Figure B.29. The Argus Motor controller

interfaces directly with a host PC. ArgusM has the following features:

• No Superslave required

• Uses daughter board configured for stepper motors

• Supports up to four motors

• Onboard ULN2003 stepper motor driver chip isolates and protects the microcontroller

from the large currents needed by the motors

• Requires only software changes

• Connects directly to a host PC
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Figure B.27. Argus Motors with two sets connected to mini-blinds.
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Figure B.28. Argus Motor circuit schematic.
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Figure B.29. Argus Motor layout schematic.

ArgusM controls up to four separate stepper motors. These motors are four-phase unipo-

lar stepper motors. There are four coils in such motors, one line per coil, plus a common line.

The minimum lines coming out of these motors is five. Some unipolar stepper motors have

six wires, but these simply double the common line. ArgusM sends a signal to one line at a

time—an active-low signal to activate one of the coils. The common is at high potential, so a

low signal from ArgusM activates and a high signal deactivates. While any coil is active, the

motor will prevent any movement. ArgusM deactivates all coils when done, allowing someone

to change the position manually. We typically step through one coil at a time in a clockwise or
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counterclockwise fashion, for a four-step revolution. We could possibly make it an eight-step

revolution for more power, by using two coils at the same time to give us in-between points,

but the system is currently programmed for four steps.

Since stepper motors use different color coding of their wires, the best way to figure out

the mapping is by testing their resistances with a multimeter and power supply. This procedure

is as follows:

1. For a five wire stepper motor, we are trying to find four coils and one common. For a six

wire, we are trying to find four coils and two commons.

2. Test the resistance between all wires. The common wire should have half the resistance

to a coil, as the coils have to each other.

3. Supply voltage to the common(s). 5 volts or 12 volts are acceptable

4. Ground one wire and assume this is Coil 4.

5. Ground the other wires one by one and release when done.

6. If the motor turns clockwise, label this wire Coil 3.

7. If the motor does not turn, label this wire Coil 2.

8. If the motor turns counterclockwise, label this wire Coil 1.

Now that we have the coils identified, we may map them to a CAT-5 Ethernet cable we

use to carry the control signals. CAT-5 is chosen because of its ubiquity and price—plus it

reduces the number of tools necessary in the lab and personnel capable of making CAT-5 wire

are easy to find when needed (most likely CS, CSE, and EE departments are full of people with

this skill). Table B.6 shows the mapping from CAT-5 to the stepper motor wires.
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Table B.6. CAT-5 Ethernet cable wire mapping to stepper motor coils

Ethernet Coil #

Green Coil 1

Orange Coil 2

Blue Coil 3

Brown Coil 4

Orange/White Common

Each motor controller has four RJ-45 Ethernet jacks for stepper motor power and control,

located on the top panel. To setup ArgusM follow these steps:

1. Connect power to the Argus Motor

2. Keep tabs on the status lights

3. Connect Argus stepper motors to RJ-45 Ethernet jack

4. Connect RS-232 serial cable to Argus Motor’s 1/8 inch stereo socket

5. Connect RS-232 serial cable to host PC’s DB-9 serial port

6. Check lights again to verify system is operational

Interested implementers should visit the MavHome project website at mavhome.uta.edu

to download all of the appropriate eagle files, latest information, documentation, and Argus-

Hermes software for ArgusM. We also provide example application clients to interface with

the Hermes drivers.

B.4.4 ArgusAD

The Argus Master may also be configured to collect both analog and digital data at a

high rate of speed, a compromise between Argus Digital and Argus Master-Slave. Using a
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daughterboard, the Argus Analog + Digital, or ArgusAD, as shown in Figure B.30 may act as

a single analog and digital data collection device that streams the data directly to a host PC.

The circuit schematic for ArgusAD is shown in Figure B.31 and the layout schematic in Figure

B.32. ArgusAD has the following features:

• No Superslave required

• Supports up to eight analog sensors (via Argus Dongles)

• Supports up to ten digital sensors/switches

• Fast rate of data collection—8 Hz

• Requires only a software change

• Feeds data directly to a host computer

Figure B.30. Argus Analog + Digital.
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Figure B.31. Argus Analog + Digital circuit schematic.
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Figure B.32. Argus Analog + Digital layout schematic.

Each Argus Analog-Digital board has two RJ-45 Ethernet jacks for analog sensors and

ten RJ-11 phone jacks for digital sensors, all located on the top panel as shown in Figure B.33.

