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ABSTRACT 

 

LIUTEX BASED VORTEX IDENTIFICATION METHODS AND THEIR APPLICATION 

IN DNS STUDY OF THE BOUNDARY LAYER TRANSITION 

 

PUSHPA SHRESTHA, Ph.D. 

The University of Texas at Arlington, 2021 

 

Supervising Professor: Dr. Chaoqun Liu 

Vortices are intuitively known as the rotational motion of fluid particles, however a 

unambiguous and universally accepted methods of vortex definition and identification is not 

available till the date in the literature. First-generation of vortex identification methods, also 

known as vorticity-based vortex criterion, was first proposed by Helmholtz. But these methods 

have their own problems. These methods have shear contamination problem, and these methods 

did not accurately show the direction of fluid rotation. So, to overcome these problems, 

eigenvalues based second-generation vortex identification methods  like Q,  Δ,  𝜆2 ,  , 𝜆𝑐𝑖 , and Ω 

have been proposed. Most of these second-generation methods are scalar quantities based on the 

Cauchy-Stokes decomposition of the velocity gradient tensor. But Cauchy-Stokes’s 

decomposition itself is not Galilean invariant and its physical meaning is not  clear.  

In 2017/2018, the Center for Numerical Simulation and Modeling (CNSM) at the 

University of Texas at Arlington proposed a Liutex vector based on eigenvector of velocity 

gradient tensor to define vortex structure mathematically. Liutex method can give the local 

direction of fluid rotation and rotational strength. Since then, Liutex based vortex identification 

methods like Liutex core lines, Liutex tubes, Liutex-Omega method ( Ω𝐿 ), and Modified Liutex-

Omega method ( Ω̃𝐿 ), etc., have been proposed in fluid dynamics.  

In this dissertation, the Direct Numerical Simulation (DNS) data is applied to all three 

generations of vortex identification methods and a comparative study has been done and 

proposed a best method to define and visualize vortex boundary. If we are focusing on vortex 

direction and uniqueness of the vortex structure, then Liutex core lines method is the appropriate 

method. However, if we are looking for smooth and clear iso-surface plotting of vortex structure, 

then we recommend Modified Liutex-Omega method.  
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A new coordinate system known as Principal Coordinates based on Liutex definition is 

proposed.   A new unique velocity gradient tensor known as Principal Tensor has been proposed 

which is Galilean invariant. Then Principal Tensor is decomposed into rotation, stretching and 

shear part. Unlike traditional  Cauchy-Stoke’s decomposition, Principal Tensor decomposition 

is unique and Galilean invariant. Also, in this dissertation,  first and second-generations vortex 

identification methods have been redefined and each redefined vortex definition can give the 

degree of contamination by shear and stretching or compressing effect. These new definitions 

also provide the dimension of each criterion which can help us decide which criterion is close to 

fluid rotation and choose the better one.  

In final chapter of this dissertation, proper orthogonal decomposition (POD) is used with 

Liutex vector as an input instead of velocity vector to extract the coherent structure of late 

boundary layer flow transition but with significantly lower dimension. A singular value 

decomposition (SVD) algorithm is used as the POD method. It is observed that given fluid 

motion can be modeled by  few early modes as they contain the large portion of total kinetic 

energy and later modes can be neglected as their kinetic energy converges to zero.  
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CHAPTER 1 

INTRODUCTION 

Vortices are naturally known as the rotational movement of liquid particles, and it tends to 

be seen everywhere in nature; from moving water to smoke to the storm. Turbulence is produced 

with various vortices of various sizes and qualities, known as coherent structures, in the fluid flow 

field. All in all, a vortex is known as the rotational movement of a fluid molecule in the vortex 

field. The idea of the vortex is yet a secret that presently cannot seem to be characterized 

mathematically unambiguously, despite the plentiful endeavors put in by researchers and 

specialists on this theme for quite a long time. Turbulence has several mysterious features like 

compressibility, instability, irregularity  in motion, and difficulty in measuring it. These 

exceptional attributes of turbulence make it hard to define and determine. So, there is even not a 

solitary all around acknowledged mathematical meaning of turbulence that can give discreet and 

quantitative meaning. However, turbulence plays a prominent role in real life, like in the design, 

development, and maintenance of airplanes, predicting the weather, and studying the motion of 

blood in veins to avoid blockage etc.   

Over the past three decades, several vortex identification methods such as Q, Δ, 𝜆2 , 

 and 𝜆𝑐𝑖  have been proposed and applied in Direct Numerical Simulation (DNS) data to model 

and visualize the vortex structure in the transitional boundary layer. In 2009, Wu and Moin [1] 

recorded a DNS data for a flow transitions in a flat plate boundary layer with zero-pressure 

gradient. After the introduction of DNS data, different vortex identification schemes have been 

established and used amply with DNS data to survey the flow transition zones and the coherent 

structure in the boundary layer [2,3]. 

Helmholtz proposed vorticity-based methods like vortex lines, vortex tube, vortex 

filaments etc. in 1958 in Helmholtz's three theorem [4] and it was believed that these vorticity-

based methods would provide a mathematical definition of the fluid rotational motion until 1990. 

In another words, at that time vorticity was considered as vortex. So, the concept of the vorticity 

concentration and other vorticity-based methods given by Helmholtz [4]  and, H.; Saffma, P. [5] 

were widely accepted by many researchers in the literature. Zhou and Antonia [6]   developed the 

spatially phase correlated vorticity to characterize large-scale and organized structures in the 

cylinder wake; but some serious dilemmas appeared in turbulent viscous flows. Also, it is proved 

by Epps, B., 2017 [7] that vorticity cannot distinguish a vortex region from a strong shear layer. 
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Yu et. all [8] conducted a correlation analysis among vorticity, Q method and Liutex, and found 

that vorticity is in fact poorly corelated with actual vortex, especially near the wall in the boundary 

layer. Moreover, Shrestha et. [55]  all concluded that vorticity vector is severely contaminated by 

shear. The shear force is dominant in the boundary layer of turbulent viscous flows, but vorticity 

counts shear force as vortex, which is not.  This contamination was the main reason behind weak 

correlation mentioned in [8].  Also, we noted that the direction of vorticity and vortex do not align 

with each other.  

According to Lugt [9]and Robinson [10], an insightful existence of a vortex can be 

verified by closed or spiraling streamlines or path lines in fluid flow. Nevertheless, the streamlines 

or path lines are not Galilean invariant and thus cannot be an appropriate criterion for vortex 

identification. 

There was a sheer need of new vortex identification method as vorticity and streamlines methods 

were deemed not good enough to model the vortex structure. In 1987, a critical theory was 

proposed by Perry and Chong [11] to describe eddying motions and flow patterns. Few years later 

in 1990, Chong and Perry [12] modified it to judge the presence of the local rotational motion. In 

fact, this method proposes a method for identifying vortices which refers to the presence of 

circular or spiral streamlines, which is also known as Δ- criterion.  Although the Δ- criterion has 

been used successfully in many turbulence researches to mode and depict vortical structure, it has 

its own limitation. According to Jeong and Hussain [13], it does not always necessarily perform 

well. Moreover, it is extremely dependent on the selection of right threshold, and a proper 

threshold must be chosen to visualize the iso-surface plotting efficaciously. 

The popular Q- criterion proposed by Hunt et al. [14] gives the region with positive second 

invariant of velocity gradient tensor. This method represents a local balance between the rotation 

and deformation rates of a fluid element. In fact, it gives the difference these two. Hence this 

method basically uses the same definition of a vortex as that invented by Chong et al. in 1990 

[12], which is, a vortex is a connected region where the antisymmetric component of velocity 

gradient tensor predominates over the symmetric one. This criterion can capture and show the 

vortical structure effectively. However, this method is also threshold sensitive which could add a 

degree of ambiguity in vortex visualization. Moreover, Jeong and Hussain [13] pointed out that 

definition based on Q-method is not helpful in certain situations, especially when the streamline 

pattern becomes locally closed or spiral, without the presence of a truly vertical structure. Also, 
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Shrestha et. All [55] concluded that Q-method is severely contaminated by shearing and stretching 

or compressing effects. 

Jeong and Hussain [13] introduced the 𝜆2 -criterion which is very famous in the literature. 

𝜆2  is the second eigenvalue, when placed in increasing or decreasing order, of the symmetric 

tensor given by the sum of squares of symmetric and anti-symmetric components of velocity 

gradient tensor which is discussed briefly later in chapter 3. Although this method was developed 

to alleviate the possible drawbacks of Q and Δ criteria, this method is also threshold sensitive. 

Additionally, this method works only for a steady inviscid planar flow.  

The 𝜆𝑐𝑖 criterion proposed by Zhou et al. [15] by improving Δ- criterion uses the imaginary 

part of the complex eigenvalues of the velocity gradient tensor to model and visualize the vortex 

structure. It is based on the idea that the local time-frozen streamlines display a rotational flow 

pattern when 𝛻�⃗� has a pair of complex conjugate eigenvalues. This method also has the limitation 

as it also introduces the concept of arbitrary threshold.  

 According to Liu et al. (2019) [16] , vorticity-based methods are classified as the first 

generation (1G) of vortex identification methods, eigen-values based methods such as Q, Δ, 𝜆2 , 

 and 𝜆𝑐𝑖  are regarded as the second generation (2G) of vortex identification methods, and the 

Liutex method, Liutex-Omega method (Liu et al., 2018) , Liutex-Core –Line method and other 

Liutex-based methods are regarded as third generation (3G) of vortex identification methods. 

Third generation of vortex identification method is considered best among the prevalent methods 

as it can answer the following questions that other methods cannot.  

1) What is the absolute strength of vortex? 

2) What is the relative strength of vortex? 

3) What is the rotation axis of vortex? 

4) What is the vortex core center? 

5) What is the size of vortex core? 

6) Where is the vortex boundary? 

According to Liu [16], scalar based second-generation of vortex identification criteria like  

Δ, Q, 𝜆2 and 𝜆𝑐𝑖 have their shortcomings. One of them is that they can only depicted via iso-

surface and are threshold sensitive which is case-related, empirical, and hard to adjust. In addition, 

𝑄 and 𝜆2 are restrictive for vortex identification for incompressible flows due to their 
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incompressibility assumption. Also, as per Shrestha [55], these methods were contaminated by 

shear and stretching at different levels. To alleviate this problem, Dr. Liu introduced the vortex 

identification schemes like Omega, Liutex, Liutex-omega, Liutex core lines etc. schemes. He 

proposed the new Ω-method (omega-method) in 2016 [17] as a new identification method to 

capture vortex structures which is moderately tolerant to threshold change. The  Ω-method is 

nothing but a proportion of vorticity in the fluid rotation that also has deformation mixed in it and 

when that proportion is more than 50 percent, the  Ω-method can capture the vortical structure. In 

this research, we have used  Ω = 0.52. Unlike other schemes, the  Ω-method has a clear physical 

meaning. 

 Despite being able to get some popularity in the literature, the robustness of these method 

was always questionable since they were all scalar quantities. Fluid rotation certainly has a 

direction. So, vortex identification schemes were supposed to represent that, but these methods 

were just scalar quantities. This was one of the biggest hindrances in turbulence research. 

Additionally, for most these scalar-based vortex identification criteria, the sensitivity to the 

threshold selection provides a large number of difficulties in making a judgment to define the 

boundary of vortical structures. These issues prompted the development of the new concept of 

Liutex/Rortex [18,19]. Unlike the first- and second-generation vortex identification criteria, the 

Liutex method is a novel eigenvector-based method which is local, accurate, unique, and 

systematically defined. Furthermore, the systematical definition of Liutex is given in scalar, 

vector, and tensor forms. Liutex is defined as a vector and its local direction is given by eigen 

vector of velocity gradient tensor. The scalar form of Liutex represents the rotational strength of 

the fluid rotation, whereas the vector form gives the direction of the local fluid rotation. The idea 

of Liutex scheme proposed by Liu was able to give a local direction as well as strength of the 

fluid rotation. Gao and Liu also gave the scalar, vector, and tensor form of the Liutex method and 

compare with other eigenvalue-based methods [19]. According to Liu, If the velocity gradient 

tensor of a three-dimensional flow field has a pair of complex conjugate eigenvalues and a real 

eigenvalue, the instantaneous streamline pattern presents a local swirling motion around the axis 

of the local fluid rotation, which is the real eigenvector of velocity gradient tensor and known as 

direction of Liutex. Yu et al [20] proposed the concept of Principal Coordinates and gave the new 

unique tensor decomposition in the Principal Coordinates based on Liutex method.  
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After the advent of Liutex method, many other Liutex based methods such as Liutex-

omega [21], Modified Liutex-omega [22], Liutex core lines [23] etc. were developed. Liutex-

omega method was proposed as a combination of Liutex and Omega methods, which gives the 

best iso-surface structure of vortex as Liutex-Omega method is free from shear. This is the reason 

Liutex-omega method was able to give smooth and accurate structure. In this thesis, we use 

Liutex-Omega method for this reason. Despite being able to capture both weak and strong vortices 

simultaneously, it displayed a bulging phenomenon on iso-surface while displaying the vortex 

boundary. So, to get rid of this inadequacy, Modified Liutex-omega [22] method was proposed. 

Modified Liutex-omega method is a robust on capturing vortex boundary, it was still moderately 

affected by threshold change. So, Dr. Liu proposed a new method called Liutex core lines [23] 

which is unique and is free from iso-surface. So, it exempts us from the nuisance of choosing the 

proper threshold. Also, Liutex tensor decomposition is presented in the reference [24]. The Liutex 

vector is also Galilean invariant [25,26].   

 In this dissertation, we introduce the concept of unique Principal coordinate and tensor 

decomposition in Principal coordinate, also known as principal tensor decomposition. we 

demonstrate the shear and stretching contamination of several 2G vortex identification methods 

from both mathematical formula and numerical experiments. After calculating the velocity 

gradient tensor at a point inside the vortex boundary, the velocity gradient tensor is decomposed, 

which is unique and is done in the Principal Coordinate.  In other words, the velocity gradient 

tensor is uniquely decomposed into rigid rotation part, stretching part, and shearing part in the 

Principal Coordinate.  

  In chapter 6 of this dissertation, the proper orthogonal decomposition (POD) is used 

with the modified Omega-Liutex method to capture the vortices of POD modes in the late 

boundary layer to model and visualize the coherent structure of vortices efficiently in the 

boundary layer and attain more structures in both weak and strong vortices at the same time. Since 

the late flow transition is more complex and random than early flow transition, POD 

decomposition is a very useful and convenient tool to extract the whole structure into coherent 

structures according to the features such as energy content and mode shape. In another words, 

complex vortex structures can be reconstructed with same energy content but with significantly 

lower dimension.  
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The POD is one of the most broadly applied modal decompositions and dimensionality 

reduction method to analyze vortex structure in fluid flows. There are two versions of POD 

technique. Initially the POD was proposed by Lumley [27] in 1967 to explore the turbulent flow. 

In 1987 Sirovich [28] introduced the other version of POD known as snapshot POD. Both versions 

of POD are equivalent to singular value decomposition (SVD) method. So. SVD method is used 

in this dissertation for POD analysis of late flow transition. In recent years, there have been many 

applications about POD in many fields of fluid dynamics.   POD can be used to analyze and model 

turbulent flow because this method makes it possible to analyze and combine space–time data at 

the same time (averaged time). In POD method, the orthogonal modes ranked according to their 

kinetic energy content.  Due to limited computing memory, POD modes with high energy content 

are used to optimize the computation. First mode contains the largest kinetic energy of the flow 

and it decreases gradually as we go on to next mode. Many researchers have used POD method 

to study the flow structure. In research [29-32], POD was used to analyze the flow structures in 

various cases and scenarios.  Dong et. all applied POD analysis on vortical structures in MVG 

wake by Liutex core line identification [33]. POD method has also been applied to flow transition 

in the boundary layer. Gunes used proper orthogonal decomposition method to reconstruct a 

transitional boundary layer with and without control [34]. Yand et. all studied the POD Analyses 

on vortex structure in the late transition [35]. The study done by Chakrit et. all [36] also applies 

POD method for analysis of losing symmetry in late flow transition but unlike us, she proposes 

that antisymmetric flow starts from the middle part of boundary layer. Recently, Cavalieri, A., 

Schlatter P., Vinuesa, R., Henningson, D. and Abreu, L. conducted the comparative study between 

spectral proper orthogonal decomposition (SPOD) and resolvent analysis of near-wall coherent 

structures in turbulent pipe flows where they concluded that the SPOD modes are simply the 

response modes from resolvent analysis, with SPOD eigenvalues equal to the square of resolvent 

gains [37]. 
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CHAPTER 2 

NUMERICAL CASE SETUP 

 

For all the research and results in this dissertation, the Direct Numerical Simulation (DNS) 

data of fluid flow in the flat plate boundary layer transition was received from Texas Advanced 

Computing Center (TACC) and is used to model and simulate the fluid flow. The FORTRAN 

code DNSUTA_HS developed by Center for Numerical Simulation and Modeling (CNSM) at 

UTA in the leadership of professor Dr. Chaoqun Liu in 2009 and was also validated and approved 

by NASA Langley. The results were compared to experiments and other DNS results [1, 2] found 

consistent and accurate.  

The motion of a fluid can be described by the conservation of mass, momentum, and of 

energy for an arbitrary control volume. So, first we discuss about the governing equations.  

2.1 Governing Equations 

2.1.1 Conservation of Mass (Continuity Equation) 

Let S be a closed surface with volume V which has a fixed position with respect to x, y 

and z coordinates. Suppose the density of the fluid be 𝜌 at a position (x, y, z) and at time t, then, 

The mass of the fluid enclosed by the surface at any instant =∫𝜌 𝑑𝑉, 

and, 

the net rate at which the mass flows outwards across the surface =∫𝜌 𝒖. 𝒏 𝑑𝑆, 

where u is the velocity of mass flowing outwards across the surface, unit normal vector n is 

directed outward of the surface S, and dV and dS are respectively infinitesimal volume and area 

of the closed surface. 

Note: volume = area × distance = 𝑑𝑆 × 𝒖 × 𝑡 

According to the conservation of mass of the fluid, net rate of fluid mass flowing in is 

equal to the net rate of fluid mass flowing outwards across the surface, i.e.  

𝜕

𝜕𝑡
∫𝜌 𝑑𝑉 = −∫𝜌 𝒖. 𝒏 𝑑𝑆.  
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∫
𝜕𝜌

𝜕𝑡
 𝑑𝑉 + ∫𝜌 𝒖. 𝒏 𝑑𝑆 = 0.  (2.1) 

 

Then, since the volume V is fixed in space, the differentiation under the integral sign, and the 

transformation of the surface integral (by the Gaussian divergence theorem) gives 

∫
𝜕𝜌

𝜕𝑡
 𝑑𝑉 + ∫∇. (𝜌𝒖) 𝑑𝑉 = 0.  

or 

∫[
𝜕𝜌

𝜕𝑡
 + ∇. (𝜌𝒖)]𝑑𝑉 = 0.  (2.2) 

This relation is true for all V that lies entirely in the fluid, and therefore, it is continuous in x, y 

and z. So, it must be identically zero everywhere in the fluid.  Hence, we have the continuity 

equation,  

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝒖) = 0.  (2.3) 

Note: Divergence theorem states that flux across the surface S is equal to total divergence of u 

over the region that covers volume V. i.e.,  

∬𝜌𝒖.𝒏 𝑑𝑠 =  ∭∇.𝒖 𝑑𝑉 

2.1.2 Conservation of Momentum (Equation of Motion) 

The conservation of momentum in a control volume V requires that the changes of 

momentum in this volume must be equal to net rate of momentum gained/lost through the surface 

that encloses this volume and what is created/consumed by sources and sinks inside the control 

volume. As in continuity equation, consider a volume of fluid V enclosed by a surface S, fixed 

with respect to the coordinate axes.  For this body of fluid, the momentum is given by the equation, 

∫𝜌𝒖 𝑑𝑉, 

and rate of change of momentum is given by, 

𝜕

𝜕𝑡
∫𝜌𝒖 𝑑𝑉 = ∫

𝜕(𝜌𝒖)

𝜕𝑡
 𝑑𝑉.  (2.4) 
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Now, the net rate of what is gained or lost through the surface S is given by, 

∫𝜌𝒖(𝒖 ⋅ 𝒏) 𝑑𝑆 = ∫𝛻 ⋅ (𝜌𝒖⊗ 𝒖) 𝑑𝑉,  

which is gotten from the divergence theorem i.e.  the flux of a vector field through a 

closed surface is equal to the divergence of the field in the volume enclosed and ⊗ represents the 

outer product, that is, 

𝜌𝒖⊗ 𝒖 = 𝜌𝒖𝒖𝑇 which is a tensor. 

