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ABSTRACT

Effective Sequence Models and Graph Neural Networks for

Molecular Data Analysis

Chaochao Yan, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Dr. Junzhou Huang

Drug discovery is the process of discovering new candidate medications. New

drugs are continually developed by pharmaceutical industries to address increasing

medical needs. Drug discovery involves a series of processes including target identifi-

cation and validation, hit identification, lead generation and optimization, and finally

the identification of a candidate for further development. The development further

includes optimization of chemical synthesis and its formulation, toxicological studies

in animals, clinical trials, and eventually regulatory approval. Both of these processes

are time-consuming and cost-expensive.

Computer-aided drug discovery mainly relies on modern computers to model

drug molecules, which can speed up the process of drug discovery and reduce costs. In

this dissertation, we will investigate two representative applications of drug discovery:

molecule generation and retrosynthesis prediction. Since molecules can be represented

as either sequences or graphs, therefore different machine learning models (sequence

models and graph neural networks) can be adapted for molecular modelling. As the

rapid development of machine learning, there are abundant research works try to
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apply machine learning models on drug discovery. However, these methods are not

efficient and effective enough for real-world applications. We propose to improve the

efficiency of modern machine learning models for the drug discovery applications. We

will explore two representative applications of drug discovery: molecule generation

and retrosynthesis prediction. Particularly, we propose new techniques to improve

the current sequence models for the molecule generation and graph models for the

retrosynthesis prediction, respectively. Extensive experiments prove the efficiency and

effectiveness of our methods.

We will first investigate variational autoencoder models for molecule sequence

generation. We propose a simple and effective solution to the posterior collapse problem

of variational autoencoder models. Then we will study retrosynthesis prediction,

and we propose both template-free and template-based methods to overcome the

disadvantages of existing methods.
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CHAPTER 1

Molecule Generation With Re-balanced Variational Autoencoder Loss

In this chapter, we investigate the molecule generation task, which is the

procedure to generate initial novel molecule proposals for molecule design. Molecule

sequences are first projected into continuous vectors in chemical latent space and then

these embedding vectors are decoded into molecules under the variational autoencoder

(VAE) framework. The continuous latent space of VAE can be utilized to generate

novel molecules with desired chemical properties and further optimize the desired

chemical properties of molecules. However, there is a posterior collapse problem

with the conventional RNN-based VAEs for the molecule sequence generation, which

deteriorates the generation performance. We investigate the posterior collapse problem

and find that the underestimated reconstruction loss is the main factor in the posterior

collapse problem in molecule sequence generation. To support our conclusion, we

present both analytical and experimental evidence. What is more, we propose an

efficient and effective solution to fix the problem and prevent posterior collapse. As a

result, our method achieves competitive reconstruction accuracy and validity score on

the benchmark datasets.

Our initial work [10] is published in the Proceedings of the 11th ACM Interna-

tional Conference on Bioinformatics, Computational Biology and Health Informatics,

and its extension work is published in the Journal of Computational Biology.

1.1 Introduction

The key challenge of material and drug design is to discover novel molecules that

have the desired physical or chemical properties. This process can be understood as an
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optimization problem as described by [11], and the optimization target is to search for

molecules with the optimal desired property scores. However, exhaustive exploration

in the molecule space is infeasible, since the total number of estimated drug-like

molecules is in the order of 1060 as estimated by [12]. Besides, molecule synthesis

methods like [13] and [14] and molecule validation procedures are also time-consuming

and expensive in practice, which makes the brute-force exploration infeasible.

As deep learning methods are making more and more achievements in multiple

fields [15, 16, 17, 18, 19, 20, 21, 22], they have also been applied for molecule sequence

generation. The majority of existing molecule generation methods heavily rely on the

variational autoencoder (VAE) proposed by [23] and [24]. VAE is the combination

of a deep latent variable model and an accompanying variational learning technique.

As illustrated in Figure 1.1, drug molecules can be represented in the Simplified

Molecular-Input Line-Entry System (SMILES) format proposed by [25]. SMILES is a

specification in the form of a line notation for describing the structure of chemical

molecules. In Figure 1.1, the input SMILES sequence CO(C)C is first fed into the

VAE encoder composed by Gated Recurrent Unit (GRU) layers by [26] to generate the

latent representation. Then the VAE decoder takes the latent vector as the input to

reconstruct the original molecule sequence CO(C)C. One of the desirable properties

of the VAE is that its latent space is continuous and smooth. As a result, it allows

both semantically meaningful sampling and smooth interpolation in the latent space.

In the case of molecule generation, the latent representations of semantically similar

molecules (with similar chemical structures and properties) are often clustered together

in the latent space. Thanks to the continuous latent space, novel molecules can be

generated by randomly sampling from the latent space since the sampled latent vectors

can be regarded as the interpolation of existing molecule representations. What is

more, the desired properties can also be further optimized through exploring the

2



BiGRUBiGRULatent 
Space

Input
SMILES

Output
SMILES

BiGRU BiGRUBiGRUCO(C)C CO(C)CBiGRU

Encoder

GRUGRU

Decoder

Figure 1.1: Overview of our VAE model implementation. The encoder and decoder
are built based on the bi-directional GRU and uni-directional GRU, respectively. Both
the input and output of our model are SMILES sequences.

latent space locally. The key idea behind the optimization process is to utilize the

smoothness of the latent space to search for molecules that maximize a property score

objective by perturbing slightly to the initial latent vector.

However, previous VAE models suffer from the posterior collapse issue, where

the decoder tends to ignore latent vectors as described in [27] and [11]. This problem

is more frequently observed in Recurrent Neural Network (RNN) based models as

in [28]. In consequence, the generated molecules are in low diversity and are hardly

relevant to the latent vectors as in [11] and [1]. This phenomenon has also been

observed in Natural Language Processing (NLP) tasks, such as the text generation by

[27]. The major focus of previous NLP related studies is to propose various training

strategies to alleviate this problem, such as the Kullback–Leibler (KL) cost annealing

by [27] and optimizing the decoder multiple times before each encoder update in

[28]. However, simply extending these methods to molecule generation can not help

molecule generation too much, mostly because the molecule sequences are strictly

structured according to SMILES grammar rules and any mutation within the molecule

sequences lead to invalid sequences. Motivated by the success of attribute grammars

3



in the compiler design and parse trees in the NLP field, following work [1] and [2]

propose to incorporate grammar rules to guarantee the validity of generated SMILES

sequences. As an alternative, a molecule can also be represented by a graph in order

to avoid the posterior collapse as in [29] and [4].

Thanks to the development of NLP text generation, the VAE model is applied

for molecule generation for the first time in CVAE by [11]. They build a VAE encoder

and decoder with GRU layers, representing molecules in the SMILES sequences.

However, their model suffers from generating invalid SMILES sequences which makes

their model impracticable. To improve the prior validity, context-free grammars for

SMILES are introduced in Grammar VAE (GVAE) by [1] to represent a molecule in

the sparse tree. However, the validity score is still unsatisfactory. Inspired by this

method, Syntax-directed VAE (SD-VAE) by [2] incorporates extra semantic rules to

ensure generated SMILES are valid, and it achieves the best performance among all

SMILES-based methods. However, these models did not solve the model posterior

collapse problem and there is a large performance gap.

We propose a novel strategy to alleviate the posterior collapse problem consid-

ering the essential drawbacks of the contemporary RNN-based VAE models in the

molecule generation situation. To achieve this goal, we carefully analyze the posterior

collapse problem of the vanilla VAE model for SMILES sequence generation. We point

out that the underestimated reconstruction loss triggers the posterior collapse issue in

the molecule sequence generation, as the direct consequence of the imbalance between

reconstruction loss and KL loss during VAE training. To overcome the problem, we

propose a novel loss function to leverage the trade-off between the reconstruction loss

and the KL loss in VAE training. Without modifying the VAE network structures or

costing extra computational complexity, our proposed strategy is extremely simple

yet effective in preventing the posterior collapse in molecule generation. We also

4



provide a detailed analysis of our method1, and empirically demonstrate its excellent

reconstruction accuracy and competitive validity score on the ZINC 250K dataset

from [1] and GuacaMol dataset from [30].

In addition to the experimental verification for the statement that the underesti-

mated reconstruction loss causes the posterior collapse of the variational autoencoder

models, we also provide theoretical analysis and proof in this work. Besides, to further

improve the validity score of our method, we introduce a partial SMILES sequence

check toolkit PartialSmiles2 to verify the validity of the SMILES sequence during

the molecule generation process. What is more, to better evaluate the proposed

method, we include the results of two extra evaluation metrics novelty and uniqueness

in experimental comparison with baseline methods. Last but not least, we conduct ex-

periments on the extra large-scale dataset GuacaMol which consists of 1.6M molecules

to demonstrate the scalability and generalization of our proposed method.

1.2 Methods

1.2.1 The Variational Autoencoder

The VAE is a specially regularized variant of the standard autoencoder (AE).

It is appealing because it can learn complex distribution in an unsupervised manner

and later can act as a generative model defined by a prior distribution p(z) and a

conditional distribution pθ(x|z). Since the true data likelihood is often intractable,

the VAE instead maximizes the evidence lower bound objective (ELBO) L(x; θ, ϕ)

1Our implementation is available at https://github.com/chaoyan1037/Re-balanced-VAE.
2https://github.com/baoilleach/partialsmiles
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over the space of all pθ, and it is a valid lower bound of the true data log likelihood

log p(x):

log pθ(x) = Ez∼qϕ(z|x)[log pθ(x)] (pθ(x) does not depend on z)

= Ez[log
pθ(x|z)pθ(z)

pθ(z|x)
] (Bayes’ theorem)

= Ez[log
pθ(x|z)pθ(z)

pθ(z|x)

qϕ(z|x)

qϕ(z|x)
] (Multiply by a constant)

= Ez[log pθ(x|z)] − Ez[log
qϕ(z|x)

pθ(z)
] + Ez[log

qϕ(z|x)

pθ(z|x)
]

= Ez[log pθ(x|z)] −DKL(qϕ(z|x)||pθ(z)) + DKL(qϕ(z|x)||pθ(z|x))

≥ Ez[log pθ(x|z)] −DKL(qϕ(z|x)||pθ(z))

= L(x; θ, ϕ),

(1.1)

where the VAE encoder qϕ(z|x) is parameterized with ϕ and learns to map the input x to

a variational distribution represented by z, and the VAE decoder pθ(x|z) parameterized

with θ reconstructs the input x given the latent vector z. The inequality holds since

the DKL ≥ 0. In practice, qϕ(z|x) is usually modeled as a Gaussian distribution and

it is optimized to approximate the true posterior pθ(z|x) to reduce the gap between

ELBO and true data log-likelihood log p(x).

The VAE training is optimized to maximize the ELBO, where (i) negative

reconstruction loss Ez∼qϕ(z|x)[log pθ(x|z)] enforces the encoder to generate meaningful

latent vector z, so that the decoder can reconstruct the input x from z, and (ii) the

KL regularization loss DKL(qϕ(z|x)||pθ(z)) minimizes the KL divergence between the

approximate posterior qϕ(z|x) and the prior pθ(z) ∼ N (0, I).

1.2.2 Posterior Collapse Problem in VAE

The posterior collapse phenomenon has also been reported in previous work on

NLP text generation such as [27], [31], and [32]. When posterior collapse happens, the
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model training falls into the the local optimum of the ELBO, in which the decoder

tends to ignore z when training the VAE model and the variational posterior qϕ(z|x)

naively mimics the model prior p(z). Note that the KL loss in the ELBO objective

can be further decomposed as in [33]:

DKL(qϕ(z|x)||p(z))] = Ez∼qϕ(z|x)[log
qϕ(z|x)

p(z)
]

= Ez∼qϕ(z|x)[log
qϕ(z|x)

p(z)

qϕ(z)

qϕ(z)
]

= DKL(qϕ(z)||p(z)) + Iq(x, z),

(1.2)

where Iq(x, z) is the mutual information between x and z given qϕ(z|x):

Iq(x, z) = Eqϕ(z|x)[log qϕ(z|x)] − Eqϕ(z)[log qϕ(z)]. (1.3)

When posterior collapse occurs, the KL loss decreases nearly to zero so that Iq is

also close to zero (both items on the right-hand side in (1.2) are non-negative) during

the VAE model training process. It is especially evident when modelling discrete data

with a strong auto-regressive network such as Long Short Term Memory (LSTM) by

[34] and GRU by [35], which is exactly our case for molecule sequence generation. This

is undesirable since the VAE model fails to learn meaningful latent representations for

input molecule sequences.

For text generation task in NLP, the posterior collapse problem has been mainly

attributed to the low quality of latent representations z at the early stage of model

training as pointed out by [27], [28], and [36]. To be more specific, the decoder pθ(x|z)

falls behind the encoder qϕ(z|x) at the initial training stage, and qϕ(z|x) generates

low-quality latent representations so that it is very hard for pθ(x|z) to recover the

input sequences. As a result, the model is forced to ignore z. Many solutions have been
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proposed to solve the problem and they have demonstrated satisfactory improvement

on various NLP datasets.

However, molecule SMILES generation is a quite different scenario though it

appears to be same as the NLP text generation. First of all, its vocabulary size is far

less than the NLP text generation datasets. The token size of NLP text data is usually

tens of thousands or even larger, while it is less than 100 for chemical molecule data.