To setup ArgusAD follow these steps:

1. Connect power to the Argus Analog-Digital

2. Keep tabs on the status lights

3. Connect Argus Sensor Dongles to Analog Ports (RJ-45 Ethernet sockets)

4. Connect digital sensors to Digital ports (RJ-11 phone sockets)

5. Connect RS-232 serial cable to the Master’s 1/8 inch stereo socket
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6. Connect RS-232 serial cable to the host PC’s DB-9 serial socket

Figure B.33. ArgusAD top view.

Interested implementers should visit the MavHome project website at mavhome.uta.edu

to download all of the appropriate eagle files, latest information, documentation, and Argus-

Hermes software for ArgusAD. We also provide example application clients to interface with

the Hermes drivers.
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C.1 MavPad Description

The MavPad is an on-campus student apartment located at University Village on The

University of Texas at Arlington’s campus. The apartment consists of a living/dining room

combination, a kitchen, a bathroom, a large bedroom, and a walk-in closet. The living room is

shown in Figure C.1 and the dining portion is shown in Figure C.2. The kitchen is small and

shown in Figure C.3. The bedroom supports two people and can be seen in Figure C.4. The

bathroom contains a sink, toilet, and a shower. The bedroom closet is large enough to hold

clothes as well as computer equipment including the network routers and our master server.

Figure C.1. MavPad living room.



263

Figure C.2. MavPad dining room.

C.2 Computing Power

The Mavpad hosts four Pentium 4 class SuSe 9.1-based Linux machines. Two machines

act as sensor collectors for the ArgusD networks as well as for X-10. These machines are

located in the living room and the bedroom. The machine in the kitchen supports X-10, the

ArgusM network, and the ArgusMS network. The machine in the closet is the master server

which hosts the experimental software systems for decision-making as presented in this dis-

sertation. The system uses a 100bTX network and is connected to the Internet through a 4Mb

cable modem donated by Comcast. There currently is not any wireless connectivity in this

environment.
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Figure C.3. MavPad kitchen.

C.3 Sensing and Actuation

The MavPad has a deployed ArgusD network with two units supporting up to forty sen-

sors, a single ArgusM network supporting the two mini-blinds in the apartment, an ArgusMS

network with three Superslaves and fourteen Dongles total, and an X-10 system covering three

zones. This environment is also equipped with an X-10 controlled HVAC system and a water

leakage detection system. Figures C.5 and C.6 show some of the ArgusMS Dongles deployed.

Figure C.7 shows the ArgusD passive infra-red (PIR) motion sensor array mounted on the ceil-

ing. The X-10 deployment is shown in Figure C.8 along with the ArgusM actuators for the

mini-blinds. The ArgusMS and ArgusD sensors are shown in Figure C.9. A complete list of

deployed sensors and actuators for the MavPad is presented in Table C.1 and the Argus network

deployment costs are shown in Table C.2.
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Figure C.4. MavPad bedroom.
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Figure C.5. ArgusMS Dongle on the wall.
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Figure C.6. ArgusMS Dongle sensors by the window near an X-10 controlled floor fan.
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Figure C.7. ArgusD ceiling mounted PIR motion sensors.
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Figure C.8. MavPad X-10 and ArgusM Actuators.
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Figure C.9. MavPad ArgusMS and ArgusD sensors.
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Table C.2. MavPad Argus Sensor Components

Component Quantity Unit Price Total Price

Master 1 $57.04 $57.04

Mini-blind Master 1 $69.76 $69.76

Motion Master 2 $78.20 $78.20

Super Slave 3 $92.28 $276.84

Dongles 14 $8.87 $124.18

Light Sensor 18 $1.56 $28.08

Temperature Sensor 12 $1.26 $15.12

Reed Switch 6 $2.47 $14.82

Humidity Sensor 4 $20.00 $80.00

Motion Sensor 36 $12.00 $432.00

Grand Total $1,176.04
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D.1 MavLab Description

The MavLab shown in Figure D.1 is commonly referred to as the Artificial Intelligence

Lab, or AI Lab, located in 250 Nedderman Hall of The University of Texas at Arlington cam-

pus. The lab is divided into ten areas which include six cubicle workspace areas (designated

A–F as shown on Figure D.7) with four desks per area as shown in Figure D.2, one large office

(designated as G) as shown in Figure D.3, a living room area (designated as H) often called the

MavDen and shown in Figure D.4, a kitchen area (designated as I) often called the MavKitchen

and shown in Figure D.5, and a conference room (designated as J) as shown in Figure D.6.

Figure D.1. MavLab in 250 Nedderman Hall at UTA.
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Figure D.2. MavLab cubicle workspaces.

