
BLOCKCHAIN: RESOURCE UTILISATION ANALYSIS WITH A

GAME THEORY PERSPECTIVE

by

VAIBHAV SONI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2019

ii

Copyright © by Vaibhav Soni 2019

All Rights Reserved

 Acknowledgements

I would like to convey my warmest gratitude to my supervising professor Dr. Ming

Li for giving me the opportunity to conduct research on this project and for her constant

guidance, support and encouragement from the start until the end of my study.

I want to thank my committee members Dr. Hao Che and Dr. Sajib Datta for their

interest in my research and for taking time to serve in my dissertation committee.

Special thanks to PhD student Mingyan Xiao for her constant support and

guidance throughout the project.

I would also like to extend my appreciation to CSE department for providing me

all the facilities and infrastructure necessary to carry out my master’s studies.

I would like to thank my beloved parents, who have taught me the value of hard

work and education. I would like to thank my friend Eshika Soni who encouraged me to

pursue thesis track in my Masters’. Finally, I would like to thank all whose direct and

indirect support has helped me in completing my thesis.

May 1st, 2019

iii

Abstract

BLOCKCHAIN: RESOURCE UTILISATION ANALYSIS WITH A

GAME THEORY PERSPECTIVE

Vaibhav Soni, Master of Science

The University of Texas at Arlington, 2019

Supervising Professor: Ming Li

 Major blockchain networks are using proof-of-work based consensus protocols

to establish trust and decentralize resource management with different incentive

mechanisms for the participants or nodes in the network. We formulate the computation

resource management in the blockchain consensus process as a three stage Stackelberg

game, where the profits of the miners, users and distributed app initiators are jointly

optimized. Optimal decisions and strategies are devised in order to achieve the

optimization through the Stackelberg equilibrium. Further, we study the interactions

among these entities through a real experiment and the results are employed to justify

our proposed model.

iv

Table of Contents

Acknowledgements ... ii.

Abstract ...iii.

List of Illustrations .. .v.

List of Tables ... v.

Chapter 1 Introduction…………………………………………………………………6.

 1.1 Introduction of Blockchain..6.

 1.2 Introduction of Game Theory and the Stackelberg Game......................8.

Chapter 2 System Model……………………………………………………………..11.

 Chapter 3 Participants' Decisions and Strategies………..……………........…….14.

 3.1 Participants' Decisions.……………………………………………….……14.

 3.2 Participants' Three Stage Stackelberg Game Strategies......................19.

Chapter 4 Experimental Setup and Implementation……………………..…….….37.

Chapter 5 Analysis and Evaluation……………………………………………….…47.

Chapter 6 Conclusion……………………………………………………….….….…56.

Chapter 7 References………………………………………………………………..57.

Chapter 8 Biographical Information………………………………………………...60.

v

List of Illustrations

Figure 1-1 blockchain data structure where the transactions are included

 in the block and the block is represented by a merkle root 8

Figure 2-1 System Model ... 11

Figure 3-1 Three Stage Stackelberg Game………………………………….……..18

Figure 3-2 Scenarios that transation 𝑢𝑖 is confirmed……………………………....26

Figure 4-1 Workflow Setup …………………………………………………………..38

 Figure 4-2. The modified Geth client is wrapped in a docker……………………..39

Figure 4-3. Displays the 4 running containers in the docker..……………......…..39

Figure 4-4. Displays the Geth JavaScript Console…………….…………………..40

Figure 4-5. runDockerUpdate function is used before each round of mining.......40

Figure 4-6. The CPU resources are updated……………………………………….41

Figure 4-7. Displays the 15 users and the mining for different rounds…………..42

Figure 5-1 Hash Rate Ratio vs the probability of successful mining……………..47

 Figure 5-2 Transaction fee density vs waiting time……………………………..…49

Figure 5-3 Transaction fee density vs waiting time for model and real…………….

experiment ... 50

Figure 5-4 Three parties’ strategies vs no. of transactions in each block 51

 Figure 5-5 Three parties’ strategies vs transaction’s arriving speed ………….....52

Figure 5-6 Three parties’ strategies vs the block time ... 53

Figure 5-7 Three parties’ strategies vs the block reward 54

List of Tables

Figure 4-1 System parameters used in the experiment 46

6

Chapter 1: Introduction

In this chapter, we provide an introduction of Blockchain, its various related terminologies,

and the Stackelberg Game.

1.1 Introduction of Blockchain

Blockchain is a distributed ledger technology that acts as a shared database

where all its copies are synced and verified. The blockchain innovation is still in its early

stages, but it has the potential to eliminate the need for third parties which act as a level

of trust in exchange of transactions/data. This is an indicator that this technology could

impact business models across industries substantially over the coming years [1].

Blockchain is a continuously growing chain of blocks, each of which contains a

cryptographic hash of the previous block, a time-stamp, and its conveyed data. The data

stored in a blockchain are inherently resistant to modification due to the existence of the

cryptographic hash. If even one block of data is modified, all blocks afterward should be

regenerated with new hash values. This feature of immutability is fundamental to

blockchain applications.[3]

The blockchain was first proposed as a decentralized tamperproof ledger which

records a set of transactions which are verified through a decentralized consensus

process among the trustless agents before attaching to the chain. Here, the key

advantages that blockchain networks can offer are as follows.

Decentralized network: Due to the distributed network which allows every

computing unit to utilize its computational power to take part in the blockchain, and that

each transaction in the blockchain must achieve the agreement among all the nodes

through the consensus protocol, the monopoly in centralized network can be removed in

the blockchain.

7

Tamperproof ledger: The cryptographic techniques used in blockchain ensure

that any change on the transaction data in blockchain can be observed by all the nodes

in the network. This means that the transaction recorded in the blockchain cannot be

altered and tampered, unless most nodes are compromised.

Transparent transaction: All the transactions in the blockchain can be traced

back for verification, and these transactions are transparent to all the nodes in the

blockchain network.

1.1.1 Workflow of Blockchain

In the following, we introduce some basic terms of blockchain and its workflow.

Transaction: Transaction is the most basic component of blockchain. A

transaction is proposed by the blockchain user and is composed of the transaction data

which specifies the value in concern, e.g., the digital tokens in a crypto-currency, the

addresses of the sender and the receiver, as well as the corresponding transaction fee

[5].

Block: A block is composed of a block header and a certain amount of

transactions. The block header specifies the hash pointer and merkle tree data structure.

Hash pointer [5]: The hash pointer of the current block contains the hash value

associated with the previous block, which also contains the hash pointer to the block

before that one. Thereby, the hash pointers can be used to build a link of records, i.e.,

blockchain.

Merkle Tree [5]: A merkle tree or hash tree is a tree in which each leaf node is

marked by the hash value of the transaction data of a block, and those non-leaf nodes

are marked by the hash value of the concatenation of its child nodes as shown in Fig 1-1.

This structure makes it impossible to tamper the data in blockchain privately.

8

All or part of the nodes in the blockchain network participate in the block

validation by executing some certain functions defined by the consensus protocol. The

verified block is attached to the blockchain, and every node updates its local replica, i.e.,

the local views of whole ledger-data, of the blockchain.

Fig 1-1 : An illustrative example of blockchain data structure where the transactions are included in
the block and the block is represented by a merkle root.

1.2 Introduction of Game Theory and the Stackelberg Game

Game theory is the study of mathematical models of strategic interaction

between rational decision-makers. It has applications in all fields of social science, as

well as in logic and computer science. Game theory provides a set of mathematical tools

for analyzing the interaction among rational decision-makers. In a game, each decision-

maker as a player chooses its strategy to maximize its utility, given the other players’

strategies. The following briefly presents the game theoretic approaches which have

9

been widely applied to analyze the interactions within the blockchain network. To

interpret the definition of the game, some important terminologies are given below: [5]

• Player: A player is a decision-maker in the game. In the blockchain, players can

be miners, mining pools, or the blockchain users.

• Utility: A utility or a payoff, an interest, or a revenue reflects the player’s

expected outcome.

• Strategy: A player’s strategy is a set of actions, choices or decisions that the

player can perform to achieve its expected outcome. In general, the player’s

utility is determined based on not only the player’s own strategy, but also the

other players’ strategies.

• Rationality: A player is rational, i.e., self-interested, the player always maximizes

its own payoff. [5]

• Nash Equilibrium: In a Nash Equilibrium, each player is doing the best it can,

given what its competitors are doing. Nash equilibria are usually non-cooperative

outcomes. Each player chooses the strategy to maximize its profits given its

opponent’s actions. At the equilibrium, there is no incentive to change strategies,

since you cannot improve payoffs.

