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Abstract

Surrogate Optimization and Global Optimization approaches to optimize underlying func-

tions have been studied and used extensively in the field of Operations Research. However,

there are very few instances where these approaches have been applied and tested in applica-

tions with uncertainty. Additionally, extensive focus and effort has been put into developing

highly complex metamodels rather than globally optimizing these metamodels.

In this study, we propose a Mixed Integer Quadratically Constrained Program

(MIQCP) based approach that globally optimizes a Quintic Multivariate Adaptive Regres-

sion Splines (QMARS) metamodel. The QMARS-MIQCP based optimization is applied

to a global optimization framework called QMARS-MIQCP-OPT to optimize several test

functions with both lower and higher dimensions.

The QMARS-MIQCP based optimization is also applied to a surrogate optimiza-

tion framework called QMARS-MIQCP-SUROPT. In any surrogate optimization algorithm,

the process of exploring the space to find new points to evaluate plays a key role in the

performance of the algorithm. Even though the traditional Exploration and Exploitation

Pareto Approach (EEPA) works well with surrogate optimization algorithms that use EEPA

to select candidate points for evaluation, because our proposed approach optimizes the space

around the selected EEPA candidates, there is inherent exploration in the algorithm itself.

Using traditional EEPA caused too much exploration, slowing down the algorithm’s capa-

bility to find optimal solutions in fewer function evaluations. So, a modified Sorted EEPA

approach was developed in the study. Additionally, two different candidate selection strate-

gies are also studied. The QMARS-MIQCP-SUROPT algorithm is also applied to test the
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performance when optimizing standard test functions that have been used as benchmarks in

both surrogate optimization and global optimization applications.

Optimal parameter settings play an important role in the efficiency of analytical

chemistry instrumentation. The application of the developed QMARS-MIQCP-SUROPT

algorithm to analytical chemistry instrumentation will provide an abundance of knowledge

about the instrument, eliminate trial-and-error runs, as well as help in reducing the sample

preparation time and cost of materials used. The QMARS-MIQCP-SUROPT algorithm is

applied to ChromSim, a simulation software developed by Dr. Dwight Stoll and team to

optimize the parameter settings of a 2D – Liquid Chromatography (LC) system for efficient

separation of different analytes. The developed QMARS-MIQCP-SUROPT algorithm is also

applied to guide a series of real-world laboratory experiments to optimize the parameter set-

tings of the Shimadzu Liquid Chromatography Mass Spectrometry (LCMS) 2020 instrument

for efficient flow injection analysis of Acetaminophen.
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Chapter 1

Introduction

The 2019 National Academies report, A Research Agenda for Transforming Separation Sci-

ence, specifies in Chapter 3 that, “key fields of research that can provide insight and knowl-

edge to advance separation science: materials synthesis, systems engineering, responses to

external stimuli, instrumentation and characterization tools, and data science and analyt-

ics [1].” The proposed work will integrate statistics and operations research to establish an

effective strategy for analysis of chemical compounds.

1.1 Overview of Proposed Research

The decision and response variables in the proposed research are grouped into three spaces:

The first is the input space (X), which is usually a combination of Sample materials, target

analytes and instrument properties. The next is decision space (Y), which is comprised

of the variable parameters of the analytical chemistry instruments like Voltage, Pressure,

Temperature, etc. Finally, we have the outcome space (Z), which is characterized by the

extraction performance metrics detected by the equipment like Peak Area, Peak Width,

Ionization Intensity, etc. These three spaces together represent the analytical chemistry

instrument. The relationships between these three variable spaces are unknown and are

likely nonlinear and non-convex.
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Figure 1.1: Flowchart of proposed research

A flowchart of the proposed research is given in Figure 1.1. The main aim of this

research is to find optimal parameter settings in the decision space (Y) by maximizing one

of the performance metrics in the outcome space (Z) for each combination of the input space

(X). This will be achieved by performing a series of tasks.

Task 1: Design of Experiments (DoE): Using the descriptive features to rep-

resent the input space efficiently, the aim of this task is to create an efficient Design of exper-

iments on both the input and decision space. The DoE on the input and Decision space will

be incorporated within the surrogate optimization algorithm in task 2 to efficiently search

the spaces.

Task 2: Surrogate Optimization: In this task, an efficient global surrogate

optimization algorithm is developed to obtain optimal decision space settings by maximizing

the outcome space for each combination of the input space.
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1.2 Motivation

The motivation for this research can be looked at from two perspectives. One from the

analytical chemistry side of it and another from the optimization side of it.

Looking at the analytical chemistry perspective, there are several new and advanced

technologies that facilitate seamless analyte extraction, separation and detection that can be

done while significantly reducing the sample preparation times and contamination. However,

with every new technology, there is inherent lack of knowledge about the complexity of the

system and its interactions with parameters. This leads to poor efficiency and undesirable

results and calls for better understanding of the system and optimization of the parameters.

Looking at the optimization perspective, due to the nature of this application, col-

lecting large amount data costs time and money. Surrogate optimization has been typically

used with highly computational computer models and works well with small data [2, 3, 4, 5].

Surrogate models also do a great job in efficiently searching the space. There are several

highly complex surrogate models that have been developed. A major shortcoming that needs

to be addressed is that a lot of time and effort has been put into developing these complex

meta models but not a lot of work has been done in globally optimizing these models. Most

literature tend to use commercially available optimization toolboxes like MATLAB’s FMIN-

CON [2] and Surrogate Modeling (SUMO) toolbox [6, 7] or a pool of candidate solutions

[3, 8, 9], which are unlikely to globally optimize these complex meta models.

1.3 Research Gap

In the optimization realm, there is an abundance of literature on surrogate optimization,

and there is also an abundance of literature on global optimization. However, there is very

little literature on global optimization of surrogate models. Additionally, there are very little

literature that addresses optimization under uncertainty.

In the analytical chemistry realm, there is an abundance of literature on using DoE
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and response surface methodology (RSM) in optimizing extraction parameters. There is also

considerable literature on using predictive models to understand the relationship between

the different extraction parameters. There are only a couple of instances that use surro-

gate optimization in analytical chemistry. However, all of them apply it to superstructure

optimization.

Consequently, this research will focus on bridging the gaps between the two realms

by creating a globally optimal surrogate optimization algorithm that can be applied to

analytical chemistry instruments. A visual overview of the research gap is given in Figure

1.2.

Figure 1.2: Research gap

1.4 Contribution

The proposed methodology aims at overcoming the above-mentioned shortcomings by using

efficient DoE in two phases: (i) in the representation of the design space and (ii) a sequential

DoE integrated within the surrogate optimization algorithm to effectively explore the design

space. A smooth quintic MARS meta model developed by Chen [10] is used in combination

with the optimization methodology discussed in Dickson [11] and Anahideh et al. [9].
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Combining these, an MIQCP based surrogate optimization algorithm is developed. The

proposed methodology is generic and can be implemented for a wide variety of applications

that require global optimization and the use of small data.

The methodology is also tested on ChromSim, a simulation software and to guide

a real-world laboratory experiment on the Shimadzu LCMS-2020 instrument. Implementing

this algorithm to find optimal system parameter settings for efficient separation and flow

injection analysis of analytes will provide an abundance of knowledge about the system.

With the set of optimal system parameter settings for a given analyte, the sample preparation

time is greatly reduced as well as the trial-and-error runs needed to achieve the optimal and

efficient analysis of the analytes. A flowchart of contributions is given in Figure 1.3

Figure 1.3: Flowchart of contribution
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Chapter 2

Literature Review

The term optimization is the process of making a design, process, or decision fully perfect

or efficient as possible. The term was first known to be used in 1857 [12]. Optimization has

been used in a wide variety of applications and has drastically improved the way data are

collected and decisions are made. Since its first use in 1857, the various methodologies and

tools used in optimization have grown exponentially.

2.1 DoE and RSM in optimization

The concept of DoE was first developed by Ronald A. Fisher in 1926. It was first developed

to arrange agricultural field experiments and to overcome the errors in measurements and

environmental biases [13]. The techniques used in designing these experiments were the

foundation of modern statistical principles. Over the years, this methodology gained a lot

of popularity because of its ability to efficiently model the relationship between the input

and the response variables and providing insights in running experiments and cutting costs.

Because of its ability to clearly identify the effect of changes of one or several of the inputs

simultaneously on the output, DoE has not only been used in designing physical experimental

runs in laboratories or agricultural fields, but it has also been used to design computer

experiments to run a wide range of computer simulations as well. There is an abundance of
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literature in various applications in electrical engineering, chemical engineering, mechanical

engineering, and dynamic programming [14, 15, 16, 17, 18]. It is commonly known as Design

and Analysis of Computer Experiments (DACE).

An extension of the classic design of experiments is sequential design of experiments,

which is a popularly used technique for selecting new points in the design space to evaluate.

The main difference of sequential designs from the classic design of experiments is that the

sample size and composition of the samples need not be fixed in advance, thereby reducing

the number of function evaluations. Dodge and Romig [19] were one of the pioneers who

recognized the drawback of the fixed sample size in the classic DoE and designed an exper-

iment that used a double sampling method in industry quality control to identify defective

parts in 1929. In 1940, another important contributor to this methodology was Mahalanobis

[20], who also focused on the importance of designing and revising experiments as data are

gathered and more knowledge about the system is gained. Following this in 1943, Wald [21]

developed a more logical approach during World War II in which observations were made

one by one, and the decision to stop sampling could be made at any point time. However,

an important issue with the sequential design approach that needed addressing was the issue

of deciding which population to select in each iteration in applications with multiple pop-

ulations. Herbert [22] addresses the issue using a two-population application and provides

a solution using Markov Chains. Similarly, Chernoff [23, 24] addresses the same issue for

a two-population problem using the maximum likelihood at each iteration. Albert [25] in

1961 extends Chernoff’s methodology from two states of nature to infinite states of nature

and also defines an optimal strategy using game theory and a payoff matrix to determine

which population to choose in the next iteration. There is not a lot of literature with contri-

butions succeeding these developments on the methodology, but it has been popularly used

in combination with the surrogate optimization algorithm. The common take away from

this literature is that all of them provide a three-alternative hypothesis: to reject the null

hypothesis, to fail to reject the null hypothesis or to continue the experiment at any stage

of the experiment, unlike testing at the end of the experiment like in a classic DoE [26].
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Even though, DoE was very efficient and useful in designing experiments, it was

not created with the capability to optimize the response. Consequently, Response Surface

Methodology (RSM) was developed by Box and Wilson in 1951 [27]. RSM uses a series of

sequential DoE to identify the points and the regions to explore in the response surface. Box

and Draper [28] emphasized the importance of the initial DoE in the performance of RSM and

also suggested some DoE that can be used in the literature. RSM starts with a first-degree

model of the response surface and as it gets closer to the maximum, the peak is modeled using

a second-degree polynomial function to approximate the response surface. This concept was

developed by Myers and Montgomery in 2002 [29]. An efficient metric to decide when to

switch from the first-degree design to the second-degree design was then developed by Nuran

in 2007 [30]. There are several second-order designs, but the most efficient second-order

design is the CCD. One of the main advantages of RSM is its ability to optimize the response.

As mentioned above, this is done by moving around the design space. Gradient descent

has been found to be an efficient method to make a decision as to which direction to move

iteratively to find an optimum response quickly [31]. There is an abundance of literature that

review the methodology and its applications in various fields such as agriculture, chemical

sciences, food sciences and engineering [32, 33, 34, 35, 36, 37, 38]. A major assumption in

the literature when using RSM is that the form of the underlying function is known, which

is not the case for most of the applications. Consequently, the solution obtained using this

method may suboptimal. Another disadvantage in using RSM is that it can optimize the

objectives/responses only one-at-at a time [36].