D.2 Computing Power

As a work environment, the MavLab hosts over thirty computers. One computer in each

space, for a total of ten computers, is designated to handle the X-10 for each area. Some of these

computers are also tasked to interface to the ArgusMS network, four ArgusM networks, single

ArgusAD network, and two ArgusD networks. Two additional computers are used for database

services and to host the decision-making software. The Mavlab is connected through a gigabit

network and includes 802.11b wireless coverage for mobile devices such as our Mavigator

PDA controller (a control interface for the MavLab environment implemented on a Dell Axim

PDA which allows for control of the light and mini-blinds as well as providing information

from all room sensors to the user).
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D.3 Sensing and Actuation

The MavLab has a deployed ArgusD network with two units supporting up to forty

sensors, four ArgusM networks supporting fourteen mini-blinds, an ArgusMS network with

two Superslaves and fifteen Dongles total, and an X-10 system covering ten zones. The X-10

deployment is shown in Figure D.7 along with the ArgusM actuators for the mini-blinds. The

ArgusMS and ArgusD sensors are shown in Figure D.8. A complete list of deployed sensors

and actuators for the MavLab is presented in Table D.1 and the Argus network deployment

costs are shown in Table D.2.
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Figure D.3. MavLab large office.
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Figure D.4. MavLab living room (a.k.a., MavDen).
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Figure D.5. MavLab kitchen (a.k.a., MavKitchen).
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Figure D.6. MavLab conference room area.
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Figure D.7. MavLab X10 and ArgusM Actuators.
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Figure D.8. MavLab Sensors.
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Table D.2. MavLab Argus Sensor Components

Component Quantity Unit Price Total Price

Master 1 $57.04 $57.04

Mini-blind Master 4 $69.76 $279.04

Motion Master 2 $78.20 $156.40

AD Kitchen Master 1 $82.64 $82.64

Super Slave 2 $92.28 $184.56

Dongles 15 $8.87 $133.05

Light Sensor 37 $1.56 $57.72

Temperature Sensor 11 $1.26 $13.86

Reed Switch 2 $ 2.47 $4.94

Humidity Sensor 3 $20.00 $60.00

Motion Sensor 25 $12.00 $300.00

Grand Total $1,329.25
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E.1 Preface

This appendix is an introduction to the simulator we use for testing, evaluation, and

experimentation for the work in this dissertation. We call this simulator ResiSim as it was

originally intended to provide a residential home simulation. Several facets of this simulator

and its design are novel in the world of modeling and simulation. We believe this new paradigm

will prove useful in intelligent environment work and help bridge the gap between reality and

virtual reality.

E.2 Introduction

Simulation is an important tool for performing evaluation and research in many areas.

However, the current simulation paradigms do not lend themselves well to all environments. In

our primary research, we are involved in exploring artificial intelligence techniques in intelli-

gent environments—smart homes and workplaces. We seek to simulate these environments as a

discrete event simulation with dozens of objects. Each object should contain public and private

information, operations, and interfaces. They need to be self contained, accurate simulations

of the items they represent and even have the ability to be replaced by actual objects—bridging

the gap between reality and virtual reality. As in most real-world environments, new objects

can be introduced at any time and existing objects removed. An ideal simulator for this type of

work would allow for easy object addition and removal, preferably with little or no changes in

configuration.

Imagine a scenario occurring in our lab (i.e., the UTA AI Lab shown in Figure E.1) where

we add a new desk lamp and salvage some of the computers. Some manufacturer has already

produced the new lamp, is intimately familiar with its form and function, and probably already

has existing 2D and 3D models. It would be very beneficial to have this information instead

of having to create it ourselves. Couple this with the increasing growth in wireless control and
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Figure E.1. UTA AI Lab (MavLab) composed of zeroconf objects.

movement towards making smarter objects (e.g., even static furniture with an RFID tag can

store and provide information about itself) along with wireless localization technologies [68]

and the future contains objects that 1) can provide information about themselves (e.g., a link

to their information on the Internet), 2) can have an externally (possibly wireless) controlled

interface, 3) can provide state information, and 4) can be localized in their environment. If

environmental systems can find these objects, then logical proxies can be created in cyberspace

to represent these real-world items and even simulate them if they are not physically present.