This paper utilizes 3 stage Stackelberg competition which is discussed in brief.

The Stackelberg leadership model is a strategic game in economics in which the leader

firm moves first and then the follower firms moves sequentially. It is named after the

German economist Heinrich Freiherr von Stackelberg who published Market Structure

and Equilibrium (Marktform und Gleichgewicht) in 1934 which described the model. [7]

In game theory terms, the players of this game are a leader and a follower who

compete on quantity. The Stackelberg leader is sometimes referred to as the Market

10

Leader.[6]. The Stackelberg model can be solved to find the subgame perfect Nash

equilibrium or equilibria (SPNE), i.e. the strategy profile that serves best each player,

given the strategies of the other player and that entails every player playing in a Nash

equilibrium in every subgame.

In a Stackelberg model, equilibrium is reached when Firm 1 pre-emptively

expands output and secures larger profits. Hence the term “first mover advantage”. In

fact, Firm 2 is forced to curtail output given that the leader (firm 1) has already produced

a large output (“As I produce more, you react by producing less”).

Like an extensive dynamic game, i.e. the game in which players' strategies are

made following certain predefined order. In the Stackelberg game, the players include

leaders and followers. The followers decide their strategies after observing the strategies

of the leaders. Both leaders and followers are typically rational that aim to maximize their

own utilities/payoffs. [7]

11

Chapter 2: System Model

In this chapter, the strategies of three types of entities in Blockchain

decentralized application systems are defined. Their interaction is formulated as a three

stage Stackelberg game.

Fig 2-1. System Model

2.1 Blockchain dApp ecosystem

dApps are decentralized applications that consist of a back-end running on a

P2P network of nodes/computers rather than a single server, and a user interface

created by front-end code that calls the back-end.[8]-[10].

dApps are usually not owned by a single entity and cannot be shut down and

thus have no downtime. Traditional Distributed applications like BitTorrent [11], Popcorn

Time [12], Bit Message [13] run on P2P networks. They store and stream decentralized

12

data with Distributed Hash Tables (DHTs) and force the nodes to trust each other on

validity of data [10].

With the emergence of Blockchain 3.0, many dApps are built using a specific

P2P Blockchain Network [8]-[10]. Blockchain dApps provides data validity through

distributed consensus thus solving a major security issue. Some popular dApp platforms

are Ethereum and EOS with 1909 active dApps, with Endless Dice (popular dApp)

maintaining around 25884 active users every day.[14]

There are mainly 4 steps in Blockchain dApp development process [8]. Firstly,

the Blockchain dApp initiator publishes a whitepaper describing the dApp and its

features. This whitepaper can outline the idea for dApp development but also entail a

working prototype. The second step is token sale, which means initial tokens offering

(ICO) is set up. The third step is to spread the ownership stake of the dApp and finally

funds are invested into building the dApp and deploying it

dApp initiator makes money through two sources: initial tokens sale and service

fees from each transaction. To attract more users, majority of Blockchain dApp initiators

only make money from service fees. They charge a small percentage (3.75%) of each

transaction i.e., CryptoKitties, a dApp popular in Dec 2017 which congested the

Ethereum network in that year. [15]

The second key role of the Blockchain dApp ecosystem is users. User adoption

decides which Blockchain dApps succeed and which fail. Blockchain dApps with the top

five largest size of active daily users have one thing in common: all facilitate trades of

crypto assets in one way or another, though they have a range of business models [16].

This means users value the most Blockchain dApps that allow direct transactions. When

the block containing the transaction is generated, this transaction is confirmed, and thus

the ownership of crypto-assets is transferred.

13

To understand the role of miners in the Blockchain dApp ecosystem, consensus

protocols are discussed in brief. Recall that Blockchain is famous for its decentralized

consensus protocol and Blockchain dApps take advantages of it and solve the major

security problem of traditional dApps.

One of the most common consensus mechanisms is proof-of-work (PoW) which

is commonly used by Bitcoin. In PoW, consensus is based on choosing the block with the

highest total difficulty. Miners generate blocks which are checked for validity by the

others[4]. PoW leads to a trustworthy consensus, since mining a block is costly and

anyone on the chain can verify it. However, the biggest cons of PoW is its high demand

of energy and computation resource, since miners need to solve a difficult mathematical

problem based on a cryptographic hash algorithm.

To solve this, a less popular consensus protocol proof-of-stake (PoS) is

proposed and a special case delegate proof-of-stake (DPoS) is used in EOS No matter

which consensus protocol is adopted by the blockchain network, miners play a vital role

of generating new blocks and tokens, and also validating the newly published block.

Monetary incentives are provided to miners to encourage their participation

because their role in the system is important. There are two sources for miners’ income in

the PoW based Blockchain dApp: the block reward and transaction fees, while miners in

the PoS based Blockchain dApp can only make money from transaction fees [18].

Once the miner generates a block, specifically, a new block is mined by him, and

other miners all accept and add this block to the Blockchain, this miner will get the

revenue.

14

Chapter 3: Participants’ Decisions and Strategies

In this section, the decisions of the participants in a blockchain ecosystem are discussed

from a game theory perspective.

3.1 Participants’ Decisions

3.1.1 Blockchain dApp initiator’s pricing decision

The Blockchain dApp initiator is the developer, who offers the application for

users to make transactions. To compensate his development cost, the Blockchain dApp

initiator in our paper is assumed to charge service fees analogous to real life Blockchain

dApp initiators.

Service fee ratio 𝛿 : Once a transaction is confirmed, the Blockchain dApp

initiator charges 𝛿 of the transaction fee from the transaction initiator, where 0 < 𝛿 ≤ 1.

This rule follows CryptoKitties [15] and in CryptoKitties, 𝛿 = 3.75%, which is fixed. In this

paper, 𝛿 is the dynamic strategy of the Blockchain dApp initiator, which is same for all

users and unchanged for a fixed period of time, i.e., the block interval time.

3.1.2 User’s decision

There are multiple users who seek to confirm their initialized transaction. A

transaction is a message that transfers ownerships of crypto assets. In our paper, Each

user initializes and broadcasts one transaction1 by the user interface of Blockchain

dApps. The transaction set is denoted as  𝑢 = {𝑢1, … , 𝑢𝑖 , … , 𝑢𝑀}. When building up a

transaction, users have to set the transaction fee, which is used to reward miners for

maintaining the Blockchain network.

15

Transaction fee density 𝑓𝑖 : The transaction fee is the product of two

parameters: transaction size 𝑙𝑖 and transaction fee density 𝑓𝑖 : [19],[20]. The transaction

size 𝑙𝑖 is the number of bytes required to encode a transaction whose value can be

evaluated by tools or APIs [19],[20] The transaction fee density 𝑓𝑖 is the transaction fee of

per unit virtual size. In the real world, user specifies whatever transaction fee density 𝑓𝑖

he desires, which can be zero, to control the transaction fee. Assume that the user who

initializes the transaction 𝑢𝑖 waits an expected duration of time denoted as 𝑡𝑖 before his

initialized transaction is confirmed and his value per unit of time is 𝑣𝑖 . Therefore, his

payoff is defined as:

∏

𝑢

𝑖

= 𝑝𝑖
𝑢(𝑅𝑖

𝑢 − 𝑓𝑖𝑙𝑖 − δ𝑓𝑖𝑙𝑖 − 𝑡𝑖𝑣𝑖),                           (1)

where 𝑅𝑖
𝑢 is the revenue of this confirmed transaction and pi

u
 is the probability

that 𝑢𝑖 ’s transaction is confirmed.

1 The results of this thesis can be easily extended to the case of multiple transactions initialized by one user.

16

3.1.3 Miners’ decision

Following Bitcoin network [4] and Ethereum [17], we consider PoW, the most

common consensus protocol in this paper. There are multiple miners given as:

 𝑇 = {𝑡1, … , 𝑡𝑗 , … , 𝑡𝑁}. Each miner has a local transaction pool [21] which is the name

given to the set of valid transactions that the miner is aware of, but they have not yet

been included in a block. The transaction pools are updated after a new block is

generated [21]. For simplicity, we assume that there is no propagation delay for newly

initialized transactions and all miners receive new transactions at the same time.

Therefore, transaction pools for miners are same in every update. We sort the transaction

pool from greatest transaction fee density 𝑓𝑖 to least and denote this sorted transaction

set as 𝑈𝑗. We have 𝑈𝑗 = 𝑈((∀𝑗 ∈ 𝑇)).