If we let b be the sources and sinks inside the control volume V, then the conservation of 

momentum inside the volume V is given by, 

∫
𝜕(𝜌𝒖)

𝜕𝑡
 𝑑𝑉 = −∫𝛻 ⋅ (𝜌𝒖⊗ 𝒖)𝑑𝑉 + ∫𝜌𝒃 𝑑𝑉, 

Which can be written as 

∫ [
𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖⊗ 𝒖) − 𝜌𝒃]  𝑑𝑉 = 0. 

 

Since the volume V is arbitrary inside the fluid, we must have, 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖⊗ 𝒖) − 𝜌𝒃 = 0, 

or 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖⊗ 𝒖) = 𝜌𝒃.  (2.5) 

 

where forces b may be separated into two types:  the stress form forces and body forces. 

Then, we have,  

𝜌𝒃 = 𝜌𝒇 + (𝛻 ⋅ 𝜎),   (2.6) 

https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Divergence
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where f represents the body forces and 𝜎 is the stress force tensor. The stress force is forces acting 

within a body as a response to external applied forces and body forces.  It can be divided into 

normal and shear components. 

If we assume a Newtonian fluid, there is a linear relation between the stress (𝜎) and the 

rate of strain of the fluid, then by Stokes (1845), 

𝜎 = −(𝑝 − 𝜇𝑣𝛻 ⋅ 𝒖)𝑰 + 𝜇 [𝛻𝒖 + (𝛻𝒖)
𝑇 −

2

3
(𝛻 ⋅ 𝒖)𝑰],  (2.7) 

where p is the pressure, 𝜇v is the bulk viscosity related to the viscosity 𝜇 by 

𝜇𝑣 = 𝜆 +
2

3
𝜇,  (2.8) 

and according to Stokes’ hypothesis, 𝜇 is taken to make 𝜇v = 0. 

Therefore, 

𝜎 = −𝑝𝑰 + 𝜆(𝛻 ⋅ 𝒖)𝑰 + 𝜇[𝛻𝒖 + (𝛻𝒖)𝑇] = − [𝑝 +
2

3
𝜇(𝛻 ⋅ 𝒖)] 𝑰 + 𝜇[𝛻𝒖 + (𝛻𝒖)𝑇].  (2.9) 

Hence, the conservation of momentum equations can be written as 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖⊗ 𝒖) = 𝜌𝒇 − 𝛻𝑝 −

2

3
𝛻[𝜇(𝛻 ⋅ 𝒖)] + 𝛻[𝜇(𝛻𝒖 + (𝛻𝒖)𝑇)].  (2.10) 

2.1.3 Conservation of Energy 

From the first law of Thermodynamics, the conservation of energy for a fluid of volume 

V contained within a surface S can be found by calculating the work done on the mass of fluid by 

volume, surface forces, and the heat gained through transfer across the boundary and other sources 

inside the volume. The total energy E provides the conserved quantity, and is defined as the sum 

of its internal energy and kinetic energy per unit mass, i.e. 

𝐸 = 𝑒 +
1

2
𝒖 ⋅ 𝒖,  (2.11) 

where e is the internal energy per unit mass of the fluid. 

 

The rate of change of the total energy inside the volume V contained within a surface S is given 

by, 
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𝜕

𝜕𝑡
∫𝜌𝐸 𝑑𝑉 = ∫

𝜕(𝜌𝐸)

𝜕𝑡
 𝑑𝑉, 

while the net rate of energy gained or lost through the surface is given by 

∫(𝜌𝐸)𝒖 ⋅ 𝒏 𝑑𝑆 = ∫𝛻 ⋅ (𝜌𝐸)𝒖 𝑑𝑉. 

Also, heat is transferred to the fluid in the volume by molecular conduction through the surface 

S, 

So, we have, 

∫(𝑘𝛻𝑇) ⋅ 𝒏 𝑑𝑆 = ∫𝛻 ⋅ (𝑘𝛻𝑇) 𝑑𝑉, 

where T is the absolute temperature and k is the thermal conductivity coefficient of the fluid. 

The work done on the fluid by forces can be divided into volume and surface sources.   

The volume sources include the volume forces f, and heat sources 𝑞𝐻 other than 

conduction, such as radiation or heat released by chemical reactions.  This gives the work done 

for the volume V, 

∫(𝜌𝒇 ⋅ 𝒖 + 𝑞𝐻) 𝑑𝑉. 

The work done on the fluid by the surface sources, i.e., internal shear stresses (𝜎)  acting on the 

surface of the volume considering that there are no external surface heat sources, is given by, 

∫(𝜎 ⋅ 𝒖) ⋅ 𝒏 𝑑𝑆 = ∫𝛻 ⋅ (𝜎 ⋅ 𝒖) 𝑑𝑉. 

By grouping all terms, we get the energy conservation equation,  

∫
𝜕(𝜌𝐸)

𝜕𝑡
 𝑑𝑉 + ∫𝛻 ⋅ (𝜌𝐸)𝒖 𝑑𝑉 = ∫𝛻 ⋅ (𝑘𝛻𝑇) 𝑑𝑉 + ∫(𝜌𝒇 ⋅ 𝒖 + 𝑞𝐻) 𝑑𝑉 + ∫𝛻 ⋅ (𝜎 ⋅ 𝒖) 𝑑𝑉, 

or 

𝜕(𝜌𝐸)

𝜕𝑡
 + 𝛻 ⋅ (𝜌𝐸)𝒖 − 𝛻 ⋅ (𝑘𝛻𝑇) − 𝛻 ⋅ (𝜎 ⋅ 𝒖) = 𝜌𝒇 ⋅ 𝒖 + 𝑞𝐻,   (2.12) 

with 

𝜎 = − [𝑝 +
2

3
𝜇(𝛻 ⋅ 𝒖)] 𝑰 + 𝜇[𝛻𝒖 + (𝛻𝒖)𝑇].  (2.13) 
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2.2. Numerical Setup  

The numerical domain has the grid number 1920× 128 × 241,  representing the number 

of grids in streamwise (x), spanwise (y), and wall normal (z) directions. In normal direction, 

these grids are stretched while in streamwise and spanwise directions, they are uniform. The 

length of the first grid interval in the normal direction at the entrance is found to be 0.43 in wall 

units (Z+ = 0.43). The flow parameters are listed in Table 1. Here, 𝑀∞ is Mach number, 𝑅𝑒 is 

Reynolds number and, 𝑇𝑤  𝑎𝑛𝑑 𝑇∞ are wall and free stream temperature, respectively. Likewise, 

𝑥𝑖𝑛 represents the distance between leading edge and inlet of the flat plate and, 𝐿𝑥, 𝐿𝑦, 𝐿𝑧𝑖𝑛  is 

the inflow displacement thickness.  

Figure 2.1. Vortex structure in transitional boundary with Ω̃𝐿 = 0.52. 

 

 

 

 

 

 

Figure 2.2. Computation domain 
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Figure 2.3. Domain decomposition along the streamwise direction in the computational space. 

 

𝑀∞ 𝑅𝑒 𝑥𝑖𝑛 𝐿𝑥 𝐿𝑦 𝐿𝑧𝑖𝑛 𝑇𝑤 𝑇∞ 

0.5 1000 300.79𝛿𝑖𝑛 798.03𝛿𝑖𝑛 22𝛿𝑖𝑛 40𝛿𝑖𝑛 273.15K 273.15K 

Table 2.1. DNS parameters  

The parameters in Table 1 are defined as 

𝑀∞ = Mach number  

𝑅𝑒  = Reynolds number 

𝑥𝑖𝑛  = distance between leading edge of flat plate and upstream boundary of computational 

domain 

𝛿𝑖𝑛  = inflow displacement thickness 

𝐿𝑥   = length of computational domain along x direction 

𝐿𝑦   = length of computational domain along y direction 

𝐿𝑧𝑖𝑛= height at inflow boundary 

𝑇𝑤   = wall temperature 

𝑇∞  = free stream temperature 

For more detail about case setup and validation of code, one can see the references [2,3]. 

Similar case setup can be found in the references [38-40].  But for POD analysis of late flow 

transition, a particular region in late flow transition is selected which is discussed in chapter 6 in 

details.  
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CHAPTER 3 

VORTEX IDENTIFICATION METHODS 

Over the past three decades, many vortex identification methods have been proposed and 

developed in the literature to model and simulate the vortex structures. They all have their pros 

and cons. So, we are yet to find an unambiguous and globally accepted vortex identification 

methods. According to Liu [16], vortex identification methods are categorized in to three 

generations. Vorticity vector-based methods are known as first-generation methods while 

eigenvalue-based methods are known as second generation methods. Liutex [18,19] and other 

Liutex based methods such as Liutex tube, Omega-Liutex methods [21], Modified Omega-Liutex 

method [22], Liutex core lines [23], etc., are known as third-generation methods of vortex 

identification.  In this chapter, first we briefly review them and then discuss about their strengths 

and limitations in details.  

3.1 First Generation Vortex Identification Methods. 

All the vorticity-based methods such as vorticity lines, vorticity tubes, vorticity filaments 

are known as first generation methods of vortex identification. These vorticity-based methods 

were popular in fluid dynamics till early 1990 and then different eigenvalue-based methods were 

proposed which are still in use.  

Definition 3.1: 

Vorticity vector is the curl of vector field. i.e., if v is the velocity of a fluid particle, then, 

Vorticity = Curl 𝐯 =  ∇ × 𝐯 = |

𝐢 𝐣 𝐤
∂

∂x

∂

∂y

∂

∂z

u v w

| 

   Vorticity   = 𝐢 (
∂w

∂y
−
∂v

∂z
) − 𝐣 (

∂w

∂x
−
∂u

∂z
) + 𝐤(

∂v

∂x
−
∂u

∂y
)   

Vorticity based methods like vortex lines, vortex tube, vortex filaments etc. were introduced by 

Helmholtz in 1958 in Helmholtz's three theorem [4].  
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3.1.1 Vorticity-based methods 

Definition 3.2. 

A vortex line is a line whose tangent is everywhere parallel to the local vorticity vector. A vortex 

line is related to vorticity vector as the same way streamlines relate to velocity vector. 

Definition 3.3. 

The vortex lines drawn through each point of a closed curve in the velocity field form the surface 

which is called a vortex tube.  

Definition 3.4. 

A vortex filament is a vortex tube whose cross-section is of infinitesimal dimensions. In another 

word, vortices consist of small vorticity tubes which are called vortex filaments. 

Since Helmholtz introduced the concept of vorticity tube/filament in 1858 [4], many 

researchers have assumed that vortices consist of vortex filaments, and the magnitude of vorticity 

gives the vortex strength. In fluid mechanics, Helmholtz's three theorems explain the three-

dimensional motion of fluid particles in the surrounding area of vortex filaments. These theorems 

apply to inviscid flows, which means flows where the impact of viscous forces are so small that 

it can be overlooked. 

Helmholtz's first theorem: 

The strength of a vortex filament is constant along its length. 

Helmholtz's second theorem: 

A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a 

closed path. 

Helmholtz's third theorem: 

In the absence of rotational external forces, a fluid that is initially irrotational remains irrotational. 

As mentioned before, Helmholtz's theorems apply to inviscid flows only. But, in viscous 

flows, the strength of the vortices always decays slowly due to the dissipative effect of viscous 

forces.  

https://en.wikipedia.org/wiki/Fluid_mechanics
https://en.wikipedia.org/wiki/Vortex
https://en.wikipedia.org/wiki/Inviscid_flow
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Viscosity
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3.2 Second Generation Vortex Identification Methods. 

3.2.1 Δ Method 

According to Chong et al., 1990 [12] The Δ method defines a vortex to be the region where 

the velocity gradient tensor 𝛻�⃗� has a pair of complex conjugate eigenvalues and a real eigenvalue. 

If 𝜆1, 𝜆2 𝑎𝑛𝑑  𝜆3 are three eigenvalues of the 3× 3 matrix of 𝛻�⃗�, then the characteristic equation 

can be written as:  

𝜆3 + 𝐼1𝜆
2 + 𝐼2𝜆 + 𝐼3 = 0   (3.1) 

where,  𝐼1, 𝐼2, and 𝐼3 are the first, second and third invariants of the characteristic equation (3.1) 

and given by  

𝐼1 = −(𝜆1 + 𝜆2  +  𝜆3) = −𝑡𝑟(𝛻�⃗�)   (3.2) 

𝐼2 = 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 = −
1

2
[tr(𝛻�⃗�2) − tr(𝛻�⃗�)2]  (3.3) 

𝐼3 = −𝜆1𝜆2𝜆3 = −det(𝛻�⃗�)   

  (3.4) 

The discriminant of the characteristic equation (3.1) of the velocity gradient tensor is given by  

𝛥 = (
�̃�

3
)
3

+ (
�̃�

2
)
2

  (3.5) 

where, �̃� = 𝐼2 −
1

3
𝐼1
2 and, �̃� = 𝐼3 +

2

27
 𝐼1

3 − 
1

3
𝐼1𝐼2.  

For incompressible flow, the first invariant of the characteristic equation (3.1)  𝐼1 = 0. So, 

in this case, the discriminant of the characteristic equation (3.5) becomes Δ = (
𝐼2

3
)
3

+ (
𝐼3

2
)
2

.  If 

𝛥 ≤0, all three eigenvalues of 𝛻�⃗� are real, in this case there is no fluid rotation. If Δ >  0, there 

exists one real and two conjugate complex eigenvalues which means that the point is inside a 

vortex region. 𝛥 method is a scalar method by using the iso-surface to show the vortex structure. 

The iso-surface is very sensitive to the selection of threshold, which is man-made and arbitrary 

in general.  
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3.2.2 𝑄 Criterion 

The 𝑄 method is one of the most popular methods to model and visualize the vortex 

structure, which was proposed by Hunt et al. (1988) [14]. Although 𝑄 is the second invariant in 

the eigenvalue equation (3.1) given above, the value of 𝑄 can also be calculated as half of the 

difference of squares of the Frobenius norm of vorticity tensor and strain-rate tensor. i.e., 

𝑄 =
1

2
(‖𝐵‖𝐹

2 − ‖𝐴‖𝐹
2)  (3.6) 

where A and B are the symmetric and anti-symmetric part of the velocity gradient tensor, 

respectively. 

𝐴 =
1

2
(𝛻�⃗� + 𝛻�⃗�𝑇) =

[
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

  (3.7) 

𝐵 =
1

2
(𝛻�⃗� − 𝛻�⃗�𝑇) =

[
 
 
 
 0

1

2
(
𝜕𝑢

𝜕𝑦
 −  

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 0

1

2
(
𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 0 ]

 
 
 
 

   (3.8) 

The 𝑄 method considers that a vortex occurs in the region where the second invariant of 

the characteristic equation (3.1) is positive, i.e., 𝑄 > 0. 𝑄 method can easily determine the 

boundary of the vortex structure through iso-surface. Despite being convenient to use, Q method 

has its drawback as well. First, 𝑄 is a scalar, and a proper threshold is required to visualize the 

vortex region. Also, there does exist an inconsistency between the Δ method and 𝑄 method as 

(
�̃�

2
)
2

 is always positive and even if 𝑄 < 0, it is still possible that Δ could be positive, which 

indicates the point is still inside a vortex region.   

3.2.3 𝜆𝑐𝑖 Criterion 

The 𝜆𝑐𝑖 criterion proposed by Zhou et al., 1999; [15] uses the imaginary part of the 

complex eigenvalues of the velocity gradient tensor to find the boundary of the vortex structure. 

This criterion is based on the idea that the local time-frozen streamlines display a rotational flow 
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pattern when 𝛻�⃗� has a pair of complex conjugate eigenvalues. In this case, the tensor 

transformation of 𝛻�⃗� is given by 

𝛻�⃗� = [�⃗�𝑟 �⃗�𝑐𝑟 �⃗�𝑐𝑖] [

𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖
0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] [�⃗�𝑟 �⃗�𝑐𝑟 �⃗�𝑐𝑖]
−1   (3.9) 

where 𝜆𝑟 is the real eigenvalue with corresponding eigenvector �⃗�𝑟 and the complex conjugate pair 

of complex eigenvalues are 𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖 with corresponding eigenvectors �⃗�𝑐𝑟 ± 𝑖 �⃗�𝑐𝑖 . In this case, in 

the local curvilinear system (𝑐1, 𝑐2, 𝑐3) spanned by the eigenvector (�⃗�𝑟 , �⃗�𝑐𝑟 , �⃗�𝑐𝑖), the instantaneous 

streamlines exhibit spiral motion. The equations of such streamlines can be written as:   

𝑐1(𝑡) = 𝑐1(0)𝑒
𝜆𝑟𝑡   (3.10) 

𝑐2(𝑡) = [𝑐2(0) cos(𝜆𝑐𝑖𝑡) + 𝑐3(0)𝑠𝑖𝑛(𝜆𝑐𝑖𝑡)]𝑒
𝜆𝑐𝑟𝑡   (3.11) 

𝑐3(𝑡) = [𝑐3(0) cos(𝜆𝑐𝑖𝑡) − 𝑐2(0)𝑠𝑖𝑛(𝜆𝑐𝑖𝑡)]𝑒
𝜆𝑐𝑟𝑡   (3.12) 

The strength of this swirling motion was improperly quantified by 𝜆𝑐𝑖 as the 𝜆𝑐𝑖 cannot be 

exactly the pure rotation strength. 𝜆𝑐𝑖 is also characterized as a scalar-valued criterion. Note that 

Eq. (3.9) represents a similar transformation (not orthogonal transformation) that cannot keep 

vorticity unchanged. In another words, due to unorthogonal nature, this method is hugely 

dependent on coordinate selection.  

3.2.4 𝜆2 Criterion 

The 𝜆2 criterion states the facts that pressure is minimum on the axis of rotation when the 

centrifugal force is balanced by the pressure force (the so-called cyclostrophic balance). It is valid 

only in a steady inviscid planar flow (Jeong, J., and Hussain, F., 1995). However, this assumption 

fails to identify vortices under strong unsteady and viscous effects accurately. By neglecting these 

unsteady and viscous effects, the symmetric part S of the gradient of the incompressible Navier–

Stoke’s equation can be expressed as: 

𝑆 = 𝐴2 + 𝐵2 = −
∇(∇𝑝)

𝜌
   (3.13) 

where p is the pressure and the equation (3.13) is a representation of the pressure Hessian matrix 
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 ((𝛻(𝛻𝑝))𝑖𝑗 = 
𝜕2𝑝

𝜕𝑥𝑖𝜕𝑦𝑖
. To capture the region of local pressure minimum in a plane perpendicular 

to vortex core line, Jeong & Hussain defined the vortex core as a connected region with two 

positive eigenvalues of the pressure Hessian matrix, i.e., a connected region with two negative 

eigenvalues of the symmetric tensor S. If 𝜆𝑆1, 𝜆𝑆2 & 𝜆𝑆3 are three real eigenvalues of the 

symmetric tensor S and when setting them in order in such a way that 𝜆𝑆1 ≥ 𝜆𝑆2 ≥ 𝜆𝑆3, there 

must be 𝜆𝑆2 < 0 as two eigenvalues are negative( second derivative negative at maximum points 

,i.e. pressure is minimum and 𝐴2 + 𝐵2 is maximum), which confirms that there exists vortex. In 

general, 𝜆𝑆2 cannot be expressed in terms of eigenvalues of velocity gradient tensor; however, in 

some special cases when eigenvectors are orthonormal, 𝜆𝑆2 can be exclusively determined by 

eigenvalues of velocity gradient tensor. Vortex structure can be visualized as iso-surface by 

selecting a proper threshold of 𝜆𝑆2. The relation between the eigenvalues of the symmetric tensor 

A2 + B2 and second invariant Q is given by: 

𝑄 = −
1

2
𝑡𝑟(𝐴2 + 𝐵2) = −

1

2
(𝜆𝑆1 + 𝜆𝑆2 + 𝜆𝑆3)   (3.14) 

It can be shown that while the Q criterion measures the excess of vorticity rate over the 

strain rate magnitude in all directions, the 𝜆2 criterion looks for this excess only on a specific 

plane. Another similar article, “on the relationship between vortex identifications methods” by 

Chakraborty & Balachandar (2005) [41] is also reviews the vortex identification methods.  

