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ABSTRACT 

METHODOLOGY TO DEVELOP ARTIFICIAL NEURAL NETWORK  
BASED CONTROL STRATEGIES FOR MULTIPLE AIR-COOLING UNITS  

IN A RAISED FLOOR DATA CENTER 
 

Vibin Shalom Simon, M.S.  
 

The University of Texas at Arlington, 2019 
 

Supervising Professor: Dereje Agonafer  
 

A data center consists of a hierarchy of systems with dedicated control algorithms 

dictating their operational states. We could say, there exists an ensemble of dynamical 

systems, each executing a control task, while the global objective is to drive the overall system 

to an optimum i.e. minimum total operational power at desired rack inlet temperatures. The 

dynamics of the Information Technology Equipment (ITE) workload and the cooling 

provisioning is non-linear in spatial and temporal parameter space. Data-driven modelling is 

one method to realistically model such non-linear dynamics and make predictions that are 

necessary for improved control design of the cooling system.  

In this study, the data center non-linear dynamics are approximated by well-defined 

operational scenarios. Multiple ACU’s are to be optimally controlled in provisioning a varying 

rack-level workload within the data center. CFD tool 6SigmaRoom is used to model and 

simulate a raised-floor data center with multiple Air-Cooling Unit (ACU)s. The input parameter 

space and boundary conditions to be applied to the simulations are sampled on a random basis 

using the Latin Hypercube Sampling technique. Artificial Neural Network (ANN) is a suitable 

data driven technique that has the ability to capture the non-linear relationships between the 

dynamic operation of ACU’s setpoints and the ITE’s workload. Training data is obtained from 

the results and observations of a large number of parametric CFD simulations. An objective 

function is defined. ANN model is developed to predict the parameters that are necessary in 

designing a data-driven control framework. 
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CHAPTER 1 
 

INTRODUCTION TO DATACENTER FACILITY 
 

 
Data centers are buildings built primarily for housing Information Technology 

Equipment (ITE) and provide power and cooling. As computing power skyrockets, modern data 

centers are beginning to experience higher concentrated heat loads. The demand on data 

center facilities is ubiquitous with the increasing requirement for record databases, internet-

based services, and cloud-based services from workspace storage to on-demand media 

streaming. Technological advancement and price erosion enabled high growth rate of 

electronic packaging [1]. Recent study claims that in the year 2014, 2% of the total energy 

consumption in United States are due to data centers (estimated 70 billion kWh) [2]. A large 

data center at an industrial-scale operation uses as much electricity as a small town in the 

United States. 

 

Figure. 1.1 Facebook Datacenter room 
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“If we could find a way to address the data center cooling design issues, we would be 

helping the environment and providing millions in savings for companies” said Dr. Dereje 

Agonafer. 

Management of the data center cooling infrastructure is essential to ensure IT system 

reliability, up-time, and operating conditions for optimum performance. The magnitude of 

electrical power consumption by the cooling infrastructure varies widely, depending on 

operating conditions, workload, data center design and their age. Cooling power consumption 

in the region of 30 – 50 % of total facility power have been reported [3]. Effective air 

distribution and provisioning of ITE will have a significant impact on energy consumption and 

equipment reliability. 

The energy used by a typical rack of state-of-the art servers, consuming 20 KW of power 

at a cost of 12 cents per kWh is more than $21,000 per year in electricity. Data centers holding 

hundreds of such racks constitute an energy-intensive building. Essentially, efforts to improve 

energy efficiency in data centers can pay big dividends [4].  

 

Figure 1.2 Datacenter power consumption 
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‘You can't manage what you don't measure’ is a common mantra that is still accurate 

today. However, the cooling is generated and distributed by various systems, but airflow 

management is a key to optimum cooling of ITE and corresponding energy consumption. 

Optimizing the delivery of cool air and the removal of heat generated by the ITE can involve 

many design and operational practices. The general goal is to minimize or eliminate 

inadvertent mixing between supplied air to the ITE and hot air removed from it. A simple 

approach for addressing this problem is to use "hot aisle and cold aisle" arrangements where 

racks of computers are stacked with the cold inlet sides facing each other and similarly the hot 

outlet sides facing each other. Hot-aisle containment is one method to maintain the cold air 

supplied to the racks as generated by the cooling unit so that they are evenly distributed 

throughout the ITE without significant change in the temperature or humidity [4].  