The smaller token size makes the molecule reconstruction task much easier. Second,

the molecule sequence is composed strictly following the SMILES grammar rules, and

the reconstructed sequence must be exactly the same as the input to be matched

successfully. Any token mutations can result in an invalid sequence. However, there

are no such rigid grammar rules applied to the NLP text and the exact match is not

required.

We find the existing solutions [28] and [36] for NLP text generation performs

poorly in the chemical molecule generation. This motivates us to propose such a

solution for molecule sequence generation.

1.2.3 The Trick in Previous Solutions

To avoid the posterior collapse, which will disable the reconstruction ability of

VAE models, previous SMILES-based methods such as CVAE [11], GVAE [1], and

SD-VAE [2] reduce the standard deviation σ of prior Gaussian distribution to a small

value 0.01 (can be found in their public implementations CVAE3, GVAE4, SD-VAE5),

which makes their models more like AEs instead of VAEs. This is why CVAE and

GVAE have a decent reconstruction accuracy but extremely low validity scores as

3https://github.com/HIPS/molecule-
4https://github.com/mkusner/grammarVAE
5https://github.com/Hanjun-Dai/sdvae

8



shown in Table 1.1. If we set σ=1, all these models will suffer from the posterior

collapse and can not reconstruct inputs faithfully (similar to the vanilla VAE in Figure

1.2(e)). In the following our analysis and experiments, we will strictly keep σ=1.

1.2.4 Underestimated Reconstruction Loss

To investigate the cause of the posterior collapse in the VAE for molecule sequence

generation, we conduct extensive analysis and investigation into the posterior collapse

process. We find it is the underestimated reconstruction loss that causes posterior

collapse during VAE training process. Both theoretical analysis and experimental

support are provided to verify our hypothesis.

The reconstruction loss term Eqϕ(z|x)[log pθ(x|z)] in formula (1.1) measures the

reconstruction ability of the decoder given the latent vector z. The decoder should

only receive information from z and tries to reconstruct the full sequence accurately

from the given z. However, in practice, the RNN models are usually trained with the

teacher forcing method proposed by [37], in which the RNN input at each step is the

ground truth instead of the prediction from a prior time step.

We can rewrite the reconstruction loss term in (1.1) as:

Eqϕ(z|x)

T∑
t=1

log pθ(xt|z, x̃0,...,t−1), (1.4)

where the T is the maximum time step, x̃0,...,t−1 is the predicted sequence prefix before

time step t, the current input of the RNN is output x̃t−1 at the previous time step,

and x̃0 is the predefined start symbol.

With teacher forcing training method, now the actual reconstruction loss during

VAE training is:

Eqϕ(z|x)

T∑
t=1

log pθ(xt|z, x0,...,t−1), (1.5)
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where x0,...,t−1 is the ground-truth prefix before time step t, the ground-truth token

at previous time step xt−1 is the RNN input at each time step t, and x0 is also the

predefined start symbol.

We posit log pθ(xt|z, x0,...,t−1) = log pθ(xt|z, x0,...,t−1, x̃0,...,t−1) since with teacher

forcing the RNN training does not rely on the prediction as the input. Then we can

prove the log-likelihood (1.5) is larger than (1.4):

Eqϕ(z|x)

T∑
t=1

log pθ(xt|z, x0,...,t−1)

= Eqϕ(z|x)

T∑
t=1

log pθ(xt|z, x0,...,t−1, x̃0,...,t−1)

= Eqϕ(z|x)

T∑
t=1

log
pθ(xt, x0,...,t−1|z, x̃0,...,t−1)

pθ(x0,...,t−1|z, x̃0,...,t−1)

= Eqϕ(z|x)

T∑
t=1

[log pθ(xt|z, x̃0,...,t−1) − log pθ(x0,...,t−1|z, x̃0,...,t−1)]

≥ Eqϕ(z|x)

T∑
t=1

log pθ(xt|z, x̃0,...,t−1)

(1.6)

The ground-truth information x0,...,t−1 is incorporated additionally at each time

step in (1.5) when training the VAE, and it makes the decoder’s prediction task

easier, therefore we can expect that the reconstruction ability of the decoder is largely

overestimated compared with (1.4). As a result, the reconstruction loss term is

underestimated, which will potentially break the balance between reconstruction

loss and KL loss in the formula (1.1). We calculate quantitatively how much the

reconstruction loss is underestimated in the experiment section.

10



1.2.5 Re-balanced VAE Loss

Since reconstruction loss is underestimated during training and it breaks the

balance with KL loss, which eventually leads to the posterior collapse. We propose to

recover the balance by applying a weight α to reconstruction loss:

L(x; θ, ϕ) = αEqϕ(z|x)[log pθ(x|z)]

−DKL(qϕ(z|x)||p(z)), α > 1,

(1.7)

where α can be estimated using Monte Carlo sampling in every training iteration.

Specifically, we can sample a batch of data as input and run a VAE with/without

teacher forcing, respectively. Since the reconstruction loss without teacher forcing can

be regarded as the “true” reconstruction loss (the reconstruction loss it should be in

VAE training), we approximate α as the ratio of reconstruction loss without teacher

forcing to that with teacher forcing. However, estimating α in every training iteration

is too expensive. In practice, we can set α as a hype-parameter for simplicity and

efficiency. We show how to decide the optimal value for α in the experiment part.

Inspired by the β-VAE [38] formulation, we can instead reduce KL loss weight β,

which is equivalent to increasing reconstruction loss weight α. It is more natural and

convenient to weight the KL loss since increasing β from 0 to 1 is a smooth transition

from the AE to VAE. So we can have a similarly re-balanced VAE loss formulation:

L(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]

− βDKL(qϕ(z|x)||p(z)), 0 ≤ β < 1.

(1.8)

Note that in our case β < 1, while the β-VAE requires the KL weight β > 1.

The β-VAE is proposed in [38] to learn disentangled representation of generative

factors by enforcing a larger penalty on KL loss, since they postulate that β > 1 could

place a stronger constraint on the latent representation to drive the VAE to learn a

more efficient latent representation of input x. While we have a completely different
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motivation and goal of fixing the imbalanced VAE loss by reducing KL weight since

we find reconstruction loss is underestimated in ELBO.

Except for the above analysis, our method can also be explained from an intuitive

perspective. In previous methods CVAE, GVAE, and SD-VAE, when sampling latent

vectors z they have to reduce the standard deviation σ to a small value of 0.01

otherwise the model will collapse and lose the reconstruction ability. However, the

validity score is poor in these methods. Instead of reducing sampling σ, we can anneal

the KL loss weight β to make the model gradually transform from AE to VAE as

in [27] since the AE usually has a strong reconstruction ability. Different from [27],

we restrict β to be smaller than 1. By applying the optimal β, we can arrive at a

trade-off between the reconstruction accuracy and validity score.

We acknowledge that previous methods such as [2], [28], and [36] have empirically

tried to reduce the KL loss weight to avoid the posterior collapse. The β-VAE (β = 0.4)

alleviates the problem and achieves competitive performance on density estimation

for NLP text datasets in [28], which proves that reducing β is viable for NLP text

task. It is also indicated setting β = 1/LatentDimension could lead to better results

in [1] and [2]. However, none of these methods provided any analysis or explanation.

We are the first to recognize that the underestimated reconstruction loss leads to the

posterior collapse problem in VAE molecule generation, and further, we propose to

reduce KL weight to overcome the posterior collapse with detailed analysis and solid

experimental support.

1.3 Results

Our proposed solution to the VAE model posterior collapse is simple but ex-

tremely effective and efficient. We do not need to modify the network architecture and

only adjust the training loss slightly, without introducing much extra computation. In
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this section, we will first train a vanilla VAE model and track the process of model

collapse, as well as experimentally verify that the reconstruction loss is underestimated.

Then we will conduct extensive experiments to demonstrate the effectiveness of our

proposed method.

1.3.1 Experimental Settings

We build our VAE model based on GRU layers. The VAE encoder is composed

of two layers of bi-directional GRU which is good at capturing sequence representation

as [39], and hidden size of each GRU layer is 512. The decoder is made up of four

layers of uni-directional GRU with the same hidden size 512. Following previous work

[11] and [4], we use unit Gaussian prior and set the latent vector dimension to be 56.

The ELBO objective is optimized with Adam optimizer by [40] and learning rate is

0.0001. The model is trained with teacher forcing and KL loss annealing. We train

the model for 150 epochs and report the performance of the final model. Experiments

are conducted on a machine with an Intel Core i7-5930K@3.50GHz CPU and a GTX

1080 Ti GPU.

We experiment on ZINC 250K dataset by [1] which is a subset of the ZINC by

[41]. Molecule sequences are tokenized with the regular expression from [42]. We use

the same training and testing split as previous work [1] and [4], and have 10K hold-out

data out of the training as the validation data. We also experiment on a large-scale

dataset GuacaMol by [30] which is derived from the ChEMBL 24 database by [43]

to demonstrate the scalability and generalization of our method. GuacaMol dataset

consists of 1.6M molecules and we adopt the same data split provided by [30]. We

will use the same experimental settings in all our experiments unless explicitly stated.

As for the model evaluation metrics, we report the reconstruction accuracy,

validity, novelty, and uniqueness scores following previous work. Following [4], we
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encode each molecule from test dataset, and then decode obtained latent vector to

reconstruct input molecule SMILES. The reconstructed SMILES must be exactly

the same as the input to be counted as successful. The reconstruction accuracy is

defined to be the ratio of successfully reconstructed molecule sequences to the total

tried reconstruction. To calculate validity, 10K latent vectors are randomly sampled

from the prior distribution as the input for the decoder. The validity is the portion

of chemically valid reconstruction SMILES from the random sampling to the total

decoded sequences. We use open-source tool RDKit by [44] to check the validity of

SMILES. The novelty is the ratio of generated chemically valid molecules which are

not present in the training dataset to the total generated chemically valid molecules.

It evaluates the model’s ability to generate novel molecules. The uniqueness is used

to evaluate to what extent a model generates unique chemically valid molecules, and

it is defined as the ratio of generated chemically valid molecules that are unique.

1.3.2 VAE Training Dynamics

We track the training process of a vanilla VAE model, as well as that of our

proposed method. We investigate training dynamics including the KL loss weight, KL

loss, reconstruction loss, mutual information, reconstruction accuracy, and validity

score. Mutual information Iq(x, z) can be calculated using Monte Carlo sampling as

proposed in [33] and [45]:

Iq = DKL(qϕ(z|x)||p(z)) −DKL(qϕ(z)||p(z)), (1.9)

which is actually the same as the formula (1.2). We approximate the aggregated

posterior qϕ(z) = Epd(x)[qϕ(z|x)] using Monte Carlo sampling. DKL(qϕ(z)||p(z)) can

also be estimated by the Monte Carlo sampling, and we can obtain samples from qϕ(z)

by ancestral sampling: first sampling x from the dataset distribution pd(x) and then
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sampling z from qϕ(z|x). More details about Iq(x, z) computation can be found in

[33].

Figure 1.2: Training dynamics of vanilla VAE model and our method on validation
data. We track (a) KL weight β, (b) KL loss DKL(qϕ(z|x)||p(z)), (c) reconstruction
loss −Eqϕ(z|x)[log pθ(x|z)], (d) mutual information Iq(x, z), (e) reconstruction accuracy,
and (f) validity score during the full training process. The orange line is the vanilla
VAE with KL loss annealing, and the maximum KL weight β is 1. Our method (Blue)
reduces the maximum value of β to 0.1. Both models are trained with KL weight
annealing and teacher forcing.

As a comparison, we also illustrate the training dynamics of our proposed

method. We set KL weight β = 0.1 which is explained and derived in the next section.

We keep all the other experimental settings the same as the vanilla VAE to make a

fair comparison.

Results of the two models’ training are plotted in the Figure 1.2. The vanilla

VAE model performs well on the validation data at the early stage of the KL weight

annealing. However, as the KL weight increases, KL loss drops quickly as expected
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since more penalty is added to the KL loss term, while the reconstruction loss starts

to rise at the same time. The mutual information Iq(x, z) decreases to 0.65 at the

end, which means the decoder does not absorb much information from the latent

vectors when generating the output. This evidence indicates the posterior collapse

has happened. When looking at the model performance on validation data, we can

notice that the reconstruction accuracy is close to 0 while the validity score is almost

perfect. This indicates that too much pressure has been placed on the KL loss, which

breaks the balance between the reconstruction loss and KL loss and results in the

model posterior collapse.

On the other hand, our method achieves lower reconstruction loss early and can

maintain it during model training. Although the KL loss of our method is larger than

the vanilla VAE, considering that we have a smaller KL weight β now, the equivalent

KL loss added to the training objective should still be in the normal range. Especially,

our method maintains the mutual information to be around 4.8, which means output

sequences are strongly related to latent vectors. As for the model performance, our

method achieves 92.7% reconstruction accuracy and 90.7% validity score, which proves

the superiority of our method.

1.3.3 Underestimated Reconstruction Loss

We find that introducing ground-truth information into the decoder will result

in underestimated reconstruction loss in previous section, and have provided our

detailed analysis previously. In this section, we will experimentally verify that the

reconstruction loss is indeed underestimated during the training. We can estimate how

much the reconstruction loss has been underestimated using Monte Carlo sampling.

