
N-Model Methodology for Enhancement of Object-Oriented Software

by

ANAM SAHOO

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2019

Copyright © by Anam Sahoo 2019

All Rights Reserved

To my family who constantly provided unconditional love and support especially to my

grandmother who planted the seed to make me what I am today.

ACKNOWLEDGEMENTS

I would like to extend my sincerest gratitude to my supervising professor Dr. David

Kung for his unwavering support and guidance during the course of my doctoral studies. I

would also like to thank Dr. Christoph Csallner, Dr. Yu Lei, Dr. Bahram Khalili for their

interest in my research, generously sharing their ideas and time to serve in the committee.

I am grateful to Mehereb Noshirwan Irani for helping me in conducting the experi-

mental evaluation of the N-model methodology discussed in this thesis. Further, I would

also like to thank my students for their participation in the experimental evaluation. I would

also like to thank Department of Computer Sciences and Engineering for providing me all

the opportunities for doctoral studies and allowing me to share my industry experience by

teaching as an adjunct staff here at UT Arlington.

I would like to thank all my teachers who taught me during this graduate program

here at The University of Texas at Arlington. I am also grateful to all my teachers for giving

me the knowledge and inspiration throughout my life in India and here in United States.

Finally, I would like to express my love and appreciation for my family, parents and

grand parents who have supported me through my studies all throughout my life. I am

grateful for my wife and children and the sacrifices they have made to allow me to progress

to this point in my career.

May 8, 2019

iv

ABSTRACT

N-Model Methodology for Enhancement of Object-Oriented Software

Anam Sahoo, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: David C Kung

Software maintenance typically consumes an average of 60% of software life costs,

of which more than 60% are spent on enhancements. These are a challenge for the soft-

ware community, in which hundreds of millions of lines of legacy code need to be modi-

fied during enhancement maintenance. Unfortunately, our extensive literature survey and

industrial experiences show that there is a lack of a systematic methodology for software

reengineering and for enhancement. As a consequence, software engineers use ad hoc ap-

proaches to enhance a legacy system. This dissertation presents an agile process, called

the N-model process and methodology, for enhancing object-oriented legacy systems. The

process consists of a release planning phase to quickly identify release changes, followed

by an iterative enhancement phase to implement the changes, and finally a formal system

validation phase to ensure that the changes are properly incorporated. The methodology

details the steps to perform these phases. This thesis has defined a set of three categories of

ten metrics for evaluating an enhancement methodology, and applied them to evaluate our

N-model methodology in comparison with ad hoc approaches for enhancing and evolving

legacy systems. Although the experiment is limited in scope, it shows that the N-model

methodology significantly outperforms ad hoc approaches.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

Chapter Page

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 7

2.1 Software Enhancement Process . 8

2.2 Software Enhancement Framework . 9

2.3 Software Reverse Engineering . 10

2.4 Software Re-engineering . 11

3. THE N-MODEL PROCESS AND METHODOLOGY 12

3.1 Planning Phase . 13

3.1.1 Identify and Prioritize Enhancement Requirements 13

3.1.2 Derive New, To-Be-Modified and To-Be-Deleted Use Cases . . . 13

3.1.3 Assigning Use Cases to Release Iterations 15

3.2 Iterative Enhancement Phase . 16

3.2.1 Reverse Engineering . 18

3.2.2 Reincarnation . 22

3.2.3 Iteration Validation . 32

4. CASE STUDIES . 33

4.1 Preliminary Qualitative Case Study . 34

vi

4.1.1 Overview . 34

4.1.2 Data Analysis . 35

4.1.3 Analysis and Result Interpretation 35

4.1.4 Limitations . 36

4.2 Final Quantitative Case Study with Metrics 37

4.2.1 Design of Final Quantitative Case Study 37

4.2.2 Evaluation Metrics . 41

4.2.3 Data Collection . 50

4.2.4 Evaluation Results . 57

4.2.5 Threats to Validity . 60

5. CONCLUSION AND FUTURE WORK . 62

REFERENCES . 64

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Difference between process and methodology 2

1.2 Overview of the enhancement process . 4

1.3 Each iteration of the enhancement phase . 5

3.1 LoginServlet partial code segment for Login User 21

3.2 Implementation sequence diagram for nontrivial step of Login User 22

3.3 Design sequence diagram for change password use case 24

3.4 Login User ISD with marked enhancement changes 27

3.5 LoginServlet enhanced partial code segment for Login User 28

3.6 Deleting classes that are not used by other classes 29

3.7 Implemented sequence diagram for change password use case 30

3.8 Partial Implemented class diagram . 31

4.1 Legacy MavAppoint AND SAMS code base histograms 38

4.2 SUS Questionare . 45

4.3 SUS scale and implication . 45

4.4 Control Flow Graph of a Simple Program for Cyclomatic complexity com-

putation . 48

4.5 CK Tool generated sample csv file opened in excel 52

4.6 Histogram for the Legacy MavAppoint code base 53

4.7 Histogram for the Legacy SAMS code base 53

4.8 Histogram for the Enhanced MavAppoint code for Team 1 54

4.9 Histogram for the Enhanced MavAppoint Code for Team 2 54

viii

4.10 Histogram for the Enhanced SAMS code for Team 1 55

4.11 Histogram for the Enhanced SAMS Code for Team 2 55

4.12 Sample output of cloc Tool to Calculate Enhanced Lines of Code 56

ix

LIST OF TABLES

Table Page

3.1 Legacy requirements and use cases of the running example 12

3.2 New, to-be-modified and to-be-deleted use cases 16

3.3 Enhancement artifacts and activities for use case categories 17

3.4 Actor-system interaction scenario for Login User 19

3.5 Actor-system interaction scenario for Change Password 23

3.6 Change impact classes for to-be-deleted change password use cases 31

3.7 Change impact methods for to-be-deleted change password use cases 32

3.8 Methods found to be deleted for to-be-deleted change password use cases . . 32

4.1 Overview of Preliminary Case Studies . 34

4.2 Preliminary Case Studies Results . 36

4.3 Information about the legacy systems used in the final case study 38

4.4 Overall size statistics of legacy and enhanced systems for MavAppoint and

SAMS . 51

4.5 Process and test metrics for assignments 1 and 2 58

4.6 Evaluation results for the CK metrics . 60

x

CHAPTER 1

INTRODUCTION

Software maintenance typically consumes an average of 60% of software life costs,

of which more than 60% are spent on enhancements [20, 46]. These costs are a challenge

for the current software community, in which hundreds of millions of lines of legacy code

need to be modified during enhancement maintenance. The problem becomes even di-

rer when the enhancement project is performed by engineers who do not have sufficient

knowledge of the legacy system and documentation is inadequate or non-existent. Soft-

ware enhancement needs a process and a methodology. Figure 1.1 highlights the difference

between the two [29]. First, a process, also called a process model, specifies when to do

what, but not how to do them. According to Cockburn, “A process describes how activi-

ties fit together over time, often with pre- and postconditions for the activities” [14] (page

151). For example, the waterfall process states that one should first complete project plan-

ning, followed by requirements analysis, then design, and so on. It does not specify how

to carry out these activities. Unlike a process, a methodology details the steps of how to

carry out the activities of a process. It can be viewed as an implementation of a process.

This definition coincides with that of Cockburn: “I used the word methodology as found

in the Merriam-Webster dictionaries: a series of related methods or techniques” [14] (page

149). Processes are paradigm independent but methodologies are not. In simple terms, a

paradigm is a style, or a way to view the world [30]. For example, the Structured Analysis

and Structured Design (SA/SD) paradigm views the world as consisting of business pro-

cesses or transforms interacting with each other, while the object-oriented (OO) paradigm

views the world as consisting of objects. As a consequence, a process does not dictate

1

�������
� ���������	�
���
���������
��������	
� ���	�������	����������������
� ����	��
�
����������������
� ������	���������
��������	���
����	����
����
��	
� ����	��	�������������������
������
���

�
�
������

��	
�����
� �
����
��������		
� ����
�������		
� �����!����������		
� �����������		�	
� ��	��
�"�
�����
��	���
��������		�	

����������
� ����	�
�����������
��������
������		
� ������
��	��#��	���	"�����$�������������#��
��������	
� ����	��
�
���������������
� �������
��	������	���
����	����
����
��	
� %	�����������
����"�
�������
&��
�����&'����
�	

��

��	
�����
� �����������
�
�!	�	'	������������	�������#������!�

(��'�)*
� $&�����+�����������#��,���($+�*
� �����"�)!�
�����!	���	�)�����������+��#���()�)+*"�

-�
�����)������)�����������(-))*"��.������

 ����
������(/ *"�
���0�!	�
��$�
���

Figure 1.1: Difference between process and methodology

representations of artifacts, but a methodology does. For example, SA/SD methodologies

often use data flow diagrams and structured charts [19, 65], while most OO methodolo-

gies use UML [6, 34, 29]. A process facilitates project planning and project management

because it defines when to do what. A methodology facilitates teamwork, and communi-

cation and collaboration between teams and team members because the same set of steps

and procedures as well as the same representation of artifacts are used by all participating

members.

According to Cockburn and Maier and Rechtin [14, 36], methodologies fall into four

categories, ranging from least to most desired as follows:

1. heuristic methodologies, which are based on lessons learned,

2. participative methodologies, which are stakeholder-based and capture aspects of cus-

tomer involvement,

3. rational methodologies, which are based on method and technique,

4. normative methodologies, which are based on solutions or sequences of steps known

to work for the discipline.

2

Unfortunately, “most of current software development is still in the stage where

heuristic methodologies are appropriate,” as pointed out by Cockburn [14]. Indeed, our

extensive literature survey reveals that there is a lack of non-heuristic methodologies for

enhancing OO software systems [7].

We summarize our related literature survey on object-oriented software enhance-

ments to the following four categories;

1. Methodologies

2. Processes

3. Frameworks

4. Generalized enhancement activities

Firstly, in our extensive research survey of enhancement methodologies, we came

across few papers [44, 61, 23] that included the word methodology in their titles or con-

tents, but we did not find any heuristic methodology matching Cockburn’s above defini-

tion. However a framework-based agile enhancement process using rational unified pro-

cess(RUP) called PARFAIT for customer relationship management software is described

in Cagnin [11], and our prelimenary work on N-Methodology in Sahoo [48]. Secondly,

Pighin [44], Zhenchang [63], Rickman [47], and Polo [45] elucidate the evolution of soft-

ware enhancement process. Frameworks, the third category, are discussed by Hyland-

Wood [23], Tahvildari [54] and Vora [58, 59]. Finally, on the category of generalized

enhancement activity, we find several papers on reverse engineering and reengineering, in-

cluding Pashov [43], Hong [22], Caludia [13], Serebrenik [49], Zaidi [69] , Tonella [57],

and Parsons [42]. We will shed some light on each of these works in the related work

section 2 below.

In this thesis, a process and a methodology are presented for enhancing object ori-

ented software. The process consists of three distinct phases: a release planning phase, an

iterative enhancement phase, and a system validation phase as shown in Figure 1.2. Each

3

������������	

��
����
�
�����
�
������	

	�	�
�

���������

���	

����������	

�����������

	�������

��������

�������

������

Figure 1.2: Overview of the enhancement process

product release begins with a quick agile planning phase, which consists of two activities.

First, enhancement requirements are identified and prioritized by applying information col-

lection techniques. Second, new use cases and changes to existing use cases are derived.

Finally, planning for release iterations is performed to produce a roadmap to guide the

iterative enhancement activities. The iterative enhancement phase consisting of a series

of iterations. Each iteration has three legs: the reverse engineering leg, the reincarnation

leg, and the iteration validation leg as shown in Figure 1.3. The reverse engineering leg

is performed if analysis and design documentation of the existing system is non-existent,

outdated, or inadequate. It recovers the as-built analysis and design artifacts, and represents

them using UML diagrams. This higher-level abstraction of the existing software facilitates

reasoning about changes to the existing system. In particular, the incarnation leg uses the

higher-level abstraction to identify classes and methods to add, modify and delete, taking

into account the so-called ripple effect or change impact to other classes when modifica-

tions are made to a class or method [31]. This middle leg also implements the identified

changes. Finally, during the iteration validation leg, integration testing, regression testing

and beta testing are performed to validate the changes.

At the end of the release, a formal system validation phase is performed before the

software is deployed to the client site. Since the shape of these three legs looks like a

4

Figure 1.3: Each iteration of the enhancement phase

capital “N,” as shown in Figure 1.3, we call this process model the N-process model, or

N-model for short. Our methodology that implements this process is called the N-model

methodology.

The contributions of this thesis are summarized as follows. First, current software de-

velopment including software enhancement is mostly based on lessons learned, as pointed

out by Cockburn [14]. The proposed methodology will greatly improve the current practice

by providing a systematic approach for enhancing OO systems. Second, we present three

categories of metrics for assessing a software enhancement methodology. These are: pro-

cess metrics, design metrics, and testability metrics. Finally, we have applied these metrics

to evaluate the efficacy of the proposed methodology. The evaluation results show that the

proposed methodology significantly improves students’ performance.

The layout of the thesis is as follows. Chapter 2, describes the related literature sur-

vey and discusses the difference between this work and existing work. Chapter 3 presents

5

the N-model methodology for enhancing a legacy OO software. A legacy academic ad-

vising software is used as the running examples to illustrate the steps of the methodology.

