# REGIONAL PRIORITIZATION OF CORRIDORS FOR <br> TRAFFIC SIGNAL RETIMING 

by<br>\section*{SASANKA BHUSHAN PULIPATI}

Presented to the Faculty of the Graduate School of The University of Texas Arlington in Partial Fulfillment of the Requirements for the Degree of

## MASTER OF SCIENCE IN CIVIL ENGINEERING

May 2006

## Dedicated to my parents

Mrs. Lakshmi Devi and Mr. Markandeya and to my country India.

## ACKNOWLEDGEMENTS

It was a great pleasure working on my thesis with Dr. Stephen P. Mattingly. I sincerely acknowledge his guidance and encouragement throughout this thesis. I am grateful to Dr. James Williams and Dr. Melanie Sattler for helping me with their valuable suggestions during this effort. I am obliged to Prof. Sia Ardekani for his advice throughout my graduate studies at UT Arlington. I thank Dr. D.L.Hawkins for his guidance in statistical analysis.

I express my gratitude towards Mr. Alauddin Khan and Ms. Natalie Bettger, the NCTCOG officials who informed me about the current methodology and suggestions for improvement. I am thankful to Mr. Khan for providing the necessary data for this research. My special thanks go to Mr. Mike Blake, Traffic Engineer, City of Arlington, for providing me required information on signal retiming projects in Arlington.

I thank the Department of Civil and Environmental Engineering, UTA, for providing me the required software and computing facilities. I appreciate Mr. Lewis Crow, Computer Services Specialist, for help related to software.

I thank all the officials from various transportation departments who participated in my survey.

I thank all my colleagues who provided me with great support, both technical and moral, all through my research.

Finally, I would like to convey my sincere gratitude to my parents and family members whose support provided me the confidence to achieve this task.

April 17, 2006

ABSTRACT<br>\title{ REGIONAL PRIORITIZATION OF CORRIDORS FOR } TRAFFIC SIGNAL RETIMING<br>\section*{Publication No}<br>$\qquad$<br>Sasanka Bhushan Pulipati, M.S.

The University of Texas Arlington, 2006

Supervising Professor: Dr. Stephen P. Mattingly
Every three to four years, the North Central Texas Council of Governments (NCTCOG) funds signal retiming projects to improve air quality in the Dallas-Fort Worth region. As sufficient funds are not available to retime all the signals in the region at the same time, the retiming must be completed in phases. To optimize the impact of the retiming projects, the candidate corridors must be rank ordered or prioritized. NCTCOG applies a ranking model, which uses variables such as delay, number of stops and system type, a dummy variable indicating the interconnection among the intersections. The weighting for each factor is assigned by an expert group.

This thesis proposes a new, improved methodology based on signal retiming benefits rather than the severity of existing traffic conditions. Benefits are estimated from the before and after studies conducted along the corridors where retiming has been executed recently. Benefits in delay, fuel consumption and emissions are to be modeled in terms of various physical characteristics and traffic flow characteristics of the corridors. This model helps in estimating benefits beforehand and prioritizing the retiming projects based on these benefits. Appropriate conversion rates are identified to convert all benefits into dollars.

## TABLE OF CONTENTS

ACKNOWLEDGEMENTS. ..... iii
ABSTRACT ..... v
LIST OF ILLUSTRATIONS ..... xi
LIST OF TABLES ..... xiii
Chapter

1. INTRODUCTION ..... 1
2. TRAFFIC SIGNAL RETIMING ..... 4
2.1 Corridor-Based Signal Retiming ..... 5
2.2 Benefits of Signal Retiming ..... 6
2.3 The Process of Signal Retiming ..... 7
2.3.1 Existing data collection ..... 8
2.3.2 Signal optimization ..... 8
2.3.3 Implementation ..... 9
2.3.4 Documentation ..... 9
3. PROBLEM STATEMENT. ..... 10
4. PRIORITIZATION OF PROJECTS - A REVIEW ..... 12
5. PRIORITIZATION OF SIGNAL RETIMING PROJECTS ..... 14
5.1 Need for Prioritization of Signal Retiming Projects ..... 14
5.2 Existing Procedures in Dallas-Fort Worth Region ..... 16
5.3 Factors Affecting the Prioritization of Retiming Projects ..... 17
5.3.1 Delay ..... 17
5.3.2 Number of stops ..... 18
5.3.3 Fuel consumption ..... 18
5.3.4 Emissions ..... 19
5.3.5 Safety ..... 19
6. NCTCOG'S RANKING METHODOLOGY ..... 21
6.1 Corridor Data ..... 21
6.2 The Model Used by NCTCOG ..... 22
6.2.1 Variables ..... 22
6.2.1.1 Total delay ..... 22
6.2.1.2 Number of stops ..... 23
6.2.1.3 System type ..... 23
6.2.2 Weightings ..... 23
6.3 Calculation of Rank Order ..... 24
7. ESTIMATION OF BENEFITS ..... 27
7.1 Case Study from the City of Arlington ..... 27
7.2 Before and After Studies ..... 28
7.2.1 Before and after studies for signal retiming projects ..... 28
7.2.2 PC-Travel software - an overview ..... 29
7.2.3 Estimation of emissions and fuel consumption using PC-Travel ..... 32
7.3 Studies for the Recent Projects ..... 33
7.3.1 Great Southwest Parkway ..... 34
7.3.2 Pioneer Parkway ..... 37
7.4 Total Corridor Benefits ..... 38
7.5 Comparison of Benefits with Estimates from SimTraffic ..... 41
8. PROPOSED METHODOLOGY ..... 43
8.1 Modeling Benefits ..... 43
8.1.1 Dependents and predictors in the model ..... 43
8.1.2 Discussion of predictors ..... 45
8.1.3 Model development ..... 47
8.1.3.1 Uni-variate analysis - Qualitative variables ..... 48
8.1.3.2 Uni-variate analysis - Quantitative variables ..... 49
8.1.3.3 Correlation matrix ..... 54
8.2 Monetary Benefits ..... 56
8.2.1 Value of time ..... 56
8.2.2 Fuel price ..... 56
8.2.3 Value of $\mathrm{NO}_{\mathrm{x}}$ emissions ..... 56
8.3 Application of Methodology ..... 57
9. CONCLUSIONS AND RECOMMENDATIONS ..... 59
9.1 Conclusions ..... 59
9.2 Recommendations for Further Research ..... 60

Appendix
A. RESPONSES OF VARIOUS TRANSPORTATION ORGANIZATIONS ON SIGNAL RETIMING PROJECTS AND THEIR PRIORITIZATION ..... 62
B. ORIGINAL DATA OBTAINED FROM NCTCOG ..... 66
C. DETAILED STUDY STATISTICS FROM BEFORE AND AFTER TRAVEL TIME STUDIES ..... 81
D. DATA COMPILED FOR INDEPENDENT VARIABLES ..... 100
REFERENCES ..... 105
BIOGRAPHICAL INFORMATION ..... 107

## LIST OF ILLUSTRATIONS

Figure Page
1.1 Map showing Dallas-Fort Worth region in the U.S. ..... 2
2.1 User costs vs. number of years for two different signal retiming scenarios ..... 5
7.1 Jamar TDC-12 instrument ..... 28
7.2 PC-Travel window showing the details for AM NB runs on Great Southwest Pkwy ..... 30
7.3 PC-Travel window showing study statistics ..... 31
7.4 Great Southwest Parkway corridor ..... 35
7.5 Pioneer Parkway corridor ..... 37
8.1 Histogram for Number of lanes (NL). ..... 48
8.2 Histogram for System type (Z) ..... 48
8.3 Density histogram for Length ..... 50
8.4 Density histogram for No. of signals ..... 50
8.5 Density histogram for Signal density ..... 50
8.6 Density histogram for Log (Signal density) ..... 51
8.7 Density histogram for St. dev of spacing ..... 51
8.8 Density histogram for Average daily traffic ..... 51
8.9 Density histogram for Free flow travel time ..... 52
8.10 Density histogram for Measured travel time ..... 52
8.11 Density histogram for Total delay/vehicle ..... 52
8.12 Density histogram for Delay/veh/signal ..... 53
8.13 Density histogram for Delay/veh/mile ..... 53
8.14 Density histogram for Number of stops/veh ..... 53
8.15 Density histogram for Number of stops/veh/mile ..... 54
8.16 Density histogram for Number of stops/veh/signal. ..... 54

## LIST OF TABLES

Table Page
6.1 Variables Used in NCTCOG's Ranking Model and Their Weightings ..... 23
6.2 Results of the NCTCOG Ranking Model ..... 25
7.1 Corridor Details for Great Southwest Parkway ..... 34
7.2 Estimated Benefits per Vehicle for Great Southwest Parkway ..... 36
7.3 Corridor Details for Pioneer Parkway ..... 37
7.4 Estimated Benefits per Vehicle for Pioneer Parkway ..... 38
7.5 Traffic Volumes for Great Southwest Parkway ..... 39
7.6 Traffic Volumes for Pioneer Parkway ..... 39
7.7 Recommended Signal Timing Operating Schedule for Weekday ..... 39
7.8 Savings in Three Years from Signal Retiming along Great Southwest Parkway ..... 40
7.9 Savings in Three Years from Signal Retiming along Pioneer Parkway ..... 40
7.10 Total Weekday Daytime Corridor Savings ..... 41
7.11 Comparison of Delays for Great Southwest Parkway... ..... 42
7.12 Comparison of Delays for Pioneer Parkway ..... 42
8.1 Predictors Considered in Modeling Benefits ..... 45
8.2 Uni-variate Analysis of Quantitative Variables ..... 49
8.3 Correlation Matrix for the Independent Variables ..... 55

## CHAPTER 1

## INTRODUCTION

According to the Institute of Transportation Engineers (2004), there are about 300,000 traffic signals in the United States. Delay at signalized intersections is a major part of total vehicular traffic delay. Traffic signal retiming is one of the most cost effective ways to reduce delays and is one of the most basic strategies to help mitigate congestion. Signal retiming can reduce variations in vehicle-speeds, which reduces vehicle emissions and improves the air quality of a region. After three to four years, traffic signals may need to be retimed, where new timing plans are established to match the current demand.

This research is concerned with the signal retiming projects proposed in the Dallas-Fort Worth (DFW) region. Figure 1.1 shows the DFW area in the United States map. DFW is a moderate non-attainment zone for Ozone with respect to air quality requirements. The North Central Texas Council of Governments (NCTCOG), the metropolitan planning organization for this region, funds signal retiming projects in this region. NCTCOG works with an aim of improving air quality as well as congestion through these projects.


Figure 1.1 Map showing Dallas-Fort Worth region in the U.S. (source: www.fortworth.com)

As sufficient funds are not available to retime all the signals in the region at the same time, the retiming must be completed in phases. For each phase, candidate corridors must be prioritized to make sure the funds are efficiently used. NCTCOG has its own ranking model, which uses delay, number of stops and a dummy variable, system type. Here, system type indicates whether or not the signals along a corridor are connected to a coordinated system. Delay and number of stops are used to indicate the severity of the existing traffic conditions.

This thesis presents a new methodology for prioritization, which models expected benefits based on both the system's physical characteristics and traffic conditions before signal retiming. In this methodology, all benefits such as reduction in delay, fuel consumption and emissions are converted into monetary terms using a reasonable dollar rate. While this thesis proposes the structure for this model, the model itself is not estimated because the before and after studies associated with the recent traffic signal retiming projects in this region have not been completed.

This thesis first introduces traffic signal retiming and then talks about the need for prioritization of signal retiming projects. Existing methodology used by the NCTCOG is discussed before proposing a new methodology.

The second chapter defines traffic signal retiming and thoroughly discusses how it is implemented. The problem statement is given in chapter three. Chapter four reviews some earlier research on prioritization of projects, while the need for prioritization of signal retiming projects and various factors involved in such an effort are discussed in chapter five. NCTCOG's ranking methodology for prioritizing signal retiming projects is explained in chapter six. Chapter seven demonstrates how corridor benefits from signal retiming are estimated. The proposed methodology is explained in chapter eight. Chapter nine concludes this thesis with some recommendations for future research.

## CHAPTER 2

## TRAFFIC SIGNAL RETIMING

According to the Institute of Transportation Engineers (ITE), traffic signal retiming is one of the most cost efficient methods to solve traffic congestion problems and to improve air quality (ITE, 2006). Every time signals at an intersection are adjusted or new signals are installed, a traffic engineer's aim is to make them operate at the most efficient timing. A traffic signal system is efficient when it produces the least possible delays and number of stops at that intersection with some limitations such as any delays caused due to pedestrian crossing time.

Because of continuous growth in traffic and variation in travel patterns, the efficiency of a traffic signal system may deteriorate. Hence, retiming the signals may be necessary once every three to four years or when traffic patterns change considerably. Sunkari (2004) encourages retiming signals every three years to reduce growth in user costs. Figure 2.1 shows how user costs decrease in a case where signal retiming is done after 3 years and 6 years.


Figure 2.1 User costs vs. number of years for two different signal retiming scenarios (source: Sunkari (2004))

Signal retiming is defined by Sunkari (2004) as:
Traffic signal retiming is a process that optimizes the operation of signalized intersections through a variety of low-cost improvements, including the development and implementation of new signal timing parameters, phasing sequences, improved control strategies and, occasionally, minor roadway improvements.

### 2.1 Corridor-Based Signal Retiming

Traffic signal retiming can be implemented at a single intersection, or a group of intersections can be retimed at the same time. In deciding whether to retime a single intersection or a group of intersections, both operational and funding issues should be taken into account.

When an intersection is isolated, where operation at this intersection does not affect any subsequent intersections, it is usually retimed individually. When a group of intersections have a short spacing, operation at one intersection affects operations at
other intersections. In this case, all interrelated intersections should be coordinated to obtain the highest efficiency. The starting of green time at any intersection depends on the time taken for a vehicle to reach the intersection.

Coordinatability is the desirability of coordinating intersections. Synchro 6 (Husch and Albeck, 2004) develops a Coordinatability Factor (CF), which is an indicator for the need for coordinating signals. The CF is based on numerous input variables: volume, travel time, distance, vehicle platoons, vehicle queuing and natural cycle length.

Generally when allocating funds, retiming signals along a street or a part of it is considered as a single corridor. A group of such corridors can be combined into one project when awarding it to a consultant. As similar traffic is flowing through all the intersections, retiming of a signal separately may cause major delays at subsequent intersections. If the street is so long that traffic patterns change considerably at some points, these points may be taken as break points. For example, a major highway crossing the arterial street or a jurisdictional boundary can become a break line.

Also, travel time studies along a corridor give more meaningful results than at a single intersection. Cost of data collection and analysis along the whole corridor will be less than that of each intersection separately. A whole corridor or group of corridors that are part of a single project can be retimed for a lower price than individually.

### 2.2 Benefits of Signal Retiming

Traffic signal retiming improves traffic flow conditions with a low cost. One should clearly understand the benefits of signal retiming to decide whether or not to
retime a set of intersections. Sunkari (2004) discusses many benefits, both direct and indirect, associated with signal retiming; these include:

- Reduced delay experienced by motorists, which is more apparent to users traveling along a street with a coordinated system of signals.
- Fewer stops at red lights and reduced fuel consumption.
- Less motorists' frustration caused by less delays and stops, which improves safety.
- Reduced numbers of accelerations after stopping at red lights also reduces emissions. Emissions during acceleration are often an order of magnitude higher than when a vehicle traveling at a constant speed.
- Reduced fuel consumption reduces emissions and improves air quality.
- Less diversion of traffic to local and residential neighborhoods, potentially improving safety and traffic conditions in those areas.
- An opportunity for operating agencies to conduct quality control checks on controller settings for pedestrian, preemption and priority requirements.