Specifically, we can sample a batch of data, then run the model with and without the
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Figure 1.3: (a) Reconstruction loss on validation dataset. At each time step, models
parameters are the same when calculating the reconstruction loss. (b) Underestimated
ratio of reconstruction loss.

teacher forcing, respectively. The underestimated ratio can be approximated by the

ratio of reconstruction loss with teacher forcing to that without teacher forcing.

We track the reconstruction loss on the validation dataset when the teacher

forcing is applied and removed, respectively. Results are shown in the Figure 1.3(a).

When teacher forcing is applied, the reconstruction loss drops close to 1 quickly, while

the loss is much larger (at least 7.5) without teacher forcing. This is not unexpected

since the prediction error may be accumulated during the decoding process without

teacher forcing. Any wrong token prediction as RNN input at the next time step may

result in the following prediction totally different from ground-truth sequences.

To quantitatively evaluate how much the reconstruction loss has been underesti-

mated, we can compute the ratio as reconstruction loss w/ teacher forcing to that wo/

teacher forcing at each time step. Results are shown in Figure 1.3(b). It confirms our

conclusion that the reconstruction loss is underestimated. To recover a re-balanced
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Table 1.1: Reconstruction accuracy and validity results on ZINC 250K dataset.
Baseline results are reported in [1], [2], [3], and [4]. * denotes the SMILES validating
parser PartialSmiles is applied during the generation. The novelty and uniqueness
scores of baseline methods are copied from [5].

Model Reconstruction Validity Novelty Uniqueness
SMILES-based

CVAE 44.6% 0.7% 98.0% 2.1%
GVAE 53.7% 7.2% 100.0% 100.0%
SD-VAE 76.2% 43.5% 100.0% 100.0%
Our method 92.7% 90.7% 100.0% 100.0%
Our method* 92.7% 93.8% 100.0% 100.0%

Graph-based
GraphVAE - 13.5% - -
JT-VAE 76.7% 100.0% 99.9% 99.1%

VAE loss, we can set KL loss weight exactly as the underestimated ratio in each

epoch. But this requires us to compute the ratio repetitively during training, which is

time-consuming. To be simplified, we set β = 0.1 during training and we find it works

very well in practice.

1.3.4 Model Performance Comparison

We summarize the molecule reconstruction accuracy, validity, novelty, and

uniqueness scores on ZINC 250K test data in the Table 1.1. Our method outperforms

all previous models in reconstruction accuracy by a large margin (16% larger than the

second-best model). In the meanwhile, our method achieves 90.7 % validity, which is

much better than previous SMILES-based methods. We can further boost our model

performance by incorporating a SMILES validating parser PartialSmiles, which can

check the validity of the SMILES prefix easily when generating SMILES sequences

token by token. The validity score can be boosted to 93.8% with PartialSmiles.

Compared with other SMILES-based methods, our model is much superior in

both the reconstruction accuracy and prior validity, even if complex grammar or
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Table 1.2: Reconstruction accuracy and validity results on GuacaMol dataset. *
denotes the SMILES validating parser PartialSmiles is applied during the generation.

Model Reconstruction Validity Novelty Uniqueness
Our Method 92.6% 90.6% 100.0% 100.0%
Our Method* 92.6% 93.6% 100.0% 100.0%

syntax rules are incorporated in [1] and [2]. Note that the JT-VAE model assembles

molecules by adding sub-graphs step-by-step to make sure the generated molecule

graphs are always valid. However, these sub-graphs are extracted from the training

dataset, which limits the JT-VAE from generating molecules with unseen sub-graphs.

While our method achieves competitive validity performance without any constraints,

and is able to generate novel molecules that are not from the same distribution as

the training data. That is one important reason why our method achieves better

reconstruction accuracy, while JT-VAE suffers from reconstructing testing molecules

[46]. Besides, our method is much more efficient than JT-VAE. When generating

10,000 unique valid SMILES from prior random sampling, JT-VAE6 (faster version)

takes about 1450s while our method only needs 9s.

As for the novelty and uniqueness, our method achieves 100.0% for both metrics

which are the same as other SMILES-based methods including GVAE and SD-VAE.

Note that the novelty and uniqueness are evaluated only on the chemically valid

molecules. This indicates that even if both GVAE and SD-VAE achieve the same

novelty and uniqueness scores, our method can generate much more valid molecules

than GVAE and SD-VAE due to the better validity score. JT-VAE achieves only
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99.9% novelty score and 99.1% uniqueness score. This demonstrates that our model is

a better chemically valid molecule generator.

We also experiment on a large-scale dataset GuacaMol to evaluate the scalability

and generalization of our proposed method. We use the same experimental settings as

the ZINC 250K dataset. Our method achieves 92.6% reconstruction accuracy, 90.6%

validity score 100.0% novelty, and 100.0% uniqueness on GuacaMol dataset, which are

similar to the performance on ZINC 250K. By checking the validity of SMILES during

the generation, the validity score can be further boosted to 93.6%. The experiment

on the large-scale dataset demonstrates our method scales and generalizes well on a

large dataset.

1.3.5 Error Analysis and Visualization

Our model achieves 92.7% reconstruction accuracy and all reconstructed SMILES

are valid on the ZINC 250K dataset. We investigate the reconstruction results further

and find that our model can predict 97.3% of all tokens correctly, which is measured

at the level of the token instead of the sequence. Besides, most of the unmatched

sequences (62%) are valid, and it confirms the reconstruction ability of our model. We

show some valid but unmatched examples in Figure 1.4. Even for these unmatched

examples, there is only a small ratio of the predicted tokens that are different from

the ground-truth, which demonstrates the reconstruction ability of our method.

As for the validity sore, we also investigate the model outputs. We find our

model can generate complicated and diverse molecules with multiple rings. As for

the invalid sequences, from both the reconstruction and prior sampling, there are

several typical errors: (1) unkekulized atoms, (2) valence error, (3) unclosed ring,

and (4) parentheses error. We believe the grammar-based methods [1] and [2] are

complementary to our method, and can be combined together to reduce these errors.

6https://github.com/wengong-jin/icml18-jtnn
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Cc1ccc(Nc2ncnc(N)c2N)cc1C O=C([O-])/C=C/c1coc2cc(I)ccc2c1=O

O=C([O-])/C=C/c1coc2cc(I)ccc12

 Input                                 

 Reconstruction

Cc1ccc([S@](=O)O)cc1Cl

Cc1ccc(Nc2ncnc(NN)c2)cc1C Cc1ccc([S@](=O)[O-])cc1Cl

CCOC(=O)c1ccc(Nc2nc3ccccc3c3nncn23)cc1

CCOC(=O)c1ccc(Nc2nc3ccccc3n3cnnc23)cc1

Figure 1.4: Reconstruction error examples. Unmatched tokens between the input and
reconstruction SMILES are shown in red. Note that “[O-]” is a single token.

1.3.6 Bayesian Optimization

One of the important tasks in the drug molecule generation is to make molecules

with desired chemical properties. We follow [1] and [4] for all the experimental setting,

and the optimization target score is:

y(m) = logP (m) − SA(m) − cycle(m), (1.10)

where logP (m) is the octanol-water partition coefficients of molecules m, SA(m) is

synthetic accessibility score, and cycle(m) is number of large rings with more than six

atoms.

We first associate each molecule with a latent vector which is the mean of the

learned variational encoding distribution. The latent vector for each molecule will be

treated as its feature and we train a Sparse Gaussian Process (SGP) to predict the

target score y(m) given its latent vector. After training SGP, five iterations of batched

Bayesian optimization (BO) are performed with expected improvement heuristics.

We report the SGP prediction performance when trained on latent representa-

tions learned by different models. We train the SGP with 10-fold cross-validation and

report the top-3 molecules found by the BO. As shown in Table 1.3, molecules found
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by our model are much better than that found by previous SMILES-based methods,

and our method is even superior to the graph-based method JT-VAE. Figure 1.5

shows top-3 molecules found by our model.

Table 1.3: Top-3 molecule scores found by the BO. Baseline results are copied from
[1], [2], and [4].

Model 1st 2nd 3rd
SMILES-based

CVAE 1.98 1.42 1.19
GVAE 2.94 2.89 2.80
SD-VAE 4.04 3.50 2.96
Our Method 5.32 5.28 5.23

Graph-based
JT-VAE 5.30 4.93 4.49

Figure 1.5: Top-3 molecules and associated scores found by our model with Bayesian
optimization.
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1.4 Discussion

Our method is very efficient and it works extremely well in the molecule gener-

ation, in which SMILES sequences are highly structured and grammarly organized.

Our experimental results indicate that grammar and syntax rules are necessary to

generate more valid SMILES sequences, and they are complementary to our method.

Besides, SMILES-based methods and graph-based methods may also be combined

together to boost the model performance further.

Though our primary focus is the VAE for molecule generation, our method can

also help the NLP task as we mentioned at the end of section 1.2.5. Reducing KL

loss weight can help the VAE model for the NLP task avoid the posterior collapse as

shown in [28] and [36].

The latent representation learnt by our model can be applied to various down-

stream tasks, such as molecule property prediction [47, 48, 49, 50, 51]. In the future,

we may explore more about this application.

1.5 Conclusions

In this work, we investigate the posterior collapse problem in VAE for molecule

sequence generation. Through extensive analysis, we conclude that the underestimated

reconstruction loss results in the posterior collapse. The conclusion is supported

by both theoretical analysis and experimental results. Based on our analysis, we

propose a simple and effective solution to overcome the underestimated reconstruction

loss problem by weighting the KL loss term. With the proposed re-balanced VAE

loss, the VAE model can avoid the posterior collapse problem and achieve excellent

performance in both reconstruction accuracy and validity score on two datasets. We

also demonstrate the excellent generalization of our method on a large-scale dataset.
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CHAPTER 2

A Two-stage Template-free Retrosynthesis Prediction Method

In this chapter, we start to study another important topic in drug discovery:

retrosynthesis prediction. Retrosynthesis is the process of recursively decomposing

target molecules into available building blocks. It plays an important role in solving

problems in organic synthesis planning. To automate or assist in the retrosynthesis

analysis, various retrosynthesis prediction algorithms have been proposed. However,

most of them are cumbersome and lack interpretability about their predictions. In

this chapter, we devise a novel two-stage template-free algorithm for automatic

retrosynthetic expansion inspired by how chemists approach retrosynthesis prediction.

Our method disassembles retrosynthesis into two steps: i) identify the potential reaction

center of the target molecule through a novel graph neural network and generate

intermediate synthons, and ii) generate the reactants associated with synthons via a

robust reactant generation model. While outperforming the state-of-the-art baselines

by a significant margin, our model also provides chemically reasonable interpretation.

2.1 Introduction

Retrosynthesis of the desired compound is commonly constructed by recursively

decomposing it into a set of available reaction building blocks. This analysis mode

was formalized in the pioneering work [52, 53] and now have become one of the

fundamental paradigms in the modern chemical society. Retrosynthesis is challenging,

in part due to the huge size of the search space. The reported synthetic-organic

knowledge consists of in the order of 107 reactions and compounds [54]. On the other

hand, the incomplete understanding of the reaction mechanism also increases the
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difficulty of retrosynthesis, which is typically undertaken by human experts. Therefore,

it is a subjective process and requires considerable expertise and experience. However,

molecules may have multiple possible retrosynthetic routes and it is challenging even

for experts to select the most appropriate route since the feasibility of a route is often

determined by multiple factors, such as the availability of potential reactants, reaction

conditions, reaction yield, and potential toxic byproducts.

In this work, we focus on the single-step version (predict possible reactants given

the product) of retrosynthesis following previous methods [55, 8, 9]. Our method can

be decomposed into two sub-tasks [52, 56]: i) Breaking down the given target molecule

into a set of synthons which are hypothetical units representing potential starting

reactants in the retrosynthesis of the target, and ii) Calibrating the obtained synthons

into a set of reactants, each of which corresponds to an available molecule.

Various computational methods [57, 58, 59, 60, 61, 55, 7, 62, 8, 9, 63, 64]

have been developed to assist in designing synthetic routes for novel molecules, and

these methods can be broadly divided into two template-based and template-free

categories. Template-based methods plan retrosynthesis based on hand-encoded rules

or reaction templates. Synthia (formerly Chematica) relies on hand-encoded reaction

transformation rules [60], and it has been experimentally validated as an efficient

software for retrosynthesis [65]. However, it is infeasible to manually encode all the

synthesis routes in practice considering the exponential growth in the number of

reactions [62]. Reaction templates are often automatically extracted from the reaction

databases and appropriate templates are selected to apply to the target [61, 7, 62, 8].

The key process of these approaches is to select relevant templates for the given

target. An obvious limitation is that these methods can only infer reactions within the

chemical space covered by the template database, preventing them from discovering

novel reactions [66].
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On the other hand, template-free methods [55, 9, 63] treat the retrosynthesis as

a neural machine translation problem, since molecules can be represented as SMILES

1 strings. Although simple and expressive, these models do not fit into the chemists’

analytical process and lack interpretability behind their predictions. Besides, such

approaches fail to consider rich chemistry knowledge within the chemical reactions.