2.2 Surrogate optimization

Surrogate optimization is a technique that uses meta models or surrogate models to optimize

the response the surface. Surrogate optimization is a more advanced version of RSM that

has capability to learn and model the underlying response surface. In applications where

the underlying model of the response surface is unknown, also known as black box systems,
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surrogate optimization has been widely known to decipher the structure of the underlying

surface by making use of iterative DoE, fitting and validation of surrogate models [39, 9] This

methodology has been widely known to be used in applications involving simulations with

computation times in hours, days or even weeks. The major advantage of using the surrogate

optimization technique is its capability to converge to a solution with comparatively fewer

simulation or experimental runs and computation time [40].

It is also noted that surrogate optimization has been widely used in hyper parameter

optimization of machine learning models and has been commonly referred to as Bayesian

Optimization in most machine learning journals [41, 42, 43].

Based on literature that uses surrogate optimization [44, 45, 40, 46, 39], a gen-

eralized structure of the surrogate optimization procedure and the key components in the

surrogate optimization technique are identified. They are initialization, running computer

simulations/laboratory experiments, building surrogate models, finding new points to run

the simulation/experiments, and evaluation of stopping criteria. A basic process flow chart

of the steps in surrogate optimization is denoted in figure 2.1.

9



Figure 2.1: Flowchart of surrogate optimization based on literature

2.2.1 Initialization

The performance of the surrogate model depends on how well the input space is represented.

The most common initialization techniques found in the literature are studying the input

space and using space filling designs such as Orthogonal Arrays (OA) [47, 48], Latin Hy-

percube Designs (LHD) [49, 50], Sobol sequence [51, 52], etc. The main aim of using the

surrogate optimization technique is to reduce the number of experimental runs. Keeping that

in mind, in this research, Sobol sequence and LHD are used are used to test the performance

of the methodology.
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2.2.2 Surrogate Models

A surrogate model or metamodel is a mathematical approximation of the relationship be-

tween the input parameters and response variable. Selecting or developing a model that can

closely mimic the response surface yields the best performance in the optimization.

Response surface models have been used as surrogate models in several applications

because of their ability to closely approximate computationally expensive simulations with

low order polynomials and their relatively easy comprehensibility. It has been predominantly

used in applications with low dimensions of about 10-15 variables. It is seen that as the di-

mension of the problem increases, the computational cost increases and the accuracy of the

model in approximating the underlying function decreases [53]. To overcome this disadvan-

tage, Kaufman et al. [54] suggests applying constraints, typically using an upper and lower

bound on the design space, enabling a more efficient construction of the response surface.

Response surface models have also been used in multi-objective optimization applications

because of their various advantages. However, they are incapable of efficiently optimizing

multi-objective problems. Consequently, response surface models have been used in combi-

nation with evolutionary algorithms. The literature proposes using response surface models

to approximate the pareto frontier, because they are computationally inexpensive, and then

using evolutionary algorithms to optimize the pareto frontier [55, 56]. It has also been used

in combination with simulated annealing by creating a quadratic approximation and globally

optimizing the objective function, by gradually reducing the design space [57].

Kriging is an interpolating model that has been widely used as a surrogate model

because of its ability to perform better than polynomial regression models. It was first devel-

oped by Danie Krige to find the concentration of ores in gold mines [14]. A major advantage

of Kriging models stated in the literature is the possibility of controlling the variance of the

basis function [44]. There are several variations of the Kriging model: Ordinary Kriging,

Simple Kriging, universal Kriging, and Bayesian Kriging [44, 58, 59]. Even though the basis

of Kriging is assumed to be continuous between 0 and 1, it has been seen to approximate
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the underlying function efficiently in design optimization and structural reliability analysis

applications [58, 60, 61, 62] with discrete variables. A major disadvantage of the Kriging

model seen in the literature is the decrease in performance for high-dimensional applications.

Radial Basis Functions (RBF) are another modeling technique popularly used for

a surrogate model. In contrast to Kriging, RBF models have the capability to handle high-

dimensional problems efficiently [63, 5, 64]. A major advantage of RBF models is the ability

to tune their parameters easily to suit the application, and the model form is similar to

a neural network with a single hidden layer. Consequently, it has been widely used in

the literature in multi-objective surrogate black-box optimization applications, global op-

timization of highly non-convex functions and constrained surrogate assisted optimization

[65, 66, 67, 68, 69, 70].

Support Vector Regression (SVR) is one of the commonly used surrogate models.

SVR emerged as a modification of Support Vector Machines (SVM), which were mainly used

for classification. It was first developed by AT&T Bell Laboratories [71]. A major advantage

of SVR models is the ability to specify an acceptable error margin for the prediction results

without affecting the prediction accuracy of the model. This is very useful in data with

inherent noise and when collecting data using physical experiments [44]. Since SVR models

are specifically designed for dealing with high-dimensional noisy data and because of the

structure of the model, it is rendered useless if the cost of collecting large amounts of data

to fill the design space is inefficient. Consequently, SVR is rather seen in applications where

simulation of the data are possible [72, 73, 74, 75].

MARS was first developed by Friedman [76] in 1991. It has been used as a very

popular surrogate model because it is a non-parametric regression model and is consid-

ered an extension of the linear regression model. Tsai and Chen [10] propose a robust

version of MARS within an orthogonal array (OA)/MARS continuous-state stochastic dy-

namic programming (SDP) method. The method reduces the computational complexity of

a wastewater treatment SDP by introducing two automatic stopping rules that determine

the maximum number of basis functions and a robust version of MARS that prefers lower
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order interaction terms to higher order interaction terms. Crino and Brown [77] propose the

use of MARS in combination with RSM in obtaining a single objective global optimum for a

structural design. The literature makes use of the advantages of both the MARS model and

RSM. MARS has an excellent capability to reduce the dimension of a problem, and RSM can

quickly converge to an optimum for low dimensional problems. Costas et al. [78] use MARS

in the multi objective global optimization of a crashworthiness problem. In the literature,

MARS was compared against a quadratic polynomial model, cubic polynomial model and

gaussian kriging model. The application had highly noisy data adding to the complexity of

finding a pareto optimal solution. It was seen that MARS outperformed the other models.

Anahideh et al. [9] proposes Tree Knot MARS (TK-MARS) as a surrogate model in black

box optimization. It uses a classification and regression tree partitioning (CART) method to

identify the locations of knots. A smart replication method to identify promising candidates

to replicate is also introduced. In addition, there is significant literature that discusses the

use of MARS for optimal fleet assignment [79] and also optimizing decisions based upon a

MARS system model [80, 81, 82, 83, 84].

Ensemble of surrogates is another popular technique where different surrogate mod-

els are combined using a weighted approach or some other metric and used as metamodels.

While most literature focuses on selecting one model from a set of choices, the newly devel-

oped ensemble of surrogates focuses on choosing a combination of surrogates, which work

best for the application [85, 86]. Goel et al. [87] propose a weighted approach in combining

Polynomial Response Surface (PRS), Kriging and RBF models. The literature uses ensemble

of surrogates to predict regions of high uncertainty and to provide robust approximations

of response surfaces. It was seen that the DoE used in the initialization phase had a huge

impact on the performance of the ensemble of surrogates, and some of DoE made the surro-

gate models perform worse than they would have if used separately. The literature suggests

the use of ensemble of surrogates if the best surrogate model for the application is unknown

beforehand. Ouyang et al. [88] used a combination of five different surrogate models – PRS,

RBF, Kriging, SVR and Gaussian Process (GP). The literature studied the performance
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of five models separately as well as all the combinations of the models. It was seen that

the model with all the surrogates performed consistently better for the application. The

literature suggests that the DoE used for sampling plays a major role in the performance

of the model. It also mentions that adding different surrogate models, like Artificial Neural

Networks (ANN), to the ensemble or adding more than five surrogate models may not have

the same accuracy as the ensemble of surrogates proposed in the literature.

2.2.3 Decision Space Search

Effective searching of the decision space to find new points to evaluate is an important part

of the process because it helps find an optimal solution with few function evaluations. In

many cases, it is very expensive and time consuming to setup and run the experiments to

evaluate a point; using an efficient decision space search algorithm helps save cost and time.

The literature discusses several algorithms to select the next point(s) for evaluation, which

are discussed in this section.

2.2.3.1 Sequential Search Algorithms

Sequential search algorithms search through the decision space to iteratively select new points

and sample the entire decision space by using several evaluation criteria to identify the next

location to sample new points. Jones et al. [89] introduce a criteria based sequential design

approach to minimize response in computer experiments. It starts with an initial space

filling DoE and chooses points in regions where the predicted response is minimized, or

prediction uncertainty is relatively large. After, each point is selected based on the criteria,

the true response is calculated, and the response is updated. The process is repeated until

the change in the criteria is negligible. Whereas Williams et al. [90] use a maximin approach

to minimize the weighted response based on the inputs. It uses a maximin LHS design

to initialize the sample points. The literature also splits the input variables into control

and environmental variables. It uses a posterior expected improvement metric to select

new points and as the stopping criteria. New points in the control variable space and
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the environmental variable space are selected based on the posterior expected improvement

metric. The literature also keeps track of the best know minimum solution as the global

minimizer and is updated in each iteration with a new minimizer if one is found. Crombecq

et al. [6] present a comparison and analysis of different exploration based space-filling designs

in a surrogate modelling setting for time-consuming simulated computer experiments. The

literature compares random sampling, Voronoi-based sequential design and Delaunay-based

sequential design against traditional one-shot LHD. It is found that random sampling does

not consider the points that were evaluated previously and randomly searches through the

space to suggest new points to evaluate. It works well in applications were the number of

allowed sample points is large, which is not the case in most applications. With Voronoi-

based sequential design, the Voronoi volume estimation must be performed, and to get a

good estimate of the estimation, at least 100 random samples per data point is required,

which is not a lot in computer-based simulations. However, it is not a viable approach

for applications that require expensive laboratory runs. Delaunay-based sequential design

requires the calculation of Delaunay’s triangulation, which is rendered infeasible for problems

with more than 6 dimensions. A major disadvantage mentioned is that it does not have good

space filling properties in the corners. In other literature, Crombecq et al. [91] propose four

new space filling designs that achieve maximum intersite distance as well the projected

distance for simulation based surrogate modelling. The first method is called Sequential

nested Latin hypercubes in which the iteration starts with an initial grid of candidate points.

Where, a new point is chosen sequentially from the grid. Once all points from the grid have

been chosen, midpoints between the samples are considered, and the process is repeated, thus

(asymptotically) doubling the grid size at each iteration and the point that is farthest away

from the grid is chosen as the new point in each iteration. The second method developed

is called Global Monte Carlo methods, which uses Monte Carlo methods to generate (100

× the number of sample points evaluated in an iteration) random points for each sample a

score to calculate the distance of the new points from the previously evaluated points and

whichever point has the maximum score is picked as the new candidate point. The third and
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fourth methods use the Direct Search Toolbox of MATLAB as a local optimizer to optimize

the projected distance and the intersite distance. These methods use Monte Carlo method to

generate a surface for the projected distance and intersite distance and locally optimize the

surfaces. Following that, Xiao et al. [92] introduce an adaptive sequential sampling method

to build surrogate models with applications in structural reliability analysis. The literature

uses Monte Carlo Simulation to initialize the design and uses a kriging surrogate model.

Three learning models are used to sequentially sample new points in the designs: the first

learning function focuses on the distances to the limit-state functions and to the existing

training sample points. The second learning function focuses on the distances to the limit-

state functions and the points with higher uncertainty. The third learning function focuses on

the properties and advantages of the first two learning functions. The performance of these

learning functions was evaluated on both small and medium-high dimensional problems.

It was found that there was no significant difference in the different learning functions for

small problems. For medium-high dimensional problems, learning functions two and three

performed better.

2.2.3.2 Pareto Frontier Approach

The Pareto frontier approach to selecting new points is the most popular due to their ability

to find a balance between exploration and exploitation. Exploration is used to explore the

unexplored regions in the response surface to identify new points to run the experiments.

Exploration does not use surrogate models to identify these points, instead it uses distance

metrics like maximin criteria. Whereas exploitation makes use of surrogate models to explore

the space to find points that optimize the response. A pareto frontier with non-dominating

solutions combining the points obtained from exploration and exploitation is constructed.