Chapter 4 evaluates the effectiveness of the N-model process and methodology via a series

of case studies. Conclusions and future work are presented in Chapter 5.

6

CHAPTER 2

LITERATURE REVIEW

First of all, we need to make it clear what we mean by the term methodology because

this term has been used with different meanings in the literature. In particular, the word is

interchangeably used for process, method and framework among others causing confusion

within the academic and industrial communities alike. In this paper, we adopt the defini-

tion proposed by Alistair Cockburn. That is, a methodology is “a series of related methods

or techniques for how to carry out the activities that allow for coordination of peoples ac-

tions on a team for better outcome” [14] (page 149). Numerous papers include the word

methodology in their titles or contents but after reading these articles we found that their

works did not meet the definition for methodology as proposed by Cockburn. For example,

the paper titled “A Methodology and Heuristics for Re-Architecting a Legacy System” [61]

documents a model-based systems engineering process to re-architecture a legacy avionics

system. As discussed in Section 1, a process (also called a process model) specifies when

to do what but not how to do them. This is in line with Cockburn’s definition — “a process

describes how activities fit together over time, often with pre- and postconditions for the ac-

tivities” [14] (page 151). Another paper titled “Towards a Software Maintenance Method-

ology Using Semantic Web Techniques and Paradigmatic Documentation Modelling” [23]

describes a framework for software maintenance using RDF, OWL and SPARQL web tech-

niques to encode the system metadata for software enhancement. Pighin’s paper titled

“The New Methodology for Component Reuse and Maintenance” presents a cataloguing

technique for insertion and retrieval of information about software components that can

be automatically built and organized from existing software [44]. Our extensive literature

7

search revealed that none of the plethora of works on enhancement of OO software presents

a methodology. To the best of our knowledge, the N-model methodology presented in this

paper is the first on this topic. In the following, we present the related works in four cate-

gories: software enhancement process, maintenance framework, reverse engineering, and

reengineering.

2.1 Software Enhancement Process

The first category is software enhancement process. According to Cockburn’s defi-

nition, “a process describes how activities fit together over time, often with pre- and post-

conditions for the activities.” [14] (page 151). For example, the waterfall process dictates

that one must first complete project planning, followed by requirements analysis, then de-

sign, and so on. However, it does not specify how to carry out these activities. Xing [63]

elucidates a process to study the evolution of an object oriented system software by identi-

fying the types and styles of changes and constructing a change tree. A sequence of such

change trees constitutes the system’s evolution profile that provide valuable insight for soft-

ware enhancement and project management. Besides Pighin’s [44] cataloging technique,

mentioned earlier in context to methodology (could be categorized as a process), Briand [8]

delineates a software evolution process that has six steps starting from identifying organiza-

tional entities with which the maintenance team interacts, identifying the phases involved

in creation of new phases, identifying the generic activities in each phase, analyzing the

past releases, analyzing problems that occurred in past phases and building an organiza-

tional structure that lead to problems. Rickman [47] describes a process for combining an

OO model and a structured model. The paper presents a process for the system architec-

ture and requirements engineering (PSARE), which then leads to an enhanced requirement

model and finally results in an enhanced software. Polo [45] proposes a software mainte-

8

nance process, MANTEMA, which uses ISO/IEC 12207 as a tailoring process for software

maintenance and evolution. This process has four maintenance phases, starting from urgent

corrective, perfective, preventive and finally adaptive. Yongchang [64]describes four soft-

ware maintenance models, namely the quick modify model, Boehm model, IEEE model

and Iterative enhancement model. Kanchana [28] proposes a process for software quality

enhancement using process optimization and the Taguchi method. Ioannis [25] proposes

enhancements using the Agile Unified Process (AUP) for a banking software. AUP is a

hybrid approach combining Rational Unified Process (RUP) with agile methods and has

the same four phases; Inception, Elaboration, Construction and Transition as that in RUP.

Again,we see that several papers propose processes and not methodologies.

2.2 Software Enhancement Framework

The second category of related works is software enhancement framework, com-

monly defined as a generic platform which can be specialized as needed to improve the

maintainability of a software system. Hyland-Wood [23] describes a framework for soft-

ware maintenance using RDF, OWL and SPARQL web techniques to encode the system

metadata for software enhancement. The RDF graph can be used to enable the language

neutral relational navigation of software system that aids in software understanding and

maintenance. Zou [70] presents an interactive and incremental migration framework in

which a legacy procedural code is reengineered into an OO platform. The framework al-

lows for the representation of the legacy code in the form of XML based syntax tree from

the original source code that can be used to identify the classes, associations and aggre-

gations. Tahvildari [54] proposes a framework for the development of a quality driven

enhancement of an OO software based on design patterns. This framework starts with

the creation of a catalogue of design modifications, followed by transformation of design

9

patterns from primitive transformations and finally the encoding of non-functional require-

ments using the softgoal interdependency graph. Vora [58, 59] presents CFFES, an archi-

tectural framework for software enhancement. CFFES is divided into five components:

Temporal Meta-Data, Process Controller, Rule Base, Archiving Engine, and Application

Architecture. Again,the framework generalizes the platform but does not quite address the

specific concern of how to perform the enhancement activity on an object oriented legacy

software system, demanding the need for a step by step methodology.

2.3 Software Reverse Engineering

The third category concerns reverse engineering. Understanding the existing soft-

ware is an essential part of any software maintenance and enhancement. Missing artifacts

such as requirements, architecture, domain model, use cases and design artifacts have al-

ways been an issue for any enhancement or reengineering projects. Many techniques, how-

ever, have been presented for reverse engineering some of these artifacts. One such tech-

nique for software architecture recovery using a feature modeling technique is described by

Pashov [43]. Hong [22] presents a tool JBOORET, which uses a parser based approach to

recover the high level design and source models from the system artifacts. Caludia [13] de-

scribes a framework to reverse engineer use case diagrams from JAVA code in the context

of Model Driven Architecture (MDA) focusing on transformations at model and metamodel

level. Serebrenik [49] proposes an algorithm for reverse engineering UML sequence dia-

grams from Enterprise Java Beans (EJB) enterprise applications involving business method

interceptors. Zaidi [69] presents an approach for reverse engineering sequence diagram by

analyzing execution traces produced dynamically from an object oriented application. It

uses k-tail merging algorithm to produce a Labeled Transition System (LTS) that merges

the collected traces, which then get translated into a sequence diagram. Tonella [57] de-

10

scribes a static analysis algorithm for the extraction of the class diagram from the source

code, and Parsons [42] takes a critical look at a range of representative approaches for ex-

tracting component interactions from the source code and also outlines relative advantages

and disadvantages to these approaches. Finally, Dugerdil [17] describes how to use the

traditional Rational Unified Process (RUP) to reverse engineer a legacy system.

2.4 Software Re-engineering

The fourth category is reengineering. Transforming the existing software to a differ-

ent form or platform without changing its functionality is occasionally needed to ease fu-

ture enhancements. Several incremental approaches to migrate function oriented software

to object oriented paradigms are described by Wong [62], Suenobu [52], Tan [56], and Sid-

dik [50]. A framework-based agile reengineering process named PARFAIT is defined by

Cagnin [11]. PARFAIT uses the Rational Unified Process(RUP) and GREN framework for

re-engineering Business Resource Management(BRM) software. Two other reengineer-

ing processes to transform the existing procedural software to a reusable object oriented

form are described one by deBaud [16] using domain model and Cagnin [10] using design

patterns. Another reengineering process for migrating legacy object-oriented system to

component based system is described by Lee [35]. Improving maintainability by refactor-

ing using clustering techniques are described by Mathur [37] and Alkhalid [2]. A catalog

of software components can be built and organized from existing software for future reuse

called ontology. An ontology-based approach to reengineer enterprise software to cloud

computing is explained by Zhou [68]. Finally, Ebner [18] presents a Microsoft Windows-

based RETH tool and describes how to trace artifacts all around in software enhancement

projects.

11

CHAPTER 3

THE N-MODEL PROCESS AND METHODOLOGY

As described in Chapter 1, the enhancement process consists of three major phases

as shown in Figure 1.2: the release planning phase, the enhancement phase, and the system

validation phase. In this chapter, we describe in detail how these phases are to be per-

formed. To facilitate understanding, we present here an academic advising software, called

MavAppoint, to serve as the running example to illustrate the steps of the methodology.

We then present the steps for each of the three major phases in the following sections.

MavAppoint was written in Java and Java Server Pages (JSP), and uses Mysql as the

database management system (DBMS). It supports three types of users: department admin-

istrators, academic advisers, and students. Table 3.1 lists some of the existing requirements

and use cases that will be used to illustrate the methodology. This legacy system will be

enhanced with enhancement requirements, to be described in the following sections.

Table 3.1: Legacy requirements and use cases of the running example

Legacy Requirements Legacy Use Cases
R1: An administrator can create, edit, and delete
advisors and define their privileges.

UC1: Create Advisor
UC2: Edit Advisor
UC3: Delete Advisor

R2: Advisors can login and specify their advising
time.

UC4: Login User
UC5: Update Schedule

R3: Student can create accout, login to it and
schedule an appointment with an advisor.

UC6: Create Student
UC4: Login User
UC7: Schedule Appointment

12

3.1 Planning Phase

The planning phase involves two activities. First, enhancement requirements are

identified and prioritized by applying information collection techniques. Their impact on

existing use cases is assessed, resulting in new, to-be-modified, and to-be-deleted use cases,

respectively. Second, planning for release iterations is performed to assign the new, to-be-

modified and to-be-deleted use cases to the release iterations.

3.1.1 Identify and Prioritize Enhancement Requirements

Correctly identifying and prioritizing enhancement requirements are critical to the

success of an enhancement project. To identify and prioritize enhancement requirements,

information collection techniques such as customer presentation, user survey, user inter-

view, and literature survey are used. For MavAppoint, we assume that the following en-

hancement requirements are identified. We also assume that they have the highest priority:

R4. Users shall be able to change passwords.

R5. Users shall be forced to change system-generated temporary

passwords when logging in for the first time.

R6. User ID and passwords must be encrypted before storing them

in the database.

3.1.2 Derive New, To-Be-Modified and To-Be-Deleted Use Cases

The second step of the planning phase is to derive new, to-be-modified and to-be-

deleted use cases from the enhancement requirements and existing use cases. This step is

carried out by examining each of the enhancement requirements and existing use cases as

follows:

13

3.1.2.1 Deriving New Use Cases

A new use case can be derived if an enhancement requirement introduces a new busi-

ness process to be implemented. Such a business process is often indicated by a verb-noun

phrase that is application-specific or domain specific. Examples are “change passwords” in

R4, and “deposit fund” for an automated teller machine (ATM) application. To derive new

use cases, we highlight all such verb-noun phrases in the enhancement requirements. Each

such verb-noun phrase must satisfy all of the following conditions:

1. The verb-noun phrase must denote a complete end-to-end business process of the

application or the application domain.

2. The business process must begin with a user (or actor).

3. The business process must end with the user (or actor).

4. The business process must accomplish a business task for the user (or actor).

Example. From the enhancement requirement R4, we identify the verb-noun phrase

“change password.” Clearly, changing passwords is a business process that is application-

specific. It begins with the user, and ends with the user seeing a “password is changed

successfully” message. It also accomplishes a business task for the user. Therefore, we

derive a new use case UC8: Change Password.

3.1.2.2 Deriving To-Be-Modified Use Cases

Obviously, enhancement requirements may affect existing use cases, which need to

be modified to fulfill the enhancement requirements. To identify such use cases, one of the

following two approaches can be used:

1. Using a requirement-use case traceability matrix. If a requirement-use case trace-

ability document such as a traceability matrix is available, then the affected use cases

can be derived from the matrix. A traceability matrix M has rows representing re-

14

quirements, and columns representing use cases. If a use case UCj is derived or

related to a requirement Ri, then Mi,j=1 (otherwise, it is blank). If an enhancement

requirement affects an existing requirement Ri, then all use cases with Mi,j=1 could

be affected and modification may be needed.

2. Examining the impact of enhancement requirements. If a requirement-use case trace-

ability matrix or equivalent does not exist, then one has to examine each of the en-

hancement requirements and each of the existing use cases to determine which use

cases are affected and need to be modified.

Example. The enhancement requirement R4 merely introduces a new use case (UC8:

Change Password). It does not affect existing use cases. Enhancement requirement

R5 (users must change system-generated temporary passwords) affects existing use

cases UC4: Login User. This is because UC4 must be modified to force the user to

change the temporary password. Enhancement requirement R6 affects UC1: Cre-

ate Advisor and UC6: Create Student. This is because these two use cases must

be modified to encrypt student ID and the system-generated temporary passwords.

Moreover, R6 also affects UC7: Schedule Appointment, which must be modified to

encrypt student ID.

3.1.2.3 Deriving To-Be-Deleted Use Cases

Usually, existing use cases to be deleted are explicitly specified. These can be easily

identified. For our running example, no use case need be deleted.