3.2.5. Ω − method 

Omega method proposed by Dr. Chaoqun Liu et. al in 2016 [21] measures the relative 

strength of vortices and it is defined as the ratio of Frobenius norm of vorticity tensor squared 

over the sum of Frobenius norm of vorticity tensor squared and Frobenius norm of deformation 

tensor squared. 

                                  Ω =
‖𝐵‖𝐹

2

‖𝐴‖𝐹
2+‖𝐵‖𝐹

2 =
𝑏

𝑎+𝑏+𝜀
                                                                           (3.15) 

where 𝐴 =
1

2
(𝛻�⃗� + 𝛻�⃗�𝑡), 𝐵 =

1

2
(𝛻�⃗� − 𝛻�⃗�𝑡), 𝑎 = 𝑇𝑟𝑎𝑐𝑒(𝐴𝑡𝐴), 𝑏 = 𝑇𝑟𝑎𝑐𝑒(𝐵𝑡𝐵), and 휀 is a 

small positive number used to avoid division by zero. 
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According to [16], the Ω − method was compared with the other identification methods 

like 𝑄 and 𝜆2 and it is confirmed that Ω-method has some advantages mentioned below:  

1) the Ω −method can capture vortex very well and is very easy to use.  

2) the physical meaning of Ω is clear. 

3) 𝑄 and 𝜆2 iso-surface visualization needs appropriate thresholds to capture the vortex structure 

properly. But Ω method does not need much adjustment and the iso-surfaces of Ω=0.52 can 

always capture the vortices properly in all the cases at different time steps.  

4) 𝑄 and 𝜆2 methods can only capture either strong or weak vortex. When threshold is set high, 

only the strong vortex is captured while weak vortices are lost. Similarly, when threshold is 

set low, only weak vortices are captured but strong vortices are smeared. But Ω method with 

threshold of Ω=0.52 can capture both weak and strong vortices simultaneously.  

Since Ω − method was introduced in 2016 for the first time in the literature, it has been 

used by several researchers as it is very effective to capture both weak and strong vortices [42,43]. 

However, the value of 휀 is case-related and requires an appropriate adjustment. Then, Dong et al. 

[44] gave an explicit formula to determine the value of 휀 as 

                                휀 = 0.001(𝑏 − 𝑎)𝑚𝑎𝑥 = 0.002𝑄𝑚𝑎𝑥             (3.16)                      

The term (𝑏 − 𝑎)𝑚𝑎𝑥 is easy to obtain as a fixed number at each time step in a certain case. In 

[44], it is shown that 휀 is a proper number for many cases. After 휀 is determined, the adjustment 

of 휀 in any case in vortex visualization is not necessary. Therefore, we can capture and visualize 

the vortex structure by Omega method with  휀  given by above formula. 

3.3 Third Generation Vortex Identification Methods. 

3.3.1 Liutex Method 

Definition 3.5.  

Liutex is a vector defined as  

𝑹 = 𝑅𝒓  (3.17) 

Where R is the magnitude of Liutex, and 𝒓 is the direction of Liutex. 
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According to Liu and Gao [18,19], the criterion to determine the existence of local fluid 

rotation on the XY-plane is 𝛼2 − 𝛽2 < 0, where 𝛼 and 𝛽 are the 2D principal rate of strain and 

vorticity on the plane perpendicular to the local rotation axis and can be expressed as 

𝛼 =
1

2
√(

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)
2

     (3.18)

 𝛽 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)       (3.19) 

Then, the magnitude of Liutex is defined as twice the minimal absolute value of the off-diagonal 

component of the 2×2 upper left submatrix and can be given as 

𝑅 = {
2(|𝛽| − 𝛼),   𝛽2 > 𝛼2

0,        𝑜. 𝑤.
  (3.20) 

 

According to Wang et. al [45], 𝑟 is the real eigenvector of the velocity gradient tensor, and the 

explicit formula of R is 

𝑅 = �⃗⃗⃗⃗� ∙ �⃗⃗� − √(�⃗⃗⃗⃗� ∙ �⃗⃗�)2 − 4𝜆𝑐𝑖
2    (3.21) 

Mathematically, Liutex is rigid rotation of fluids and its application in turbulence research 

can be seen here [46-48].  

3.3.2 Liutex-Omega Method (Ω𝐿) 

Even though Omega method was a significant improvement among the rest of the second-

generation method, it was still contaminated by shear as this method also follows traditional 

Cauchy-Stokes’s decomposition of velocity gradient tensor. So, Dong and Liu [21] defined 

Omega method in Liutex sense. i.e., Liutex omega method offers the definition of vortex structure 

as local rigid rotation of fluid particles, and this method is not contaminated by shear. So, this 

method can distinguish the rotational vortex structures from shear layer, discontinuity structures, 

and other non-physical structures.  Liutex-Omega method was proposed for the normalization of 

Liutex method, combining with the concept of Omega method. According to Liu and Gao [18,19], 

the criterion to determine the existence of local fluid rotation on the XY-plane is 𝛼2 − 𝛽2 < 0, 

where 𝛼 and 𝛽 are the 2D principal rate of strain and vorticity on the plane perpendicular to the 

local rotation axis and can be expressed as 
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𝛼 =
1

2
√(

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)
2

   (3.22) 

𝛽 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)   (3.23) 

 

Then, Ω𝐿is defined as the ratio of 𝛽 squared over the sum of 𝛽 squared and 𝛼 squared and can be 

written as: 

Ω𝐿 = 
𝛽2

𝛽2+𝛼2+𝜀
  (3.24) 

where 휀 is a small parameter introduced in the denominator of Ω𝐿 to remove the noises caused by 

the computer rounding error case by case. In another word,  휀 is a small positive number added 

in the denominator so that division by zero can be avoided. 휀 can be defined as a function of the 

maximum of the term 𝛽2 − 𝛼2, proposed as follows: 

휀 = 𝑏 ∗  (𝛽2 − 𝛼2)𝑚𝑎𝑥  (3.25) 

where b is a small positive number around 0.001-0.002. 

휀 is case related since noises in different cases have different dimensions. But b is a constant and 

the term (𝛽2 − 𝛼2)𝑚𝑎𝑥 is a fixed number for each time step and can be easily obtained. So, the 

manual adjustment of 휀 for each case can be avoided.  

3.3.3 Modified Liutex-Omega Method (Ω̃𝐿) 

Despite Liutex-Omega method being able to capture local rigid rotation of fluid flow, 

it still showed some bulge on iso-surface plotting.  So, the new vortex identification method 

named modified Liutex-Omega (Ω̃𝐿) has been proposed in 2019 by Liu and Liu [22] as an 

effective method to capture vortices without any bulge. It was developed to improve the Omega 

method [17] and the published Liutex-Omega method [21] and to replace the previous exiting 

methods such as 𝑄-criterion, λ2-criterion, λ𝑐𝑖-criterion, etc. 

Since the introduction of the Omega method in 2016 [17], many studies have shown 

that it is more powerful to capture vortices than the existing vortex identification methods. The 

original Liutex-Omega method is also powerful to visualize vortices but there are some bulging 
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phenomena on the iso-surfaces. As a result, the modified Liutex-Omega method was introduced 

to resolve some deficiencies in the original Liutex-Omega method. 

The modified Liutex-Omega, Ω̃𝐿, is defined by  

�̃�𝐿 =
𝛽2

𝛽2+𝛼2+𝜆𝑐𝑟
2+ 

1

2
𝜆𝑟
2+𝜀

   (3.26) 

𝛽 =
1

2
𝝎. 𝒓  (3.27) 

𝛼 =
1

2
√(𝝎. 𝒓)2 − 4𝜆𝑐𝑖

2
  (3.28) 

where 𝜔 is a local vorticity vector and 𝜆𝑟 , 𝜆𝑐𝑟 and 𝜆𝑐𝑖 are a real eigenvalue, a real part of the 

complex eigenvalue, and an imaginary part of the complex eigenvalue of 𝛻𝑉, respectively. Here, 

휀 is a small positive number used to avoid division by zero or an extremely small number and 

ε = 𝑏(𝛽2 − 𝛼2)𝑚𝑎𝑥 , where 𝑏 is a small positive number around 0.001~0.002.  In this paper, 𝑏 

is set by 𝑏 = 0.001 and Ω̃𝐿 = 0.52 is applied as an empirical value according to [44]. 

3.3.4 Liutex Core lines Method 

All the second-generation vortex identification methods are scalar. So, we use iso-

surface to model and visualize the vortex structure. But iso-surface requires the proper threshold 

adjustment. Also, the threshold is arbitrary and man-made, and it is very difficult to know the best 

value of threshold to represent vortices prior to the suited selection. So, threshold selection is 

tedious and very time consuming. This conundrum sometimes may lead to the incorrect 

interpretation of the structures and formations of vortices. Note that Figure 3.1 (a), (b) and (c) 

were drawn by the same DNS data but different thresholds have given different vortex structures. 

In the similar manner , all currently popular second-generation vortex identification methods may 

possibly give different vortex structures using the same DNS data.  

Because of all these limitations of all second-generation vortex identification methods, 

there was an enormous need to develop a unique vortex identification method.  So,  the unique 

vortex core line method based on Liutex has been mathematically proposed and it has been used 

in turbulence research successfully [49,50].it can be used to represent the vortex structure 

Uniquely. Moreover, the vortex core lines alleviate the burden of choosing a proper threshold. 

According to [47], some important definitions are introduced as follows.      
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𝑹 = 𝝎. 𝒓 − √(𝝎. 𝒓)2 − 4𝜆𝑐𝑖
2 ,      (3.29) 

where 𝝎 is a local vorticity vector and 𝜆𝑐𝑖 is an imaginary part of the complex eigenvalue of 𝛻𝑉. 

Definition 2: The vortex core line or the vortex rotation axis is defined as a special Liutex line 

passing through the points, that satisfies the condition: 

 𝛻𝑅 × 𝒓 = 0, 𝑅 > 0            (3.30) 

where r represents the direction of the Liutex vector.  

3.4 Application of Vortex Identification Method to DNS data to find vortex boundary. 

The DNS data is for a compressible, zero-pressure-gradient flat-plate boundary layer as 

in [1, 2]. The case set up for this research is presented in section 2 above. We have applied 

Liutex based methods and other traditional vortex identification schemes to DNS data and 

compared them. The iso-surface presented below are for early transition of boundary layer data.  

A. ∆ Criterion 

Iso-surface of various ∆ values are presented in the figure 3.1 below. Fig 3.1 a) shows 

the iso-surface with ∆= 0 which seems thick and smeared. Also, spanwise vortex in the beginning 

of the flat plate appears clearly. But when we increase the threshold to 0.005,  ∧ and hairpin 

vortices become sharp and spanwise vortices disappear. When we further increase the threshold 

to 0.03, ∧ as well as hairpin vortices disappear, and the vortex structure looks broken like a 

collection of debris. This is largely because of the threshold selection which creates the confusion 

in determining the proper vortex boundary accurately if we do not have prior knowledge about 

the structure of fluid flow in the boundary layer. This method does not give us the proper guideline 

to construct the flow structure as flow structures keep changing with the change in threshold.  

 

 

 

 

 

𝑎) 𝛥=0 b) 𝛥=0.005 c) 𝛥=0.03 
Fig 3.1. a) – c) Iso-surface plotting of 𝛥 at various thresholds.  
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B. 𝑄 Criterion 

Iso-surface of 𝑄 at various thresholds are presented in the figure 3.2 below. Fig 3.2 a) 

shows the iso-surface with Q=0.001, where spanwise vortices, lambda vortices and hairpin 

vortices are overcoated and unclear due to inclusion of weak vortices by a small threshold. As in 

𝛥 method, as we keep increasing threshold uniformly, the flow structure becomes thinner and 

sharp, and ultimately it starts to disappear, making it very hard to select the proper threshold.  

 

 

 

 

 

 

 

 

 

C. 𝜆𝑐𝑖 Criterion 

As in ∧ and Q methods, streamwise vortex can be seen in Fig 3.3 a) with small threshold. 

When threshold is increased a thin and sharp lambda vortex can be seen as in Fig 3.3 b). But 

hairpin vortex in this method is not as clear as ∧ and Q method. As we further decrease the 

threshold, the head of hairpin vortex starts disappearing which shows that head of the hairpin 

vortex has weaker vortex strength compared to legs.   

 

 

 

 

 

 

 

 

 

 

 

a) 𝜆𝑐𝑖 = 0.00005 c) 𝜆𝑐𝑖 = 0.5 b) 𝜆𝑐𝑖 = 0.05 

Fig. 3.3 a) – c) Iso-surface plotting of 𝜆𝑐𝑖 at various thresholds.  

a)Q=0.001 c)Q=0.03 b)Q=0.003 

Fig. 3.2 a) - c) Iso-surface plotting of Q at various thresholds.  
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D. 𝜆2 Criterion 

Fig 3.4 a) shows the iso-surface plot of 𝜆2 = −0 ⋅ 0001 which is thick and smeared. As 

in previous method, the more we decrease the threshold (in negative values) or increase the value 

of |𝜆2|,  the more the vortex structure starts to break down as only strong vortices are captured.  

 

 

 

 

 

 

 

 

 

 

E. Omega criterion 

Since Omega method gives the relative strength of vorticity in fluid flow coupled with 

deformation, we set threshold a little bigger than 50 percent. Fig. 3.5 a) - c)  represents the iso-

surface of flow structure of transitional boundary layer at various thresholds. But there is not 

much change in the vortex structure, providing the ample evident that this method is only mildly 

affected by threshold change. This method can capture both weak and strong vortex structure 

simultaneously as it represents the relative strength of vorticity and is expressed between 0 and 

1.   

 

 

 

 

 

 

 

 

 

 

a) 𝛺 = 0.52 C) 𝛺 = 0.62 B) 𝛺 = 0.57 

Fig.3.5 a) - c) Iso-surface plotting of  𝛺 at various thresholds.  

c) 𝜆2 = −0 ⋅ 7 b) 𝜆2 = −0 ⋅1 a) 𝜆2 = −0 ⋅ 0001 

Fig. 3.4 a) – c) Iso-surface plotting of 𝜆2 at various thresholds  
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F. Modified Liutex-Omega method 

This method was proposed by Liu and Liu [22] to improve the Liutex-Omega method, 

which is a combination of Liutex and Omega method. Although Liutex-Omega method robustly 

able to capture both weak and strong vortex structures, the iso-surface plotting was not smooth 

and had bulging phenomena. So, Modified Liutex-Omega method was proposed to resolve these 

problems. Like Omega method and Liutex-Omega, this method also calculates the relative 

strength of  vorticity in the rotated frame XYZ where Z-axis is parallel to the real eigen vector 𝑟 

of velocity gradient tensor. This method is also a relative method, so both weak and strong vortex 

can be captured simultaneously. Furthermore, this method is minimally affected by threshold 

changes. So, this is the most effective method if we want to get rid of threshold selection dilemma. 

The iso-surface plotting of this is clear and smooth. This method is recommended to find the 

vortex boundary by iso-surface because this method is based on local rigid rotation (Liutex) and 

is free from stretching and shearing effects.  The figure 3.6 shows that we can accurately capture 

the vortex structure by Modified Liutex method and it can be also seen that threshold changes 

barely affect the vortex boundary.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. a) – b) Vortex structure of boundary layer transition with Modified Liutex-Omega method.  

G. Liutex core lines method 

Fig 3.7. a)- c) represents the flow structure of early transition of boundary layer by 

Liutex core lines. Liutex core lines [23] are local maximum of Liutex magnitude in the plane 

perpendicular to the axis of rotation. Since this is a line, not the iso-surface, so all the annoyances 

a) Ω̃𝐿=0.52 b) Ω̃𝐿=0.60 
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that come with selection of threshold for iso-surface plotting is not the case anymore. Therefore, 

not only we are exempted from nuisance of choosing a proper threshold, Liutex core lines 

method is also unique that can display the vortex structure with ease. Moreover, this method can 

clearly depict the strength of vortex cores at vortex positions like lambda vortex, hairpin vortex, 

etc. In the following figure, different colors represent different strength of vortex core lines. 

 

 

 

 

 

 

 

 

 

  

a) b) c) 

Fig. 3.7 a) - c) Evolution of Liutex core lines in early transition boundary layer.  
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CHAPTER 4 

PRINCIPAL COORDINATES AND PRINCIPAL TENSOR DECOMPOSITION 

Fluid kinematics is a complex topic. It depends on density, viscosity, compressibility, 

velocity of fluid, and roughness of the surface on which the fluid is following. These factors of 

the fluid motion cause fluid particles to deform and ultimately results in forming a vortex. The 

vortex is severely affected by translation, rotation, stretching, and shear deformation of fluid 

particles. So, one of the ideas to reduce the complexity of fluid motion is to decompose the 

velocity gradient tensor of fluid. In this chapter, first we review and discuss the drawbacks of the 

Cauchy-Stokes Tensor decomposition and then we propose a new unique velocity gradient tensor 

decomposition method based on Liutex definition, known as Principal Tensor decomposition.  

4.1.  Helmholtz/Cauchy-Stokes’s velocity gradient tensor decomposition 

Helmholtz velocity decomposition, also known as Cauchy-Stokes’s decomposition, has 

been used by many researchers in the literature since Helmholtz first proposed his theory in 1858 

[4]. Most of the journal papers and textbooks in fluid dynamics consider Cauchy-Stokes 

decomposition as the fundamental theory of fluid kinematics. In general, Cauchy-Stokes’s 

decomposition decomposes the velocity gradient tensor into two parts with a symmetric part and 

anti-symmetric part. 

𝐴 =
1

2
(𝛻�⃗� + 𝛻�⃗�𝑇) =

[
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑤

𝜕𝑥
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𝜕𝑢

𝜕𝑧
)

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

  (4.1) 

𝐵 =
1

2
(𝛻�⃗� − 𝛻�⃗�𝑇) =
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  (4.2) 

   

where A and B are the symmetric and anti-symmetric part of the velocity gradient tensor, 

respectively. 
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The anti-symmetric part 𝐵 represents vorticity, 𝛻 × �⃗� which is  what people used to 

consider as rotation of fluids believing that vorticity is angular speed for rigid body rotation in 

solid mechanics. In generally, Cauchy-Stokes’s decomposition is correct in mathematics, 

however, there is doubt over its physical meanings.  Scientists and researchers have kept doubting 

whether vorticity can represent rotation of fluids within the past several decades. Robinson [38] 

pointed out that the asociarte region can have strong vorticity but its actual vortices are quite 

weak. Also, Wang et al. [39] found that the vorticity magnitude is much smaller inside the vortex 

region than the neighboring area outside the vortex from a DNS study on vortex and vorticity in 

late boundary layer transition. Along with problem related to vorticity, Cauchy-Stokes’s 

decomposition is also not a Gallilean invariant. Galilean invariance is a property first described 

by Galilean [51] in 1632 in studying the dialogue concerning the two chief world systems, 

indicating that any physical quantity that is Gallilean invariant does not change under different 

coordinates.  