By attempting to generate a block, the miner 𝑡𝑗 expects to get revenue 𝑅𝑗
𝑡 at

hashing cost 𝐶𝑗 . The miner 𝑡𝑗
′
s expected hashing cost is equal to the product of his

hardware’s amortized price per hash η𝑗 , his hash rate ℎ𝑗 and the length of time he

expects to work on the block (typically the block time 𝑇). This can be expressed as the

following equation: 𝐶𝑗 = η𝑗ℎ𝑗𝑇.

The miner’s expected revenue is equal to the amount he would earn if he wins

the block multiplied by his probability of generating a block. The amount he would earn is

the sum of the block reward 𝑅, and the transaction fees 𝐹 = ∑ 𝑓𝑖
|𝑄𝑗|
𝑖=1 𝑙𝑖 given on a block

that has transaction set 𝑄 .

17

The probability that miner 𝑡𝑗 receives the block reward and transaction fees for

generating a block to the blockchain network is denoted as 𝑝𝑗
𝑡. We note that 𝑝𝑗

𝑡 rests

with successful mining and instant propagation. Miner 𝑡𝑗 ’s probability of successful

mining is equal to ratio of his hash rate (ℎ𝑗) to the total hash rate of the Blockchain

network (∑ ℎ𝑗𝑗∈𝒯) [21].

Moreover, 𝑝𝑗
𝑡
 is diminished if miner 𝑡𝑗 chooses not to instantly propagate, i.e.,

publish a block that propagates slowly to other miners. Even though miner 𝑡𝑗 may find the

first valid block, if his solution is received after most miners are working on another, then

his block will likely be discarded. This effect is called orphaning. It makes including low-

fee transactions unappealing if the added fee revenue is not enough to offset the

increased risk. Considering this effect, we have 𝑝𝑗
𝑡 = (1 − 𝑝𝑜𝑟𝑝ℎ𝑎𝑛)ℎ𝑗

/(∑ ℎ𝑗𝑗∈𝒯). It

is intuitive that the chance of orphaning should be low if the propagation time is less and

should be high if the propagation time is more. Using the fact that the block generation

follows a Poisson distribution, [21] we can approximate the orphaning probability as

𝑝𝑜𝑟𝑝ℎ𝑎𝑛 = 1 − 𝑒−
τ

𝑇 where 𝜏 is the block propagation time. Following [22] – [25], the

propagation time a miner chooses to risk is also affected by the block size. If a block

contains a transaction set 𝑄 , its propagation time is denoted as τ𝑗 =
∑ 𝑙𝑖

|𝑄𝑗|

𝑖=1

γ𝑐
 where 𝛾

is network scaled parameter, and 𝑐 is the average effective channel capacity. Therefore,

the miner 𝑡𝑗s payoff is defined as:

18

Πj
t = Rj

t − Cj = (ℛ + Fj) pj
t − Cj

= (ℛ + 𝐹𝑗)
ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒−

τ
𝑇 − η𝑗ℎ𝑗𝑇

= (ℛ + ∑ 𝑓𝑖𝑙𝑖
|𝑄𝑗|

𝑖=1
)

ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒

−
∑ 𝑙𝑖

|𝑄𝑗|

𝑖=1
𝑇γ𝑐 − η𝑗ℎ𝑗𝑇 (2)

Hash rate ℎ𝑗 : Miner 𝑡𝑗 sets hash rate ℎ𝑗 to influence its probability of generating

a block 𝑝𝑗
, and thus effects its payoff ∏ 𝑡

𝑗  according to (2).

Three Stage Stackelberg Game

We formulate the interactions among the Block dApp initiator, users and miners

by a three-stage Stackelberg game, as illustrated in Fig 3-1. We analyze the three-stage

game by backward induction.

Figure 3-1 Three Stage Stackelberg Game

19

Definition 1 : Stackelberg Equilibrium

A strategy profile is a Stackelberg equilibrium iff

,

where denotes total payoff of the Blockchain dApp initiator, users and

miners. and are the strategy of the Blockchain dApp initiator; and are the

strategy sets of all users; and are the strategy sets of all miners.

3.2 Participants’ Three Stage Stackelberg Game Strategies

3.2.1 Stage III : Miner’s Strategies

In this section, each miner’s hash rate ℎ𝑗 in stage III is studied and transaction

set 𝑄𝑗 given the Blockchain dApp initiator’s service fee ratio 𝛿 in stage I, and user’s

pricing decision {𝑓𝑖|𝑢𝑖 ∈ 𝒰} in stage II. Miners compete to maximize its utility by setting

its hash rate, which form a noncooperative game.

Definition 2. A noncooperative game 𝒢 is defined as a triple 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {𝛱𝑗
𝑡}

𝑗∈𝒯
},

with ∏ 𝑡
𝑗 given by (2) and 𝐻𝑗 = {ℎ𝑗|0 ≤ ℎ𝑗 ≤ ℎ𝑗}.

In the non-cooperative game 𝒢 , the best response function 𝑟𝑗(ℎ−𝑗) of the

miner 𝑡𝑗 is the best strategy of the miner 𝑡𝑗 given the other miners’ strategies 𝒉−𝒋. By

20

definition, the best response function 𝑟𝑗(𝒉−𝒋) is the unique optimal solution for the

following optimization problem (P1) :

P1 : max
ℎ𝑗

Π𝑗
𝑡 (ℎ𝑗 , 𝒉−𝒋)

 s.t. 0 ≤ ℎ𝑗 ≤ ℎ𝑗

The constraint means that the decided hash rate of a miner cannot exceed its maximum

hash rate.

Definition 3. A Nash equilibrium of the noncooperative game 𝒢 among miners is a

profile of strategies ℎ∗ = (ℎ1
∗ , ⋯ , ℎ𝑁

∗) with the property that

ℎ𝑗
∗ = 𝑟𝑗(ℎ−𝑗

∗), ∀𝑗 ∈ 𝒯

where ℎ−𝑗
∗ = ℎ∗\ℎ𝑗

∗.

Next, we will probe the existence and uniqueness of NE, and then calculate the unique

NE point of the game 𝒢.

A. Existence of Nash Equilibrium

Theorem 1. The game 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
} has at least one NE.

Proof: The following result is obtained from [25].

Proposition 1: A Nash equilibrium exists in game 𝒢 = {𝒯, {𝐻𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
}, if ∀𝑗 ∈ 𝒯:

1) 𝐻𝑗 is a nonempty, convex, and compact subset of some Euclidean space 𝑅𝑁;

2) Π𝑗
𝑡(ℎ) is continuous in ℎ and concave in ℎ𝑗.

21

Recall that strategy space is defined to be 𝐻𝑗 = {ℎ𝑗|0 ≤ ℎ𝑗 ≤ ℎ𝑗} so it is a nonempty,

convex and compact subset of the Euclidean space 𝑅𝑁.

From (2) ∏ 𝑡
𝑗  is obviously continuous in ℎ. We take the second order derivative with

respect to ℎ𝑗 to prove its concavity.

∂Π𝑗
𝑡

∂ℎ𝑗
=

(ℛ+𝐹)𝑒
−

τ
𝑇 ∑ ℎ

𝑗′𝑗′≠𝑗,𝑗′∈𝒯

(∑ ℎ𝑗𝑗∈𝒯)
2 − η𝑗𝑇 , (3)

∂2Π𝑗
𝑡

∂2ℎ𝑗
=

−2(ℛ+𝐹)𝑒
−

τ
𝑇 ∑ ℎ

𝑗′𝑗,𝑗′∈𝒯

(∑ ℎ𝑗𝑗∈𝒯)
3 < 0 , (4)

The second order derivative of ∏ 𝑡
𝑗 with respect to ℎ𝑗 is always negative, therefore ∏ 𝑡

𝑗 is

concave in ℎ𝑗 . From above discussion, the game 𝒢 has at least a NE.

B. Uniqueness of Nash Equilibrium

Theorem 2. The game 𝒢 has a unique Nash equilibrium.

 Proof: By Theorem 1, we know that there exists at least a NE in 𝒢. Since 𝑟𝑗(ℎ−𝑗
∗) =

𝑟𝑗(ℎ∗)and letting 𝑟(ℎ∗) = (𝑟1(ℎ∗), ⋯ , 𝑟𝑁(ℎ∗)), by definition 3, the NE must be a fixed point

ℎ∗ that satisfies ℎ∗ = 𝑟(ℎ∗)The key aspect of the uniqueness proof is to realize that the

best response correspondence 𝑟(ℎ) is a standard function [26]. A function 𝑟(ℎ) is said to

be standard if it satisfies the following:

1) Positivity 𝑟(ℎ) ≫ 0, where ≫ denotes element-wise larger;

2) Monotonicity: if ℎ ⪰ ℎ′then 𝑟(ℎ) ⪰ 𝑟(ℎ′)where ⪰ is element-wise no smaller;

3) Scalability: ∀μ > 1, μ𝑟(ℎ) ⪰ 𝑟(μℎ)

22

It is shown in [26] that the fixed point ℎ∗satisfying ℎ∗ = 𝑟(ℎ∗) is unique for a standard

function. Therefore, the Nash equilibrium of 𝒢 is unique.