New points to run the experiments are then identified from this pareto frontier. Jones et

al. [93] introduce an Efficient Global Optimization (EGO) algorithm that selects new points

based on the Expected Improvement (EI) of the objective function. The algorithm selects

new points with highest EI. The algorithm searches through the entire design space by max-
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imizing the EI. The search is stopped when the EI is less than 1%. Knowles [94] extends

the EGO algorithm introduced by Jones to optimize Multi-objective problems and calls it

ParEGO. It uses Evolutionary Algorithms (EA) to maximize the Expected Improvement

of the objective and select new points for evaluation. The approach also uses a weighted

cost function to select non-dominated pareto optimal solutions. Unlike the other literature,

Simpson et al. [58] propose the use of global surrogate models to explore the design space and

predict a pareto frontier all at once without having to specify weights for objective functions

in each iteration or use optimization algorithms to select new points. The predicted Pareto

frontier can then be explored graphically to determine suitable design solutions that yield

the best compromise between the multiple competing objectives. Dickson et al. [11] present

the idea of finding a non-dominated pareto optimal solution by finding the balance between

exploration and exploitation called Exploration Exploitation Pareto Approach (EEPA). The

method uses a random pool (weak points) to build the pareto frontier from which new points

are selected for evaluation. Nezami and Anahideh [95] propose a improved version of EEPA

called EEPA+ utilizing a dynamic coordinate discretization scheme similar to DYCORS

developed by Regis and Shoemaker [96]. Krityakierne et al. [97] use the concept of multi-

objective optimization in single objective optimization. The literature introduces Surrogate

Optimization with Pareto Selection (SOP) where simultaneous surrogate-assisted candidate

searches are performed around selected evaluated points, and a bi-objective optimization is

performed to find the balance between exploration and exploitation, which are set to be

the two conflicting objectives. Erikkson et al. [98] use an acquisition function and a set

of weighted functions defined by the distance of the candidate points from the previously

evaluated points. A promising candidate for evaluation is chosen when the acquisition func-

tion is minimized. The weights are used to balance exploration and exploitation. Akthar

and Shoemaker [99] use a list of sampling radii to select a new candidate point for evalua-

tion. The method keeps track of the improvements in the solution and uses a larger sample

radius when there is no improvement and a smaller radius when there is improvement, to

balance between exploration and exploitation. This research uses a methodology similar to
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this approach.

2.2.4 Evaluation of Stopping Criteria

The stopping criteria in a surrogate optimization algorithm plays an important role in min-

imizing the number of function evaluations and in making sure the algorithm does not get

stuck at a local optimum. Expected Improvement (EI) has been used as popular stopping

criteria for expensive optimization problems. Several modifications and adaptions of the

method have been used in a wide variety of optimization problems [100]. Anahideh et al. [9]

uses a maximum of 1000 function evaluations in the optimization of a single objective sur-

rogate based optimization of a complex black box system. Caballero and Grossmann [101]

present the optimization of a modular chemical process simulator. The surrogate optimiza-

tion algorithm in the literature uses a Kriging metamodel to mimic the simulation model.

The algorithm is stopped when the size of the sampling region is considerably small enough

and if the same set of independent variables are returned in two consecutive iterations.

Chaudhuri and Haftka [102] introduce a stopping criterion for the Efficient Global Opti-

mization (EGO) algorithm called EGO-AT, which uses Probability of targeted Improvement

(PI) with an adaptive target. The literature introduces a reasonable target for improvement

in the next cycle, and the probability of achieving that target are used as stopping criteria.

It assumes that a threshold for improvement is already defined by the user based on the

problem, and if the threshold is less than the absolute tolerance and relative tolerance, cal-

culated using formula defined in the literature, the algorithm does not proceed with the next

iteration. Another stopping criteria defined is if the probability of achieving the target is less

than 20% then algorithm is stopped. Wan et al. [103] use absolute expected improvement

and relative expected improvement defined by the ratio of the current expected improvement

versus the initial expected improvement as the threshold and the algorithm is stopped when

the improvement is less than the threshold. In addition, the literature also uses total sim-

ulation time and total number of sampled points as stopping criteria in a simulation-based

supply chain optimization problem. Voutchkov and Keane [104] suggest several possible
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stopping criteria for a multi-objective pareto frontier based optimization algorithm, such as

a fixed number of iterations, when all updated points are non-dominated, when a percentage

of new updated points belonging to the pareto frontier falls below a pre-defined value, when

a percentage of new updated points belonging to the pareto frontier falls above a pre-defined

value, and when there is no more improvement of the pareto frontier quality.

2.2.5 Applications of Surrogate Modeling and Optimization in

Chemistry

Analytical chemistry is a branch of chemistry that uses methods and instruments to efficiently

separate, identify and quantify matters. The applications of analytical chemistry play a key

role in our day to day lives in identifying any contaminants in the water we drink and

the air we breathe. On a broader level, it has applications in forensic science, bio analysis

and clinical analysis and has led to a lot of important discoveries [105]. A key to proper

and efficient extraction and detection of compounds is the selection of the settings of the

experimental parameters like temperature, pressure, etc. There are several new technologies

that enable the efficient extraction of compounds [106, 107, 108, 109, 110, 111]. Due to

the high level of complexity involved in the process, there is not a lot of knowledge on the

effect of these experimental parameters on the efficiency of the process. In addition, the

preparation of samples and each run of the equipment is time and resource intensive. This

leads to working with limited data and the need for creative methodologies that can make

efficient use of these limited data points and optimize the experimental parameters.

DoE enables direct control of the experiments and the number of runs [112]. One

of the major applications of DoE and RSM is in the optimization of parameter settings to

maximize extraction of chemical compounds. The focus of this research is on this application

as well. There is an abundance of literature that use RSM to optimize parameter settings

in analytical chemistry in general [113, 114, 115] and also specifically in mass spectrometry

[116, 117, 110], which is the application of interest in this research.

Surrogate optimization was originally intended for use with highly computational
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computer models [8, 3, 118, 4], such as finite-element simulation models, and uses surro-

gates (a.k.a., metamodels) to infer information from very few evaluations of the computer

models. In this research, the laboratory experiments take the role of the computer model.

This section of the literature review focuses on identifying literature that has applied opti-

mization to chemical processes. Put et al. [119] use a MARS model to predict the retention

times of a Reversed-phase high performance liquid chromatography (RPLC), which is one

of the most frequently used techniques to separate pharmaceutical mixtures. The prediction

from the MARS model helps in the selection of an optimal set of starting chromatographic

system parameters, which are usually determined by trial and error. The literature com-

pares the performance of the MARS model developed by Friedman with MLR models and

a neural model, and it is found that the MARS model performs better the other two model

types. Cozad et al. [120] introduce Automated learning of algebraic models for optimiza-

tion (ALAMO), which uses surrogate optimization for superstructures in simulation based

applications and builds the model iteratively by selecting new points in each iteration using

adaptive sampling. The methodology generates algebraic metamodels based on user input

and basic engineering and statistical relationships and uses Kriging and ANN to model some

more complex basis functions. The literature tests the proposed methodology on the simu-

lation of a Carbon Capture Adsorber. Quirante et al. [121] utilize a Kriging based surrogate

optimization methodology in the design of distillation columns to optimize the sequence of

columns in the superstructure and the number of trays in the column with an objective to

minimize the Total Annual Cost (TAC) of the system. The methodology in the literature

only guarantees a local optimum, and to guarantee global optimum, it is suggested to in-

crease the degrees of freedom and increase the number of sample points. However, doing

so results in slower performance of the Kriging model and more CPU time. Nentwich and

Engell [122] employ Artificial Neural Networks (ANN) in the superstructure optimization

of the hydroformylation process. The literature compares the performance of the simula-

tion using the traditional thermodynamic models used in the simulators versus replacing the

thermodynamic model with the multi-layer perceptron ANN models. It is seen that ANNs
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perform better with significantly lower computation times. Schweidtmann et al. [123] use

the recently developed Thompson Sampling Efficient Multi-Objective (TS-EMO) algorithm

in combination with an automated continuous reaction system for super structure optimiza-

tion. The literature uses Latin Hypercube design (LHD) to initialize the algorithm and uses

Gaussian Process surrogate models. The algorithm also uses a pareto frontier to optimize

and select new points in consecutive iterations. The experiment was set up, so the entire

system ran automatically without any user intervention overnight by using the TS-EMO

algorithm to generate parameters to control the reactor. The experiment was stopped when

a dense front of at least 20 experimental Pareto data points were collected.

A major takeaway from the literature using surrogate optimization in the analytical

chemistry realm is that it is mostly used in superstructure optimization. There is very little

literature that uses surrogate optimization for obtaining optimal parameter settings and even

less literature that has achieved global optimization of these surrogate models.
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Chapter 3

MIQCP Formulation

3.1 Introduction to MARS

A General MARS model with a response surface, f (x), fitted on independent variables xi

can be represented as:

f̂ (x) = a0 +
M∑

m=1
{amBm(x)} (3.1)

where, the first term, a0, is the intercept. The second term is a weighted sum of the basis

functions, where am is a constant coefficient for each basis function, Bm(x). The basis

function depends on x, which is a n-dimensional vector of input variables. In the weighted

sum, M represents the total number of linearly independent basis functions.

Usually, each basis function is univariate and the product of two or more basis

functions is used to model the interactions between the input variables. The basis function

for interaction terms is usually modeled as:

Bm (x) =
Km∏
k=1

ηkm (3.2)

where ηkm is the kth univariate term of the mth basis function and Km is the number of

interaction terms in the mth basis function. In this research Km ≤ 2 is considered. In

addition, the formulation is set up such that it can be expanded easily to higher order
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interactions.

Figure 3.1 obtained from [81] shows a graphical representation of the two way

interaction term of a MARS function.

Figure 3.1: Two-way interaction term of MARS function

There is significant literature that have worked on developing a global optimization

algorithm for various types of MARS models [80, 82, 83, 84]. Specifically, Ju et al. [83]

optimized a two way interaction piece-wise linear function of MARS of the form in equation

3.3:

ηkm = [skm

(
xj(k,m) − tkm

)
]+ = max

{
skm

(
xj(k,m) − tkm

)
, 0

}
(3.3)

where j(k, m) is the index of the variable within the vector x for the kth univariate term of

the mth basis function and tkm is the knot location corresponding to xj(k,m). The value skm

is the direction of the hinge function and can be either +1 or -1.
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3.2 Quintic MARS (QMARS)

The aspect in which this research is different from Ju et al. [83] is that this research

focuses on optimizing the QMARS model developed by Chen [10], where the MARS basis

function contains cubic, quadratic and quintic terms. Figure 3.2 obtained from [81] shows

the graphical representation of the difference between optimizing two-way interaction term

with a piecewise-linear fit and quintic fit.

Figure 3.2: Two-way interaction term with (a) piecewise-linear fit vs. (b) quintic fit

The QMARS function has three knots: a lower knot denoted by t−
km, a center knot

denoted by tkm, and an upper knot denoted by t+
km, corresponding to the variable xj(k,m) of

the kth univariate term of the mth basis function. Then the MARS basis function ηkm, for

the negative direction denoted by skm= -1 can be defined as:
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ηkm

=


tkm − xj(k,m), xj(k,m) ≤ t−

km

α−
km

(
xj(k,m) − t+

km

)3
+ β−

km

(
xj(k,m) − t+

km

)4
+ γ−

km

(
xj(k,m) − t+

km

)5
, t−

km < xj(k,m) < t+
km

0, xj(k,m) ≥ t+
km

(3.4)

where,

α−
km =

(−1)
(
4t+

km − 10tkm + 6t−
km

)
(
t−
km − t+

km

)3

β−
km =

(−1)
(
−7t+

km + 15tkm + 8t−
km

)
(
t−
km − t+

km

)4 ,

γ−
km =

(−1)
(
3t+

km − 6tkm + 3t−
km

)
(
t−
km − t+

km

)5

Similarly, the MARS basis function ηkm, for the positive direction denoted by skm= 1 can

be defined as:

ηkm

=


0, xj(k,m) ≤ t−

j(k,m)

α+
km

(
xj(k,m) − t−

km

)3
+ β+

km

(
xj(k,m) − t−

km

)4
+ γ+

km

(
xj(k,m) − t−

km

)5
, t−

km < xj(k,m) < t+
km

xj(k,m) − tkm, xj(k,m) ≥ t+
km

(3.5)

where,

α+
km = 4t+

km − 10tkm + 6t−
km(

t+
km − t−

km

)3

β+
km = −7t+

km + 15tkm + 8t−
km(

t+
km − t−

km

)4

γ+
km = 3t+

km − 6tkm + 3t−
km(

t+
km − t−

km

)5 ,
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3.3 Formulation of QMARS using MIQCP

The research focuses on QMARS by formulating the model using Mixed Integer Quadratically

Constrained Program (MIQCP) defined by the above equations. Table 3.1 shows the variable

notations and its definitions used in the formulation.

