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ABSTRACT

Deep Learning Methods for Image Restoration and Reconstruction

Zahra Anvari, Ph.D.

The University of Texas at Arlington, 2021

Supervising Professor: Vassilis Athitsos

The problem of image reconstruction and restoration refers to recovering the

clean images from corrupted ones. Corruption or degradation can occur due to at-

mospheric conditions such as rain, fog, mist, snow, dust, and air pollution or tech-

nical drawbacks of imaging devices such as motion blurriness, compression noise,

low-resolution, etc. Image reconstruction algorithms aim at reducing these artifacts

and degradation and generate clear images. Scenes captured under bad weather con-

ditions such as rain, fog, mist, and haze suffer from visibility issues thus introduce

obstacles for computer vision applications, e.g. object detection, recognition, track-

ing, and segmentation.

In this dissertation, we focus on single image dehazing problem. In single image

dehazing, we would like to restore the haze free image from a hazy image. Most of

the recent image dehazing methods rely on paired datasets, which means for each

hazy image there’s a single clean/haze-free image as a ground truth. In practice,

however, there is a range of clean images that can correspond to a hazy image, due

to factors such as contrast or light intensity changes throughout the day. In fact, it is
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infeasible to capture both ground truth/clear image and the hazy image of the same

scene simultaneously. Thus there is an emerging need to develop solutions that do

not rely on the ground truth images and could operate with unpaired supervision.

To address this, we first cast the unpaired image dehazing problem to an image-

to-image translation problem and then propose a novel cycle-consistent generative

adversarial network, called ECDN, that operates without paired supervision and ben-

efits from (i) a global-local discriminator architecture to handle spatially varying haze

(ii) an encoder-decoder generator architecture with residual blocks to better preserve

the details (iii) skip connections in the generator to improve the performance of the

network and convergence (iv) customized cyclic perceptual loss and a self-regularized

color loss to generate more realistic images and mitigate the color distortion problem.

Through empirical analysis we show that the proposed network can effectively remove

haze and generate visually pleasing haze-free images.

In addition, most existing methods assume that haze has a uniform/homogeneous

distribution and haze can have a single color, i.e. grayish white color similar to smoke,

while in reality haze can be distributed non-uniformly with different patterns and

colors. To quantify the challenges and assess the performance of these methods, we

introduce a sunlight haze benchmark dataset, Sun-Haze, containing 107 hazy images

with different types of haze created by sunlight having a variety of intensity and color.

We evaluate a representative set of state-of-the-art image dehazing methods on this

benchmark dataset in terms of standard metrics such as PSNR, SSIM, CIEDE2000,

PI and NIQE. This uncovers the limitation of the current methods, and questions

their underlying assumptions as well as their practicality.
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CHAPTER 1

Introduction

Image reconstruction/restoration problem refers to recovering the clean images

from corrupted ones. Corruption or degradation can occur due to atmospheric con-

ditions such as rain, fog, mist, snow, dust, and air pollution or technical drawbacks

of imaging devices such as motion blurriness, compression noise, low resolution, etc.

Image reconstruction algorithms aim at reducing these artifacts and degradation and

generate clear images. Scenes captured under bad weather conditions such as rain,

fog, mist, and haze suffer from visibility issues thus introduce obstacles for computer

vision applications, e.g. object detection, recognition, tracking, and segmentation.

In this dissertation, we focus on single image dehazing. In single image de-

hazing, we would like to restore the haze free image from a hazy image. Figure 1.1

shows a few hazing images along with their corresponding clean images. Haze is an

atmospheric phenomenon that can cause visibility issues, and the quality of images

captured under haze can be severely degraded. Hazy images suffer from poor visibility

and low contrast, which can challenge both human visual perception and numerous

intelligent systems relying on computer vision methods.

The performance of standard computer vision tasks such as object detection [6,

7], semantic segmentation [8], face detection, clustering and dataset creation [9, 10,

11, 12] can be affected significantly when images are hazy. Hence, image dehazing is

an essential pre-processing task for general-purpose computer vision algorithms that

are fed with hazy images. As a result, single image dehazing has received a great deal

of attention over the past decade [13, 14, 15, 16, 17, 13, 14, 15, 16, 18, 17].
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(a) Hazy (b) Ground Truth

Figure 1.1: An example of hazy and clean images.

However, haze removal is still a challenging and ill-posed problem and most

existing methods make assumptions that do not simply hold in reality. Most of the

recent image dehazing methods rely on paired datasets, which means for each hazy

image there’s a single clean/haze-free image as a ground truth. In practice, however,

there is a range of clean images that can correspond to a hazy image, due to factors

such as contrast or light intensity changes throughout the day. In fact, it is infeasible

to capture both ground truth/clear image and the hazy image of the same scene

simultaneously. Thus there is an emerging need to develop solutions that do not rely

on the ground truth images and could operate with unpaired supervision.

To address this, we first cast the unpaired image dehazing problem to an image-

to-image translation problem and propose a novel cycle-consistent generative adver-
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sarial network, called ECDN. ECDN operates without paired supervision and benefits

from the following major components:

• A global-local discriminator architecture to handle spatially varying haze.

• An encoder-decoder generator architecture with residual blocks to better pre-

serve the details.

• Skip connections in the generator to improve the performance of the network

and convergence.

• Customized cyclic perceptual loss and a self-regularized color loss to generate

more realistic images and mitigate the color distortion problem.

Through ablation study we show the effectiveness of each of these components.

Also through empirical analysis we show that the proposed network can effectively

remove haze and generate visually pleasing haze-free images.

Furthermore, most existing methods and datasets assume that i) haze has a

uniform and homogeneous distribution in the entire image, and ii) haze can only

have a single color, i.e. grayish white similar to the color of smoke or pollution.

While in reality haze density can change non-homogeneously throughout an image

and it can vary in pattern and color.

To quantify the challenges and assess the performance of these methods, we

introduce a sunlight haze benchmark dataset, Sun-Haze, containing 107 hazy images

with different types of haze created by sunlight having a variety of intensity and color.

We evaluate a representative set of state-of-the-art image dehazing methods on this

benchmark dataset in terms of standard metrics such as PSNR, SSIM, CIEDE2000,

PI and NIQE. This uncovers the limitation of the current methods, and questions

their underlying assumptions as well as their practicality.

In summary, this dissertation presents the following major contributions:
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• We propose a novel cycle-consistent generative adversarial network called ECDN

for unpaired image dehazing. ECDN does not rely on any priors such as the

physical scattering model, as opposed to many previous methods, and instead it

adopts the image-to-image translation approach for unpaired image dehazing.

• We adopt a global-local discriminator structure to deal with spatially varying

haze and generate better haze-free images.

• We define a self-regularized color loss and utilize it along with a customized

perceptual loss to generate more visually pleasing images with vibrant colors

and mitigate the color distortion problem. Self-regularization is vital to our

network since in unpaired setting there is no external supervision available.

• We use an encoder-decoder generator architecture with residual blocks with skip

connections to better preserve the details.

• Through empirical analysis, we show that our network outperforms the previous

work in terms of PSNR and SSIM.

• We present a sunlight haze benchmark dataset, Sun-Haze, that contains 107

hazy images caused by sunlight, along with six ground truth images (five re-

touched by five experts and one original image before being retouched) per hazy

image.

• We perform an extensive analysis to evaluate current state-of-the-art dehazing

methods over Sun-Haze in terms of both reference-based and no-reference-based

metrics.

• We show that existing dehazing methods can not generalize well when there is

sunlight haze, in particular when we have sunlight color changes.
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1.1 Dissertation Overview

In Chapter 2, we give an overview of related work in single image dehazing.