Next, we will prove the best response correspondence 𝒓(𝒉) is a standard function. Notice

that Π𝑗
𝑡(ℎ𝑗 , ℎ−𝑗) is concave with ℎ𝑗 from (4). Solving problem P1 , we have different

solution under various cases as shown below

where conditions for above three cases are respectively as

Case 1: η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 ≥ (ℛ + 𝐹)𝑒−
τ

𝑇 ;

Case 2: η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 < (ℛ + 𝐹)𝑒−
τ

𝑇 and

 √
(ℛ+𝐹)𝑒

−
τ
𝑇

 
    ∑ ℎ𝑗′𝑗′≠𝑗

η𝑗𝑇
 − ∑ ℎ𝑗′𝑗′≠𝑗 < ℎ𝑗;

Case 3: √
(ℛ+F)e

−
τ
T

 
    ∑ hj′j′≠j

ηjT
 − ∑ ℎ𝑗′𝑗′≠𝑗 ≥ ℎ𝑗.

Miners’ optimal hash rate in Case 1 is 0, which means those miners do not participate the

game 𝒢 . Therefore, Case 1 does not exist. Since miners in the real world Blockchain

23

dApp are generally mining pools whose value of ℎ𝑗 is extremely large [21], i.e.

√(ℛ + 𝐹)𝑒−
τ

𝑇 ∑ ℎ𝑗′/𝑗′≠𝑗 η𝑗𝑇 − ∑ ℎ𝑗′𝑗′≠𝑗 ≪ ℎ𝑗 The condition of Case 3 won’t be satisfied.

 Conditions for Case 2 are always satisfied, then the best response

correspondence is calculated as,

We first prove the positivity of 𝑟𝑗(ℎ) . Given the constraint η𝑗𝑇 ∑ ℎ𝑗′𝑗′≠𝑗 <

(ℛ + 𝐹)𝑒−
τ

𝑇 The best response function is always positive,

As for monotonicity, 𝑟𝑗(ℎ) is a quadratic function of the term √∑ ℎ𝑗′𝑗′≠𝑗

Therefore when ∑ ℎ𝑗′𝑗′≠𝑗 ≤
1

4

(ℛ+𝐹)𝑒
−

τ
𝑇

η𝑗𝑇
 𝑟(ℎ) is monotonically increasing function. As

for scalability, we have the following:

24

The last inequality holds since ∀μ > 1, μ − √μ > 0.

In conclusion, the best response correspondence 𝑟(ℎ) which is positive,

monotonic and scalable, is a standard function. Therefore, there exist a unique NE point

for the game 𝒢 = {𝒯, {ℎ𝑗}
𝑗∈𝒯

, {Π𝑗
𝑡}

𝑗∈𝒯
}.

C. The Nash Equilibrium point of the game 𝒢.

Theorem 3: The unique equilibrium for the noncooperative game 𝒢 is given by, ∀𝑗 ∈ 𝒯

Proof: Firstly, get the equations set (5) for all players in the miner set 𝑇. Notice that the

number of variables{ℎ𝑗
∗}𝑗 ∈ 𝒯 and equations are same, i.e., 𝑁. Therefore, we can get a

unique solution for {ℎ𝑗
∗}𝑗 ∈ 𝒯. The result is derived by mathematical induction [21] and is

given as (6).

25

Substituting (6) into constraints of Case 2 and the constraint for monotonicity

∑ ℎ𝑗′𝑗′≠𝑗 ≤
1

4

(ℛ+𝐹)𝑒
−

τ
𝑇

η𝑗𝑇
 We can rewrite and combine as (7) and (8).

3.2.2 Stage II : User’s Strategies

In this section, we study users’ pricing decision {𝑓𝑖|𝑢𝑖 ∈ 𝒰} in Stage II, given the

Blockchain dApp initiator’s miner set 𝑇 service fee ratio δ in Stage I, and considering the

prediction of miners’ hash rate ℎ𝑗 in Stage III.

A. Probability 𝑝𝑖
𝑢

 that the transaction 𝑢𝑖 is confirmed

The probability that the transaction 𝑢𝑖 is confirmed when 𝑝𝑖
𝑢

 affects the payoff

∏ 𝑢
𝑖 of the user who initializes the transaction 𝑢𝑖 . When the event of the transaction 𝑢𝑖 is

confirmed it can be separated into two independent events: 𝑢𝑖 is included into a block to

be mined; this block is generated (the nonce of this block is found and this block is not

orphan in propagation) and the probability of above two independent events are denoted

as 𝑝𝑗
′
 and 𝑝𝑗

𝑡
 respectively.

26

Fig 3-2 Scenarios that the transaction 𝑢𝑖 is confirmed

Fig 3-2 depicts the process that how the transaction 𝑢𝑖 is confirmed. The

transaction 𝑢𝑖 is assumed in all miners’ transaction pools. Assume the transaction 𝑢𝑖 is

in miner 𝑡1
′ 𝑠 block for the first time. If 𝑡1

′ 𝑠 block is generated, 𝑢𝑖 is confirmed (the left

branch of the first node); otherwise, another miner denoted as 𝑡𝑗′(𝑗′ ≠ 1) mines

successfully and propagates this block to most miners at the earliest, and thus 𝑡1
′ 𝑠 block

is not generated successfully (the right branch of the first node).

At this time, since a new block is generated (𝑡𝑗′
′ 𝑠 block), all miners’ transaction

pools update. Here comes to two scenarios: 𝑢𝑖 in 𝑡𝑗′
′ 𝑠 block and 𝑢𝑖 is not in 𝑡𝑗′

′ 𝑠 block. In

the first scenario, 𝑢𝑖 is successfully confirmed; in the second scenario, ui will appear in all

miners’ transaction pools again. In this case, after some time, 𝑢𝑖 will eventually be

included in a miner’s block for the second time, assume 𝑡2’s block. Remaining steps are

same as above. Only when 𝑢𝑖 is confirmed, it won’t appear in miners’ transaction pool

27

any more, and thus the repeated process terminates. From above discussion, we

conclude that ∀𝑖 ∈ 𝒰.

𝑝𝑖
𝑢 = 1

denoting that 𝑢𝑖 will be confirmed eventually, but it must wait a long time.

B. Expected Waiting time

The expected waiting time 𝑡𝑖 is determined by the transaction fee density

{𝑓𝑖|∀𝑢𝑖 ∈ 𝒰} and the number of transactions in a block |𝑄|. According to strategies of

miners, the transaction with higher 𝑓𝑖 would be placed in the queue ahead of those with

small amounts.

To model the expected waiting time, we assume that transactions arrive in the

transaction pool according to a Poisson process at a constant mean rate of 𝑚 users per

unit of time and the generation of new blocks follows a Poisson process with a constant

mean rate 1/𝑇 per unit of time, where 𝑇 is also known as the average block time. Let 𝐵

denote an equilibrium cumulative distribution function of transaction fee densities for uses

and 𝐵(𝑥) is the proportion of transactions whose transaction fee density is no larger than

x. 𝐵 is continuous and strictly increasing in its domain. And 𝐵(∞) = 1.

Proposition 2. (Variant of [27]) The expected waiting time 𝑡(𝑥) of a transaction with the

transaction fee density 𝑥 is given by

𝑡(𝑥) =
𝑇

[1−𝑚𝑇′+𝑚𝑇′𝐵(𝑥)]2 (9)

28

where 𝑇′ =
𝑇

|𝑄|
 .