Because of their lower costs, traffic signal retiming projects have a benefit to cost ratio of about 40:1 (Sunkari, 2004). Sunkari (2004) describes some of the successes associated with traffic signal retiming projects all over the United States.

### 2.3 The Process of Signal Retiming

The Federal Highway Administration (FHWA) and ITE have been championing the benefits of signal retiming and encouraging cities and road authorities to implement
this low cost alternative to improve roadway conditions. Their video, "It’s About Time, Traffic Signal Management: Cost-Effective Street Capacity and Safety" on signal retiming briefly explains the process of retiming. Sunkari (2004) discusses a detailed method for conducting signal retiming, which is summarized in the rest of section 2.3.

### 2.3.1 Existing data collection

- Existing geometric conditions and other pertinent information about the corridor are gathered.
- Current traffic conditions during peak traffic periods, as well as traffic counts including through and all turning movements at intersections, are collected. Pedestrian volumes on all the crosswalks are also collected simultaneously.
- Travel time data between the two ends of the corridor are also collected to assess the present operating conditions.
- Crash data along the corridor for the last three years are obtained and analyzed to determine whether or not a change in the signal operation would provide safer conditions.


### 2.3.2 Signal optimization

Signal optimization can be achieved using a software although manual methods also are available.

- The existing network is coded in signal optimization software using the data collected. Existing timing and turning movements are applied and capacity and LOS are determined.
- Software such as Synchro or Passer II is used to optimize the timing splits and determine the offsets for the coordination. Synchro has a factor called coordinatability factor, which gives an idea whether to go forward with coordination. The coordinatability factor is a measure of the desirability of coordinating the intersections. Later, simulation software such as CORSIM can be used to test the effectiveness of a proposed timing plan.


### 2.3.3 Implementation

The new timing is implemented at the intersection(s). It is evaluated in the field during various critical time periods and final adjustments are made. Sometimes, travelers' complaints are also taken as guidance.

### 2.3.4 Documentation

Before and after studies are conducted to document the improvements resultant of the signal retiming. Travel time and delay studies are conducted just before implementing the new timing. When the final timing plans are in place, travel time and delay studies are conducted again. These are called 'after' studies. Results are compared with 'before' studies and benefits are documented.

The next chapter describes the objectives of this thesis.

## CHAPTER 3

## PROBLEM STATEMENT

NCTCOG is conducting retiming projects for many of the corridors in the DFW area. This is being done in various phases. This thesis considers the selection of these projects among all candidate corridors in the Metroplex. NCTCOG officials indicate that they have more than one method for selecting these corridors. One of them is a sophisticated strategy where a ranking model is used to prioritize the corridors. As a baseline scenario, this serves as starting point of this thesis. This research develops a methodology to critically analyze this model and measure its effectiveness in project selection. In the process, the author proposes a modified and more efficient methodology, which can be used for prioritization of signal retiming projects.

The objectives of this thesis are summarized below:

- To understand the importance of traffic signal retiming and the process of signal retiming,
- To comprehend the need for prioritization of signal retiming projects,
- To study current methods in selecting retiming projects,
- To know how the NCTCOG's ranking model methodology works and determine any disadvantages in using the model,
- To gain knowledge about the before and after studies for signal retiming and identify a method for calculation of benefits,
- To propose a new and more efficient methodology for prioritizing the corridors, and

A review of research on prioritization of transportation related projects is discussed in the next chapter.

## CHAPTER 4

## PRIORITIZATION OF PROJECTS - A REVIEW

Various MPOs and cities have well-documented procedures for selection of major development projects. Developments related to such things as roadway alignment, addition of lanes, building a new highway alignment come under major developments. These require a higher range of funds than signal retiming. Turochy (2001) discusses methods used by various states throughout the United States to prioritize transportation improvement projects. There are methods documented by various departments for particular improvement projects. Unfortunately, low cost developments, such as signal retiming, are not well documented, and little to no research is found on prioritization of signal retiming projects.

Witkowski (1992) developed a method for prioritizing signalized intersection operational deficiencies in the City of Tucson, Arizona. He described a two-level screening process for evaluating short to medium term improvements for signalized intersections. These improvements also cost significantly more than signal retiming.

Accident history at an intersection used to be the basis for initial screening of signalized intersections in the City of Tucson. Witkowski (1992) proposed a parallel screening of the intersections for operational and safety deficiencies. A Deficiency Index (DI) was proposed for ranking the operational deficiencies, and the priority order would be based on the decreasing order of DI.

Witkowski studied twenty-one independent variables, which fall into five basic categories: traffic volume, present peak hour traffic operations, safety, air quality and transit operations. He developed a linear utility function for DI, which takes the form:

$$
\begin{equation*}
\mathrm{DI}=\mathrm{W}_{1} \mathrm{X}_{1}+\mathrm{W}_{2} \mathrm{X}_{2}+\ldots+\mathrm{W}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}} \tag{4.1}
\end{equation*}
$$

where $\mathrm{X}_{\mathrm{i}}$ is the normalized value of criterion i and $\mathrm{W}_{\mathrm{i}}$ is the weighting applied to criterion i. He judged the interdependence of criteria using linear regression analysis techniques. The impact of the criteria and their weighting on the ranking was based on a sensitivity analysis.

He used accident rates for the last three years before present date, but the accident rate did not significantly affect the ranking and was ignored. In his sensitivity analysis, he examined the variation in ranks, when removing one variable at a time. As a second step of ranking, different weightings were used for different variables and the sensitivity each time was examined. Witkowski tries to prioritize the intersections with operational deficiencies, while this thesis prioritizes various corridors in need of retiming.

When data cannot be quantified for use in the ranking process, a multiple criteria decision making tool, such as the Analytic Hierarchy Process, can be used for prioritizing alternatives (Guegan, 2000). Guegan et al. (2000) applied this tool to prioritize traffic calming projects. They used traffic volumes, vehicle speeds, emergency vehicle access and pedestrian facilities and safety as the criteria for evaluation of each alternative. Need for prioritization of signal retiming projects and some of the existing procedures followed in the DFW area are given in next chapter.

## CHAPTER 5

## PRIORITIZATION OF SIGNAL RETIMING PROJECTS

### 5.1 Need for Prioritization of Signal Retiming Projects

ITE and the FHWA recommend that every three to four years or whenever traffic patterns change significantly, signals should be retimed. Retiming each intersection takes less than three thousand dollars and is considered a minor project. Unfortunately, many cities and MPOs neither have funding nor staff and expertise to achieve this task, which may increase this cost. As cities face recurring congestion on roads and poor air quality, they may begin to realize the importance of undertaking retiming projects.

Normally, transportation planning organizations organize the funding for these projects just as they do for other projects. When there are a number of corridors to be retimed, there may not be sufficient funds to complete all the projects.

This research examines strategies for retiming projects throughout the United States through an informal e-mail survey of transportation departments. Survey recipients were selected randomly form the FHWA Directory of MPOs. The following is the survey question:
"Suppose if you have a list of corridors to be retimed and there is not enough money, how do you pick the most important projects?"

The list of nineteen organizations to which the survey was sent is given in Appendix A. The following seven organizations replied for the survey.

- City of Indianapolis
- Knoxville Regional Transportation Planning Organization
- Miami-Dade Public Works
- S. California Association of Governments -Ventura County
- S. California Association of Governments - Riverside County
- Metropolitan Orlando, Florida
- Michigan Department of Transportation

None of the organizations that responded has a prioritization method for signal retiming projects. In fact, two of the seven respondents indicate that they did not have funds or staff to conduct retiming on regular basis. They only conduct retiming when the signals are upgraded or a significant number of complaints are lodged about the signals. One of them uses their congestion management system plan to identify the corridors and another uses a Congestion Mitigation and Air Quality Improvement Program (CMAQ) selection process. All the seven responses from various departments for this query are given in Appendix A.

This research is concerned with the signal retiming projects proposed in the DFW region, which is a moderate non-attainment zone with respect to Ozone air quality requirements. The NCTCOG funds signal retiming projects in this region. As mentioned in the NCTCOG's public meeting in March 2006, apart from implementing new signal timing, a traffic signal retiming project may include:

- Installation of new traffic signal controllers,
- Replacement of existing traffic signal controllers,
- Replacement of vehicle detectors (loop, video, etc.),
- Installation of communication equipment, and
- Installation of communication software.

An effort is being made to retime all the traffic signals in DFW area which have not been retimed in the last three years. NCTCOG works with an objective of improving air quality as well as reducing congestion through these projects.

For a region such as DFW, the number of corridors to be retimed is too high to be completed at one time due to insufficient funds and limited staff availability. Hence, retiming of signals is completed in phases. For each phase, candidate corridors must be prioritized to make sure the funds are efficiently spent.

### 5.2 Existing Procedures in Dallas-Fort Worth Region

In the DFW region, NCTCOG, Texas Department of Transportation (TxDOT) and the member cities are involved in the retiming of traffic signals. NCTCOG does the programming to get funds allocated from the FHWA and the Federal Transit Administration (FTA). In 2002, NCTCOG conducted the most recent regional signal retiming effort. NCTCOG tries to retime signals every three years. At present, signal retiming projects come under the Thoroughfare Assessment Program.

Cities provide an initial set of candidate corridors, because they know the corridors that have severe problems. Each city may have any number of corridors in its jurisdiction where they think travel times are adversely affected and signals should be
retimed, but on some corridors, there may not be enough capacity to satisfy demand. In some circumstances, other roadway improvements may be occurring which may increase capacity. NCTCOG examines these corridors for such issues and removes them from the list. In 2004, NCTCOG came up with about 200 corridors around the metropolis. Retiming of some corridors may affect other corridors significantly. For example, performance on downtown streets is very much interlinked. In such cases, a group of corridors will be considered as a single project and retiming will be done all at once.

Due to limited funds, not all proposed corridors can be retimed at the same time. Corridors should be selected in such a way that funds are used most efficiently. One of the approaches that the NCTCOG uses to come up with a priority list of projects is a ranking model. In another strategy, a group forum approach, each city gives a list of corridors ordered with respect to importance. A group of experts discusses each one and comes up with a priority list. The ranking model method is explained in detail in the next chapter.

### 5.3 Factors Affecting the Prioritization of Retiming Projects

Various factors that make signal retiming necessary should be considered when prioritizing these projects.

### 5.3.1 Delay

The reduction of travel time along a corridor is one of the major benefits of signal retiming. Vehicle delay along a corridor occurs when a vehicle's travel time increases above the desired travel time. The desired travel time is the time taken to
travel along a corridor at the desired speed, which is normally free flow speed. If the free flow speed is not available, the speed limit can be used as a surrogate. Total corridor delay is the delay of an individual vehicle multiplied by the traffic volume along that corridor. When ranking retiming projects, a project with the potential for a higher reduction in delay should be given more priority.

### 5.3.2 Number of stops

The number of stops along a corridor is counted as the total number of occasions where the vehicle speed drops below a specified speed, typically five to ten mph . It is represented as number of stops per vehicle-mile. One can multiply this by the total traffic volume along a corridor to get the total number of stops per mile. The number of stops increases the fuel consumption and the emissions because there are accelerations and decelerations associated with the stops. Stopping at more intersections also increases driver frustration. The number of stops along a corridor may be measured by performing travel time runs along the corridor. Projects that are going to have a greater reduction in the number of stops should receive priority.

### 5.3.3 Fuel consumption

When the variation in speeds after retiming decreases, fuel consumption is expected to decrease. Sunkari (2004) gives examples where fuel consumption reduction related to signal retiming can be as high as nine percent. Fuel consumption can be estimated using travel time measuring instruments or by simulation. Fuel consumption is represented in gallons per vehicle mile. Projects which result in higher reductions in fuel consumption should receive higher priority than other similar projects.

### 5.3.4 Emissions

Emissions can be measured in real time or they can be estimated through simulation or from traffic signal retiming software. Some of the travel-time measuring instruments may also provide emission estimates. Since signal retiming is expected to reduce emissions and improve the air quality, a project with a greater reduction in emissions should receive higher priority.

### 5.3.5 Safety

Sunkari (2004) writes that signal retiming indirectly reduces driver frustration, which reduces red light running. Red light running is one of the major causes of crashes (Tindale and Hsu, 2005); therefore, a reduction in red light running improves intersection safety. In a successful example given by Sunkari (2004), adjusting the signal timing in Lexington, Kentucky reduced crashes by thirty-one percent.

However, based on a study of crashes on a coordinated one-way street in Florida, Tindale and Hsu (2005) suggest that signal coordination can be an incentive for red light running. They indicate that drivers may speed or engage in other unsafe behavior to stay in the platoon of the traffic flow. The perception is that this can ensure their passage through the corridor without stopping. Safety may have to be considered as a dis-benefit under some circumstances; its exact impact depends on each particular case.

One should study the crash reports along a corridor to come up with a measure for safety along the corridor. Often, the determination of the cause of a crash is difficult; it may be signal timing or some other reason. Many years of crashes need to be studied
to get reasonable data. Every time that signals are retimed, users take a little while to adapt to the new system. Once the system starts to run smoothly, determining the need and specific time for retiming with respect to safety becomes difficult without careful monitoring.

Factors such as delays and emissions can be measured immediately before and after signal retiming, but this is not the case with crashes, unless there is a sudden and statistically significant change in number of accidents. For all of these reasons, safety is not considered in this research.

The ranking model used by NCTCOG is explained in detail in the next chapter.

## CHAPTER 6

## NCTCOG'S RANKING METHODOLOGY

When arranging the projects in a priority order, the first question that arises is that what should be the basis for ranking. The corridors are being retimed because the traffic conditions have worsened along the corridor. Some preliminary data should be collected to estimate the severity of traffic conditions along each corridor.

### 6.1 Corridor Data

NCTCOG asked a consultant to perform travel time studies on each of the corridors on the initial list. Because this is only for a preliminary analysis, only one travel time run per direction on each of the corridors was performed. For each run, travel time from one end to the other end of the corridor and the number of stops were measured.

Besides the travel time information, other related data for all the corridors was compiled. This data included the following:

- Length of corridor and the number of signalized intersections to be retimed along the corridor.
- Speed limits and travel time at speed limit.
- Average daily traffic for the current year - this is calculated after applying growth factor to the latest available average daily traffic value.
- System type - whether or not the traffic signals are part of an existing interconnected system.

The entire set of data obtained from the NCTCOG is inserted in Appendix B.

### 6.2 The Model Used by NCTCOG

The NCTCOG ranking model is based on the existing traffic conditions. The variables used in the model and their weights are discussed in this section.

### 6.2.1 Variables

### 6.2.1.1 Total delay

Delay is the most frequently used measure of effectiveness for signalized intersections. Delay can be quantified in many different ways: stopped time delay, approach delay, travel time delay and time-in-queue delay (McShane and Roess, 1998). Travel time delay is used in this research. Travel time delay of an individual vehicle is the difference between the measured travel time and the travel time at the desired speed. Measured travel time is taken as an average of travel time in both directions of travel. The desired speed is taken as the posted speed. In this model, delay is used on an aggregate basis, and it is calculated below:

DPV = delay/vehicle/intersection
$=($ measured travel time - desired travel time) $/$ (number of intersections)

Total delay/ intersection $=$ DPV x ADT
Where ADT is the average daily traffic.

### 6.2.1.2 Number of stops

The number of stops is taken as the average of the number of stops counted in both directions of travel along the corridor. To get the aggregate value, this average value per intersection is multiplied by the ADT.