This includes both traditional and deep learning based methods. We also provide

related work for both paired and unpaired image dehazing.

In Chapter 3, we give an overview of GANs and image-to-image translation

technique and how they work. We also describe paired vs. unpaired supervision

settings.

In Chapter 4, we propose a novel cycle-consistent generative adversarial net-

work, called ECDN, that operates without paired supervision. Through empirical

analysis, we show that the proposed network can effectively remove haze

and outperforms current methods in terms of SSIM and PSNR.

In Chapter 5, we introduce our dataset, Sun-Haze, and present our research

on benchmarking current dehazing methods. Our work reveals the limitation of

the current methods, and questions their underlying assumptions as well

as their practicality.

Finally, we conclude the dissertation in Chapter 6 and provide some potential

future research directions.
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CHAPTER 2

Related Work

Numerous attempts have been done to solve the single image haze removal

problem. These methods can be categorized into two main classes: prior-based and

learning-based, that we describe them below.

2.0.1 Prior-based dehazing

Prior-based methods are mainly based on prior information and assumptions to

recover the haze-free images from hazy images. They heavily depend on estimating the

parameters of the physical scattering model [19, 20], aka. the atmospheric scattering

model, which contains the transmission map and the atmospheric light to solve the

haze removal problem. The physical scattering model is formulated as:

I(x) = J(x)t(x) + A(1− t(x)) (2.1)

where I(x) is the hazy image, J(x) is the haze-free image or the scene radiance, t(x)

is the medium transmission map, and A is the global atmospheric light on each x

pixel coordinates.

He et al. [21] proposed a dark channel prior, DCP, to estimate the transmis-

sion map effectively. DCP utilizes dark channel prior to more reliably calculate the

transmission matrix. With dark channel prior, the thickness of haze is estimated and

removed by the atmospheric scattering model.

Moreover, this method is proposed based on experimental statistics of exper-

iments on haze-free images, which shows at least one color channel has some pixels

6



with very low intensities in most of non-haze patches. However, DCP has poor per-

formance on dehazing the sky images and is computationally intensive.

Tan et al. [22] increase the contrast of hazy images, based on the fact that

haze-free images have higher contrast than hazy images.

2.0.2 Learning-based dehazing

Recently learning based methods have been proposed that utilize CNNs and

GANs for the single image dehazing problem. CNN-based methods try to recover the

clean images through the atmospheric scattering model, by mainly estimating the

transmission map and atmospheric light [19, 23].

MSCNN [24] is a learning-based dehazing method. The authors proposed a

multi-scale deep neural network for single-image dehazing by learning the mapping

between hazy images and their corresponding transmission maps.

This method contains two sub-networks called coarse-scale and fine-scale, to

estimate the transmission map. The coarse-scale network estimates the transmission

map based on the entire image. The results are further improved locally by the

fine-scale network.

DehazeNet [25] takes advantage of both priors and the power of convolutional

neural networks. DehazeNet proposed an end-to-end system for medium transmission

estimation. It takes a hazy image as input, and outputs its medium transmission

map that is later used to recover a haze-free image via atmospheric scattering model.

In addition, DehazeNet proposed a CNN-based deep network, which its layers are

specially designed to embody the established priors in image dehazing. Authors

also proposed a nonlinear activation function called Bilateral Rectified Linear Unit

(BReLU), to improve the quality of recovered haze-free image.
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In short, DehazeNet modified the classic CNN model by adding feature ex-

traction and non-linear regression layers. These modifications distinguish DehazeNet

from other CNN-based models.

AOD-Net [26] is an end-to-end dehazing network which is based on estimat-

ing the transmission map through reformulating the atmospheric scattering model.

Instead of estimating the transmission matrix and the atmospheric light separately,

AODNet directly generates the clean image through a light-weight CNN. AOD-Net

can be easily embedded with Faster R-CNN [27] and improve the object detection

performance on hazy images with a large margin.

EPDN [28] is a recently proposed GAN-based single image dehazing method.

In this work they reduced the image dehazing problem to an paired image-to-image

translation problem and proposed an enhanced Pix2pix Dehazing network based on

a generative adversarial network. This network contains generators, discriminators,

and two enhancing blocks to produce a realistic dehazed image on the fine scale.

The enhancer contains two enhancing blocks based on the receptive field model,

which reinforces the dehazing effect in both color and details. The GAN is jointly

trained with the enhancer.

CycleDehaze [29] is an end-to-end single image dehazing method which does

not require pairs of hazy and corresponding ground truth images for training, i.e.

they train the network by feeding clean and hazy images in an unpaired manner.

This method enhances CycleGAN formulation by combining cycle-consistency

and perceptual loss to improve the quality of textural information recovery and gen-

erate more visually pleasing and realistic haze-free images.

The Cycle-consistent GAN (CycleGAN) [29] method was proposed for unpaired

image-to-image translation task and has gained significant attention during the past

8



couple of years. CycleGAN is utilized for image dehazing along with the perceptual

loss to generate more visually realistic dehazed images [5].
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CHAPTER 3

Background

In this section, we explain an overview of the related topics in this dissertation

which includes Generative adversarial Network and paired vs unpaired supervision.

3.1 Generative Adversarial Network

Generative adversarial networks, GANs, are an exciting recent innovation in

deep learning area. GANs are generative models meaning that they create new data

instances that resemble the training data.

Unlike other generative models for instance Variational Autoencoders (VAEs),

GANs do not estimate the Probability Density Function (PDF) of the training data

and instead it learns to generate instances that are indistinguishable from the training

data through a MiniMax game played by the Generator and the Discriminator.

Two main components of a generative adversarial network are the generator

model and discriminator model. The generator model, learns to produce the target

output, and the discriminator learns to distinguish true data from the output of

the generator or fake data. The generator tries to fool the discriminator, and the

discriminator tries to keep from being fooled.

In addition to generate realistic images for instance various objects, animal,

human faces, etc., GANs have become one of the most successful methods for image

manipulation, restoration, and reconstruction. GANs have been used to super-resolve

images [30], remove blurriness from images [31], remove noise [32], and haze removal

to name a few.
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Figure 3.1: Overview of a Generative Adversarial Model. Image captured from [1].

Figure 3.1 depicts the architecture of the generative adversarial network. The

input to the Generator model is a noise or a random vector, and the generator learns

to generate realistic examples using the feedback given by the discriminator. The

image generated by the generator and a real example from the training dataset are

the inputs of the discriminator. The discriminator classifies these examples as real vs

fake.

Both the generator and the discriminator are neural networks. The generator

output is connected directly to the discriminator input. Through backpropagation,

the discriminator’s classification provides a signal that the generator uses to update

its weights.

Figure 3.2 depicts the backpropagation in training the generator model and

Figure 3.3 shows the backpropagation in training the discriminator model.

3.2 Paired vs. Unpaired Supervision

In this section, we explain the concept of paired vs unpaired supervision in

single image dehazing problem.

11



Figure 3.2: Backpropagation in generator training. Image captured from [1].

Training a model can be done in Paired or Unpaired manner. In paired su-

pervised training, to successfully train a model we need the ground truth instance of

every hazy image; these models are mostly CNN-based.

On the other hand, models that train through unpaired supervision, do not

require hazy/haze-free pairs, in other words the ground truth images are not necessary

to train the model. This type of training mostly belong to GAN-based models that

are inherently unpaired supervised/weakly supervised. Another type of models that

can be trained without pairs being present is the prior-based models, these models

estimate the model parameters for instance the physical scattering model parameters

in case of image dehazing problem, and do not leverage the power of data.