Current distributed simulation systems are usually built as specific representations of the

environments they simulate. Changes in the environmental objects are usually planned and

well-defined as in HLA [85]. Simulation systems usually do not handle entry of new entities

of which they have no configuration information and require that entities maintain their own

real-world information with additional processing and tracking requirements [84]. Commercial

simulation systems usually allow the users to develop environments and environmental condi-

tions with great flexibility, but require configuration and reloading in order to accommodate

change.
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We propose a new type of simulation system that accommodates a high level of dynamic

flexibility, requires no configuration, is object-oriented, easy to develop, and scales while main-

taining reasonable performance. It is based on the IETF Zero Configuration Working Group’s

Zeroconf specification [87] and the notion of small components that encapsulate a set of fo-

cused operations and information pertaining to a single object or functionality. This paper will

present the main ideas of this simulation system, the architecture, a discussion of our imple-

mentation, and performance evaluation.

E.3 Distributed Simulation

Distributed simulation originated in the late 1970’s in the high performance comput-

ing community. Their work sought to develop synchronization algorithms that would produce

quicker results across many machines compared to a single machine. In the early 1980’s the

defense community started to use distributed simulation to create virtual real-worlds that inte-

grated flight, ground vehicle, and other simulators with computer generated forces into cohe-

sive battlefield training exercises. They started with the homogenous SIMNET, advanced to the

heterogeneous DIS (Distributed Interactive Simulation)[84], and have now arrived at the HLA

(High-Level Architecture) [85] standard. During the same time frame, the computer gaming

community has developed from Multi-User Dungeon (MUD) games to the massively multi-

player games of today (e.g., Everquest [190]) which distribute the simulation to thousands of

participants. [58] However, all of these examples containa priori well-defined interfaces, con-

figuration requirements, and heavy-weight entities (i.e., each entity is an entire simulation in

itself containing information about the entire local real-world).
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E.4 Zero Configuration Networking

In 1999, the IETF Zeroconf Working Group was chartered in order to develop standards

for zero configuration networking not only for computers, but for all types of networked prod-

ucts. Zeroconf is currently comprised of three main technologies: IPv4 link-local addressing,

multicast DNS [134], and DNS service discovery [46]. Zeroconf objects must be assigned

an IP number without being pre-configured with it and without a DHCP server. Link-local

addressing is a defined method for networked entities to self-assign addresses and check for

conflicts. Multicast DNS allows for the translation between names and IP addresses without a

centralized DNS. This is accomplished by querying name resolution and browsing over mul-

ticast IP, where all machines listen and, if applicable, respond to the query based upon their

own view of the network and name resolution memory. In order to find services without a

directory server, DNS service discovery provides descriptive information stored in SRV and

TXT records that are available for query through multicast DNS [87].

When a zeroconf object is started, it first seeks an IP number from a DHCP server,

if available, or uses link-local addressing. Link-local addressing works by a random selec-

tion of an IP number from the IANA [83] specified range of link-local addresses (currently

169.254.x.x). It then broadcasts out a message to see if any other machine has assigned it-

self this number as well. If so, then it randomly choses another number and rechecks for

conflicts. This process continues until the device finds a nonconflicting address. Once the

device becomes a member of the IP network, it then needs to advertise itself and find other ser-

vices. The first step in sharing is to create a unique name for the object. Zerconf naming uses

the conventionuniquename.typeofservice.networkprotocol.local.where theunique nameis a

local network unique name for the object instance (e.g., KitchenMicrowave),protocolspec-

ifies the protocol name of the type of service through which the object communicates (e.g.,
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xyzmicrowave1), networkprotocolis the actual network protocol used in communication with

the object (currently onlytcp and udp are supported), andlocal is the network domain, cur-

rently set to the link-local domain. This unique name is then registered with all other devices

through a Multicast DNS-Service Discovery daemon which broadcasts the information out to

the local network. Other objects on the network note the name and associated IP for future ref-

erence. A text (TXT) record can also be transmitted and associated with the name-address pair-

ing to provide additional information (e.g., model URL, contact port, IDL name for CORBA

IDL lookup, and so forth). The object is now discoverable and all of the information needed

to contact it is available. Discovery is initiated by a network query for a type of object such as

xyzmicrowave.tcp.local.in which a response ofKitchenMicrowave.xyzmicrowave.tcp.local.

should be received. The IP and TXT record can be retrieved with the name as well. With this

information an entity now has the ability to contact theKitchenMicrowaveon thelocal network

using theTCPnetwork protocol and following thexyzmicrowaveprotocol to perform actions

consistent with the defined interface [87].

The competing standard to zeroconf is Universal Plug-n-Play (UPnP) [218] which is sim-

ilar to zeroconf with a few notable exceptions. UPnP is a consortium of 728 members, mostly

corporations, who define the “standard” and the protocols of the devices using UPnP. There

are specifications for printers, scanners, and many other devices, but all have to be approved

by the consortium before being available. UPnP uses link-local addressing and multicast DNS,

but also adds the usage of SOAP. In general, it is a similar mechanism, but has more rules and

restrictions and is governed by a closed business consortium.