Notation Definition

M Number of unique univariate basis functions

a0 Constant Intercept coefficient of the QMARS model

am Coefficient of the mth basis function,∀m ∈ M

Km Number of interactions terms in the mth basis function,∀k ∈ Km, ∀m ∈ M

skm Direction of the kth univariate term of the mth basis function,

∀k = 1, ..., Km, m = 1, ..., M

ηkm Value of the kth univariate term of the mth basis function,

∀k = 1, ..., Km, m = 1, ..., M

t−
km Lower knot of the kth univariate term of the mth basis function,

∀k = 1, ..., Km, m = 1, ..., M

tkm Center knot of the kth univariate term of the mth basis function,

∀k = 1, ..., Km, m = 1, ..., M

t+
km Upper knot of the kth univariate term of the mth basis function,

∀k = 1, ..., Km, m = 1, ..., M

Tj Set of knots for variable j.

where Tj = {lj, uj}
⋃

k=1,...,Km,m=1,...,M{t−
km ∪ tkm ∪ t+

km}

∀j = 1, ..., n, k = 1, ..., Km, m = 1, ..., M

tj(r) rth smallest knot within the set Tj, ∀j = 1, ..., n, r = 0, . . . , |Tj|

Note: Tj = (lj, tj(1), tj(2), ...tj(|Tj |−2), uj)

r−
km Index of the piece in the ordered knots set immediately to the left of t−

km,

∀k = 1, ..., Km, m = 1, ..., M

r+
km Index of the piece in the ordered knots set immediately to the right of t+

km,
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∀k = 1, ..., Km, m = 1, ..., M

xjr Linear piecewise variable representing variable j in each of the pieces,

st. xjr = xj if tj(r) ≤ xj < tj(r+1), 0 otherwise,

∀j = 1, ..., n, r = 0, ..., |Tj| − 1

yjr Binary piecewise variable representing variable j in each of the pieces,

st. yjr = 1 if tj(r) ≤ xj < tj(r+1), 0 otherwise,

∀j = 1, ..., n, r = 0, ..., |Tj| − 1

hi
km Difference between xj(k,m) and the associated lower or upper knot for variable j

taken to the power of i when t−
km < xj < t+

km,

∀i = 1, ..., 5, k = 1, ..., Km, j = 1, ..., n, m = 1, ..., M,

n Number of explanatory variables

xj Value of variable j, ∀j = 1, ..., n

lj Lower bound on each of the explanatory variables,∀j = 1, ..., n

uj Upper bound on each of the explanatory variables,∀j = 1, ..., n

E Set of evaluated points

x Value of variables xj in the evaluated points set, st. x ∈ E

C Set of center points available for evaluation

c Index of the center point selected for evaluation

xc Value of center point selected for evaluation, st. xc ∈ C

ρ Radius of the circle within which the QMARS model is optimized

Table 3.1: Table of variables
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The formulation is given as follows:

max f̂ (x) = a0 +
M∑

m=1

{
am

Km∏
k=1

ηkm

}
(3.6)

ηkm =



α−h3
km + β−h4

km + γ−h5
km

+ ∑|Tj |−1
r=r−

km

tj(r)yj(k,m)r − xj(k,m)r, skm = −1, ∀k = 1, ..., Km, m = 1, ..., M

α+h3
km + β+h4

km + γ+h5
km

+ ∑|Tj |−1
r=r+

(km)
xj(k,m)r − tj(r)yj(k,m)r, skm = 1, ∀k = 1, ..., Km, m = 1, ..., M

(3.7)

tj(r)yjr ≤ xjr ≤ tj(r+1)yjr; ∀j = 1, ..., n, r = 0, ..., |Tj| − 1 (3.8)

xj =
|Tj |−1∑

r=0
xjr; ∀j = 1, ..., n (3.9)

|Tj |−1∑
r=0

yjr = 1; ∀j = 1, ..., n (3.10)

h1
km =


∑r+

km

r=r−
km

xjr − tkmyjr, skm = −1, ∀k = 1, ..., Km, m = 1, ..., M

∑r+
km

r=r−
km

xjr − tkmyjr, skm = 1, ∀k = 1, ..., Km, m = 1, ..., M

(3.11)

h2
km = h1

km.h1
km; ∀k = 1, ..., Km, m = 1, ..., M (3.12)

h3
km = h1

km.h2
km; ∀k = 1, ..., Km, m = 1, ..., M (3.13)

h4
km = h2

km.h2
km; ∀k = 1, ..., Km, m = 1, ..., M (3.14)

h5
km = h2

km.h3
km; ∀k = 1, ..., Km, m = 1, ..., M (3.15)
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∥x − xc∥ ≤ ρ (3.16)

lj ≤ xj ≤ uj; ∀j = 1, ..., n (3.17)

ηkm ∈ R; ∀k = 1, ..., Km, m = 1, ..., M (3.18)

xjr ∈ R; ∀j = 1, ..., n, r = 1, ..., |Tj| − 1 (3.19)

hi
km ∈ R; ∀i = 1, ..., 5, k = 1, ..., Km, m = 1, ..., M (3.20)

xj ∈ R; ∀j = 1, ..., n (3.21)

yjr ∈ B; ∀j = 1, ..., n, r = 1, ..., |Tj| − 1 (3.22)

The objective (3.6) is the QMARS model. Equations (3.7) - (3.10) represent the

basis functions and knots formulated as linear constraints. Equations (3.11) - (3.15) represent

the use of linear formulation and consequently the use of recursive substitution to handle the

cubic, quadratic and quintic terms in the basis function. Equation (3.16) is the euclidean

distance constraint which represents the ball constraint within which the QMARS model

is optimized. If the radius of the ball is large enough, it is similar to globally optimizing

the entire space. Equations 3.17 represents the bounds on the decision variables. Finally,

equations (3.18) - (3.22) represent the variable types of the variables used in the formulation.

3.4 Global Optimization of QMARS using MIQCP

The process of optimizing the QMARS model using the MIQCP will be to referred to as

QMARS-MIQCP-OPT henceforth. The algorithm for QMARS-MIQCP-OPT is given by

Algorithm 1. The first step in the algorithm is generating a large data set of decision

variables and corresponding response variables. The QMARS model is then fit on this large

data set. Finally, the QMARS-MIQCP-OPT algorithm optimizes the QMARS model using

the MIQCP. The objectives and constraints were formulated in MALTAB and combined

with the GUROBI optimizer for optimization.
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Algorithm 1:
General Algorithm for QMARS-MIQCP-OPT

Result: Optimal Solution: x∗ and f(x∗)
1 Generate a sample data set of decision variables and corresponding response

variables.
2 Fit QMARS model on the data.
3 Optimize the QMARS model using MIQCP to obtain x∗ and f(x∗) .

3.5 Experiments and Results

The performance of the QMARS-MIQCP-OPT methodology was tested by optimizing func-

tions f1, f2, f3 and f4 found in Ju et al. [83]. The true function values of the optimal solution

obtained by minimizing and maximizing the QMARS model using the QMARS-MIQCP-

OPT algorithm are compared with the results of the TITL-MARS-OPT in Ju et al. [83].

Functions f1 and f2 are 2-dimensional. The number of dimensions is denoted by the param-

eter, d. Whereas, functions f3 and f4 are 10-dimensional. All the functions have significant

interactions. The results are summarized in table 3.2.

Function d Measurement QMARS-MIQCP-OPT TITL-MARS-OPT

f1 2
Minimum -4.78 -4.56

Maximum 5.88 7.67

f2 2
Minimum -0.95 -0.61

Maximum 0.83 0.86

f3 10
Minimum -891.64 -826.08

Maximum 6415.68 6029.13

f4 10
Minimum -4,696,047.51 -4,581.942.36

Maximum -206.18 -1991.28

Table 3.2: Comparison of QMARS-MIQCP-OPT and TITL-MARS-OPT

The results show that QMARS-MIQCP-OPT achieves better solutions consistently

when minimizing functions f1 to f4 in comparison to TITL-MARS-OPT. As for maximizing

30



the functions, QMARS-MIQCP-OPT performs better for functions f3, f4. For function f2

the optimal solution from QMARS-MIQCP-OPT is really competitive with TITL-MARS-

OPT. Overall, QMARS-MIQCP-OPT outperforms TITL-MARS-OPT for all the four func-

tions when minimizing and outperforms TITL-MARS-OPT for two out of the four when

maximizing.
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Chapter 4

Surrogate Optimization of

QMARS-MIQCP

4.1 Existing Surrogate Optimization Methodology

A general framework for existing surrogate optimization methodology is presented in Algo-

rithm 2 and illustrated in Figure 4.1. In line 1 of Algorithm 2, a finite set of points is selected

from the input space. Because existing surrogate optimization algorithms are limited to the

points in this point set, a very large DoE is generated to ensure good representation of the

space. In Figure 4.1, the input space is represented by the gray rectangle, and the DoE points

are represented by a combination of the blue hexagons, orange circles and yellow stars. In

line 2 of the algorithm, a small initial set of points is selected from the large DOE, shown as

orange circles in the figure. In line 3, the objective function is evaluated for this initial set

of points. In the figure, the evaluated points are represented by the blue hexagons. In line

4 of the algorithm, the surrogate model is fit to the set of evaluated points. Exploitation

of the surrogate model is then used in line 5 to identify promising new points. In addition,

exploration using a distance metric or similar approach identifies new points in unexplored

areas of the input space. These new points are limited to the unevaluated points in the large

DOE from line 1 and are represented by the orange circles in the figure. A key component of
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surrogate optimization is to balance exploration and exploitation of the space. The number

of points selected in line 5 can also vary based on the specific methodology. In the figure,

these new points are represented by the yellow stars. The new points are evaluated in line 6,

and the evaluated and unevaluated point sets are updated in line 7. Correspondingly, in the

figure, the yellow circles become blue hexagons. The while loop conducted iterations until

specified stopping criteria are met.

Existing algorithms rely on a maximum number of function evaluations to stop

the algorithm. However, this is a major shortcoming because the solution found is the best

known solution at that point in the algorithm and may not necessarily be close to the optimal

solution. A second important drawback is how the search in line 5 of the algorithm is limited

to the points in the large DOE from line 1. Failure to explore the space in between the DOE

points guarantees a suboptimal search.