3.3 Evaluation Metrics

We utilize different metrics throughout this dissertation that we describe them

here.
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Figure 3.3: Backpropagation in Discriminator training. Image captured from [1].

• PSNR (Peak Signal to Noise Ratio): It measures the ratio between the

maximum possible value of a signal and the power of distorting noise that

affects the quality of its representation. The higher the PSNR, the better the

reconstructive method. It is formulated as follows:

PSNR = 10 log10(peakval
2)/MSE (3.1)

where peakval is the maximal in the image data and MSE is the Mean Squared

Error between hazy and de-hazed image.

• SSIM (Structural Similarity Index): In this measurement, image degra-

dation is considered as the change of perception in structural information. It

also collaborates some other important perception based fact such as luminance

masking, contrast masking, etc. It is a measure that is consistent with human

perception, and is calculated based on the computation of three major aspects

that are: luminance, contrast, and structural.

SSIM(x, y) = [l(x, y)]α.[c(x, y)β.[s(x, y)]γ (3.2)
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where, l is the luminance, c is the contrast and s is the structure and α, β and

γ are the positive constants [33].

• PI (Perceptual Index): It measures the quality of restored and reconstructed

images based on human perception [34]. A lower perceptual index indicates

better perceptual quality. The perceptual quality of an image is the degree to

which the image looks like a natural image. This metric is a no-reference quality

measurement metric which means that it does not require a ground truth image.

The equation below shows the PI formula:

PI = ((10−Ma) +NIQE) (3.3)

which Ma and NIQE are two image qualification indexes detailed in [35, 36].

• CIEDE2000: It measures the color difference between hazy and dehazed im-

ages; smaller values indicate better color preservation, thus better dehazing and

perceptual quality [37].

• NIQE: It is a well-known no-reference image quality assessment metric for

evaluating real image restoration without requiring the ground-truth.

The larger values of PSNR, SSIM and the smaller values of CIEDE2000, NIQE,

and PI indicate better dehazing and perceptual quality.
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CHAPTER 4

Enhanced CycleGAN Dehazing Network

Haze is an atmospheric phenomenon that can cause visibility issues, and the

quality of images captured under haze can be severely degraded. Hazy images suf-

fer from poor visibility and low contrast, which can challenge both human visual

perception and numerous intelligent systems relying on computer vision methods.

The performance of standard computer vision tasks such as object detection [6,

7], semantic segmentation [8], face detection, clustering and dataset creation [9, 10,

11, 12] can be affected significantly when images are hazy. Hence, image dehazing is

an essential pre-processing task for general-purpose computer vision algorithms that

are fed with hazy images. As a result, single image dehazing has received a great deal

of attention over the past decade [13, 14, 15, 16, 17, 13, 14, 15, 16, 18, 17].

Most of the recent image dehazing methods rely on paired datasets, which

means for each hazy image there’s a single clean/haze-free image as a ground truth.

In practice, however, there is a range of clean images that can correspond to a hazy

image, due to factors such as contrast or light intensity changes throughout the day.

In fact, it is infeasible to capture both ground truth/clear image and the hazy image

of the same scene simultaneously. Thus there is an emerging need to develop solu-

tions that do not rely on the ground truth images and could operate with unpaired

supervision.

Single image dehazing methods can be categorized into two main classes: prior-

based methods and learning-based methods. Prior-based models solve the haze re-

moval problem through estimating the physical model, i.e. transmission map and
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(a) Hazy (b) MSCNN

(c) DehazeNet (d) Ours

Figure 4.1: A single image dehazing example. Our method generates an image with
less haze and rich details compared with MSCNN and DehazeNet.

atmospheric light parameters. Learning-based methods mainly use CNN-based or

GAN-based models to recover the haze-free images. These models take advantage of

large amount of training data to learn a model that recovers the haze-free image of a

hazy image.

In this Chapter, we focus on unpaired image dehazing and first cast the un-

paired image dehazing problem to an image-to-image translation problem and then

propose a novel cycle-consistent generative adversarial network, called ECDN, that

operates without paired supervision and benefits from (i) a global-local discriminator
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architecture to handle spatially varying haze (ii) an encoder-decoder generator archi-

tecture with residual blocks to better preserve the details (iii) skip connections in the

generator to improve the performance of the network and convergence (iv) customized

cyclic perceptual loss and a self-regularized color loss to generate more realistic im-

ages and mitigate the color distortion problem. Through empirical analysis we show

that the proposed network can effectively remove haze and generate visually pleasing

haze-free images.

Figure 4.1 shows the result of our method compared to the current state-of-the-

art methods. Our proposed method removes haze more effectively and generates a

more realistic clean image compared to previous work.

In summary, this Chapter presents the following contributions:

• We propose a novel cycle-consistent generative adversarial network called ECDN

for unpaired image dehazing. ECDN does not rely on any priors such as the

physical scattering model, as opposed to many previous methods, and instead it

adopts the image-to-image translation approach for unpaired image dehazing.

• We adopt a global-local discriminator structure to deal with spatially varying

haze and generate better haze-free images.

• We define a self-regularized color loss and utilize it along with a customized

perceptual loss to generate more visually pleasing images with vibrant colors

and mitigate the color distortion problem. Self-regularization is vital to our

network since in unpaired setting there is no external supervision available.

• We use an encoder-decoder generator architecture with residual blocks with skip

connections to better preserve the details.

• Through empirical analysis, we show that our network outperforms the previous

work in terms of PSNR and SSIM.
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4.1 Proposed Method

First we reduce the unpaired image dehazing problem to an image-to-image

translation problem, and then propose an Enhanced CycleGAN Dehazing Network

(ECDN) to translate a hazy image to a haze-free one. Next we describe our network

in details.

4.1.1 Overview of ECDN

Figure 4.2a demonstrates an overview of our proposed network. We have two

domains i.e. hazy and haze-free, and the generator GA which generates haze-free

image of a hazy image and GB which does the backward translation from haze-

free to hazy. We need these forward and backward translations to ensure the cycle

consistency. At each direction we have two discriminators i.e. Dglobal and Dlocal for

each generator to enforce them to generate more realistic and better haze-free images.

Figure 4.2b illustrates our proposed network in forward and backward cycles.

Top row depicts the hazy to haze-free translation cycle and how the components in-

teract. x is the hazy image and GB(GA(x)) is the reconstructed hazy image that

is used to calculate loss values i.e. cycle consistency loss and cyclic perceptual loss.

The bottom row shows the backward cycle i.e. how the haze-free image is recon-

structed through the backward cycle. y is the haze-free image and GA(GB(y)) is the

reconstructed haze-free image that is used to calculate different loss values i.e. cycle

consistency loss, cyclic perceptual loss, and also self-regularized color loss. We only

use self-regularized color loss in the backward cycle, since we want to make the haze

free and the reconstructed haze free images closer in terms of color, and prevent color

shifting and distortion.

Figure 4.3 depicts the network architecture of the generator GA and the global

and local discriminators. GA and GB utilize the same network architecture. Similarly
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(a) An overview of ECDN

(b) Overall architecture of ECDN

Figure 4.2: The architecture of ECDN
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all discriminators share the same network architecture, however operate on different

scales.
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Figure 4.3: The architecture of Generators and Discriminators of ECDN. This figure
shows the architecture ofGA, DGlobal

B andDLocal
B . GB, DGlobal

A andDLocal
A have the same

architecture as GA, DGlobal
B , DLocal

B respectively, except that they work on different
inputs, i.e., the input to GB is a clean image and the input to GA is a hazy image.