1Usually well-known IANA registered protocols are used, but any protocol understood by using objects can
be specified. The idea is to promote the usage of existing protocols and standards and not invent new ones.
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E.5 ZCoDS

Simulation at its core consists of an environment and objects that exist in that environ-

ment. Mathematical models of behavior govern the interactions and results of the constituent

parts. In distributed simulation the objects do not exist on the same machine, but rather on the

same network. Computation, control, state, and interactions are spread across the participating

machines on the network. In some simulation environments any process that starts participating

is included in the simulation and in others they must be specifically configured to participate.

The former extreme requires absolute control over the machines and their processes in order

to prevent chaos, and the latter requires the labor of complete configuration. Both require a

level of control to ensure proper simulation. The well-defined and configured simulation is

the obviously preferred method, especially in research, but the burden of configuration can

be quite expensive in time and labor. By integrating zeroconf technology into the distributed

simulation we can gain the power and stability of the well-defined simulation while avoiding a

high penalty for configuration.

A ZCoDS (ZeroConfigurationDistributedSimulation) environment is comprised of one

or more objects. Objects can be of any size and functionality, but are categorized into one of

five types: static, dynamic, simulation, observation, and interface. Static objects simply exist

and do not move. Dynamic objects can move in the environment or change state. Simulation

objects provide mathematical support to coordinate interactions between other objects. Obser-

vation objects provide a view into the simulation. Interface objects allow either users or other

external entities to interact with the simulation. Every object contains attributes and a state, it

may also provide functionality in the form of operators. To run a simulation all that is neces-

sary is to start all of the objects. The static objects make up the environment while the dynamic

objects are the key actors. The simulation objects determine the effects of the dynamic objects

on each other causing state changes as necessary. The simulation can be viewed through an ob-

servation object that may appropriately display the state of the simulation. User interaction or
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external information may be channeled through an interface object. Updating is usually event

driven, but other types of simulations could be established depending on the core programming

of the objects and their defined attributes and operations.

Figure E.2. Simulation object types in ResiSim.

E.6 Case Study: ResiSim

We have developed a simulator using the principles described in the last section. Figure

E.2 shows a view provided by an observation object in a ZCoDS environment established

by the ResiSim simulator. ResiSim consists of three main parts: logical proxy objects, core

simulation objects, and user interface objects. It was designed to provide an accurate simulation

of a residential environment, but has been used for workplace environments as well.

The logical proxies are zeroconf enabled object processes that are distributed among the

available computing assets on the network. They represent an actual object in the real-world

(e.g., a lamp or a chair). Logical proxies in our work are usually static objects, but could be
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dynamic if they move around or change state in the environment. Our logical proxies usually

take one of two forms—real-world or simulated. Real-world logical proxies are used to bridge

the gap between reality and virtual reality by projecting a logical interface to a real-world

object into the simulation environment so that the simulator can actually control the real-world

object. For example, we can allow some lights in the real-world to be turned on and off through

simulation actions (e.g., a virtual inhabitant can turn on real-world lights). Simulated logical

proxies are pure virtual reality objects that simulate the behavior of the real-world objects they

represent.

Figure E.3. ResiSim::Server 2D UTA AI Lab observation object view.

The core simulation objects include zeroconf enabled virtual inhabitant dynamic objects,

simulation objects, interface objects, and an observation object. Figure E.3 shows the 2D ob-

servation object view of the UTA AI Lab simulation, and Figure E.4 shows an interface panel

which allows selection of the discovered objects included in the simulation. In our imple-

mentation we aggregate the core simulation objects with an interface and observation object

into the ResiSim Server component. We call this a server because from the simulation core
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Figure E.4. ResiSim::Server interface object panel.

we can serve to clients outside our link-local addresses through IP connections. If the clients

are within the link-local network, then they participate as zeroconf objects; otherwise, they

must be configured to locate the server on the Internet. The server provides a collecting point

for all of the necessary components for a complete simulation; however, all of the constituent

components are independent zeroconf objects. This allows for easy dynamic changes in the

simulation where any object can be added or removed to the simulation. Removed objects no-

tify through zeroconf their removal allowing interacting objects to accommodate the change.

Added objects notify their availability and service through zeroconf allowing other objects to

seek interactions with them. These components comprise a complete ZCoDS environment.