For example, the generation order of reactants is undetermined in [55, 9, 63] since

they ignore the correlation between synthons and reactants, resulting in slower and

inferior model convergence. Similar to our method, the concurrent work G2Gs [64]

also presents a decomposition and generation two-step framework. G2Gs proposes

to incrementally generate reactants from the associated synthons with a variational

graph translation model. However, G2Gs can predict at most one bond disconnection

which is not universal. Besides, G2Gs independently generates multiple reactants,

which ignores the relationship between multiple reactants.

To overcome these challenges, inspired by the expert experience from chemists,

we devise a two-step framework named as RetroXpert (Retrosynthesis eXpert) to

automate the retrosynthesis prediction. Our model tackles it in two steps as shown

in Figure 3.3. Firstly, we propose to identify the potential reaction center within

the target molecule using a novel Edge-enhanced Graph Attention Network (EGAT).

The reaction center is referred to as the set of bonds that will be disconnected in the

retrosynthesis process. Synthons can be obtained by splitting the target molecule

according to the reaction center. Secondly, the Reactant Generation Network (RGN)

predicts associated reactants given the target molecule and synthons. Different from

previous methods [55, 9, 63], the reactant generation order can be uniquely decided in

our method, thanks to the intermediate synthons. What is more, we notice that the

robustness of the RGN plays an important role. To robustify the RGN, we propose to

1https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
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augment the training data of RGN by incorporating unsuccessful predicted synthons.

Our main contributions can be summarized as follows:

1) We propose to identify the potential reaction center with a novel Edge-enhanced

Graph Attention Network (EGAT), which is strengthened with chemical domain

knowledge.

2) By splitting the target molecule into synthons, the RGN is able to determine

the generation order of reactants. We further propose to augment training data

by introducing unsuccessfully predicted synthons, which makes RGN robust and

achieves significant improvement.

3) On the standard USPTO-50K dataset [67], our method achieves 62.1% and

50.4% Top-1 accuracy for w/ and wo/ reaction type, respectively.
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Reaction Center

[CH2]CBr
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Reactant generation

BrCCSc1cccs1 [CH2]CBr [S]c1cccs1 BrCCBr Sc1cccs1

product synthon1 synthon2 reactant1 reactant2

RGN

Figure 2.1: Pipeline overview. We conduct retrosynthesis in two closely dependent
steps reaction center identification and reactant generation. The first step
aims to identify the reaction center of the target molecule and generates intermediate
synthons accordingly. The second step is to generate the desired set of reactants. Note
that a molecule can be represented in two equivalent representations: molecule graph
and SMILES string.

28



2.2 Background

2.2.1 Transformer

The transformer [68] is an autoregressive encoder-decoder model built with

multi-head attention layers and position-wise feed-forward layers. As illustrated in

Figure 2.2, the encoder is composed of stacked multi-head self-attention layers and

position-wise feed-forward layers. The encoder self-attention layers attend the full

input sequence and iteratively transform it into a latent representation with the

self-attention mechanism. The decoder is similar to the encoder. In addition to

multi-head self-attention layers and position-wise feed-forward layers, the multi-head

encoder-decoder attention layers are inserted to perform cross attention over the

encoder output. Different from the encoder self-attention layers, the decoder adopts

the masked self-attention which prevents the decoder positions from attending future

positions. The encoder-decoder attention and masked self-attention layers enable the

decoder to combine the information from the source sequence and the target sequence

that has been produced to make the output prediction. We refer readers to [68] and

The Illustrated Transformer for comprehensive details about the Transformer.

The transformer removes all recurrent units and introduces a positional encoding

to account for the order information of the sequence. Positional encoding adds a

position-dependent signal to the token embedding of size demb to discriminate the

position of different tokens in the sequence:

PE(pos,2i) = sin
pos

100002i/demb
, PE(pos,2i+1) = cos

pos

100002i/demb
(2.1)

where pos is the token position and i is the dimension of the positional encoding.
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Figure 2.2: Transformer model architecture. The residual connection and layer
normalization layer are omitted in the illustration for simplification.

The transformer adopts a scale dot-product attention as the attention formu-

lation, which compute the attention weighted output by taking as input the matrix

represented keys K, values V, and queries Q:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.2)

where the dk is the dimension of Q and K.
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2.2.2 Parameters setting

We compose both the encoder and decoder of four layers of size 256. The

label smoothing parameter is set to 0 since a nonzero label smoothing parameter

will deteriorate the model’s discrimination [69]. We adopt eight attention heads as

suggested. We set the batch size to 4096 tokens and accumulate gradients over four

batches.

2.3 Methodology

Given a molecule graph G with N nodes (atoms), we denote the matrix repre-

sentation of node features as X ∈ RN×M , the tensor representation of edge features

as E ∈ RN×N×L, and the adjacency matrix as A ∈ {0, 1}N×N . M and L are feature

dimensions of atoms and bonds, respectively. We denote as P, S,R the product,

synthons, and reactants in the reaction formulation, respectively. The single-step

retrosynthesis problem can be described as given the desired product P, seeking for a

set of reactants R = {R1, R2, ..., Rn} that can produce the major product P through

a valid chemical reaction. It is denoted as P → R (predict R given P), which is the

reverse process of the forward reaction prediction problem [70, 71] that predicts the

outcome products given a set of reactants.

As illustrated in Figure 3.3, our method decomposes the retrosynthesis task

(P → R) into two closely dependent steps reaction center identification (P → S)

and reactant generation (S → R). The first step is to identify the potential reaction

bonds which will be disconnected during the retrosynthesis, and then the product P

can be split into a set of intermediate synthons S = {S1, S2, ..., Sn}. Note that each

synthon Si can be regarded as the substructure of a reactant Ri. The second step is to

transform synthons S = {S1, S2, ..., Sn} into associated reactants R = {R1, R2, ..., Rn}.
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Although the intermediate synthons are not needed in retrosynthesis, decomposing the

original retrosynthesis task (P → R) into two dependent procedures can have multiple

benefits, which will be elaborated thoroughly in the following sections.

2.3.1 EGAT for reaction center identification

We treat the reaction center identification as a graph-to-graph transformation

problem which is similar to the forward reaction outcome prediction [71]. To achieve

this, we propose a graph neural network named Edge-enhanced Graph Attention

Network (EGAT) which takes the molecule graph G as input and predicts disconnection

probability for each bond, and this is the main task. Since a product may be produced

by different reactions, there can be multiple reaction centers for a given product

and each reaction center corresponds to a different reaction. While current message

passing neural networks [72] are shallow and capture only local structure information

for each node, and it is difficult to distinguish multiple reaction centers without global

information. To alleviate the problem, we add a graph-level auxiliary task to predict

the total number of disconnection bonds.
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Figure 2.3: Embedding computation flows of GAT and the proposed EGAT.
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As shown in Figure 2.3, distinct from the Graph Attention Network (GAT) [73]

which is designed to learn node and graph-level embeddings, our proposed EGAT also

learns edge embedding. It identifies the reaction center by predicting the disconnection

probability for each bond taking its edge embedding as input. Given the target

G = {A,E,X}, the EGAT layer computes node embedding h′
i and edge embedding

p′i,j from previous layer’s embeddings hi and pi,j by following equations:

zi = Whi,

ci,j = LeakyReLU(aT [zi||zj||pi,j]),

αi,j =
exp(ci,j)∑

k∈Ni
exp(ci,k)

,

h′
i = σ(

∑
j∈Ni

αi,jU[zj||pi,j]),

p′i,j = V[h′
i||h′

j||pi,j],

(2.3)

where W ∈ RF ′×F , a ∈ R2F ′+D , U ∈ RF×(F ′+D) , and V ∈ RD×(2F+D) are

trainable parameters, || means concatenation operation, Ni is all neighbor nodes of

the node i, αi,j is the attention weight between the node i and its neighbor node

j, and h′
i ∈ RF as well as p′i,j ∈ RD are the output node and edge representations,

respectively. Initial input embeddings hi, pi,j are the input node and edge feature

vectors xi, ei,j, respectively, which will be detailed later, and in this special case the

dimensions F and D equals to the dimensions of associated features, respectively.

After stacking multiple EGAT layers, we obtain the final edge representation

pi,j for the chemical bond between nodes i and j, as well as the node representation

hi for each node i. To predict the disconnection probability for a bond, we perform a

fully-connected layer parameterized by wfc ∈ RD and a Sigmoid activation layer to pi,j

and its disconnection probability is di,j = Sigmoid(wT
fc ·pi,j). Note that the multi-head
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attention mechanism can also be applied like the original GAT. The optimization goal

for bond disconnection prediction is to minimize the negative log-likelihood between

prediction di,j and ground-truth yi,j ∈ {0, 1} through the binary cross entropy loss

function:

LM = − 1

K

K∑
k=1

∑
ai,j∈Ak

ai,j [(1 − yi,j)log(1 − di,j) + yi,jlog(di,j)], (2.4)

where K is the total number of training reactions and bond (i, j) exists if the associated

adjacency element ai,j is nonzero. The ground truth yi,j = 1 means the bond (i, j) is

disconnected otherwise remaining the same during the reaction. Bond disconnection

labels can be obtained by comparing molecule graphs of target and reactants.

The input of auxiliary task is graph-level representation hG = READOUT({hi|1 ≤

i ≤ N}), which is the output of the READOUT operation over all learned node repre-

sentations. We adopts an arithmetic mean as the READOUT function hG = 1
N

∑N
i=1 hi

and it works well in practice.

Similarly, a fully-connected layer parameterized by Ws ∈ R(1+Nmax)×F and

a Softmax activation function are applied to hG to predict the total number of

disconnected bonds, which is solved as a classification problem here. Each category

represents the exact number of disconnected bonds, so there are 1+Nmax classification

categories. Nmax is the maximum number of possible disconnected bonds in the

retrosynthesis. We denote the Softmax output as q = Softmax(Ws · hG). The total

number of disconnected bonds for each target molecule is predicted as:

n∗ = arg max
n

(qn) = arg max
n

(Softmax(Ws · hG)n), 0 ≤ n ≤ Nmax. (2.5)
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The ground truth number of disconnections for molecule k is denoted as Nk,

the indicator function 1(i, Nk) is 1 if i equals to Nk otherwise it is 0, and the cross

entropy loss for the auxiliary task:

LA =
1

K

K∑
k=1

CrossEntropy(Nk, q
k) = − 1

K

K∑
k=1

Nmax∑
i=0

1(i, Nk)log(qki ). (2.6)

Finally, the overall loss function for the EGAT is LEGAT = LM +αLA, where α is

fixed to 1 in our study since we empirically find that α is not a sensitive hype-parameter.

The atom feature consists of a series of general atom information such as atom

type, hybridization, and formal charge, while the bond feature is composed of chemical

bond information like bond type and conjugation (see Appendix 2.4.4 for details).

These features are similar to those used in [6] which is for chemical property prediction.

We compute these features using the open-source toolkit RDKit 2. To fully utilize

the provided rich atom-mapping information of the USPTO datasets [67] [74], we add

a semi-templates indicator to atom feature. For retrosynthesis dataset with given

reaction type, a type indicator is also added to the atom feature.

For atom-mapped USPTO datasets, reaction templates are extracted from

reaction data like previous template-based methods [61, 62, 8]. However, we are

not interested in full reaction templates since these templates are often too specific.

There are as many as 11,647 templates for the USPTO-50K train data [8]. Only

the product side of templates are kept instead, which we name as semi-templates.

Since reaction templates are closely related to the exact reaction, the semi-templates

indicator expected to play a significant role in reaction center identification.

The semi-templates can be considered as subgraph patterns within molecules.

We build a database of semi-templates from training data and find all appeared

semi-templates within each molecule. For each atom, we mark the indicator bits

2https://www.rdkit.org
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associated with appeared semi-templates. Note that each atom within a molecule

may belong to several semi-templates since these semi-templates are not mutually

exclusive. Although reaction templates are introduced, our method is still template-

free since i) only semi-templates are incorporated and our method does not rely on

full templates to plan the retrosynthesis, and ii) our EGAT still works well in the

absence of semi-templates, with only slight performance degradation.

2.3.2 Reactant generation network

Once the reaction center has been identified, synthons can be obtained by

applying bond disconnection to decompose the target graph. Since each synthon is

basically a substructure within the reactant, we are informed of the total number of

reactants and substructures of these reactants. The remaining task S → R is much

simpler than the original P → R in which even the number of reactants is unknown.

Specifically, task S → R is to generate the set of desired reactants given obtained

synthons. Based on commonsense knowledge of chemical reaction, we propose that the

ideal RGN should meet following three requirements: R1) be permutation invariant

and generate the same set of reactants no matter the order of synthons, R2) all

given information should be considered when generating any reactant, and R3) the

generation of each reactant also depends on those previously generated reactants.

To fulfill these requirements, we represent molecules in SMILES and formulate

S → R as a sequence-to-sequence prediction problem. We convert synthon graphs

to SMILES representations using RDKit, though these synthons may be chemically

invalid. As in Figure 2.4, source sequence is the concatenation of possible reaction

types, canonical SMILES of the product, and associated synthons. The target sequence

is the desired reactants arranged according to synthons.
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source target

<rxn_k> product <link> synthon1.synthon2 reactant1.reactant2

<rxn_k> product <link> synthon2.synthon1 reactant2.reactant1

<rxn_k> BrCCSc1cccs1 <link> [CH2]CBr.[S]c1cccs1 BrCCBr.Sc1cccs1

<rxn_k> BrCCSc1cccs1 <link> [S]c1cccs1.[CH2]CBr Sc1cccs1.BrCCBr

Example:

Figure 2.4: Illustration of source and target sequences. <rxn k> is the kth reaction
type if applicable. The product and synthons are separated with a special <link>
token. The order of reactants is arranged according to synthons. SMILES strings are
joined with a dot following RDkit.