 

Figure 1.3 Design and layout of Datacenter room 

 

To the author’s knowledge, multiple Computer Room Air Control (CRAC) units respond 

altogether increasing cooling power to provision a localized hotspot which result s in excessive 
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cooling for other ITEs. The unnecessary cooling expenditure can be cut down by establishing a 

new strategy that could involve a particular CRAC unit or a combination of those to provision 

any localized hotspot. CRAC power dependency on operating temperature may be considered 

as a characteristic of the cooling strategy architecture. Knowing the fact that ITE workload 

fluctuation results in time-based temperature variation, the cooling unit also requires a certain 

time interval to respond to the scenario and make changes to address the situation. 

Data center Facilities are of various types in terms of design, layout, ITE workload 

distribution and cooling strategies. Our data center design is chosen based on the literature 

survey from small-scale raised-floor data centers having indoor Computer Room Air Control 

(CRAC) Unit and hot aisle containment. The necessity of this design is to intentionally use the 

CRAC unit to provision localized hotspots created by specific ITE so that the cooling power 

consumption can be optimized based on the need. The Data center room does not involve 

Power distribution units, cables, pillars, exhaust vents and other supplementary equipment 

used since they are considered insignificant in this study.  

To optimize the power usage of the data center we predict the configurations which 

leads to optimum operation and implement efficient power usage strategies. Commercial CFD 

software 6SigmaRoom provided by Future Facilities is used to model and simulate the 

operation of a data center. The main drawback of these softwares is that they need expertise 

in modeling and take ample amount of time to produce the results for steady state/transient 

conditions. Since data centers are dynamic, CFD cannot be used to produce real-time results 

to improve the power usage. Instead, machine learning tools like Artificial Neural Network 
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(ANN) is used to learn and mimic the behaviour of the data center operations and predicts 

results in short span of time thereby implementing power usage strategies in real-time 

scenarios. In our case the training dataset is generated by the CFD model having various 

configurations of cooling strategies for multiple Air-cooling units. The data driven model 

learns the non-linearity of physics-based systems and predicts parameters used to frame a 

cooling strategy. The ANN is trained until it delivers the least error such that its prediction can 

be validated using the existing data center facility.  

After observing various configurations and types of data center we came up with a 

model that is predominantly used in a regular sized data center. To explain the model, we 

purposefully arranged the racks and Air- cooling units in such a way that provisioning the ITE 

is visualized and quantified for various hotspot scenarios.  

The description of the data center modeled in CFD software is given below in table 1. 

 
Table. 1.1 Datacenter Design & Room specifications 

 

Raised Floor Hot Aisle Contained Data Center 

Total Room Capacity 300 KW 

No. of racks per row 12 

No. of Rows 3 

Power density per rack 8.4 (max.) 

Cooling system 3 Air cooling Units (ACU) of 120 KW max. sensible cooling 
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Figure 1.4 Design and layout of Datacenter room 

 
 The data center is modeled using the CFD software provided by Future Facilities, 

6SigmaRoom. It is a robust and powerful tool to perform room level and component level 

analysis where it considers ITE as a whole component and has basic operational parameters 

required for room level cooling and a detailed model of ITE to perform intricate analysis when 

designing at component level.  Various features apart from the above mentioned, helps us a 

lot to minimize the complexity of the data center model. In the next chapter, I will be discussing 

the CFD analysis, results and generation of datasets.  
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CHAPTER 2 

COMPUTATIONAL FLUID DYNAMICS ANALYSIS & RESULTS 

 
 CFD analysis is carried out using 6SigmaRoom with the model showed in Figure.1.2. 

Boundary conditions, initial conditions and the types of analysis carried out is discussed in this 

chapter. Initially the datacenter room layout is created followed by the components namely, 

ceiling, raised-floor, cabinet, ITE, air-cooling unit (ACU), hot aisle containment, sensors.  

The Datacenter is designed with a 2ft raised-floor design containing 36 racks, 12 racks 

per row provisioned by 3 ACUs. Ceiling is built at 14ft from the floor for the hot air to escape 

from the hot aisle containment to the return duct of the ACU. Solid obstructions are built from 

the hot-aisle containment to the vents in the ceiling to direct the hot air upwards. Similarly, 

the obstructions are built to direct the air from the ceiling to the return duct of the ACU. Floor 

grills of size (2 x 2) ft2 with 50% dampers are arranged in-line in front of the rack inlet to direct 

the cold-air upward. 