3.1.3 Assigning Use Cases to Release Iterations

Table 3.2 shows the impact of the enhancement requirements to use cases. The new,

to-be-modified, and to-be-deleted use cases are assigned to iterations in this step. It is be-

yond the scope of this thesis to detail this step. Therefore, it is only briefly described. First,

15

Table 3.2: New, to-be-modified and to-be-deleted use cases

Enhancement Requirements Use Cases Category
R4: Users can change passwords. UC8: Change Password New
R5: Users must change system-
generated temporary passwords when
logs in for the first time.

UC4: Login User
UC8: Change Password

Modified
New

R6: Student ID and all passwords must
be encrypted before storing them in the
database.

UC1: Create Advisor
UC6: Create Student
UC4: Login User
UC7: Schedule Appointment
UC8: Change Password

Modified
Modified
Modified
Modified
New

an agile estimation technique such as the poker game method [4] is applied to obtain an

effort estimate for each of the use cases. An order to design, implement, modify, delete,

and test the use cases is derived based on their dependencies and priorities. The use cases

are then assigned to iterations according to the order. For this paper, we assume that re-

quirements R4-R6 have the highest priority and must be completed in the first enhancement

iteration.

3.2 Iterative Enhancement Phase

The iterative enhancement phase consists of a series of iterations. Each iteration has

three legs: the reverse engineering leg, the reincarnation leg, and the validation leg. Reverse

engineering is performed only if design documentation is nonexistent, outdated, or inade-

quate. The reverse engineering leg uses various tools to produce various UML diagrams

from the legacy code. It is performed only for the to-be-modified, and to-be-deleted use

cases. During the incarnation leg, new UML design diagrams are constructed for new use

cases, and the reverse-engineered UML diagrams are modified for the to-be-modified use

cases. The reverse-engineered UML diagrams are used to identify impact of to-be-deleted

use cases to existing classes of the legacy system. modify and execute existing test cases,

16

and perform regression testing to ensure that the new, to-be-modified and to-be-deleted

use cases are implemented correctly. Finally, the validation leg generates and run new test

cases. Table 3.3 summarizes the needed reverse engineering, reincarnation, and validation

artifacts and activities for each of new, to-be-modified, and to-be-deleted use cases.

Table 3.3: Enhancement artifacts and activities for use case categories

���������	����
����� �������������������

��� �������������� �������������

��
������������

������������� �!"����
������#� �$

����������� 	�
��������������������

��������������������������
�����������
�

	�
����������������������

�������������

�
�����
������
�����������

��
������������
�����������������

�������#���$

	�
����������������������
���

�
�����������
����

���
������������

	�
����������������������
���

�
�����������
����

���
������������

	�
����������������������
���

�
�����������
����

�������

������"���

%&����������������#%��$

	�
��������� �����������������������

�
�������������������������
����������������

���������������

������"��	�������

#� �$	� �

���� ! ����������������

���
��������

�
������"# ��
����������
����������
����

�������
�$! %&�
�����
�
�������������������������

�������

���������"! �����
�����

���
�������
��������

�
�
�����"# �

'
��"! ����������������

�
�

����������
�����������

���������� (����������

�
�����

����������

�
����"# �
����������������� ! ��
)���������
���������! %�

(����������

�
�����

����������

�
����"# �
����������������������"! ��
)���������
���������! %�

�����
��������������������

 ��������������������

�
����

������
������"# �

��������������������� ������������������

�
����

����������
���������
�����
���

�
�������������������
�

��������������������

���

�
�����������
������
���

�
�����������������

������
�

���������
����
�
��������

����������������� 	�
��������� 	�
��������� 	�
���������

17

3.2.1 Reverse Engineering

During the planning phase, the new, to-be-modified and to-be-deleted use cases are

identified. Moreover, these use cases are assigned to iterations so that each iteration will

handle only a few of these use cases. Reverse engineering is the first step of the iterative

enhancement phase. That is, it is the first thing to do during each enhancement iteration.

Reverse engineering is performed only if design documentation for the legacy system is

nonexistent, inadequate or outdated. It will produce an as-built class diagram and as-built

sequence diagrams. The former is referred to as the implementation class diagram (ICD),

and the latter is referred to as the implementation sequence diagram (ISD). The ICD is

produced for the whole system or selected subsystems or components. It is useful for

identifying reusable classes of the legacy system, as well as identifying change impact

when an existing class or method is changed. The ISDs are useful for identifying changes

to be made to an existing use case, as well as identifying classes and methods to be removed

when deleting an existing use case.

This reverse engineering step of each iteration of the iterative enhancement phase

performs the follow activities for the new, to-be-modified and to-be-deleted use cases allo-

cated to the current iteration:

1. Reverse engineering implementation class diagram (ICD).

2. Reverse engineering implementation sequence diagram (ISD).

How to perform these two activities are detailed as follows.

3.2.1.1 Reverse Engineer Implementation Class Diagram

Many existing tools can be used to reverse engineer the implementation class di-

agram. Techniques and tools for the reverse engineering code to produce ISD and ICD

18

Table 3.4: Actor-system interaction scenario for Login User

Actor: User System: MavAppoint
1. The user clicks the Login but-
ton on the home page.

2. MavAppoint shows a login
page with user name and pass-
word fields.

3. The user enters the user name
and password, and clicks the
Submit button.

4. MavAppoint shows the user’s
dashboard if the user authenti-
cates successfully.

5. The user sees his dashboard.

are found in the following cited tools and papers [24, 33, 34, 38, 42, 49, 53, 55] and

[24, 33, 41, 53, 55, 57], respectively. Some of these tools could be used to reduce effort.

3.2.1.2 Reverse Engineer Implementation Sequence Diagrams

The steps for reconstructing an implementation sequence diagram are described as

follows:

• Step 1. Observe how a user interacts with the legacy system to carry out the to-be-

modified or to-be-deleted use case, and describe the actor-system interaction scenario

using a two-column table. The left-column entries of the table describe the user

input and user actions, and the right-column entries present the corresponding system

responses. For example, the actor-system interaction scenario for the Login User use

case can be described as shown in Table 3.4.

• Step 2. Identify nontrivial steps in the actor-system interaction scenario. A nontrivial

step is an entry in the right column of the actor-system interaction table. It requires

background processing to produce the system response. A right-column entry is a

nontrivial step if one of the following rules can be applied:

1. If the step requires background processing, then it is a nontrivial step.

19

2. If the system responses of the step are different for different users, then it is a

nontrivial step. This is because background processing is required to produce

the different system responses for different users.

Example. In Table 3.4, the nontrivial step is step 4.

• Step 3. Identify the button or menu item clicked or selected by the user in left-

column entry preceding the nontrivial step. In the legacy code, identify the cor-

responding button or menu item and its action listener. Trace the action listener

handler code for objects that send and receive messages between them. Construct

a sequence diagrams to show the messages sent and received between the objects.

This is the implementation sequence diagram (ISD) that is reverse engineered for

the to-be-modified or to-be-deleted use case. There are many existing tools for

generating an ISD from legacy code Techniques and tools for reverse engineering

code to produce ISD and ICD are found in the previously cited tools and papers

[24, 33, 34, 38, 42, 49, 53, 55, 24, 33, 41, 53, 55, 57]

Example. The implementation sequence diagram (ISD) that is produced from the

MavAppoint legacy code is shown in Figure 3.2. The partial LoginServlet legacy code

from where the ISD was reverse engineered is given in the Figure 3.1,

20

����������	
������������	��

�����������������������	���	������		�������	��

�����	���	�	���������������������������� !�"�#$

�		����������������$

�%%

�%�������		�������	&��'�	
�		�������	���(���)��		�������	*�����������������

�%�

���	��	����������'�	
�		�������	���(���)��		�������	*������������������	+��,��������	-����	���)� .-����	�����

��������"���(���	/��	�������
�$

��
�������/��	0		����	�
�������0		�1�	���""������

�������/��	0		����	�
�������0		�1�	��)2�$

�������/��	0		����	�
�����3������)�	�1���$

4

��(���	/��	*�(���	!����	�+��
���-56 73�8������,�������/8����/���,���
��(���)���������$

4

�%%

�%�������		�������	&��9��	
�		�������	���(���)��		�������	*�����������������

�%�

���	��	����������9��	
�		�������	���(���)��		�������	*������������������	+��,��������	-����	���)� .-����	�����

��������"���(���	/��	�������
�$

�	���������� !"���(���	/��	9���1�	��
����� !��$

�	���������,����"���(���	/��	9���1�	��
�����,�����$

'�	��	���	��"���,�'�	��	
�$

��	�/��	���� !
���� !�$

��	�/��	9���,���
����,����$

	�:�

����������1�������������	+��	���	������)���	����������,�������2���

�������	�����������	����������

!�	�����;���������1�"���,�!�	�����;������
�$

��������������"���1/��	����
��	��$

��
�����<"�������

��	=����"�����/=+��>����
�$

���
��	=����""���?���+?����

�

�������/��	0		����	�
���?���+?����)������$

��������/����*������	
��������$

4

�������
��	=����""���?����,�?1�	�+�

�

�������/��	0		����	�
���?����,�?����)������$

��������/����*������	
��������$

4

����

�

�������/��	0		����	�
������)������$

��������/����*������	
��������$

4

4

�����

���������	����>�	�������������	+��	���	���������

�������	�����������������������1���������,�������������

��
��1/����-���	�
���� !���

��

�	�������������/��	0		����	�
�����3��������/�(���� �����=���
����� !���

��	��		�1�	��"�
��	���������/��	0		����	�
�������0		�1�	���$

�������/��1���0		����	�
�������0		�1�	���$

�������/��	0		����	�
�������0		�1�	��)��		�1�	�@#�$

��
�		�1�	�A"B��

��1/��������	�����
��	�/��	���� !
��$

4

4�����

�������/��	0		����	�
�����3������)����� !�$

�������/��	0		����	�
�������0		�1�	��)�#�$

4

4�����

�������/��	0		����	�
�������0		�1�	��)�2�$

4

��������/����*������	
��������$

4

4

��	�+
-����	�������

�:�	�1/��	/����	��
��$

�������/��	0		����	�
�������0		�1�	��)�2�$

��������/����*������	
��������$�444

Figure 3.1: LoginServlet partial code segment for Login User

21

���������	�

���
�����

�������

��������� 	
�����
�
�����

����������	�

�����������

��������������

	
���
�������

����������

������
����
��������������

���	��

�����������������

���

���

�	���� �	�!�"���
�#

$����!�%����%���&�

$
��
&�

���	��

�������

�����	����������

���
���
�������

�����

�������

�
����

���	�� �	���� �	�!�"���
�#

$����!�%������%����&�

�	���� �	�!�'���
��#

Figure 3.2: Implementation sequence diagram for nontrivial step of Login User

3.2.2 Reincarnation

During the planning phase, the new, to-be-modified and to-be-deleted use cases

are identified. Moreover, these use cases are assigned to iterations so that each iteration

will handle only a few of these use cases. In addition, an implementation class diagram

(ICD) and implementation sequence diagrams (ISDs) for the new, to-be-modified and to-

be-deleted use cases allocated to current iteration have been produced. In this reincarnation

step, we will design and implement the new use cases, and modify and delete existing use

cases assigned to the current iteration. The details on how to accomplish these is as follows.

3.2.2.1 Dealing with New Use Cases

Treatment for a new use case is similar to forward engineering, except that existing

legacy code and some of the test cases may be reused. Forward engineering has been

22

Table 3.5: Actor-system interaction scenario for Change Password

Actor: User System: MavAppoint
1. The user clicks the Change
Password button on the home
page.

2. MavAppoint shows a
change password page with
user name, password, new
password, and confirm new
password fields.

3. The user enters the fields as
shown, and clicks the Submit
button.

4. MavAppoint shows a pass-
word changed successfully
message.

5. The user sees the pass-
word changed successfully
message.

described in various publications [6, 9, 29, 34, 46, 51]. The design and implementation of a

new use case involves the following steps, which are detailed in the paragraphs that follow:

• Step 1. Produce an actor-system interaction scenario. The actor-system interaction

scenario should describe how an actor or user will interact with the system to carry

out the new use case. The result of this step is a two-column table similar to the one

shown in Table 3.4. For the running example, we have one new use case, that is,

Change Password. The actor-system interaction scenario for this new use case for

nontrivial step is shown in Table 3.5.

• Step 2. Produce a design sequence diagram (DSD) for each nontrivial step of the

actor-system interaction scenario. The DSD should describe how software objects

will interact with each other through function calls to carry out the background pro-

cessing in order to produce the system response from the user input. During this step,

software reuse of the legacy code should be taken into account. The implementation

class diagram (ICD) is useful in this regard. That is, if one were to look up the class

in the ICD, if the class is found, then it should be reused, possibly with methods and

attributes added to the class as per the following logic: (a) If a class is not in the ICD,

23

���������	�

��������� 	
�����
�
�����

�	�������	�

����������
��
���������������

���������������

�������
�������	���������������

����

������

�
����

�������

����������

������������

���
������

�������
���������

!��"#��	�
$�
���

��%
���������
"
	�&�	���

'�"���&��������
���

�����
��
�����

(���#�����������������

�������
��)��������*������������

�"�

�	���+����������������,

-�����������.�

-������������	��������.�

���	

�"�

-
"�
.�

�	���+�������������������	,

���	

�	���+��������������	
��,

/ �"�

-
"�
.�

-�����������	������.0��
�����

-���������	������.