The change in coordinates due to coordinates rotation or coordinates flipping or some 

other coordinate deformation will affect the Cauchy-Stokes’s decomposition. So, Dr. Liu and his 

team produced the idea of Principal coordinate and Principal Principal Tensor Decomposition. 

This decomposition is unique and is Gallilean invariant.  

4.2. Problems with Cauchy-Stokes’s decomposition 

Cauchy-Stokes’s (CS) decomposition has some loopholes which can be explained in the 

following two sub-headings.  

4.2.1 Physical meaning of CS decomposition is questionable.   

The 2-D Couette flow is a laminar flow of a viscous fluid in the space between two surfaces, one 

of which is fixed and the other is moving tangentially. 

 The 2-D Couette flow is given by following equations, 

     {
𝑢 = 2𝑎𝑦
𝑣 = 0

 

Here 𝑎  is a positive constant, 𝑢 and 𝑣 are respectively the 𝑥 −component and 𝑦 −component of 

the velocity. 

https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Fluid
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Fig. 4.1. 2-D Couette flow 

   The velocity gradient tensor related to 2-D Couette flow is given by, 

 

                                                     

∇𝑉 = [

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

]= [
0 2𝑎
0 0

]  (4.3) 

The traditional Cauchy-Stokes decomposition is given by, 

∇𝑉 = 
1

2
(∇𝑉 + ∇𝑉𝑇) +

1

2
(∇𝑉 − ∇𝑉𝑇) 

∇𝑉 = [
0 2𝑎
0 0

]= [
0 𝑎
𝑎 0

] + [
0 𝑎
−𝑎 0

] 

∇𝑉 = A + B

       

(4.4) 

Mathematically, this decomposition is correct. However, its physical meaning is 

questionable and is not acceptable as it violates the definition of original 2-D Couette flow. 2-D 

Couette flow is a laminar flow that contains no rotation, but Cauchy-Stokes’s decomposition gives 

a rotational part that does not exist in the original fluid flow.  

4.2.2 Elements in CS decomposition is not Galilean invariant. 

    Any small change in coordinate system causes a big problem in Cauchy-Stokes’s 

decomposition. If the decomposition is different under different coordinates, then we will have a 

huge dilemma in choosing the correct decomposition. So, this problem cannot be ignored, and 
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this led us to introduce a Principal Tensor Decomposition, which we will discuss in the next 

section. 

 Let us observe a 3-D example. 

∇𝑣0 = [
0 2𝑎 0
0 0 0
0 0 0

] 

  

From Cauchy-Stokes’s decomposition, we will get, 

∇𝑣0 = [
0 2𝑎 0
0 0 0
0 0 0

] =
1

2
(∇𝑣0 + ∇𝑣0

𝑇) +
1

2
(∇𝑣0 − ∇𝑣0

𝑇) 

∇𝑣0    = [
0 𝑎 0
𝑎 0 0
0 0 0

] + [
0 𝑎 0
−𝑎 0 0
0 0 0

] 

∇𝑣0 = 𝐴0 + 𝐵0   

  

  (4.5) 

  

Where 𝐴0 and 𝐵0 are symmetric and antisymmetric parts.   

Again, rotating the coordinate under rotation matrix 𝑃1 =

[
 
 
 
√3

2

1

2
0

1

2

√3

2
0

0 0 1]
 
 
 

,   we get, 

∇𝑣1 = 𝑃1∇𝑣0𝑃1
𝑇 

∇𝑣1 =

[
 
 
 
 √3

2

1

2
0

1

2

√3

2
0

0 0 1]
 
 
 
 

[
0 2𝑎 0
0 0 0
0 0 0

]

[
 
 
 
 √3

2

1

2
0

1

2

√3

2
0

0 0 1]
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∇𝑣1 = [
0 𝑎√3 0
0 𝑎 0
0 0 1

]

[
 
 
 
 √3

2

1

2
0

1

2

√3

2
0

0 0 1]
 
 
 
 

 

∇𝑣1 =

[
 
 
 
 𝑎√3

2

3𝑎

2
0

𝑎

2

𝑎√3

2
0

0 0 1]
 
 
 
 

 

Again, rotating the coordinate under rotation matrix  𝑃2 =

[
 
 
 
√3

2
0

1

2

0 1 0

−
1

2
0

√3

2 ]
 
 
 

’ we get 

∇𝑣2 = 𝑃2∇𝑣1𝑃2
𝑇  

∇𝑣2 =

[
 
 
 
 √3

2
0

1

2
0 1 0

−
1

2
0

√3

2 ]
 
 
 
 

[
 
 
 
 𝑎√3

2

3𝑎

2
0

𝑎

2

𝑎√3

2
0

0 0 1]
 
 
 
 

[
 
 
 
 √3

2
0 −

1

2
0 1 0

1

2
0

√3

2 ]
 
 
 
 

 

∇𝑣2 =

[
 
 
 
 
 
 

−

3√3

8
𝑎

3√3

4
𝑎

−3

8
𝑎

√3

4
𝑎 −

√3

2
𝑎

1

4
𝑎

−3

8
𝑎

−3

4
𝑎

√3

8
𝑎]
 
 
 
 
 
 

 

Performing Cauchy-Stoke’s decomposition, we get, 

∇𝑣2 =

[
 
 
 
 
 
 

−

3√3

8
𝑎

3√3

4
𝑎

−3

8
𝑎

√3

4
𝑎 −

√3

2
𝑎

1

4
𝑎

−3

8
𝑎

−3

4
𝑎

√3

8
𝑎]
 
 
 
 
 
 

 

∇𝑣2 =
1

2
(∇𝑣2 + ∇𝑣2

𝑇) +
1

2
(∇𝑣2 − ∇𝑣2

𝑇) 
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∇𝑣2 =

[
 
 
 
 
3√3

8
𝑎

√3

4
𝑎

−3

8
𝑎

√3

4
𝑎

−√3

2
𝑎

−1

4

−3

8
𝑎

−1

4
𝑎

√3

8
𝑎

𝑎

]
 
 
 
 

 + 

[
 
 
 
 0

√3

2
𝑎 0

−√3

2
𝑎 0

1

2

0
−1

2
𝑎 0

𝑎

]
 
 
 
 

  

∇𝑣2= 𝐴1 + 𝐵1   (4.6) 

It can be clearly seen that Cauchy-Stokes tensor decomposition before and after the 

coordinate’s rotation given by equations (4.5) and (4.6) are different. So, the question arises, 

under which coordinates does the Cauchy-Stokes tensor decomposition give the right symmetric 

deformation and antisymmetric vorticity? We clearly see diagonal elements appear after the 

decomposition. So, components of velocity gradient tensor are not Galilean invariant in CS 

decomposition. Therefore, we assume that there is a unique coordinate system that can give a 

unique tensor decomposition for stretching (compression), shear, and rotation. We call this 

coordinate the “Principal Coordinates” and the tensor decomposition is “Principal Tensor 

Decomposition”. Performing velocity gradient decomposition under this coordinate system is 

unique. Which means velocity gradient decomposition is independent of coordinate rotation or 

flipping or deformation of the coordinates.  

4.3. Eigenvalues and eigenvectors of a velocity gradient tensor 

 Gradient tensor is a 3× 3 matrix that describes the motion of fluids in all directions. We 

can find the eigenvalues and eigen vectors of a velocity gradient tensor as we used to find them 

in a 3× 3 matrix in linear algebra. 

Definition 4.1: 

The eigen vector of a matrix A is given by 𝜆 that satisfies the equation A𝑣= 𝜆𝑣, where 𝑣 is the 

corresponding eigenvector. 

Definition 4.2: 

Let 𝜆 be the eigenvalues of a matrix A, then the eigen equation related to matrix a is given by the 

equation |A − 𝜆𝐼| = 0, where I is a unitary matrix with same dimensionality as A.  
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4.3.1. General method to solve eigenvalues and eigenvectors of a velocity gradient tensor. 

The velocity gradient tensor of a 3-dimensional flow field is a 3x3 matrix which is given 

by, 

∇�⃗� =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

,      (4.7)                                                                                 

Let 𝜆 be the eigenvalues of ∇�⃗�. Then, the eigenvalue equation is given by,  

|∇�⃗� − 𝜆𝐼| = 0  

|
|

𝜕𝑢

𝜕𝑥
− 𝜆

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 𝜆

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
− 𝜆

|
|
= 0         (4.8) 

Performing the determinant of the matrix gives us: 

(
𝜕𝑢

𝜕𝑥
− 𝜆) |

𝜕𝑣

𝜕𝑦
− 𝜆

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
− 𝜆

| −
𝜕𝑢

𝜕𝑦
|

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑧
− 𝜆

| +
𝜕𝑢

𝜕𝑧
|

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑥
− 𝜆

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

|=0 

Performing the determinant of 2× 2 submatrix gives us: 

 (
𝜕𝑢

𝜕𝑥
− 𝜆) [( 

𝜕𝑣

𝜕𝑦
− 𝜆) (

𝜕𝑤

𝜕𝑧
− 𝜆) −

𝜕𝑤

𝜕𝑦

𝜕𝑣

𝜕𝑧
] −

𝜕𝑢

𝜕𝑦
[
𝜕𝑣

𝜕𝑥
(
𝜕𝑤

𝜕𝑧
− 𝜆) −

𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑧
] 

+
𝜕𝑢

𝜕𝑧
[
𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑦
−
𝜕𝑤

𝜕𝑥
(
𝜕𝑣

𝜕𝑦
− 𝜆)] = 0     

Simplifying,       

(
𝜕𝑢

𝜕𝑥
− 𝜆) [𝜆2 − (

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) 𝜆 +

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
−
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
]- 
𝜕𝑢

𝜕𝑦
[−

𝜕𝑣

𝜕𝑥
𝜆 +

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑧
−

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
]+ 

𝜕𝑢

𝜕𝑧
[
𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑤

𝜕𝑥
𝜆]=0                                                                                                                                

This will give us a cubic equation. Let us write it in a general form. 
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𝜆3 − (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) 𝜆2 + (

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑧
+
𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
−
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
−
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
−
𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
) 𝜆 

+(
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
+
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑧
−
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
−
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑦
) = 0         (4.9) 

 

The equation (4.9) is a cubic equation in 𝜆 and, in general, it can be written as: 

𝜆3 + 𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0  ,                                                                                                   

Where, 

 𝑎 = −(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
)        (4.10) 

 𝑏 =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+
𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑧
+

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
−
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
−
𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
    (4.11) 

𝑐 =
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦
+
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑧
−
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑧
−
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑦
  (4.12) 

This method of solving a cubic equation be found in Numerical Recipes in FORTRAN 77, Second 

Edition, Chapter 5, Quadratic and Cubic Equations, Page 179 [52]. 

 This method can be described as follows: 

If three coefficients a, b, c given by equations (4.10), (4.11) and (4.12) are real, then, we can 

write: 

𝑄 =
𝑎2−3𝑏

9
 and 𝑅 =

2𝑎3−9𝑎𝑏+27𝑐

54
     (4.13) 

1) If 𝑅2 < 𝑄3, then the cubic equation has three real roots say 𝜆1, 𝜆2 𝑎𝑛𝑑 𝜆3.  

Then these three roots are given by: 

𝜆1 = −2√𝑄 cos(
𝜃

3
) −

𝑎

3
  (4.14) 

𝜆2 = −2√𝑄 cos(
𝜃+2𝜋)

3
) −

𝑎

3
  (4.15) 

𝜆3 = −2√𝑄 cos(
𝜃−2𝜋)

3
) −

𝑎

3
   (4.16)       

Where 𝜃 = arccos(𝑅/√𝑄3 ).                                                                          
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2) If 𝑅2 ≥ 𝑄3, then compute 𝐴 = −𝑠𝑖𝑔𝑛(𝑅) [|𝑅| + √𝑅2 − 𝑄3]
1/3

where the square root is 

positive. Then compute 

𝐵 = {
𝑄

𝐴
           (𝐴 ≠ 0)

0             (𝐴 = 0)
  

This will give us one real and two conjugate complex eigenvalues, which are given by: 

𝜆1 = (𝐴 + 𝐵) −
𝑎

3
= 𝜆𝑟   (4.17) 

𝜆2 = −
1

2
(𝐴 + 𝐵 −

𝑎

3
+ 𝑖 

√3

2
(𝐴 − 𝐵) = 𝜆𝑐𝑟 + 𝑖𝜆𝑐𝑖   (4.18) 

𝜆3 = −
1

2
(𝐴 + 𝐵 −

𝑎

3
− 𝑖 

√3

2
(𝐴 − 𝐵) = 𝜆𝑐𝑟 − 𝑖𝜆𝑐𝑖                           (4.19)                                 

Since both A and B are real, λ1 is real but λ2 and λ3 are the complex eigenvalues. 

 

            Next, we calculate corresponding normalized real eigenvector. Here, we discuss about the 

analytical method to find the normalized real eigenvector r⃗ corresponding to the real eigenvalue 

λ𝑟.  

Let A =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

,                                                                                                                                        

And, 𝑟∗ = [r𝑥
∗ , r𝑦

∗ , r𝑧
∗]
𝑇
which is a real eigenvector corresponding to λ𝑟. 

Then, from the definition of eigenvalues and eigenvectors, we have: 

  A𝑟∗ = λ𝑟𝑟
∗                                                                      

This equation can also be expressed as, 

(A − λ𝑟𝐼)𝑟
∗=0 

[
 
 
 
 
𝜕𝑢

𝜕𝑥
− 𝜆𝑟            

𝜕𝑢

𝜕𝑦
                      

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
                 

𝜕𝑣

𝜕𝑦
− 𝜆𝑟                 

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
                   

𝜕𝑤

𝜕𝑦
            

𝜕𝑤

𝜕𝑧
− 𝜆𝑟]

 
 
 
 

[

r𝑥
∗

r𝑦
∗

r𝑧
∗

]=0   (4.20) 

The three minors of determinant of this matrix can be written as 
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∆𝑥= |

𝜕𝑣

𝜕𝑦
− 𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

  𝜕𝑤

𝜕𝑧
− 𝜆𝑟

|, ∆𝑦= |

𝜕𝑢

𝜕𝑥
− 𝜆𝑟

𝜕𝑢

𝜕𝑧
𝜕𝑤

𝜕𝑥

  𝜕𝑤

𝜕𝑧
− 𝜆𝑟

|, ∆𝑧= |

𝜕𝑢

𝜕𝑥
− 𝜆𝑟

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
− 𝜆𝑟

|           

Then, the maximum absolute value of these minors is 

∆𝑚𝑎𝑥= max (|∆𝑥|, |∆𝑦|, |∆𝑧|)                                                         

Here, all the minors cannot be zero since otherwise, the real eigenvector will be non-unique or a 

zero a zero vector. So, ∆𝑚𝑎𝑥 > 0 

Therefore, we might have three cases: 

Case-1: Let  ∆𝑚𝑎𝑥= |∆𝑥|, then we can set: r𝑥
∗ = 1                                                                         

So, the above matrix equation becomes: 

[
 
 
 
 
𝜕𝑢

𝜕𝑥
− 𝜆𝑟            

𝜕𝑢

𝜕𝑦
                      

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
                 

𝜕𝑣

𝜕𝑦
− 𝜆𝑟                 

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
                   

𝜕𝑤

𝜕𝑦
            

𝜕𝑤

𝜕𝑧
− 𝜆𝑟]

 
 
 
 

[

1
r𝑦
∗

r𝑧
∗
]=0 

Then, we get: 

 (
𝜕𝑢

𝜕𝑥
− 𝜆𝑟) +

𝜕𝑢

𝜕𝑦
r𝑦
∗+

𝜕𝑢

𝜕𝑧
r𝑧
∗ = 0 

𝜕𝑣

𝜕𝑥
+ (

𝜕𝑣

𝜕𝑦
− 𝜆𝑟) r𝑦

∗ +
𝜕𝑣

𝜕𝑧
r𝑧
∗ = 0 

𝜕𝑤

𝜕𝑥
+
𝜕𝑤

𝜕𝑦
 r𝑦
∗ + (

𝜕𝑤

𝜕𝑧
− 𝜆𝑟)r𝑧

∗ = 0 

Taking the last two equations, we get: 

𝜕𝑣

𝜕𝑥
+ (

𝜕𝑣

𝜕𝑦
− 𝜆𝑟) r𝑦

∗ +
𝜕𝑣

𝜕𝑧
r𝑧
∗ = 0 

𝜕𝑤

𝜕𝑥
+
𝜕𝑤

𝜕𝑦
 r𝑦
∗ + (

𝜕𝑤

𝜕𝑧
− 𝜆𝑟)r𝑧

∗ = 0 
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So, 

 (
𝜕𝑣

𝜕𝑦
− 𝜆𝑟) r𝑦

∗ +
𝜕𝑣

𝜕𝑧
r𝑧
∗ = −

𝜕𝑣

𝜕𝑥
 

𝜕𝑤

𝜕𝑦
 r𝑦
∗ + (

𝜕𝑤

𝜕𝑧
− 𝜆𝑟) r𝑧

∗ = −
𝜕𝑤

𝜕𝑥
 

Writing in matrix form: 

[

𝜕𝑣

𝜕𝑦
− 𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
− 𝜆𝑟

] [
r𝑦
∗

r𝑧
∗] = [

−
𝜕𝑣

𝜕𝑥

−
𝜕𝑤

𝜕𝑥

]          

[
r𝑦
∗

r𝑧
∗] = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 [

𝜕𝑣

𝜕𝑦
− 𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
− 𝜆𝑟

]  × [
−
𝜕𝑣

𝜕𝑥

−
𝜕𝑤

𝜕𝑥

]        

[
r𝑦
∗

r𝑧
∗] =

𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓 [

𝜕𝑣

𝜕𝑦
−𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
−𝜆𝑟

]

|

𝜕𝑣

𝜕𝑦
−𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
−𝜆𝑟

|

× [
−
𝜕𝑣

𝜕𝑥

−
𝜕𝑤

𝜕𝑥

]             

[
r𝑦
∗

r𝑧
∗] =

[

𝜕𝑤

𝜕𝑧
−𝜆𝑟 −

𝜕𝑤

𝜕𝑦

−
𝜕𝑣

𝜕𝑧
 

𝜕𝑣

𝜕𝑦
−𝜆𝑟 

]

|

𝜕𝑣

𝜕𝑦
−𝜆𝑟

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
−𝜆𝑟

|

× [
−
𝜕𝑣

𝜕𝑥

−
𝜕𝑤

𝜕𝑥

]            

[
r𝑦
∗

r𝑧
∗] =

[

𝜕𝑤

𝜕𝑧
−𝜆𝑟 −

𝜕𝑤

𝜕𝑦

−
𝜕𝑣

𝜕𝑧
 

𝜕𝑣

𝜕𝑦
−𝜆𝑟 

]×[
−
𝜕𝑣

𝜕𝑥

−
𝜕𝑤

𝜕𝑥

]

(
𝜕𝑣

𝜕𝑦
−𝜆𝑟)(

𝜕𝑤

𝜕𝑧
−𝜆𝑟)−

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

        

Comparing the corresponding components, we get: 

r𝑦
∗ =

−(
𝜕𝑤

𝜕𝑧
−𝜆𝑟)

𝜕𝑣

𝜕𝑥
+
𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

(
𝜕𝑣

𝜕𝑦
−𝜆𝑟)(

𝜕𝑤

𝜕𝑧
−𝜆𝑟)−

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

                                                         

r𝑧
∗ =

𝜕𝑤

𝜕𝑦

𝜕𝑣

𝜕𝑥
−(

𝜕𝑣

𝜕𝑦
−𝜆𝑟)

𝜕𝑤

𝜕𝑥

(
𝜕𝑣

𝜕𝑦
−𝜆𝑟)(

𝜕𝑤

𝜕𝑧
−𝜆𝑟)−

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑦

                                                             

Case-2:  Let  ∆𝑚𝑎𝑥= |∆𝑦|, then we can take: r𝑦
∗ = 1, 
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r𝑥
∗ =

−(
𝜕𝑤
𝜕𝑧

− 𝜆𝑟)
𝜕𝑢
𝜕𝑦

+
𝜕𝑢
𝜕𝑧
𝜕𝑤
𝜕𝑦

(
𝜕𝑢
𝜕𝑥
− 𝜆𝑟) (

𝜕𝑤
𝜕𝑧

− 𝜆𝑟) −
𝜕𝑢
𝜕𝑧
𝜕𝑤
𝜕𝑥

 

r𝑦
∗ = 1 

r𝑧
∗ =

𝜕𝑤
𝜕𝑥

𝜕𝑢
𝜕𝑦

− (
𝜕𝑢
𝜕𝑥
− 𝜆𝑟)

𝜕𝑤
𝜕𝑦

(
𝜕𝑢
𝜕𝑥
− 𝜆𝑟) (

𝜕𝑤
𝜕𝑧

− 𝜆𝑟) −
𝜕𝑢
𝜕𝑧
𝜕𝑤
𝜕𝑥

 

Case-3:  Let  ∆𝑚𝑎𝑥= |∆𝑧|, then we can take: r𝑧
∗ = 1, 

r𝑥
∗ =

−(
𝜕𝑣
𝜕𝑦
− 𝜆𝑟)

𝜕𝑢
𝜕𝑧
+
𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑧

(
𝜕𝑢
𝜕𝑥
− 𝜆𝑟) (

𝜕𝑣
𝜕𝑦
− 𝜆𝑟) −

𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑥

 

r𝑦
∗ =

𝜕𝑣
𝜕𝑥
𝜕𝑢
𝜕𝑧
− (

𝜕𝑢
𝜕𝑥
− 𝜆𝑟)

𝜕𝑣
𝜕𝑧

(
𝜕𝑢
𝜕𝑥
− 𝜆𝑟) (

𝜕𝑣
𝜕𝑦
− 𝜆𝑟) −

𝜕𝑢
𝜕𝑦
𝜕𝑣
𝜕𝑥

 

r𝑧
∗ = 1, 

 

So,  the normalized real eigenvector r⃗ can be written as: 

r⃗ = 𝑟∗/|𝑟∗|                                   (4.21)                           

Where, |𝑟∗| is an absolute value of 𝑟∗.i.e., |𝑟∗| = √r𝑥∗
2 + r𝑦∗

2 + r𝑧∗
2   

4.3.2. Numerical algorithm for solving cubic equation:  

1) Step 1:set velocity gradient tensor, 

          a(1,1) = du/dx(i, j, k) 

          a(1,2) = du/dy(i, j, k) 

          a(1,3) = du/dz(i, j, k) 

          a(2,1) = dv/dx(i, j, k) 

          a(2,2) = dv/dy(i, j, k) 

          a(2,3) = dv/dz(i, j, k) 

          a(3,1) = dw/dx(i, j, k) 

          a(3,2) = dw/dy(i, j, k) 
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          a(3,3) = dw/dz(i, j, k) 

2) Step 2: set a  cubic equation, 

X3 + (aa ) x2 + (bb) x + cc = 0, where aa and bb are coefficients and cc is a constant.  