Algorithm 2:
Existing Surrogate Optimization Methodology

Result: Optimal Parameter Settings: x∗ and f(x∗)
1 Generate DoE with maximum number of points considered.
2 Select a small set of initial points from DoE.
3 Evaluate the objective for the initial set.

while Stopping criteria not met do
4 Fit surrogate model on set of evaluated points.
5 Search space to find new points to evaluate from the set of candidate points.
6 Evaluate the objective for the selected new points.
7 Remove selected points from set of candidate points and add to set of evaluated

points.
end
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Figure 4.1: Existing surrogate optimization methodology

4.2 Proposed Surrogate Optimization Methodology

Our proposed methodology aims to overcome the shortcomings in the existing methodology

by formally optimizing the surrogate model and enabling the selection of new points that

are no longer limited to the large DOE point set. Algorithm 3 presents the proposed sur-

rogate optimization methodology, which we refer to as QMARS-MIQCP-SUROPT. Lines

1–4 are the same as Algorithm 2, but the algorithms differ in the while loop. In line 5,

the proposed approach specifically employs the Exploration-Exploitation Pareto Approach

(EEPA), developed by Dickson [11], although an alternate search could be employed. The

key difference comes in line 6, in which the proposed QMARS-MIQCP-SUROPT approach

explicitly conducts the MIQCP optimization discussed in Section 3.3.

As mentioned, the proposed methodology also starts by initializing a large DoE and

selecting a small set of points, at which the objective is evaluated. These are also similarly

represented by the gray rectangle and a combination of the blue hexagons, orange circles and

yellow stars in Figure 4.2. Our contribution to the methodology is in the process of searching

the space and selecting new points for evaluation in subsequent iterations. Our approach uses
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a modified EEPA algorithm to efficiently balance both exploration and exploitation while

searching the space. The modified EEPA algorithm is discussed in Section 4.2.2. The points

generated by the EEPA algorithm are represented by the purple triangles in the figure.

Our proposed methodology creates a ball, with the EEPA points as centers and uses the

MIQCP formulation discussed in Section 3.3 to optimize the surrogate model and generate

new points for evaluation. In the formulation in Section 3.3, equation (3.16) represents the

formulation of the ball. In the figure, the ball is represented by the green circle surrounding

the purple triangle. The MIQCP optimization considers the space within the bounds of the

circle, and the optimal solutions are selected as new points for evaluation. These new points

are represented by the yellow stars in the figure and are not limited to the DOE in line 1.

Similar to Algorithm 2, the last two lines of Algorithm 3 evaluate the objective at the new

points and then update the evaluated and unevaluated point sets. However, because the new

points are no longer limited to the DOE from line 1, only those new points that coincide

with candidate points and the EEPA points chosen as centers in the DOE are removed.

Algorithm 3:
Proposed Surrogate Optimization Methodology

Result: Optimal Parameter Settings: x∗ and f(x∗)
1 Generate DoE with maximum number of points considered.
2 Select a small set of initial points from DoE.
3 Evaluate the initial set and add points to the set of evaluated points.

while Stopping criteria not met do
4 Fit surrogate model on set of evaluated points.
5 Use EEPA to search the space to find points from the set of candidate points.
6 Optimize the surrogate within a ball with EEPA points as centers to find new

points for evaluation.
7 Evaluate new points selected.
8 Remove EEPA points and coinciding new points from set of candidate points

and add to set of evaluated points.
end
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Figure 4.2: Proposed surrogate optimization methodology

The rest of the section discusses the details of the proposed surrogate optimization

methodology QMARS-MIQCP-SUROPT, specifically in regards to the surrogate model used,

the candidate search algorithm used and the candidate selection strategy.

4.2.1 Surrogate Model

Our proposed methodology, QMARS-MIQCP-SUROPT uses the Tree-Knot MARS (TK-

MARS) surrogate model developed by Anahideh et al. [9]. The TK-MARS surrogate model

is a modification of the QMARS model developed by Chen [10], upon which the MIQCP

formulation discussed in Section 3.3 is based. Like all regression based statistical mod-

els, MARS is intended for modeling data observed under uncertainty. Consequently, unlike

common choices for surrogate optimization, the MARS approximation is non-interpolating.

Anahideh et al. [9] demonstrated the benefit of a MARS surrogate when the objective is

evaluated under uncertainty and when the input space includes unimportant variables. An-

alytical chemistry surrogate optimization applications potentially involve both issues.

A drawback the original MARS algorithm concerns knot selection. The linear model

form of MARS defines basis functions that depend on knot locations based on values in the

36



data. The knot locations selected by the MARS model are usually distinct data values and

as the number of data points increase, the number of potential knot locations increases. To

enable a more efficient knot selection for the purposes of surrogate optimization, Anahideh

et al. [9] utilized a Classification And Regression Tree (CART) model to identify promis-

ing knot locations. They compared TK-MARS with an interpolating radial basis function

(RBF) surrogate, a non-interpolating RBF surrogate, and a non-interpolating Gaussian Pro-

cess (GP) surrogate. TK-MARS outperformed all others in a deterministic environment. In

a noisy uncertain environment, TK-MARS outperformed non-interpolating GP and interpo-

lating RBF surrogate optimization, while non-interpolating RBF was competitive in some

instances. Given these results and the demonstrated ability of TK-MARS in intelligently

identifying knot locations, this model was chosen as the surrogate in our study.

4.2.2 Candidate Search Algorithm

Our proposed methodology, QMARS-MIQCP-SUROPT uses a modified version of the EEPA

algorithm developed by Dickson [11]. Algorithm 4 presents the original EEPA algorithm.

The algorithm starts with the set of candidate points (orange circles in Figure 4.2) and their

predicted response values. In line 1 of the algorithm, the minimum distance to the set of

evaluated points (blue hexagons in Figure 4.2) is calculated for each point in the candidate

set (orange circles in Figure 4.2). In line 2, a Pareto-frontier approach is used to determine

a set of non-dominated points based on the minimum distance and the predicted response

values of the set of candidate points. The while loop is used to iterate through the set of

non-dominated Pareto points to limit its size to a maximum number of points depending on

the cost of each function evaluation. In line 3 of the algorithm, a Maximin distance metric

is used to select a set of diverse candidates and to eliminate the selection of points that are

too close to each other. Finally, line 4 of the algorithm returns the selected limited set of

EEPA candidates (purple triangles in Figure 4.2).

The reason that this methodology was selected as the desired candidate search al-

gorithm was that it was demonstrated to work well in the literature [9] with the chosen
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Algorithm 4:
EEPA

Result: Set of EEPA candidates
Input: Set of evaluated points, Set of candidate Points, Predicted response values
for candidate points.

1 Calculate minimum distance of each candidate point to the set of evaluated points.
2 Determine non-dominated set of points using Pareto approach.

while EEPA Candidates < Maximum number of EEPA Candidates do
3 Apply maximin criteria to non-dominated set of Pareto points.
4 Return set of EEPA candidates.

end

surrogate, TK-MARS. However, some modifications were needed for use with the proposed

QMARS-MIQCP-SUROPT approach. The main difference between TK-MARS based surro-

gate optimization and QMARS-MIQCP-SUROPT is that TK-MARS directly evaluates the

points suggested by EEPA. Whereas QMARS-MIQCP-SUROPT optimizes the space around

the suggested EEPA points and evaluates the optimal points found. We found that the ad-

ditional optimization in our algorithm inherently included exploration of the space, and the

Maximin distance metric applied in the EEPA algorithm led our optimization algorithm to

take longer to converge to the optimum. To overcome this, we proposed a modified version of

the EEPA in Algorithm 5 that that uses a sorting approach instead of the Maximin distance

metric. This is referred to as sorted EEPA.

Lines 1 and 2 of Algorithm 5 are the same as Algorithm 4. The way in which sorted

EEPA varies from the traditional EEPA algorithm is in lines 3–5. Once the set of non-

dominated points based on the minimum distance and the predicted response values of the

candidate points are identified, in line 3 of the algorithm, the set is then sorted based on the

predicted response values from minimum to maximum. Then in line 4 of the algorithm, the

maximum number of points, depending on the cost of each function evaluation, is initialized.

In line 5 of the algorithm, the first N points are selected from the set of non-dominated

Pareto points. Finally, line 6 of the algorithm returns the selected limited set of EEPA

candidates (purple triangles in Figure 4.2).
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Algorithm 5:
Sorted EEPA

Result: Set of EEPA candidates
Input: Set of evaluated points, Set of candidate points, Predicted response values
for candidate points.

1 Calculate minimum distance of each candidate point to the set of evaluated points.
2 Determine non-dominated set of points using Pareto approach.
3 Sort non-dominated set of Pareto points based on predicted response values from

minimum to maximum.
4 Set N = Maximum number of EEPA candidates.
5 Save top N sorted non-dominated set of Pareto points as EEPA candidates.
6 Return set of EEPA candidates.

Figure 4.3 shows the average response values of each function evaluation when

optimizing the Rastrigin test function over 30 different iterations. The same set of initial

points and candidate points were used for all three comparisons. In the figure, the yellow,

blue and orange lines represent the average response values of each function evaluation for

TK-MARS, QMARS-MIQCP-SUROPT using EEPA and QMARS-MIQCP-SUROPT using

sorted EEPA respectively. Function evaluations 1 to 20 are the average response values for

the initial set of points. Function evaluations 20 to 120 are the average response values

obtained in consecutive iterations as a result of the surrogate optimization algorithm using

EEPA and Sorted EEPA. For this experiment, the number of EEPA candidates were limited

to 2. So, as an example, the average response values for function evaluations 20 and 21

were the result of one run of the corresponding surrogate optimization algorithms. It can

be seen that even though, there is large variation in the average response values, TK-MARS

consistently manages to identify points with lower response values.

For QMARS-MIQCP-SUROPT with EEPA it can be seen that the variation causes

instability in our algorithm, preventing it from identifying points with lower response values.

On the contrary, when using QMARS-MIQCP-SUROPT with sorted EEPA, it can be seen

that it identifies points with lower response values and continues to trend downwards with

each run of the surrogate optimization algorithm. QMARS-MIQCP-SUROPT with sorted

EEPA even manages to beat TK-MARS on the average response value in a few instances,
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resulting in a lower overall best known solution (BKS) when the algorithm is terminated.

Figure 4.3: Comparison of average response values

4.2.3 Candidate Selection Strategy

As mentioned in section 4.2.2, QMARS-MIQCP-SUROPT optimizes the space around the

selected EEPA candidates and evaluates the optimal solutions rather than directly evaluating

the EEPA candidates. The optimization of the space is done by creating a ball in the

space with the EEPA candidates as centers. This is formulated as an Euclidean distance

constraint in equation 3.16 of the MIQCP formulation. An important factor to be considered

in the formulation of the constraint, is the radius of the ball, ρ. The radius ρ has to be

selected such that the previously evaluated points do not lie within or on the circumference

of the ball to avoid selecting previously evaluated points as optimal solutions in consecutive

iterations. To overcome this, QMARS-MIQCP-SUROPT uses the minimum distance of the

EEPA candidate to the closest evaluated point δ(x) as the radius but reduces it by a factor

γ to ensure that the closest previously evaluated point does not lie on the circumference of
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the ball. Essentially, the radius of the ball can be calculated as:

ρ = δ(x) − (δ(x) ∗ γ), where 0 ≤ γ ≤ 1. (4.1)

Evidently, the factor γ plays an important role in the radius ball over which the optimization

is performed. We studied two different strategies for selecting the factor γ and it performance

on the MIQCP:

• Cyclical γ : Cycling through different values of γ.

• Fixed γ : Fixing γ at one value for the entire optimization algorithm.

4.2.3.1 Cyclical γ

For the cyclical γ strategy, the γ value was chosen from a arbitrary list of values: [0.8,0.5,0.3,0.1],

where the value 0.8 creates the smallest ball and the value 0.1 creates the largest ball. In

addition to choosing γ from the list values, γ was cycled based on the number of function eval-

uations completed. Essentially, for the first 25% of evaluations QMARS-MIQCP-SUROPT

uses a γ of 0.8, then for the next 25% of the evaluations uses a γ of 0.5 and so on.

The reason for not cycling through the list for γ at each function evaluation is

because the radius is based on the distance to the closest previously evaluated point, and

this distance decreases as more points are evaluated. Also, since QMARS-MIQCP-SUROPT

selects optimal solutions for evaluation in consecutive iterations by optimizing the surrogate,

using large radii to optimize the space in the initial iterations can result in in a misleading

selection of points that subsequently reduces the efficiency of the algorithm.