 

Figure 2.1 Datacenter room model 
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ITE DISTRIBUTION & SPECIFICATION 
 

Each rack is filled to its capacity with 1U servers of 200 W, a total of 42 servers per rack. 

Typical air leakages of 5% is set to all the racks. Workload is distributed equally through all the 

servers, typical load of 40 W per ITE is given at idle conditions and 180 W per ITE is given at 

peak usage conditions. The above parameter is one of the boundary conditions used in the 

simulation. The server used for modeling and  analysis is HP SE1120 which has an outflow 

pressure curve measured using experimental analysis using Air-Flow bench.[BG] 

 

Figure 2.2 Rack with 1U servers and 3 temperature sensors (white sphere)  

 

The outflow pressure curve denotes the pressure difference across the ITE during its 

operation at various modes or workloads. It has an indirect relation with the cooling system 

performance. ITE power is time dependent and is set to a range of values for different 

scenarios.  
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Figure 2.3 Outflow Pressure Difference vs Air flow rate 

 

AIR-COOLING UNIT CONTROL STRATEGIES 

ACU uses chilled water-cooling system where the primary coolant is the water supplied 

from the chiller. The reference air i.e. Return air from the ITE is passed through the cooling 

coils to cool down to the required temperature. Supply temperature and flowrate variation is 

determined based on the thermal energy consumption equation embedded in the CFD 

software. 

Q = m*Cp*dT 

Q – Energy consumed by the Air-cooling unit  

m – mass flowrate of the air 

Cp – specific heat capacity of the air 
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dT – change in temperature of the air (Treturn – Tsupply) 

Weighted average of ITE outlet temperature sensor values based on % of influence is 

taken as Treturn for the power consumed by the ACU. Supply temperature setpoint is set at 

16oC such that the temperature rise depends on the given ITE power. The blower speed for 

the ACU fans are varied for every iteration for capturing different scenarios for same 

boundary conditions. 

CRAC unit dimensions and specifications are modeled according to Liebert CW 114, 

ACU built by Vertiv cooling technologies. Major ACU design parameters are listed below: 

Total sensible cooling capacity: 114 KW 

Max. coolant flow rate: 6 Gallons/minute 

Supply air flowrate range: 0 – 17,300 CFM 

 

Figure 2.5 Liebert CW-114 Air-Cooling Unit 
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Two CFD analysis were carried out, one to visualize the zone of influence of the CRAC 

units in provisioning the ITEs and the other to calculate the power consumed by the CRAC 

units in various scenarios.  

ZONE OF INFLUENCE ANALYSIS 
 

ACUs supply air to the room through underfloor plenum and reaches the racks in a 

random fashion. To visualize and understand the influence of an ACU over the rack we try to 

simulate a steady state analysis with set boundary conditions given below. 

Boundary conditions: 

ACU Blower Speed: 90 % (15,570 CFM) 

ACU Supply temperature: 150C 

ITE Power/server: 180 W  

 Once the spatial locations of the racks are found having maximum influence               

(75–100%) of every ACU those racks are kept as targets. Power given to the targeted ITE is 

ramped up for a certain interval of time and back to idle condition. To address the increased 

load on ITE the corresponding ACU responds based on the change in outlet temperature 

sensor. Since all the ACUs respond together for minimal change in the workload, we forcibly 

allow only one ACU to respond to the hotspot.  
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Figure 2.6 Zone of Influence of ACU-1 

  

From steady state analysis, ACU-1 has the highest influence on the racks at spatial 

location-1. The racks at spatial location-1 is given increased workload for a certain interval of 

time and ACU-1 is forced to respond to the scenario while the other ACUs are constantly 

working at providing cooling to other racks. By doing so, we can find the energy consumed by 

ACU-1 to provision the targeted rack. 

Similarly, the model is analyzed for a set of scenarios according to the corresponding 

influence of ACUs. To address the variability several combinations of hotspot scenarios were 

created to generate training datasets for the neural network model. The following two figures 

show the influence of ACU-2 and ACU-3 on the respective racks. 
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Figure 2.7 Zone of influence of ACU-2 

 

 

 
 

Figure 2.8 Zone of influence of ACU-2 
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Ramping up the IT load and using temperature dependent control for the ACU is one 

such strategy modeled. Datasets are generated by collecting data from a set of simulations run 

using PAC study in 6SigmaRoom. 