3) Step 3: set coefficients of characteristic equation, 

          aa = -(a(1,1)+a(2,2)+a(3,3)) 

          mm = matmul(a,a) 

          bb = -0.5*(mm(1,1)+mm(2,2)+mm(3,3)-(a(1,1)+a(2,2)+a(3,3))**2) 

          cc = -(a(1,1)*(a(2,2)*a(3,3)-a(2,3)*a(3,2))-a(1,2)*(a(2,1)*a(3,3)-a(2,3)*a(3,1))  

               +a(1,3)*(a(2,1)*a(3,2)-a(2,2)*a(3,1))) 

4) Sepe 4: find the discriminant of characteristic equation, 

          delta = 18(aa)(bb)(cc)-4(aa)3(cc)+(aa)2 (bb)2-4(bb)3 -27(cc)2 

5) Setp 5: for real aa, bb and cc, compute Q and R, 

Q = (aa2-3bb)/9.0 

          R = (2(aa)3-9(aa)(bb)+27cc)/54.0 

         Delta = R2 - Q3 

6) Setp 6: If Delta < 0, then compute,  

𝜃 = acos(𝑅/𝑄
1

3 )  

The three real eigen values are given by, 

𝜆1 = −2𝑄
1
2 cos(

𝜃

3
) −

𝑎𝑎

3
 

𝜆2 = −2𝑄
1
2 cos(

𝜃 + 2𝜋)

3
) −

𝑎𝑎

3
 

𝜆3 = −2𝑄
1
2 cos(

𝜃 − 2𝜋)

3
) −

𝑎𝑎

3
 

7)   Setp 5:  if(delta > 0.0) then calculate one real root and two complex conjugate roots 

            A = -sign(1.0, R)*(abs(R)+sqrt(delta))**(1.0/3.0) 

            if(A == 0.0) then 

              B = 0.0 
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            else 

              B = Q/A 

            end if 

 

            𝜆1 = cmplx(-0.5*(A+B)-aa/3.0, 0.5*sqrt(3.0)*(A-B)) 

            𝜆2 = cmplx(real(eig1c), -aimag(eig1c))  

            𝜆3 = A+B-aa/3.0 

8)   Setp 5:  find real right eigenvector 

            evec1 = (a(1,1)-eig3r)*(a(2,2)-eig3r) - a(2,1)*a(1,2) 

            evev2 = (a(2,2)-eig3r)*(a(3,3)-eig3r) - a(2,3)*a(3,2) 

            evec3 = (a(1,1)-eig3r)*(a(3,3)-eig3r) - a(1,3)*a(3,1) 

 

            if(delta1 == 0.0 .and. delta2 == 0.0 .and. delta3 == 0.0) then 

              write(*,*) 'ERROR: delta1 = delta2 = delta3 = 0.0' 

              end if 

 

4.3.3. Velocity gradient tensor in new XYZ-frame 

There are two possible cases for eigenvalues of a 3x3 matrix, which are 

1)  three real eigenvalues 

2)  one real and two conjugate complex eigenvalues, depending on the sign of ∆.  

In a 3x3 real matrix, we must have at least one real eigenvalue and corresponding one 

real eigenvector. If all three eigenvalues of the matrix are three, then fluid particles in the flow 

field do not have rotation. However, it the matrix has one real and a pair of complex conjugate 

eigenvalues, then the matrix represents fluid rotation. The general form of three eigenvalues in 

the rotation points can be written: 

𝜆𝑟 , 𝜆𝑐𝑟 + 𝑖𝜆𝑐𝑖, 𝑎𝑛𝑑  𝜆𝑐𝑟 − 𝑖𝜆𝑐𝑖  

From the eigen definition, we have: 

∇�⃗� 𝑟 = 𝜆𝑟  𝑟 
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Since we are primarily interested in fluid rotation, we only consider case-2 i.e., when the 3x3 

matrix has one real and two conjugate complex eigenvalues. 

Definition 4.3: 

A matrix P is called an orthogonal matrix if its inverse equals to transpose. In another words, it is 

a real square matrix whose columns and rows are orthonormal vectors. 

Mathematically, 𝑃𝑃𝑇 = 𝐼, where I is an identity matrix.  

The velocity gradient tensor in a flow field is given by: 

∇�⃗� =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

,     

We can find an orthogonal rotation matrix Q which rotates the original coordinates xyz to 

new coordinates XYZ where  the Z-axis of the new coordinate system coincide with the real 

eigenvector 𝑟 of the velocity gradient tensor ∇�⃗⃗�. In other words, the new velocity gradient tensor  

∇�⃗⃗� in Rotated/new coordinates (X, Y, Z) has the Z-coordinate axis aligned with real eigenvector 

𝑟 of ∇�⃗⃗�. Let U, V and W are velocity components along X,Y and Z directions in the new frame, 

then the velocity gradient tensor in the new coordinates is given by: 

 

∇�⃗⃗� =

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌

𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌

𝜕𝑉

𝜕𝑍
𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 

 and 

 ∇�⃗⃗� = 𝑄∇�⃗�𝑄−1                     (4.22)    

where 𝑄 is the orthogonal rotation matrix that rotates the frame from the original 𝑥𝑦𝑧-frame to 

the new 𝑋𝑌𝑍-frame.  

We first rotate our z-axis from the old frame by orthogonal rotation matrix 𝑄 so that Z-axis in the 

new frame is parallel to the real eigenvector of ∇�⃗⃗�. In this case, we have: 

https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Orthonormality
https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
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[
𝑋
𝑌
𝑍
] = 𝑄 [

𝑥
𝑦
𝑧
]        (4.23)    

Where, 𝑄 = 𝑄𝑥(𝛼)𝑄𝑦(𝛽)𝑄𝑧(𝛾)， 𝑄𝑄𝑇 = 𝐼, 

𝑄𝑥(𝛼) = [
1            0             0
0     𝑐𝑜𝑠𝛼  − 𝑠𝑖𝑛𝛼
0      𝑠𝑖𝑛𝛼     𝑐𝑜𝑠𝛼

]     (4.24)    

𝑄𝑦(𝛽) = [
𝑐𝑜𝑠𝛽      0       𝑠𝑖𝑛𝛽
0          1          0

−𝑠𝑖𝑛𝛽     0     𝑐𝑜𝑠𝛽
]      (4.25)    

 

𝑄𝑧(𝛾) = [
𝑐𝑜𝑠𝛾  − 𝑠𝑖𝑛𝛾    0
𝑠𝑖𝑛𝛾     𝑐𝑜𝑠𝛾       0
0           0             1

]     (4.26)    

This will give us the new matrix ∇�⃗⃗� in new frame (X, Y, Z), where Z-axis is aligned with real 

eigenvector 𝑟 of ∇�⃗⃗�. So, by the definition of eigenvalues and eigenvectors, we have, 

∇�⃗⃗� [
0
0
1
] = 𝜆𝑟 [

0
0
1
], 

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌

𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌

𝜕𝑉

𝜕𝑍
𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 

 [
0
0
1
] = 𝜆𝑟 [

0
0
1
]. 

[
 
 
 
 
𝜕𝑈

𝜕𝑍
𝜕𝑉

𝜕𝑍
𝜕𝑊

𝜕𝑍 ]
 
 
 
 

= [
0
0
𝜆𝑟

]. 

So, we have, 

𝜕𝑈

𝜕𝑍
= 0                                                                           

𝜕𝑉

𝜕𝑍
= 0     
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𝜕𝑊

𝜕𝑍
= 𝜆𝑟                                                                      

So,  the new 𝑋𝑌𝑍-frame becomes: 

∇�⃗⃗� =

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌
𝜆𝑟]
 
 
 
 

         (4.27)    

 

This velocity gradient tensor in new rotated frame XYZ paves us a away to have thoughts about 

new unique Principal Coordinates and Principal Tensor.                               

4.4. The Novel Unique Principal Coordinates 

We know the velocity gradient tensor is dependent on coordinates, and coordinates 

change. This will make velocity gradient tensor also change. So, there was a clear need to find 

the unique tensor that does change when the coordinates change. In another word, when a velocity 

gradient tensor was given, we had to find a unique coordinate system. So,  we picked that unique 

coordinate as our Principal Coordinates which is uniquely determined by the velocity gradient 

tensor. In our case, the velocity gradient tensor had one real and a pair of  conjugate complex 

eigenvalues, a Principal Coordinate was uniquely determined. 

To find the Principal Coordinates of ∇�⃗� at a local point in the flow field, we should first 

find the orthogonal rotation matrix Q which rotates the coordinate axis so that Z-axis is aligned 

with real eigenvector  𝑟. After that we need to rotate the coordinate axis by an orthogonal rotation 

matrix P around  𝑟 to get the  principal coordinates. Here, Q is a three-dimensional  rotation matrix 

that rotates the whole frame and P is a two-dimensional rotation matrix that rotates XY-plane 

around Z-axis. P and Q can be uniquely determined by ∇�⃗�.  Mathematically,  

∇�⃗⃗� = 𝑄∇�⃗�𝑄−1 

∇�⃗⃗�𝜃 = 𝑃∇�⃗⃗�𝑃
−1      

where 𝑃 is the ratation matrix around the 𝑍-axis, which is given by: 
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𝑃 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

],           

And its inverse is given by its transpose, 

     𝑃−1 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 

This will give us the Principal Coordinates (X, Y, Z) in which the original velocity gradient tensor 

∇�⃗� becomes ∇�⃗⃗�𝜃. 

 ∇�⃗⃗�𝜃 = 𝑃∇�⃗⃗�𝑃
−1 =  𝑃(𝑄∇�⃗�𝑄−1)𝑃−1 =

[
 
 
 
 𝜆𝑐𝑟         −

1

2
𝑅         0

1

2
𝑅 + 𝜖     𝜆𝑐𝑟         0

𝜕𝑊

𝜕𝑋
           

𝜕𝑊

𝜕𝑌
           𝜆𝑟]

 
 
 
 

      (4.28)    

 

where, 𝜆𝑟 is the unique real eigenvalue,  𝜆𝑐𝑟 is the real part of the complex conjugate 

eigenvalues.  

In the above tensor ∇�⃗⃗�𝜃, the eigenvalues,  𝜆𝑟, 𝜆𝑐𝑟 ± 𝑖𝜆𝑐𝑖, and  �⃗⃗⃗� are all Galilean invariant, i.e., 

invariant under coordinates change, and independent of coordinates flip or rotation. We only need 

orthogonal P and Q rotation to get 
𝜕𝑊

𝜕𝑋
 and 

𝜕𝑊

𝜕𝑌
 in the Principal Coordinates which is the unique. 

So, we can obtain a unique Principal Coordinate and a unique 3x3 velocity gradient tensor 

(Principal Tensor) in the principal coordinates.  

∇�⃗⃗�𝜃 = [

𝜆𝑐𝑟         −
1

2
𝑅         0

1

2
𝑅 + 𝜖     𝜆𝑐𝑟          0

ξ              η           𝜆𝑟

]        (4.29)    

 

Definition 4.4: The Principal Coordinates at a point is a coordinate that satisfies: 

1. Its Z-axis is parallel to the 𝑟 (direction of Liutex)  

2. The velocity gradient tensor under this coordinate is in the form of: 
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∇𝑉 =

[
 
 
 
 𝜆𝑐𝑟

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋
𝜆𝑐𝑟 0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌
𝜆𝑟]
 
 
 
 

 ,  (4.30)    

where 𝜆𝑟 and 𝜆𝑐𝑟 are the real eigenvalue and real part of the conjugate complex eigenvalue pair 

of the velocity gradient tensor, respectively, for rotation points. 

3. 
𝜕𝑈

𝜕𝑌
< 0 and |

𝜕𝑈

𝜕𝑌
| < |

𝜕𝑉

𝜕𝑋
| 

 

Theorem 4.1:  

Under the Principal Coordinates, 
𝜕𝑈

𝜕𝑌
= −

𝑅

2
, where R is the magnitude of Liutex.  

Proof:   

For given velocity gradient tensor ∇𝑣, we have an orthogonal rotation matrix 𝑄𝑟 which aligns Z-

axis of new frame XYZ with Liutex direction 𝑟 after the rotation.  

∇𝑉 = 𝑄𝑟∇𝑣𝑄𝑟
𝑇 =

[
 
 
 
 
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
0

𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
0

𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍 ]
 
 
 
 

   (4.31) 

Then, a second rotation 𝑃𝑟 around Z-axes (P rotation) is applied. 

𝑃𝑟 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

]   (4.32) 

And, the new velocity gradient tensor ∇𝑉𝜃 after rotation is: 

∇𝑉𝜃 = 𝑃𝑟∇𝑉𝑃𝑟
𝑇 =

[
 
 
 
 
𝜕𝑈

𝜕𝑋
|
𝜃

𝜕𝑈

𝜕𝑌
|
𝜃

0

𝜕𝑉

𝜕𝑋
|
𝜃

𝜕𝑉

𝜕𝑌
|
𝜃

0

𝜕𝑊

𝜕𝑋
|
𝜃

𝜕𝑊

𝜕𝑌
|
𝜃

𝜕𝑊

𝜕𝑍
|
𝜃]
 
 
 
 

   

  

  

Where, 
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𝜕𝑈

𝜕𝑌
|
𝜃
= 𝛼 sin(2𝜃 + 𝜑) − 𝛽   (4.33) 

𝜕𝑉

𝜕𝑋
|
𝜃
= 𝛼 sin(2𝜃 + 𝜑) + 𝛽   (4.34) 

𝜕𝑈

𝜕𝑋
|
𝜃
= −𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
)   (4.35) 

𝜕𝑉

𝜕𝑌
|
𝜃
= 𝛼 cos(2𝜃 + 𝜑) +

1

2
(
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
)   (4.36) 

𝛼 =
1

2
√(

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)
2

   (4.38) 

𝛽 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)   (4.39) 

𝜑 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥

),       
𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
≠ 0 

𝜋

2
,                     

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
> 0

−
𝜋

2
,             

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
< 0  

   (4.40) 

Then, the Liutex magnitude is defined as 

𝑅 = {
2(|𝛽| − 𝛼),   𝛽2 > 𝛼2

0,        𝑜. 𝑤.
   (4.41) 

Since for the points inside the vortex boundary,  𝛽2 > 𝛼2, otherwise there is no vortex. 

From part (2) in Def.4.4,  

𝜕𝑈

𝜕𝑋
|
𝜃
=

𝜕𝑉

𝜕𝑌
|
𝜃

   (4.42) 

Thus, 

cos(2𝜃 + 𝜑) = 0   (4.43) 

Then, 

 sin(2𝜃 + 𝜑) = 1 𝑜𝑟 − 1. 

Case 1: 𝛽 > 0 and sin(2𝜃 + 𝜑) = 1 

𝜕𝑈

𝜕𝑌
|
𝜃
= 𝛼 − 𝛽 = −

1

2
𝑅   (4.44) 

Case 2: 𝛽 > 0 and sin(2𝜃 + 𝜑) = −1 
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𝜕𝑈

𝜕𝑌
|
𝜃
= −𝛼 − 𝛽   (4.45) 

𝜕𝑉

𝜕𝑋
|
𝜃
= −𝛼 + 𝛽   (4.46) 

However, 

|−𝛼 − 𝛽| > |−𝛼 + 𝛽|   (4.47) 

It violates the part (3) in Def. 2, and as a result sin(2𝜃 + 𝜑) ≠ −1 

Case 3: 𝛽 < 0 and sin(2𝜃 + 𝜑) = 1 

𝜕𝑈

𝜕𝑌
|
𝜃
= 𝛼 − 𝛽   (4.48) 

𝜕𝑉

𝜕𝑋
|
𝜃
= 𝛼 + 𝛽   (4.49)  

But, |𝛼 − 𝛽| > |𝛼 + 𝛽|   (4.50)  

The part (3) in Def.4.4 is not satisfied, so sin(2𝜃 + 𝜑) ≠ 1 

Case 4: 𝛽 < 0 and sin(2𝜃 + 𝜑) = −1 

𝜕𝑈

𝜕𝑌
|
𝜃
= 𝛼 − 𝛽 = −

1

2
𝑅   (4.51) 

Theorem 4.1 is verified. 

Theorem 4.2: For an arbitrary velocity gradient tensor, there always exists unique Principal 

Coordinates. 

Proof: 

 If directions of X, Y and Z axis are determined, the coordinate is well-defined. Firstly, the 

direction of Z-axis is unique, defined as 𝑟. All the coordinates satisfying the Z-axis requirement 

can be achieved by rotating coordinate around 𝑟.. Therefore, if the rotation angle  is determined, 

so is the coordinate.  

In the proof of theorem 4.1, if 𝛽 > 0, then cos(2𝜃 + 𝜑) and sin(2𝜃 + 𝜑) must be 0 and 1, 

respectively.  

Thus, 2𝜃 + 𝜑 =
𝜋

2
⇒ 𝜃 =

1

2
(
𝜋

2
− 𝜑).  
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Similarly, if 𝛽 < 0, then cos(2𝜃 + 𝜑) and sin(2𝜃 + 𝜑) must be 0 and -1.  