We approximate the requirement R1 by augmenting train samples with reversely

arranged synthons and reactants as shown in Figure 2.4. Our empirical studies

demonstrate that such approximation works pretty well in practice. To satisfy the

requirement R2, the encoder-decoder attention mechanism [75] [68] is employed,

which allows each position in the target sequence attends to all positions in the

source sequence. A similar masked self-attention mechanism [68], which masks future

positions in the decoder, is adopted to make the RGN meet the requirement R3.

Motivated by the great success of Transformer [68] in natural machine translation,

we build the RGN based on the Transformer module. Transformer is a sequence-to-

sequence model equipped with two types of attention mechanisms: self-attention and

encoder-decoder attention [68]. Transformer is also adapted for reaction outcome

prediction [69] and retrosynthesis [9], in which both products and reactants are

represented in SMILES. We include a brief description of Transformer in section 2.2.1.

For the first time, the generation order of reactants can be determined by

aligning reactants in the target with synthons in the source, thanks to intermediate

synthons which are associated with reactants uniquely. While the generation order of

reactants is undetermined in previous methods [55, 9, 63], which naively treats the
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sequence-to-sequence model as a black box. The uncertainty of the generation order

makes their models hard to train.

2.3.2.1 Robustify the RGN.

We find the EGAT suffers from distinguishing multiple coexisting reaction

centers, which is the major bottleneck of our method. As a result of the failure of

identifying the reaction center, the generated synthons are different from the ground

truth. To make our RGN robust enough and able to predict the desired reactants even

if the EGAT fails to recognize the reaction center, we further augment RGN training

data by including those unsuccessfully predicted synthons on training data. We do

not reverse the order of synthons for these augmentation samples like in Figure 2.4.

The intuition behind is that EGAT tends to make similar mistakes on training and

test datasets since both datasets follow the same distribution. This method can make

our RGN able to correct reaction center prediction error and generate the desired set

of reactants.

2.4 Experiments

2.4.1 Dataset

We use USPTO-50K [67] and USPTO-full [74] to verify the effectiveness and

scalability. USPTO-50K consists of 50K reactions annotated with 10 reaction types,

which is derived from USPTO granted patents [76]. It is widely used in previous

retrosynthesis work. The USPTO-50K dataset is annotated with 10 reaction types, the

distribution of reaction types is displayed in Table 2.1. The distribution is extremely

unbalanced. We also report the statistics of the number of disconnection bonds for

training reactions in Tables 2.2 and 2.3.
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Table 2.1: Distribution of 10 recognized reaction types.

Reaction type Reaction type name # Examples

1 Heteroatom alkylation and arylation 15204

2 Acylation and related processes 11972

3 C-C bond formation 5667

4 Heterocycle formation 909

5 Protections 672

6 Deprotections 8405

7 Reductions 4642

8 Oxidations 822

9 Functional group interconversion (FGI) 1858

10 Functional group addition (FGA) 231

Table 2.2: Statistics of the number of disconnection bonds for the USPTO-50K training
reactions.

# Disconnection bonds 0 1 2 ≥ 3

# Reactions 11296 27851 849 12

Accumulative percent 28.23% 97.85% 99.97% 100.00%

Table 2.3: Statistics of the number of disconnection bonds for the USPTO-full training
reactions.

# Disconnection bonds 0 1 2 3 4 5 ≥ 6

# Reactions 161500 485449 88146 19303 5687 2032 1000

Accumulative percent 21.16% 84.77% 96.33% 98.86% 99.60% 99.87% 100.00%

2.4.2 Dataset and Preprocessing.

We evaluate our method on We adopt the same training/validation/test splits

in 8:1:1 as [61, 8]. For RGN training data, we add an extra 28K samples of which

synthons are reversed as shown in Figure 2.4 if there are at least two synthons.

There are 68K training samples for RGN, which is still denoted as USPTO-50K in

the following content. The USPTO-full consists of 950K cleaned reactions from the

USPTO 1976-2016 [74], which has 1,808,937 raw reactions without reaction types.

Reactions with multiple products are duplicated into multiple single-product ones.
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After removing invalid reactions (empty reactant and missing atom mappings) and

deduplication, we can obtain 950K reactions 3, which are randomly partitioned into

training/validation/test sets in 8:1:1.

For the EGAT, we build molecule graphs using DGL [77] and extract atom and

bond features with RDkit. By comparing molecule graphs of product and reactants,

we can identify disconnection bonds within the product graph and obtain training

labels for both main and auxiliary tasks. This comparison can be easily done for atom-

mapped reactions. For reactions without atom-mapping, a substructure matching

algorithm in RDKit can be utilized to accomplish the comparison. We use RDChiral

[78] to extract super general reaction templates, and obtain 1859 semi-templates for

USPTO-50K training data. Semi-templates that appear less than twice are filtered and

finally 654 semi-templates are obtained. As for the RGN, the product molecule graph

is divided into synthon graphs according to the ground truth reaction center, then are

converted into SMILES strings. The input sequence of RGN is the concatenation of

the possible reaction type, product SMILES string, and synthon SMILES strings as

illustrated in Figure 2.4.

2.4.3 Implementation.

All reactions are represented in canonical SMILES, which are tokenized with

the regular expression in [42]. We use DGL [77] and OpenNMT [79] to implement

our EGAT and RGN models, respectively. As for the EGAT, we stack three identical

four-head attentive layers of which the hidden dimension is 128. All embedding sizes

in EGAT are set to 128, such as F , F ′, and D. The Nmax is set to be two to cover

99.97% training samples. We train the EGAT on USPTO-50K for 80 epochs. EGAT

3Code and processed USPTO-full data are available at https://github.com/uta-smile/

RetroXpert
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parameters are optimized with Adam [40] with default settings, and the initial learning

rate is 0.0005 and it is scheduled to multiply 0.2 every 20 epochs. We train the RGN

for 300, 000 time steps, and it takes about 30 hours on two GTX 1080 Ti GPUs. We

save a checkpoint of RGN parameters every 10, 000 steps and average the last 10

checkpoints as the final model. We run all experiments for three times and report the

means of their performance in default.

2.4.4 Atom and bond features

Table 2.4: Atom Features used in EGAT. All features are one-hot encoding, except the
atomic mass is a real number scaled to be on the same order of magnitude. The upper
part is general atom feature following [6], the lower part is specifically extended for
the retrosynthesis prediction. Semi-templates size is 654 for the USPTO-50K dataset.

Feature Description Size

Atom type Type of atom (ex. C, N, O), by atomic number. 100

# Bonds Number of bonds the atom is involved in. 6

Formal charge Integer electronic charge assigned to atom. 5

Chirality Unspecified, tetrahedral CW/CCW, or other. 4

# Hs Number of bonded Hydrogen atom. 5

Hybridization sp, sp2, sp3, sp3d, or sp3d2. 5

Aromaticity Whether this atom is part of an aromatic system. 1

Atomic mass Mass of the atom, divided by 100. 1

Semi-templates Semi-templates that the atom is within. 654

Reaction type The specified reaction type if it exists. 10

2.4.4.0.1 Evaluation metric. The Top-N accuracy is used as the evaluation

metric for retrosynthesis. Beam search [80] strategy is adopted to keep top K predic-

tions throughout the reactant generation process. K is set to 50 in all experiments.
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Table 2.5: Bond features used in EGAT. All features are one-hot encoding.

Feature Description Size

Bond type Single, double, triple, or aromatic. 4

Conjugation Whether the bond is conjugated. 1

In ring Whether the bond is part of a ring. 1

Stereo None, any, E/Z or cis/trans. 6

The generated reactants are represented in canonical SMILES. A correct predicted set

of reactants must be exactly the same as the ground truth reactants.

2.4.5 Reaction center identification results

Table 2.6: Results of EGAT on USPTO-50K dataset. EAtt and Aux are the short
for edge-enhanced attention and auxiliary task, respectively. EGAT consists of both
main and auxiliary tasks. The prediction is binarized with a threshold of 0.5 if main
task alone.

Type EAtt
Accuracy (%)

Main Aux EGAT

✓ ✗ 73.9 99.1 85.7

✓ ✓ 74.4 99.2 86.0

✗ ✗ 50.0 86.1 64.3

✗ ✓ 51.5 86.4 64.9

To verify the effectiveness of edge-enhanced attention mechanism, we also include

the ablation study by removing edge embedding pi,j when computing the coefficient

ci,j = LeakyReLU(aT [zi||zj]). Results are reported in Table 2.6. The auxiliary task

(Aux) can successfully predict the number of disconnection bonds for 99.2% test

molecules given the reaction type (Type) while 86.4% if not given.
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As for the main task (Main) alone, its prediction accuracy is 74.4% w/ reaction

type and 51.5% wo/ reaction type. However, if we adopt the prediction from the

auxiliary task as the prior of the number of disconnection bonds, and select the most

probable disconnection bonds (EGAT), then the prediction accuracy can be boosted

to 86.0% (w/) and 64.9% (wo/), respectively. The edge-enhanced attention (EAtt)

can consistently improve the model’s performance in all tasks. The improvement is

more significant when the reaction type is unknown, so our EGAT is more practical in

real world applications without reaction types. This demonstrates that the reaction

type information plays an important role in the retrosynthesis. The reactions of

the same type usually share similar reaction patterns (involved atoms, bonds, and

functional groups), it is much easier to recognize the reaction center if the reaction

type is given as the prior knowledge. We also verify the importance of semi-templates

in Appendix 2.7.

2.4.6 Reactant prediction results

To robustify the RGN as described in the paragraph Robustify the RGN,

we also conduct the P → S prediction on the EGAT training data for USPTO-50K

(40K), and the prediction accuracy is 89.0% for the reaction type conditional setting.

We can obtain about 4K unsuccessful synthon predictions as augmentation samples

(Aug), adding the original 68K RGN training data, the total RGN training data size

is 72K. For the unconditional setting, the EGAT accuracy is 70.0% and there are 12K

augmentation samples, and the total RGN training size is 80K in this case. We train

RGN models on the USPTO-50K with/without the augmentation (Aug), and report

results in Table 2.7.

For the RGN evaluation, the RGN input consists of the ground truth synthons.

Therefore the results in Table 2.7 indicate the upper bound of our method’s overall
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retrosynthesis performance. The proposed augmentation strategy does not always

improve the upper bound. Without given reaction type, the RGN generally performs

worse with the augmentation due to the introduced dirty training samples. However,

when given reaction type, this augmentation boosts its prediction accuracy. We

presume that it is because the reaction type plays a significant role. The RGN learns

to put more attention on the reaction type and product instead of synthons to generate

the reactants.

Table 2.7: S → R prediction results. Aug denotes training data augmentation.
Evaluation results are based on ground-truth synthons as the RGN input.

Type Aug Training size
Top-n accuracy (%)

1 3 5 10 20 50

✓ ✗ 68K 72.9 86.5 88.3 89.5 90.4 91.6

✓ ✓ 72K 73.4 86.7 88.5 89.7 90.9 92.1

✗ ✗ 68K 71.9 85.7 87.5 88.9 90.0 91.0

✗ ✓ 80K 70.9 84.6 86.4 88.2 89.4 90.6

To evaluate the overall retrosynthesis prediction accuracy, the generated syn-

thons from P → S instead of the ground truth are input into the RGN. In this

way, we only need to compare the predicted reactants with the ground truth ones,

without considering if the reaction center predictions correct or not. We report the

retrosynthesis results in Tables 3.1. Our method RetroXpert achieves impressive

performance on the test data. Specifically, when given reaction types, our proposed

method achieves 62.1% Top-1 accuracy. As for results wo/ given reaction type, our

model achieves 50.4% Tpo-1 accuracy.
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Table 2.8: Retrosynthesis results compared with the existing methods. NeuralSym
[7] results are copied from [8]. *We run the self-implemented SCROP [9] and official
implementation of GLN [8] on the USPTO-full dataset.

Methods
Top-n accuracy (%)

1 3 5 10 20 50

Reaction types given as prior on USPTO-50K

Seq2Seq [55] 37.4 52.4 57.0 61.7 65.9 70.7

RetroSim [61] 52.9 73.8 81.2 88.1 91.8 92.9

NeuralSym [7] 55.3 76.0 81.4 85.1 86.5 86.9

SCROP [9] 59.0 74.8 78.1 81.1 - -

GLN [8] 63.2 77.5 83.4 89.1 92.1 93.2

RetroXpert 62.1 75.8 78.5 80.9 82.8 83.5

Reaction type unknown on USPTO-50K

RetroSim [61] 37.3 54.7 63.3 74.1 82.0 85.3

NeuralSym [7] 44.4 65.3 72.4 78.9 82.2 83.1

SCROP [9] 43.7 60.0 65.2 68.7 - -

GLN [8] 52.6 68.0 75.1 83.1 88.5 92.1

RetroXpert 50.4 61.1 62.3 63.4 63.9 64.0

Retrosynthesis results on USPTO-full.