-
"�
.�

Figure 3.3: Design sequence diagram for change password use case

then add the class to the ICD along with all its methods and attributes extracted from

the DSDs; (b) If a class is in the ICD but some of its methods/attributes extracted

from the DSD are not in the ICD, then add these to the class in the ICD; (c) If a

relationship is not in the ICD, then add the relationship to the ICD.

• Step 3. Modify the existing ICD with new classes, new methods and new relation-

ships.

• Step 4. Implement and test the new classes, new methods and new relationships for

nontrivial steps.

Example. Figure 3.3 shows a design sequence diagram for the nontrivial step of

the Change Password use case. In this design sequence diagram, the LoginServlet and

LoginUser classes are reused classes. One new method (i.e., checkCnfPasswdMatch(...))

is added to the LoginServlet class, and three new methods (i.e., updateUserPasswd(...),

24

checkStrongPasswd(...) and encryptPasswd(...)) are added to the LoginUser class. These

new methods are indicated in the design sequence diagram in Figure 3.3.

3.2.2.2 Dealing with To-Be-Modified Use Cases

During the reverse engineering phase of each iteration, we produce the as-built actor-

system interaction scenario, which is a two-column table such as shown in Table 3.4. We

also produce the as-built implementation sequence diagram (ISD). These reverse-engineered

artifacts are useful for handling to-be-modified use cases. The steps for treating each of the

to-be-modified use case are described as follows:

• Step 1. Examine the as-build actor-system interaction scenario as well as the ISD(s)

for the to-be-modified use case, and identify places that need to be changed in order

to fulfill the enhancement requirements relevant to the to-be-modified use case.

• Step 2. Copy and modify the copies of the as-build actor-system interaction scenario

as well as the ISD(s) accordingly, and ensure that the result satisfies the relevant

enhancement requirements. During this step, software reuse should be taken into

account and handled as follows. Before creating a new class, look for a reusable

class in the design sequence diagrams created and the ISDs modified in the current

iteration and then in the ICD. Addition or modification to the reusable class may be

needed.

Example. Figure 3.2 shows a recovered implemented sequence diagram for the non-

trivial step of the Login User use case. In this implemented sequence diagram, a

new method, getUser(...) is added, keeping in mind the expert controller pattern, and

the checkUser(...) method of LoginUser class is modified by calling another internal

new method, the checkIfFirstAttempt(...). Additionally, if it is the first time login, the

new changePasswrd use case shown in Figure 3.3 is invoked inside the doPost(...)

of the LoginServlet class. Here modified to LoginUser classes are reused classes.

25

These new and modified methods are illustrated in the modified sequence diagram in

Figure 3.4.

• Step 3. Identify new classes as well as modifications to existing classes from the

modified actor-system interaction scenario and modified ISD(s), and update the ICD

accordingly.

• Step 4. Implement the new classes as well as modifications to existing classes. Iden-

tify change impact to existing classes and change the impacted classes accordingly.

Repeat this step until all change impacts are addressed.

Example. Figure 3.5 shows the code segment of all new and modified classes and

methods of LoginUser use case.

The change impact can be computed according to the algorithm described by Kung [32].

To explain the algorithm, let ICD = G(V,E) be a directed graph, where V =

{C1, C2, ..., Cn} is the set of classes, and E = I ∪ A ∪ F the inheritance relation-

ships (I), aggregation relationships (A) and function call relationships (F) between

the classes. More specifically, a pair of classes (C1, C2) ∈ E if C1 is a subclass of

C2, or C1 is an aggregate of C2, or a function of C1 invokes a function of C2. Clearly,

if C2 is changed, then C1 is affected and may need to be changed and retested. Since

such a relationship is a transitive relationship, we can compute the change impact by

computing the transitive closure of the class that is changed. Let CI(Cj) denote the

change impact or set of classes affected by changes to class Cj . Then the change

impact CI(Cj) is defined as follows, note that Cj ∈ CI(Cj):

CI(Cj) = {Ci|Ci = Cj ∨ (Ci, Cj) ∈ E ∨ (∃Ck)((Ci, Ck) ∈ E ∧ (Ck, Cj) ∈ E)}.

As a matter of fact, many existing reverse engineering tools such as the Object Re-

lation Diagram (ORD) described by Kung [32] can compute the change impact for a

class that is changed or deleted.

26

• Step 5. Test the new, modified as well as affected classes with new test cases and

reusable test cases.

���������	�

���
�����

�������

��������� 	
�����
�
�����

����������	�

�����������

��������������

	
���
����������

��
������������
�����������

����������

������
����
������������������	���

������ 	�

!�
���

����
�

���	""

��#��$�����%���""

���

�
�

&�� 	
�����%����'('

���

�	���)*�	� �����
�+

,���� �-�#��-#��.�

,���������-��
-��	� .�

,
��
.�

���	""

�������

�����	����������

���
���
�����""

�����

�������

�
����

���	""

Figure 3.4: Login User ISD with marked enhancement changes

27

����������	
������������	��

�����������������������	���	������		�������	��

�����	���	�	���������������������������� !�"�#$

�		����������������$

�%%

�%�������		�������	&��'�	
�		�������	���(���)��		�������	*�����������������

�%�

���	��	����������'�	
�		�������	���(���)��		�������	*������������������	+��,��������	-����	���)� .-����	�����

��������"���(���	/��	�������
�$

��
�������/��	0		����	�
�������0		�1�	���""������

�������/��	0		����	�
�������0		�1�	��)2�$

�������/��	0		����	�
�����3������)�	�1���$

4

��(���	/��	*�(���	!����	�+��
���-56 73�8������,�������/8����/���,���
��(���)���������$

4

�%%

�%�������		�������	&��9��	
�		�������	���(���)��		�������	*�����������������

�%�

���	��	����������9��	
�		�������	���(���)��		�������	*������������������	+��,��������	-����	���)� .-����	�����

��������"���(���	/��	�������
�$

�	���������� !"���(���	/��	9���1�	��
����� !��$

�	���������,����"���(���	/��	9���1�	��
�����,�����$

'�	��	���	��"���,�'�	��	
�$

��	�/��	���� !
���� !�$

��	�/��	9���,���
����,����$

��		�������	���,*�(���	$��		�������	*����������*�������$���	���	:���$

	�;�

!�	�����<���������1�"���,�!�	�����<������
�$

��������������"���1/��	����
��	��$

��
�����="�������

��	:����"�����/:+��>����
�$

��
��	:����""���?����,�?1�	�+�

�

��������������/��	0		����	�
���?����,�?����)������$

���������������/����*������	
��������$

4

�������
��	:����""�����	?	�1�?������

�

�� ��'�	
��,*�(���)��,*��������$

��	����"�+��>:���9���,�<�	�+
��,*�(���)��,*��������$

�%�����	�����������1�	���������������+��>����1�	���+���@�%�

����/����	�����9���,���
�$

�4

����

�

�����������������������������/��	0		����	�
������)������$

������������/����*������	
��������$

4

4

�����

��
��1/����-���	�
���� !���

��

�	�������������/��	0		����	�
�����3��������/�(���� �����:���
����� !���

��	��		�1�	��"�
��	���������/��	0		����	�
�������0		�1�	���$

�������/��1���0		����	�
�������0		�1�	���$

�������/��	0		����	�
�������0		�1�	��)��		�1�	�A#�$

��
�		�1�	�B"C��

��1/��������	�����
��	�/��	���� !
��$

4

4�����

�������/��	0		����	�
�����3������)����� !�$

�������/��	0		����	�
�������0		�1�	��)�#�$

4

4�����

�������/��	0		����	�
�������0		�1�	��)�2�$

4

��������/����*������	
��������$

4

4

��	�+
-����	�������

�;�	�1/��	/����	��
��$

�������/��	0		����	�
�������0		�1�	��)�2�$

��������/����*������	
��������$�444

Figure 3.5: LoginServlet enhanced partial code segment for Login User

28

3.2.2.3 Dealing with To-Be-Deleted Use Cases

Deleting a use case means deleting classes and methods that are only used by the

use case. In the following, we present an algorithm for identifying classes that can be

deleted. To identify classes to delete, we begin with the reverse-engineered implementation

sequence diagram(s) (ISD) for each use case to be deleted. Intuitively, a class that appears

in the ISD could be deleted if no other class depends on it. Therefore, we first identify

classes that appear in the ISD. These include:

• classes of objects in the ISD that send or receive messages;

• classes of objects that are used as parameters to function calls;

• classes of objects that are return values of function calls.

For each class C that appears in the ISD, we compute the change impact CI(C)

of C. A class Ci ∈ CI(C) can be deleted if no other class Cj depends on it. If class

Ck ∈ CI(C) has Ci as the only dependent, then Ck can also be deleted. This is summarized

by the purge(CI(C)) algorithm shown in Figure 3.6. The algorithm repeatedly removes

classes of CI(C) that have no dependent classes. In the algorithm, we use indegree(Ci)

to denote the indegree of Ci, that is, the number of classes that depend on Ci. Formally,

indegree(Ci)=|{Cj|(Cj, Ci) ∈ E}|. Obviously, if indegree(Ci) equals zero, then no other

class depends on Ci, and hence, Ci can be deleted.

purge(CI(C)) {
Input: CI(C)=change impact of class C.
Output: CI(C) with not used classes removed.

while ((∃Ci ∈ CI)(indegree(Ci)==0)) {
CI = CI − {Ci};

}
}

Figure 3.6: Deleting classes that are not used by other classes

29

Consider, for example, the ISD and ICD shown in Figure 3.7 and Figure 3.8, respec-

tively. The former is the ISD for the Change Password use case, while the latter is part

of the ICD. If this use case were to be deleted, then according to the above, we compute

the change impact for each class in the ISD. The result is as given in Table 3.6. The Lo-

ginServlet’s indegree value being zero, this class can safely be deleted based on the purge

algorithm given in Figure 3.6.

���������	�

����
��� ��
������
������

�	��������	�

���������
�������������

����������	��

� ��!�
������������

����

����	��

�������

�����"�

����������"�

�������#������$$

�%�
�����

&������
�'�������

(��)�����*���
�

��+�����������	���,�����

��	���,���
�������

����
��������

-���)�
�������

����� ��!.�#����&�
� �����

���

�	

�����/������������
� 0

1���������
� 2�

1������
�
����������2�

1�	�2�

����$$

���

�	

1�	�2�

�����/����������
�
����0

����$$

�����/��������� ������0

Figure 3.7: Implemented sequence diagram for change password use case

30

Figure 3.8: Partial Implemented class diagram

Table 3.6: Change impact classes for to-be-deleted change password use cases

Classes on ISD Indegrees Change Impact Class List
LoginServlet 0 LoginServlet
HTTPServlet 2 LoginUser, AdminUser, AdvisorUser, Studen-

tUser, LoginServlet
LoginUser 4 LoginUser, AdminUser, AdvisorUser, Studen-

tUser, LoginServlet
DatabaseManager Many Many

The algorithm for identifying methods to delete is similar, except that a call graph

is used instead of the ICD. Call graph construction for OO programs as described by

Grove [21] has been studied extensively, and many tools such as doxygen,codeviz and val-

grind can be used to construct the call graph. Since a call graph is a directed graph, the

31

Table 3.7: Change impact methods for to-be-deleted change password use cases

Methods Impacted
LoginServlet::doPost(..)
LoginServlet::checkCnfPasswdMatch(..)
HTTPServlet::getParameter(..)
LoginUser::underpass(..)
LoginUser::checkStrongPasswd(..)
LoginUser::encryptPasswd(..)
DatabaseManager::updateUser(..)

notion of change impact and the purge algorithm can be applied similarly. The following

methods are involved in our Change Password to-be-deleted use case as found in the ISD.

After applying the purge algorithm, the following resulting methods are found to be

deleted from the code.

Table 3.8: Methods found to be deleted for to-be-deleted change password use cases

Methods to be deleted
LoginServlet::checkCnfPasswdMatch(..)
LoginUser::updateUserPasswd(..)
LoginUser::checkStrongPasswd(..)
LoginUser::EncryptPasswd(..)

3.2.3 Iteration Validation

The iteration validation step focuses on validating the implementation against the

intended design and requirements by preparing and executing appropriate test cases. These

include unit test cases, subsystem and system integration test cases, and acceptance test

cases.

32

CHAPTER 4

CASE STUDIES

We have conducted two phases of case studies, a phase-1 preliminary qualitative and

a phase-2 quantitative case study, to evaluate the N-model methodology to enhance several

code bases of real-world web based applications.

Phase-1 consisted of two case studies that involved graduate students from two dif-

ferent semesters utilizing two different legacy code bases of the Academic Advising Sched-

uler Web (AASW) application. Section 4.1 describes the preliminary phase-1 case study in

detail. The final quantitative case study using four categories for ten metrics is described

in Section 4.2, where eight graduate students were asked to complete two assignments

each within five weeks that involved enhancing two real-world, web-based legacy systems

sequentially. The first assignment was to be completed with the students’ existing knowl-

edge, experience, and skills, while the second assignment was to be completed after being

taught the N-model methodology. For these experiments, the following two hypotheses

were designed:

Null hypothesis (H0): The N-model methodology does not improve student perfor-

mance in enhancement projects.