So, 2𝜃 + 𝜑 =
3𝜋

2
⇒ 𝜃 =

1

2
(
3𝜋

2
− 𝜑). 

In conclusion, the Principal Coordinate is unique. 

Next, we discuss about the Principal Tensor decomposition. But, before that I would like to 

recommend the paper explicit expressions for Rortex tensor and velocity gradient tensor 

decomposition [53]. 

4.5. Velocity gradient tensor decomposition in the principal coordinates 

The velocity gradient tensor ∇𝑉𝜃 is unique for all rotation point. Additionally, we can 

further decompose ∇𝑉𝜃 in the Principal Coordinates: 

∇𝑉𝜃 = [

𝜆𝑐𝑟   − 𝑅     0
𝑅 + 휀   𝜆𝑐𝑟    0
  𝜉             𝜂     𝜆𝑟  

] 

=[
0  − 𝑅     0
𝑅      0      0
  0      0      0  

] + [

𝜆𝑐𝑟     0     0
휀       𝜆𝑐𝑟    0
  𝜉       𝜂      𝜆𝑟  

] 

= 𝑅 + 𝑁𝑅   (4.52) 

Where R represents the rigid rotation part and NR is the non-rotational part since NR has three 

eigenvalues as the diagonal elements. NR also satisfies the condition of three zeros on the north 

east corner, which means three axes are not rotational. 

The non-rotational part NR can be further decomposed as  

NR=[

𝜆𝑐𝑟     0     0
휀       𝜆𝑐𝑟    0
  𝜉       𝜂      𝜆𝑟  

] = [

𝜆𝑐𝑟     0     0
0       𝜆𝑐𝑟    0
  0       0      𝜆𝑟  

] + [
0     0     0
휀       0    0
  𝜉       𝜂      0  

]=B+ C         (4.53) 

Where C represents stretching (compression), C is shear matrix. This decomposition can be done 

only in the principal coordinates and therefore is unique and is independent on selection of the 

original coordinates (x, y, z). This unique velocity gradient tensor decomposition is called 

Principal Tensor Decomposition and even the gradient components are Gallilean invariant . 

Unlike Cauchy-Stoke’s decomposition, Principal Tensor decomposition is independent of 

coordinates change.  
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Definition 3: The Principal Decomposition is the decomposition under the Principal Coordinate 

i.e. 

∇𝑉 = [

𝜆𝑐𝑟 −
𝑅

2
0

𝑅

2
+ 휀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟

] = [

0 −
𝑅

2
0

𝑅

2
0 0

0 0 0

] + [
0 0 0
휀 0 0
𝜉 𝜂 0

] + [

𝜆𝑐𝑟 0 0
0 𝜆𝑐𝑟 0
0 0 𝜆𝑟

] = 𝐴 + 𝐵 + 𝐶  (4.54) 

Where A represents the rotation part, B represents the shear part, and C represents the stretching 

part. 

The Principal Decomposition correctly and uniquely decomposes the velocity gradient 

tensor into the rotation part, shear part, and stretching part. So, the shear and stretching 

contamination analysis can be done uniquely only in the Principal Coordinate, which will be 

discussed in the next chapter. 
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CHAPTER 5 

CONTAMINATION ANALYSIS OF VORTEX IDENTIFICATION METHODS ON 

PRINCIPAL COORDINATES. 

Fluid rotation is not a rigid rotation. It has a mixture if rigid rotation, stretching or 

compression, and shear or deformation. In this chapter, we given the formulae for some first- and 

second-generation vortex identification methods in Principal Coordinate. These formulae  can 

measure the extent of contamination of fluid flow by shearing and stretching or compression. But, 

at first, an article on a selected review of vortex identification methods with applications by Zhang 

et. all is recommended [54]. 

5.1. Theoretical Contamination Analysis 

Let the velocity gradient tensor in the Principal Coordinate is: 

𝛻�⃗⃗� = [

𝜆𝑐𝑟 −
1

2
𝑅 0

1

2
𝑅 + 휀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟 

]   (5.1) 

The  Principal Decomposition, which is the decomposition of velocity gradient tensor in Principal 

Coordinate, is given by: 

𝛻�⃗⃗� =

[
 
 
 
 𝜆𝑐𝑟 −

1

2
𝑅 0

1

2
𝑅 + 휀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟 ]
 
 
 
 

=

[
 
 
 
 0 −

𝑅

2
0

𝑅

2
0 0

0 0 0]
 
 
 
 

+ [
0 0 0
휀 0 0
𝜉 𝜂 0

] + [

𝜆𝑐𝑟 0 0
0 𝜆𝑐𝑟 0
0 0 𝜆𝑟

] 

𝛻�⃗⃗� = 𝐴 + 𝐵 + 𝐶   (5.2) 

Where A is the rotational part; B is the shear part and C is the stretching part. 

On the basis of  Principal Tensor Decomposition, for the first time in the literature, we are 

defining the several vortex identifications schemes in the Principal Coordinate, which will allow 

us to analyze the contamination effects on these traditional vortex identification methods. In 

another words, we are going to analyze how these traditional vortex identification methods are 

contaminated by shear and stretching. 
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5.1.1 Contamination of vorticity 

Plugging in the gradient components from (5.1) into the vorticity equation of  definition 

3.1 gives us the vorticity vector as    

𝜔 = (𝜂,−𝜉, 𝑅 + 휀)𝑇  (5.3) 

and its magnitude is  

‖𝜔‖ = √𝜂2 + 𝜉2 + (𝑅 + 휀)2  (5.4) 

 

From the equations (5.3) and (5.4), it can be concluded that a vorticity vector does not 

only represent rotation but also claims shearing and stretching components to be a part of the 

vortical structure, which is clearly contaminated by shears.  

5.1.2 Contamination of  Q method 

The scalar magnitude of Q method can be calculated based on velocity gradient 

tensor in the Principal Coordinates. 

𝛻�⃗⃗� =

[
 
 
 
 𝜆𝑐𝑟 −

1

2
𝑅 0

1

2
𝑅 + 휀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟 ]
 
 
 
 

=

[
 
 
 
 
 𝜆𝑐𝑟

1

2
휀

1

2
𝜉

1

2
휀 𝜆𝑐𝑟

1

2
𝜂

1

2
𝜉

1

2
𝜂 𝜆𝑟 ]

 
 
 
 
 

+

[
 
 
 
 
 0 −

1

2
𝑅 −

1

2
휀 −

1

2
𝜉

1

2
𝑅 + 

1

2
휀 0 −

1

2
𝜂

1

2
𝜉

1

2
𝜂 0 ]

 
 
 
 
 

 

= 𝐴𝑄 + 𝐵𝑄   (5.5) 

𝑄 =
1

2
(‖𝐵𝑄‖𝐹

2
− ‖𝐴𝑄‖𝐹

2
) 

    =
1

2
[2 (

𝑅

2
+

𝜀

2
) + 2 (

𝜉

2
)
2

+ 2(
𝜂

2
)
2

] −
1

2
[2 𝜆𝑐𝑟

2 + 𝜆𝑟
2 + 2(

𝜀

2
)
2

+ 2(
𝜉

2
)
2

+ 2(
𝜂

2
)
2

] 

    = (
𝑅

2
)
2

+
1

2
𝑅 ∙ 휀 − 𝜆𝑐𝑟

2 −
1

2
𝜆𝑟
2
  (5.6) 
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It can be clearly seen that from the expression of Q above there is not only R, which is the 

magnitude of rotation, but also 휀, 𝜆𝑐𝑟 and 𝜆𝑟 which are either the shear part or stretching part in 

the Q-criterion. Therefore, the value of Q is certainly contaminated by shear and stretching. 

5.1.3 Contamination of  𝜆𝑐𝑖 Criterion 

The characteristic equation of velocity gradient tensor given by (5.1) is 

(𝜆 − 𝜆𝑟) [(𝜆 − 𝜆𝑐𝑟)
2 +

𝑅

2(
𝑅

2
+𝜀)
] = 0   (5.7) 

Thus, the eigenvalues are 

𝜆1 = 𝜆𝑟, 𝜆2 = 𝜆𝑐𝑟 + 𝑖√𝑅/2(𝑅/2 + 휀), 𝜆3 = 𝜆𝑐𝑟 − 𝑖√𝑅/2(𝑅/2 + 휀) 

Since rotation is orthogonal, eigenvalues are the same as the original velocity gradient tensor, 

𝜆2 = 𝜆𝑐𝑟 + 𝑖√𝑅/2(𝑅/2 + 휀) = 𝜆𝑐𝑟 + 𝑖𝜆𝑐𝑖 

𝜆3 = 𝜆𝑐𝑟 − 𝑖√𝑅/2(𝑅/2 + 휀) == 𝜆𝑐𝑟 − 𝑖𝜆𝑐𝑖 

Therefore, we have 

𝑅

2
(
𝑅

2
+ 휀) = 𝜆𝑐𝑖

2    (5.8) 

Thus, 

𝜆𝑐𝑖 = √
𝑅

2
(
𝑅

2
+ 휀)   (5.9) 

The expression of 𝜆𝑐𝑖 has 휀, which is in the shear part of the Principal Decomposition. As a result, 

𝜆𝑐𝑖 is contaminated by shear. 

5.1.4 Contamination of  ∆ method 

In section 4.2, it is known that three roots of the characteristic equation is  

𝜆1 = 𝜆𝑟, 𝜆2 = 𝜆𝑐𝑟 + 𝑖√𝑅/2(𝑅/2 + 휀), 𝜆3 = 𝜆𝑐𝑟 − 𝑖√𝑅/2(𝑅/2 + 휀) 

Plug their values into (3.1),(3.2) and (3.3) 

𝐼1 = −(𝜆1 + 𝜆2 + 𝜆3) = −𝜆𝑟 − 2𝜆𝑐𝑟   (5.10) 
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𝐼2 = 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 = 2𝜆𝑟𝜆𝑐𝑟 + 𝜆𝑐𝑟
2 +

𝑅

2
(
𝑅

2
+ 휀)   (5.11) 

𝐼3 = −𝜆1𝜆2𝜆3 = −𝜆𝑟 [𝜆𝑐𝑟
2 +

𝑅

2
(
𝑅

2
+ 휀)]   (5.12) 

So, �̃� = 𝐼2 −
1

3
𝐼1
2 = −

1

3
(𝜆𝑐𝑟 − 𝜆𝑟)

2 +
𝑅

2
(
𝑅

2
+ 휀)   (5.13) 

�̃� = 𝐼3 +
2

27
𝐼1
3 −

1

3
𝐼1𝐼2 =

2

27
(𝜆𝑐𝑟 − 𝜆𝑟)

3 +
2

3
(𝜆𝑐𝑟 − 𝜆𝑟)

𝑅

2
(
𝑅

2
+ 휀)   (5.14) 

Then, the expression of ∆ can be written as 

𝛥 = (
�̃�

3
)
3

+ (
�̃�

2
)
2

=
1

243
[
9 (

𝑅

2
)
3

(
𝑅

2
+ 휀)

3

− 6(
𝑅

2
)
2

(
𝑅

2
+ 휀)

2
(𝜆𝑐𝑟 − 𝜆𝑟)

2 +

5𝑅

2
(
𝑅

2
+ 휀) (𝜆𝑐𝑟 − 𝜆𝑟)

4
]   (5.15) 

Obviously, 휀, 𝜆𝑟 and 𝜆𝑐𝑟 are included in the expression of 𝛥, which indicates that 𝛥 is 

contaminated by shear and stretching. 

5.2. Vortex Example: Burger Vortex 

A test case of a real vortex, namely Burger vortex, is examined to justify the comparison 

of the effects of shearing and stretching/compression on different criteria. The velocity gradient 

tensor has been obtained from the Burger vortex, which is an exact steady solution of the Navier-

Stokes’s equation and can be used to model fine scales of turbulence. The Burger vortex forms 

when an inward radial flow concentrates and spins around the symmetric axis, and the flow moves 

out in both directions along the z-axis. 

The velocity components of Burger vortex in the cylindrical coordinate system are given by: 

𝑣𝑟 = −𝜉𝑟   (5.16) 

𝑣𝜃 =
𝛤

2𝛱𝑟
(1 − 𝑒

−𝑟2𝜉

2𝜈 )   (5.17) 

𝑣𝑧 = 2𝜉𝑧   (5.18) 

where  𝛤 represents the circulation, 𝜉 the axisymmetric strain rate, 𝜈 the kinematic viscosity, and 

𝑟 is the distance of the chosen point from the centerline in the Burger vortex.  
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For post-processing, the velocity components are converted into the Cartesians coordinate system 

given by:  

𝑢 = −𝜉𝑥 − 
𝛤

2𝛱𝑟2
(1 − 𝑒

−𝑟2𝜉

2𝜈 ) 𝑦   (5.19) 

𝑣 = −𝜉𝑦 + 
𝛤

2𝛱𝑟2
(1 − 𝑒

−𝑟2𝜉

2𝜈 ) 𝑥   (5.20) 

𝑤 = 2𝜉𝑧   (5.21) 

The existence of the vortex structure is highly contingent on the selection of parameters. 

For the proper vortex structure visualization, we take 𝜉 = 0.042, 𝛤 = 1.45 and 𝜈 = 0.01. The 

calculation domain is taken with 50 × 20 × 20 grid points with a step size of 0.5. The streamlines 

of Burger vortex exhibit a spiral pattern around the vortex rotation axis line, which has the 

maximum vortex strength. The streamlines representing such a flow are demonstrated in Fig. 1a 

and 1b, which show that flows enter from radial direction and stretches outward spinning around 

the axis. The vortex strength is strong in the core and becomes weak when moving away from the 

center. We can see this phenomenon in the following figures: 

 

 

 

 

 

 

 

(a)Top View               (b) Side View 

Fig 5.1. (Color online) Streamlines of Burger vortex from top and side view with Liutex 

magnitude, which depicts the rotational strength of the fluid particles. 
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5.3. Numerical Contamination Analysis 

The velocity gradient tensor in Principal Coordinate  is: 

∇𝑉 =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

= [

𝜆𝑐𝑟 −
1

2
𝑅 0

1

2
𝑅 + 휀 𝜆𝑐𝑟 0

𝜉 𝜂 𝜆𝑟 

]   (5.22) 

Where 𝑢, 𝑣 and 𝑤 are the three components of the velocity along 𝑥, 𝑦, and 𝑧 directions in 

Cartesian Coordinate. 

Since our purpose is to demonstrate the shear  and stretching contaminations of 

different criterion numerically, we add shear and stretching components separately and calculate 

how different criterion responds. 

5.3.1 Adding Shear components on Principal Tensor.  

The matrix corresponding to shear is of the form: 

∇𝑉𝑠ℎ𝑒𝑎𝑟 = [
0 0 0
휀𝑎 0 0
𝜉𝑎 𝜂𝑎 0

]   (5.23) 

The subscript “𝑎” refers to  “adding” of shearing components. 

The new velocity gradient tensor in Principal Coordinates after adding shear is 

∇𝑉1 = [

𝜆𝑐𝑟 −
1

2
𝑅 0

1

2
𝑅 + 휀 + 휀𝑎 𝜆𝑐𝑟 0

𝜉 + 𝜉𝑎 𝜂 + 𝜂𝑎 𝜆𝑟

]   (5.24) 

Under Principal Coordinate, the local rotation axis is z-axis, so 𝜉𝑎 (value of  
𝜕𝑤

𝜕𝑥
 

component) and 𝜂𝑎 (value of  
𝜕𝑤

𝜕𝑦
 component) are not in the rotation plane. Thus, these two issues 

will not influence the rotation strength. However, 휀𝑎 is in the rotation plane, and it is possible to 

affect rotation strength. By Liutex definition, the magnitude of rotation strength is 

min
𝜃
{|
𝜕𝑢

𝜕𝑦
|
𝜃
, |
𝜕𝑣

𝜕𝑥
|
𝜃
}. |

𝜕𝑢

𝜕𝑦
|
𝜃

 and |
𝜕𝑣

𝜕𝑥
|
𝜃

 are the minimum absolute values of  
𝜕𝑢

𝜕𝑦
  and  

𝜕𝑣

𝜕𝑥
  respectively, 

when we rotate the coordinate 𝜃 angle anti-clockwise along z-axis. 
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Proposition 5.1: The rotation strength does not change if 휀𝑎 ≥ −휀 and it changes if 휀𝑎 < −휀 

Proof: 

If 휀𝑎 ≥ −휀, then,  |
1

2
𝑅 + 휀 + 휀𝑎| ≥ |−

1

2
𝑅|. 

So, the Liutex magnitude is still 𝑅 which is defined as twice of the angular speed of the rigid 

rotation. 

Remark: Physically, 휀𝑎 < 0 means adding a shear against the rotation direction and 휀𝑎 < −휀 

indicates that shear is strong to the extent that it can affect rotation strength. 

5.3.2 Adding Stretching components on Principal Tensor. 

The matrix corresponding to stretching is of the form: 

∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 = [

𝛼𝑎 0 0
0 𝛽𝑎 0
0 0 𝛾𝑎

]   (5.25) 

The subscript “𝑎” means “adding” the stretching components. 

The new velocity gradient tensor after adding stretching is 

∇𝑉2 = [

𝜆𝑐𝑟 + 𝛼𝑎 −
1

2
𝑅 0

1

2
𝑅 + 휀 𝜆𝑐𝑟 + 𝛽𝑎 0

𝜉 𝜂 𝜆𝑟 + 𝛾𝑎 

]   (5.26) 

Proposition 5.2: The rotation strength does not change if 𝛼𝑎 = 𝛽𝑎. 

Proof:  

 It is easy to know ∇𝑉2 is the velocity gradient tensor under Principal Coordinate. Based on 

theorem 1, its rotation strength is still 𝑅. Therefore, to keep the rotation strength unchanged, the 

added ∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 should satisfy 𝛼𝑎 = 𝛽𝑎. 
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5.3.3 Stretching Contamination Analysis 

The following procedure was implemented to depict how the vortex identification 

schemes react over the change in stretching effects. Firstly, we select a point in Burgers vortex, 

and its velocity gradient tensor is: 

𝛻�⃗⃗�𝐵 = [
−0.0419999994 −0.0711665452 0.0000000000
0.0711665452 −0.0419999994 0.0000000000
0.0000000000 0.0000000000 0.0839999988

]   (5.27) 

Then for our convenience, the stretching matrix ∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 is added and the values of  𝑄, 𝛥, 𝜆2, 

𝜆𝑐𝑖, and Liutex are recorded where ∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 is given by (note it satisfies the requirement of 

adding stretching): 

∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 = [
0.02 0 0
0 0.02 0
0 0 −0.04

]  (5.28) 

The sum of diagonals elements of ∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 is made zero, so it follows the continuity 

equation. The stretching effect given by ∇𝑉𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 is increased repeatedly, and the value of 

every scheme is recorded. The results are presented in the following graph, where the x-axis 

represents relative stretching rate, which is the ratio of stretching component and vorticity 

magnitude, and the y-axis gives the corresponding values of different vortex identification 

methods.  

 

 

 

 

 

 

 

Fig. 5.2. Line graphs depicting the effect of stretching on different vortex identification methods. 
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The change in stretching components result in a change in 𝑄, 𝛥, 𝜆2, but 𝜆𝑐𝑖 and L are not 

changed, which means  𝜆𝑐𝑖 and L are not contaminated by stretching effect, as shown in Fig.5.2. 

It can also be observed that increasing the stretching effect would significantly decrease the 

positive value of 𝑄 and ultimately becomes negative indicating non-vortical structure. However 

other criterions still show that there is a vortex structure.  It can be concluded that 𝑄 may conflict 

with other criterions. Theoretically, this makes sense, 𝛥 could still be positive even if 𝑄 is negative 

provided that the square of the  third variant is large enough. The computational results shown in 

Fig. 5.2 are coincided with theoretical analysis. 