Number of stops per intersection $=$
(Number of stops/number of intersections) x ADT

### 6.2.1.3 System type

There are three types of existing systems. A value of one indicates that all intersections are part of an existing interconnected system with communications. A value of two indicates that some but not all intersections are part of an existing interconnected system with communications. A value of three indicates that there is no system (currently an isolated operation).

### 6.2.2 Weightings

The weighting for each factor is allocated by an expert group. The weightings are presented in Table 6.1.

Table 6.1 Variables Used in NCTCOG's Ranking Model and Their Weightings

| Variable | Weighting |
| :--- | :---: |
| Total Delay (DELAY) | $50 \%$ |
| \# of stops (STOPS) | $30 \%$ |
| System type (SYSTEM_TYPE) | $20 \%$ |

### 6.3 Calculation of Rank Order

Using the weightings applied by the NCTCOG, the following equation is developed.
$\operatorname{TotalScore}(S)=\frac{D E L A Y}{\operatorname{Max}(D E L A Y)} \times 50+\frac{S T O P S}{\operatorname{Max}(S T O P S)} \times 30+S Y S T E M_{-} T Y P E \times 20$

Where SYSTEM_TYPE $=1.0$ for type 1 (all signals interconnected)
0.5 for type 2 (some signals interconnected)

0 for type 3 (all signals isolated)
Quantitative variables DELAY and STOPS are normalized by dividing by the maximum value from all of the candidate corridors, which precludes any single variable dominating the total score because of its magnitude relative to the other variables. After normalization, each variable is expressed on a zero-to-one scale and the weights are an expression of the relative importance of each criterion. Witkowski (1992) discusses two basic normalization methods and pros and cons of each. For this research, the maximum value of a variable in the given data is used for normalization. The other one is, normalizing using a pre-selected threshold value.

Possible variations of this model may be by separating ADT from DELAY and STOPS. In that case, a different weighting may be applied for ADT. Equation (6.4) is evaluated to the travel time data for all the corridors and their initial ranks are calculated. As previously discussed, higher delay and higher numbers of stops should receive a higher priority. The highest priority goes to the corridor with the maximum
total score. The priority decreases with the total score. Table 6.2 shows the first twenty corridors on the priority list based on the NCTCOG ranking model.

Table 6.2 Results of the NCTCOG Ranking Model

| Rank | Arterial segment | City | $\begin{array}{\|l} \text { Numbe } \\ \text { r of } \\ \text { signals } \\ \hline \end{array}$ | Length (miles) | Score for total delay/per signal | Score for stops/ signal | $\begin{gathered} \text { System } \\ \text { type } \\ \text { score } \end{gathered}$ | Total score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Bryant-Irvin | Fort Worth | 7 | 3.0 | 50.0 | 30.0 | 10 | 90.00 |
| 2 | Hampton | Dallas | 16 | 4.6 | 40.8 | 28.9 | 20 | 89.74 |
| 3 | Belt Line | Dallas | 8 | 3.1 | 46.2 | 22.7 | 20 | 88.81 |
| 4 | Harry Hines | Dallas | 15 | 5.9 | 41.0 | 25.0 | 20 | 85.98 |
| 5 | Illinois | Dallas | 16 | 5.9 | 40.5 | 25.4 | 20 | 85.85 |
| 6 | Abram/Jefferson | Arlington | 12 | 4.0 | 35.5 | 26.3 | 20 | 81.85 |
| 7 | FM 1171 | Flower Mound | 16 | 4.2 | 36.5 | 22.9 | 20 | 79.45 |
| 8 | Northwest Hwy | Dallas | 19 | 7.6 | 32.6 | 25.1 | 20 | 77.64 |
| 9 | Jupiter | Garland/Dallas | 16 | 4.6 | 37.2 | 19.5 | 20 | 76.75 |
| 10 | Coit | Dallas/Richardson/Dallas | 19 | 5.4 | 32.1 | 23.0 | 20 | 75.18 |
| 11 | Jupiter | Richardson | 10 | 4.7 | 26.9 | 21.8 | 20 | 68.74 |
| 12 | US 377 | Haltom City | 19 | 8.9 | 41.4 | 26.7 | 0 | 68.04 |
| 13 | Jupiter | Plano | 10 | 3.5 | 27.8 | 19.9 | 20 | 67.71 |
| 14 | Spring Valley | Farmers Branch | 8 | 2.7 | 27.8 | 19.1 | 20 | 66.88 |
| 15 | Bryant-Irvin | Fort Worth | 10 | 2.5 | 37.2 | 19.0 | 10 | 66.21 |
| 16 | $\begin{array}{\|l} \hline \text { FM } \\ 3040 / \text { Hebron/ } \\ \text { Park Blvd } \\ \hline \end{array}$ | Lewisville | 13 | 2.4 | 29.6 | 26.5 | 10 | 66.09 |
| 17 | Alpha | Dallas | 7 | 2.1 | 29.2 | 16.8 | 20 | 66.04 |
| 18 | Oaklawn | Dallas | 11 | 1.5 | 29.3 | 16.2 | 20 | 65.49 |
| 19 | Northwest Hwy | Dallas | 28 | 8.9 | 20.1 | 25.3 | 20 | 65.44 |
| 20 | University | Fort Worth | 4 | 0.6 | 29.5 | 15.1 | 20 | 64.63 |
| 31 | Pioneer Pkwy | Grand Prairie | 9 | 4.2 | 18.1 | 19.2 | 20.0 | 57.28 |
| 58 | Great Southwest Pkwy | Grand Prairie | 15 | 5.1 | 20.4 | 7.6 | 20.0 | 47.99 |

The results indicate that almost all of the first few on the list belong to system type one; therefore, system type plays a significant role in this ranking. Depending on the available funds, NCTCOG may select the top thirty to forty corridors for executing
retiming. In this work, data from before and after studies is available only for two corridors, Pioneer Parkway and Great Southwest Parkway. Their ranks are 31 and 58, respectively. Benefits are estimated for these two corridors.

NCTCOG made some modifications to the original ranking due to non-technical reasons, including overlap of locations funded in the Transportation Improvement Program, distribution of corridors in different regions of DFW metropolitan area, and local match issues.

It is important to estimate the benefits from traffic signal retiming projects to find out how efficiently the funds are spent. Next chapter deals with estimation of benefits through before and after studies.

## CHAPTER 7

## ESTIMATION OF BENEFITS

Benefits from signal retiming projects can be estimated through before and after studies. These studies are used to document the benefits of signal retiming. They are also used to identify any negative results so that they can be rectified. As an example, before and after studies for two corridors in the City of Arlington are presented.

### 7.1 Case Study from the City of Arlington

The City of Arlington is part of the DFW Metroplex and is a member of NCTCOG. The city retimed signals along its arterial corridors around three years ago in 2002. At that time, the city's traffic operations officials documented the benefits of retiming major corridors; this thesis considers two retiming case studies. Traffic signals along South Cooper Street, a major arterial, were retimed in 2001. Pioneer Parkway and Arkansas Street are parallel streets with a small distance between them; therefore, the signals along these two corridors were combined for retiming. The traffic operations officials performed ten travel time runs during each time of day in both directions before and after signal retiming. As part of retiming, some of the signals along these corridors were integrated into a coordinated operation. The city calculated travel time savings per year by summing the total reduction in travel times on each weekday. The savings are significant in both delay and number of stops.

Using a $\$ 10 / \mathrm{hr}$ as the average salary, the annual economic impact of retiming signals is estimated to be $\$ 9.8$ million on South Cooper Street and $\$ 17.3$ million on Pioneer Parkway and Arkansas Street.

### 7.2 Before and After Studies

Usually, after any improvement in transportation infrastructure or policy, the city or the funding agency measures its effectiveness. Before and after studies are performed in such cases. These studies enable the authorities not only to determine how well the improvement solved the problems, but also to document the results for future use. This is better explained through an example.

### 7.2.1 Before and after studies for signal retiming projects

Before and after studies for signal retiming projects are basically travel time runs. Currently, sophisticated instruments such as the Jamar TDC-12 are available for this purpose. Figure 7.1 shows the Jamar TDC-12 instrument.


Figure 7.1 Jamar TDC-12 instrument (www.jamartech.com)

While retiming traffic signals, techniques such as signal coordination are used to enable efficient progression of vehicles along the corridor and hence reduce delays. Before doing the improvements, that is when traffic is operating under existing conditions, travel time runs are conducted. At least five runs must be performed from the start to the end of the corridor where the start and end points should be fixed. The intersections are consistently noted at a specific point, for example, the stop line. The Jamar TDC-12 instrument, when connected to an automobile, notes the speed and acceleration information along with the travel time and spacing between each intersection. Beginning and ending points and intersection location are specified.

The data is downloaded into PC-Travel software. PC-Travel estimates delays, fuel consumption and emissions (Carbon Monoxide (CO), Hydrocarbons (HC) and Nitrogen Oxides $\left(\mathrm{NO}_{\mathrm{x}}\right)$ ) from the raw data. In this way, traffic conditions before signal retiming are determined.

Once the traffic signals are retimed, a period of time must pass for the traffic to adjust to the new timing. After allowing enough time for this adjustment, typically at least two weeks, the "after" travel time runs are performed. These runs have the same start and end points and nodes as before. The new conditions are estimated after downloading the data and analyzing. Finally, comparing the conditions before and after retiming, benefits are estimated.

### 7.2.2 PC-Travel software - an overview

Jamar Technologies developed PC-Travel for Windows, a software program designed to process travel time and delay data. This software is also used in collecting
travel time data using a TDC instrument (see Figure 7.1). The start and end points and the nodes between them are input into the software. When a TDC instrument is attached to a vehicle and calibrated, a calibration coefficient is stored with the data file. This is used in calculating the distance between the selected intersections during data collection. At least five runs are performed in each direction along a corridor. The software calculates an average of distances between two subsequent intersections and uses it as current distance. This can also be edited by the user.

For the first run, node names are input. This is called the primary run and the subsequent runs are secondary runs. All the runs performed in one direction and during a specified time of day are stored as one study. Runs performed on a corridor before and after retiming can be stored in the same study. Each of these studies is stored as a study file. Using the "Select Study" menu of PC-Travel, each run that comprises the study is listed. Figure 7.2 shows the window with AM Northbound runs on Great Southwest Parkway before retiming.


Figure 7.2 PC-Travel window - details for AM NB runs on Great Southwest Pkwy

One can extract run statistics for each run. The software also calculates the averages of all the runs and presents them as study statistics. If both before and after runs are in a study, the software compares the statistics for before and after cases and reports the change between them. Between every two subsequent nodes, the software calculates travel time, number of stops, average speed, total delay and the time during which the speed of the vehicle falls below three different speeds. The total delay is calculated by subtracting the desired travel time, which is at the 'normal speed' specified, from the actual travel time. It also calculates the fuel consumption and emissions. Figure 7.3 shows the window with study statistics.


Figure 7.3 PC-Travel window showing study statistics

One can also export these statistics to Microsoft Excel for further analysis and presentation. PC-Travel also reports the speeds of the vehicle as a plot.

### 7.2.3 Estimation of emissions and fuel consumption using PC-Travel

PC-Travel software estimates $\mathrm{HC}, \mathrm{CO}$ and $\mathrm{NO}_{\mathrm{x}}$ emissions from the speed and acceleration data obtained from travel time studies using the TDC-12. It takes the variation in speed as a basis for the estimation. The model used in PC-Travel (Jamar, 2004) is the MICRO2 model developed by the Colorado Department of Highways. The equations used in the PC-Travel for Windows manual (Jamar, 2004) are:

In the following equations, $\mathrm{V}=$ velocity in $\mathrm{ft} / \mathrm{sec}, \mathrm{A}=$ acceleration in $\mathrm{ft} / \mathrm{sec}^{2}$

$$
\begin{equation*}
\text { Fuel }(\mathrm{ml} / \mathrm{sec})=\mathrm{k}_{1}+\mathrm{k}_{2} \mathrm{~V}+\mathrm{k}_{3} \mathrm{~V}^{3}+\mathrm{k}_{4} \mathrm{AV}+\mathrm{k}_{5} \mathrm{~A}^{2} \mathrm{~V} \tag{7.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{k}_{1}=0.7 \\
& \mathrm{k}_{2}=0.00442 \\
& \mathrm{k}_{3}=0.0000022 \\
& \mathrm{k}_{4}=0.00762 \\
& \mathrm{k}_{5}=0.000886 \tag{7.2}
\end{align*}
$$

Hydrocarbons $($ grams $/ \mathrm{sec})=\mathrm{hc}_{1}+\mathrm{hc}_{2} \mathrm{AV}+\mathrm{hc}_{3} \mathrm{AV}^{2}$
where

$$
\begin{aligned}
\mathrm{hc}_{1} & =0.018 \\
\mathrm{hc}_{2} & =0.0005266 \\
\mathrm{hc}_{3} & =0.0000061296
\end{aligned}
$$

Carbon Monoxide $($ grams $/ \mathrm{sec})=\mathrm{co}_{1}+\mathrm{co}_{2} \mathrm{AV}+\mathrm{co}_{3} \mathrm{AV}^{2}$
where

$$
\begin{aligned}
& \mathrm{co}_{1}=0.182 \\
& \mathrm{co}_{2}=0.0079776 \\
& \mathrm{co}_{3}=0.00036227
\end{aligned}
$$

Nitrogen Oxides $(\mathrm{grams} / \mathrm{sec})=$ noxa $_{1}+$ noxa $_{2} \mathrm{AV}, \mathrm{A}>0$

$$
\begin{equation*}
\text { or } \operatorname{noxb}_{1}+\text { noxb }_{2} \mathrm{AV}, \mathrm{~A}<0 \tag{7.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { noxa }_{1}=0.00386 \\
& \text { noxa }_{2}=0.00081446 \\
& \text { noxb }_{1}=0.00143 \\
& \text { noxb }_{2}=0.000017005
\end{aligned}
$$

### 7.3 Studies for the Recent Projects

NCTCOG hired a consultant to perform travel time (TT) studies before and after retiming for each of the corridors where signals were retimed. Five runs each were performed during the AM peak, midday and PM peaks before and after retiming. Using the study results summary for each time of day, the average reductions in travel time, delay, number of stops, fuel consumption as well as emissions were calculated by the author. This provides an estimate of the actual benefits per vehicle per mile. The following sections discuss how the benefits of retiming are estimated from the before and after studies for Great Southwest Parkway and Pioneer Parkway corridors.

### 7.3.1 Great Southwest Parkway

Great Southwest Parkway is an arterial in the Cities of Arlington and Grand Prairie running in north-south direction. It is a divided facility with two lanes in each direction. Maximum speed limit along the stretch is 45 mph . Figure 7.4 shows the Great Southwest Parkway corridor. More details about the corridor are presented in Table 7.1.

Table 7.1 Corridor Details for Great Southwest Parkway

| Arterial name | Great Southwest Parkway |
| :--- | :--- |
| Number of Lanes | 4 |
| Length | 5.37 mi. |
| Number of signals | 15 |
| North End | E. Division Street |
| South End | Fairmont |
| Maximum Speed Limit | 45 mph |
| Average Daily Traffic | 20,328 |

It has two at-grade railway crossings, one between the E Division Street and Abrams Street and the other between Marshall and Pioneer Parkway. Railway crossing between the E Division Street and Abrams Street is more heavily used than the other.


Figure 7.4 Great Southwest Parkway corridor (Source: Rupangi (2005))

Estimates of benefits are presented in Table 7.2. Percentage savings are calculated the formula below:

$$
\begin{equation*}
\% \text { Savings }=((\text { Before }- \text { After }) / \text { Before }) \times 100 \tag{7.5}
\end{equation*}
$$

Negative savings in AM peak and PM peak on south bound Great Southwest Parkway indicate that conditions worsened. Especially in the PM peak, total delay increases by more than fifty percent. In the case of the midday period for north bound, though the number of stops decreased by $8.5 \%$, fuel consumption and emissions slightly increased because the proportion of time traveled with speed below 35 mph increased. In the case of PM peak for south bound, the change in fuel and emissions is less than $10 \%$ while total delay and number stops increase by around $50 \%$.