Alternative hypothesis (H1): The N-model methodology does improve student per-

formance in enhancement projects.

The following sections present the case study design, evaluation metrics, data collec-

tion, data analysis, evaluation results as well as result validity and threats in two separate

sections titled “Preliminary Qualitative Case Study” and “Final Quantitative Case Study.”

33

Table 4.1: Overview of Preliminary Case Studies

��������	
 � �

��������������� �������	��������	���� ������	��������	����

����� ��� ����� ������ ����!�"

#
#
$
��
��
�%
��
��
��
	�

�&
��
�

'������

(������) � �*�

���*�	�(�)

' # '

#+���(������)�

�*��

���*�	�(�)
�

' # ' #

,������� ��-��.� ��-��.� ��-��.� ��-��.�

4.1 Preliminary Qualitative Case Study

4.1.1 Overview

In the preliminary phase, we conducted two qualitative case studies, as summarized

in TABLE 4.1. These first two case studies involved 30-31 graduate students from two

different semesters using two legacy code bases of the AASW system. For the first phase

of the first case study, students were divided into seven teams and were asked to complete

their enhancement assignments using their own chosen methods. Then, the N-methodology

was taught to the class. In the second phase, the code bases were swapped, and the students

were tasked with completing the second assignment following the learned methodology. In

the second case study, eight teams were asked to learn and use the Rational Unified Pro-

cess (RUP) [17, 11] and Agile Unified Methodology (AUM) [29] for the first assignment.

Then, the teams used the N-methodology for the second assignment after swapping the

code bases. For both phases of the case studies, data were collected from all the teams in

the following two ways: (1) artifact submission that include enhanced code and (2) team

demonstration of their working code to validate their claims.

34

4.1.2 Data Analysis

Analysis of the data collected from the first case study was performed by comparing

different groups for the same legacy systems–that is, the quality of the enhanced code base

A performed by the teams 2-4 in case study one using the methodology was compared to

three out of the rest of four teams (randomly picked) using ad hoc ways. But in the second

academic case study, the analysis was performed comparing student performance with RUP

and AUM to that of the N-model methodology.

4.1.3 Analysis and Result Interpretation

The results of Case Study 1 indicate that for both the code bases of AASW, following

any ad hoc way, only one out of three teams submitted and demonstrated the working code.

All teams for both code bases simply submitted the requirements as they were given to them

without any prioritization, categorization, effort estimation, or traceability. In contrast, the

teams who followed the N-methodology for both the code bases performed much better,

being able to complete 78-80% of enhancement requirements. All the teams submitted

all the listed artifacts, which were evaluated to be of much better quality. The second case

study results indicated that students following RUP or AUM could complete only 30 to 50%

of the needed enhancements. The team that submitted the working code only submitted a

few ISDs and ICDs but did not submit any other artifacts. In contrast, the teams following

the N-model methodology performed much better, with 75-80% enhancement completion

as shown in TABLE 4.2 cite. All the teams submitted all the listed artifacts after learning

the N-model methodology; these artifacts were evaluated to be of much better quality.

Thus, the hypothesis that the N-model methodology could be used to produce better results

in regards to creating quality artifacts and enhanced software was confirmed.

35

Table 4.2: Preliminary Case Studies Results

���
�

����

�	
����
��������

������������������������������	���� ��	����

������	���������
����������

������	�����
������������

��������������	������������ ������	������������������

���� !" ���!�

����

���

������� � � 	
�� � � �
�� � � � 	
�� � � � �
��

����������	
 � � � 	

� � � � 	

� � � � � 	

� � � � � 	

�

���� � � �
� � � � 	

� � � � �� � � � � 	

�

�� � � � ��� � � � 	

� � � � � �� � � � � 	

�

��
	���
�
� � � �
� � � � 	

� � � � �
� � � � � 	

�

����������	� � � �
� � � � 	

� � � � �
� � � � � 	

�

������������ � � � ��� � � � 	

� � � � � �� � � � � 	

�

������	���
�

 	
 ��� �
 � �
 ���
 �
 �
 � ��� �
 �
� �
 �
 �
�

����

���

������� � � �
�� � � 	
�� � � � �
�� � � � 	
��

����������	
 � � � 	

� � � � 	

� � � � � 	

� � � � � 	

�

���� � � �
� � � � 	

� � � � �
� � � � � 	

�

�� � � � ��� � � � 	

� � � � � �� � � � � 	

�

��
	���
�
� � � �
� � � � 	

� � � � � �� � � � � 	

�

����������	� � � �
� � � � 	

� � � � � �� � � � � 	

�

������������ � � �
� � � � 	

� � � � � �� � � � � 	

�

������	���

�
��

 		� � � � ���

 �
 	�� �
 �
 �
 �
 ��

�
��

���
���������������������

��������
� ���

�
����������������� !������������"��

4.1.4 Limitations

There are a few limitations to our first two case studies: first, only two AASW legacy

code bases were used to compare and study the effectiveness of the methodology. Second,

even though the students were inexperienced and the two projects had different code bases

with different designs, the domain learning during the first assignment could become ad-

vantageous when approaching the second assignment. Finally, the small size of the project

lead to results that were too limited to run any statistical analysis.

Despite these limitations, these two preliminary case studies show that the partici-

pants performed much better using the proposed N-methodology compared to using RUP,

AUM or ad hoc ways.

36

4.2 Final Quantitative Case Study with Metrics

4.2.1 Design of Final Quantitative Case Study

The final case study aimed to evaluate quantitatively the effect of the N-model method-

ology on student performance in enhancement projects.

The subjects of this case study were eight graduate students from the Department of

Computer Science and Engineering at The University of Texas at Arlington. They enrolled

in the elective course CSE 6239 (Advanced Topics in Software Engineering). At the be-

ginning of the course, the students were required to complete a survey of their academic

and software development background relevant to the assignments. The purpose of the

survey was to identify each student’s proficiency in object-oriented programming, UML,

Java, JSP, Tomcat and MySQL/relational DBMS. Based on the survey results, the students

were divided into two teams with comparable academic and software development back-

grounds. Each team comprised of four students. All of the students were asked not to

contact students from other teams during both enhancement projects.

The student teams were required to enhance two real-world, web-based legacy sys-

tems as part of two team-based assignments. Specifically, in Assignment 1, they were

tasked with enhancing MavAppoint, an online software developed for managing academic

advising appointments. Students were asked to complete this assignment using their exist-

ing knowledge, experience and skills. After Assignment 1, the students were taught the N-

model methodology. They were then required to apply the methodology to enhance a study

abroad management system (SAMS), developed for the Office of International Education at

the university. Information regarding these two legacy systems is shown in Table 4.3. The

Figure 4.1 shows the histograms of the lines of code per class and the number of methods

per class of both of these legacy systems. The second assignment SAMS is relatively three

times bigger in size and complexity compared to MavAppoint. This increase in complexity

37

Table 4.3: Information about the legacy systems used in the final case study

����������	
 ����������	�

�����	������� ��������� ����

����������	������ ���	����	�������� ���	����	��������

������	��	������	�����	��	���� �� ! "#$%

&���	������	��	������ ## '!

&���	������	��	���(��� �$% %%$

)����	��������	������ ���*� ���*�

+��	������ ���(�	&���� ���(�	&����

and difficulty was intentionally arranged in order to nullify some of the domain learning

experience and programming skills teams acquired from the first Mavappoint assignment.

Further details of these two assignments is presented in the next two sections. The effi-

cacy of the N-model methodology was evaluated by comparing the results of these two

assignments using three categories of ten metrics, which are described in Section 4.2.2.

The evaluation results were then used to assess the hypotheses presented above.

�

�

�

�

�

�

��

��

��

��

�	
�
�������	�������
���������
�������

������������������

�
�
��
��
�
�
	
�

�
�
�
�
�
�
�

�
!
��

�	
�
�������	�
�"#���
�������

"
	����$���������������

�
�
��
��
�
�	

�

�

�

��

��

��

��

��

��

��

�	
�
��%��%�
��������������
��

����������������

�
�
��
��
�
�
	
�

�

��

��

��

��

��

��

 �

�	
�
��%��%
"#���
��

"
	����$��������������

�
�
��
��
�
�
	
�

Figure 4.1: Legacy MavAppoint AND SAMS code base histograms

38

4.2.1.1 Assignment 1 Description

In Assignment 1, the two teams were given the source code of MavAppoint, an

online academic advising appointment management system. The system allows academic

advisors to specify their advising hours and students to make appointments with advisors

and cancellations. The two teams were required to modify MavAppoint with the following

12 enhancement requirements using their existing software engineering knowledge, skills

and experiences. The teams were given a period of five weeks to complete the assignment.

The integer shown at the end of each enhancement requirement represents the task units.

This number was the average of the Poker Game estimates [5] produced by the two teams.

We used this estimate to measure the number of unit tasks needed to be completed per

week to deliver the requirement. This measurement was used to evaluate the N-model

methodology in terms of the time-based efficiency metric and overall relative efficiency

metric, among other eight evaluation metrics, which are presented in Section 4.2.2.

1. MavAppoint shall prompt the user to change the system-generated temporary pass-

word when login is attempted for the first time. (1)

2. MavAppoint shall allow users to upload a picture to his/her profile. (1)

3. MavAppoint shall permit an admin user to set an expiration time for system-generated

temporary passwords. (1)

4. MavAppoint shall allow admin users to assign advisors to different academic majors.

(1)

5. MavAppoint shall allow an admin user to assign students to advisors according to

the first letter of students’ last names. (2)

6. MavAppoint shall notify students and advisors about the upcoming appointments one

day in advance, and also on the date of the appointments. (1)

39

7. MavAppoint shall notify relevant advisors and students of any appointment cancel-

lation. (1)

8. MavAppoint shall allow users to select either text message or email or both as the

notification method. (2)

9. MavAppoint shall notify students on the waiting list whenever an appointment is

canceled. (1)

10. MavAppoint shall let advisors to communicate with all students in a group by sending

a broadcast email. (1)

11. MavAppoint shall allow each student to make only one appointment on a particular

day and maximum two in a week. (1)

12. MavAppoint shall allow students to create online blogs and participate in them. (1)

4.2.1.2 Assignment 2 Description

For Assignment 2, the two teams were required to modify a legacy system called the

Study Abroad Management System (SAMS). The system had been developed to support

the study abroad exchange program at the university. Like MavAppoint, the system was

implemented in Java and Java Server Pages (JSP), and ran on Apache Tomcat and MySQL.

Unlike Assignment 1, the two teams of students were taught our N-model methodology

and required to apply the methodology to enhance the system with the following 12 re-

quirements. The students were given five weeks to complete this assignment.

1. SAMS shall have a link on the home page with all the upcoming events for the study

abroad program and search capability. (1)

2. SAMS shall automatically fill in the contact information if the student has an account

and has logged in. The student can change the contact information if needed. (1)

3. SAMS shall allow users to modify the travel abroad program they are currently en-

rolled in. (1)

40

4. SAMS shall allow users to enroll in one program per semester. (1)

5. SAMS shall allow students to write or create a blog about their travel abroad program

and their experiences. (2)

6. SAMS shall have an emergency message link, which directly sends an email to the

Office of International Education director when a student needs urgent help. (1)

7. SAMS shall remind users of upcoming events that they are registered for. (1)

8. SAMS shall notify users about any changes made to the study abroad program for

which they are registered. (1)

9. SAMS shall provide users the feature to opt in/opt out of email notification. (1)

10. SAMS shall provide the capability for students to access programs’ insurance re-

quirements, facilitate enrollment in travel insurance, vaccination information, along

with do’s and don’ts for travel to the destination country. (2)

11. SAMS shall allow a user to chat online with an International Office customer service

agent. (1)

12. SAMS shall have a link on the home page to search any person by name. (1)

4.2.2 Evaluation Metrics

The efficacy of the N-model methodology was evaluated by using three categories of

ten metrics. That is, we compared the metrics in Assignment 1 and Assignment 2 to assess

the two proposed hypotheses. This section presents the details of these metrics. Data

collection and analysis to compute these metrics are described in the following sections.

1. Process metrics. These include: (1) time based efficiency, (2) overall relative effi-

ciency taken from ISO/IEC 9126-4 [27], and (3) SUS scale taken from Bangor and

colleagues [1]. They were calculated using the data accumulated during the entire

enhancement process.

41

2. Design and Code Metrics. These include: (1) requirements coverage metric, (2)

weighted methods per class (WMC), (3) depth of inheritance tree (DIT), (4) number

of children (NOC), and (5) response for a class (RFC). Metrics (2)-(5) were taken

from reference CK-metrics as described by Chidamber [12], who presented six met-

rics. We had selected only these four because they were supported by an empirical

study performed by Bassili, Briand and Melo [3]. The two CK metrics not included

in our case studies are coupling between object classes (CBO) and lack of cohesion

on methods (LC0M) because the studies revolving around these two did not produce

valuable results. The requirements coverage metric calculated the percentage of en-

hancement requirements that were fulfilled over the total number of enhancement

requirements. The other four metrics measured the design and code quality of the

software resulting from the enhancement effort. They were calculated using the code

submitted by the teams.