An example of a useful user interface object is the ResiSim Client which is a zeroconf-

enabled (but not required) process that combines an observation object and an interface object

in order to provide an interactive 3D environment to the user as seen in Figure E.1. This com-

ponent was created to accommodate connections outside of the link-local address by commu-

nicating with the ResiSim Server through the Internet, which requires minimal configuration

in order to locate the server. When run on the link-local network, the client can find the server
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through zeroconf without any configuration. The server is also better informed of its connec-

tion to clients since it registers any client removals.

Using zeroconf technology to create a simulation environment has many strengths and

few weaknesses. The obvious strengths are the lack of configuration needed to create a dis-

tributed simulation since objects can discover each other and utilize information and operations

of each other as designed and the dynamic capability of adding and removing simulation ob-

jects during runtime with proper notifications and discovery occurring as necessary. The inclu-

sion of standard, well-defined, and Internet approved protocols, and not necessarily waiting for

ones designed by committee, promotes the use of IANA and development and sharing of pro-

tocols that helps advance the computing community. An added strength is the cross-platform

availability of the technology since Apple Computer, Inc. has made their cross-platform zero-

conf implementation, called Bonjour, freely available over the Internet [12]. The weaknesses

of using zeroconf are those shared by many distributed simulations. Network utilization is

increased by all of the communication required for address allocation, multicast DNS com-

munication, service discovery, and network query. Distributed objects must also communicate

through the network, increasing bandwidth utilization. Single component failures can damage

the simulation, though in zeroconf it is easy to recover since a replacement object can be dy-

namically reinserted. Network speed and bandwidth are improving daily and zeroconf makes

it easy to establish backup objects that can instantly replace failed components.

In ResiSim the location of objects is maintained by the logical proxy that represents the

object. Movement of objects is reflected in state changes which are broadcast to the ResiSim

server. These changes may be initiated by software for simulated objects, or by localization

methods in the real-world reflected by state changes in position in the logical proxies.
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Figure E.5. ResiSim architecture.

E.6.1 Implementation

As introduced in the last section, we have implemented a ZCoDS type simulator we

call ResiSim (Residential Simulation). We use this simulator to conduct artificial intelligence

research in intelligent environments using two environments: the MavLab which is the UTA

AI Lab and the MavPad which is an on-campus apartment. “Mav” is an prefix acronym for

our MavEnvironments which stands forManaging anadaptiveversatile Environment. The

basic architecture of our simulation is illustrated in Figure E.5. We utilize both real-world

and simulated logical proxy objects in homogeneous and heterogeneous modes sometimes

preferring only simulated, only real-world, or whatever is available possibly with a preference
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Figure E.6. MavPad apartment composed of zeroconf objects.

either towards real-world or simulated. The power of zeroconf means that both objects can

exist in the link-local network, can be discovered, and the preference chosen for inclusion in the

desired simulation experiment. Another advantage is that our real-world and simulated logical

proxies both have the same attributes and operations and due to careful modeling they both

behave in the same manner—thus developing systems to work with objects in virtual reality

directly translates into working with objects in reality with no changes. Real-world objects

are zeroconf enabled as well, so they are found and controlled by our systems automatically.

The key difference between running in reality and virtual reality is the presence of the core

simulation objects aggregated by the ResiSim Server.

ResiSim Server starts the simulation environment through a number of steps. First all

logical proxies are started then located and cataloged by name and type (static and dynamic

objects), then all simulation objects are started then located and cataloged by name and type,

the simulation objects will find the static and dynamic objects with which they interact, then

an interface object is started in which the user can manipulate the simulation, and finally an

observation object is displayed showing a 2D representation of the simulation environment.

Virtual inhabitant dynamic objects can be started at any time as well as any other interface and
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observation objects (e.g., ResiSim clients). Startup takes a slightly longer period of time than

a typical predefined simulation because of the discovery process and dynamic configuration.

Regular runtime performance is consistent with pre-configured distributed simulations. Once

the simulation objects are started by a interface object command, the simulation begins in an

event driven manner. Zeroconf objects are free to come and go as necessary to support the

desired simulation.

When observation objects start, they find the environment static object and all of the

static and dynamic objects in the environment. Depending on the display type, either 2D or

3D graphical models are obtained for each object by referring to a URL embedded in the TXT

record of each zeroconf object. The observation object checks to see if the object model is

already cached and if not follows the URL to download the model from the Internet (we use

wgetand serve models from a web server). The observation object can also verify if the local

cached version is the latest and download an update if necessary. Decoupling the object from

its model in this manner allows for easy updating of the object model which may be maintained

by an outside organization.