GLN* [8] 39.0 50.1 55.3 61.3 65.9 69.1

SCROP* [9] 45.7 60.7 65.3 70.1 73.3 76.0

RetroXpert 49.4 63.6 67.6 71.6 74.6 77.0

While our RetroXpert is currently designed to find the best set of reactants. To

increase the diversity, we can design new strategies to enumerate multiple reaction

centers for each product. This is left as the feature work.

2.5 Large scale experiments

To demonstrate the scalability of our method, we also experiment on the USPTO-

full dataset, which consists of 760K training data. We extract 75,129 semi-templates
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and keep only 3,788 ones that appear at least 10 times. We set Nmax as 5 to cover

99.87% training data. We obtain 1.35M training data after reversing synthons. The

final accuracy of the P → S on training set is 60.5%, and there are 0.3M unsuccessful

synthon data and the total RGN training data size is 1.65M. We train the RGN

for 500,000 time steps on USPTO-full while keeping the other settings the same

as those in section 2.4. We run the official implementation of GLN following their

instructions [8], as well as the self-implemented SCROP [9] on the USPTO-full dataset.

Experimental results are reported at the bottom of Table 3.1. Our method again

significantly outperforms the SCROP and GLN, which demonstrates that our model

scales well to the large real-world dataset. Note that both template-free methods

SCROP and RetroXpert outperform the GLN significantly, which may indicate the

scalability of template-based methods is very limited.

2.6 Prediction visualization

Figure 2.5: Importance of the auxiliary task. Pink indicates the reaction center along
with disconnection probability predicted by the EGAT main task. Blue cross indicates
the ground truth disconnection. Our EGAT successfully finds the desired reaction
center under the guidance of the auxiliary task.
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For EGAT, how the auxiliary task helps to identify the reaction center is

illustrated in Figure 2.5. Note that in the first example the two colored bonds and

their surrounding structures are very similar. Current shallow GNNs consider only

local information and fails to distinguish the true reaction center. Under the guidance

of the auxiliary task, EGAT is able to identify the true reaction center. Figure ??

demonstrates the robustness of our method. Even if the predicted synthons are

different from the ground truth, the RGN still successfully generates desired reactants.

2.7 Ablation study of atom features

Our method can also work without semi-templates. When removing semi-

templates, the EGAT performance drops slightly as listed in Table 2.9. The semi-

templates feature is not a must component of our method, but it is definitely helpful

for finding the reaction center.

Table 2.9: Results of atom features ablation study. Aux is the short for auxiliary.
EGAT consists of both main and auxiliary tasks. The prediction is binarized with a
threshold of 0.5 if the main task alone.

Type Semi-templates
Accuracy (%)

Main Aux EGAT

✓ ✗ 70.0 99.2 84.0
✓ ✓ 74.4 99.2 86.0

✗ ✗ 43.3 83.8 59.9
✗ ✓ 51.5 86.4 64.9

2.8 Top-1 and Top-2 predictions

About 10% Top-1 predictions by our model have been considered as wrong

predictions while the associated Top-2 predictions are the same to the ground-truth.
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However, 9 in 10 of these Top-1 predictions are re-considered as reasonable and valid

predictions checked by experienced chemists from the synthetic chemistry perspective.

As Figure 2.6 shows, the major retro-predictions that both Top-1 and Top-2 can

be thought correct, are among metal-catalyzed cross-coupling reactions, N- and O-

alkylation reactions, saponification of ethyl esters and methyl esters, different sources

of reactants, esterification of alcohol with acyl chlorides or carboxylic acid, and

deprotection of different protecting groups to same alcohols.

There are some deprotection reactions with different protecting groups, such as

deprotecting O-THP ether and O-Bn ether to free alcohol in Figure 2.6(a). They are

prevalent strategies in chemistry utilizing different protecting groups. In Figure 2.6(b),

both bromoarenes and iodoarenes are reactive enough to initiate Suzuki coupling

reactions, similar to N- and O-alkylation of propargyl like or benzyl chloride and

bromide in Figure 2.6(c). In Figure 2.6(d), hydrolysis of ethyl ester and methyl ester

to corresponding carboxylic acid can both occur under certain conditions, although

saponification of methyl ester is faster than ethyl ester. Real reactants that participated

in the reactions are predicted in our Top-1 predictions, such as allyl Grignard reagent

and acyl chloride in cases shown in Figure 2.6(e). Last but not least, in Figure 2.6(f),

methyl boronic acid or its trimer form and trimethyl borate are very common reagents

used by chemists in Suzuki coupling reaction to introduce methyl group.

2.9 Discussion

One major common limitation of current retrosynthesis work is the lack of

reasonable evaluation metrics. There may be multiple valid ways to synthesize a

product, while the current evaluation metric considers only the given reaction. More

evaluation metrics should be proposed in the future. Different evaluation metrics such
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Figure 2.6: Top-1 and Top-2 predictions are both reasonable reactants.
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as coverage and round trip accuracy are proposed in [81], which is a good start, but

there is still a long way to go.
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CHAPTER 3

Template-based Retrosynthesis Prediction by Composing Templates

In this chapter, we will study template-based retrosynthesis prediction. Existing

template-based retrosynthesis methods follow a template selection stereotype and

suffer from the limited training templates, which prevents them from discovering

novel reactions. To overcome the limitation, we propose an innovative retrosynthesis

prediction framework that can compose novel templates beyond training templates. So

far as we know, this is the first method that uses machine learning to compose reaction

templates for retrosynthesis prediction. Besides, we propose an effective reactant

candidates scoring model that can capture atom-level transformations, which helps

our method outperform previous methods on the USPTO-50K dataset. Experimental

results show our method can produce novel templates for 15 USPTO-50K test reactions

that are not covered by training templates.

3.1 Introduction

Retrosynthesis plays a significant role in the organic synthesis planning, in which

target molecules are recursively decomposed into available commercial building blocks.

This analysis mode was firstly formulated in the pioneering work [52, 53] and now is

one of the fundamental paradigms in the modern chemical society. As the development

of deep learning and its applications [82, 83, 84, 85, 86], numerous retrosynthesis

prediction algorithms have been proposed to aid or even automate the retrosynthesis

analysis. However, the performance of existing methods is still not satisfactory. The

massive search space is one of the major challenges of retrosynthesis considering that

the order of 107 compounds and reactions [54] have been reported in synthetic-organic
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knowledge. The other challenge is that there are often multiple viable retrosynthesis

pathways and it is challenging to decide the most appropriate route since the feasibility

of a route is often compounded by several factors, such as reaction conditions, reaction

yield, potential toxic byproducts, and the availability of potential reactants [13].

Most of existing machine-learning empowered retrosynthesis methods focus on

the single-step version. These methods are broadly grouped into template-based and

template-free major categories. Templates-free methods [55, 9, 13, 64, 87, 88] usually

rely on deep learning models to directly generate reactants. One effective strategy is

to formulate the retrosynthesis prediction as a sequence translation task, and generate

SMILES [25] sequences directly using sequence-to-sequence models such as Seq2Seq

[55], SCROP [9], and AT [89]. SCROP [9] proposes to use a second Transformer

to correct the initial wrong predictions. Translation-based methods are simple and

effective, but lack interpretability behind the prediction. Another representative

paradigm is to first find a reaction center and the target is split accordingly to obtain

hypothetical units named synthons, and then generate reactants incrementally from

these synthons such as RetroXpert [13], G2Gs [64], RetroPrime [90], and GraphRetro

[91].

On the other hand, template-based methods are receiving less attention as the

rapid surge of template-free methods. Template-based methods conduct retrosynthesis

based on either hand-encoded rules [60] or automatically extracted retrosynthesis

templates [61]. Templates encode the minimal reaction transformation patterns, and

are straightforwardly interpretable. The key procedure is to select applicable templates

to apply to targets [61, 7, 62, 8]. Template-based methods have been criticised for the

limitation that they can only infer reactions covered by training templates and can

not discover novel reactions [66, 13].
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In this work, we propose a novel template-based single-step retrosynthesis

framework to overcome the mentioned limitation. Unlike previous methods only

selecting from training templates, we propose to compose templates with basic template

building blocks (molecule subgraphs) extracted from training templates. Specifically,

our method composes templates by first selecting appropriate product and reactant

molecule subgraphs iteratively, and then annotates atom transformations between

the selected subgraphs. This strategy enables our method discover novel templates

from training subgraphs, since the reaction space of our method is the exponential

combination of these extracted template subgraphs. What is more, we design an

effective reactant scoring model that can capture atom-level transformation information.

Thanks to the scoring model, our method achieves the state-of-the-art (SOTA) Top-1

accuracy 54.5% and 65.9% on the USPTO-50K dataset for without and with reaction

types, respectively. Our contributions are summarized as: (1) we propose a first-ever

template-based retrosynthesis framework to compose templates, which can discover

novel reactions beyond the training data; (2) we design an effective reactant scoring

model that can capture atom-level transformations, and it contributes significantly to

the superiority of our method; (3) the proposed method achieves 54.5% and 65.9%

Top-1 accuracy on the benchmark dataset USPTO-50K for without and with reaction

types, respectively, which establishes the new SOTA performance.

3.2 Related Work

Recently there has been an increasing number of work using machine learning

methods to solve the retrosynthesis problem. These methods can be categorized into

template-based [61, 7, 62, 92, 8] and template-free approaches [55, 64, 13, 91, 93].

Template-based methods extract templates from training data and build models to

learn the corresponding relationship between products and templates. RetroSim
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[61] selects the templates based on the fingerprint similarity between products and

reactions. NeuralSym [7] uses a neural classification model to select corresponding

templates. However, this method does not scale well with increasing number of

templates. To mitigate the problem, [92] adopts a multi-scale classification model to

select templates according to a manually defined template hierarchy. GLN [8] proposes

a graph logic network to model the decomposed template hierarchy by first selecting

reaction centers within the targets and then only consider templates that contain the

selected reaction centers. The decomposition strategy can reduce the search space

significantly. GLN models the relationship between reactants and templates jointly by

applying selected templates to obtain reactants which are also used to optimize the

model simultaneously.

Template-free methods do not rely on retrosynthesis templates. Instead, they

construct models to predict reactants from products directly. Translation based

methods [9, 89, 94, 95] use SMILES to represent molecules and treat the problem

as a sequence-to-sequence task. MEGAN [87] treats the retrosynthesis problem as a

graph transformation task, and train the model to predict a sequence of graph edits

that can transform the product into the reactants. To imitate a chemist’s approach

to the retrosynthesis, two-step methods [64, 13, 90, 91] first perform reaction center

recognition to obtain synthons by disconnecting targets according to the reaction

center, and then generate reactants from the synthons. G2Gs [64] treats the reactant

generation process as a series of graph editing operations and utilizes a variational

graph generation model to implement the generation process. RetroXpert [13] converts

the synthon into SMILES to generate reactants as a translation task. GraphRetro

[91] also adopts a similar framework and generates the reactants by attaching leaving

groups to synthons. Dual [88] proposes a general energy-based model framework that
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integrates both sequence- and graph-based models, and performs consistent training

over forward and backward prediction directions.

3.3 Preliminary Knowledge

3.3.1 Retrosynthesis and Template

Single-step retrosynthesis is to predict a set of reactant molecules given a target

product as shown in Figure 3.1(a). Note that the product and reactant molecules

are atom-mapped, which ensures that every product atom is uniquely mapped to a

reactant atom. Templates are reaction rules extracted from chemical reactions. They

are composed by reaction centers and encode the atom and bond transformations

during the reaction process. The illustrated template in Figure 3.1(b) consists of a

product subgraph (upper) and reactant subgraphs (lower). The subgraph patterns

are highlighted in pink within the corresponding molecule graphs.

  (a). Retrosynthesis (b). Template

Product

Reactant

Figure 3.1: A retrosynthesis example from USPTO-50K dataset and its template.
Note that the product and reactant are atom-mapped. The product and reactant
subgraphs in (b) are highlighted in pink within the product and reactant molecule
graphs in (a), respectively.
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3.3.2 Molecule Graph Representation

The graph representation of a molecule or subgraph pattern is denoted as G(V , E),

where V and E are the set of graph nodes (atoms) and edges (bonds), respectively.

Following previous work [8, 13], each bond is represented as two directed edges. Initial

node and edge features can be easily collected for the learning purpose.

3.3.3 Graph Attention Networks

Graph Neural Networks [72] are especially good at learning node- and graph-level

embeddings of molecule data. In this work, we adapt the Graph Attention Networks

(GATs) [73] to incorporate bond features. The GAT layer updates a node embedding

by aggregating its neighbor’s information. The modified GAT concatenates edge

embeddings with the associated incoming node embeddings before each graph message

passing. The input of the GAT layer is node embeddings {vi|∀i ∈ V} and edge features

{ei,j|(i, j) ∈ E}, and the output updated node embeddings {v′i|∀i ∈ V}. Each node

embedding is updated with a shared parametric function tθ:

v′i = tθ(vi,AGGREGATE({[vj||ei,j]|∀j ∈ N (i)})), (3.1)

where N (i) are neighbor nodes of vi and || is the concatenation operation. The

AGGREGATE of GAT adopts an attention-based mechanisms to adaptively weight

the neighbor information. A scoring function c(i, j) computes the importance of the

neighbor node j to node i:

c(i, j) = LeakyReLU(wT [W 1vi||W 1vj||W 2ei,j]), (3.2)
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where w is a learnable vector parameter and each W is a learnable matrix parameter.