 

DESIGN OF EXPERIMENTS 
 
 The objective function of this study is to capture the non-linearity of the physical 

phenomenon in the data center. A methodology for choosing the input parameter space out 

of ‘N’ number of measurable parameters is carried out using Latin hypercube sampling(LHS), a 

statistical technique where the domain of interest is filled with samples portraying the 

variability shown in original data.  

The multi-dimensional parameter space should be space-filling and non-collapsing [5]. 

Computational simulations are deterministic in nature and are not prone to the uncertainties 

inherent in experimental methods; hence, it is critical that the input parameter space is 

determined using a random sampling technique to avoid any bias and introduce required 

variability in the training data for neural networks. Latin hypercube sampling (LHS) [6], a 

statistical method for generating a near-random sample of parameter values from a 

multidimensional distribution, ensures that the ensemble of random numbers is 

representative of the real variability. 
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INPUT PARAMETER SPACE 

Boundary conditions 

ACUs: Fixed blower speed for all ACUs depending on the ITE load (50%,70%,90%) 

IT Equipment:  

Set the range for IT Load Factor: 50-90%  

Power ratio (CFM/W) based on max. temperature rise of 100 C: 0.30 CFM/W 

Rack: Location of the targeted rack (1,2,3) & ITE load step (2 KW) 

Using Latin hypercube sampling from a range of parameters, the input parameter space 

is generated to provide the maximum variability in the CFD simulation. The CFD model is run 

for different combinations of inputs to generate training datasets. Python is used to generate 

the type of parameter, bounds and constraints to have a space filling design. Based on Latin 

hypercube sampling from known parameter values and resolutions, the input parameter 

space is defined for different combinations for 27 CFD simulations.  

Inputs for the CFD simulations given are: Time based ITE Load, Spatial Location of 

targeted ITE, power ratio set for the ITE.  

Time varying Outputs from the CFD simulations obtained are cooling power 

consumption of all three ACUs in different scenarios, ACU blower speed. 
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Table 2.1 Input parameter space 

The two functions that govern the control parameters are as follows: 

1. ACU Blower Speed = f(ACU number , Spatial Location, Outlet Temperature, IT Load) 

2. ACU Cooling power = f(ACU number , Spatial Location, Supply temperature, IT Load) 

These two equations are captured mathematically by neural networks to predict the ACU 

number, blower speed and cooling power consumption. 
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CHAPTER 3 
 

INTRODUCTION TO MACHINE LEARNING AND ITS TOOLS 
 

 
Machine learning is well-suited for the DC environment given the complexity of plant 

operations and the abundance of existing monitoring data. The modern largescale DC has a 

wide variety of mechanical and electrical equipment, along with their associated setpoints 

and control schemes. The interactions between these systems and various feedback loops 

make it difficult to accurately predict DC efficiency using traditional engineering formulas [7]. 

For example, a simple change to the cold aisle temperature setpoint will produce load 

variations in the cooling infrastructure (chillers, cooling towers, heat exchangers, pumps, 

etc.), which in turn cause nonlinear changes in equipment efficiency. Ambient weather 

conditions and equipment controls will also impact the resulting DC efficiency. A machine 

learning approach leverages the plethora of CFD simulation data to develop a mathematical 

model that understands the relationships between operational parameters and the holistic 

energy efficiency. 

The sheer number of possible equipment combinations and their setpoint values 

makes it difficult to determine where the optimal efficiency lies [10]. Using standard formulas 

for predictive modeling often produces large errors because they fail to capture such complex 

interdependencies. Data driven models are the best methods that can completely represent 

a non-linear physics-based scenario in mathematical form so that we can train neural network 

models to learn and predict the desired parameters to meet the needs.  
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A neural network is selected as the mathematical framework for training DC energy 

efficiency models. Neural networks are a class of machine learning algorithms that mimic 

cognitive behavior via interactions between artificial neurons [8]. They are advantageous for 

modeling intricate systems because neural networks do not require the user to predefine the 

feature interactions in the model, which assumes relationships within the data. Instead, the 

neural network searches for patterns and interactions between features to automatically 

generate a best-fit model.  