4.1.2 Generator

Figure 4.3 presents the architecture of ECDN model. The architecture of gen-

erator GA is depicted on the left. Note that GB has the same architecture as GA. In

order to generate a haze-free image without paired supervision in a cycle-consistent

manner, we require a generator network that can preserve the images’ texture, struc-

ture and details while removing haze. Therefore, we designed a network with three

parts: encoder, feature transformation, and decoder.
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Table 4.1: Generator Network Details

Component Layers #Filter Kernel Size Stride Padding

Conv, InstanceNorm, Relu 64 7x7 1 0

Encoder Conv, InstanceNorm, Relu 128 3x3 2 1

Conv, InstanceNorm, Relu 256 3x3 2 1

Conv, InstanceNorm, Relu 256 3x3 1 1

Conv, InstanceNorm, Relu 256 3x3 1 1

Feature Conv, InstanceNorm, Relu 256 3x3 1 1

Transformation Conv, InstanceNorm, Relu 256 3x3 1 1

Conv, InstanceNorm, Relu 256 3x3 1 1

ConvTranspose2d, InstanceNorm, Relu 128 3x3 2 1

Decoder ConvTranspose2d, InstanceNorm, Relu 64 3x3 2 1

ConvTranspose2d, Tanh 3 7x7 1 0

The encoder module starts with a convolution layer followed by an Instance

Normalization and Relu non-linearity and two downsampling blocks. Feature trans-

formation, has six Residual Blocks to extract complex and deep features whilst re-

moving haze. Going deeper in network helps it to become capable of representing

complex functions and also learn features at many different levels of abstraction. De-

coder consists of two upsampling blocks which are deconvolution layers, followed by

Instance Normalization and Relu. The deconvolution layers are used to recover im-

age structural details and convert the feature maps to a haze-free RGB image. The

upsampling operations are performed through the deconvolution layer to obtain inter-

mediate feature mappings with double spatial size and half channels than its previous

counterpart.

We use skip links between corresponding layers of different levels from encoder

and decoder to guarantee better convergence. A skip connection before downsam-

pling, is also applied between input and output of the feature transformation module,

as shown in Figure 4.3. Table 4.1 depicts the network details of the generators.
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4.1.3 Discriminator

The right side of Figure 4.3 shows DGlobal
B and DLocal

B . Note that DGlobal
A and

DLocal
A have the same architecture as DGlobal

B and DLocal
B respectively. We have two

types of discriminators, global and local, each performing a particular operation to

classify real vs. fake images.

Initially our model contained only global discriminators. However, we have

observed that global discriminators often fail on spatially-varying hazy images, i.e.,

in cases where haze density variation exists in an image.Thus we decided that different

image parts need to be enhanced differently. In order to enhance each region of an

image appropriately, in addition to improving the haze removal globally, we utilized

a global-local discriminator scheme inspired by [38] in a cycle-consistent manner.

Global discriminator DGlobal
B classifies if a haze-free image generated by GA is

real or fake, based on the entire image. Local discriminator DLocal
B classifies if a

haze-free image generated by GA is real or fake, based on 5 randomly cropped

image patches of size 64 × 64 pixels from that image. Table 4.2 depicts the

network details of the discriminators. Global and local discriminators share the same

network architecture, i.e. PatchGAN architecture.

Table 4.2: Discriminator Network Details

Layers #Filters Kernel Size Stride Padding

Conv layer, InstanceNorm, Leaky Relu 64 4x4 2 1

Conv layer, InstanceNorm, Leaky Relu 128 4x4 2 1

Conv layer, InstanceNorm, Leaky Relu 256 4x4 2 1

Conv layer, InstanceNorm, Leaky Relu 512 4x4 1 1

Conv layer, InstanceNorm, Leaky Relu 1 4x4 1 1
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4.1.4 Loss functions

Our objective loss function contains:

• Adversarial loss for matching the distribution of generated images to the data

distribution in the target domain.

• Cycle consistency loss to prevent the learned mappings GA and GB from

contradicting each other.

• Cyclic perceptual loss to help the generators generate more realistic and

visually pleasing images.

• Self-regularized color loss to avoid color shifting and artifacts in generated

haze-free images and also guide the generator to generate images with vibrant

colors.

The overall loss function for training ECDN is defined as follows:

Losstotal = LGANglobal + LGANlocal + LCycleglobal+

LCyclelocal + LCPglobal + LCPlocal + LSRColorglobal

(4.1)

Next we describe these loss functions in details.

4.1.4.1 Adversarial loss

We adopted Least Squares GAN to calculate the adversarial loss. Equations 4.2

and 4.3 show how we calculate the adversarial loss for the global discriminators and

the global generators respectively.

LGlobalD = Exr∼Preal
[(D(xr)− 1)2]+

Exf∼Pfake
[(D(xf )− 0])2]

(4.2)

LGlobalG = Exr∼Pfake
[(D(xf )− 1)2] (4.3)
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where D denotes the discriminator, and xr and xf are sampled from the real

and fake distribution respectively.

We introduced the local discriminator to further enhance hazy image and deal

with spatially-varying hazy images. Equations 4.4 and 4.5 depicts the corresponding

loss functions:

LLocalD = Exr∼Preal−patches
[(D(xr)− 1)2]+

Exf∼Pfake−patches
[(D(xf )− 0)2]

(4.4)

LLocalG = Exf∼Pfake−patches
[(D(xf )− 1)2] (4.5)

where D denotes the discriminator, xr and xf are sampled from patches taken

from real and fake distributions.

4.1.4.2 Cycle consistency loss

Adversarial loss can not guarantee that the learned function can map an in-

dividual input xi to desired output yi. Thus a cycle-consistency loss is proposed by

CycleGAN to reduce the space of possible mapping functions. Cycle-consistency loss

function (L1−norm) compares the cyclic image and the original image in an unpaired

image-to-image translation process [29]. Cycle consistency loss is defined as:

Lcycle(GA, GB) = Ex∼pdata(x) [‖(GB(GA(x))− x)‖]1+

Ey∼pdata(y) [‖(GA(GB(y))− y)‖]1
(4.6)

where GA and GB are forward and backward generators, x belongs to domain X (i.e.

the original domain, hazy images here) and y belongs to domain Y (i.e. the haze-free

images). GB(GA(x)) and GA(GB(y)) are the reconstructed images.
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If cycle-consistency loss’s goal is met, the reconstructed images GB(GA(x)) will

match closely to the input image x and also the reconstructed images GA(GB(y)) will

match closely to the input image y.

4.1.4.3 Self-regularized color loss

Hazy images usually lack brightness and contrast, to improve these lacking

features we define a self-regularized color loss, inspired by [39] to measure color

difference between the haze-free images and the reconstructed images. We call it

self-regularized because we do not rely on the ground truth image.

This loss function forces the generator to generate images with the same color

distribution as the haze-free images. In addition, we observed that some of the

reconstructed images have color artifacts which is an inherent problem of CycleGAN,

this loss function was employed to deal with this problem as well. Equation 4.7 shows

color loss function.

LSRColor =
∑
p

ANGLE(GA(GB(y))p, yp) (4.7)

Where ()p denotes a pixel; ANGLE is a function that calculates the angle

between two colors regarding the RGB color as a 3D vector. y belongs to domain Y

( i.e. faze-free images) and GA(GB(y)) the reconstructed haze-free image.