Proof: A transaction paying the transaction fee density 𝑥 must wait for three

things before leaving the system:

i) Expected time for generating the block containing this transaction is 𝑇

because of the assumption of the Poisson process of the block generation.

ii) The transaction must wait until miners confirm all those transactions that

arrive before it and are of the transaction fee density at least as big as its. Owing to

Little’s [28] result, which states that the expected number of units in a system is equal to

the product of arrival rate and the expected time they spend in the system, the expected

number of transactions whose transaction fee density lies in the region (𝑦, 𝑦 + 𝑑𝑦) is

𝑚[𝑑𝐵(𝑦)/𝑑𝑦]𝑡(𝑦)𝑑𝑦 . The total number of those transactions whose transaction fee

density is at least as big as 𝑥 is therefore ∫ 𝑚[𝑑𝐵(𝑦)/𝑑𝑦]𝑡(𝑦)𝑑𝑦
∞

𝑥
 . Since each block

(|𝑄𝑗| transactions) costs 𝑇 units of time on average, each transaction costs the average

𝑇′ =
𝑇

|𝑄|
 . Therefore , his expected waiting time for them is

∫ 𝑚
∞

𝑥

𝑇′ [
𝑑𝐵(𝑦)

𝑑𝑦
] 𝑡(𝑦)𝑑𝑦

iii) The transaction must wait until miners confirm those transaction that

come after it while are of the transaction fee density larger than its. The expected

number of such transactions coming per unit of time is 𝑚 ∫ 𝑑
∞

𝑥
𝐵(𝑦). Hence during the

time 𝑡(𝑥) it expects to spend in the system, the expected number of arrivals of these

transactions is 𝑡(𝑥)𝑚 ∫ 𝑑
𝑓

𝑥
𝐵(𝑦) Again, on the average, each of these transactions

causes it to wait 𝑇′units of time. It follows that its expected waiting time for them is

29

𝑡(𝑥) ∫ 𝑚
∞

𝑥

𝑇′𝑑𝐵(𝑦)

Adding up above three types of waiting time, we get

𝑡(𝑥) = 𝑇 + ∫ 𝑚
∞

𝑥

𝑇′𝑡(𝑦)𝑑𝐵(𝑦) + 𝑡(𝑥) ∫ 𝑚
∞

𝑥

𝑇′𝑑𝐵(𝑦)

After mathematical transformation, above equation is

 𝑡(𝑥) =
𝑇+∫ 𝑚

∞
𝑥

𝑇′𝑡(𝑦)𝑑𝐵(𝑦)

1−∫ 𝑚
∞

𝑥
𝑇′𝑑𝐵(𝑦)

 (10)

Replacing 𝑡(𝑥) and 𝑡(𝑦) in equation (10) with the expression given in equation

(9) and 𝐵(∞) = 1, we see that above equality holds. Thus, equation (9) is indeed the

solution to equation (10). This completes the proof.

Proposition 3. The Blockchain dApp is considered stable only if 𝑚 ≤ 1/𝑇′ .

Proof: :We prove the stability by induction that the number of transactions in the

Blockchain dApp ecosystem at any time has a upper bound if 𝑚 ≤ 1/𝑇′.

Transactions arrive according to a Poisson process at a constant mean rate of 𝑚

transactions per unit of time. And each transaction costs the average time 𝑇′. Therefore,

the number of transactions in the Blockchain dApp system at the time 𝑡 is denoted as

|𝒰(𝑡)| = |𝒰(0)| + 𝑡𝑚 − 𝑡/𝑇′, where |𝒰(0)| is the transaction size when 𝑡 = 0 In order to

keep this system stable, i.e., |𝒰(𝑡)| ≤ |𝒰(0)|, 𝑚 ≤ 1/𝑇′ If, on average, transaction

30

confirmation happen no slower than arrivals; otherwise, the transaction pool will grow

indefinitely larger, which is not practical in real-world Blockchain dApps.

C. The transaction fee density function and the Nash Equilibrium

In this section, we aim to examine how the transaction fee density 𝑓𝑖 should be

related to the value per unit of time 𝑣 (𝑣 is a variable) so that the Blockchain dApp

system has optimal properties. In other words, we want to know the necessary

restrictions on the transaction fee density function 𝑓𝑖(𝑣) such that the user initializing the

transaction 𝑢𝑖 with the value per unit of time 𝜐𝑖 can achieve the optimal payoff by setting

the transaction fee density as 𝑓𝑖(𝑣𝑖).

In this paper, we assume the number of users is given. Nothing has been said

about the optimal number of transactions to join the Blockchain dApp system. For

example, if no transaction the system, the cost for time and transaction fees is zero.

Since 𝑝𝑖
𝑢 = 1 and (9), each user with a given value per unit time 𝑣𝑖 solves the

following problem P2 to maximize the payoff ∏ .𝑢
𝑖

P2: max
𝑓𝑖

 𝑅𝑖
𝑢 − 𝑓𝑖(𝑙𝑖 + δ𝑙𝑖) −

𝑇𝑣𝑖

[1 − 𝑚𝑇′ + 𝑚𝑇′𝐵(𝑓𝑖)]2

The first order necessary condition is

−(𝑙𝑖 + δ𝑙𝑖) +
2𝑚𝑇′𝑇𝑣𝐵′(𝑓𝑖)

[1−𝑚𝑇′+𝑚𝑇′𝐵(𝑓𝑖)]3 = 0 (11)

31

by replacing the parameter 𝑣𝑖 with the variable 𝑣 , indicating that once 𝑃2 is

solved, the transaction fee density 𝑓𝑖 is dependent on the variable 𝑣.

Above equation defines a relation between 𝑓𝑖 and 𝑣 . Recall that 𝐵 is the

equilibrium cumulative distribution function of transaction fee densities, which is unknown

before all transaction fees reach the Nash Equilibrium. Moreover, users have self-

assigned values {𝑣𝑖, ∀𝑖 ∈ 𝒰} before participating dApps, and that the population of users

as a whole produces a probability distribution 𝐴. 𝐴(𝑥) is the proportion of users whose

value of time is no larger than 𝑥 and the derivative of 𝐴 is continuous. We replace 𝐵′(𝑓𝑖)

and 𝐵(𝑓𝑖) with equations of 𝐴′(𝑣)
 and 𝐴(𝑣), by guaranteeing the order

of 𝑓𝑖 is same as the order of 𝑣, i.e.,

 𝐵(𝑓𝑖(𝑣)) = 𝐴(𝑣). (12)

It follows immediately that

 𝐵′(𝑓𝑖)𝑓𝑖
′(𝑣) = 𝐴′(𝑣) (13)

Then, we substitute equations (12) and (13) into (11). We have

𝑓𝑖
′(𝑣) =

2𝑚𝑇′𝑇𝑣𝐴′(𝑣)

(𝑙𝑖+δ𝑙𝑖)[1−𝑚𝑇′+𝑚𝑇′𝐴(𝑣)]3 (14)

Therefore, the transaction fee density function is

𝑓𝑖(𝑣) = ∫
2𝑚𝑇′𝑇𝑣𝐴′(𝑣)𝑑𝑣

(𝑙𝑖+δ𝑙𝑖)[1−𝑚𝑇′+𝑚𝑇′𝐴(𝑣)]3

𝑣

0
 (15)

The remaining part is to get the maximum value per unit of time 𝑣𝑖 With 𝑣𝑖we

have Π𝑖
𝑢 = 0, therefore,

32

 (16)

We can get 𝑓𝑖(𝑣𝑖) from (15) by substituting 𝑣 with 𝑣𝑖. Combining this function and

(16), we can get the expression of 𝑣𝑖

Here is an example of how to get 𝑣𝑖 . Assume that 𝐴(𝑥) = 𝑘𝑥, ∀𝑥 ∈ [0, max{𝑣𝑖}𝑖]

where 𝐴(max{𝑣𝑖}𝑖) = 1, i.e.,𝑘 = 1/ max{𝑣𝑖}𝑖. Replacing 𝐴(𝑥) into (15) and solving it, we

can have

where K is the constant. It follows immediately that

Combined the above equation with (16), we have

which decreases as δ increases.

33

Theorem 4. Given on the revenue 𝑅𝑖
𝑢

, the transaction size 𝑙𝑖 and the value per unit of

time 𝑣𝑖 , the maximal payoff is 𝑚𝑎𝑥{0, 𝛱𝑖
𝑢(𝑓𝑖(𝑣𝑖))}. If 𝑣𝑖 ≤ 𝑣𝑖, the best strategy for

this user is to follow(15) specifically, 𝑓𝑖
∗ = 𝑓𝑖(𝑣𝑖) where 𝑓𝑖(⋅) is from(15); otherwise, he quit

the transaction 𝑢𝑖 since its payoff is negative.. If all users follow the above rule, then

these strategies form a Nash equilibrium.

Proof: First, it is necessary to show that (15) is the solution of the maximization problem

𝑃4. The second order derivative of the objective function is

∂2Π𝑖
𝑢

∂2𝑓𝑖
= 2𝑚𝑇′𝑇𝑣

Γ(𝑓𝑖)𝐵′′(𝑓𝑖) − 3𝑚𝑇′[𝐵′(𝑓𝑖)]2

[Γ(𝑓𝑖)]4
 (18)

where Γ(𝑓𝑖) = 1 − 𝑚𝑇′ + 𝑚𝑇′𝐵(𝑓𝑖). Using (11) to get expressions for 𝐵′(𝑓𝑖)

as following.