Table 7.2 Estimated Benefits per Vehicle for Great Southwest Parkway


Detailed study statistics for Great Southwest Parkway corridor are shown in

## Appendix C.

### 7.3.2 Pioneer Parkway

Pioneer Parkway is a major east-west arterial. It is a divided facility with three lanes in each direction. Maximum speed limit along the stretch is 45 mph . Figure 7.5 shows Pioneer Parkway corridor. More details about the corridor are presented in Table 7.3.


Figure 7.5 Pioneer Parkway corridor (Source: www.mapquest.com)
Table 7.3 Corridor Details for Pioneer Parkway

| Arterial name | Pioneer Parkway |
| :--- | :--- |
| Number of Lanes | 6 |
| Length | 2.33 mi |
| Number of signals | 8 |
| West End | W. Freeway |
| North End | SE 14th |
| Maximum Speed Limit | 45 mph |
| Average Daily Traffic | 35,351 |

Estimated benefits per vehicle-mile are presented in Table 7.4. There is a considerable improvement in conditions in all the periods of the day along east bound Pioneer Parkway. But AM peak conditions along west bound Pioneer Parkway are more severe.

Table 7.4 Estimated Benefits per Vehicle for Pioneer Parkway

|  | TravelTime(sec/mile) | Number of stops /mile | TotalDelay(sec/mile) | Fuel (gal/mile) | Emissions |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \mathrm{HC} \\ & (\mathrm{gm} / \mathrm{mile}) \end{aligned}$ | $\begin{aligned} & \mathrm{CO} \\ & (\mathrm{gm} / \text { mile }) \end{aligned}$ | $\mathrm{NO}_{\mathrm{x}}$ (gm/mile) |
| East Bound - Savings per vehicle per mile |  |  |  |  |  |  |  |
| AM | 53.8 | 1.4 | 54.0 | 0.02 | 3.03 | 25.31 | 2.37 |
| MD | 36.4 | 1.0 | 36.5 | 0.01 | 1.69 | 9.16 | 1.34 |
| PM | 55.0 | 1.5 | 54.0 | 0.01 | 2.86 | 17.36 | 2.32 |
| East Bound - \%Savings |  |  |  |  |  |  |  |
| AM | 37.9 | 94.0 | 88.2 | 27.0 | 48.8 | 38.5 | 59.3 |
| MD | 26.9 | 74.4 | 66.8 | 16.3 | 31.7 | 16.8 | 41.0 |
| PM | 39.4 | 94.3 | 92.0 | 24.5 | 47.0 | 28.5 | 57.7 |
| West Bound - Savings per vehicle per mile |  |  |  |  |  |  |  |
| AM | -10.6 | -0.3 | -10.4 | -4.6E-03 | -0.67 | -4.51 | -0.56 |
| MD | 0.9 | -0.01 | 1.0 | -3.0E-03 | -0.50 | -7.64 | -0.48 |
| PM | 32.0 | 0.85 | 32.0 | 3.3E-03 | 0.31 | -5.51 | -0.01 |
| West Bound - \%Savings |  |  |  |  |  |  |  |
| AM | -10.2 | -81.2 | -47.2 | -9.0 | -14.3 | -8.1 | -18.8 |
| MD | 0.7 | -1.0 | 2.3 | -5.6 | -9.5 | -13.5 | -14.4 |
| PM | 21.2 | 52.3 | 45.8 | 5.5 | 5.1 | -8.9 | -0.3 |

Detailed study statistics for Pioneer Parkway are shown in Appendix C.

### 7.4 Total Corridor Benefits

Assuming retiming is done every three years, the total corridor benefits from a retiming project are those that are achieved in three years of time starting from the date when retiming is done. These are to be calculated and used in prioritization. Turning movements for all the intersections along the corridor are available for the AM, midday and PM cases. Traffic volumes along Great Southwest Parkway and Pioneer parkway
are calculated and are shown in Table 7.5 and Table 7.6, respectively. These are calculated from the approach volumes given in the Synchro networks prepared by the consultant while analysis.

Table 7.5 Traffic Volumes for Great Southwest Parkway

|  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM | MID | PM | AM | MID | PM |
| Hourly | 1151 | 572 | 629 | 459 | 556 | 1145 |
| Total Peak | 2877 | 4573 | 1886 | 1147 | 4446 | 3435 |

Table 7.6 Traffic Volumes for Pioneer Parkway

|  | EB |  |  | WB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM | MID | PM | AM | MID | PM |
| Hourly | 1103 | 857 | 1261 | 809 | 888 | 1350 |
| Total Peak | 2758 | 6856 | 3783 | 2021 | 7103 | 4049 |

The final recommended operating schedule for Great Southwest Parkway and Pioneer Parkway by the consultant is given in Table 7.7. Because some time after PM peak also has same characteristics as mid day, it is also operated at mid day timing. Total savings in three years of operation for Great Southwest Parkway and Pioneer Parkway are given in Table 7.8 and Table 7.9, respectively.

Table 7.7 Recommended Signal Timing Operating Schedule for Weekday

|  | AM Peak | Midday | PM Peak |
| :---: | :---: | :---: | :---: |
| Monday-Thursday | 7 AM to 9:30AM | 11AM to 4 PM <br> and <br> 7 PM to $9: 30 \mathrm{PM}$ | 4 PM to 7 PM |
| Friday | 7 AM to 9:30AM | 11 AM to 3 PM <br> and <br> 7PM to 11 PM | 3 PM to 7 PM |

Table 7.8 Savings in Three Years from Signal Retiming along Great Southwest Parkway

|  | \# of <br> stops | Total <br> Delay <br> (Hours) | Fuel <br> (gal) | HC (Tons) | CO (Tons) | NOx (Tons) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| North Bound - Total savings in three years |  |  |  |  |  |  |
| AM | 1380709 | 69905 | 49172 | 5.1 | 46.5 | 0.5 |
| MD | 1385555 | 12354 | -5071 | -2.7 | -40.0 | -3.4 |
| PM | 1251522 | 43114 | 27069 | 3.9 | 25.8 | 1.5 |
| South Bound - Total savings in three years |  |  |  |  |  |  |
| AM | 188325 | -5115 | -3675 | -0.2 | -6.0 | 0.2 |
| MD | 1330829 | 16070 | 1010 | 1.8 | 3.7 | 1.0 |
| PM | -7470092 | -102292 | -44152 | -1.8 | 8.7 | 4.4 |

Table 7.9 Savings in Three Years from Signal Retiming along Pioneer Parkway

|  | \# of <br> stops | Total <br> Delay <br> (Hours) | Fuel <br> (gal) | HC (Tons) | CO (Tons) | NOx (Tons) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| East Bound - Total savings in three years |  |  |  |  |  |  |
| AM | 6829098 | 75172 | 81744 | 15.2 | 126.9 | 11.9 |
| MD | 12006250 | 119936 | 106784 | 20.0 | 108.5 | 15.9 |
| PM | 10656691 | 109995 | 105745 | 21.0 | 127.3 | 17.0 |
| West Bound - Total savings in three years |  |  |  |  |  |  |
| AM | -1276598 | -10611 | -16717 | -2.5 | -16.6 | -2.0 |
| MD | -129280 | 3468 | -36974 | -6.2 | -93.7 | -5.9 |
| PM | 6681687 | 69659 | 25896 | 2.5 | -43.3 | -0.1 |

By adding the savings in both directions and for all the times of day, the overall weekday daytime savings for a corridor for the next three years can be obtained. Table 7.10 gives the total weekday daytime (7:00 am - 9:30 pm) corridor savings for both the corridors over the next three years.

Table 7.10 Total Weekday Daytime Corridor Savings

|  | \# of stops | Total <br> Delay <br> (Hours) | Fuel <br> (gal) | HC <br> (Tons) | CO <br> (Tons) | NOx <br> (Tons) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Great <br> Southwest <br> Pkwy | -1933152 | 34036 | 24353 | 6.1 | 38.6 | 4.1 |
| Pioneer <br> Pkwy | 34767848 | 367620 | 266479 | 50.0 | 209.1 | 36.7 |

### 7.5 Comparison of Benefits with Estimates from SimTraffic

Traffic simulation software, Synchro plus SimTraffic, can simulate the traffic conditions along a corridor both before and after retiming. It estimates various measures of effectiveness (MOEs) at each intersection including total delay, control delay, number of stops, fuel consumption and emissions. It also outputs arterial performance and total network performance. As part of arterial performance, SimTraffic provides travel time, delay and arterial speed between any two subsequent intersections along the arterial. This delay is comparable to the delay calculated using PC-Travel. While optimizing the timing on Great Southwest Parkway and Pioneer Parkway, the consultant used Synchro. The Synchro networks with both before and after signal timings are simulated using SimTraffic and MOEs are obtained. Table 7.11 and Table 7.12 compare delays estimated by SimTraffic and that are obtained by travel time runs.

Table 7.11 Comparison of Delays for Great Southwest Parkway

| Delay (sec) |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Synchro plus SimTraffic | Travel Time Study |  |  |  |  |  |
| NB | Before | After | \%reduction | Before | After | \%reduction |  |
| AM | 190 | 170 | 10.2 | 379 | 268 | 29.3 |  |
| MD | 164 | 105 | 36.1 | 176 | 163 | 7.4 |  |
| PM | 252 | 212 | 16.1 | 289 | 190 | 34.3 |  |
| SB |  |  |  |  |  |  |  |
| AM | 185 | 181 | 2.2 | 247 | 268 | -8.5 |  |
| MD | 178 | 79 | 55.6 | 184 | 166 | 9.8 |  |
| PM | 289 | 250 | 13.7 | 239 | 367 | -53.6 |  |

Table 7.12 Comparison of Delays for Pioneer Parkway

| Delay (sec) |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
|  | Synchro plus SimTraffic |  |  |  |  |  |  | Travel Time Study |  |  |
| EB | Before | After | \%reduction | Before | After | \%reduction |  |  |  |  |
| AM | 127 | 133 | -5.5 | 144 | 17 | 88.2 |  |  |  |  |
| MD | 130 | 74 | 42.8 | 128 | 42 | 67.2 |  |  |  |  |
| PM | 224 | 180 | 19.6 | 137 | 11 | 92.0 |  |  |  |  |
| WB |  |  |  |  |  |  |  |  |  |  |
| AM | 147 | 111 | 24.5 | 51 | 75 | -47.1 |  |  |  |  |
| MD | 117 | 118 | -0.4 | 102 | 99 | 2.9 |  |  |  |  |
| PM | 249 | 139 | 43.9 | 163 | 88 | 46.0 |  |  |  |  |

Delay estimates from SimTraffic are very much different from those from the travel time studies. In the case of Great Southwest Parkway, SimTraffic underestimates the delay in all the cases except for two. But in the case of Pioneer Parkway, delay is overestimated in all the cases except one. The reduction percentages estimated by the SimTraffic are different from what are estimated from travel time studies. The author recommends that SimTraffic should be calibrated to represent existing conditions more accurately or any other more reliable software should be used.

A new methodology based on the benefits from signal retiming projects is proposed in the next chapter.

## CHAPTER 8

## PROPOSED METHODOLOGY

As previously discussed, NCTCOG's model is built on the severity of existing traffic flow conditions. However, a reasonable objective for any infrastructure project is to improve societal benefits. Poor traffic flow conditions along a corridor may not indicate that retiming signals along that corridor will produce a good benefit to cost ratio. Therefore, a new prioritization strategy must take into consideration greater overall societal benefits.

### 8.1 Modeling Benefits

In this research, an effort is made to relate the benefits to current conditions of the corridors. Regression analysis can be used for this purpose. All six benefits quantified in the previous chapter can be used. However, for the reasons given below, some of them are not taken into consideration.

### 8.1.1 Dependents and predictors in the model

The following benefits are considered:
$S_{D}=$ Saving in delay (in sec)
$\mathrm{S}_{\mathrm{F}}=$ Saving in fuel consumption (in gallons)
$\mathrm{S}_{\mathrm{E}}=$ Saving in $\mathrm{NO}_{\mathrm{x}}$ emissions (in tons)
Reducing the number of stops indirectly reduces fuel consumption and emissions and driver frustration, which is difficult to quantify. Also, it is difficult to
convert the number of stops into a monetary value. Hence, savings in the number of stops is not considered. With respect to emissions, $\mathrm{NO}_{\mathrm{x}}$ is the only pollutant considered, as explained by Rupangi (2005).

The precursors of ozone are $N O_{x}$ and VOCs. Since DFW is declared as a $N O_{x}$ limited zone, overall reductions in $N O_{x}$ would highly reduce the formation of ozone. (Rupangi, 2005)

At this time, safety is not included because of its long time horizons and stochastic characteristics. All the benefits are converted into a dollar amount so that the relative importance of any one benefit may be compared with the other benefits.

Many factors can influence the overall corridor benefits. In the first effort to relate benefits to corridor characteristics, many possible qualitative and quantitative variables must be considered. The variables can be divided into two categories, physical characteristics and traffic characteristics. Table 8.1 lists all the variables to be used. Each variable can be used in a number of forms.

Table 8.1 Predictors Considered in Modeling Benefits

| Symbol |  |
| :--- | :--- |
| Physical characteristics |  |
| L | Length |
| SIG | Number of signals |
| NL | Number of lanes |
| 1 | Spacing between the intersections |
| Z | System type |
| Traffic Characteristics |  |
| ADT | Average Daily Traffic |
| FRTIME | Free flow travel time |
| TT | Measured travel time |
| D | Delay |
| NS | Number of stops |
| M | Turning movements as a percentage of total volumes |

### 8.1.2 Discussion of predictors

First consideration in selecting the independent variables is that they should be easily available or can be obtained at the start of the prioritization process.

The total corridor length and the number of signals along the section may affect the benefits. Number of signals can be used separately or as signal density, the number of signalized intersections per mile. A corridor with intersections at short intervals, which are suffering from queue spillbacks, may get greater improvement after signal coordination than a corridor with fewer intersections.

Number of lanes on the arterial may affect the benefits. It is used as a qualitative variable.

Achievement of maximum progression and minimum delay timing is dependent on how uniform the spacing between each intersection is. Spacings are obtained with the help of NCTCOG road network and from aerial maps. Standard deviation of
spacings is the parameter that indicates the non-uniformity of the spacings along a corridor. However, the distribution of standard deviations may be skewed, which may produce errors in the analysis. To overcome this, the logarithm of standard deviations can be used.

As discussed in the sixth chapter, system type is the variable that shows how the intersections along the corridors are connected. This can also affect the overall benefits.

Estimates of ADT, the average daily traffic, are available for each of the corridors considered. Traffic volumes may affect the overall benefits directly because this is going to be multiplied by the per vehicle benefits calculated from the before and after travel time studies.

The FRTIME, free flow travel time, is taken from the Dallas/Fort Worth Regional Transportation Model, abbreviated as DFWRTM, (NCTCOG, 2000) and prepared by the NCTCOG. Free flow travel time from any node to any other node is a basis for travel times between these nodes. In the DFWRTM, the intersection delay as well as delay due to intervening controls is incorporated into the free speed. Free flow travel time is the time taken to travel along a corridor at free speed.