Eq. 4.7 sums the angles between the color vectors for every pixel pair inGA(GB(y))

and image y. The reason that we use this color loss calculation instead of an L2 dis-

tance in other color space is that the L2 metric only numerically measures the color

difference, it cannot ensure that the color vectors have the same direction and the

formulation is simple and fast for network computation.
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4.1.4.4 Cyclic perceptual loss

Adversarial and cycle consistency losses are not able to preserve the textual and

perceptual information of corrupted hazy images. Therefore, to achieve the perceptual

quality we employed a cyclic perceptual loss. The goal of this loss function is to

preserve the image structure and content features during dehazing and generate more

realistic images.

However, since our method is designed using unpaired supervision, i.e., percep-

tual loss cannot be directly applied between hazy and its ground truth counterpart.

Thus a modified version of perceptual loss is adopted.

Authors in [38] adopted a modified version of perceptual loss when the ground

truth is unavailable. They technically calculate the loss function between the original

image and its enhanced version and call it self preserving perceptual loss and show

that it helps with preserving the image structure and details. We adopted this loss

and utilized it in a cycle-consistent manner, and we call it Cyclic Perceptual Loss.

To calculate this loss, we focus on feature maps extracted from the 2nd and

5th pooling layers of VGG-16 pre-trained model. Equation 4.8 shows how this loss is

calculated:

LossCP = ‖(V gg(GB(GA(x)))− V gg(x))‖2 +

‖(V gg(GA(GB(y)))− V gg(y))‖2
(4.8)

where GA and GB are forward and backward generators, x belongs to domain

X (i.e. the original domain, hazy images here) and y belongs to domain Y (i.e. the

haze-free images). GB(GA(x)) and GA(GB(y)) are the reconstructed images. Vgg is

a VGG16 feature extractor from the second and fifth pooling layers.

To calculate the LLocalCP for the local discriminator we used the cropped local

patches of input and output images and used the same equation 4.8.

26



(a) w/o color loss (b) with color loss

(c) w/o color loss (d) with color loss

Figure 4.4: Examples showing the importance of color loss in our model ECDN.

Table 4.3: Ablation study over NYU dataset. The larger values of PSNR, SSIM and
the smaller value of CIEDE2000 indicate better dehazing and perceptual quality.

Setting ↑ PSNR ↑SSIM ↓ CIEDE2000

CycleGAN 13.3879 0.5223 17.6113

ECDN w/o color loss 14.5402 0.7407 15.6401

ECDN w/o perceptual loss 14.6582 0.7312 15.6348

EDCN w/o residual blocks 14.1092 0.6923 16.4344

EDCN w/o local discriminator 14.0681 0.7111 19.9466

ECDN 16.0531 0.8244 14.9436
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PSNR: 12.14, SSIM: 0.74

(a) Hazy image

PSNR: 13.43, SSIM: 0.78

(b) CycleGAN

PSNR: 16.10, SSIM: 0.74

(c) Cycle-Dehaze
PSNR: 19.11, SSIM: 0.90

(d) Ours (e) Ground truth

Figure 4.5: Comparison between CycleGAN, Cycle-Dehaze and the proposed method.

4.2 Experiments and Results

To evaluate the performance of our method compared to previous paired and

unpaired methods, we train a model on NYU dataset [40] and test it on NYU dataset

and also Middlebury dataset [41] as a cross-dataset to show how our model generalizes.

NYU contains 1449 hazy images paired with their ground truth images and Middle-

bury contains 23 high-resolution(2k) hazy images with their ground truth. Since our

method uses unpaired supervision, the training process received no information about

which haze-free image corresponds to each hazy image.

4.2.1 Training

For training we need two sets of training datasets: trainA includes hazy images

and trainB includes ground truth images (shuffled to simulate the unpaired super-
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Table 4.4: Results on NYU dataset. Some of the numbers for the previous work are
taken from [4, 5].

Method ↑PSNR ↑SSIM ↓CIEDE2000

DCP 10.9803 0.6458 18.9781

CycleGAN 13.3879 0.5223 17.6113

Cycle-Dehaze 15.41 0.66 19.04432

DDN 15.5456 0.7726 11.8414

DehazeNet 12.8426 0.7175 15.8782

MSCNN 12.2669 0.7000 17.4497

Ours 16.0531 0.8244 14.9436

vision similar to other unpaired methods [4]). The generators network layers are

depicted in Table 4.1, and the local and global discriminators network layers and

details are shown in Table 4.2. We opted for Adam optimizer (momentum = 0.5)

with batch size of 1. Our initial learning rate was 0.0002 for the first 100 epochs,

with linear decay to zero over the next 100 epochs. We set the slope of Leaky Relu

to 0.2. We implemented our model in PyTorch using two NVIDIA Tesla P100 GPUs

and trained our network for 200 epochs.

4.2.2 Quality Measures

We used PSNR, SSIM, and CIEDE2000 metrics, as described in Section 3.3.

4.2.3 Ablation Study

To demonstrate the effectiveness of the local discriminator, cyclic perceptual

loss, and self-regularized color loss, we perform several ablation experiments.

Figure 4.4 depicts a couple of examples on how color loss helps with color

artifacts removal. Employing color loss has enabled the network to remove artifacts

effectively.
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Table 4.5: Results on Middlebury dataset. The numbers for the previous work are
taken from [4, 5].

Method ↑PSNR ↑SSIM

DCP 12.0234 0.6902

CycleGAN 11.3037 0.3367

Cycle-Dehaze 15.6016 0.8532

DDN 14.9539 0.7741

DehazeNet 13.5959 0.7502

MSCNN 13.5501 0.7365

Ours 15.8747 0.8601

We compared our method with other cycle-consistent unpaired image-to-image

translation methods. Figure 4.5 shows the comparison between CycleGAN, Cycle-

dehaze and our method using an example image from NYU dataset. As one can

observe our method removed more haze and the generated haze-free images is closer

to the ground truth image. The red bounding boxes signify some parts of the image

with different amount of haze removed by these methods.

Table 4.3 depicts the results of our ablation study in terms of PSNR, SSIM and

CIEDE2000. One can observe that incorporating local discriminators can help achieve

better PSNR, SSIM and CIEDE2000, meaning better restoration and generation of

more visually pleasing results. The best results in terms of PSNR, SSIM, CIEDE2000

are achieved when the local discriminators, cyclic perceptual loss, and self-regularized

color loss are incorporated.

4.2.4 Quantitative and Qualitative Analysis

We compare our model with both paired and unpaired methods, on the NYU

and Middlebury datasets. Our method as well as the competitors are trained on the

NYU dataset, and tested on NYU dataset and Middlebury dataset as a cross-datase.
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Hazy DehazeNet MSCNN Cycle-Dehaze Ours GT

Figure 4.6: Comparison of the state-of-the-art dehazing methods on NYU dataset.

Our method outperforms other methods in terms of SSIM and PSNR on both NYU

and Middlebury datasets.

Table 4.4 and 4.5 and show the results on NYU and Middlebury datasets re-

spectively. Our method outperforms the other methods in terms of SSIM and PSNR,

and is the second best in terms of CIEDE2000.

Figure 4.6 shows the results of our method compared with other methods. DCP

suffers from color distortion and over-exposure. CycleGAN introduces color artifacts

and color shifting, and fails to remove much haze especially from dense hazy images.

MSCNN and DehazeNet similarly fail to remove much haze from hazy images as well.
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Our method, on the other hand is able to generate more natural haze-free

images which are much closer to the ground truth image. Moreover, one can observe

that our model outperforms the above-mentioned methods in recovery of details, and

generates more natural images with least color artifacts.