𝐵′(𝑓𝑖) =
(𝑙𝑖 + δ𝑙𝑖)[Γ(𝑓𝑖)]3

2𝑚𝑇′𝑇𝑣

And we take the derivative with respect to 𝑣 of the above equation.

After mathematical transformations, we have

𝐵′′(𝑓𝑖) = (
𝑙𝑖 + δ𝑙𝑖

2𝑚𝑇′𝑇
)

3𝑚𝑇′𝑣[Γ(𝑓𝑖)]2𝐵′(𝑓𝑖)𝑓𝑖
′(𝑣) − [Γ(𝑓𝑖)]3

𝑓𝑖
′(𝑣)𝑣2

Substituting above two equations into (18), we can get the second order

derivative with respect to 𝑓𝑖 where its corresponding first order derivative is 0:

∂2Π𝑖

𝑢

∂2𝑓𝑖
= −

2𝑚𝑇′𝑇𝑣𝐵′(𝑓𝑖)

𝑓𝑖
′(𝑣)[Γ(𝑓𝑖)]3 ≤ 0 (19)

34

Since 𝐵 is the cumulative distribution function, 𝐵′(𝑓𝑖) ≥ 0. Moreover, due to the

proposition 3 that 𝑚𝑇′ ≤ 1, we have 𝑓𝑖(𝑣) ≥ 0 and Γ(𝑓𝑖) ≥ 0. Therefore, (19) holds.

From above discussions, with the transaction fee density 𝑓𝑖(𝑣𝑖) derived from (15), the

user achieves the maximal value of his payoff.

For those users that he can achieve non-negative payoff from transactions, i.e.,

𝑣𝑖 ≤ 𝑣𝑖 if they follow (15), the payoff must be optimal because it has already been shown

in the first paragraph. Therefore, they will not shift from (15). For users whose optimal

payoff is negative i.e., 𝑣𝑖 > 𝑣𝑖, their best strategy is to quit, and they will not shift from

this strategy. Therefore, a Nash equilibrium is reached.

3.2.3 Stage I : Blockchain dApp Initiator’s Strategy

In this section, we study the Blockchain dApp initiator’s pricing policy δ in Stage I,

considering the prediction of users’ pricing in Stage II, and miners’ strategies in Stage III.

The Blockchain dApp initiator obtain δ times of the total transaction fee from

users and its payoff during the block time 𝑇 is

ΠI = δ ∑ (pj
t ∑(fili − Cli)

|Q|

i=0

)

N

j=0

where 𝐶 is the platform’s cost of per transaction. The best strategy of the

Blockchain dApp δ∗ can be obtained by solving the following problem 𝑃3

P3: max
δ

ΠI

35

According to users’ optimal pricing rule (15) and miner’s optimal strategy of hash

rate (6), 𝛿 can affect 𝑓𝑖, then influence 𝑝𝑗
𝑡, and thus determine ∏ .𝐼

The following part discusses the effect of 𝛿 on ∏ .𝐼 in detail. We have

∂𝑝𝑗

𝑡

∂δ
=

∂𝑝𝑗
𝑡

∂𝑓𝑖

∂𝑓𝑖

∂δ
= 0 since 𝑝𝑗

𝑡 =
ℎ𝑗

∑ ℎ𝑗𝑗∈𝒯
𝑒

−
∑ 𝑙𝑖

|𝑄|
𝑖=1
𝑇γ𝑐 = (1 −

(𝑁−1)η𝑗𝑇

∑ η𝑗𝑇𝑗∈𝒯
) 𝑒

−
∑ 𝑙𝑖

|𝑄|
𝑖=1
𝑇γ𝑐 by

substituting (6) into 𝑝𝑗
𝑡 Therefore, when there are at least |𝑄| transactions, we have

∂Π𝐼

∂δ
= ∑

𝑙𝑖

(𝑙𝑖 + δ𝑙𝑖)2

|𝑄|

𝑖=1

≥ 0

denoting ∏ 𝐼 increase as 𝛿 rises, when there are enough transactions.

Recall that 𝑣𝑖 decreases as 𝛿 rises. The larger 𝛿 leads to the smaller 𝑣𝑖 then

parts of users choose to quit once 𝑣𝑖 < 𝑣𝑖 and thus affect ∏ .𝐼 .

Algorithm 1 calculates δ∗ with which ∏ 𝐼 is maximized. Lines 2-3 compute the

maximum value δ𝑖 with which the user initializes the transaction 𝑢𝑖 and follows (6). Line 5

sorts 𝛿𝑖 with the decreasing order. With δ𝑖

′
 exactly 𝑖 transactions are initialized in the

system. In line 6, δ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[1,|𝑄|]Π𝐼 (δ𝑖

′
). This is due to when 𝑖 ∈ [|𝑄|, |𝒰|], Π𝐼 (δ|𝑄|

′
)

is maximal.

3.2.4 Stackelberg Equilibrium

Theorem 5: If the Blockchain dApp initiator follows the optimal service fee ratio 𝛿∗ in

section 4.3, users set their transaction fee densities as {𝑓𝑖
∗}𝑖 ∈ 𝒰 in section 3.2.2 and

miners set their hash rates as {ℎ𝑗
∗}

𝑗∈𝒯
 in section 3.2.1, the Blockchain dApp ecosystem

reaches a Stackelberg equilibrium.

36

Algorithm 1 The Algorithm of getting 𝛿∗

Input: {𝑙𝑖}, 𝐴, 𝑇, 𝑇′, 𝑚, {𝑣𝑖}, {η𝑗}, ℛ, |𝑄|

Output: 𝛿∗

1: for 𝑖 ∈ 𝒰 do

2: Solving 𝑣𝑖(δ) according to (15) and (16) ;

3: δ𝑖 equals to the value of δ such that 𝑣𝑖(δ) = 𝑣𝑖 ;

 4: end for

5: Sort {δ𝑖}𝑖∈𝒰
 as the decreasing order and denote them as δ

′
 ;

6: δ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈[1,|𝑄|]Π𝐼 (δ𝑖

′
)

37

Chapter 4 : Experimental Setup and Implementation

In this chapter, we first describe the developed experimental environment that

will be used to test the performances of the proposed system model.

4.1 Environmental Setup

Ethereum is an open blockchain platform that lets anyone build and use

decentralized applications that run on blockchain technology. Like Bitcoin, no one

controls or owns Ethereum – it is an open-source project built by many people around the

world. But unlike the Bitcoin protocol, Ethereum was designed to be adaptable and

flexible. It is easy to create new applications on the Ethereum platform, and with the

Homestead release [29]. We use Geth client to run our experiments. The go-ethereum

client is commonly referred to as geth, which is the command line interface for running a

full ethereum node implemented in Go [30].

We first set up the real blockchain mining experiment based on Ethereum and

consider a scenario with four miners as illustrated in the Figure below. We simulate the

established Stackelberg Equilibrium conditions in a blockchain environment through

Ethereum Client with 4 miners and 15 users who post the transactions.

The experiment is performed on a workstation with Intel Core i7-7820X CPU @

3.60GHz X16.

38

Fig 4-1. Workflow Setup

Official Geth client is modified to control the block size/number of transactions in

a block.

Docker is a computer program that performs operating-system-level

virtualization. Docker is used to run software packages called containers. Containers are

isolated from each other and bundle their own application, tools, libraries and

configuration files; they can communicate with each other through well-defined channels.

All containers are run by a single operating-system kernel and are thus more lightweight

39

than virtual machines. The following function is added to the Geth code in order to

override the gas limit, transactions per block, etc. [31]

Figure 4-2. This modified Geth client is wrapped in a docker image to run four containers as nodes connected in

a blockchain.

 Figure 4-3. Displays the 4 running containers in the docker.

40

Geth comes bundled with a Geth-console which runs JSRE (JavaScript runtime

environment) and provides cli-tools and various functionalities with it. It offers multiple

interfaces: the command line subcommands and options, a JSON-RPC server and an

interactive console[32]. All four nodes are connected through RPC web socket

connections using “admin.addPeer(enode)” command to form the P2P network. [33]

Figure 4-4. Displays the Geth JavaScript Console

To control the CPU resources of the containers, we use a Go-script which

updates whenever a round of mining a block gets over. This is the core function of the

go- script [34].