As discussed in chapter six, one travel time run on each corridor was conducted by the NCTCOG's consultants. Measured travel time is the average of travel times on both directions. The number of stops and delay from this data are taken as independent variables. Delay may be represented as total delay per vehicle, delay/veh/signal or delay/veh/mile. Similarly, number of stops may be represented as total number of
stops/vehicle, number of stops/veh/signal or number of stops/veh/mile. After thorough analysis, one can use the significant variables for the regression.

Finally, higher turning-in or turning-out volumes at the intersections decrease the benefits associated with signal coordination (McShane and Roess, 1998). Basically, signal coordination works on the basis of offsets, the time taken for a vehicle to travel from one intersection to the next intersection. Heavy turn-out volumes may impede platoons or destroy their structure by the loss of vehicles from the middle of the platoon. Heavy turn-in volumes cause more unexpected reductions in speeds and reduce the benefit to setting the offset to a particular value. Hence, the turning movements as a percentage of the total volume may be a significant variable; however, this variable may be difficult to accurately quantify beforehand. So, engineering judgment may be used to at least give a qualitative value for this variable or an estimate may be based on historical turning movements.

### 8.1.3 Model development

Multi-linear regression is used to estimate coefficients for the model. At present, very few corridors have been retimed and the benefits must be calculated after the before and after studies. NCTCOG is in the process of retiming another thirty to forty corridors in the near future. When these projects are finished and travel time studies are conducted, there will be enough data for applying regression. However, the values of predictors are available. Data is compiled for fifty-one corridors and uni-variate analysis is done. Correlation matrix for these data is calculated and presented in section 8.1.3.3.

### 8.1.3.1 Uni-variate analysis - Qualitative variables

Histograms of the two qualitative variables, Number of lanes (NL) and System type $(Z)$ are shown in Figure 8.1 and Figure 8.2 respectively. About $75 \%$ of the corridors analyzed belong to system type 1 .


Figure 8.1 Histogram for Number of lanes (NL)


Figure 8.2 Histogram for System type (Z)

### 8.1.3.2 Uni-variate analysis - Quantitative variables

Results of uni-variate analysis of quantitative variables are presented in Table

## 8.2.

Table 8.2 Uni-variate Analysis of Quantitative Variables
$\left.\begin{array}{|r|r|r|r|r|r|r|}\hline \begin{array}{r}\text { S. }\end{array} & \text { Variable } & \text { Min } & \text { Max } & \text { Mean } & \text { Median } & \text { St.Dev } \\ \text { No. } & \text { Length (miles) } & 0.56 & 9.12 & 4.01 & 3.99 & 2.00 \\ \hline 1 & \text { No. of signals } & 4 & 21 & 11.2 & 10 & 4.36 \\ \hline 2 & \begin{array}{r}\text { Signal density } \\ \text { (signals/mile) }\end{array} & 1.6 & 7.1 & 3.2 & 2.8 & 1.2 \\ \hline 3 & \text { Log(Signal density) } & 0.19 & 0.85 & 0.47 & 0.44 & 0.15 \\ \hline 4 & \text { St dev (Spacing) (mi) } & 0.03 & 0.43 & 0.25 & 0.25 & 0.09 \\ \hline 5 & \text { Average daily traffic } & 20328 & 68356 & 39858 & 40627 & 11424 \\ \hline 6 & \begin{array}{r}\text { Free flow travel time } \\ \text { (sec) }\end{array} & 79.8 & 908.4 & 445.1 & 387.6 & 202.9 \\ \hline 7 & \text { Measured travel time } \\ \text { (sec) }\end{array}\right)$

Figure 8.3 to Figure 8.16 show the density histograms for each of the qualitative variables mentioned in Table 8.2. Standard deviation of signal spacing in this case is not skewed. So logarithm is not used. As shown in Figure 8.5, distribution of Signal Density is skewed. So logarithm of Signal Density can be used.


Figure 8.3 Density histogram for Length


Figure 8.4 Density histogram for No. of signals


Figure 8.5 Density histogram for Signal density


Figure 8.6 Density histogram for Log (Signal density)


Figure 8.7 Density histogram for St. dev of spacing


Figure 8.8 Density histogram for Average daily traffic


Figure 8.9 Density histogram for Free flow travel time


Figure 8.10 Density histogram for Measured travel time


Figure 8.11 Density histogram for Total delay/vehicle


Figure 8.12 Density histogram for Delay/veh/signal


Figure 8.13 Density histogram for Delay/veh/mile


Figure 8.14 Density histogram for Number of stops/veh


Figure 8.15 Density histogram for Number of stops/veh/mile


Figure 8.16 Density histogram for Number of stops/veh/signal

### 8.1.3.3 Correlation matrix

Correlation matrix including all the quantitative variables is calculated and presented in Table 8.3. Correlation matrix is the best way to identify the relation between any two of the variables. From Table 8.3, one can see that Length, FRTIME and Measured TT are highly correlated to each other. The most significant variable from these can be used for modeling. Similarly, there is a high correlation between Delay/veh and Number of stops/veh; Delay/veh/signal and Number of stops/veh/signal; and Delay/veh/mile and Number of stops/veh/mile. Hence any one of these six variables may be used in the regression. Once the data for dependent variables is compiled, one can proceed with further analysis.

Table 8.3 Correlation Matrix for the Independent Variables

|  | Length | Number of signals | Signal density | Log (Signal den) | St dev Spacing | ADT | FRTIME | $\begin{array}{\|c} \text { Measured } \\ \text { TT } \\ \hline \end{array}$ | Delay/ veh | delay/veh/si gnal | delay/ veh/mile | \# Stops/ veh | \# Stops/ veh/mile | \# Stops/ veh/ signal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length | 1.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Number of signals | 0.82 | 1.00 |  |  |  |  |  |  |  |  |  |  |  |  |
| Signal density | -0.63 | -0.22 | 1.00 |  |  |  |  |  |  |  |  |  |  |  |
| Log(Signal den) | -0.64 | -0.16 | 0.98 | 1.00 |  |  |  |  |  |  |  |  |  |  |
| St dev_Spacing | 0.41 | 0.08 | -0.61 | -0.62 | 1.00 |  |  |  |  |  |  |  |  |  |
| ADT | 0.25 | 0.40 | -0.11 | -0.04 | -0.06 | 1.00 |  |  |  |  |  |  |  |  |
| FRTIME | 0.89 | 0.87 | -0.47 | -0.45 | 0.29 | 0.21 | 1.00 |  |  |  |  |  |  |  |
| Measured TT | 0.94 | 0.86 | -0.51 | -0.50 | 0.36 | 0.14 | 0.91 | 1.00 |  |  |  |  |  |  |
| Delay/veh | 0.63 | 0.65 | -0.24 | -0.23 | 0.25 | -0.10 | 0.62 | 0.83 | 1.00 |  |  |  |  |  |
| Delay/veh/signal | -0.11 | -0.27 | 0.03 | -0.06 | 0.21 | -0.63 | -0.17 | 0.07 | 0.46 | 1.00 |  |  |  |  |
| Delay/veh/mile | -0.54 | -0.34 | 0.78 | 0.71 | -0.35 | -0.44 | -0.49 | -0.35 | 0.08 | 0.58 | 1.00 |  |  |  |
| \# Stops/veh | 0.71 | 0.69 | -0.31 | -0.30 | -0.09 | 0.03 | 0.70 | 0.85 | 0.88 | 0.25 | -0.10 | 1.00 |  |  |
| \# Stops/veh/mile | -0.50 | -0.29 | 0.76 | 0.70 | -0.35 | -0.38 | -0.43 | -0.32 | 0.06 | 0.47 | 0.89 | 0.07 | 1.00 |  |
| \# Stops/veh/ signal | 0.05 | -0.15 | -0.13 | -0.20 | 0.34 | -0.47 | -0.02 | 0.20 | 0.46 | 0.75 | 0.35 | 0.55 | 0.51 | 1.00 |

Note: Correlation values equal or more than 0.5 are bold

### 8.2 Monetary Benefits

To convert the benefits into monetary values, benefits must be multiplied by their respective value of benefits.

### 8.2.1 Value of time

Mattingly et al. (2004) analyzed a stated preference survey conducted in the DFW region to find out the value of time in the context of HOT lanes and HOV lanes. They concluded that the respondents' value of time is $\$ 8.39$ per hour. Though the present research is concerned with time savings of a few seconds, which poses some aggregation concerns, this value of time is still reasonable for comparison purposes. Further surveys may indicate how to address the aggregation difficulties for this particular case.

### 8.2.2 Fuel price

According to the American Automobile Association (2006), $\$ 2.57$ per gallon was the regional average gasoline price in southwest USA on April 6, 2006.

### 8.2.3 Value of $\mathrm{NO}_{\mathrm{x}}$ emissions

Trading of $\mathrm{NO}_{\mathrm{x}}$ emissions is still an emerging topic. $\mathrm{NO}_{\mathrm{x}}$ trading is considered by Evolution Markets LLC. In a personal communication with the author, Peter Zabrowsky (2006), who is the managing director of the Environmental Markets of Evolution Markets LLC, specified a rough estimate of $\mathrm{NO}_{\mathrm{x}}$ value as $\$ 2500$ per short ton, which is $\$ 2756$ per a metric ton. This number may be a national average. For the DFW area, two different values are given in the Texas Commission on Environmental Quality (TCEQ, 2006) based on earlier $\mathrm{NO}_{\mathrm{x}}$ trading in this area. They are $\$ 6500 /$ ton and
$\$ 3000 /$ ton of $\mathrm{NO}_{x}$. An average of the two values is applied in this research as a reasonable value.

### 8.3 Application of Methodology

Once the model is developed, it can be applied to the data collected for the candidate corridors. Benefits in delay, fuel consumption and emissions are calculated using the model. In order to obtain a single score for each corridor, these three benefits are added. This score is named the Project Benefit Score.

Project Benefit Score (PBS) $=\mathrm{V}_{\mathrm{D}} * \mathrm{~S}_{\mathrm{D}}+\mathrm{V}_{\mathrm{F}} * \mathrm{~S}_{\mathrm{F}}+\mathrm{V}_{\mathrm{E}} * \mathrm{~S}_{\mathrm{E}}$
where,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=\text { value of time }=\$ 8.39 / \text { hour } \\
& \mathrm{V}_{\mathrm{F}}=\text { Value of fuel }=\$ 2.57 / \text { gallon and } \\
& \mathrm{V}_{\mathrm{E}}=\text { value of } \mathrm{NO}_{\mathrm{x}} \text { emissions }=\$ 4750 / \text { ton for the existing condition. } \\
& \mathrm{S}_{\mathrm{D}}=\text { Saving in delay (in sec) } \\
& \mathrm{S}_{\mathrm{F}}=\text { Saving in fuel consumption (in gallons) } \\
& \mathrm{S}_{\mathrm{E}}=\text { Saving in } \mathrm{NO}_{\mathrm{x}} \text { emissions (in tons) }
\end{aligned}
$$

The PBS is calculated assuming that equal importance is given to all the benefits, but the funding organization may establish a different importance to each of these benefits. In that case, their relative importance has to be quantified according to the organization's policies. If the weightings for delay, fuel consumption and emissions are $\mathrm{W}_{\mathrm{D}}, \mathrm{W}_{\mathrm{F}}, \mathrm{W}_{\mathrm{E}}$ respectively,

Weighted Project Benefit Score (WPBS) $=\mathrm{W}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}} \mathrm{S}_{\mathrm{D}}+\mathrm{W}_{\mathrm{F}} \mathrm{V}_{\mathrm{F}} \mathrm{S}_{\mathrm{F}}+\mathrm{W}_{\mathrm{E}} \mathrm{V}_{\mathrm{E}} \mathrm{S}_{\mathrm{E}}$

Sorting WPBS for all the candidate projects, a priority list is obtained. The actual performance of this methodology will be known after it is applied at least once to prioritize corridors and then benefits are calculated. The author recommends the model may be periodically updated after a large number of corridors are retimed and before and after studies are completed.

## CHAPTER 9

## CONCLUSIONS AND RECOMMENDATIONS

### 9.1 Conclusions

The U.S. Department of Transportation's Federal Highway Administration (FHWA) started a campaign on retiming traffic signals with the video "It's About Time, Traffic Signal Management: Cost-Effective Street Capacity and Safety" in 2001. Inspired by this, more and more cities and regional planning authorities are going to retime signals because retiming traffic signals is one of the most cost-effective techniques available for improving operations.

The prioritization of signal retiming projects, like any other project, is necessary to maximize the benefits with limited funds. This thesis addresses this issue by explaining the benefits provided of traffic signal retiming and the steps involved in such projects before studying the necessity of prioritizing such projects.

The author considers current methods used by various cities and planning agencies in the United States in selecting retiming projects. Based on the responses from these agencies, many regions undertake signal retiming projects on a regular basis; however, there is no common methodology for prioritizing signal retiming projects except at the NCTCOG. Recently, NCTCOG used a sophisticated ranking model methodology for ranking retiming projects.

NCTCOG's ranking methodology is based on the severity of the existing traffic conditions, but the traffic conditions being severe may not assure high benefits from retiming signals on that corridor. Benefits from signal coordination, a technique used in signal retiming to achieve progression of vehicles along the corridor, depend on various features such as uniformity of intersection spacing, and speeds along the corridor.

Hence, a new and more efficient methodology is proposed. In this methodology, regression analysis will be used to estimate the benefits based on existing corridor characteristics, both physical and traffic related. The benefits in delay, fuel consumption and emissions are all dependent variables. The overall corridor benefits for a period until the next retiming in the future are calculated using the data from before and after studies.

Using such a model, corridor benefits can be forecasted before implementation. This model can be used in the future to estimate the benefits associated with any signal retiming project. An overall benefit score called the weighted project benefit score is calculated using dollar rates and weighting for each of benefits. Priority order of these projects is the decreasing order of this overall benefit score.

### 9.2 Recommendations for Further Research

As there is not enough available data from before and after studies, the methodology is only proposed. NCTCOG is conducting retiming projects along another thirty to forty corridors during 2006. Before and after studies have to be conducted along each of these corridors. Once this data is available, model coefficients can be estimated.

This research considers the uniformity in intersection spacing as a variable on which benefits from retiming may depend. Intersection spacing has important role in coordinated signals. But, all the intersections along a corridor may not be coordinated while retiming. In that case, standard deviation of spacings between every two consecutive intersections may not be meaningful. Hence, groups of intersections may be decided to be coordinated and an average of standard deviations calculated for each group of corridors may be used as a variable. More research is needed in this respect.

Further research is needed in selecting the value of benefits. Research must be done to identify a more accurate dollar value associated with benefits in $\mathrm{NO}_{\mathrm{x}}$ from vehicular emissions. Similarly, the value of time should also be examined again to see if any other appropriate value can be obtained for city travel in DFW region. This thesis applies a value of time which was calculated through stated preference surveys. The time savings on the arterials are typically a few seconds rather than a few minutes. Application of value of time which was calculated for HOV or HOT lanes to the savings on arterials may cause some aggregation errors. More research is needed to solve these potential problems.