4.3 Conclusion

In this Chapter, we treated the image dehazing problem as an image-to-image

translation problem, and proposed a cycle-consistent generative adversarial network,

called ECDN, for unpaired image dehazing. ECDN utilizes discriminators with a

local-global structure and generators with an encoder-decoder architecture with resid-

ual blocks and skip links to remove haze effectively. It also leverages different loss

functions to generate realistic clean images. Using two benchmark test datasets, we

showed the effectiveness of the proposed method. Our method outperforms other

methods in terms of PSNR and SSIM.

We showed that the global-local discriminators structure can be effectively ap-

plied to unpaired single image dehazing through adversarial training. We speculate

that this structure can be generalized to other image restoration and reconstruction

applications such as single image de-raining.
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CHAPTER 5

Evaluating Single Image Dehazing Methods Under Realistic Sunlight Haze

Haze removal is still a challenging and ill-posed problem and most existing

methods make assumptions that do not simply hold in reality. For example, most

existing methods and datasets assume that i) haze has a uniform and homogeneous

distribution in the entire image, and ii) haze can only have a single color, i.e. grayish

white similar to the color of smoke or pollution. While in reality haze density can

change non-homogeneously throughout an image and it can vary in pattern and color.

Figure 5.1 shows a few sample images of different haze datasets that are widely

used to test image dehazing methods. As you can see, haze is monochromatic and

homogeneous in all these images. These datasets are created synthetically and do not

look realistic, which may limit the practicality of dehazing methods.

In this Chapter, we focus on haze created by sunlight which present a unique

challenge to dehazing methods. The reason we focus on sunlight is that haze created

by sunlight is one of the most prevalent type of haze for the outdoor and indoor

settings, and yet it has not received enough attention. To the best of our knowledge,

our work is the first work that focuses on sunlight haze.

Haze created by sunlight has multiple unique features:

• It can drastically vary in between sun rays throughout an image.

• It can corrupt some parts of an image more than another, meaning haze density

drastically varies.

• It can have an spectrum of colors, due to the sunlight color changes during the

day.
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(a) SOTS indoor (b) SOTS outdoor

(c) NYU (d) Middlebury

Figure 5.1: Sample hazy images of the datasets widely used to test image dehazing
methods, SOTS test dataset [2], NYU dataset [3], and Middlebury [3].

• It has a unique gradually diminishing pattern.

To quantify the challenges and assess the performance of state-of-the-art dehaz-

ing methods, we present a sunlight haze benchmark dataset, Sun-Haze, containing 107

hazy images with different haze density, coverage, and color, caused by sunlight. Fig-

ure 5.2 presents some sample hazy images of Sun-Haze along with their corresponding

ground truth images. We describe our dataset in the next section in details.
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Hazy image Original Expert A Expert B

Expert C Expert D Expert E

Hazy image Original Expert A Expert B

Expert C Expert D Expert E

Hazy image Original Expert A Expert B

Expert C Expert D Expert E

Figure 5.2: Sample images of Sun-Haze
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Since the ground truth/haze-free image of a hazy image can be a variety of clean

images, for instance images with different contrast or lighting, having only a single

image as the ground truth might not be a fair representative and it lacks flexibility

and practicality. Thus we build our dataset on top of MIT-Adobe FiveK dataset [42]

which includes images retouched by five experts. The retouched images are clean

images that we can employ as ground truth. Therefore, our dataset contains six

ground truth images per hazy image, including the original one before adding haze.

This provides us with the opportunity to compare existing methods more widely,

fairly and more importantly in a more practical way.

Our evaluation of the current state-of-the-art methods shows that there is no

clear winner and all these dehazing methods suffer to generalize well to the haze

created by sunlight, specially when dealing with haze with a different color.

In summary, this Chapter presents the following contributions:

• We present a sunlight haze benchmark dataset, Sun-Haze, that contains 107

hazy images caused by sunlight, along with six ground truth images (five re-

touched by five experts and one original image before being retouched) per hazy

image.

• We perform an extensive analysis to evaluate current state-of-the-art dehazing

methods over Sun-Haze in terms of both reference-based and no-reference-based

metrics.

• We show that existing dehazing methods can not generalize well when there is

sunlight haze, in particular when we have sunlight color changes.

5.1 Sun-Haze dataset

In this section, we describe how we created our hazy dataset, called Sun-Haze.

This dataset is built on top of MIT-Adobe FiveK dataset [42]. MIT-Adobe FiveK
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dataset contains 5,000 photos taken by photographers with SLR cameras. These pho-

tos are all in RAW format, meaning that all the information recorded by the camera

sensors, i.e. metadata, is preserved. These photos are captured from different scenes,

subjects, and during various lighting conditions. These photographs are retouched to

obtain a visually pleasing renditions by five photography experts using Adobe Light-

room [43].

To create our own dataset, we carefully selected a subset of 107 images from

MIT-Adobe FiveK dataset, and added sunlight haze to them. We selected images

that would create a realistic image after adding the sunlight haze. For example, we

did not select night time images, or indoor images with no windows.

To add sunlight haze and mimic the real sunlight haze effect, we utilized Adobe

Photoshop [44] and Luminar 4 [45] which are photo editing applications. They en-

able us to add realistic sunlight haze. To produce realistic sunlight haze effect, we

carefully used different parameters in Luminar 4, such as sunlight length, number of

sunlight rays, intensity, penetration, and warmth. Increasing intensity would create a

thicker and more dense haze effect. Increasing penetration would expand the sunlight

haze effect to a broader region of the image. Increasing sunlight warmth creates a

golden yellow type of haze, which enables us to create realistic sunlight color changes

during the day. We also added sunlight haze from different angles to further diversify

our dataset. To create sunset/sunrise haze effect, we used Adobe Photoshop and

professionally added a gradient sunlight haze effect.

Sun-Haze dataset includes 107 outdoor and indoor images with sunlight haze

professionally added. It also includes the original image (before retouch) as well as

five retouched images (retouched by five experts) per hazy image, that serve as the

ground truth images for each hazy image. Therefore each hazy image in our dataset

has six ground truth images, enabling us to evaluate dehazing methods more widely
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and in a more practical way (since the ground truth of a hazy image could be a variety

of clean/haze-free images). We will make our dataset public, and we hope that this

dataset can help other researchers to test dehazing methods in a more practical and

realistic way.

5.2 Dehazing Methods

In this section, we select a representative of existing dehazing methods from the

earliest ones to the current state-of-the-art methods. We can categorize the dehazing

methods into the following categories (Note that some of the methods might fall into

multiple categories):

• Prior-based: Prior-based methods also known as prior information-based meth-

ods are mainly based on the parameter estimation of atmospheric scattering

model by utilizing the priors, such as dark channel priors [21], color attenuation

prior [46], haze-line prior [47, 48]. The physical scattering model consists of the

transmission map and the atmospheric light, and it is formulated as follows:

I(x) = J(x)t(x) + A(1− t(x)) (5.1)

where I(x) is the hazy image, J(x) is the haze-free image or the scene radiance,

t(x) is the medium transmission map, and A is the global atmospheric light on

each x pixel coordinates.

• Learning-based: On the other hand, some methods utilize the deep convo-

lutional neural networks to estimate the transmission map indirectly [25, 24].

Some work employ deep convolutional neural networks to jointly estimate the

parameters of the physical scattering model, i.e. atmospheric light and the

transmission map [4, 49].
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Table 5.1: Description of the evaluated existing methods.