These importance scores are normalized using the Softmax function across the neighbor

nodes N (i) of the node i to get attention weights:

α(i, j) = Softmaxj(c(i, j)) =
exp(c(i, j))∑

j′∈N (i) exp(c(i, j′))
. (3.3)

The modified GAT instances tθ and updates the node embedding as the non-

linear function σ activated weighted-sum of the transformed embeddings of its neighbor

nodes:

v′i = σ(
∑

j∈N (i)

α(i, j) ∗W 3[W 1vj||W 2ei,j]). (3.4)

GAT is usually stacked by multiple layers and enhanced with multi-head attention

[68]. Please refer to [73] for more details.

3.3.4 Graph-level Embedding

After obtaining the output node embeddings from the GAT, a graph READOUT

operation can be used to obtain the graph-level embedding. Inspired by [?], we

aggregate and concatenate the output node embeddings from all GAT layers to learn

structure-aware node representations from different neighborhood ranges:

embG = READOUT({vi,1||vi,2||...||vi,L|∀i ∈ V}). (3.5)

where vi,l is the output embedding of node i after the lth GAT layer. The READOUT

can be any permutation-invariant operation (e.g., mean, sum,max). We adopt the

global soft attention layer from [?] as the READOUT function for molecule graphs

due to its excellent performance.
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TCM

Template candidates and log-likelihoods

-2.646

-4.685

-1.479

-7.234

-1.448

 -1.946

 -2.743

  -5.197

Reactants and log-likelihoods Final 
log-likelihoods
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Ground-truth reactant

-2.144

RSM

Figure 3.2: The overall pipeline of our proposed method. Given the desired product
as shown at the top left, single-step retrosynthesis is to find the ground-truth reactant
as shown at the bottom left. Numbers indicated in blue are the corresponding log-
likelihoods of our models, and the log-likelihoods of template composer model (TCM)
and reactant scoring model (RSM) are combined to get the final ranking of the
reactants. In this example, combining log-likelihoods of TCM and RSM helps to find
the correct Top-1 reactant.

3.4 Methods

We propose to compose retrosynthesis templates from a predefined set of template

building blocks, and then these composed templates are applied to target products to

obtain the associated reactants. Unlike previous template-based methods [61, 7, 62, 8]

only selecting from training templates, our method can discover novel templates which

are beyond the training templates. To further improve the retrosynthesis prediction

performance, we design a scoring model to evaluate the suitability of product and

candidate reactants pair. The scoring procedure acts as a verification step, and it

plays a significant role in our method.

The overall pipeline of our method is shown in Figure 3.2. Our method tackle

retrosynthesis in two stages. The first stage is to compose retrosynthesis templates

with a TCM, which composes retrosynthesis templates by selecting template building

blocks and then assembling them. In the second stage, the obtained templates are

applied to the target product to generate associated reactants. After that, we utilize a
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powerful RSM to evaluate the generated reactants for each product. During evaluation,

the probability scores of both stages are linearly combined to rank Top-K reactants

prediction. In following sections, we will detail each stage of our method.

3.4.1 Compose Retrosynthesis Templates

The template-based retrosynthesis methods are criticized for their limitation

not generalizing to unseen reactions, since all existing template-based methods follow

the similar procedure to select applicable templates from the extracted training ones.

To overcome the above limitation, we propose a different pipeline to find template

candidates. As illustrated in Figure 3.3, our method first selects product and reactant

subgraphs sequentially from the corresponding subgraph vocabularies, which is detailed

in section 3.4.1.1. Then these selected subgraphs are assembled into templates with

properly assigned atom mappings as detailed in section 3.4.1.4. As far as we know, this

is the first attempt to compose retrosynthesis templates instead of simple template

selection. During evaluation, beam search algorithm [80] is utilized to find Top-K

predicted templates. Reactants can be obtained by applying templates to the target

molecule.
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GAT embedded product graph 

RNN

Multilayer Perceptron

Graph
embedding

[END]

RNN RNN

Annotate atom mappings 

(a). Product subgraph selection model (PSSM)

(b). Reactant subgraph selection model (RSSM)

(c). Retrosynthesis template

Subgraph embedding

Figure 3.3: The workflow of our template composer model: (a) selecting a proper
product subgraph from product subgraph candidates with PSSM, (b) selecting reac-
tant subgraphs sequentially from reactant subgraph vocabulary with RSSM, and (c)
annotating atom mappings between the product and reactant subgraphs to obtain a
template.

3.4.1.1 Subgraph Selection

We denote a subgraph pattern as f , the product and reactant subgraphs for a

template as fp and fr, respectively, and the product and reactant subgraph vocabulary

for the dataset as FP and FR, respectively. To build the product subgraph vocabulary

FP and reactant subgraph vocabulary FR, retrosynthesis templates extracted from

training data are split into separate subgraphs to collect unique subgraph patterns.

We build separate vocabularies for the product and reactant subgraphs due to their

essential difference. Product subgraphs represent reaction centers and are more

generalizable, while reactant subgraphs may contain extra leaving groups which are

more specific to the reaction type and the desired target. We find this strategy works

well in practice.
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3.4.1.2 Product Subgraph Selection

To compose retrosynthesis templates for a desired target, the first step is to

choose proper fp from the vocabulary FP . In this work, we focus on the single-product

reactions, therefore there is only a single product subgraph pattern. Note that there

may be multiple viable retrosynthesis templates for each reaction, so each target may

have several applicable product subgraphs. The set of applicable product subgraphs

are denoted as Fa. Starting with any applicable product subgraph in Fa may obtain a

applicable retrosynthesis template for the target. Here Fa ⊆ FP because all applicable

product subgraphs must be in the vocabulary FP .

Each product molecule graph Gp contains only a limited set of candidate

subgraphs Fc predefined in the vocabulary FP . Three candidate subgraphs are

illustrated in Figure 3.3(a). The candidate subgraphs for each target can be obtained

in offline by checking the existence of every product subgraph from FP in the product

graph Gp. Therefore, we only need to consider the candidate subgraphs Fc to guide

the selection process [8] when selecting a product subgraph. Here Fa ⊆ Fc ⊆ FP since

the candidate subgraphs Fc must contain all applicable subgraphs.

In this situation, the product subgraph selection can be regarded as a multi-label

classification problem and starting with any applicable product subgraph in Fa can

obtain a viable retrosynthesis template. However, it is not optimal to train the

product subgraph selection model with binary cross-entropy loss (BCE) as in the

multi-label classification setting, since it predicts the applicability score independently

for each f ∈ Fc without considering their interrelationship. Note that the absolute

applicability scores of subgraphs in Fc do not matter here, what really matters is

the ranking of these applicability scores since the beam search is adopted to find a

series of template candidates during model inference. While a Softmax classifier can
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consider the relationship of all subgraphs in Fc, but it can not be directly applied

to PSSM, since it is not suitable for the multi-label case. Inspired by Softmax, we

propose a novel negative log-likelihood loss for the PSSM:

LPSSM = − log
arg minf∈Fa of

arg minf∈Fa of +
∑

f∈Fc\Fa
of

, (3.6)

where of is the exponential of PSSM output logits for subgraphs in F , |F| is the size of

F , and \ is set subtraction. In the above loss function, the numerator is the minimal

exponential output for all applicable subgraphs in Fa, which is considered as the

ground-truth class proxy in the Softmax classifier. The extra item in denominator is

the summation of exponential output of all inapplicable subgraphs in Fc. The intuition

is that we always optimize the PSSM to increase the prediction probability for the least

probable applicable subgraph, so the model is driven to generate large scores for all

applicable subgraphs Fc while considering interrelationships of candidate subgraphs.

The novel loss outperforms BCE loss in our experiments. Detailed experimental

comparison results between the proposed loss function Equation (3.6) and BCE loss

can be found in the Table 3.2.

PSSM scores candidate subgraphs Fc based on their subgraph embeddings. As

shown in Figure 3.3(a), to obtain subgraph embeddings, the nodes of product molecule

graph Gp are first encoded with the modified GAT that is detailed in section 3.3.3.

The embedding embf of the subgraph f is gathered as the average embedding of

subgraph f associated nodes in Gp, and then these embeddings are fed into a multilayer

perceptron (MLP) for subgraph selection. Here for a subgraph f , the READOUT

function is implemented as the arithmetic average for its simplicity and efficiency. Note

that this is different from GLN [8] in which product graph and candidate subgraphs

are considered as separate graphs and embedded independently. Our strategy to

reuse node embeddings is more efficient and can learn more informative subgraph
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embedding since the neighboring structure of a subgraph is also incorporated during

message passing procedure of GAT. Besides, our method can naturally handle multiple

equivalent subgraphs situation in which the same subgraph appears multiple times

within the product graph.

3.4.1.3 Reactant Subgraph Selection

The second step of the subgraph selection is to choose reactant subgraphs fr

from the vocabulary FR which is ordered according to the subgraph frequency in

training data, so that fr is also determinedly ordered. With minor notation abuse, fr

also denotes an ordered sequence of reactant subgraphs in the following content.

Since the number of reactant subgraphs is undetermined, we build the reactant

subgraph selection model based on the recurrent neural network (RNN) as illustrated

in Figure 3.3(b), and formulate reactant subgraph selection as the sequence generation.

The hidden state of RNN is initialized from the product graph embedding embGp as

defined in Equation (3.5) to explicitly consider the target product, and the start token

is the product subgraph fp selected in the previous procedure (Section 3.4.1.2), as

well as an extra end token [END] is appended to reactant subgraph sequence fr. At

each time step, the RNN output is fed into a MLP for the token classification. For the

start token fp, we reuse product subgraph embeddings obtained previously (Section

3.4.1.2) since we find it provides better performance than embedding the token in the

traditional one-hot embedding manner.

3.4.1.4 Annotate Atom Mappings

Given fp and fr, the final step is to annotate the atom mappings between fp and

fr to obtain the retrosynthesis template as shown in Figure 3.3(c). A subgraph pattern

f can also be represented in the SMARTS string, and we use open source toolkit
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Indigo1’s automap() function to build atom mappings. We empirically find about

70% of USPTO-50K training templates can be successfully annotated with correct

atom mappings. To remedy this deficiency, we keep a memo of training templates and

associated fp and fr. During evaluation, the predicted fp and fr are processed with

automap() if not found in the memo.

3.4.2 Score Predicted Reactants

After a retrosynthesis template is composed, reactants can be easily obtained

by applying the template to the target using RunReactants from RDKit [44] or

run reaction() function from RDChiral [78]. To achieve superior retrosynthesis predic-

tion performance, it is important to verify that the predicted reactants can generate

the target successfully. The verification is achieved by scoring reactants and target

pair, which is formulated as a multi-class classification task where the true reactant

set is the ground-truth class.

To serve the verification purpose, we build a reactant scoring model based on

the modified GAT. Product molecule graph Gp and reactant molecule graph Gr are

first input into a GAT to learn atom embeddings. Since the target and generated

reactants are atom-mapped as in Figure 3.1(a), for each atom in Gp we can easily

find its associated atom in Gr. Inspired by WLDN [71], we define a fusion function

F(np
a, n

r
a′) to combine embeddings of a product atom a and its associated reactant

atom a′:

F(np
a, n

r
a′) = W 4(n

p
a − nr

a′)||W 5(n
p
a + nr

a′), (3.7)

1https://github.com/epam/Indigo
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where || indicates the concatenation operation and W is a matrix that halves node

embedding dimension so that the concatenated embedding restores the original di-

mension.

The fused atom embeddings are regarded as new atom features of Gp, which

are input into another GAT to learn the graph-level embedding embG. In this way,

the critical difference between the product and reactant can be better captured since

our RSM can incorporate higher order interactions between fused atom embeddings

through the message passing process of GAT. While previous retrosynthesis methods

score reactants by modelling the compatibility of reactant and product at the molecule

level without considering the atom-level embedding.

The graph-level embedding embG is then fed into a simple MLP composed of

two fully-connected layers to output a compatibility score. The final probability score

is obtained by applying a Softmax function to the compatibility scores of all candidate

reactants associated to the target.

Our scoring model is advantageous since it operates on atom-level embeddings

and is sensitive to local transformations between the product and reactants, while

existing method GLN [8] takes only molecule-level representations as the input. So

GLN can not capture atom-level transformations and has a weaker distinguishing

ability.

The log-likelihoods of our TCM and RSM model predictions are denoted as

lTCM = log(P(T |P )) and lRSM = log(P(R|P )), respectively. The predicted reactants

are finally ranked according to the linear combination value of λ ∗ lTCM + (1 − λ) ∗

lRSM , 0 ≤ λ ≤ 1. The formulation can be understood as:

λ ∗ log(P(T |P )) + (1 − λ) ∗ log(P(R|P ))

= log(P(T |P )λ ∗ P(R|P )1−λ),

(3.8)
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where P(T |P ) is the probability of that the template T is applicable to the given

product P and P(R|P ) is the probability of the reactant set R for the given product

P . When combining together, P(T |P ) ∗ P(R|P ) approximates the joint probability

distribution P(T , R|P ). Hyper-parameter λ regulates the relative importance of

P(T |P ) and P(R|P ). The optimal λ can be determined by the validation.