3. Test Metrics. These include: (1) defect density, and (2) test case success ratio. These

metrics were calculated by executing use-case based test cases on the software sub-

mitted by the teams and validated by teaching assistant during the project demos.

4.2.2.1 Process Metrics

1. Time Based Efficiency Metric:

The time based efficiency metric measures the number of tasks accomplished per unit

time by the team of developers as a whole. This metric was used to evaluate the efficacy of

the methodology in terms of work done per unit time. The formula for time based efficiency

is:

Time Based Efficiency = (
R∑

j=1

N∑
i=1

nij

tij
)/NR

42

where N is the number of tasks, R is the number of team members, and nij is the

completion status of task i by team member j. If the task is completed successfully by the

team member, then nij is one. If the task is not completed successfully, nij is zero. All of

the tasks performed by all team members should be included. As an example, assume that

there were two tasks and four team members. For task 1, the four members spent 30, 15, 25

and 10 time units, respectively, but member 1 did not complete his task successfully. For

task 2, they spent 15, 45, 30 and 15 time units but members 2 and 3 did not complete their

tasks successfully. The time based efficiency is calculated as follows. That is, the team was

able to successfully complete 4.25% of a task per unit time.

(0/30 + 1/15) + (1/15 + 0/45) + (1/25 + 0/30) + (1/10 + 1/15)

2 ∗ 4
= 0.0425

.

2. Overall Relative Efficiency Metric:

The overall relative efficiency computes the ratio of productive time over the total

time spent by the developers to produce the software. The metric was used to measure the

efficiency of the methodology in terms of time spent on productive work. The formula for

calculating the overall relative efficiency is shown below:

Overall Relative Efficiency = (
R∑

j=1

∑N
i=1 nijtij∑N
i=1 tij

)× 100%

where N and R are the total number of tasks and total number of team members,

respectively. In this formula, nij is zero if member j did not complete task i successfully,

or else it is a number in the Fibonacci series 1, 2, 3, 5, 8, 13, 21 with 21 being the cap. The

number is determined by the complexity and difficulty for the given task. As an example,

assume there were two tasks and four members. For task 1, the four members spent 30, 15,

25 and 10 time units, respectively, but member 1 did not complete his task successfully. For
43

task 2, they spent 15, 45, 30 and 15 time units but members 2 and 3 did not complete their

tasks successfully. Assume that nij = 1 if a team member completes the task successfully.

Using the above formula, the overall relative efficiency is

30 ∗ 0 + 15 ∗ 1 + 25 ∗ 1 + 10 ∗ 1
30 + 15 + 25 + 10

+
15 ∗ 1 + 45 ∗ 0 + 30 ∗ 0 + 15 ∗ 1

15 + 45 + 30 + 15
= 91.07%

.

3. SUS Score Metric:

The SUS score is calculated using the feedback from the developers about the method-

ology they used. There are ten questions, each of which can be scored from one to five,

with one representing strongly disagree, two disagree, three neither agree nor disagree,

four agree, and five strongly agree. The ten questions in their original form are specified in

Figure 4.2. However, in this context the teams were asked to interpret the word “system”

as the N-Model Methodology for their second assignment.

For each odd numbered question one is subtracted from the score, and for each even

number question the value is subtracted from five. The resulting values are added together,

and the sum is then multiplied by 2.5 to get a scale from 0 to 100. Figure 4.3 gives the range

of values and what they represent in terms of acceptability ranges, grades and adjective

ratings scale on the SUS scale.

44

�������	�

������

�������	

����

���������������������
������������������

�����	��������������	� � � � � �

���������
������	����������������	���������

� � � � �

������������������	����������	��������

� � � � �

����������������
��������������������������

��������������� �� ����������������	����� � � � � �

���������
�����!�������������������������	����

�����������������������
� � � � � �

"��	�

��������������	����� � � � � �

#��������
����������������������������

�����������������������	�����!��	�������	� � � � � �

$��������
������	�����!��	���� ��������������

� � � � �

%���������!��	������
���������������	�����

� � � � �

�&�������
�
������������������������ ������

�������������
����������������������	����� � � � � �

Figure 4.2: SUS Questionare

���

� �� �� �� �� �� �� �� 	�
� ���

������������������

����

����������

������

����������

��������������������

��� ����

������ !"

��	
�
�����

����

��#���$�

������

��������

������

Figure 4.3: SUS scale and implication

45

4.2.2.2 Design and Code Metrics

The design and code metrics were used to assess the quality of the software produced.

1. Requirements Coverage Metric:

The requirements coverage metric measures the percentage of requirements covered

in the software over the total number of requirements provided to the team. It is computed

as follows:

Requirements Coverage =
number of requirements covered

total number of requirements

The requirements coverage metric was calculated using the code submitted by the

teams as well as during the software demonstration to the teaching assistant. The other

four design and code metrics are defined as follows [12] and calculated based on the source

code submitted by the student teams for assignments 1 and 2.

2. Weighted Methods per Class (WMC) Metric:

The weighted methods per class (WMC) metric is the summation of the cyclomatic

complexity of all of the methods of a class. The cyclomatic complexity was originally

proposed by McCabe [40]. The cyclomatic complexity of a function is the number of

atomic binary conditions of the function plus 1. It represents the number of independent

control flow paths of the function. For example, the cyclomatic complexity of a function

with no conditional statement is 1; this means that there is only one control flow in the

function. The higher the number of WMC, the more effort is needed to comprehend, test,

maintain and reuse the class. The WMC metric has the following formula:

46

WMC =
n∑

i=1

cyclomatic complexity(mi)

.

where n is the number of methods of the class and mi denotes the ith method. The

cyclomatic complexity of a method is the number of binary atomic conditions in the method

plus 1. An atomic n-ary condition can be converted into n-1 binary atomic conditions.

There are other ways to calculate the complexity by counting the number of nodes, edges

and connected paths as specified in [60] explained below:

Mathmatically the cyclomatic complexity (M) of a structure program is defined as:

M = E - N + P

Where,

E = the number of edges of the graph

N = the number of nodes of the graph

P = the number of connected components

For a single program(or method) P always equals to 1.

So M = E - N + 2

In the small example program taken from cyclomatic wiki [15] as demonstrated in

Figure 4.4, the cyclomatic complexity is calculated as M = 8-7 + 2 = 3.

3. Depth of Inheritance Tree (DIT) Metric:

The depth of inheritance tree (DIT) metric is defined as the height (or depth) of the

inheritance tree (in other words, the length of the longest path(s) from the root to any of

the leaf node of the inheritance tree). The higher the value of DIT, the more inheritance

reuse of the methods among the classes. The deeper a class in the inheritance hierarchy, the

greater the number of methods it will likely inherit, which makes it harder to understand

47

Figure 4.4: Control Flow Graph of a Simple Program for Cyclomatic complexity compu-
tation

and predict its behavior. Deeper trees involve greater design complexity since more classes

and methods are involved. Deeper classes in the tree have a greater potential for reusing

inherited methods.

4. Number of Children (NOC) Metric:

The number of children (NOC) metric is defined as the number of immediate sub-

classes subordinated to a class in the class inheritance hierarchy. This metric measures the

immediate number of dependents the class has. The higher the value of NOC, the more

reuse and more change impact of the class on other classes. If a class has a large number of

children, it may be a case of misuse of subclassing. The NOC gives an idea of the potential

influence a class has on other classes. If a class has a large NOC, it may require more

testing of the methods in that class.

48

5. Response for a Class (RFC) Metric:

The response for a class (RFC) metric is the number of distinct methods and con-

structors invoked by a class as a result of a message sent to an object of the class. If a large

number of methods are invoked in response to a message, the comprehension, testing, de-

bugging and maintenance of the class becomes more difficult.

4.2.2.3 Test Metrics

1. Defect Density Metric:

The defect density metric measures the number of defects per one thousand lines

of enhanced code. The enhanced lines of code includes all the newly added, modified

and deleted source lines and excludes all blank and comment lines. A good methodology

should have a low defect density. This metric is formulated as:

Defect Density =
Total number of defects

Total number of enhanced lines of codes(in KLOC)

2. Ratio of Success Tests metric:

The ratio of success tests is defined as the ratio of success tests over the total number

of tests. For this final case study, the test cases were prepared by the TA to ensure that the

enhancement requirements were satisfied. The formula for this metric is:

Ratio of Success Tests =
Number of success tests

Total numberof tests executed

49

4.2.3 Data Collection

This section presents the data collected for evaluating the ten metrics. Data collection

was completed in two phases for each of the assignments — one before and the other

after the demonstration of the software to the Teaching Assistant (TA). Data collection

was accomplished by asking the students to fill out respective Excel sheets provided to the

students by the TA.

Data collection for process metrics: In Assignment 1, the two student teams were

asked to use their existing software engineering knowledge, skills and experiences to com-

plete the assignment. In order to compare the time-based efficiency and overall relative

efficiency metrics from the two assignments, we defined a task as a measure of a require-

ment with an estimated effort of one unit. These estimates were shown at the end of the

enhancement requirements presented in Sections 4.2.1.1 and Section 4.2.1.2. The effort

estimate for each of the enhancement requirements was collected from the teams as the

Poker Game estimate [5] and then normalized by taking the average of the two teams. For

the time-based efficiency and relative time efficiency metrics, the individual team members

were asked to submit the time spent on each requirement and its completion status in an

Excel sheet. If a requirement involving multiple members was not completed successfully,

determined at the time of software demonstration to the TA, then the completion status

for this requirement for all of the members involved were set to zero. In other words, the

members had spent the time working on the requirement but the work was not done.

For the SUS scale part of the process metric, each team member was required to

answer the ten SUS-scale questions presented in Section 4.2.2. Specifically, they were

asked to answer these questions with a satisfaction level of 1 to 5 and submit the answers

to the TA in an Excel sheet.

Data collection for design and code metrics: For both Assignment 1 and Assign-

ment 2, each team was required to submit a list of requirements covered along with esti-

50

Table 4.4: Overall size statistics of legacy and enhanced systems for MavAppoint and
SAMS

���������	
��

������� ������� ������� ������� ������� �������

������������������������������ ���� ���� ���� !�� ""�� �"��!

��	�������������������� !! � � "� ��! ��!

��	���������������	#��� ��� ��� ��� ��� $ � ��

mated task units, which had been described previously. The list of requirements covered

was verified by the TA during the software demonstration. If necessary, the submitted code

was examined to confirm that a requirement was indeed implemented. Moreover, the teams

were also mandated to submit the enhanced code to compute the four selected CK metrics

using a ck-metrics tool [39]. The tool is a Java program which goes through all the files in a

project from its root directory and find all the classes. It then computes all of the ck-metrics

per each class in addition to computing the number of methods, lines of code, etc. per class

basis and generates a comma separated (CSV) file. The CSV file can then be imported

to Excel for additional computation needed for the metrics. An example of a generated

comma separated file output from the CK-tool is shown in Figure 4.5. The overall size

of the statistics of all the submitted code is specified and compared with original legacy

code in the Table 4.4. The histograms of legacy MavAppoint, legacy SAMS, enhanced

MavAppoint for team-1, enhanced MavAppoint for team-2, enhanced SAMS for team-1,

and enhanced SAMS for team-2 code bases are given in Figure 4.6, Figure 4.7, Figure 4.8,

Figure 4.9, Figure 4.10 and 4.11 respectively. Each of these figures depicts the histograms

for WMC, RFC, per class methods, and per class lines of codes for their respective code

base. In each of these histograms, the x-axis represents the value of metrics and the y-axis

represents the number of classes.