An idea that we would like to promote is that any company producing a product should

generate both 2D and 3D models of the product, a complete attribute and interface specification,

and an example logical proxy. Organizations should make these available for free download

over the Internet. This promotes reuse and widely accepted models common to simulations

that use these types of objects.

E.6.2 Environments

We have complete 2D and 3D models for both of our research environments. The

MavLab shown in Figure E.1 contains a total of 139 models which include static objects such

as the room environment and furniture, and dynamic objects such as motion sensors, tempera-

ture sensors, lights, and computers. The 2D pixel size of the MavLab environment is 651x568.
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The MavPad shown in Figure E.6 contains a total of 111 models which includes similar objects

at those in the MavLab, but more typical of a residence than an office. The 2D pixel size of the

MavPad environment is 840x394. All models were created using Blender [173] and built to

scale. The base unit for our simulations is 1 decimeter. Scaling in the MavPad is 4.2 pixels/dm

and in the MavPad 8.45 pixels/dm.

Figure E.7. MavLab visualization performance.

E.6.3 Performance

We evaluated performance of ResiSim using both the MavLab and MavPad simulations

and compared them against a monolithic simulation and a distributed simulation. The tests

were conducted to measure the time to display the entire simulation in a 3D observation object

as seen in Figures E.1 and E.6 from initial start of the simulation logical proxies until the first

complete view of all objects. This represents a complete path to visualization and the begin-

ning of interaction. The monolithic simulation was a modification of a ResiSim Client that

loaded all of the objects locally on the same machine similar to a video game. The distributed

simulation (DS) used a modified ResiSim Client that was pre-configured with the logical proxy
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information instead of having to discover them. ZCoDS uses zeroconf to find all of the objects

in the simulation with no pre-configuration. The ZCoDS and DS simulations were run with

models cached and without models cached facilitating the need to retrieve the models from

a local webserver using thewget command. Distributed tests were run on four Intel-based

Pentium 4 machines running at 2 GHz, two with 512MB of memory and two with 1 GB of

memory, and accelerated NVidia-based graphics cards on all. All are connected through a

gigabit ethernet network. The webserver is also located on the local network.

MavLab visualization performance is presented in Figure E.7. Performance between the

DS and ZCoDS simulations scales similarly with ZCoDS taking from -0.3 to 6.8% longer with

an average of 2.9% more time required than the pre-configured DS for the cached versions and

from -2.3 to 10.8% longer with an average of 5.7% more time required for the simulations that

retrieved the models through the web. Compared to a monolithic simulation, the ZCoDS was

consistent in performance for distributed simulations taking from 1.4 to 111.8% longer with an

average of 66.3% for the cached version and from 15.8 to 198.6% longer with an average of

113.8% for thewgetversion. It is difficult to outperform the monolithic simulations that do not

incur network latency and overhead until the processing requirements exceed the capacity of

the single machine hosting the simulation. Overall, the difference between ZCoDS for the tests

we conducted only differed by milliseconds—a negligible difference for the benefits gained by

using zeroconf technology.

MavPad visualization performance is presented in Figure E.8. It tracks very similar

to the performance in the MavLab and shows a consistency in the simulations under different

conditions. Performance between the DS and ZCoDS simulations scales similarly with ZCoDS

taking from -0.4 to 3.2% longer with an average of 1.2% more time required than the pre-

configured DS for the cached versions and from -3.8 to 3.7% longer with an average of 0.6%

more time required for the simulations that retrieved the models through the web. Compared to

a monolithic simulation, the ZCoDS was consistent in performance for distributed simulations
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Figure E.8. MavPad visualization performance.

taking from 8.7 to 30.7% longer with an average of 19.2% for the cached version and from

7.9 to 99.3% longer with an average of 52.4% for thewget version. The quick ramp up in

time required is due to the loading of the furniture objects first in the simulation which tend

to be larger and more complex models than the others. These results indicate much closer

performance between ZCoDS and DS and not that distant of a performance from monolithic.

E.7 Summary

Using zero configuration technology in distributed simulation adds flexibility through

the ability to develop simulations without time and labor intensive configuration, to support

dynamic object addition and deletion, and to distribute computation among a network of local

computers. Zero Configuration Distributed Simulation (ZCoDS) promotes model reuse, the

object-oriented paradigm, standardization, and community development to improve simulation

systems. In empirical studies of performance, the use of zeroconf is similar in runtime to

pre-configured distributed simulation and performs within acceptable time in comparison with

monolithic single-computer simulation.
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F.1 Intellectual Property Rights

The Argus Sensor Network designs (including all ideas, algorithms, artwork, and schemat-

ics), Hermes driver software , the ProPHeT algorithms, the ARBITER, and the entire architec-

ture and designs contained in this dissertation are released under the GNU General Public

License, Version 2 as outlined in the next section. We retain the copyright, but release the use

to the scientific community in order to further discovery in this field. This license applies to

all algorithms, software, and hardware work contained in this dissertation—please substitute

“program,” “software,” or “source code” with the appropriate copyrighted object.