## APPENDIX A

RESPONSES OF VARIOUS TRANSPORTATION ORGANIZATIONS ON SIGNAL REITMING PROJECTS AND THEIR PRIORITIZATION

## Recipient Organizations of the E mail Survey

| S. <br> No. | Name of the Organization |
| :--- | :--- |
| 1 | New York State Dept of Transportation |
| 2 | New Jersey Transportation Planning Authority |
| 3 | Mid-America Regional Council, Kansas |
| 4 | East-West Gateway Council of Governments, Saint Louis |
|  | South East Michigan Council of Governments / Michigan <br> 5 |
| 6 | Department of Transportation |
| 7 | Santa Barbara County Association of Governments |
| 8 | S.California Association of Governments |
| 9 | Sacramento Council of Governments |
| 10 | Elmira-Chemung Transportation Council |
| 11 | Capital District Transportation Committee, NY |
| 12 | Palm Beach County Government |
| 13 | City of Indianapolis |
| 14 | Miami Dade County Government |
| 15 | Knoxville Regional Transportation Planning Organization (TPO) |
| 16 | Yuma Metropolitan Planning Organization |
| 17 | San Antonio-Bexar County Metropolitan Planning Organization |
| 18 | Boston Metropolitan Planning Organization |
| 19 | Capital Area Metropolitan Planning Organization, Austin |
|  |  |

## Reply from City of Indianapolis:

City of Indianapolis has neither staff nor budget to accomplish retiming in regular intervals. Typically corridors are retimed if the corridor is being upgraded or when complaints about the corridors are received. Corridors with the most traffic are concentrated upon.

## Reply from Knoxville Regional TPO:

A formal process for prioritization of signal retiming projects is currently not there. Corridors that have been identified as a "congested corridor" in their Congestion Management System (CMS) plan are concentrated upon. The TPO is in the process of updating their CMS plan with new travel time data, which could possibly be used to
develop criteria for prioritization for signal retiming projects. Right now they just ask the local jurisdictions in the area to propose re-timing projects that they feel are needed. A good source of funding is available from the Congestion Mitigation and Air Quality Improvement (CMAQ) program, since the area is as a non-attainment area.

## Reply from Miami-Dade Public Works:

Usually they do not have time or funding for scheduled traffic signal retiming projects. Instead, they solve signal timing problems on a "fire-fighting" basis. On the rare occasions when they have funding for such projects, they pick the corridors based on engineering judgment, which is in turn based on the following questions:

- How long has it been since the corridor was re-timed?
- How much has traffic flow changed since then?
- How many complaints are we getting about the timing on that corridor?


## Reply from S. California Association of Governments - Ventura County:

In Ventura County the only regional prioritization affecting traffic signals would be the CMAQ project selection process. The screening criteria are divided into three categories: project eligibility, planning consistency and financial feasibility. Proposed projects must meet all of these screening criteria in order to move to the next phase of the process. There may also be signal synchronization projects done by individual jurisdictions, but if that is the case, the prioritization would be done by the individual jurisdiction.

Reply from S. California Association of Governments - Riverside County:
Typically they have a "call for projects" per fund type, not project type. Projects are scored for various criteria before being selected.

## Reply from Metropolitan Orlando, Florida:

No criteria available at this time. Because there are 21 cities under this organization, the prioritization process can be complex and political. Recently their Board requested that they should look at retiming signals to achieve a regional standard for safety and efficiency. Recently, a corridor has been identified, which serves many of their counties and cities in their region, for their first region retiming project.

## Reply from Michigan Department of Transportation:

They do not have a priority set up for what locations. In their view, the best method would be based on volumes and complaints. They started with the Detroit area but now are in the process of retiming the entire state. They are doing entire counties at a time to get better prices on their projects. They are not selecting individual corridors.

## APPENDIX B

ORIGINAL DATA OBTAINED FROM NCTCOG










|  | Arterial | Volume Data |  |  |  |  |  |  |  | Existing System Type | Cumulative No. of Signals and Miles of Corridor |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | From NCTCOG 1999 Volumes Unless Later Year is Noted |  |  | More Recent Count If Available |  |  |  | ADT Volume Used For Ranking |  |  |  |  |
|  |  | ADT Volume | Year | Volume Adjusted to 2003 | $\begin{aligned} & \text { Newer } \\ & \text { ADT } \\ & \text { Volume } \end{aligned}$ | Year | Source | Volume <br> Adjusted to 2003 |  |  | No. of Signals | Length (Miles) |  |
| 110 | Belt Line | 43,700 | 1999 | 47,302 | N/A |  |  | 0 | 47,302 | 1 | 8 | 3.1 |  |
| 111 | Jupiter | 39,930 | 1999 | 43,222 | 51,854 | 1999 | C of G | 56,128 | 56,128 | 1 | 24 | 7.7 |  |
| 112 | Spring Valley | 31,160 | 1999 | 33,729 | N/A |  |  | 0 | 33,729 | 1 | 32 | 10.4 |  |
| 113 | Alpha | 31,200 | 1999 | 33,772 | N/A |  |  | 0 | 33,772 | 1 | 39 | 12.5 |  |
| 114 | Jupiter | 34,670 | 1999 | 37,528 | 40,920 | 2002 | C of R | 41,738 | 41,738 | 1 | 49 | 17.2 |  |
| 115 | Oaklawn | 39,290 | 1999 | 42,529 | N/A |  |  | 0 | 42,529 | 1 | 60 | 18.7 |  |
| 116 | Forest | 46,000 | 1999 | 49,792 | 48,545 | 2002 | C of D | 49,516 | 49,792 | 1 | 69 | 20.9 |  |
| 117 | Harry Hines | 37,770 | 1999 | 40,883 |  |  |  | 0 | 40,883 | 1 | 78 | 23.2 |  |
| 118 | Forest | 43,960 | 1999 | 47,584 | 38,750 | 2001 | C of D | 40,316 | 47,584 | 1 | 99 | 30.3 |  |
| 119 | Belt Line | 40,390 | 1999 | 43,719 | 40,900 | 2002 | C of R | 41,718 | 43,719 | 1 | 115 | 35.4 |  |
| 120 | Preston | 34,190 | 1999 | 37,008 | 34,614 | 2002 | Cof D | 35,306 | 37,008 | 1 | 125 | 38.0 |  |
| 121 | Inwood | 24,280 | 1999 | 26,281 | 30,529 | 1998 | C of D | 33,706 | 33,706 | 1 | 140 | 44.3 |  |
| 122 | FM 3040/Hebron/Park Blvd | 47,150 | 1999 | 51,037 |  |  |  | 0 | 51,037 | 1 | 163 | 51.9 | Not considered at City request (TT runs for regional assessment only) |
| 123 | First | 43,610 | 1999 | 47,205 |  |  |  | 0 | 47,205 | 1 | 167 | 53.4 |  |
| 124 | Preston | 52,000 | 2001 | 54,101 |  |  |  | 0 | 54,101 | 1 | 183 | 59.1 | Not considered at City request (TT runs for regional assessment only) |
| 125 | Royal | 24,390 | 1999 | 26,401 | 26,525 | 2002 | C of D | 27,056 | 27,056 | 1 | 191 | 62.5 |  |
| 126 | Northwest Hwy | 53,000 | 1999 | 57,369 | 62,353 | 2002 | C of D | 63,600 | 63,600 | 1 | 219 | 71.4 |  |
| 127 | SH 121 | 32,200 | 1999 | 34,854 |  |  |  | 0 | 34,854 | 2 | 224 | 73.8 | Deleted -- mainlanes now under construction |
| 128 | Marsh/Lemmon | 51,730 | 1999 | 55,994 | N/A |  |  | 0 | 55,994 | 1 | 245 | 79.2 |  |
| 129 | Arapaho | 40,690 | 1999 | 44,044 | 41,270 | 2002 | C of R | 42,095 | 44,044 | 1 | 255 | 81.7 |  |
| 130 | Inwood | 53,650 | 1999 | 58,072 | 41,374 | 2002 | C of D | 42,201 | 58,072 | 1 | 268 | 84.4 |  |
| 131 | Belt Line/First | 34,550 | 1999 | 37,398 |  |  |  | 0 | 37,398 | 1 | 279 | 87.9 |  |
| 132 | Arapaho/Garland Ave | 25,930 | 1999 | 28,067 |  |  |  | 0 | 28,067 | 1 | 292 | 92.9 |  |
| 133 | Skillman/Forest | 50,040 | 1999 | 54,165 | 50,748 | 2001 | C of D | 52,798 | 54,165 | 1 | 308 | 96.6 |  |
| 134 | Shiloh | 28,980 | 1999 | 31,369 | 30,183 | 1999 | C of G | 32,671 | 32,671 | 2 | 326 | 104.6 |  |
| 135 | Inving Blvd/Industrial | 31,560 | 1999 | 34,162 | N/A |  |  | 0 | 34,162 | 1 | 343 | 110.3 |  |
| 136 | Spring Valley/Centennial | 40,680 | 1999 | 44,033 | 44,150 | 2003 | C of R | 44,150 | 44,150 | 1 | 356 | 114.3 |  |
| 137 | FM 3040/Hebron/Park Blvd | 21,740 | 1999 | 23,532 |  |  |  | 0 | 23,532 | 2 | 364 | 118.2 | Delete at City request --TT runs for regional assessment only |
| 138 | Royal | 34,450 | 1999 | 37,290 | 35,657 | 2001 | C of D | 37,098 | 37,290 | 1 | 384 | 125.4 | Actual speeds well in excess of posted |
| 139 | Preston | 31,580 | 1999 | 34,183 |  |  |  | 0 | 34,183 | 1 | 400 | 129.4 |  |
| 140 | Buckingham | 37,090 | 1999 | 40,147 |  |  |  | 0 | 40,147 | 1 | 412 | 134.0 |  |
|  | Key to Existing System Type: $1=$ all intersections are part of an existing system with communications; $2=$ some but not all intersections are part of an existing system with communications; $3=$ No system (currently isolated operation) |  |  |  |  |  |  |  |  |  |  |  |  |



|  | Arterial | Volume Data |  |  |  |  |  |  |  |  | Cumulative No. of Signals and Miles of Corridor |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | From NCTCOG 1999 Volumes Unless Later Year is Noted |  |  | More Recent Count If Available |  |  |  |  |  |  |  |  |
|  |  | ADT Volume | Year | Volume <br> Adjusted to 2003 | Newer ADT Volume | Year | Source | Volume Adjusted to 2003 |  |  | No. of Signals | $\begin{aligned} & \text { Length } \\ & \text { (Miles) } \end{aligned}$ |  |
| 141 | Mockingbird | 45,060 | 1999 | 48,774 | 40,716 | 2002 | C of D | 41,530 | 48,774 | 1 | 432 | 138.2 |  |
| 142 | Forest/Ave B \& D/SH 66 | 51,790 | 1999 | 56,059 |  |  |  | 0 | 56,059 | 2 | 442 | 141.5 |  |
| 143 | Marsh/Lemmon | 32,040 | 1999 | 34,681 | 30,872 | 2001 | C of D | 32,119 | 34,681 | 1 | 449 | 145.1 | Actual speeds well in excess of posted |
| 144 | FM 1382 |  |  |  |  |  |  |  |  |  |  |  | Deleted due to roadway construction |
| 145 | Loop 288 |  |  |  |  |  |  |  |  |  |  |  | Deleted due to roadway construction |
| 146 | Custer |  |  |  |  |  |  |  |  |  |  |  | Deleted at City request |
| 147 | SH 121 |  |  |  |  |  |  |  |  |  |  |  | Deleted due to roadway construction |
| 148 | University | 22,860 | 1999 | 24,744 |  |  |  | 0 | 24,744 | 1 | 4 | 0.6 |  |
| 149 | Camp Bowi//th | 23,710 | 1999 | 25,664 |  |  |  | 0 | 25,664 | 1 | 10 | 2.1 |  |
| 150 | Montgomery | 21,640 | 1999 | 23,424 |  |  |  | 0 | 23,424 | 1 | 17 | 3.3 |  |
| 151 | Wabash/Granbury | 25,540 | 1999 | 27,645 |  |  |  | 0 | 27,645 | 2 | 25 | 4.6 |  |
| 152 | Basswood | 24,120 | 1999 | 26,108 |  |  |  | 0 | 26,108 | 2 | 32 | 7.0 |  |
| 153 | Western Center | 31,040 | 1999 | 33,599 |  |  |  | 0 | 33,599 | 3 | 42 | 10.0 | Split into 2 segments |
| 154 | McCart/Granbury | 16,370 | 1999 | 17,719 |  |  |  | 0 | 17,719 | 2 | 47 | 11.7 |  |
| 155 | Beach | 31,720 | 1999 | 34,335 |  |  |  | 0 | 34,335 | 3 | 59 | 15.3 |  |
| 156 | Main Street |  |  |  |  |  |  |  |  |  |  |  | Deleted (currently being retimed as City project) |
| 157 | Dallas Rd (SH 26) |  |  |  |  |  |  |  |  |  |  |  | Deleted (currently being retimed as City project) |
| 158 | William D. Tate/Bass |  |  |  |  |  |  |  |  |  |  |  | Deleted (currently being retimed as City project) |
| 159 | Northwest Hwy |  |  |  |  |  |  |  |  |  |  |  | Deleted (currently being retimed as City project) |
| 160 | Mockingbird | 45,060 | 1999 | 48,774 | 40,716 | 2002 | C of D | 41,530 | 48,774 | 1 | 2,114 | 712.6 |  |
| 161 | Harry Hines | 37,770 | 1999 | 40,883 |  |  |  | 0 | 40,883 | 1 |  |  |  |
| 162 | Inwood | 53,650 | 1999 | 58,072 | 41,374 | 2002 | C of D | 42,201 | 58,072 | 1 | 2,136 | 717.6 |  |
| 163 | Oaklawn | 39,290 | 1999 | 42,529 | N/A |  |  | 0 | 42,529 | 1 | 2,147 | 719.1 |  |
| 164 | Marsh/Lemmon | 51,730 | 1999 | 55,994 | N/A |  |  | 0 | 55,994 | 1 | 2,168 | 724.5 |  |
| 165 | Inving Blvd/Industrial | 31,560 | 1999 | 34,162 | N/A |  |  | 0 | 34,162 | 1 | 2,185 | 730.2 |  |
| 166 | Dallas Group 1 (Oaklawn, etc.) |  |  |  |  |  |  |  | 280,415 | 1 |  |  |  |
|  | Key to Existing System Type: 1 system (currently isolated opera | ersection | e part | an existing | system w | comm | ations; 2 | = some bu | not all inte | rsect | ons are p |  | xisting system with communications; $3=$ |