Figure 4-5. runDockerUpdate function is used before each round of mining

41

Figure 4-6. The CPU resources are updated in sync with the block generation like in the below figure.

The Stackelberg optimization runs as a process which takes certain parameters

from this blockchain environment and generates transactions for the 15 users with

optimal transaction fee density, hash rates and block size. These are then posted to the

Ethereum client through a Go program and required analytics are gathered. After each

block gets mined, the Stackelberg process reads the parameters from the blockchain

environment and send next set of transactions with miners’ hash rates/CPU ratios. This

process is continued for the complete duration of the experiment.

42

Figure 4-7. Displays the 15 users and the mining for different rounds

4.2 JavaScript functions in the Geth Console

The Geth console allows us to write JavaScript functions and sideload them all at

once using “loadScript”. For example -

loadScript('/some/script/here.js')

43

Few of the convenient scripts are:

1. newAccounts (number of users):

This script allows creating new account. It is used to create the 15 user accounts

in one function call.

function newAccounts(n) {

 for (var i = 1; i <= n; i++) {

 personal. newAccounts ("1234")

 }

};

2. unlockAll (number of users):

Unlocks all accounts. This is used to unlock all the accounts before any

transactions can be made.

function unlockAll(n) {

 for (var i = 1; i <= n; i++) {

 personal. unlockAccount (eth. accounts[i-1],

"1234")

 }

};

3. allBalances ():

Checks the balances of all accounts. All accounts and their ether balance is

displayed.

44

function allBalances () {

 var totalBal = 0;

 for (var acctNum in eth. accounts) {

 var acct = eth. accounts[acctNum];

 var acctBal = web3.fromWei(eth. getBalance(acct),

"ether");

 totalBal += parseFloat(acctBal);

 console.log (“eth. accounts [" + acctNum + "]: \t"

+ acct + " \tbalance: " + acctBal + " ether");

 }

 console.log (“Total balance: " + totalBal + " ether");

};

4. getFreq(lowerlimit, upperlimit):

This is used to get the number of blocks mined by each user. During the mining

process, many empty blocks do get generated, so the above function is used to

filter only the blocks with transactions for each miner.

function getFreq(input1, input2){

 var m1 = 0;

 var m2 =0 ;

 var m3 =0;

 var m4 =0;

 miner_freq = new Array();

45

 for (var i=input1; input1<=input2; input1++){

 var transLen =

eth.getBalance(input1).transactions.length

 if (transLen>0){

 var ff = eth.getBlock(input1).miner;

 miner_freq.push(ff);

 }

 var len = miner_freq.length;

 for(var j=0;j < len; j++){

 if(miner_freq[j] ==

"0x7a34bc752c01209e71cf6b7b8264c27f9e70e84d")

 m1 = m1 + 1;

 if(miner_freq[j] ==

"0xe55d2f474e3254aa6f93fc8ef93d240e19e5cd40")

 m2 = m2 + 1;

 if(miner_freq[j] ==

"0xf91b66e17e7ef2df0fcb53fbee850e0ace4222aa")

 m3 = m3 + 1;

 if(miner_freq[j] ==

"0x8283176e72d7878466ca7b57a61044b8cc586374")

 m4 = m4 + 1;

}

console.log("miner1 "+m1);

console.log("miner2 "+m2);

console.log("miner3 "+m3);

46

console.log("miner4 "+m4);

};

4.2.1 Auxiliary functions in the Geth Console

Additional details for a few auxiliary functions used with geth console are:

I. Eth.blocknumber - gets the latest block on the node

II. Txpool.status – gets the status of the transaction pool on the node

III. Miner.getHashRate() – gets the current hash rate of the miner

IV. Eth.getBlock(blockNumber) – gets the content of the block

V. Net.peerCount – number of peers node is connected to.

VI. Admin.nodeInfo.enode – gets the enode string of the node

Table 4-1 System Parameters used in the experiment

47

Chapter 5 : Analysis and Evaluation

This chapter provides various evaluation results and their discussion.

5.1 Hash Rate Ratio of miners vs probability of successful mining

 We use 11 different experimental settings, with miner 1’s hash rate ratio

increasing from 0.01 to 0.91, while other miners’ hash rate ratios are decreasing from

0.33 to 0.03. 100 nonempty blocks are mined for one experiment settings and we repeat

10 times.

Figure 5-1. Hash Rate Ratio of Miner 1 (a), Miner 2 (b), Miner 3 (c) and Miner 4 (d) vs the probability of

successful mining 𝑝𝑗
𝑡

 The comparison of the real experimental results and our proposed analytical

model is show in Figure 5-1. As expected, there is not much difference between the real

results and our analytical model. For example, in Figure 2(a), when hash rate ratio of

miner 1 is 0.01, its experimental probability of mining successfully 𝑝𝑗
𝑡 is about 0.05. As the

48

hash rate ratio of miner 1 increases to 0.91, 𝑝𝑗
𝑡 rises to 0.75. The line of the model 𝑝𝑗

𝑡

shows a similar trend. It increases from 0.1 to 0.7 with the hash rate ratio increasing from

0.01 to 0.91. Figure 5-1(b), 5-1(c) and 5-1(d) also show an increasing trend of 𝑝𝑗
𝑡 as the

hash rate ratio increases, both in experimental results and the model. This is because the

probability that the miner successfully mines the block is directly proportional to its relative

computing power when the block sizes are identical. Similarly, the trend of miner 2, miner

3 and miner 4 are identical, since their hash rate ratios are same.

5.2 Transaction fee density (ether) for Transaction 1 and Transaction 14 vs

the waiting time

 To validate our proposed model of waiting time (9), we set 21 different

experiment settings, with transaction 1’s transaction fee density 𝑓1 increasing from 0 to 5

ethers with the interval 0.25, while other 14 transactions’ transaction fee density are

uniformly distributed among [0, 5]. The number of transactions in each block is 4. We

conduct 6 times for each experiment setting.

49

 Figure 5-2 Transaction fee density (ether) for Transaction 1 and 14 vs the waiting time 𝑡𝑖 in seconds

 The comparison of experimental results of the waiting time among

transaction 1 and another randomly selected one: transaction 14 is depicted in Fig 5-2.

 We notice that the waiting time of transaction 1 is about 30s, even though its

transaction fee density is 0. This is because we set the mining difficulty as 0x00 when

setting up the ethernet chain. Also, we can see a decreasing trend of 𝑓1 in Figure 5-2(a)

as expected, from 30s to 15s which is because transaction 1’s transaction fee density

rises, and thus the portion that is larger than 𝑓1 decreases. There is an increasing trend of

𝑓14 in Figure 5-2(b), from 7.5s to 10s. This is because transaction 1’s fee density is

increasing, and thus the portion that is larger than 𝑓14 rises.

50

5.3 Comparison between real experiment and model for transaction fee

density vs waiting time

Figure 5-3. Transaction fee density of Transaction 1 and 14 vs waiting time 𝑡𝑖 for the model and real

experiment.

 We compare experimental results of the average waiting time with the

model of (9) in Figure 5-3. We can see there is not much difference between the real

results and our analytical model, even though the average waiting time fluctuates a lot.

For example, the average waiting of transaction 1 is decreasing from 18.2s to 7s, as

transaction 1’s fee density increases from 0 to 5, while other transactions’ fee densities

is kept same. This is due to waiting time of a transaction is directly related to the portion

that is larger than its transaction fee density.

51

5.4 Numerical Results

 To illustrate the impacts of different parameters from the proposed model

on the performance. System parameters are set as Table 1. Notice that some of these

parameters are varied according to the evaluation scenarios.

1) The impact of the number of transactions in each block |𝑸|:

 Figure 5-4. Three parties’ strategies vs no. of transactions in each block

 From Figure 5-4, we find that the service fee ratio δ decreases with the

increase of the number of transactions in each block. For example, when |𝑄| equals

to 1, its service fee ratio δ is 3.59. As |𝑄| increases to 15, 𝛿 decreased to 0.95. This

is because the dApp initiator’s optimal revenue from one block is fixed (other system

parameter is fixed). When the number in a block rises, the initiator can still achieve

this optimal revenue through lowering its service fee ratio.

 Next, we see that for transaction fee density there is a decreasing trend.

This is because when the number of transactions in a block is larger, the competition

52

among transactions is reduced. In this way, users do not need to set high

transaction fee density to rise its competitive power.

 Next, we see that the hash rate ratio is not affected by the number of

transactions. For example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio

is 0.31, the hash rate ratio of miner 3 and miner 4 are same, i.e., 0.08. This is

because the block size for all miners is identical, i.e., |𝑄| , η1 = 2 × 10−4, η2 =

3 × 10−4, η3 = η4 = 4 × 10−4 .In this scenario, miners’ hash rate ratio is directly

related with η𝑗.