5.3.4 Shear Contamination Analysis 

A similar procedure to the stretching effect is implemented for the graphic 

representation of the shearing effect on the vortex identification schemes. Again, for our 

convenience, the shearing matrix ∇𝑉𝑠ℎ𝑒𝑎𝑟 is defined as: 

∇𝑉𝑠ℎ𝑒𝑎𝑟 = [
0 0 0
0.02 0 0
0.02 0.02 0

]   (5.29) 

∇𝑉𝑠ℎ𝑒𝑎𝑟 is added to 𝛻�⃗⃗�𝐵 for few times, and then the corresponding values of the 

different criterions are recorded. The results are presented in the following graph, where the x-

axis represents relative shear rate, and the y-axis gives the corresponding values of different 

vortex identification methods.  

 

 

 

 

 

 

 

Fig. 5.3. Line graphs depicting the effect of shear on different vortex identification methods. 
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The relative shear rate is the ratio of the shearing component over vorticity magnitude. 

More precisely, it is the ratio of shear over vorticity at any point in our numerical domain. The 

reason we are dividing shear by vorticity is to refrain shear from getting too big. Fig. 5.3 indicates 

that 𝑄, 𝛥, 𝜆2, and 𝜆𝑐𝑖 are all greatly affected by the change in the shearing component, while L 

has remained unaffected by shear. It can be concluded from Fig. 5.2 and Fig. 5.3 that 𝑄, 𝛥, 𝜆2, 

and 𝜆𝑐𝑖 are all affected by either shear, stretching, or both at different levels whereas the Liutex 

method is affected by neither.       

Since the values of 𝛥 are very small, 𝛥 looks to be consistently zero; however, if we use zoom 

in, it can be observed that the 𝛥 values are increasing. The 𝛥 - plots are given in Fig. 5.4 below: 

 

 

 

 

 

 

Fig. 5.4. Stretching and shearing effect on 𝛥 method of vortex identification. 

From above discussion and graphical representation, it can be concluded that: 

1) All the second-generation methods are contaminated by shear, but Liutex is not. 

2) 𝜆𝑐𝑖 and Liutex criterion are not contaminated by stretching.  
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CHAPTER 6 

POD ANALYSIS VORTEX STRUCTURE IN LATE TRANSITION OF A  FLAT PLATE 

BOUNDARY LAYER BY LIUTEX METHOD 

6.1. Introduction 

The proper orthogonal decomposition (POD) method is one of the most used data 

analysis and modeling technique in fluid mechanics. The POD methods enable us to reconstruct 

a flow with only a few most energetic modes. Sometimes, the fluid motion is not easily visible in 

raw data, in this case reconstructed POD modes can model the fluid motion. This method basically 

gives an orthogonal basis to represent a given set of data where we can  find optimal lower-

dimensional approximations for the given data set. The bases are also called POD modes. These 

POD modes best represent the data. The leading modes represent most of the kinetic energy of 

incompressible flow where as high-ordered POD modes represent a very few portions of total 

kinetic energy. In this chapter, POD is applied to study and analyze the vortex structure in late 

flow transition in the boundary layer of the flat plate obtained from DNS data provided by Texas 

Advanced Computing Center (TACC). Liutex vector is used as an input vector. So, leading modes 

have the highest rotational intensity while the trailing modes have lowest.  

POD is used to find the most persistent spatial structures. The Modified Liutex-Omega 

vortex identification method is applied to DNS data to capture the vortex structure of flat plate 

boundary layer with iso-surfaces of Ω𝐿 = 0.52 with ε = 0.001(𝑏 − 𝑎)𝑚𝑎𝑥. Due to the limited 

computing memory capacity, snapshot POD is used. From the simulation of vortex structure in 

the flat plate boundary layer in a natural flow transition by DNS data, it is generally observed that 

the vortex structure starts with spanwise vortex, which is a vortex with its shape parallel to the y-

axis, in the very early stage of transitional boundary layer. Then  Λ-shaped vortex appears, and 

then hairpin vortices are formed one after another. These structures are periodic about y-axis and 

have the symmetry. Finally, in the late transition stage, these  in flat plate flow transition in both 

experiments and DNS simulation for natural flow transition. 

Most of the POD analysis have been done with velocity vector as an input. However, in 

this study, we use  Liutex vector as an input as Liutex represents the local rigid rotation part of 

fluid motion without shear and stretching/compression contamination. The velocity modes are 
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related to the kinetic energy content whereas the Liutex mode represents the rotation intensity. 

Since Liutex vector represents local rigid rotation if fluids without any shear or stretching 

contamination, the Liutex vector is applied instead of velocity vector as an input for POD analysis.  

6.2. Proper Orthogonal Decomposition (POD) 

  The POD is applied to late transition of boundary layer DNS data to find and analyze the 

elusive coherent structures  that form random flow in late transition. This coherent structure can 

be constructed with first few modes. These POD modes also known as orthogonal basis which 

are ranked by fluctuating rotational intensity, where leading modes have the dominant rotational 

intensity and trailing modes have weak rotational intensity.   

Definition 6.1:  

POD modes are orthogonal basis for the given data set. In fluid mechanics, they are set of 

deterministic spatial functions received from decomposition of the random vector field 

representing the turbulent fluid motion. Each of these functions, also known as POD modes, can 

capture some portion of the total fluctuating kinetic energy of the flow. In general, leading modes 

captures the most kinetic energy and trailing modes captures the few.  

  Let 𝑢(x, y, z, t) denote the vector field in the flow with fluctuating velocity. Then, 

   𝑢(x, y, z, t)  = 𝑈(x, y, z) − 𝑈′(x, y, z),      (6.1) 

Where, 𝑈(x, y, z) is the velocity vector and 𝑈′(x, y, z) is the temporal mean velocity vector 

(assumed to be stationary). Then, the POD decomposes the random vector field 𝑢(x, y, z, t) into a 

sum of orthogonal basis functions/POD modes Φ𝑘(𝑥, 𝑦, 𝑧) multiplied by random time coefficients 

a𝑘(𝑡). i.e., 

   𝑢(x, y, z, t) = ∑ a𝑘(𝑡)Φ𝑘(𝑥, 𝑦, 𝑧)
∞ 
𝑘=1        

Here, Φ𝑘 is matrix of eigenvectors of covariance matrix 
1

𝑚−1
𝑈𝑇𝑈, where m is rows of 𝑈. 

In matrix form, or it can be written as: 

       𝐴 = 𝛷𝑄   (6.2) 
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Where the matrix 𝛷 contains the spatial modes Φ𝑘(𝑥, 𝑦, 𝑧) and 𝑄 contains the temporal 

coefficients a𝑘(𝑡). 

Definition 6.2:  

Snapshot matrix is a matrix received from stacking vector of velocity values at several time steps. 

If our data has m velocity values, then our data (velocity vector)  has the dimension 𝑚 × 1. If we 

combine the date set for n time steps, then we get a snapshot matrix with dimension 𝑚 × 𝑛. 

POD has many a formulations and variants over the years.  In this dissertation, we have 

use singular value decomposition for POD, which is equivalent to equation 6.1 or matrix form 

equation 6.2.  

6.1.1 Singular value decomposition(SVD) 

Singular value decomposition(SVD) is a method that factorizes a real 𝑚 × 𝑛 matrix A 

in to three matrices U, S, and V which is given as: 

𝐴 = 𝑈𝑆𝑉𝑇   (6.3) 

Where, U is an 𝑚 × 𝑛 orthogonal matrix, S is a 𝑚 × 𝑛 singular matrix and V is a 𝑚× 𝑛 

orthogonal matrix. The diagonal elements of S are singular values arranged in decreasing order. 

  

6.1.2 SVD algorithm 

Step 1: Compile the data set at several snapshot (or time steps) from DNS data to get a snapshot 

matrix A. Each snapshot of our data set contains Liutex vectors at several spatial points. Each 

snapshot is of the form  𝑥𝑗 =  𝑝(𝑥, 𝑦, 𝑧, 𝑡). 

Suppose each snapshot has m spatial points. Let us combine n snapshots into a snapshot 

matrix A: 

                      𝐴 = [
| | | |
𝑥1 𝑥2 … 𝑥𝑛
| | | |

]

𝑚×𝑛

                                    (6.4) 

 

Here, 𝑚 ≫ 𝑛. In our case at each specific snapshot 𝑥𝑗 , we have 6.2 million Liutex vectors and 

about 100 time-steps. So, the dimension of snapshot matrix in our case is about 6,220,800× 100. 

Step 2:  Compute the SVD of matrix 𝐴. 
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  𝐴 = 𝑈𝑆𝑉𝑇 ,                  (6.5) 

Where, 𝑈 is an 𝑚 ×𝑚 and 𝑉 is 𝑛 × 𝑛 orthogonal matrices. The left matrix 𝑈 has spatial structure 

whereas the right matrix 𝑉 has temporal structure. 𝑆 is 𝑚× 𝑛, which has the same dimension as 

𝐴,  singular matrix with singular values on the diagonal in decreasing order. i.e., 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥

𝜎𝑛,  𝜎𝑖 is singular values of 𝐴 and represent the rotational intensity of the flow.   

       The matrices 𝑈, 𝑆 and 𝑉 can be expressed as:  

     𝑈 = [
| | | |
𝑢1 𝑢2 ⋯ 𝑢𝑚
| | | |

],  𝑆 =

[
 
 
 
 
 
 
𝜎1 0
0 𝜎2
 ⋮ ⋮
⋮   ⋮
0
⋮
0

0
⋮
0

⋯ 0
⋯ 0
⋯  ⋮
  ⋱ ⋮
0
⋮
0

𝜎𝑛
⋮
0 ]
 
 
 
 
 
 

,  𝑉 = [
| | | |
𝑣1 𝑣2 ⋯ 𝑣𝑛
| | | |

].     (6.6) 

 

So, the SVD decomposition of 𝐴 becomes: 

 

      𝐴𝑚×𝑛 = [
| | | |
𝑢1 𝑢2 ⋯ 𝑢𝑚
| | | |

]

𝑚×𝑚

[
 
 
 
 
 
 
𝜎1 0
0 𝜎2
 ⋮ ⋮
⋮   ⋮
0
⋮
0

0
⋮
0

⋯ 0
⋯ 0
⋯  ⋮
  ⋱ ⋮
0
⋮
0

𝜎𝑛
⋮
0 ]
 
 
 
 
 
 

𝑚×𝑛

[
| | | |
𝑣1 𝑣2 ⋯ 𝑣𝑛
| | | |

]

𝑛×𝑛

     (6.7) 

6.1.3 Procedure to solve 𝑈, 𝑆 and 𝑉 

 

Step 1: First, we find right orthogonal matrix 𝑉 and Singular matrix 𝑆. 𝑉 is the matrix of 

eigenvector of the covariance matrix 𝐶 i.e., 

 𝐶 = 𝐴𝑇𝐴,  

  

   

Substituting the values of 𝐴 from SVD decomposition, we get: 

𝐶 = (𝑈𝑆𝑉𝑇)𝑇𝑈𝑆𝑉𝑇 
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𝐶 = 𝑉𝑆𝑈𝑇𝑈𝑆𝑉𝑇 

Since 𝑈 is an orthogonal matrix, 𝑈𝑇𝑈 = 𝐼. Then we have,  

𝐶 = 𝑉𝑆(𝐼)𝑆𝑉𝑇 

𝐶 = 𝑉𝑆2𝑉𝑇 

Multiplying both side by 𝑉, 

𝐶𝑉 = 𝑉𝑆2(𝑉𝑇𝑉) 

Since 𝑉 is also orthogonal, 𝑉𝑇𝑉 = 𝐼, then we have: 

𝐶𝑉 = 𝑉𝑆2(𝐼) 

𝐶𝑉 = 𝑉𝑆2  (6.8) 

Which is an eigen decomposition of  the matrix 𝐶 with eigenvector matrix 𝑉 and eigenvalue 

matrix 𝑆2. 

𝑆2 has squared singular values (𝜎2) along the diagonal. i.e., if  𝜆𝑖 denote the eigenvalues of 

the covariance matrix 𝐴𝑇𝐴, them 𝜆𝑖 = 𝜎𝑖
2. So,  

𝜎𝑖 = √𝜆𝑖  (6.9) 

The covariance matrix 𝐶 is symmetric and positive-semidefinite, so its eigenvalues 𝜆𝑖 

are real and nonnegative with 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0.  So, 𝜎𝑖 are real and nonnegative with 𝜎1 ≥

𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0.  When we know the eigenvectors and eigenvalues 𝜆𝑖 of covariance matrix 𝐶, 

then we can get the right orthogonal matrix 𝑉 and singular matrix 𝑆. 

𝑉 = [
| | | |
𝑣1 𝑣2 ⋯ 𝑣𝑛
| | | |

]  (6.10) 
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𝑆 =

[
 
 
 
 
 
 
𝜎1 0
0 𝜎2
 ⋮ ⋮
⋮   ⋮
0
⋮
0

0
⋮
0

⋯ 0
⋯ 0
⋯  ⋮
  ⋱ ⋮
0
⋮
0

𝜎𝑛
⋮
0 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 √𝜆1 0

0 √𝜆2
 ⋮ ⋮
⋮   ⋮
0
⋮
0

0
⋮
0

⋯ 0
⋯ 0
⋯  ⋮
  ⋱ ⋮
0
⋮
0

√𝜆3
⋮
0 ]
 
 
 
 
 
 

  (6.11) 

 

Step 2: Solve for the left orthogonal matrix 𝑈 by plugging 𝑆 and 𝑉 into SVD equation (6.5). From 

SVD equation (6.5), 

       𝐴 = 𝑈𝑆𝑉𝑇 .    

Multiplying both sides by 𝑉,      

𝐴𝑉 = 𝑈𝑆                              

Again, multiplying both sides by 𝑆−1,      

𝐴𝑉𝑆−1 = 𝑈                             (6.12)     

Despite being able to decompose the huge snapshot matrix 𝐴  and represent it with 

singular matrix 𝑆, we are still far away from being done as S still is as large as 𝐴 dimensionally. 

So, in the next section, we are going to discuss about the reduction of dimension and the reduction 

criteria. This is very important because it speeds up the computation algorithmically and saves 

the computation cost and time.                                

6.1.4 Criteria for dimensionality reduction 

The dimension of left orthogonal matrix 𝑈 is 𝑚×𝑚 which is very large as we picked a 

lot of points in the flow field . In our case, we the dimension of  𝑈 is approximately 6.2 M × 6.2 

M, which is a huge matrix to manage. This leads us to a situation that we still need to spend a lot 

of time in computation. So, we try to reduce the dimension of 𝑈. The singular matrix has the most 

features of original data and it has 𝑛 singular values along the diagonal and rest of the elements 

are zeros. So, we can reduce the size of singular matrix  𝑆 is from 𝑚× 𝑛 to 𝑛 × 𝑛. 

                                                  𝑆 = [

𝜎1 0
0 𝜎2
⋮ ⋮
0   0

⋯ 0
⋯ 0
⋱ ⋮
  0 𝜎𝑛

].        (6.13)                         

Which is a reduced form of S with significantly lower dimension but with the same rank. This 

reduction will also decrease the size of left orthogonal matrix from 𝑚 ×𝑚 to 𝑚 × 𝑛. 
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𝑈 =  [
| | | |
𝑢1 𝑢2 ⋯ 𝑢𝑛
| | | |

]

𝑚×𝑛

  (6.14) 

Now, the SVD decomposition of 𝐴 can be written as: 

     𝐴𝑚×𝑛 = [
| | | |
𝑢1 𝑢2 ⋯ 𝑢𝑛
| | | |

]

𝑚×𝑛

[

𝜎1 0
0 𝜎2
⋮ ⋮
0   0

⋯ 0
⋯ 0
⋱ ⋮
  0 𝜎𝑛

]

𝑛×𝑛

[
| | | |
𝑣1 𝑣2 ⋯ 𝑣𝑛
| | | |

]

𝑛×𝑛

     (6.15) 

 

 We can further reduce the dimension of left orthogonal matrix 𝑈 from 𝑚 × 𝑛 to 

𝑚 × 𝑟, where 𝑟 ≤ 𝑛, by truncating the last 𝑚 − 𝑟  columns of 𝑈. Now, to satisfy the 

multiplication criteria of matrices, we need to truncate the last 𝑛 − 𝑟 rows and columns of singular 

matrix 𝑆. This will make the dimension of 𝑆 be 𝑟 × 𝑟. For the same reason we truncate the last 

𝑛 − 𝑟  rows of right orthogonal matrix 𝑉. This will make the  dimension of matrix 𝑉 be 𝑟 × 𝑛.  

Now, the SVD decomposition of the snapshot matrix 𝐴 in much lowered dimension can be written 

as:  

         𝐴𝑚×𝑛 = [
| | | |
𝑢1 𝑢2 ⋯ 𝑢𝑚
| | | |

]

𝑚×𝑟

[

𝜎1 0
0 𝜎2
⋮ ⋮
0   0

⋯ 0
⋯ 0
⋱ ⋮
  0 𝜎𝑟

]

𝑟×𝑟

[
| | | |
𝑣1 𝑣2 ⋯ 𝑣𝑛
| | | |

]

𝑟×𝑛

     (6.16) 

Definition 6.3:  

The snapshot matrix after the SVD decomposition is called reconstruction matrix. The 

new matrix 𝐴 given by above equation (6.16)  is the approximated reconstruction of original 

snapshot matrix 𝐴 and it has significantly lower dimension, but it has most of the kinetic energy 

of the original matrix  𝐴. This is one of the most useful advantages of POD as it can model the 

fluid motion by few modes with same level of kinetic energy and with much lower dimension.  

Next, we talk about how to choose the proper value of  𝑟. In another words, how to 

find the first 𝑟 POD basis functions. In fact, with the given tolerance condition, it can be calculated 

from the cumulative relative kinetic energy of snapshot matrix 𝐴 by the following formula:    

𝜖(𝑟) =
∑ 𝜎𝑖

2𝑟
𝑖=1

∑ 𝜎𝑖
2𝑛

𝑖=1

× 100%,                           (6.17) 
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𝑟 is the possible minimum integer such that, 

                              100 − 𝜖(𝑟) ≤ 𝑡𝑜𝑙 %  (6.18) 

where 𝑡𝑜𝑙 % is a tolerance with  0 < 𝑡𝑜𝑙% < 1%. In our research, 𝑡𝑜𝑙 = 1% 

6.1.5. Snapshot matrix as a linear combination of POD modes 

The reduced SVD decomposition of the snapshot matrix 𝐴 given by the equation (6.16) 

can be written in the summation of basis functions as: 

                  𝐴 = ∑ 𝜎𝑘𝑢𝑘𝑣𝑘
𝑇𝑟

𝑘=1 = 𝜎1𝑢1𝑣1
𝑇 + 𝜎2𝑢2𝑣2

𝑇 +⋯+ 𝜎𝑟𝑢𝑟𝑣𝑟
𝑇.               (6.19) 

where the vector 𝑣𝑖  represents the spatial POD modes. The whole snapshot matrix 𝐴 that represent 

the fluid flow can be extracted into 𝑟 spatial POD modes where each mode symbolizes coherent 

structures. The main aim of dimensional reduction is to keep the modes with higher energy 

content as a basis. The first mode has the  dominant kinetic energy while the last mode has the 

least kinetic energy. As the mode number increases, the amount of kinetic energy in each mode 

keeps decreasing.   

6.2 POD analysis for boundary late transition by Modified Liutex Omega method 

Modified Liutex-Omega method is used to present the iso-surface of POD modes to avoid 

the contamination by Shear and stretching or compression effect. First, a snapshot matrix 𝐴 is 

taken from DNS data of flat plate boundary layer with 100 snapshots in time between 𝑡 =

20.505𝑇 to 𝑡 = 21.00𝑇 , where T is period of Tollmein Schlichting wave, to study orthogonal 

basis functions (POD modes) of the coherent vortex structures , especially in the late transition of 

the boundary layer.  Then, we have chosen the proper subzone in the late boundary layer transition 

defined by the parameters given in the Table 6.1 to study the POD decompositions of flow 

structure.  
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Fig 6.1. Vortex structure of transitional boundary layer by modified Liutex-Omega method. 

The starting and ending points of index I , j, k along x, y and z directions are given the following 

table. 