Method Paired vs. Unpaired Prior-based Learning-based Adversarial-based

DCP [21] NA X

MSCNN [24] Paired X X

DehazeNet [25] Paired X X

AODNet [26] Paired X X

EPDN [28] Paired X X

ECDN [50] Unpaired X X

CycleDehaze [5] Unpaired X X

• Paired/Unpaired Supervision: Paired single image dehazing methods need

the haze-free/ground truth of each hazy image for training [28, 26], while un-

paired dehazing methods do not require the haze-free pair of the hazy im-

ages [50, 5].

• Adversarial-based: Some image dehazing methods utilize generative adver-

sarial networks for image dehazing and learn transmission map and atmospheric

light simultaneously in the generators. Some data-driven methods use adversar-

ial training to solve the dehazing problem without using priors. Some recently

proposed work use image-to-image translation techniques to tackle the image de-

hazing problem through adversarial training [50, 28, 5]. Xitong et. al proposed

a joint model that learns to perform physical-model based disentanglement by

adversarial training [4].

Table 5.1 represents a description of the methods that we evaluated. As you

can observe, we selected a variety of methods from different categories. Next, we will

describe these methods in more details.
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5.3 Results and Discussion

In this section, we present the quantitative and qualitative evaluation results

and then discuss the performance of the dehazing methods over Sun-Haze dataset.

5.3.1 Quantitative Evaluation

In this section, the Sun-Haze dataset is used to perform a comprehensive quan-

titative evaluation of several state-of-the-art single image dehazing methods, as de-

scribed in Section 5.2.

Table 5.2 shows the quantitative results of evaluating the dehazing methods

in terms of PSNR and SSIM, CIEDE2000, NIQE, and PI. We conducted multiple

experiments to evaluate the dehazing and generalization capability of the dehazing

techniques.

We used our Sun-Haze dataset as the hazy images and the retouched images

by five experts as well as the original image as the ground truth for each experiment.

The best results are depicted in bold. We also highlighted the top three best results.

The green highlights represent the best results, yellow the second best and pink the

third best results.

As one can observe, on average MSCNN achieved best PSNR of 17.51 and the

second best SSIM and CIEDE2000. ECDN outperformed other methods in terms

of SSIM, CIEDE2000, and PI by a very small margin. AOD-Net achieved the best

NIQE of 3.93 which is very comparable with the second and third best results.

As you can see, no method is superior to other methods in all five measurements

and the best results are only slightly better than the second and third best results.

This suggests that current methods can not generalize well to remove haze caused by

sunlight.
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Table 5.2: Results over Sun-Haze dataset. We performed separate analysis for differ-
ent ground truth images. The images retouched by 5 experts and the original image
before retouch are considered as ground truth/haze free for each experiment. We also
present results for the no-reference metrics that do not require a ground truth image.

Ground truth Metric DCP MSCNN Dehazenet AOD-Net EPDN ECDN CycleDehaze

PSNR 11.01 16.48 15.62 14.83 15.88 14.38 15.53

Expert A SSIM 0.641 0.773 0.733 0.698 0.784 0.789 0.778

CIEDE 34.76 23.46 27.55 30.26 26.29 24.37 26.62

PSNR 11.28 16.33 15.13 14.15 14.96 15.12 15.38

Expert B SSIM 0.655 0.763 0.709 0.676 0.761 0.801 0.763

CIEDE 32.66 25.43 30.90 34.33 31.64 22.03 26.49

PSNR 11.32 16.57 15.49 14.49 15.44 14.74 15.23

Expert C SSIM 0.643 0.746 0.703 0.670 0.756 0.782 0.737

CIEDE 33.22 24.57 28.84 31.93 28.73 23.98 28.98

PSNR 11.43 14.91 13.75 12.82 13.55 14.93 14.35

Expert D SSIM 0.649 0.722 0.667 0.632 0.713 0.781 0.728

CIEDE 30.87 29.10 34.76 38.87 36.28 22.36 28.67

PSNR 11.32 15.27 13.86 12.99 13.56 15.32 14.84

Expert E SSIM 0.640 0.719 0.660 0.626 0.704 0.780 0.733

CIEDE 33.07 28.56 34.38 38.11 35.88 22.30 28.13

PSNR 11.40 19.10 17.78 16.89 17.96 14.57 16.39

Original image SSIM 0.686 0.867 0.814 0.782 0.857 0.810 0.834

CIEDE 36.10 18.44 23.651 26.63 22.72 24.46 23.46

PSNR 11.34 17.51 16.28 15.37 16.32 14.73 15.73

Average SSIM 0.651 0.765 0.721 0.680 0.763 0.799 0.762

CIEDE 33.45 24.93 30.06 33.36 30.26 23.25 27.06

No reference NIQE 5.35 4.06 4.08 3.93 4.13 4.09 4.60

No reference PI 3.71 3.25 3.25 3.02 3.04 2.93 4.08
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Figure 5.3: Comparison of the dehazing methods on Sun-Haze dataset.
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5.3.2 Qualitative Evaluation

Fig. 5.3 depicts five hazy images from Sun-Haze dataset, and the dehazing

results yielded by AOD-Net [26], ECDN [50], DehazeNet [25], MSCNN [24], and

EPDN [28]. In this figure we have five pairs of rows. In each pair the top row shows

a hazy image followed by the results of five dehazing methods mentioned above and

the second row shows the five experts’ retouched images and the untouched original

image to compare with.

Qualitatively, most methods were unable to remove the sunlight haze without

introducing color shifting or artifacts. EPDN which is a paired image-to-image trans-

lation technique, has mainly learned to remove haze through increasing the color

intensity at different channels, thus the dehazed images look visibly darker and the

sunlight haze more yellow or orange than the original hazy image. EPDN also in-

troduced artifacts to some of the generated images while partially removing haze. It

also created the halo effect near edges.

Other methods also were unable to generalize to remove sunlight haze and they

removed haze partially and improved the visibility to a small extent. For instance,

even though AOD-Net, ECDN, Dehazenet, and MSCNN could recover the image

structure similar to EPDN, they introduced color shifting and artifacts which are not

visually pleasing and made the haze even more prominent.

ECDN achieved the best/highest structural similarity index and recovered the

image structure well but introduced artifacts and overexposure in particular where

the sun rays lie.

In conclusion, these methods were unable to generalize well to remove sunlight

haze and performed even more poorly removing sunset hazy images which embody

more varicolored haze. This questions the underlying assumptions of these methods

and their practicality in the real-world scenarios. Therefore, for dehazing methods
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to be practical they need to be trained and tested using more realistic and practical

datasets which include variety of realistic haze patterns and colors.
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CHAPTER 6

Conclusion and Future Work

In this dissertation, we focused on a very challenging image restoration task, i.e.,

single image dehazing. In single image dehazing, we need to remove haze from an

image while restoring the details of the image which might have been corrupted due to

the haze. Most of the recent image dehazing methods rely on paired datasets, which

means for each hazy image there is a single clean/haze-free image as a ground truth.

In practice, however, there is a range of haze-free/clean images that could correspond

to a hazy image, due to factors such as contrast or light intensity changes throughout

the day. Thus methods developed by paired supervision are not practical.

Therefore we focused on unpaired image dehazing, and reduced it to an image-

to-image translation problem. We then proposed a novel cycle-consistent adversarial

network, called ECDN, that operates without paired supervision and benefits from

(i) a global-local discriminator architecture to handle spatially varying haze (ii) an

encoder-decoder generator architecture with residual blocks to better preserve the

details (iii) skip connections in the generator to improve the performance of the

network and convergence (iv) customized cyclic perceptual loss and a self-regularized

color loss to generate more realistic images and mitigate the color distortion problem.