Figure 4.4 shows the realized values of ρ for each function evaluation over an ex-

ecution of the QMARS-MIQCP-SUROPT algorithm with cyclical γ. It can be seen that,

realized ρ values follow a step-wise pattern starting with the smallest radius and then increas-

ing in size as the algorithm progresses. While within each of the steps, a gradual decrease

in the radius can be observed, starting with exploration and inherently shifting towards ex-

ploitation, there is an overall increasing pattern in the radius encouraging more exploration
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in each step using the cyclical γ.

Figure 4.4: Realized ρ values using Cyclical γ

4.2.3.2 Fixed γ

For the fixed γ strategy, the γ value was set at 0.8. An ideal strategy to balance exploration

and exploitation in any surrogate optimization algorithm is to start by doing exploration

in the initial iterations, predominantly to gather information quickly about the space, and

then switch to exploitation in the later iterations to make use of the gathered information to

effectively reach the optimum. Because the radius ρ in equation (4.1) is based on the distance

to the closest previously evaluated point, as the number of evaluated points increases, the

radius ρ will decrease. Correspondingly, even if the γ value in equation (4.1) is fixed at

0.8, the associated radius ρ will gradually decrease as the algorithm iterates, facilitating

exploration early in the algorithm and exploitation towards the end.

Figure 4.5 shows the realized values of ρ for each function evaluation over an exe-

cution of the QMARS-MIQCP-SUROPT algorithm with fixed γ. With this strategy, it can

be seen that, the realized ρ values start with the largest radius circle and gradually decrease
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in size as the algorithm progresses. This demonstrates the inherent exploration-exploitation

nature of the algorithm, even with a fixed γ.

Figure 4.5: Realized ρ values using Fixed γ

4.2.4 Types of QMARS-MIQCP-SUROPT Algorithms

Based on the different strategies for candidate search and candidate selection, there are 4

types of QMARS-MIQCP-SUROPT algorithms that were studied:

• QMS Algorithm 1: QMARS-MIQCP-SUROPT with Sorted EEPA and Fixed γ

• QMS Algorithm 2: QMARS-MIQCP-SUROPT with EEPA and Fixed γ

• QMS Algorithm 3: QMARS-MIQCP-SUROPT with Sorted EEPA and Cyclical γ

• QMS Algorithm 4: QMARS-MIQCP-SUROPT with EEPA and Cyclical γ

Algorithm 6 is a more detailed version of Algorithm 3 that includes the steps of the QMARS-

MIQCP-SUROPT algorithm with Sorted EEPA and Fixed γ.

43



In line 1 of Algorithm 6, as before, a very large DoE is generated to ensure good

representation of the space. In line 2, the large DoE is split into a small initial set of points,

which are also the first set of evaluated points represented as XEvaluated, and a comparatively

larger set with the remaining points called the candidate set. In the algorithm, since points

chosen from the candidate set are used as centers for the optimization, the larger set is

referred to as XCenters. In line 3, the objective function is evaluated for the XEvaluated

set. In line 4, the number of function evaluations completed NEvaluations is updated to the

number of points evaluated so far. Line 5 initializes the maximum number of function

evaluations, which is the stopping criteria for the algorithm and the list of γ values. Since

this is the algorithm with fixed γ, the γidx value is set to 1, forcing the γ value to be

fixed at 0.8. In line 6 of the algorithm, the surrogate model is fit to the set of evaluated

points. The sorted EEPA algorithm is designed such that multiple centers can be chosen

from the candidate set using exploration and exploitation and optimized simultaneously.

Line 7 of the algorithm initializes the number of centers chosen in each iteration. In line 8,

the sorted EEPA algorithm (algorithm 5) is run to identify promising center points XEEP A

for optimization. The distance of the center points to closest previous evaluated point

δ(XEEP A) is retained for the formulation of the ball (refer to equation (4.1)). Lines 9–13

run the actual optimization of the fitted surrogate model in line 8 for the selected center

points with the corresponding radius formulated using the obtained distances and γ. The

optimization returns the set of promising new points XNew. The new points are evaluated in

line 17, and the evaluated point set is updated in line 18. In line 19, the number of function

evaluations completed is updated, correspondingly. The while loop is iterated until the

number of function evaluations is equal to the maximum number of function evaluations set

in line 7. The result at the end of the algorithm is the optimal setting and its corresponding

objective value.
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Algorithm 6:
Detailed QMARS-MIQCP-SUROPT Algorithm with Sorted EEPA and Fixed γ

Result: Optimal Parameter Settings: X∗
Evaluated and Y ∗

Evaluated

1 Generate Initial DoE with maximum number of points considered.
2 Split Initial DoE into XEvaluated and XCenters s.t |XEvaluated| << |XCenters|.
3 Run function evaluation on XEvaluated to get YEvaluated;
4 Set NEvaluations = |XEvaluated|;
5 Initialize MaxEvaluations, γ ∈ [0.8, 0.5, 0.3, 0.1], γidx = 1;

while NEvaluations <= MaxEvaluations do
6 Fit QMARS model on XEvaluated and YEvaluated;
7 Initialize NP oints;
8 Run sorted EEPA to obtain XEEP A and δ(XEEP A);

for i = 1 to min(NP oints, |XEEP A|) do
9 xj = XEEP A(i);

10 Set ρ = δ(XEEP A(i)) − (δ(XEEP A(i)) ∗ γ(γidx)) ;
11 Formulate QMARS-MIQCP using fitted QMARS model, xj and ρ;
12 Optimize QMARS-MIQCP to obtain XNew;
13 Discard xj and coinciding XNew from XCenters;

end
14 Run function evaluation on XNew to get YNew;
15 Add XNew to XEvaluated and YNew to YEvaluated;
16 NEvaluations = NEvaluations + NP oints;

end
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4.3 Performance Metric for Comparing Surrogate Op-

timization Algorithms

For comparing the performance of the different QMARS-MIQCP-SUROPT algorithms, as

well as comparing QMARS-MIQCP-SUROPT algorithms with other surrogate optimization

algorithms, we use the Maximal True Function Area Under the Curve (MTFAUC) perfor-

mance metric developed by Anahideh et al. [9]. The MTFAUC metric was chosen to assess

performance because we were interested in testing QMARS-MIQCP-SUROPT algorithms

in highly uncertain environments, and the MTFAUC metric was illustrated to be robust in

evaluating the algorithms when the objective is observed under uncertainty. In uncertain

environments, the best known solution is subject to random error and can oscillate up and

down. Consequently, the traditionally used Area Under the Curve (AUC) metric will not

show a monotonically non-decreasing shape (for minimization) as the number of iterations

increases, and the AUC value could be misleading. A robust surrogate should have fewer and

shorter oscillations in the final iterations, which results in a lower overall MTFAUC value.

4.4 Experiments and Results

To evaluate the performance of the algorithms, we use the different test functions listed in

Table 4.1 that have commonly been used to test both global and surrogate optimization

algorithms and have been deemed challenging [124]. We tested the performance of the

algorithm under a highly uncertain setting, for which it is assumed that the simulated random

noise follow a Gaussian distribution. For fitting the surrogate model, the observed response

is the true function value plus the simulated random noise due to uncertainty. We follow

the procedure similar to the discussion in [9]. The Gaussian noise is formulated and added

as follows: f̃(x) = f(x) + ϵ, where ϵ ∼ N(0, pϵ ∗ σ0), where pϵ ∈ (0, 1) is the percentage of

noise level, and σ0 is given by: σ0 = max{f(x1, ..., f(xN)} − min{f(x1), ..., f(xN))}. In our

study pϵ was set to 0.25.
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Function Formulation Range Global Min

Rosenbrock
f(x) = ∑d−1

i=1

[
100 (xi+1 − x2

i )
2 + (xi − 1)2

]
[−5, 10] f(x∗) = 0;

x∗ = (1, ..., 1)

Rastrigin
f(x) = 10d + ∑d

i=1 [x2
i − 10 cos (2πxi)] [−5.12, 5.12] f(x∗) = 0;

x∗ = (0, ..., 0)

Ackley
f (x0 · · · xn) = −20 exp

(
−0.2

√
1
d

∑d
i=1 x2

i

)
[−32.768, 32.768] f(x∗) = 0;

− exp
(

1
d

∑d
i=1 cos (2πxi)

)
+ 20 + e x∗ = (1, ..., 1)

Table 4.1: Global optimization test functions

Anahideh et al. [9] also mention that the TK-MARS surrogate model is highly

capable of identifying unimportant factors. We also study the performance of our algorithm

and its effect on TK-MARS in handling unimportant factors, and we set the fraction of

important variables to 0.5. The results compare the data from 30 runs of the algorithms. The

30 runs use the same initial pool and 30 different candidate pools. The same data sets were

used for both the QMARS-MIQCP-SUROPT and TK-MARS algorithms. Table 4.2 shows

the test parameters and the parameters specific to the algorithms that have been used in

the study and shown in the results. In addition to the parameters specific to the algorithms,

there are certain parameters specific to the surrogate QMARS model, which are listed in

Table 4.3. Section 4.4.1 compares the different QMARS-MIQCP-SUROPT algorithms to

identify the best algorithm. Section 4.4.2 compares the best algorithm identified in Section

4.4.1 with its competitor TK-MARS.

47



Parameters Settings

Test Functions Rosenbrock, Rastrigin, Ackley

Dimensions (d) 30

Fraction of Important Variables (fiv) 0.50

Noise Level (np) 0.25

Initial Pool Size (N) d + 1

DoE LHD

Surrogate Model TK-MARS

Candidate Search Algorithm EEPA, Sorted EEPA

Number of EEPA Candidates 3

Candidate Selection Fixed γ, Cyclical γ

Number of Function Evaluations 125

Number of Runs 30

Table 4.2: Experimental parameters
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Parameters Settings

Mmax
[

2n+3
2+3

⌋
circle 0

levels 0

knots 0

alg3 0

ASR 1

difference 0.02

interactions 1

robust 0

tolerance 0.5

convex 0

gap 0

smooth 0

Table 4.3: QMARS parameters

4.4.1 Comparison of QMARS-MIQCP-SUROPT Algorithms

Figure 4.6 shows the box plots of MTFAUC over 30 runs for each QMS algorithm type

mentioned in Section 4.2.4 for the Rosenbrock test function. It can be seen that the medians

for the boxes for QMS Algorithms 1 and 2, which use fixed γ, are comparatively lower, and

the medians for QMS Algorithms 3 and 4, which use cyclical γ, are comparatively higher.

We can infer that using fixed γ has an effect on providing lower MTFAUC. Overall, it can

be seen that both the median and mean for QMS Algorithm 1 - QMARS-MIQCP-SUROPT

with sorted EEPA and fixed γ are the lowest.
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Figure 4.6: Comparison of different QMARS-MIQCP-SUROPT algorithms - Rosenbrock

Figure 4.7 shows the box plots of MTFAUC over 30 runs for each QMS algorithm

type mentioned in Section 4.2.4 for the Rastrigin test function. It can be seen that the means

for the boxes for QMS Algorithms 1 and 3, which use sorted EEPA, are comparatively lower.