## APPENDIX C

DETAILED STUDY STATISTICS FROM BEFORE AND AFTER TRAVELTIME STUDIES

## Detailed Study Statistics for Great Southwest Parkway Corridor

| AM Northbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node <br> Number | Length (ft) | Node Names | Travel time (s) | \# of <br> Stops | $\left\|\begin{array}{c} \text { Avg } \\ \text { Speed } \\ (\text { mph }) \end{array}\right\|$ | Total Delay (s) | Time $<=0$ <br> MPH | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & (\mathrm{gm}) \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1166 | Claremont | 34 | 0.2 | 23 | 16 | 3 | 31 | 34 | 0.01 | 1.47 | 13.11 | 0.99 |
| 3 | 2533 | Bardin | 69 | 0.8 | 25 | 30 | 14 | 37 | 69 | 0.03 | 2.66 | 25.98 | 1.62 |
| 4 | 812 | IH20 EB | 53 | 0.8 | 10 | 40 | 28 | 50 | 53 | 0.02 | 1.82 | 14.86 | 1.04 |
| 5 | 1088 | IH20 WB | 25 | 0.2 | 29 | 9 | 3 | 14 | 25 | 0.01 | 1.31 | 14.00 | 0.92 |
| 6 | 452 | Sara Jane | 9 | 0.0 | 36 | 1 | 0 | 2 | 9 | 0.01 | 0.75 | 9.36 | 0.59 |
| 7 | 1838 | Forum | 78 | 1.0 | 16 | 50 | 29 | 59 | 78 | 0.02 | 2.13 | 20.68 | 0.88 |
| 8 | 2711 | Mayfield | 57 | 0.2 | 32 | 16 | 1 | 25 | 57 | 0.03 | 2.93 | 32.50 | 2.02 |
| 9 | 5367 | Arkansas | 105 | 0.6 | 35 | 23 | 12 | 26 | 105 | 0.05 | 3.76 | 44.22 | 2.01 |
| 10 | 2111 | Pioneer Pkwy | 44 | 0.2 | 33 | 11 | 4 | 16 | 44 | 0.02 | 2.13 | 24.48 | 1.42 |
| 11 | 3223 | Marshall | 74 | 0.6 | 30 | 25 | 12 | 29 | 74 | 0.03 | 3.26 | 36.72 | 2.06 |
| 12 | 2718 | Timberlake | 44 | 0.0 | 42 | 3 | 0 | 3 | 44 | 0.02 | 2.14 | 27.12 | 1.36 |
| 13 | 2771 | W.E. <br> Roberts/Sherman | 44 | 0.0 | 43 | 2 | 0 | 0 | 44 | 0.02 | 1.54 | 19.99 | 0.75 |
| 14 | 1001 | Jefferson/Abram | 125 | 0.6 | 5 | 110 | 94 | 119 | 125 | 0.03 | 2.80 | 24.84 | 0.73 |
| 15 | 547 | SH 180/Main | 50 | 0.8 | 8 | 42 | 26 | 49 | 49 | 0.01 | 1.32 | 10.36 | 0.58 |
| Total | 28338 |  | 813 | 6.0 | 24 | 379 | 226 | 463 | 813 | 0.32 | 30.03 | 318.23 | 16.96 |
|  | Total per mile |  | 152 | 1.1 |  | 71 | 42 | 86 | 151 | 0.06 | 5.60 | 59.29 | 3.16 |


| AM Northbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node <br> Number | Length (ft) | Node Names | Travel time (s) | \# of <br> Stops | Avg Speed (mph) | Total <br> Delay <br> (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel <br> (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \text { CO } \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & (\mathrm{gm}) \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 30 | 0.0 | 27 | 12 | 0 | 23 | 30 | 0.01 | 1.62 | 15.83 | 1.18 |
| 3 | 2441 | Bardin | 83 | 1.0 | 20 | 46 | 30 | 52 | 83 | 0.03 | 2.49 | 23.94 | 1.19 |
| 4 | 898 | IH-20 EBFR | 42 | 0.8 | 15 | 28 | 12 | 42 | 42 | 0.01 | 1.68 | 12.49 | 1.14 |
| 5 | 1102 | IH-20 WBFR | 22 | 0.0 | 34 | 5 | 0 | 13 | 22 | 0.01 | 1.42 | 16.21 | 1.08 |
| 6 | 446 | Sara Jane Pkwy | 8 | 0.0 | 39 | 1 | 0 | 1 | 8 | 0.00 | 0.52 | 6.77 | 0.38 |
| 7 | 1829 | Forum | 56 | 0.4 | 22 | 28 | 10 | 40 | 56 | 0.02 | 1.44 | 13.93 | 0.57 |
| 8 | 2729 | Mayfield | 64 | 0.4 | 29 | 22 | 5 | 35 | 64 | 0.03 | 3.14 | 33.92 | 2.15 |
| 9 | 5393 | Arkansas | 100 | 0.4 | 37 | 19 | 13 | 26 | 100 | 0.05 | 3.99 | 49.03 | 2.25 |
| 10 | 2081 | Pioneer | 52 | 0.4 | 27 | 20 | 12 | 26 | 52 | 0.02 | 1.94 | 21.05 | 1.11 |
| 11 | 3246 | Marshall | 69 | 0.2 | 32 | 20 | 8 | 26 | 69 | 0.03 | 2.91 | 33.29 | 1.78 |
| 12 | 2715 | Timberlake | 48 | 0.2 | 38 | 7 | 1 | 14 | 48 | 0.03 | 2.30 | 27.89 | 1.50 |
| 13 | 2800 | W.E. Roberts / Sherman | 47 | 0.0 | 41 | 4 | 0 | 9 | 47 | 0.02 | 1.98 | 25.21 | 1.18 |
| 14 | 1007 | Jefferson / <br> Abram | 52 | 1.4 | 13 | 37 | 18 | 45 | 52 | 0.02 | 1.54 | 11.44 | 0.80 |
| 15 | 537 | Main St / Division | 26 | 0.2 | 14 | 18 | 8 | 25 | 26 | 0.01 | 0.86 | 7.30 | 0.49 |
| Total | 28411 |  | 700 | 5.4 | 28 | 268 | 117 | 378 | 699 | 0.30 | 27.83 | 298.30 | 16.80 |
|  | Total per mile |  | 130 | 1.0 |  | 50 | 22 | 70 | 130 | 0.06 | 5.17 | 55.44 | 3.12 |


| Reductions for AM Northbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node <br> Number | Length (ft) | Node Names | Travel time (s) | \# of <br> Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | Time $\mid<=55$ <br> MPH | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & (\mathrm{gm}) \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 4 | 0.2 |  | 4 | 3 | 8 | 4 | -1E-04 | -1E-01 | $-3 \mathrm{E}+00$ | -2E-01 |
| 3 | 2441 | Bardin | -13 | -0.2 |  | -15 | -15 | -15 | -13 | -7E-04 | 2E-01 | $2 \mathrm{E}+00$ | 4E-01 |
| 4 | 898 | IH-20 EBFR | 11 | 0.0 |  | 12 | 16 | 8 | 11 | 2E-03 | 1E-01 | $2 \mathrm{E}+00$ | -1E-01 |
| 5 | 1102 | IH-20 WBFR | 3 | 0.2 |  | 3 | 3 | 2 | 3 | 3E-04 | -1E-01 | $-2 \mathrm{E}+00$ | -2E-01 |
| 6 | 446 | Sara Jane Pkwy | 1 | 0.0 |  | 1 | 0 | 1 | 1 | 1E-03 | 2E-01 | $3 \mathrm{E}+00$ | 2E-01 |
| 7 | 1829 | Forum | 22 | 0.6 |  | 22 | 18 | 19 | 22 | 6E-03 | 7E-01 | $7 \mathrm{E}+00$ | 3E-01 |
| 8 | 2729 | Mayfield | -7 | -0.2 |  | -7 | -4 | -10 | -7 | -1E-03 | -2E-01 | $-1 \mathrm{E}+00$ | -1E-01 |
| 9 | 5393 | Arkansas | 5 | 0.2 |  | 3 | -1 | 0 | 5 | -2E-03 | -2E-01 | $-5 \mathrm{E}+00$ | -2E-01 |
| 10 | 2081 | Pioneer | -8 | -0.2 |  | -9 | -8 | -9 | -8 | -3E-04 | 2E-01 | $3 \mathrm{E}+00$ | 3E-01 |
| 11 | 3246 | Marshall | 6 | 0.4 |  | 6 | 4 | 4 | 6 | 2E-03 | 4E-01 | $3 \mathrm{E}+00$ | 3E-01 |
| 12 | 2715 | Timberlake | -4 | -0.2 |  | -4 | -1 | -11 | -4 | -1E-03 | -2E-01 | -8E-01 | -1E-01 |
| 13 | 2800 | W.E. Roberts / Sherman | -2 | 0.0 |  | -2 | 0 | -9 | -2 | -2E-03 | -4E-01 | $-5 \mathrm{E}+00$ | -4E-01 |
| 14 | 1007 | Jefferson / Abram | 73 | -0.8 |  | 74 | 76 | 73 | 73 | 1E-02 | $1 \mathrm{E}+00$ | $1 \mathrm{E}+01$ | -7E-02 |
| 15 | 537 | Main St / Division | 24 | 0.6 |  | 23 | 18 | 24 | 24 | 5E-03 | 5E-01 | $3 \mathrm{E}+00$ | 9E-02 |
| Total | 28411 |  | 114 | 0.6 |  | 111 | 109 | 85 | 113 | 2E-02 | $2 \mathrm{E}+00$ | $2 \mathrm{E}+01$ | 2E-01 |
| Reduction per mile |  |  | 22 | 0.1 |  | 21 | 20 | 16 | 21 | 0.00 | 0.42 | 3.85 | 0.04 |
| \% Reduction |  |  | 14 | 10 |  | 30 | 49 | 19 | 14 | 7 | 8 | 7 | 1 |


| Mid Day Northbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node <br> Number | Length (ft) | Node Names | Travel time (s) | \# of <br> Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \hline \text { Time } \\ & <=0 \\ & \text { MPH } \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { Time } \\ <=35 \\ \text { MPH } \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline \text { Time } \\ <=55 \\ \text { MPH } \\ \hline \end{array}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & (\mathrm{gm}) \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1158 | Claremont | 31 | 0.4 | 26 | 13 | 3 | 21 | 31 | 0.01 | 1.48 | 13.93 | 1.06 |
| 3 | 2440 | Bardin | 55 | 0.6 | 30 | 18 | 6 | 19 | 55 | 0.02 | 2.09 | 20.92 | 1.24 |
| 4 | 927 | IH20 EB | 46 | 0.8 | 14 | 32 | 18 | 40 | 46 | 0.02 | 1.70 | 13.81 | 1.05 |
| 5 | 1071 | IH20 WB | 21 | 0.0 | 34 | 4 | 0 | 10 | 21 | 0.01 | 1.14 | 12.81 | 0.81 |
| 6 | 463 | Sara Jane | 9 | 0.0 | 37 | 2 | 0 | 4 | 9 | 0.00 | 0.54 | 6.23 | 0.40 |
| 7 | 1840 | Forum | 44 | 0.8 | 29 | 16 | 6 | 18 | 44 | 0.02 | 1.68 | 17.32 | 1.02 |
| 8 | 2706 | Mayfield | 45 | 0.0 | 41 | 4 | 0 | 5 | 45 | 0.03 | 2.34 | 28.86 | 1.56 |
| 9 | 5378 | Arkansas | 93 | 0.2 | 40 | 11 | 4 | 9 | 93 | 0.04 | 2.90 | 34.81 | 1.32 |
| 10 | 2086 | Pioneer Pkwy | 57 | 0.8 | 25 | 25 | 13 | 28 | 57 | 0.02 | 2.18 | 22.66 | 1.29 |
| 11 | 3241 | Marshall | 58 | 0.2 | 38 | 9 | 0 | 12 | 58 | 0.03 | 2.95 | 35.01 | 1.99 |
| 12 | 2706 | Timberlake | 45 | 0.0 | 41 | 3 | 0 | 2 | 45 | 0.02 | 1.87 | 23.57 | 1.08 |
| 13 | 2784 | W.E. Roberts/Sherman | 45 | 0.0 | 42 | 2 | 0 | 0 | 45 | 0.02 | 1.57 | 20.30 | 0.78 |
| 14 | 1014 | Jefferson/Abram | 29 | 0.4 | 24 | 14 | 6 | 16 | 29 | 0.01 | 0.84 | 8.22 | 0.40 |
| 15 | 532 | SH 180/Main | 33 | 0.6 | 11 | 25 | 13 | 32 | 32 | 0.01 | 0.93 | 6.88 | 0.47 |
| Total | 28346 |  | 610 | 4.8 | 32 | 176 | 68 | 215 | 610 | 0.27 | 24.23 | 265.33 | 14.48 |
| Total per mile |  |  | 114 | 0.9 |  | 33 | 13 | 40 | 114 | 0.0511 | 4.51 | 49.42 | 2.70 |


| Mid Day Northbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Travel time (s) | $\begin{gathered} \text { \# of } \\ \text { Stops } \end{gathered}$ | Avg <br> Speed <br> (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { CO } \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \mathbf{N O}_{\mathbf{x}} \\ \text { (gm) } \end{gathered}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1156 | Claremont | 38 | 0.6 | 21 | 20 | 5 | 33 | 38 | 0.02 | 1.77 | 14.64 | 1.28 |
| 3 | 2467 | Bardin | 70 | 0.6 | 24 | 32 | 13 | 50 | 70 | 0.03 | 2.71 | 25.79 | 1.68 |
| 4 | 913 | IH 20 EBFR | 28 | 0.6 | 22 | 14 | 3 | 26 | 28 | 0.01 | 1.56 | 13.27 | 1.22 |
| 5 | 1089 | IH 20 WBFR | 20 | 0.0 | 37 | 3 | 0 | 6 | 20 | 0.01 | 1.00 | 12.11 | 0.67 |
| 6 | 437 | Sara Jane Pkwy | 8 | 0.0 | 36 | 1 | 0 | 4 | 8 | 0.00 | 0.52 | 6.51 | 0.38 |
| 7 | 1840 | Forum | 47 | 0.6 | 27 | 19 | 13 | 21 | 47 | 0.02 | 1.68 | 19.53 | 0.89 |
| 8 | 2707 | Mayfield | 52 | 0.2 | 35 | 11 | 5 | 15 | 52 | 0.03 | 2.34 | 26.77 | 1.48 |
| 9 | 5392 | Arkansas | 91 | 0.2 | 40 | 9 | 6 | 10 | 91 | 0.05 | 3.36 | 42.82 | 1.75 |
| 10 | 2101 | Pioneer | 41 | 0.4 | 35 | 9 | 2 | 13 | 41 | 0.02 | 1.53 | 16.13 | 0.89 |
| 11 | 3254 | Marshall | 63 | 0.6 | 35 | 14 | 2 | 21 | 63 | 0.03 | 2.88 | 33.12 | 1.87 |
| 12 | 2688 | Timberlake | 49 | 0.2 | 38 | 7 | 1 | 11 | 49 | 0.03 | 2.57 | 31.23 | 1.75 |
| 13 | 2797 | W.E. Roberts / Sherman | 46 | 0.0 | 42 | 3 | 0 | 3 | 46 | 0.02 | 1.85 | 23.75 | 1.06 |
| 14 | 1037 | Jefferson / Abram | 27 | 0.2 | 26 | 11 | 7 | 12 | 27 | 0.01 | 0.80 | 8.23 | 0.37 |
| 15 | 520 | Main St / Division | 17 | 0.2 | 21 | 9 | 0 | 16 | 16 | 0.01 | 0.48 | 3.72 | 0.26 |
| Total | 28398 |  | 597 | 4.4 | 32 | 163 | 56 | 240 | 597 | 0.28 | 25.06 | 277.63 | 15.52 |
|  |  | Total per mile | 111 | 0.8 |  | 30 | 10 | 45 | 111 | 0.0514 | 4.66 | 51.62 | 2.89 |