Through ablation study we showed the effectiveness of each part of our network.

In addition, through empirical analysis we showed that this network outperforms

previous work in terms of SSIM and PSNR metrics.

Next, we investigated one of the fundamental assumption that current dehazing

methods undertake, i.e., haze has a uniform and homogeneous distribution in the
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entire image and can only have a single color, i.e., smoke like color. While in reality

haze density can change non-homogeneously throughout an image and it can vary in

pattern and color.

To investigate this, we focused on haze created by sun, which is one of the

most prevalent type of haze in the wild. Sun haze can have varying patterns due to

sun rays with different color spectrum due to sunlight warmth changes throughout

the day. We introduced a new dataset, called Sun-Haze, which includes six ground

truth images (one original image and five images retouched by five experts) per each

hazy image. Since each hazy image could potentially correspond with multiple clean

images, Sun-Haze includes five grounds truth images that are touched with different

experts. In this way, we can have a more fair and practical comparison over the

previous work. We evaluated a representative set of previous work over Sun-Haze

dataset in terms of different metrics like PSNR, SSIM, and CIEDE2000, NIQE.

We concluded that there is no clear winner among these methods. In fact,

all methods were unable to generalize to remove sunlight haze effectively and they

removed haze partially and improved the visibility to a small extent. Some methods

even introduced artifacts and halo effect. This questions the underlying assumptions

of these methods and their practicality in the real-world scenarios.

6.1 Future Work

The work in this dissertation paves the way for future research into single image

dehazing in terms of realistic solutions and datasets. We hope that our Sun-Haze

dataset can help other researchers to develop more practical methods for single image

dehazing problem. Through our analysis we showed that current methods can not

generalize well when haze is non-homogeneous and/or haze has a spectrum of colors.

That opens up a new avenue of research. Thus, one direction for future work is
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to develop methods that can remove non-homogeneous and/or vary colored haze.

Sun-haze can serve as a test dataset for this purpose.

Another future work could be to collect a more comprehensive dataset for train-

ing and testing deep learning based methods for image dehazing. While Sun-Haze

dataset took the first step to create a non-homogenous and vary colored haze test

dataset, this dataset is limited to haze created by sunlight only. We can extend this

dataset to include more realistic, non-homogenous, vary colored and diverse hazy im-

ages, such as haze created by lights at night, or haze created by smoke or pollution.

Such datasets would be critical in developing practical solutions for image dehazing.
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[5] D. Engin, A. Genç, and H. Kemal Ekenel, “Cycle-dehaze: Enhanced cyclegan

for single image dehazing,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2018, pp. 825–833.

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European conference on computer vision.

Springer, 2016, pp. 21–37.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2016, pp. 779–788.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015, pp. 3431–3440.

52



[9] S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection bench-

mark,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 5525–5533.

[10] Z. Anvari and V. Athitsos, “A pipeline for automated face dataset creation from

unlabeled images,” in Proceedings of the 12th ACM International Conference on

PErvasive Technologies Related to Assistive Environments, 2019, pp. 227–235.

[11] W.-A. Lin, J.-C. Chen, C. D. Castillo, and R. Chellappa, “Deep density clustering

of unconstrained faces,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 8128–8137.

[12] W.-A. Lin, J.-C. Chen, and R. Chellappa, “A proximity-aware hierarchical clus-

tering of faces,” in 2017 12th IEEE International Conference on Automatic Face

& Gesture Recognition (FG 2017). IEEE, 2017, pp. 294–301.

[13] C. Ancuti, C. O. Ancuti, C. De Vleeschouwer, and A. C. Bovik, “Night-time

dehazing by fusion,” in 2016 IEEE International Conference on Image Processing

(ICIP). IEEE, 2016, pp. 2256–2260.

[14] C. O. Ancuti, C. Ancuti, C. Hermans, and P. Bekaert, “A fast semi-inverse ap-

proach to detect and remove the haze from a single image,” in Asian Conference

on Computer Vision. Springer, 2010, pp. 501–514.

[15] S. Emberton, L. Chittka, and A. Cavallaro, “Hierarchical rank-based veiling light

estimation for underwater dehazing,” 2015.

[16] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, “Efficient image dehazing

with boundary constraint and contextual regularization,” in Proceedings of the

IEEE international conference on computer vision, 2013, pp. 617–624.

[17] J.-P. Tarel and N. Hautiere, “Fast visibility restoration from a single color or

gray level image,” in 2009 IEEE 12th International Conference on Computer

Vision. IEEE, 2009, pp. 2201–2208.

53



[18] Z. Anvari and V. Athitsos, “Evaluating single image dehazing methods under

realistic sunlight haze,” arXiv preprint arXiv:2008.13377, 2020.

[19] E. J. McCartney, “Optics of the atmosphere: scattering by molecules and parti-

cles,” New York, John Wiley and Sons, Inc., 1976. 421 p., 1976.

[20] G. Srinivasa and K. Shree, “Vision and the atmosphere,” International Journal

of Computer Vision, vol. 48, no. 3, pp. 233–254, 2002.

[21] K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel

prior,” IEEE transactions on pattern analysis and machine intelligence, vol. 33,

no. 12, pp. 2341–2353, 2010.

[22] R. T. Tan, “Visibility in bad weather from a single image,” in 2008 IEEE Con-

ference on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[23] S. G. Narasimhan and S. K. Nayar, “Chromatic framework for vision in bad

weather,” in Proceedings IEEE Conference on Computer Vision and Pattern

Recognition. CVPR 2000 (Cat. No. PR00662), vol. 1. IEEE, 2000, pp. 598–

605.

[24] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, “Single image

dehazing via multi-scale convolutional neural networks,” in European conference

on computer vision. Springer, 2016, pp. 154–169.

[25] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end system

for single image haze removal,” IEEE Transactions on Image Processing, vol. 25,

no. 11, pp. 5187–5198, 2016.

[26] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one dehazing

network,” in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 4770–4778.

54



[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in neural information

processing systems, 2015, pp. 91–99.

[28] Y. Qu, Y. Chen, J. Huang, and Y. Xie, “Enhanced pix2pix dehazing network,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2019, pp. 8160–8168.

[29] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE

international conference on computer vision, 2017, pp. 2223–2232.

[30] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image super-

resolution using a generative adversarial network,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 4681–4690.

[31] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “Deblurgan:

Blind motion deblurring using conditional adversarial networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.

8183–8192.

[32] J. Chen, J. Chen, H. Chao, and M. Yang, “Image blind denoising with gen-

erative adversarial network based noise modeling,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 3155–3164.

[33] R. Kumar and V. Moyal, “Visual image quality assessment technique using fsim,”

International Journal of Computer Applications Technology and Research, vol. 2,

no. 3, pp. 250–254, 2013.

[34] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor, “The 2018

pirm challenge on perceptual image super-resolution,” in Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), 2018, pp. 0–0.

55



[35] C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang, “Learning a no-reference quality

metric for single-image super-resolution,” Computer Vision and Image Under-

standing, vol. 158, pp. 1–16, 2017.

[36] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind”

image quality analyzer,” IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–

212, 2012.

[37] M. R. Luo, G. Cui, and B. Rigg, “The development of the cie 2000 colour-

difference formula: Ciede2000,” Color Research & Application: Endorsed by

Inter-Society Color Council, The Colour Group (Great Britain), Canadian So-

ciety for Color, Color Science Association of Japan, Dutch Society for the Study

of Color, The Swedish Colour Centre Foundation, Colour Society of Australia,
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