51

Figure 4.5: CK Tool generated sample csv file opened in excel

Data collection for test metrics: The teams were asked to submit the number of

defects found. The number of lines of enhanced source code was computed from the sub-

mitted code base. The defect density metric was then computed as the ratio of the number

of defects over the number of thousand lines of enhanced code (KLOC). The enhanced

lines of code includes all the newly added, modified and deleted source lines. The com-

ments and blank lines are not included in the computation. The command line tool called

“cloc” was used to calculate enhanced lines of codes by comparing the legacy code base

52

�

�

�

��

��

��

���	�
���
���	
��������	���
��

�����
���

�
�

��
��
�
��
	

�

�

�

�

�

��

��

��

��

���	�
���
���	�
� �����	���
�

� ��
����

�
�

��
��
�
��
	

�

�

�

�

�

��

��

��

��

���	�
���
���	���
���
��	!�"�����	���
�

���
�����	!�"��

�
�

��
��
�
�
�	

�
�
�
#
�
�
�
$
�
%
��

���	�
���

��	
�&'��!��	���
�

&'��

�
�

��
��
�
�
�
	

Figure 4.6: Histogram for the Legacy MavAppoint code base

�

�

��

��

��

��

��

��

	
���������
��������

����

�
�
��
��
�
�

�

� �� �� �� �� �� �� �� �� ��
�

��
�

�

�

��

��

��

��

��

	
��������
���������

���

�
�
��
��
�
�

�

�

�

��

��

��

��

��

��

��

	
����������
���������� ������

!���� ��"�#�����

�
�
��
��
�
�

��

�

��

��

��

��

��

��

��

	
���������
$%������

$%�

�
�
��
��
�
�

�

Figure 4.7: Histogram for the Legacy SAMS code base

53

�

� ��� �� �� �� �� �� ��

�

	

��

�	

��
�������������
���������

���

�
�
��
��
�
�
�
�

�

	

��

�	

��

�������������
���������

���

�
�
��
��
�
�
�
�

� �� � �� �	 �� ��

�

�

�

�

�

��

��

��

��

������������
������ !���"������

������!���"�

�
!
��
�
"
��
�
!
#�
��
�
�

� �	 �� ��
	
��
�
��
	
�$
�
��
	
��
�
��
	

�

	

��

�	

��

�	
�������������
%&������

%&�

�
�
��
��
�
�
�
�

Figure 4.8: Histogram for the Enhanced MavAppoint code for Team 1

�
� �� �� �� �� �� 		 	
 	� �� ��

�

��

�

	�

	

��

����������	�
���������

���

�
�
��
��
�
�
�
�

�

��

	�

��

��

�

��

����������	�
��������

���

�
�
��
��
�
�
�
�

� �� �� �� �� �� 		 	
 	� ��

�

	

�

�

�

��

�	

��

��

��

����������	�
������ �!�"������

� �!�"��� #�����

�
�
��
��
�
�
�
�

�

��

�

	�

	

��

�

����������	�
$%������

$%�

�
�
��
��
�
�
�
�

Figure 4.9: Histogram for the Enhanced MavAppoint Code for Team 2

54

�

�
�
��
��
��
��
��
��
��
��
��

�	
	������
��������

��

�
��
��
��
�
�
	
�

�

�

��

��

��

��

��

�	
	�������
��������

���

�
��
��
��
�
�
	�

� ��� � �� �� �� �� �� �� ��

�

�

��

��

��

��

��

��

��

�	
	������
��������
��������

� ��
����!�"������

�
��
��
��
�
�
	
�

�

��

��

��

��

��

��

�	
�	�������
#$��
���

�#$��

�
��
��
��
�
�
	
��

Figure 4.10: Histogram for the Enhanced SAMS code for Team 1

�

�

�

��

��

��

��

��

��

��

��

��

�	
	�����
��������

��

��
��
��
�
�
�
	
��

� �� �� �� �� �� �� �� �� ��

�

�

��

��

��

��

�	
	������
��������

���

�
��
��
��
�
�	

�

�

�

��

��

��

��

��

��

��

�	
	������
������ �
�!������

 �
�!��" #������

�
��
��
��
�
�	

�

�

��

��

��

��

��

��

�	
	�����
�$%������

$%�

�
��
��
��
�
�
	
�

Figure 4.11: Histogram for the Enhanced SAMS Code for Team 2

55

Figure 4.12: Sample output of cloc Tool to Calculate Enhanced Lines of Code

with that of the enhanced version. Cloc is a freeware available in almost all the platforms.

We utilized Unix version to compute the enhanced lines of code. It requires two directories

or zipfiles as inputs and needs to be run with a “-diff” option. An example screen dump

is given in Figure 4.12. As shown, Cloc compares the two versions of code base before

and after enhancements and calculates the lines of code categories as; “same”, “modified”,

“added” and “deleted”. The total lines of code for each category for the whole project is

summarized at the end. The modified, added and deleted categories were summed up for

the enhanced lines of code and then divided by 1000 for the defect density calculation.

56

For the ratio of successful test cases, the teams were asked to submit test cases and

their pass/fail/not-run results. The list of test cases, being one of the mandatory artifacts,

was validated against the TA’s list of test cases to make sure that each team had 100%

test case coverage that traced all the way to the given enhancement requirements. As an

example, the following was one of the validation test cases used during data collection,

where CAPTCHA stands for “completely automated public Turing test to tell computers

and humans apart.”

Precondition: Run the application to get the initial home page.

Test step 1: Enter correct user name in the user name field.

Test step 2: Enter correct password in the password field.

Test step 3: Read the system generated CAPTCHA* and enter

it into the CAPTCHA field.

Test step 4: Click on the Login button.

Expected result: User should have been logged in and redirected

to the Advising Scheduling page.

Actual Result: Specify the execution result with respect

to the expected result.

Test case status: Specify “Passed,” “Failed,” or “not-run.”

4.2.4 Evaluation Results

The N-model methodology was evaluated using the data collected from the two as-

signments. The data were then used to compute the ten metrics for each of the two assign-

ments. Table 4.5 gives the evaluation results of all except the CK metrics, while Table 4.6

gives the evaluation results for the CK metrics. Table 4.5 and shows that time-based ef-

ficiency, overall relative efficiency, requirements coverage, defect density and test case

57

success ratio metrics were significantly improved after the students learned the N-model

methodology. The time base team efficiency improvement was observed to be .39 task per

week for team-1 and 1.1 tasks per week for Team-2 after learning the N-model methodoloy.

Overall relative efficiency improved over 50% for both the teams due to the systematic ap-

proach of the N-model methodology. Moreover, the SUS scores were also much higher,

reflecting students’ satisfaction with using the N-model methodology compared to their

own approaches. The SUS score increase of 70% for team-1 and 61% for team-2 is likely

due to the fact that the students did not have anything to follow in assignment-1 in con-

trast to following the N-model methodology in assignment-2. The defect density per 1000

lines of enhanced code (KLOC) also dropped by ten and five points for team-1 and team-2,

respectively. So was the case for test case success rate improvements of 16% for team-1

and 38% for team-2 by using N-model methodology. Thus, the alternative hypothesis(H1),

“that the N-Model methodology produces better result” is supported by these metrics re-

sults.

Table 4.5: Process and test metrics for assignments 1 and 2

Team 1 Team 2
Asgmt 1 Asgmt 2 Asgmt 1 Asgmt 2

MavAppoint SAMS Improve MavAppoint SAMS Improve
Time based effi-
ciency (task units per
week)

1.42 1.81 0.39 1.10 2.20 1.10

Overall relative effi-
ciency

36% 89% 53% 30% 82% 52%

SUS Score 15.00 85.00 70.00 25.00 86.43 61.43
Requirements cover-
age

50% 69% 19% 42% 89% 47%

Defect density (Per
1000 lines of code)

47 37 -10 44 39 -5

Test case success ra-
tio

50% 66% 16% 42% 80% 38%

58

For the CK metrics, all the data were captured using the CK Metrics tool [39]. The

selected histograms for all the submitted versions of the code before and after enhance-

ments are shown from Figures 4.6 to Figures 4.11. For the original MavAppoint legacy

code, most of the class sizes are around 25 lines of codes with two outliers of maximum 98

lines. The most frequent (around 18 classes) WMC values were found to be around five,

with a max of 40 for two classes. The RFC values peaked around 12, with one outlier of

60. In contrast, in the initial SAMS code , most of the class sizes were around 35 lines

of codes with one 650 maximum 680 lines.The most frequent (around 18 classes) WMC

values were found to be around eight, with a max of 99. The RFC values peaked around

12, with some values at 48, 84 and 108. The histograms show that the initial SAMS project

was a bit larger and more complex than MavAppoint. Both enhancement projects for both

the teams grew proportionately as shown in histograms from Figures 4.8 to Figures 4.11.

Table 4.6 shows the summary of CK metrics results in terms of computed average

and standard deviation for the original MavAppoint and SAMS legacy software as well as

their enhanced versions of the software applications submitted by the teams. We see that

the CK metrics give us mixed results. The weighted methods per class (WMC) metrics for

the enhanced SAMS versions are bit higher than their original counterparts when compared

to MavAppoint. In particular, for the enhanced versions, the WMC metrics had increased

from 8.85 to 10.41 and 11.38 for SAMS, as compared to the marginal increase for MavAp-

point. These marginal increases could be justified by students focusing on implementing

more logics and finishing more requirements using the same methods rather than focus-

ing on reducing their cyclomatic complexities. The significant increases in requirements

coverages, test case success ratios as well as the reduction of defect density as shown in

Table 4.5 justifies this effect. The depth of inheritance remained more or less the same,

with a marginal increase from 1.85 to 1.86 for team-2 for SAMS. This marginal increase

likely indicates more code reuse. The number of children (NOC) metric significantly in-

59

Table 4.6: Evaluation results for the CK metrics

���������	
��

������� ������� ������� ������� ������� �������

����	�����	��������������������� ���� ���� �� ! ���� �"�#� ����$�

	%��� �� " ���� ���" ����#� ����� ���!$

%��	���&�'�����	��(��������%'��� ��#! ���" �� " ��� ����� �����

	%��� "� " "�#! "��� ��"� ��" ����"

)*�+����&����������)���� "�!$ ���$ ���� "� � ��" ����#

	%��� ��#� $��� $� � ��#" �$��" �$�$�

,��������&����������,-���� ��"�## ��$! ���$" �"��" ���"" ��� !

	%��� !��� �"�"� !�� �#�!� � �� �����

creased by four fold for SAMS for both the teams. This increase indicates a good amount

of code reuse, as well. The response for the class (RFC) marginally increased for enhanced

SAMS, which again could be justified by the fact that the team focused on getting more

requirements implemented within a limited amount time. Again, overall the alternative

hypothesis(H1), “that the N-Model methodology produces better result” is supported by

these ten metrics results.

4.2.5 Threats to Validity

Several threats to the external validity of this final case study may limit the general-

ization of the experiment results:

1. This case study evaluation was performed on small programs i.e., 2240 lines of code,

55 classes and 236 methods for MavAppoint, and 7536 lines of code, 80 classes and

663 methods for SAMS. They are small when compared to large industry software

systems. The evaluation results may not be valid for larger industry systems.

2. MavAppoint and SAMS were rather limited in conceptual complexity and function-

ality as compared to the large, complex industry software. Large, complex systems

may not share the same experimental result.

60

3. The participants of this case study evaluation were eight graduate students, divided

into two teams of four students each. Their software development training and ex-

periences were very limited when compared to seasoned software developers. The

small class size of eight students was also a drawback to the external validity of the

study.

4. The time allocated to the two teams to complete each of the two assignments was

five weeks. Moreover, we anticipated that each student would spend approximately

ten hours per week working on the project. This timeline is very different from the

software development environments in industry. The computed metrics could be very

different if the case studies were performed in an industry setting.

5. The assignments were part of the academic course work. Even though the teams were

repeatedly told that the data submitted to evaluate the N-model methodology by the

teams would no way affect their individual grades, there may be some inaccuracies

or biases which could not be accurately validated by the teaching assistant. For

example, the reported individual time spent for the assigned task and answers to SUS

questionnaires fall into these categories.

6. Both MavAppoint and SAMS applications use similar Java, JSP, MySQL and Tomcat

based web technologies. There may be some technology learning experience from

the first MavAppoint assignment benefiting the students when completing the second

assignment SAMS. However, the size and complexity of the second assignment being

larger, as described previously, would have compensated at least in part for this effect.

61

CHAPTER 5

CONCLUSION AND FUTURE WORK

Enhancement is an important part of software maintenance in the software industry,

in which the environment is constantly evolving and customer needs are ever-changing.

Software maintenance consumes an average of 60% of software life costs, of which more

than 60% is spent on enhancements. These costs present a challenge to the software com-

munity, who must deal with enhancing millions of lines of legacy code where documenta-

tion is inadequate or non-existent. Thus, software enhancement would sorely benefit from

a process and methodology. Unfortunately systematic methodologies for object oriented

software enhancement currently does not exist in the literature. This thesis presented an

agile N-Model process and methodology to enhance object-oriented software, which fo-

cused on a front end quick planning phase, an iterative development phase, and a system

validation phase. The application of the N-Model process and the methodology on several

qualitative and a quantitative case studies resulted in several indications of improved qual-

ity and schedule over doing it in any ad-hoc manner or utilizing any forward engineering

techniques. The future work that remains to be completed involves using automated tools

to recover a higher level of abstraction such as the domain model from the recovered ICD

and ISD iteratively. The agility of the methodology can also be improved by automating

the manual steps and integrating them with existing reverse engineering and enhancement

phases. With the advancement of machine learning and expert systems, the areas such as

use case identification from enhance requirements, use case categorization, work effort es-

timation, change impact identification, automatic test case generation and test automation,

metrics calculation for instant feedback etc. could be automated to help further improve the

62

utility and agility of the methodology. Finally, even though the case studies were conducted

in classroom environments, the expectation is that the N-model methodology would also

make a significant impact in software industry, where there is a dire need for a methodology

to enhance object oriented legacy software.

63

REFERENCES

[1] Aaron Bangor , Philip Kortum , James Miller,“Determining what individual SUS

scores mean: adding an adjective rating scale, Journal of Usability Studies,” v.4 n.3,

p.114-123, May 2009.

[2] Alkhalid, A., M. Alshayeb, and S. A. Mahmoud. “Software Refactoring at the Pack-

age Level using Clustering Techniques.” IET Software, vol. 5, no. 3, 2011.

[3] Victor R. Bassili, Lionel C. Briand, and Walcelio L. Melo, “A validation of object-

oriented design metrics as quality indicators,” IEEE Transactions on Software Engi-

neering, Vol. 22, No. 10, October 1996. pp. 751-761.

[4] Kent Beck, “Test Driven Development: By Example,” Addison-Wesley Professional,

2002.

[5] Kent Beck, “Extreme Programming Explained: Embrace change,” 2nd Edition,

Addison-Wesley, 2004.