3.5 Experiment and Results

3.5.1 Dataset and Preprocessing

Our method is evaluated on the standard benchmark dataset USPTO-50K [67]

under two settings (with or without reaction types) to demonstrate its effectiveness.

USPTO-50K is derived from USPTO granted patents [76], and it is composed of

50K reactions annotated with 10 reaction types. We split reaction data into train-

ing/validation/test sets into 8:1:1 in the same way as previous work [61, 8]. Since the

original annotated mapping numbers in the USPTO dataset may result in unexpected

information leakage2, we first preprocess the USPTO reactions to re-assign product

mapping numbers according to its canonical atom order as suggested by RetroXpert

[13]. The atom and bond features are similar to the previous work [13], and reaction

types are converted into one-hot vectors concatenated with the original atom features.

Following RetroXpert [13], we extract templates from training reactions using

RDChiral [78]. We can obtain 10386 unique templates in total for the USPTO-50K

training data, and 94.08% of test reactions are covered by these training templates. The

gathered templates are split into product and reactant subgraphs of which mapping

numbers are further removed to obtain the subgraph vocabularies FP of size 7766 and

FR of size 4391.

2 https://github.com/uta-smile/RetroXpert
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For each target molecule, we find its candidate subgraphs Fc using graph

matching algorithms and applicable templates by checking if the ground-truth reactant

can be obtained when each training template is applied to the target. The applicable

subgraphs Fa then can be obtained easily from the acquired applicable templates.

Since the exact graph matching process might be time-consuming, we extract the

fingerprint for each molecule/sub-molecule to filter those impossible subgraphs. For

the subgraph screening purpose, we adopt the PatternFingerprint from RDKit and

use a fingerprint size of 1024.

3.5.2 Evaluation

Following previous methods [8, 13], we use beam search [80] to find Top-50

template predictions during evaluation, which are applied to targets to collect candi-

date reactants. Collected reactants and targets are the experimental data for RSM.

Predicted reactants are finally ranked according to the combined log-likelihood of

TCM and RSM. The evaluation metric for retrosynthesis prediction is the Top-K exact

match accuracy, which is the percentage of reactions where the ground truth reactant

set is within the top K predictions.

3.5.3 Implementation

Our model is implemented using PyTorch [96] and PyTorch Geometric [97]. The

adapted GAT model is built based on the source implementation of Pretrain-GNN

[98]. The TCM model is composed of a modified GAT and a simple RNN model. The

embedding dimension is set as 300 for all embeddings for simplicity. The number

of GAT layers is 6. We adopt GRU [26] as the RNN implementation in TCM, the

number of GRU layers is 2 and both its embedding and hidden size are 300. We add

a self-loop to each graph node following [8, 13]. We use the Parametric Rectified
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Linear Unit (PReLU) [99] comprehensively as the activation function in our model.

We replace the original Batch Normalization [100] layer with Layer Normalization

[101] layer after each GAT layer, since we find Layer Normalization provides better

performance in our experiments. We adopt Equation (3.5) as the graph READOUT

operation. A simple MLP is applied to product subgraph embeddings to select the

proper product subgraph. The MLP is composed of two linear layers and the PReLU

activation function is placed between the two linear layers. We also use a Dropout

[102] layer with a dropout rate of 0.3 in the MLP.

The RSM model is composed of two GATs and a MLP head, and the GAT

uses the same settings as in the TCM except that each GAT is composed of 3 layers.

Product and reactant graphs are embedded with the first GAT model. Note that

for reactions with multiple reactants, we regard the disconnected molecule graphs as

a single large graph. Once obtaining the fused atom embeddings, the new product

molecule graphs with fused atom embeddings are input into the second GAT. The

composition of the MLP head is similar to that in TCM. The RSM model is also

trained in multi-process mode for acceleration.

Both TCM and RSM are optimized with Adam [40] optimizer with default

settings, and the initial learning rate is 0.0003 and 0.00005 for TCM and RSM,

respectively. The learning rate is adjusted with CosineAnnealingLR scheduler during

training. The models is trained in multi-process mode on a single GTX 1080 Ti GPU

for acceleration. TCM is trained with batch size 32 and it only takes about two

hours to train TCM for 80 epochs. RSM training costs about 6 hours for 20 epochs.

The final model parameters are saved and loaded later for inference. We repeat all

experiments for three times and report the mean performance in default. We find our

model is quite robust to the hyper-parameters, and most of the model settings are
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copied from [98] as they are given. We slightly tune the model hyper-parameters such

as learning rate and batch size to achieve the best results.

3.5.4 Main Results

We decide the optimal value of λ according to validation performance. Specifi-

cally, we set λ as 0.4 for both experimental settings (with/without reaction types).

We use these optimal settings in all experiments unless explicitly stated. Detailed

ablation study about λ are included in the 3.5.4.3.

Table 3.1: Retrosynthesis evaluation results (%) on USPTO-50K. Existing methods
are grouped into two categories. Our method RetroComposer belongs to the template-
based methods. The best results in each column are highlighted in bold. RetroXpert*
results have been updated by the authors in their GitHub repository2.

Methods
Without reaction types With reaction types

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Template-free methods

SCROP [9] 43.7 60.0 65.2 68.7 59.0 74.8 78.1 81.1
G2Gs [64] 48.9 67.6 72.5 75.5 61.0 81.3 86.0 88.7

MEGAN [87] 48.1 70.7 78.4 86.1 60.7 82.0 87.5 91.6
RetroXpert* [13] 50.4 61.1 62.3 63.4 62.1 75.8 78.5 80.9
RetroPrime [90] 51.4 70.8 74.0 76.1 64.8 81.6 85.0 86.9

AT [89] 53.5 - 81.0 85.7 - - - -
GraphRetro [91] 53.7 68.3 72.2 75.5 63.9 81.5 85.2 88.1

Dual [88] 53.6 70.7 74.6 77.0 65.7 81.9 84.7 85.9

Template-based methods

RetroSim [61] 37.3 54.7 63.3 74.1 52.9 73.8 81.2 88.1
NeuralSym [7] 44.4 65.3 72.4 78.9 55.3 76.0 81.4 85.1

GLN [8] 52.5 69.0 75.6 83.7 64.2 79.1 85.2 90.0
Ours 54.5 77.2 83.2 87.7 65.9 85.8 89.5 91.5

TCM only 49.6 71.7 80.8 86.4 60.9 82.3 87.5 90.9
RSM only 51.8 75.7 82.4 87.3 64.3 84.8 88.9 91.4
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3.5.4.1 Retrosynthesis Prediction Performance

We compare our RetroComposer with existing methods on the standard bench-

mark dataset USPTO-50K, and report comparison results in Table 3.1. Results of

RetroXpert have been updated by the authors2. For both evaluation settings (with or

without reaction types), our method outperforms previous methods by a significant

margin in seven out of eight compared Top-K metrics.

Specially, our RetroComposer achieves 54.5% Top-1 accuracy without reaction

types, which improves the previous best template-based method GLN [8] significantly

by 2.0% and also outperforms existing SOTA template-free methods Dual [88] and

GraphRetro [91]. Besides, our method achieves 77.2% Top-3 accuracy which improves

the Top-3 accuracy 70.8% of RetroPrime [90] by 6.4%, and 87.7% Top-10 accuracy

which improves the Top-10 accuracy 85.7% of AT [89] by 2.0%.

When reaction types are given, our method also obtains the best Top-1 accuracy

65.9% among all methods and outperforms GLN by 1.7%. Compared with template-

free methods GraphRetro and Dual, our method outperforms the SOTA Dual (65.7%)

by 0.2% and outperforms GraphRetro significantly by 2.0% in Top-1 accuracy. As for

the Top-10 accuracy, our method achieves 91.5%, which is slightly lower than 91.6%

of MEGAN [87].

As the ablation study, we report results with only TCM or RSM. With only

either TCM or RSM, the model performance is largely degraded. Without reaction

types, TCM only achieves 49.6% Top-1 accuracy while RSM only 51.8%. With reaction

types, TCM only achieves 60.9% Top-1 accuracy while RSM only 64.3%. Since TCM

and RSM scores retrosynthesis from different perspectives and are complementary,

their results can be combined to achieve the best performance. Particularly, our
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method achieves 54.5% and 65.9% Top-1 accuracy when combining TCM and RSM

according to Equation (3.8).

The superior performance demonstrates the effectiveness of our method. Par-

ticularly, the superiority of our method is more significant in real world applications

where reaction types are unknown. What is more, our Top-10 accuracy is already

quite high.It indicates that our method can usually find the best reactant set for the

target in a few candidates. This is especially important for multi-step retrosynthesis

scenario, in which the number of predicted reaction paths may grow exponentially

with the retrosynthesis path length.

3.5.4.2 Ablation Study of PSSM Loss

We experimentally show that our proposed loss function Equation (3.6) for PSSM

outperforms the BCE loss. For all ablation experiments, we find the optimal value of

hyper-parameter λ independently and report the best results for a fair comparison.

The comprehensive experimental results are reported in Table 3.2.

Without given reaction types, our method with Equation (3.6) as PSSM loss

achieves the best Top-1 and Top-3 accuracy results, outperforming the BCE loss in

Top-1 and Top-3 accuracy by 1.4% and 1.5%, respectively. With known reaction types,

our method with Equation (3.6) as PSSM Loss outperforms BCE loss by 0.6% in

Top-1 accuracy. While BCE loss can achieve better Top-5 and Top-10 results in both

settings, our proposed loss function Equation (3.6) can achieve better Top-1 accuracy.

The retrosynthesis prediction emphasizes more Top-1 accuracy, therefore we adopt

Equation (3.6) as the PSSM loss in our method.

For all experiments, combining the TCM and RSM scores can always achieve

the best performance, which proves the effectiveness of our strategy.
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Table 3.2: Ablation study results (%) of two differentPSSMloss functions: our proposed
Equation (3.6) and BCE.

Types LPSSM Methods Top-1 Top-3 Top-5 Top-10

Wo/

Eq. (3.6)
Ours 54.5 77.2 83.2 87.7

TCM only 49.6 71.7 80.8 86.4
RSM only 51.8 75.7 82.4 87.3

BCE
Ours 53.1 77.1 83.8 89.2

TCM only 46.5 69.9 78.5 86.9
RSM only 51.2 75.7 82.9 88.6

W/

Eq. (3.6)
Ours 65.9 85.8 89.5 91.5

TCM only 60.9 82.3 87.5 90.9
RSM only 64.3 84.8 88.9 91.4

BCE
Ours 65.3 85.9 90.3 92.6

TCM only 58.5 81.8 87.6 91.5
RSM only 64.2 85.4 89.6 92.4

3.5.4.3 Ablation study of hyper-parameter λ

We conduct the ablation study of λ and report results in Table 3.3, when λ = 0.4

the best Top-1 accuracy is achieved for the both settings. Note that with only RSM

(λ = 0), the Top-1 accuracy 64.3% already outperforms the previous best template-

based method GLN of 63.2% [8] with given reaction types. This demonstrates the

effectiveness of our RSM. While with only TCM (λ = 1.0), the performance has an

appreciable gap with the existing methods. In our method, each generated set of

subgraphs may have multiple associated templates due to the uncertainty of product

subgraphs and atom transformations. Therefore there may be multiple top-tier

predictions that can not be distinguished with only TCM. With a little help from

RSM (λ = 0.9), these top-tier predictions can be differentiated and the Top-1 accuracy

is significantly boosted.
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The lRSM indicates the likelihood of retrosynthesis templates, while lTCM scores

each reaction by looking at the detailed atom transformations. These two terms are

complementary and combined together to achieve the best performance.

Table 3.3: Top-1 accuracy (%) with different λ values.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Wo/ types 51.8 53.3 53.9 54.5 54.5 54.4 54.1 53.6 53.0 52.3 49.6
W/ types 64.3 65.2 65.6 65.7 65.9 65.9 65.6 65.1 64.7 64.4 60.9

3.5.4.4 Novel Templates

Different from existing methods, our method can find novels templates that are

not in training data. Our model predicts different templates based on different possible

reaction centers for a given target. For example, an amide formation template and

alkylation template may both be applied in the same target molecule, and our model

can predict suitable templates very well and give reasonable corresponding reactants

for such cases. For 5.92% of test reactions that are not covered by training templates,

our algorithm can predict relevant templates very well for most of reaction types,

although it fails in some heterocyclic formation reactions. This is because there are

very few of such reaction data in USPTO-50K. Particularly, our method successfully

discovers chemically valid templates for 15 uncovered test reactions, which confirms

that our method can find novel reactions. Two of such examples are illustrated in

Figure 3.4.
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Ground-truth reactantProduct Predicted template

Figure 3.4: Our method successfully finds valid templates for two test reactions that
are not covered by training data. The matched product subgraphs are highlighted in
pink for better visualization.

3.6 Discussion and conclusion

In this chapter, we propose a novel template-based retrosynthesis prediction

framework that composes templates by selecting and assembling molecule subgraphs.

Besides, experimental results confirm that the proposed strategy can discover novel

reactions. Although currently our method can find only a few novel templates, we

believe our method can inspire the community to explore further in this direction to

improve models’ ability to find more novel reactions. To further improve the ranking

accuracy, we present a novel reactant scoring model to rank candidate reactants by

taking into account atom-level transformations. Our method significantly outperforms

previous methods and sets new SOTA performance on the USPTO-50K, which proves

the effectiveness of our method.
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