Even though the median for QMS Algorithm 3 is slightly higher than QMS Algorithm 4,

which uses EEPA, Algorithm 3 has an outlier with the lowest MTFAUC. We can infer that

using fixed γ has an effect on providing lower MTFAUC. Overall, it can be seen that both

the median and mean for QMS Algorithm 1 - QMARS-MIQCP-SUROPT with sorted EEPA

and fixed γ are the lowest.
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Figure 4.7: Comparison of different QMARS-MIQCP-SUROPT algorithms - Rastrigin

Figure 4.8 shows the box plots of MTFAUC over 30 runs for each QMS algorithm

type mentioned in Section 4.2.4 for the Ackley test function. It can be seen that the median

for the boxes for QMS Algorithms 1 and 3, which use sorted EEPA, are comparatively

lower. Whereas, the median for the boxes for QMS Algorithms 2 and 4, which use EEPA,

are comparatively higher. It is also notable that the medians for QMS Algorithms 1 and 3

are similar to each other, but the variation for the box for QMS algorithm 1 is lower. We

can infer that using fixed γ has an effect on providing lower MTFAUC. Overall, it can be

seen that both the median and mean for QMS Algorithm 1 - QMARS-MIQCP-SUROPT

with sorted EEPA and fixed γ are the lowest.
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Figure 4.8: Comparison of different QMARS-MIQCP-SUROPT algorithms - Ackley

In conclusion, QMS Algorithm 1 - QMARS-MIQCP-SUROPT with sorted EEPA

and fixed γ had the lowest mean and median for all three test functions, and boxes that

were overall lower. QMS Algorithm 1 - QMARS-MIQCP-SUROPT with sorted EEPA and

fixed γ is considered to perform better than the other algorithm types, and subsequent

computational results will focus on this algorithm. The next section presents a comparison

to TK-MARS.

4.4.2 Comparison of QMARS-MIQCP-SUROPT vs TK-MARS

In this section we use MTFAUC to compare TK-MARS from Anahideh et al. [9] against

QMARS-MIQCP-SUROPT with sorted EEPA and fixed γ, which was found to perform

best among the QMS algorithms. Figures 4.9 - 4.11 show the box plots of MTFAUC over 30

runs for each algorithm tested on the Rosenbrock, Rastrigin and Ackley test functions. It

can be seen that the medians for the boxes for our proposed methodology, QMARS-MIQCP-

SUROPT with sorted EEPA and fixed γ, is considerably lower than TK-MARS in all three
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cases. We can infer that our proposed methodology yields better performance.

Figure 4.9: Comparison of QMARS-MIQCP-SUROPT vs TK-MARS - Rosenbrock
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Figure 4.10: Comparison of QMARS-MIQCP-SUROPT vs TK-MARS - Rastrigin

Figure 4.11: Comparison of QMARS-MIQCP-SUROPT vs TK-MARS - Ackley
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Chapter 5

Application of

QMARS-MIQCP-SUROPT in

Analytical Chemistry

As mentioned in earlier sections, one of the motivations for this research is addressing the

lack of optimization algorithms applied specifically in optimizing ionization efficiency using

mass spectrometry. It was seen in the literature that most closely related applications in an-

alytical chemistry use statistical analysis methods such as DOE, RSM or even MARS models

to predict the relationships between the different parameter settings of the instrument, but

no actual optimization [119, 113, 116, 115, 117, 114, 108, 110, 111]. There were two instances

in the literature that used surrogate optimization with a Kriging or Gaussian Process (GP)

as the surrogate model [122, 123]. There is research that use mathematical modeling and

formal optimization, but in all of the instances, the application was superstructure optimiza-

tion. Consequently, there is no evidence of using surrogate optimization to guide a series of

laboratory runs for efficient analyte extraction in mass spectrometry.

In this chapter, we demonstrate our QMARS-MIQCP-SUROPT methodology for a

real-world application that requires a series of laboratory runs. The goal is to identify optimal

parameter settings for the flow injection analysis of an analyte in the Shimadzu LCMS-2020
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instrument. The performance of the methodology was also tested for five different analytes

on ChromSim, a simulation software developed by Dr. Dwight Stoll and team [125, 126].

5.1 Experiments and Results for ChromSim

First, we tested our methodology for five different analytes on the simulation software,

ChromSim. ChromSim was developed to simulate a 2D-LC machine with pumps, filters

and columns and the separated components being detected by a Diode-Array UV Detector.

The schematic diagram of the system being simulated in ChromSim is shown in figure 5.1.

The figure was obtained from the supplemental materials for [126]. The literature compares

chromatograms, retention times and peak widths for various analytes from the simulation

software ChromSim, to the actual laboratory experiments and were able to achieve similar

results to the laboratory experiments.

Figure 5.1: Schematic diagram of the system being simulated in ChromSim

Even though, the setup of the simulation software is entirely different in comparison

to the real-world Shimadzu LCMS-2020 instrument, testing our methodology using simula-

tion software provides guidance for how our methodology works for an analytical chemistry
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instrument and the setup needed to do the actual laboratory runs. This will also help

demonstrate that our methodology is versatile and can be applied to any analytical chem-

istry instrument in which there is a need to optimize parameter settings of the instrument

with minimal expensive laboratory experiments.

We tested the performance of the QMARS-MIQCP-SUROPT with sorted EEPA

and fixed γ methodology described in Section 4.2 on ChromSim in extracting five different

sample analytes defined based on their descriptors in Table 5.1. Our methodology was run

five times for each of the different analytes. Recalling Figure 1.1, in this application, the

input space (X) is represented by the five target analytes in Table 5.1. The decision space

(Y ) is represented by six different system parameters that were varied to test their effects

on the performance of the separation the analytes:

• Number of Plates - plates

• Void Volume - Vm(ml)

• Mobile phase composition before gradient - Φdip

• Initial mobile phase composition - Φinitial

• Total dwell volume of injection loop - Vloop

• Percentage of the loops filled - %Fill

Finally, the outcome space is represented by the width of the chromatograms at 50% of

the height (Width50), which is minimized. Figure 5.2 shows how the value of Width50 is

calculated and returned as an output in ChromSim.
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Figure 5.2: Sample diagram representing calculation of Width50

Analytes Kw B a

Analyte 1 37.337 20.96 1.903

Analyte 2 53.1964 24.8364 0

Analyte 3 39.5963 18.1927 0

Analyte 4 41.8065 19.3678 0

Analyte 5 451.8365 28.9407 0

Table 5.1: Sample analytes tested on ChromSim

For the QMARS-MIQCP-SUROPT algorithm, it is necessary to set the parameter

ranges on the system parameters to obtain meaningful optimal solutions. These ranges are

shown in Table 5.2. For this experiment, a large DOE based on an LHD with 1000 points was

generated. Out of the 1000 points, 7 points were randomly selected for the initial evaluation,

and the remaining points were chosen as the set of candidate points. The number of EEPA

candidates was set to 3, and a maximum of 35 function evaluations was set as the stopping

criteria for the algorithm. The same set of points were chosen for the initial evaluation and

as the set of candidate points for all 5 analytes. A process similar to what was conducted in

the laboratory was followed for the simulation. To start the algorithm, the 7 initial points
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were run using ChromSim and Width50 was recorded as the response. After this, QMARS-

MIQCP-SUROPT with sorted EEPA and fixed γ was run to generate 3 potential parameter

settings for evaluation. These settings were then run using ChromSim, and Width50 was

recorded until the stopping criteria was met. Figures 5.3–5.7 show the path of the best

known minimum Width50 for each of the QMARS-MIQCP-SUROPT iterations and analyte.

It can be seen that path is different for each of the analyte.

Parameter Minimum Maximum

plates 1000 3000

Vm (ml) 0.055 0.5

Φdip 0.1 0.9

Φinitial 0.1 0.5

Vloop 5 500

%Fill 0.1 0.9

Table 5.2: System parameter ranges for ChromSim

In addition to running the QMARS-MIQCP-SUROPT algorithm with the param-

eters mentioned in Tables 4.2 and 4.3, we also wanted to leverage the ability of the QMARS

surrogate model to automatically detect and model interactions. The methodology was

tested with setting the parameter interactions as follows:

• interactions = 1, meaning no interactions (represented by the blue line),

• interactions = 2 with robust = 1 (represented by the orange line) throughout the

experiment, and

• starting with interactions = 1 and then switching the setting to interactions = 2 with

robust = 1 (represented by the yellow line) after 2d parameter settings have been

evaluated.

For example for the last setting, if the dimension (d) is 7, then after 14 runs have been

evaluated, the settings are switched automatically.
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Figure 5.3: Best Known Width 50% - Analyte 1
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Figure 5.4: Best Known Width 50% - Analyte 2
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Figure 5.5: Best Known Width 50% - Analyte 3

Figure 5.6: Best Known Width 50% - Analyte 4
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Figure 5.7: Best Known Width 50% - Analyte 5

An optimal setting for each analyte and QMARS setting combination is also shown

in table 5.3.
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Analytes Interaction plates Vm(ml) Φdip Φinitial Vloop %Fill Width50

Analyte 1

1 2062 0.07 0.9 0.5 5 0.2 0.0103

2 2237 0.06 0.9 0.5 5 0.2 0.0097

2d 2237 0.06 0.9 0.5 5 0.2 0.0097

Analyte 2

1 2998 0.06 0.9 0.2 5 0.5 0.0089

2 2465 0.06 0.4 0.3 5 0.1 0.0091

2d 2998 0.06 0.9 0.2 5 0.5 0.0089

Analyte 3

1 2703 0.07 0.4 0.2 5 0.1 0.0092

2 2703 0.07 0.4 0.2 5 0.1 0.0092

2d 2703 0.07 0.4 0.2 5 0.1 0.0092

Analyte 4

1 2009 0.09 0.2 0.3 5 0.4 0.0083

2 2990 0.09 0.2 0.1 5 0.9 0.0079

2d 2990 0.09 0.2 0.1 5 0.9 0.0079

Analyte 5

1 2998 0.06 0.9 0.2 5 0.5 0.0089

2 2704 0.06 0.3 0.3 5 0.1 0.0091

2d 2998 0.06 0.9 0.2 5 0.5 0.0089

Table 5.3: Optimal parameter settings - ChromSim

It can also be seen from Figures 5.3–5.7 that switching the setting to interactions

= 2 with robust = 1 after 2d parameter settings (represented by the yellow line) performs

similarly to setting interactions = 1 for most of the cases, which is why the lines for the

other settings are not visible. In a couple of instances, it has a better minimum Width50.

We interpret this to imply that the ChromSim application does not involve interaction effects

between the studied input parameters.
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5.2 Experiments and Results for Shimadzu LCMS-2020

The term LC-MS stands for Liquid Chromatography Mass Spectrometry. Liquid chromatog-

raphy is a separation technique commonly used in analytical chemistry to separate the com-

ponents of a sample based on their retention strength in the stationary phase and mobile

phase inside a LC column. Over the years, there have been several advances in LC resulting

in techniques such as high-performance liquid chromatography (HPLC) that are capable of

separating components with higher speeds and improved sensitivity. Upon separation, the

different components in the samples can be detected/analyzed using different techniques.

One such technique is electrospray ionization, where the separated components are ionized

at atmospheric pressure and the generated ions are then extracted into a highly vacuum

based environment of the mass spectrometer after much a majority of the solvent is evap-

orated where the ions are sorted based on their mass-to-charge ratios (m/z), resulting in a

time-series plot of the ion intensities for each component in the sample. A key information

to note in our application is that, we simply performed flow injection analysis to create a

temporal slug of the analyte, to flow into the mass spectrometer. So, the analyte did not

pass through the LC system of the instrument. Instead, the analyte was injected through

the auto sampler directly into the MS system.

Figure 5.8 obtained from [127] shows the basic components of a MS system. A

typical MS system consists of an ion source which ionizes the components and uses an ion

guide to precisely create and deliver a fine spray of the ionized components into the mass

analyzer, where the ions are sorted based on their mass-to-charge ratios (m/z) and finally,

the detector detects and quantifies the ion intensities of the separated components.
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Figure 5.8: Basic components of a MS system

Figure 5.9 obtained from [128] shows a closer look at the components of the Electro-

spray Ionization Source in the MS system. This component is specifically of interest in this

application because the system parameter settings that we optimize to test their effects on

the ionization efficiency pertain specifically to this component of the system. The figure was

modified to show the system parameter settings that were varied specific to the application

in the boxes with the dotted lines.
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Figure 5.9: Basic components of an Electrospray Ionization source

The performance of the QMARS-MIQCP-SUROPT with sorted EEPA and fixed γ

methodology described in Section 4.2 was tested in the LCMS-2020 instrument in extract-

ing a sample analyte, Acetaminophen. Recalling Figure 1.1, in this application, the input

space (X) is represented by the target analyte Acetaminophen. The decision space (Y ) is

represented by seven different system parameters that were varied to test their effects on the

ionization efficiency:

• Interface Voltage (V )

• DL Voltage (V )

• Qarray DC Voltage (V )

• DL Temperature ◦C

• Heat Block Temperature ◦C

• Nebulizing Gas Flow (mL/min) and Drying Gas Flow (mL/min)
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Specifically these parameter settings pertain to the different components of the ion

source shown in figure 5.9. Finally, the outcome space is represented by the detected Ion

Intensity, and is goal is to maximize this. For the QMARS-MIQCP-SUROPT algorithm,

it is necessary to set the parameter ranges on the system parameters to obtain meaningful

optimal solutions. These ranges are shown in Table 5.4.