 

ARTIFICIAL NEURAL NETWORKS 
 

 
ANN is a machine learning tool which works on the same principle as the neurons in the 

human brain does. It acts as a black box model and learns the input & output data using 

mathematical tools and uses a percentage of the same dataset to train, validate and test. ANN 

comprises of a large network of neurons or nodes similar to the neurons in the brain which 

stores the intermediate values to calculate data which are not present in the training dataset.  
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Figure 3.1 Structure of ANN 

ANN ALGORITHM 
 

 
Artificial neural network model training can be broken down into five steps: 

1. Initialize random input parameters  

2. Implement the forward propagation algorithm  

3. Compute the cost function J(θ)  

4. Implement the back-propagation algorithm  

5. Repeat steps 2-4 for several iterations until the test data produces least error [8].  
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RANDOM INITIALIZATION 
 

 
Random initialization is the process of randomly assigning θ values between [1,1] 

before starting model training. The inputs into each successive layer in the neural network 

would then be identical, since they are multiplied by θ . Furthermore, since the error is 

propagated backwards from the output layer through the hidden layers, any changes to the 

model parameters would also be identical [8]. We therefore randomly initialize θ with values 

between [1,1] to avoid the formation of unstable equilibriums [8]. 

 

FORWARD PROPAGATION 
 

Forward propagation refers to the calculation of successive layers, since the value of 

each layer depends upon the model parameters and layers before it. The purpose of the 

activation function f(x) is to mimic biological neuron firing within a network by mapping the 

nodal input values to an output within the range (0, 1).  

It is given by the sigmoidal logistic function:  

       

 

Figure 3.2 Sigmoid Activation Function 
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It calculates the errors between calculated output and sample output data and uses this 

to create an adjustment to the weights, thus implementing a form of gradient descent. 

 

COMPUTING COST FUNCTION 
 

 
The cost function J(θ) serves as the quantity to be reduced with each iteration during 

model training. It is typically expressed as the square of the error between the predicted and 

actual outputs. For linear regression problems, the cost function can be expressed as: 

 

where hθ(x) is the predicted output, y is the actual data corresponding output variable 

of interest, m is the number of training examples per feature, L is the number of layers, and n 

is the number of nodes [8]. The regularization parameter λ controls the tradeoff between 

model accuracy and overfitting [9].It calculates the errors between calculated output and 

sample output data and uses this to create an adjustment to the weights, thus implementing 

a form of gradient descent 

BACK PROPAGATION 
 

After computing the cost function J(θ) , the error term δ is propagated backwards 

through each layer to refine the values of θ. The error for the output layer is defined as the 

difference between the calculated output hθ(x) and the actual output y 
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ANN TRAINING & VALIDATION 
 

Using datasets from the CFD simulations ANN is trained to predict the desired outputs 

that can allow us to frame a control strategy for the provisioning the ITE running under various 

workload scenarios. 70% of the dataset is used for training the neural network, the remaining 

30% used for cross validation and testing. Data pre­processing such as sampling and data 

filtration is done using Python (PyCharm by JetBrains) in conjunction with the NumPy module. 

MATLAB R2019a was used for neural network model training, validating, testing and 

post­processing. 

In our study, the input parameters for the ANN are chosen in such a way that they can 

be measured directly from the data center facility. The probability of error is negligible. The 

list of input parameters for the ANN model are listed as follows: 

1. ACU number  

2. Spatial location of the targeted rack  

3. Pressure difference across the rack (Pa) 

4. Temperature at the outlet of the rack (0C) 

5. Rack IT Load (W) 

The output parameters of the ANN model are considered in a way such that it is used 

to develop a control strategy that will help in regulating the cooling power of each ACU and 

the blower speed.  

The output parameters are as follows: 

1. Blower Speed (CFM) for all 3 ACUs 

2. Sensible cooling load on (Power consumed – KW) all 3 ACUs 
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Figure 3.3 ANN model 

Non-Autoregressive network with exogenous input (NARX) model 

Number of neurons required to achieve minimal error in training the ANN is calculated with 

a set of values defined by the thumb rule. Thumb rule is stated as follows [7]: 

1. The total number of neurons must be more than the summation of number of 

inputs and outputs to the ANN model. 