 

 

 

 

 

Table 6.1.  Parameters of subzone 

We compiled the data between the timesteps 𝑡 = 20.5 𝑇 to 𝑡 = 21.0𝑇  into a snapshot matrix A,         

A =

(

 
 
 
 
 
 
 
 
 

𝐿𝑥500,1,1
(𝑗)

⋮

𝐿𝑥580,128,200
(𝑗)

𝐿𝑦500,1,1
(𝑗)

⋮

𝐿𝑦580,128,200
(𝑗)

𝐿𝑧500,1,1
(𝑗)

⋮

𝐿𝑧580,128,200
(𝑗)

)

 
 
 
 
 
 
 
 
 

  for 𝑗 = 1,… ,100, 

Grid direction Starting Index Ending 

Index 

i  500 580 

j  1 128 

k  1 200 
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where 𝐿𝑥
(𝑗), 𝐿𝑦

(𝑗) and 𝐿𝑧
(𝑗) are Liutex vectors in x, y, z directions in the flow fields at several 

time steps  𝑡 = (20.50 + 0.005𝑗)𝑇 where 𝑗 is from 1 to 100.  

  We have calculated the singular values through SVD decomposition method, and the 

singular values are ordered according to the portion of total rotational intensity they possess. The 

results of singular values are shown in Figures 6.2. It shows that the singular values converge to 

zero in this case. Which means the leading modes have the highest amplitude compared with 

trailing modes and ultimately, trailing modes have almost no rotational intensity. The appropriate 

number of modes 𝑟 is chosen in such a way that they contain about 99% of the total rotational 

intensity altogether. We can get the value of r by  dimensional reduction  equation (6.17) and 

equation (6.18). In figure 6.3, when cumulative rotational intensity reaches 99% of the total 

energy, that is where we get our required number of modes. In our case, the appropriate number 

of modes to reconstruct the vortex structure with 99% of the total rotational intensity is 34, so we 

choose r  equals to 34. 

Fig 6.2. a) Singular values 𝜎𝑖 of the matrix A              (b) log scale plot of  𝜎𝑖 of the matrix A  

 The figure 6.3. is drawn according to the dimension reduction criteria equation (6.17) 

and (6.18). Figure 6.3.a) show the rotational intensity possessed by various modes. From the same 

figure, we can see that mode 1 has more than 12% of the total rotational intensity of the fluid 

motion whereas mode 2 and 3 have approximately 10 % and 8% contribution. When the mode 

numbers keep going up, the amount of the rotational intensity possessed by these modes goes 

down and ultimately, they converge to zero.  
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Fig 6.3.a) Rotational Intensity at various POD modes  b) Cumulative Rotational Strength  of  

POD modes. 

The followings figures represent the structure of first ten POD modes. As the mode 

numbers goes up, they contain negligible (very few) amount of rotational intensity. In physical 

appearance of vortex structure also, they look quite similar. So, we have not included the 

remaining modal vortex structures.  

 

 

 

 

 

 

 

 

 

  

 

a) Mode 1 
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b) Mode 2 c) Mode 3 

d) Mode 4 e) Mode 5 
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f) Mode 6 g) Mode 7 

h) Mode 8 i) Mode 9 
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Figure 6.4.  Vortex structures of first 10 modes with iso-surfaces of Ω̃𝐿 = 0.52. 

Mode 1 has stream wise velocity. Mode 2, 3 and 4 also have the stream wise vortex structure 

but a little bit less than mode 1. When the modes number goes up, spanwise characteristic 

dominates the vortex structure. In another word, spanwise vortex structure is dominant in leading 

modes whereas streamwise characteristic is dominant in trailing modes. To justify this nature of 

POD modes, we have taken the intersection of XY-slice with the vortex structure which is shown 

is figure 6.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. a)-d).  Interior structure of some POD modes by XY- cross section.  

 

Mode 1 

j) Mode 10 k) Mode 11 

Mode 1 Mode 2 

Mode 3 Mode 4 
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The interior vortex structure given by intersection of XY-plane with iso-surface  plotting 

of different POD modes is presented in the above figure 6.5. a) - f). As we can see in the figure , 

the first POD mode, also known as mean flow, has dominant streamwise vortex structure. From 

the study of interior structure,   streamwise structure can be seen in  mode 3 also. However, 

intensity of the vortex structures is smaller than the first mode. As mode number goes up, the 

spanwise characteristics become dominant in the vortex structure. In the figure 6.5, all the trailing 

modes are spreading in y-direction as higher modes show fluctuation distributions of vortex 

structures which are resulted by the creation of spanwise characteristics. Moreover, we can see 

strength of leading vortex structure are larger than that of the trailing modes. The mean flow has  

the largest scale flow structures since the modes are ordered by amplitudes.  

Since the leading modes with streamwise structures possess significantly higher rotational 

strength than the other trailing modes, the original vortex structures can be reconstructed by few 

leading modes. So, we can model the original flow by reconstruction data of first few POD modes 

as they contain larger portion of the total rotational intensity. This will reduce the size of the 

original data, keeping most of the features of data (fluctuating vortex strength) intact.   This can 

be seen in the figure 6.6, where original fluid flow is modeled by first 5 POD modes. 

 

 

Figure 6.6.  Vortex structures  of original flow and reconstructed flow by first 5 modes with 

of Ω̃𝐿 = 0.52 

a) Original flow               b) Reconstructed flow 
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Definition 6.4:  

The coefficients that we get when the eigenvectors 𝑣𝑖  are scaled by the singular values of original 

matrix is known as POD time coefficients. The POD time coefficients function as a weight factor 

for each mode.   

 The time coefficients are representative of flow dynamics. They can be obtained 

from the matrix of temporal structure 𝑄 = 𝑆𝑉𝑇, which is obtained from equations (6.10) and 

(6.11).  Each column of matrix 𝑉 represents the time evolution of the respective mode. The first 

column gives the time coefficient of the mean flow (1st mode). Similarly, the second column of 

eigenvector matrix 𝑉  gives the time coefficient of the 2nd mode and so on.  Then, they are scaled 

by the corresponding singular values 𝜎𝑖 .  

 The following graphs show the POD time coefficients of first few modes. Remaining 

time coefficients show the similar structure, so they are not included.  
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Figure 6.7.  POD time coefficients of mode 1 to mode 11 where x-axis represents time steps and 

y axis represents time coefficients. 

 These graphs demonstrate the dynamics (fluctuations) of fluid motion . The mean flow has the 

least fluctuation whole the higher modes have larger fluctuations. It can be seen some similar 

fluctuations of some trailing modes.  

6.3. POD analysis on  formation of hairpin vortex.  

 The figure 6.1 shows that in the boundary layer transition, first we have spanwise 

vortex structure, then lambda vortices, and hairpin vortices. These vortex structures are symmetric 

about y-axis initially but, in late transition, they randomize and develop into a complex structure. 

In this dissertation we study the reason for generation of hairpin vortices by POD method.  

According to the DNS studies of flow field transition [56,57], lambda-vortex self-deforms 

into hairpin vortex. But,   Liu et. all [2,3], proposes that the hairpin vortex is formed by the high 

shear layer (K-H type) instability near the tip of the Λ-structure.  

Definition 6.5: 

When there are velocity differences between two layers of fluid, then the instability kicks in and 

the fluid flow transition into turbulent flow. This process is called K-H instability.  
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The following figure shows the formation of turbulent could structure by K-H instability. 

 

 

 

 

 

 

 

 

Figure 6.8 Formation of wave clouds by K-H instability. 

Picture source: https://commons.wikimedia.org/wiki/File:Wavecloudsduval.jpg 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.9 Numerical simulation of K-H instability.  

The K-H instability occurs when there is a shear velocity at the interface between two fluid 

layers. Figure 6.9 shows that  a shear velocity is transformed into a pair rotational fluid motions 

and then transforms into a single vortex with two vortex cores. Therefore, pairing of vortex core 

is an outcome of K-H instability.  
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 Next, from the above POD analysis of vortex structure in the boundary layer transition, 

we support the hypothesis presented by Liu et. all [2,3] that the hairpin vortex is generated by the 

high shear layer (K-H type) instability near the tip of the Λ-structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6.10. Eigen values of modes expressed in pairs.  

 

The exact values of eigenvalues of first eleven modes are given below.  

Modal pair  Mode number  Eigenvalues 

Mean flow  1 430.508579629457 

Pair 1 

 

2 375.147973014816 

3 366.607543731766 

Pair 2 

 

4 349.810202416080 

5 341.714032099057 

Pair 3 

 

6 312.778080874447 

7 300.554436867078 

Pair 4 

 

8 270.931632321952 

9 259.767231054683 

Pair 5 10 241.140266256180 

11 226.109992049960 

Table 6.1. Paired eigenvalues of first eleven modes   

Pair 1 

Pair 2 

Pair 3 

Pair 4 

Pair 5 
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Since singular values of each leading modes are in pairs, we can relate this to pairing of 

vortex core centers and say that K-H instability plays an important role in the formation of 

turbulence flow. 

6.4. POD analysis on loosing symmetry of vortex structure. 

The entire vortex structure in the early boundary layer is symmetric but it starts to lose 

the symmetry in the mid transition boundary layer. We have investigated the zone where 

symmetry is being lost and have investigated from where it starts to lose symmetry. The 

following figure shows that the top part of vortex structure is symmetric near X= 470 but at the 

same time step and position, bottom is already antisymmetric.  

Fig. 6.11. Top and bottom view of vortex structure at the same position.  

 Fig. 6.12. YZ-slice of flow structure at X=470, X=475 and X=480.  

a) c) b) 
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 From fig.6.11, at X=47, the vortex structure at top, middle and bottom are all 

symmetric. In fig 6.11 b) the middle part is antisymmetric while top and bottom are still 

symmetric. But in fig 6.11 c), we can see that all top, middle, and bottom of vortex structure are 

antisymmetric. The z grid level for bottom, middle and top are k = 0-1, k = 1-4 and k = 4+.  

Definition 6.6.  

The function 𝑓(𝑥, 𝑦, 𝑧) is symmetric about plane 𝑦 = 0 axis along the spanwise direction in the 

domain −𝜋 ≤ 𝑦 ≤ 𝜋 if 𝑓(𝑥,−𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) for ∀𝑥, 𝑦, 𝑧 𝜖 𝑍+. 

Definition 6.7.  

Let 𝐿𝑖,𝑗,𝑘 be the Liutex magnitude where 𝑖, 𝑗, 𝑘 are grid points along x, y and z directions, 

respectively. Let the domain of grids be 𝑖 ∈ [𝑖1, 𝑖2], 𝑗 ∈ [2,128] and and 𝑘 ∈ [1,200]. The YZ 

plane at y = 0 (𝑖. 𝑒. 𝑗 = 64)is the axis of symmetry.  𝐿𝑗,𝑘 and 𝐿128−𝑗,𝑘 are the Liutex magnitudes 

for 𝑗 = 2,3, … ,64 in the YZ-plane on the left and right of the axis of symmetry, respectively.  

(i) Two points, x(: ,j, k ) and x(: , 128-j, k )  , at any 𝑖 ∈ [𝑖1, 𝑖2] are symmetric about the 

plane 𝑦 = 0 at 𝑧 = 𝑘 for 𝑘 = 1,2, … ,200 if 

|𝐿𝑗,𝑘 − 𝐿130−𝑗,𝑘| < 0.001, 

Otherwise, these two points are not symmetric about the plane y = 0. 

(ii) Let 𝑚(𝑑𝑖)  and 𝑛(𝑑𝑖) are the number of pairs of points that are symmetric and 

antisymmetric, respectively. The antisymmetric index is defined by 

𝛼𝑖 = (
𝑛(𝑑𝑖)

𝑚(𝑑𝑖) + 𝑛(𝑑𝑖) 
 ) 

(iii) For 𝑖 ∈ [𝑖1, 𝑖2], the contour of Liutex magnitude in the YZ-plane is symmetric about 

the plane 𝑦 = 0 if 𝛼𝑖 < 0.01. 

Otherwise, the contour of Liutex magnitude in the YZ-plane is antisymmetric about 

𝑦 = 0. i.e., the vortex structure is symmetric about 𝑦 = 0 if  

𝛼𝑖 < 1,  ∀𝑖 ∈ [𝑖1, 𝑖2]. 

Otherwise, the vortex structure is antisymmetric about 𝑦 = 0. 

From the above definition, if 𝛼𝑖 ≥ 1, then the vortex structure is antisymmetric. The higher 

the value of 𝛼𝑖,  the more antisymmetric the vortex structure is. If 𝛼𝑖 < 1, then symmetric vortex 

exists.  
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The following figure is YZ-slice contour of reconstruction of vortex structure by first five 

modes at timestep t= 20.00T, where T is T-S wavelength. 

 

 

Fig. 6.13 YZ-slice of reconstructed flow by first five POD modes at  X=470.  

 

Fig. 6.14. The antisymmetric index of top, bottom, and mid part of reconstructed vortex 

structure by first five POD modes.  
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  This figure shows that in reconstructed data, the bottom part has crossed the 

antisymmetric index threshold (i.e., 0.01) at around X=468 and then middle and top part cross 

that limit at X=470 and X=475 respectively, indicating that the vortex antisymmetric structure 

starts from middle, then spreads to bottom then to the top.  

6.4. Conclusion 

From the POD analysis on boundary layer transition, we can conclude the followings: 

1) POD can be used to reduce the dimension of the large data, keeping most of the features 

intact. This will reduce the cost and time of computation. 

2) First Mode is Knows as mean flow. First three modes have streamwise flow but when we 

take the higher mode, spanwise characteristic of the flow becomes dominant.  

3)  Mode 1 has most of the rotational intensity of the flow. As we go higher, rotational strength 

of every mode keeps dropping gradually. 

4) Eigen values of POD modes exist in pairs. Also, modal shape and fluctuating nature of each 

mode exist in pairs. This supports the hypothesis that turbulence is generated by K-H 

instability.  

5) The antisymmetric of the vortex starts from the middle, then the antisymmetric structure of  

bottom part starts and spreads to top level.  
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CHAPTER 7 

CONCLUSION AND DISCUSSION 

 First generation vortex identification methods are based on the definition of vorticity 

vector. But the vorticity vector itself cannot represent the vortex as it counts on shearing as a 

vortex structure. In the flat plate boundary layer, there is a huge amount of shear near the wall. 

Since vorticity treats shear as vortex, it shows large vortex strength near the wall, but the truth is 

other way around. In fact, we have minimal vortex strength near the wall. Also, it is found that 

vorticity direction and actual vortex direction do not align in the same direction. Moreover, 

vorticity core center and vortex core center might not match.  So, despite being convenient to use 

and having the direction of rotation, the first-generation vortex method is not deemed to be the 

appropriate method to model and visualize the vortex structure.  

 Second-generation vortex methods  such as Q, Δ, 𝜆2 ,  𝑎𝑛𝑑 𝜆𝑐𝑖  are based on eigenvalues 

of velocity gradient tensor. All these methods are scalar quantities. So, they  cannot be used to 

depict the direction of the fluid rotation. If a method does not show the direction in which the 

fluid particles are rotating, then we could say that this method is not good enough. So, these 

method cannot define the vortex core center as vortex core centers also have rotation direction.  

Moreover, these methods need iso-surface plotting to demonstrate the vortex structure. But iso-

surface is manmade concept, and it is arbitrary. Different iso-surface threshold gives the different 

vortex structures. So, for the same data, we might end up getting various iso-surface vortex 

structure. This will just confuse the people more. To visualize the vortex structure properly we 

need to know the iso-surface threshold prior to simulating a vortex structure. So, this method does 

not help much, especially to the new ones who studying the fluid dynamics. Being threshold 

confined methods, these methods can capture only one strength throughout the vortex region, 

which means these methods are unable to capture both weak and strong vortex structure 

simultaneously.  Also, just like vorticity-based methods, all the second-generation vortex 

identification methods are severely affected by shear contamination at various levels.  Q, Δ, and 

𝜆2   criteria are contaminated by stretching effect too. Moreover, these methods are highly 

contingent upon selection of coordinates. Which means for different coordinates, these methods 

give different values, defining the different vortex structure. So, they are not Gallilean invariant. 

In addition, none of these methods were able to answer the following six core issues of vortex 

definition and identification:  
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7) What is the absolute strength of vortex? 

8) What is the relative strength of vortex? 

9) What is the rotation axis of vortex? 

10) What is the vortex core center? 

11) What is the size of vortex core? 

12) Where is the vortex boundary? 

 As first and second-generation method had so many problems on them. Professor Dr. 

Chaoqun Liu addressed these problems and proposed Liutex method.  Since then, methods like 

Liutex core lines, Liutex tube, Liutex-Omega, Modified  Liutex-Omega have been proposed and 

these Liutex based methods are known as third-generation vortex identification method. Liutex 

method is eigenvector-based method unlike first and second-generation vortex identification 

method. It is a measure of rigid rotation of fluid rotation, and it can give the direction of local 

fluid rotation. It is not affected by shearing and stretching or compression. Moreover, Liutex 

method has vector, scalar, and tensor form.  

 Liutex core lines gives the vortex structure where vortex strength is maximum in the plane 

perpendicular to direction of the fluid flow. Liutex core line is unique and is free from iso-surface. 

Therefore, there is no need for threshold adjustments. Also, Liutex core lines can show the vortex 

strength at different region of vortex areas unlike iso-surface plotting. The important achievement 

of Liutex based method is that they are Gallilean invariant, which means they do not change 

according to coordinate selection.  So, third-generation methods like Liutex, Modified Liutex-

Omega, and Liutex core lines methods can be considered as  best methods available as they 

resolve so many problems mentioned earlier. These methods also address the six core issues on 

vortex definition and identification. 

1) The absolute strength of vortex is Liutex magnitude. 

2) The relative strength is Modified Liutex method. 

3) The local rotation axis is Liutex direction.  

4) Liutex core lines give the vortex core center.  

5) The vortex core size is given by Liutex tube which is 95% of the local maximum value. 

6) The vortex boundary is the region where Liutex magnitude is positive. i.e., R > 0. 
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 The proper orthogonal (POD) method reconstructs the given data with significantly 

much lower dimension but keeps the features of the data intact. In fluid motion, first few 

modes can keep up to 99% of the total kinetic energy. The following conclusion can be made 

from POD analysis of vortex structure from the late flow boundary layer transition.  

1) Singular values are ordered in descending order. Leading modes have larger singular 

values while trailing modes have smaller singular values. Singular values represent the 

fluctuating kinetic energy. So, first mode has the largest percent of total kinetic energy. In 

our research, first POD mode has approximately about 12% of the total kinetic energy.  

2) Kinetic energy of the trailing POD modes keeps decreasing and ultimately converge to 

zero. So, we can neglect the higher modes.  

3) Leading modes have streamwise vortex characteristic while trailing modes have spanwise 

vortex characteristic.  

4) First four or five modes contain about 99 % of the total kinetic energy. So, we can model 

the fluid motion by first four or five modes. This will keep the features of fluid motion 

same but, significantly reduce the dimension. So, we can save computation cost and time.  

5)  The time coefficients demonstrate the dynamics (fluctuations)  of fluid motion . The mean 

flow has the least fluctuation whole the trailing modes have larger fluctuations.  

 The proper orthogonal decomposition (POD) method used in this dissertation 

decomposes the given data into different deterministic spatial modes and random time 

coefficients.  The Snapshot POD method proposed by Sirovich  decomposes the original data into 

deterministic temporal modes and random spatial coefficients. To apply snapshot POD method, 

first we need to transpose our original snapshot matrix and follow the same algorithm. In this 

method, covariance matrix is built by averaging in space instead of time. I really recommend this 

method if somebody is interested in modal decomposition of big data.  

Future work: 

 A lot of scientists and researchers are using Liutex vortex identification methods in their 

research. Dr. Liu and his team are working on Liutex kinematics and Liutex dynamics at CNSM, 

University of Texas at Arlington. After graduation, I would like to continue to collaborate with 

Dr. Liu and his team.   
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