[6] Michael R. Blaha and James R Rumbaugh, “Object-Oriented Modeling and Design

with UML (2nd Edition),” Prentice Hall, 2004.

[7] J. Borchers, “Invited Talk: Reengineering from a Practitioner’s View – A Personal

Lesson’s Learned Assessment,” 15th European Conference on Software Maintenance

and Reengineering (CSMR), 2011. pp. 1-2.

[8] Briand, Basili, Yong-Mi Kim, et al. “A Change Analysis Process to Characterize Soft-

ware Maintenance Projects”, Proceedings 1994 International Conference on Software

Maintenance, 1994.

[9] Bernd Bruegge and Allen H. Dutoit, “Object-Oriented Software Engineering: Using

UML, Patterns, and Java,” 3nd Edition, Prentice Hall, 2009.

64

[10] M.I. Cagnin, R. Penteado, R.T.V. Braga and P.C. Masiero, “Reengineering using de-

sign patterns, ” Reverse Engineering, 2000. Proceedings. Seventh Working Confer-

ence on, 2000., pp. 118-127.

[11] M.I. Cagnin and J.C. Maldonado, “PARFAIT: towards a framework-based agile

reengineering process,” Proceedings of the Agile Development Conference (ADC),

2003., pp. 22-31.

[12] Chidamber, S. R., and C. F. Kemerer. “A Metrics Suite for Object Oriented Design,”

IEEE Transactions on Software Engineering, vol. 20, no. 6, 1994. pp. 476-493.

[13] P. Claudia, M. Liliana and F. Liliana, “Recovering Use Case Diagrams from Object

Oriented Code: An MDA-based Approach,” Eighth International Conference on In-

formation Technology: New Generations (ITNG), 2011. pp. 737-742.

[14] Alistair Cockburn, “Agile Software Development: The Cooperative Game,” Addison-

Wesley Professional, 2006.

[15] Wikipedia, “Cyclomatic complexity wiki page,”

https://en.wikipedia.org/wiki/cyclomatic_complexity

[16] J.M. deBaud, S. Rugaber, “A software re-engineering method using domain models,”

Software Maintenance, 1995. Proceedings., International Conference on, 1995., pp.

204-213.

[17] Philippe Dugerdil, “Using RUP to reverse-engineer a legacy system,”

https://www.ibm.com/developerworks/rational/library/sep06/dugerdil/index.html.

[18] G. Ebner and H. Kaindl, “Tracing all around in reengineering,” IEEE Software, vol.

19, no. 3, 2002. pp. 70-77.

[19] T. Gane and C. Sarson, “Structured Systems Analysis: Tools and Techniques,”

Prentice-Hall, 1978.

[20] R.L. Glass, “Frequently forgotten fundamental facts about software engineering,”

IEEE Software, vol. 18, no. 3, 2001., pp. 112-111.

65

[21] David Grove , Greg DeFouw , Jeffrey Dean , Craig Chambers, “Call graph

construction in object-oriented languages, ” Proceedings of the 12th ACM SIG-

PLAN conference on ObjecGrov97at-oriented programming, systems, languages,

and applications, p.108-124, October 05-09, 1997, Atlanta, Georgia, USA

[doi>10.1145/263698.264352]

[22] M. Hong, T. Xie and F. Yang, “JBOORET: an automated tool to recover OO design

and source models,” 25th Annual International Computer Software and Applications

Conference (COMPSAC), 2001., pp. 71-76.

[23] Hyland-Wood, D., D. Carrington, and S. Kaplan. “Towards a Software Mainte-

nance Methodology using Semantic Web Techniques and Paradigmatic Documen-

tation Modelling”, IET Software, vol. 2/no. 4, 2008.

[24] IBM tool, “Rational Rose Architectl,” Avail-

able:http://www.ibm.com/software/products/en/ratisoftarch.

[25] Christou, Ioannis, Stavros Ponis, and Eleni Palaiologou. “Using the Agile Unified

Process in Banking”, IEEE Software, vol. 27/no. 3, 2010.

[26] Ivar Jacobson, James Rumbaugh and Grady Booch, “Unified Software Development

Process,” Addison-Wesley, 1999.

[27] Jordan, Patrick W. “Usability Evaluation in Industry,” CRC Press, 1st edition, July

22, 2014.

[28] Kanchana, B., and V. V. S. Sarma. “Software Quality Enhancement through Software

Process Optimization using Taguchi Methods”, Proceedings ECBS’99. IEEE Confer-

ence and Workshop on Engineering of Computer-Based Systems, 1999.

[29] David Kung, “Object-Oriented Software Engineering: An Agile Unified Methodol-

ogy,” McGraw-Hill Higher Education, 2013. (24 chapters, 720 pages.)

[30] D. Kung, “The object-oriented paradigm,” Encyclopedia of Microcomputers, Vol. 12,

pp. 287 - 305, Marcel Dekker Publishing Inc., 1993.

66

[31] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, “Change impact iden-

tification in object oriented software maintenance,” Proc. of IEEE International Con-

ference on Software Maintenance, pp. 202 - 211, 1994.

[32] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y.S. Kim, and Y. Song, “Developing

an object-oriented software testing and maintenance environment”, Communications

of the ACM, Vol. 38, No. 10, pp. 75-87, October 1995.

[33] Y. Labiche, B. Kolbah and H. Mehrfard, “Combining Static and Dynamic Analyses to

Reverse-Engineer Scenario Diagrams,” 29th IEEE International Conference on Soft-

ware Maintenance (ICSM), 2013., pp. 130-139.

[34] Craig Larman, “Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development” (3rd Edition), Prentice Hall, 2004.

[35] E. Lee, B. Lee, W. Shin and C. Wu, “A reengineering process for migrating from an

object-oriented legacy system to a component-based system,” The 27th Annual Inter-

national Conference on Computer Software and Applications(COMPSAC), 2003. pp.

336-341.

[36] M. Maier and E. Rechtin, “The Art of Systems Architecting (Systems Engineering),”

2nd Ed., CRC Press, Boca Raton, Florida, 2000.

[37] Mathur, Bhawana, and Manju Kaushik.“ In Object-Oriented Software Framework Im-

proving Maintenance Exercises through K-Means Clustering Approach,” IEEE, 2018.

[38] L. Martinez, C. Pereira and L. Favre, “Recovering sequence diagrams from object-

oriented code: An ADM approach,” International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), 2014., pp. 1-8.

[39] The CK Metrics tool, https://github.com/mauricioaniche/ck#ck.

[40] McCabe, T. J., “A software complexity measure,” IEEE Trans. on Software Engineer-

ing, Vol. 2, No. 6, pp. 308 - 320, Dec. 1976.

[41] Object-Aid tool, “ObjectAid,” Available: http://objectaid.com/.

67

[42] T. Parsons, A. Mos, M. Trofin, T. Gschwind and J. Murphy, “Extracting Interactions

in Component-Based Systems,” IEEE Transactions on Software Engineering, vol. 34,

no. 6, 2008., pp. 783-799.

[43] I. Pashov and M. Riebisch, “Using feature modeling for program comprehension and

software architecture recovery,” The 11th IEEE International Conference and Work-

shop on Engineering of Computer-Based Systems, 2004. pp. 406-417.

[44] Pighin, M. “A New Methodology for Component Reuse and Maintenance”, Proceed-

ings Fifth European Conference on Software Maintenance and Reengineering, 2001.

[45] Polo, M., M. Piattini, F. Ruiz, et al. “MANTEMA: A Software Maintenance Method-

ology Based on the ISO/IEC 12207 Standard”, Proceedings 4th IEEE International

Software Engineering Standards Symposium and Forum (ISESS’99). ’Best Software

Practices for the Internet Age’, 1999.

[46] Roger S. Pressman, “Software Engineering: A Practitioner’s Approach,” 8th Ed.,

McGraw-Hill, 2014.

[47] D. M. Rickman, “A process for combining object oriented and structured analysis and

design, ” 20th DASC. 20th Digital Avionics Systems Conference 2001.

[48] Anam Sahoo, David Kung, and Sanika Gupta, “An agile methodology for reengineer-

ing object-oriented software,” Proc. of 28th International Conference on Software

Engineering and Knowledge Engineering, Redwood City, San Francisco Bay, Cali-

fornia, USA, July 1 - July 3, 2016.

[49] A. Serebrenik, S. Roubtsov, E. Roubtsova and M. van den Brand, “Reverse Engi-

neering Sequence Diagrams for Enterprise JavaBeans with Business Method Inter-

ceptors,” The 16th Working Conference on Reverse Engineering, WCRE, 2009. pp.

269-273.

[50] Siddik, Saeed, Alim U. Gias, and Shah M. Khaled. “Optimizing Software Design

Migration from Structured Programming to Object Oriented Paradigm, ” IEEE, 2014.

68

[51] Ian Sommerville, “Software Engineering,” 10th Ed., Pearson, 2015.

[52] Suenobu, H., et al.“Stepwise Approach for Introducing Object-Oriented Technique at

Software Maintenance Stages,” vol. 5, IEEE, 1999.

[53] Sparxsystems tool, “Enterprise Architect,” Available:http://www.sparxsystems.com/.

[54] Tahvildari, L., and K. Kontogiannis. “A Software Transformation Framework for

Quality-Driven Object-Oriented Re-Engineering”, International Conference on Soft-

ware Maintenance, 2002. Proceedings, 2002.

[55] Tigris tool, “AgroUML,” Available: http://argouml.tigris.org.

[56] Tan, H. B. K., Y. Yang, and L. Bian. “Systematic Transformation of Functional Anal-

ysis Model into OO Design and Implementation. “ IEEE Transactions on Software

Engineering, vol. 32, no. 2, 2006, pp. 111-135.

[57] P. Tonella and A. Potrich, “Static and dynamic C++ code analysis for the recovery

of the object diagram,” International Conference on Software Maintenance, 2002. pp.

54-63.

[58] Vora, Urjaswala, and N. L. Sarda. “Framework for evolving systems. ” In Proceed-

ings of the 5th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed

Systems, Madrid, Spain. 2006.

[59] Vora, U. “Architectural Design Methodologies for Complex Evolving Systems”,

12th IEEE International Conference on Engineering Complex Computer Systems

(ICECCS 2007), 2007.

[60] AH Watson, DR Wallace, TJ McCabe, “books.google.com”- 1996.

[61] Wise, Richard, Lindsey Sheppard, John Huggins, et al. “A Methodology and Heuris-

tics for Re-Architecting a Legacy System”, 2015 Annual IEEE Systems Conference

(SysCon) Proceedings, 2015.

[62] Wong, W. E., and J. J. Li. “Redesigning Legacy Systems into the Object-Oriented

Paradigm, ” IEEE, 2003.

69

[63] Xing, Zhenchang, and E. Stroulia. “Understanding Phases and Styles of Object-

Oriented Systems’ Evolution”, 20th IEEE International Conference on Software

Maintenance, 2004. Proceedings, 2004.

[64] Yongchang, Ren, Liu Zhongjing, Xing Tao, et al. “Software Maintenance Process

Model and Contrastive Analysis”, 2011 International Conference on Information

Management, Innovation Management and Industrial Engineering, vol. 3. 2011.

[65] E. Yourdon, “Modern Structured Analysis,” Prentice- Hall, Englewood Cliffs, N.J.,

1989.

[66] Zaki, M. Z. M., and D. N. A. Jawawi. “Model-Based Methodology for Implementing

MARTE in Embedded Real-Time Software, ” IEEE, 2011.

[67] Zhou, Jia, et al.“ A Software Enhancement System for Embedded Software Develop-

ment,” IEEE, 2006.

[68] H. Zhou, H. Yang and A. Hugill, “An Ontology-Based Approach to Reengineering

Enterprise Software for Cloud Computing,” IEEE 34th Annual Computer Software

and Applications Conference (COMPSAC), 2010. pp. 383-388.

[69] Ziadi, T., et al. “A Fully Dynamic Approach to the Reverse Engineering of UML

Sequence Diagrams, ” IEEE, 2011.

[70] Zou, Ying, and K. Kontogiannis. “A Framework for Migrating Procedural Code to

Object-Oriented Platforms”, Proceedings Eighth Asia-Pacific Software Engineering

Conference, 2001.

[71] Zou, Ying.“Incremental Quality Driven Software Migration to Object Oriented Sys-

tems,“IEEE, 2004.

70

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	LITERATURE REVIEW
	Software Enhancement Process
	Software Enhancement Framework
	Software Reverse Engineering
	Software Re-engineering

	THE N-MODEL PROCESS AND METHODOLOGY
	Planning Phase
	Identify and Prioritize Enhancement Requirements
	Derive New, To-Be-Modified and To-Be-Deleted Use Cases
	Assigning Use Cases to Release Iterations

	Iterative Enhancement Phase
	Reverse Engineering
	Reincarnation
	Iteration Validation

	CASE STUDIES
	Preliminary Qualitative Case Study
	Overview
	Data Analysis
	Analysis and Result Interpretation
	Limitations

	Final Quantitative Case Study with Metrics
	Design of Final Quantitative Case Study
	Evaluation Metrics
	Data Collection
	Evaluation Results
	Threats to Validity

	CONCLUSION AND FUTURE WORK
	REFERENCES