2) The impact of the transactions’ arriving speed 𝒎:

Figure 5-5. Three parties’ strategies vs transaction’s arriving speed 𝑚

 We evaluate the impacts brought by the number of arriving transactions

in a unit of time to three parties’ strategies, and the results are shown in Figure 5-5.

 We find that the service fee ratio 𝛿 decreases with the increase of the

number of arriving transactions in unit of time. For example, when 𝑚 equals to 10, its

service fee ratio 𝛿 is 0.96. As 𝑚 increases to 120, 𝛿 decreased to 0.35. This is

because more transactions arrive in the dApp system, the dApp initiator can get the

53

optimal revenue through setting lower service fee, given that the dApp initiator’s

optimal revenue from one block is fixed (other system parameter is fixed).

 Next, we see that there is an increasing trend of transaction fee density.

This is because when the number of transactions in a block is larger, the competition

among transactions is increased. In this way, users need to set high transaction fee

density to raise their competitive power.

 Next, we see that the hash rate ratio is not affected by the number of

transactions. For example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio

is 0.31, the hash rate ratio of miner 3 and miner 4 are same, i.e., 0.08. The reason

for this is same as mentioned above.

3) The impact of the block time 𝑻:

Figure 5-6. Three parties’ strategies vs block time

 We evaluate the impacts brought by the block time 𝑇 to three parties’

strategies, and the results are shown in Figure 5-6.

 We find that the service fee ratio 𝛿 decreases with the increase of the

number of arriving transactions in unit of time. For example, when 𝑇 equals to 1, its

service fee ratio 𝛿 is 0.98. As 𝑇 increases to 10, 𝛿 decreased to 0.21. This is due to

the fact the block time is longer, the revenue of users for a confirmed block is less

54

(the waiting cost is larger because the cost is positive which is related with 𝑇). To

attract more users (transactions), service fee ratio should be smaller.

 Next, we see that there is an increasing trend of transaction fee density.

This is because the competition among transactions is increased since more

transactions arrives during a block time. In this way, users need to set high

transaction fee density to raise their competitive power.

 The hash rate ratio is not affected by the number of transactions. For

example, miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio is 0.31, the hash

rate ratio of miner 3 and miner 4 are same, i.e., 0.08. The reason for this is same as

mentioned above.

4) The impact of the block reward 𝑻:

Figure 5-7. Three parties’ strategies vs block reward

 We evaluate the impacts brought by the block reward 𝑇 to three parties’

strategies, and the results are shown in Figure 5-7.

 We find that three parties’ strategies are not related to the block reward.

For example, service fee ratio 𝛿 keeps 0.82 with the block reward varying from 1 to

10. The transaction fee density is 0.9995, 1.0013, 1.001, 1.0016, 1.0021 respectively

for transaction 1, transaction 4, transaction 7, transaction 10 and transaction 13.

55

miner 1’s hash rate ratio is 0.52, miner 2’s hash rate ratio is 0.31, the hash rate ratio

of miner 3 and miner 4 are same, i.e., 0.08. This is because users’ and the dApp

initiator’s utility function has no relationship with the block reward and miners’ hash

rate ratio is only related with their cost per hash rate η𝑗 in our mechanism.

56

Chapter 6 : Conclusion

 In this thesis, we have investigated the utility-based strategy choice

instruction, for supporting dApp to work efficiently in proof-of-work based public

blockchain networks. We have adopted the three-stage Stackelberg game model to

jointly study the utility maximization of the dApp initiator, users and the miners. Through

backward induction, we have derived the unique Nash equilibrium point of the game. The

existence and uniqueness of the Stackelberg equilibrium has been proved analytically.

We have performed extensive experiments to validate the proposed analytical model.

Moreover, we have conducted numerical simulations to evaluate the network

performance, which provide insights for the dApp initiator to choose suitable system

parameters.

57

Chapter 7: References

[1] Seppälä, J., 2016. The role of trust in understanding the effects of blockchain on

business models.

[2]https://brage.bibsys.no/xmlui/bitstream/handle/11250/2472245/17527_FULLTEXT.pdf?

sequence=1&isAllowed=y

[3] https://ieeexplore.ieee.org/document/8466786

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Self-published Paper,

May 2008, [Online]. https://bitcoin.org/bitcoin.pdf.

[5] Ziyao Liu, Nguyen Cong Luong, et al,”A Survey on Applications of Game Theory in

Blockchain”, Mar 2019

[6] H. von Stackelberg, Market Structure and Equilibrium: 1st Edition Translation into

English, Bazin, Urch & Hill, Springer 2011, XIV, 134 p

[7] https://en.wikipedia.org/wiki/Stackelberg_competition

[8] (2018) Blockchian dapps. [Online]. Available: https://blockchainhub. net/decentralized-

applications-dapps/

[9] (2018) Decentralized application wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Decentralized application

[10] S. Raval, Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology. ”

O’Reilly Media, Inc.”, 2016.

[11] (2018) Bittorrent. [Online]. Available: https://www.bittorrent.com/

[12] (2018) Popcorn time. [Online]. Available: https://popcorn-time.to/

[13] (2018) Bitmessage. [Online]. Available: https://bitmessage.org/wiki/ Main Page

[14] (2018) State of the dapps. [Online]. Available: https://www.stateofthedapps.com/

58

[15] (2018) Whitepaper of cryptokitties. [Online]. Available: https://drive.

google.com/file/d/1soo-eAaJHzhw XhFGMJp3VNcQoM43byS/view

[16] (2018) Top 5 ethereum dapps. [Online]. Available: https://www. coindesk.com/top-5-

ethereum-dapps-daily-active-users

 [17] (2018) Mining in ethereum. [Online]. Available: https: //ethereum-

homestead.readthedocs.io/en/latest/mining.html

[18] (2018) Proof of work vs proof of stake. [Online]. Available: Available:

https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

 [19] (2018) Transaction size. [Online]. Available: https://bitzuma.com/posts/ making-

sense-of-bitcoin-transaction-fees/

 [20] (2018) Mining in ethereum. [Online]. Available: https://ethereum-

homestead.readthedocs.io/en/latest/mining.html

[21] R. Bowden∗, H.P. Keeler∗, A.E. Krzesinski† and P.G. Taylor∗ : “Block arrivals in the

Bitcoin blockchain”,Jan 2018

[22] J. Kang, Z. Xiong, D. Niyato, P. Wang, D. Ye, and D. I. Kim, “Incentivizing consensus

propagation in proof-of-stake based consortium blockchain networks,” IEEE Wireless

Communications Letters, 2018.

[23] P. R. Rizun, “A transaction fee market exists without a block size limit,”

Block Size Limit Debate Working Paper, 2015.

[24] Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, “Auction mechanisms in

cloud/fog computing resource allocation for public blockchain networks,” arXiv preprint

arXiv:1804.09961, 2018.

[25] G. Debreu, “A social equilibrium existence theorem,” Proceedings ofthe National

Academy of Sciences, vol. 38, no. 10, pp. 886–893, October 1952

59

[26] R. D. Yates et al., “A framework for uplink power control in cellular radio systems,”

IEEE Journal on selected areas in communications, vol. 13, no. 7, pp. 1341–1347, May

1995.

[27] F. T. Lui, “An equilibrium queuing model of bribery,” Journal ofpolitical economy, vol.

93, no. 4, pp. 760–781, Aug 1985.

[28] J. D. C. Little, “A proof for the queuing formula l = λw,” Operations

Res, vol. 9, no. 7, pp. 383–387, May 1961.

[29] http://ethdocs.org/en/latest/introduction/what-is-ethereum.html.

[30] http://ethdocs.org/en/latest/ethereum-clients/go-ethereum/index.html#go-ethereum

[31] https://en.wikipedia.org/wiki/Docker_(software)

[32] https://www.ethereum.org/cli

[33] https://github.com/ethereum/go-ethereum/wiki/Connecting-to-the-network

[34] https://docs.docker.com/config/containers/resource_constraints/

60

Chapter 8: Biographical Information

Vaibhav Soni was born in Rajasthan, India in 1994. He had received his B.E in Computer

Science and Engineering from PES- School of Engineering, Visveswaraya Technological

University, Bangalore, India in 2017. He graduates from The University of Texas at

Arlington, Arlington, Texas in May 2019 with Master of Science in Computer Science. He

has worked as a Software Developer Intern at ClearBlade Inc. Austin, Texas and aspires

to work at a leading tech company as a Software Engineer.