We have chosen not to patent these technologies in order to further scientific and engi-

neering discovery in this area of interest. Please do not violate these rights as outlined in the

next section.

F.2 The GNU General Public License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

F.2.1 Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your freedom

to share and change free software—to make sure the software is free for all its users. This

General Public License applies to most of the Free Software Foundation’s software and to

any other program whose authors commit to using it. (Some other Free Software Foundation



321

software is covered by the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies of

free software (and charge for this service if you wish), that you receive source code or can get

it if you want it, that you can change the software or use pieces of it in new free programs; and

that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities

for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-

stands that there is no warranty for this free software. If the software is modified by someone

else and passed on, we want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in effect

making the program proprietary. To prevent this, we have made it clear that any patent must be

licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
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GNU GENERAL PUBLIC L ICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by

the copyright holder saying it may be distributed under the terms of this General Pub-

lic License. The “Program”, below, refers to any such program or work, and a “work

based on the Program” means either the Program or any derivative work under copyright

law: that is to say, a work containing the Program or a portion of it, either verbatim or

with modifications and/or translated into another language. (Hereinafter, translation is

included without limitation in the term “modification”.) Each licensee is addressed as

“you”.

Activities other than copying, distribution and modification are not covered by this Li-

cense; they are outside its scope. The act of running the Program is not restricted, and

the output from the Program is covered only if its contents constitute a work based on

the Program (independent of having been made by running the Program). Whether that

is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you re-

ceive it, in any medium, provided that you conspicuously and appropriately publish on

each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty; and give any other

recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.
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2. You may modify your copy or copies of the Program or any portion of it, thus forming

a work based on the Program, and copy and distribute such modifications or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice

and a notice that there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these conditions, and telling

the user how to view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent

and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Program, the distribution of

the whole must be on the terms of this License, whose permissions for other licensees

extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work

written entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Program.



324

In addition, mere aggregation of another work not based on the Program with the Pro-

gram (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that

you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corre-

sponding source code. (This alternative is allowed only for noncommercial distri-

bution and only if you received the program in object code or executable form with

such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-

tions to it. For an executable work, complete source code means all the source code for

all modules it contains, plus any associated interface definition files, plus the scripts used

to control compilation and installation of the executable. However, as a special excep-

tion, the source code distributed need not include anything that is normally distributed

(in either source or binary form) with the major components (compiler, kernel, and so

on) of the operating system on which the executable runs, unless that component itself

accompanies the executable.
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If distribution of executable or object code is made by offering access to copy from

a designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute

the Program is void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under this License will

not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. There-

fore, by modifying or distributing the Program (or any work based on the Program), you

indicate your acceptance of this License to do so, and all its terms and conditions for

copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify

the Program subject to these terms and conditions. You may not impose any further re-

strictions on the recipients’ exercise of the rights granted herein. You are not responsible

for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they

do not excuse you from the conditions of this License. If you cannot distribute so as to

satisfy simultaneously your obligations under this License and any other pertinent obli-

gations, then as a consequence you may not distribute the Program at all. For example, if
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a patent license would not permit royalty-free redistribution of the Program by all those

who receive copies directly or indirectly through you, then the only way you could satisfy

both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-

cumstance, the balance of the section is intended to apply and the section as a whole is

intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose

of protecting the integrity of the free software distribution system, which is implemented

by public license practices. Many people have made generous contributions to the wide

range of software distributed through that system in reliance on consistent application

of that system; it is up to the author/donor to decide if he or she is willing to distribute

software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Pro-

gram under this License may add an explicit geographical distribution limitation exclud-

ing those countries, so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if written in the body

of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a ver-

sion number of this License which applies to it and “any later version”, you have the
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option of following the terms and conditions either of that version or of any later version

published by the Free Software Foundation. If the Program does not specify a version

number of this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are different, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM“AS IS” WITHOUT WARRANTY OF ANY KIND , EI-

THER EXPRESSED OR IMPLIED, INCLUDING , BUT NOT LIMITED TO , THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS

WITH YOU . SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND /OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL , SPECIAL, INCIDENTAL OR CONSEQUEN-

TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
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CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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