Parameter Minimum Maximum

Interface Voltage (V ) 1 5

DL Voltage (V ) 10 150

Qarray DC Voltage (V ) 10 150

DL Temperature ◦C 100 300

Heat Block Temperature ◦C 100 500

Nebulizing Gas Flow (mL/min) 0.5 1.5

Drying Gas Flow (mL/min) 3 20

Table 5.4: System parameter ranges for the LCMS-2020 instrument

In addition to these parameter ranges, there was also an inherent system constraint

that the absolute difference between the DL Voltage and the Qarray DC Voltage should not

exceed 100 Volts. These types of constraints are very common in real-world applications and

our methodology was able adapt and include the restrictions by adding the constraint:

|DL Voltage − Qarray DC Voltage| ≤ 100. (5.1)

Additionally, any points generated in the DOE that do not satisfy this constraint

were also removed as infeasible, so that they would not be considered by the surrogate model.

It should also be noted that the instrument inherently rounds the parameters DL Voltage,

Qarray DC Voltage, DL Temperature, Heat Block Temperature to the nearest integer and

Interface Voltage, Nebulizing Gas Flow and Drying Gas Flow to one decimal point. This

is also included in the algorithm when generating the DOE, as well as the new points for
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evaluation in each consecutive iteration.

For this experiment, a large DOE based on an LHD with 1000 points, including all

of the constraints, was generated. Out of the 1000 points, 8 points were randomly selected

for the initial evaluation, and the remaining points were chosen as the set of candidate points.

The number of EEPA candidates was set to 3, and a maximum of 30 function evaluations

was set as the stopping criteria for the algorithm. To start the algorithm, the 8 initial

points were run on the machine in triplicate, and the average ion intensities were recorded

as the response. Because this is an actual laboratory experiment, the responses are subject

to uncertainty. The QMARS-MIQCP-SUROPT algorithm with sorted EEPA and fixed γ

was executed to generate 3 potential parameter settings for evaluation. These settings were

then run on the instrument in triplicate, and the average ion intensities were recorded. This

process was repeated until a maximum of 30 parameter settings were obtained.

Also, in the previous section, it was found that switching the setting to interactions

= 2 with robust = 1 after 2d parameter settings performed similarly to setting interactions

= 1. For the laboratory experiments, the algorithm was run with both settings, and no

difference was seen in the candidate points chosen in consecutive iterations. Consequently,

this study also does not appear to require modeling of interactions.

Figure 5.10 shows the path of the best known maximum ion intensities for each

of the QMARS-MIQCP-SUROPT iterations. It can be seen that a maximum ion intensity

of around 5.9 million was obtained in the 28th function evaluation. It was also noted that

the maximum ion intensity obtained is very close to the ion intensity of around 6.5 million

observed in the tuning file. The difference is due to different parameter setting ranges used

in the tuning file than the ones in the algorithm.
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Figure 5.10: Best Known Maximum Ion Intensity - Acetaminophen

Figure 5.11 shows the comparison of the chromatograms for the best known solution

out of the 8 initial points that were evaluated at the start of the algorithm (top) and the

optimal setting (bottom). It can be seen that the chromatograms are very different from

each other. The chromatogram on the top is very noisy since it is a sub optimal solution that

did not yield efficient ionization. By contrast, the chromatogram for the optimal setting is

more smooth and has a defined peak in the area where the ionization intensity was measured.

It is also should be noted that the y-axis scales on the chromatograms are different. The

identified optimal setting for achieving a maximum ion intensity of around 5.9 million is

shown in Table 5.5.

70



Figure 5.11: Comparison of tuning file and optimal setting chromatograms

Parameter Optimal Setting

Interface Voltage (V ) 4.8

DL Voltage (V ) 83

Qarray DC Voltage (V ) 16

DL Temperature ◦C 187

Heat Block Temperature ◦C 497

Nebulizing Gas Flow (mL/min) 1

Drying Gas Flow (mL/min) 17

Ion Intensity 5,932,508

Table 5.5: Optimal parameter settings for Acetaminophen

It is also worth mentioning the study by Raji and Schug [129] that examined the

effect of instrumental parameters on ESI-MS analyte response using a full factorial design.

The study conducted experiments on two different instruments, LCMS-2010 and Thermo
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LCQ Deca XP, to identify the effect of four major parameters - spray voltage, ion transfer

capillary temperature, ion transfer capillary voltage, and tube lens voltage on the analyte

response - ion intensity. The LCMS-2010 is an older but very similar version of the LCMS-

2020 instrument on which our algorithm was tested. It is important to note that spray

voltage, ion transfer capillary temperature, ion transfer capillary voltage, and tube lens

voltage in LCMS-2010 are the same as the Interface Voltage, DL Temperature, DL Voltage

and Qarray DC Voltage in the LCMS-2020 instrument respectively. The study uses a full

factorial design with just 2 levels - the minimum and maximum ranges of the parameters

leading to a total of 16 experimental settings to identify any significant interactions.

If the study were to apply the full factorial design even with just the 2 levels, it

would have increased the number of experimental settings to 128. It would still not have

been possible to identify the optimal solution because of the categorical levels. However,

with our methodology, we were able handle using continuous settings, as well as identify an

optimal solution close to the tuning file in just 28 experimental runs, This is 78% less than

a traditional RSM method using factorial designs. This illustrates that our methodology is

capable of reducing the sample preparation times, the machine run times and the overall

cost involved in running each experiment.
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Chapter 6

Conclusion

In this research, in Chapter 3 we developed a MIQCP formulation for the QMARS model

with the capability to handle the linear, cubic, quadratic and quintic terms in the QMARS

basis functions. The QMARS-MIQCP formulation was incorporated within a global opti-

mization algorithm called QMARS-MIQCP-OPT to globally optimize several test functions.

The performance of the QMARS-MIQCP-OPT algorithm was compared with TITL-MARS-

OPT. It was found that QMARS-MIQCP-OPT outperforms TITL-MARS-OPT for all the

4 test functions when minimizing and outperforms TITL-MARS-OPT for 2 out of the 4 test

functions when maximizing.

In Chapter 4, the QMARS-MIQCP formulation was incorporated within a surro-

gate optimization algorithm called QMARS-MIQCP-SUROPT. A modified EEPA algorithm

for candidate search and new scheme for candidate selection were also developed. First, the

different QMARS-MIQCP-SUROPT algorithms - QMARS-MIQCP-SUROPT with sorted

EEPA and fixed γ, QMARS-MIQCP-SUROPT with EEPA and fixed γ, QMARS-MIQCP-

SUROPT with sorted EEPA and cyclical γ, and QMARS-MIQCP-SUROPT with EEPA

and cyclical γ - for three different standard global optimization test functions - Rosenbrock,

Rastrigin and Ackley - in uncertain environment. It was found that for all three test func-

tions, QMARS-MIQCP-SUROPT with sorted EEPA and fixed γ outperformed the other

algorithms in its ability to find better optimal solutions and converge faster. An additional
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study was conducted to compare QMARS-MIQCP-SUROPT with sorted EEPA and fixed

γ to its competitor TK-MARS for the same three global optimization test functions. It was

seen that the QMARS-MIQCP-SUROPT approach clearly outperformed TK-MARS for all

three test functions.

In Chapter 5, QMARS-MIQCP-SUROPT with sorted EEPA and fixed γ algorithm

was tested on both a real-world laboratory experiment as well as a simulation. First, the

algorithm was tested on a 2D-LC simulation software, ChromSim to find the optimal system

parameter settings for plates, Vm(ml), Φdip, Φinitial, Vloop and %Fill to efficiently extract

five different analytes by minimizing Width50. This helped gauge the performance of the

algorithm in analytical chemistry applications and the setup that would be needed for an

actual laboratory run. Additionally, the ability of the QMARS surrogate model to automat-

ically detect and model interactions was also tested in the simulation. However, it was found

that switching the interaction and robust setting automatically after 2d parameter settings

evaluations, performs similarly to setting the setting with no interactions.

For the second real world study, the methodology was tested on the Shimadzu

LCMS-2020 instrument to find the optimal system parameter settings for Interface Voltage

(V ), DL Voltage (V ), Qarray DC Voltage (V ), DL Temperature ◦C, Heat Block Temperature
◦C, Nebulizing Gas Flow (mL/min) and Drying Gas Flow (mL/min) to efficiently extract

Acetaminophen from the sample by maximizing the ion intensity of the analyte. The optimal

parameter settings were found in just 28 laboratory experiments achieving a maximum ion

intensity of around 5.9 million. It was also seen the chromatograms for the optimal setting

and the tuning file were very similar to each other indicating that the optimal solution

found was reasonable. Setting the parameter interactions = 1 and switching the setting to

interactions = 2 with robust = 1 after 2d parameter settings automatically was also tested.

It was found that there was no difference in the candidate points chosen in consecutive

iterations or in the performance of the algorithm.

In a nutshell, QMARS-MIQCP-SUROPT with Sorted EEPA and Fixed γ per-

formed better than the other algorithms that were studied. It was also seen that it performed
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well when tested on ChromSim and in actual laboratory experiments in the Shimadzu LCMS-

2020 instrument.
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Chapter 7

Future Work

One interesting future direction of this research is exploring the automatic switching of the

interaction setting from no interactions to two-way interactions after 2d function evalua-

tions. While the chemistry case studies in this dissertation did not demonstrate the need

for modeling interactions, it is anticipated that interactions will be important in other ap-

plications, such as supercritical fluid extraction. In addition, it is observed that the popular

surrogate/global optimization test functions (e.g., Rastrigin, Rosenbrock, Ackley) do not

involve strong interactions, so they are not appropriate for testing the ability of QMARS-

MIQCP-SUROPT to handle interactions. Future work will need to identify appropriate test

functions with strong interaction term and further study the interactions setting in QMARS.

It was seen that QMARS-MIQCP-SUROPT with sorted EEPA and fixed γ per-

formed better in comparison to all other algorithms. In the research the value for γ was

arbitrarily fixed at 0.8. Testing the performance of the algorithm at different fixed γ values

would be insightful.

Another development in the research is creating an ensemble approach of the four

different QMARS-MIQCP-SUROPT algorithms that were identified and the interactions

settings for QMARS. Specifically for real-world experiments, since each function evaluation

is expensive and time-consuming, an ensemble approach that can take advantage of the batch

runs in the laboratory or other experiments and suggest optimal parameter settings would
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be useful.

It was also noted that when the number of basis functions in the QMARS model

increases or when the number of dimensions increases, the MIQCP algorithm can be slow.

This is a disadvantage against typical surrogate optimization algorithms that do not con-

duct a formal optimization. Because surrogate optimization is intended for time-consuming

experiments (computer or laboratory), the computational speed of the algorithm is not con-

sidered a limitation. However, exploring an alternate MIQCP approach to speed up the

algorithm would still be worthwhile for improving the proposed methodology.

Finally, the algorithm was applied only to single objective optimization problems.

Many real world experiments have multiple objectives. For example, when optimizing

parameter settings in applications like Supercritical Fluid Extraction-Supercritical Fluid

Chromatography(SFE-SFC) systems, there is need for optimizing multiple objectives such

as peak area, peak width and chromatographic efficiency simultaneously. Modifying the

proposed approach to optimize multi-objective optimization problems is worth for future

study.
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