No. of Neurons > Input parameter size + Output parameter size 

2. The total number of neurons must be equal to summation of 2/3rd of the inputs 

size and the output size 

No. of neurons = (2/3)*Input parameter size + Output parameter size 

3. The total number of neurons can be less than twice the input size. 

 
Figure 3.4 No. of Neuron Analysis 
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 Similar to grid sensitivity analysis, number of neurons used in ANN should also be 

precise in order to avoid overfitting and underfitting. In our case 36 neurons in the hidden layer 

is optimum for the ANN to predict results with minimal error. If we have neurons more or less 

than 36, we may end up having the predicted results with large error values. 

 
The model is tested from a sample data that is not in the training dataset to see the 

accuracy of the prediction. The Mean Squared Error (MSE) refers to the difference in original 

value and the predicted value and if it is low then the dataset has high resolution and vice 

versa. Accuracy is improved by generating training dataset having higher resolution by 

optimizing the grid control in CFD. 

 

Figure 3.5 ANN Training Performance 
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Figure 3.6 ANN Training Error 

 From these results we can conclude that the ANN can predict the values of ACU 

control parameters having MSE in the order of 10^-1. 
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CHAPTER 4 
 

RESULTS AND DISCUSSION 
 

Table 4.1 below shows the test inputs given to the ANN model to predict the ACU 

power consumed and flowrate to be used to resolve the hotspot   

ANN Test Inputs 

Time 
(mins) 

ITE Load 
(KW) 

Spatial Location of 
targeted ITE 

Temp. rise at rack-
level (0C) 

50 6KW 3 8 

26 8KW 2 10 

35 4KW 2 7 

Table 4.1 ANN Test Input parameters 

 Table 4.2, 4.3, 4.4 shows the predicted results for the given inputs. It shows which 

ACU to be operated and in what operating conditions. 

ANN Test Output 1 
  Power (KW) Flowrate (cfm) 

Time (mins) 50 50 
ACU 1 37.0409 8254 
ACU 2 46.7322 8356 
ACU 3 51.1894 8449 

Table 4.2 ANN Test Output parameters (First Case) 

ANN Test Output 2 
  Power (KW) Flowrate (cfm) 

Time (mins) 26 26 
ACU 1 46.8162 11355 
ACU 2 110.6364 11669 
ACU 3 48.6988 11568 

Table 4.3 ANN Test Output parameters (Second Case) 
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ANN Test Output  3 
  Power (KW) Flowrate (cfm) 

Time (mins) 50 50 
ACU 1 33.5233 8135 
ACU 2 72.4583 8796 
ACU 3 49.0487 8678 

 

Table 4.4 ANN Test Output parameters (Third Case) 

 
 In the first case, the ITE load of 6 KW is given at spatial location at 3 which creates a 

hotspot. To address this scenario, power consumed by ACU-3 increases while other two ACUs 

remain in normal operation. Similarly, power consumed by  ACU-2 increases in other two cases 

while the other two remains in normal operation. This provisioning strategy will help in saving 

a lot of energy in large data centers. 
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CHAPTER 5 
 

CONCLUSION 
 

 
The predicted values by the ANN can be used to design a framework that can allow the 

operation of multiple CRAC units operating in tandem to provision the ITE loads. ANN can be 

used to frame a control strategy based on the hotspot in a typical raised floor data center 

with chilled water-cooling system. This ANN model can be implemented in real time live data 

center provided; it is trained based on in-house sensor values. This research shows that non-

linearity in the behavior of an operating data center can be captured and ACU operational 

parameters can be altered based on ANN prediction. Cooling strategy can be essentially based 

on the ANN predicted results thereby reducing power consumed by the cooling units.   
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FUTURE WORK 
 

 
High resolution CFD models and a greater number of hotspot scenarios can be 

considered to address cooling provisioning. Increasing the resolution of input parameter 

space to get more variability in the dataset. Cooling Unit failure analysis can be included in 

predicting ACU operational parameters. Step ahead prediction of parameters is one such 

method where we will be able to have a better response from the cooling unit and also 

suitable for real-time implementation. Reinforcement learning, a new technology in machine 

learning that can learn non-linear operations of the data center by computing the error 

between the actual value and the predicted value in a working environment without getting 

input from the user. The algorithm is designed in such a way that it learns the input and output 

required to solve a specific scenario on the fly. 
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