| Reductions for Mid Day Northbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\left\lvert\, \begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}\right.$ | Time <= 35 <br> MPH | $\begin{gathered} \text { Time } \\ <=55 \\ \text { MPH } \end{gathered}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \text { CO } \\ \text { (gm) } \end{gathered}$ | $\mathrm{NO}_{\mathrm{x}}$ (gm) |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | -7 | -0.2 |  | -7 | -2 | -12 | -7 | -2E-03 | -3E-01 | -7E-01 | -2E-01 |
| 3 | 2441 | Bardin | -15 | 0.0 |  | -14 | -7 | -31 | -15 | -4E-03 | -6E-01 | -5E+00 | -4E-01 |
| 4 | 898 | 1 H 20 EBFR | 18 | 0.2 |  | 18 | 15 | 15 | 18 | 3E-03 | 1E-01 | 5E-01 | -2E-01 |
| 5 | 1102 | IH 20 WBFR | 1 | 0.0 |  | 1 | 0 | 4 | 1 | 6E-04 | 1E-01 | 7E-01 | 1E-01 |
| 6 | 446 | Sara Jane Pkwy | 0 | 0.0 |  | 0 | 0 | 0 | 0 | 1E-04 | 2E-02 | -3E-01 | 3E-02 |
| 7 | 1829 | Forum | -4 | 0.2 |  | -4 | -7 | -4 | -4 | -4E-04 | -4E-03 | -2E+00 | 1E-01 |
| 8 | 2729 | Mayfield | -7 | -0.2 |  | -8 | -5 | -10 | -7 | -1E-03 | -2E-03 | 2E+00 | 8E-02 |
| 9 | 5393 | Arkansas | 2 | 0.0 |  | 2 | -2 | -2 | 2 | -3E-03 | -5E-01 | -8E+00 | -4E-01 |
| 10 | 2081 | Pioneer | 16 | 0.4 |  | 16 | 11 | 16 | 16 | 4E-03 | 7E-01 | 7E+00 | 4E-01 |
| 11 | 3246 | Marshall | -5 | -0.4 |  | -5 | -2 | -8 | -5 | -1E-04 | 8E-02 | 2E+00 | 1E-01 |
| 12 | 2715 | Timberlake | -4 | -0.2 |  | -4 | -1 | -9 | -4 | -3E-03 | -7E-01 | -8E+00 | -7E-01 |
| 13 | 2800 | W.E. Roberts / Sherman | 0 | 0.0 |  | -1 | 0 | -3 | 0 | -1E-03 | -3E-01 | -3E+00 | -3E-01 |
| 14 | 1007 | Jefferson / Abram | 2 | 0.2 |  | 3 | -1 | 4 | 2 | 4E-04 | 5E-02 | -9E-03 | 3E-02 |
| 15 | 537 | Main St / Division | 16 | 0.4 |  | 16 | 13 | 16 | 16 | 4E-03 | 5E-01 | 3E+00 | 2E-01 |
| Total | 28411 |  | 13 | 0.4 |  | 13 | 12 | -24 | 13 | -2E-03 | -8E-01 | -1E+01\| | -1E+00 |
| Reduction per mile |  |  | 3 | 0.1 |  | 2 | 2 | -4 | 3 | 0.00 | -0.15 | -2.20 | -0.19 |
| \% Reduction |  |  | 2 | 9 |  | 7 | 17 | -11 | 2 | -1 | -3 | -4 | -7 |


| PM Northbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\left\lvert\, \begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}\right.$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { co } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathrm{NO}_{\mathrm{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1180 | Claremont | 35 | 0.2 | 23 | 17 | 8 | 22 | 35 | 0.01 | 1.50 | 15.32 | 0.96 |
| 3 | 2429 | Bardin | 63 | 0.4 | 26 | 26 | 15 | 27 | 63 | 0.02 | 2.15 | 22.85 | 1.13 |
| 4 | 906 | IH20 EB | 82 | 1.4 | 8 | 68 | 40 | 80 | 82 | 0.02 | 2.43 | 18.66 | 1.24 |
| 5 | 1080 | IH20 WB | 22 | 0.0 | 34 | 5 | 0 | 12 | 22 | 0.01 | 1.39 | 15.50 | 1.06 |
| 6 | 459 | Sara Jane | 8 | 0.0 | 37 | 1 | 0 | 2 | 8 | 0.00 | 0.42 | 5.28 | 0.28 |
| 7 | 1842 | Forum | 40 | 0.4 | 32 | 12 | 6 | 13 | 40 | 0.02 | 1.53 | 17.68 | 0.87 |
| 8 | 2691 | Mayfield | 49 | 0.2 | 37 | 8 | 3 | 10 | 49 | 0.03 | 2.08 | 24.78 | 1.25 |
| 9 | 5386 | Arkansas | 103 | 0.6 | 36 | 21 | 9 | 23 | 103 | 0.05 | 3.53 | 40.68 | 1.81 |
| 10 | 2088 | Pioneer Pkwy | 89 | 0.8 | 16 | 57 | 39 | 60 | 89 | 0.03 | 3.14 | 32.97 | 1.70 |
| 11 | 3238 | Marshall | 63 | 0.2 | 35 | 14 | 2 | 18 | 63 | 0.03 | 3.14 | 36.78 | 2.11 |
| 12 | 2711 | Timberlake | 46 | 0.0 | 41 | 4 | 0 | 6 | 46 | 0.02 | 2.07 | 26.06 | 1.27 |
| 13 | 2787 | W.E. Roberts/Sherman | 48 | 0.0 | 39 | 5 | 0 | 8 | 48 | 0.03 | 2.21 | 27.10 | 1.39 |
| 14 | 1013 | Jefferson/Abram | 52 | 1.0 | 13 | 37 | 22 | 42 | 52 | 0.02 | 1.46 | 12.23 | 0.69 |
| 15 | 538 | SH 180/Main | 23 | 0.4 | 16 | 15 | 7 | 22 | 22 | 0.01 | 1.11 | 9.90 | 0.80 |
| Total | 28348 |  | 723 | 5.6 | 27 | 289 | 149 | 345 | 723 | 0.30 | 28.16 | 305.77 | 16.57 |
|  | Total per mile |  | 135 | 1.0 | 1.0 | 54 | 28 | 64 | 134 | 0.06 | 5.24 | 56.85 | 3.08 |


| PM Northbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { CO } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathrm{NO}_{\mathrm{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1182 | Claremont | 25 | 0.0 | 32 | 7 | 0 | 17 | 25 | 0.01 | 1.49 | 15.24 | 1.11 |
| 3 | 2439 | Bardin | 62 | 0.6 | 27 | 25 | 14 | 29 | 62 | 0.02 | 2.09 | 22.70 | 1.09 |
| 4 | 926 | IH 20 EBFR | 45 | 0.4 | 14 | 31 | 23 | 35 | 45 | 0.01 | 1.53 | 15.71 | 0.80 |
| 5 | 1073 | IH 20 WBFR | 24 | 0.4 | 30 | 8 | 0 | 14 | 24 | 0.01 | 1.16 | 11.96 | 0.81 |
| 6 | 472 | Sara Jane Pkwy | 9 | 0.0 | 37 | 1 | 0 | 3 | 9 | 0.01 | 0.69 | 8.53 | 0.54 |
| 7 | 1822 | Forum | 39 | 0.4 | 32 | 11 | 7 | 12 | 39 | 0.02 | 1.36 | 15.61 | 0.73 |
| 8 | 2719 | Mayfield | 57 | 0.6 | 33 | 16 | 10 | 20 | 57 | 0.03 | 2.51 | 29.33 | 1.56 |
| 9 | 5368 | Arkansas | 83 | 0.0 | 44 | 3 | 0 | 7 | 83 | 0.05 | 3.50 | 44.85 | 2.01 |
| 10 | 2090 | Pioneer | 60 | 1.0 | 24 | 28 | 18 | 34 | 60 | 0.02 | 1.85 | 17.82 | 0.93 |
| 11 | 3261 | Marshall | 63 | 0.2 | 35 | 13 | 2 | 22 | 63 | 0.03 | 3.16 | 35.85 | 2.15 |
| 12 | 2694 | Timberlake | 56 | 0.6 | 33 | 15 | 7 | 19 | 56 | 0.03 | 2.54 | 29.87 | 1.62 |
| 13 | 2787 | W.E. Roberts / Sherman | 45 | 0.0 | 43 | 2 | 0 | 5 | 45 | 0.02 | 2.05 | 26.35 | 1.27 |
| 14 | 1028 | Jefferson / Abram | 39 | 0.4 | 18 | 23 | 15 | 27 | 39 | 0.01 | 1.13 | 10.33 | 0.54 |
| 15 | 522 | Main St / Division | 17 | 0.2 | 21 | 9 | 0 | 16 | 17 | 0.01 | 0.64 | 5.04 | 0.43 |
| Total | 28383 |  | 622 | 4.8 | 31 | 190 | 96 | 261 | 622 | 0.29 | 25.70 | 289.19 | 15.59 |
| Total per mile |  |  | 116 | 0.9 | 6 | 35 | 18 | 48 | 116 | 0.05 | 4.78 | 53.80 | 2.90 |


| Reductions for PM Northbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | Time $<=0$ <br> MPH | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{aligned} & \mathrm{HC} \\ & (\mathrm{gm}) \end{aligned}$ | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 9 | 0.2 |  | 9 | 8 | 5 | 9 | 1E-03 | 1E-02 | 8E-02 | -2E-01 |
| 3 | 2441 | Bardin | 2 | -0.2 |  | 2 | 0 | -1 | 2 | -1E-04 | 6E-02 | 2E-01 | 5E-02 |
| 4 | 898 | IH 20 EBFR | 37 | 1.0 |  | 37 | 16 | 45 | 37 | 8E-03 | 9E-01 | 3E+00 | 4E-01 |
| 5 | 1102 | IH 20 WBFR | -3 | -0.4 |  | -3 | 0 | -2 | -3 | 1E-04 | 2E-01 | 4E+00 | 2E-01 |
| 6 | 446 | Sara Jane Pkwy | 0 | 0.0 |  | 0 | 0 | -2 | 0 | -1E-03 | -3E-01 | -3E+00 | -3E-01 |
| 7 | 1829 | Forum | 1 | 0.0 |  | 1 | -1 | 0 | 1 | 6E-04 | 2E-01 | 2E+00 | 1E-01 |
| 8 | 2729 | Mayfield | -7 | -0.4 |  | -7 | -7 | -10 | -7 | -3E-03 | -4E-01 | $-5 \mathrm{E}+00$ | -3E-01 |
| 9 | 5393 | Arkansas | 20 | 0.6 |  | 18 | 9 | 16 | 20 | 4E-04 | 3E-02 | $-4 \mathrm{E}+00$ | -2E-01 |
| 10 | 2081 | Pioneer | 29 | -0.2 |  | 29 | 21 | 27 | 29 | 8E-03 | 1E+00 | 2E+01 | 8E-01 |
| 11 | 3246 | Marshall | 0 | 0.0 |  | 0 | 1 | -4 | 0 | 5E-04 | -2E-02 | 9E-01 | -3E-02 |
| 12 | 2715 | Timberlake | -10 | -0.6 |  | -11 | -7 | -13 | -10 | -4E-03 | -5E-01 | $-4 \mathrm{E}+00$ | -4E-01 |
| 13 | 2800 | W.E. Roberts / Sherman | 4 | 0.0 |  | 3 | 0 | 3 | 4 | 1E-04 | 2E-01 | 8E-01 | 1E-01 |
| 14 | 1007 | Jefferson / Abram | 13 | 0.6 |  | 14 | 7 | 15 | 13 | 3E-03 | 3E-01 | 2E+00 | 2E-01 |
| 15 | 537 | Main St / Division | 6 | 0.2 |  | 6 | 6 | 6 | 6 | 3E-03 | 5E-01 | 5E+00 | 4E-01 |
| Total | 28411 |  | 101 | 0.80 |  | 99 | 53 | 85 | 101 | 2E-02 | 2E+00 | 2E+01 | 1E+00 |
| Reduction per mile |  |  | 19 | 0.15 |  | 18 | 10 | 16 | 19 | 0.00 | 0.46 | 3.06 | 0.18 |
| \% Reduction |  |  | 14 | 14 |  | 34 | 35 | 24 | 14 | 6 | 9 | 5 | 6 |


| AM Southbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Trave time (s) | \# of Stops | Avg <br> Speed <br> (mph) | Total Delay (s) | Time $<=0$ <br> MPH | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | Time <= 55 MPH | Fuel <br> (gal) | HC <br> (gm) | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathbf{N O}_{\mathbf{x}} \\ \text { (gm) } \end{gathered}$ |
| 1 | 0 | SH 180/Main |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 596 | Jefferson/Abram | 44 | 1.0 | 9 | 34 | 19 | 43 | 44 | 0.01 | 1.65 | 11.42 | 1.07 |
| 3 | 1032 | W.E. <br> Roberts/Sherman | 24 | 0.4 | 29 | 8 | 2 | 14 | 24 | 0.01 | 1.56 | 15.79 | 1.22 |
| 4 | 2796 | Timberlake | 47 | 0.0 | 41 | 4 | 0 | 3 | 47 | 0.02 | 2.06 | 25.27 | 1.26 |
| 5 | 2683 | Marshall | 49 | 0.2 | 38 | 8 | 1 | 9 | 49 | 0.02 | 1.70 | 19.55 | 0.90 |
| 6 | 3224 | Pioneer Pkwy | 72 | 0.4 | 31 | 23 | 11 | 27 | 72 | 0.03 | 2.92 | 33.54 | 1.74 |
| 7 | 2125 | Arkansas | 56 | 0.6 | 26 | 24 | 12 | 27 | 56 | 0.02 | 2.29 | 24.43 | 1.42 |
| 8 | 5371 | Mayfield | 106 | 0.8 | 35 | 24 | 11 | 27 | 106 | 0.05 | 4.27 | 49.08 | 2.51 |
| 9 | 2705 | Forum | 64 | 0.2 | 29 | 23 | 1 | 39 | 64 | 0.03 | 2.49 | 27.04 | 1.49 |
| 10 | 1845 | Sara Jane | 53 | 0.6 | 24 | 24 | 5 | 36 | 53 | 0.02 | 2.60 | 25.74 | 1.83 |
| 11 | 442 | IH20 WB | 37 | 0.8 | 8 | 30 | 19 | 36 | 37 | 0.01 | 1.18 | 8.57 | 0.65 |
| 12 | 1076 | IH20 EB | 25 | 0.4 | 29 | 8 | 1 | 15 | 25 | 0.01 | 1.47 | 13.98 | 1.13 |
| 13 | 934 | Bardin | 20 | 0.0 | 32 | 5 | 0 | 11 | 20 | 0.01 | 1.08 | 11.01 | 0.79 |
| 14 | 2456 | Claremont | 54 | 0.6 | 31 | 16 | 4 | 18 | 54 | 0.02 | 1.81 | 18.72 | 0.96 |
| 15 | 1079 | Fairmont | 31 | 0.4 | 24 | 14 | 1 | 25 | 30 | 0.01 | 1.17 | 11.11 | 0.73 |
| Total | 28364 |  | 680 | 6.4 | 28 | 247 | 88 | 329 | 680 | 0.30 | 28.25 | 295.25 | 17.71 |
|  | Total per mile |  | 127 | 1.2 | 5 | 46 | 16 | 61 | 127 | 0.06 | 5.26 | 54.96 | 3.30 |


| AM Southbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | Time $<=0$ MPH | Time $<=35$ <br> MPH | Time <= 55 MPH | Fuel <br> (gal) | $\begin{gathered} \text { HC } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathrm{CO} \\ & \text { (gm) } \end{aligned}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Main St / Division |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 625 | Jefferson / Abram | 28 | 0.4 | 15 | 18 | 4 | 28 | 28 | 0.01 | 1.17 | 8.58 | 0.82 |
| 3 | 1023 | W.E. Roberts / Sherman | 33 | 0.4 | 21 | 17 | 8 | 26 | 33 | 0.01 | 1.61 | 15.95 | 1.13 |
| 4 | 2821 | Timberlake | 47 | 0.0 | 41 | 4 | 0 | 7 | 47 | 0.03 | 2.43 | 30.38 | 1.60 |
| 5 | 2661 | Marshall | 59 | 0.8 | 31 | 18 | 9 | 23 | 59 | 0.03 | 1.79 | 18.36 | 0.87 |
| 6 | 3230 | Pioneer | 76 | 0.6 | 29 | 27 | 12 | 37 | 76 | 0.03 | 3.14 | 32.98 | 1.95 |
| 7 | 2108 | Arkansas | 66 | 1.0 | 22 | 34 | 20 | 41 | 66 | 0.03 | 2.73 | 27.23 | 1.74 |
| 8 | 5394 | Mayfield | 112 | 0.8 | 33 | 30 | 21 | 39 | 112 | 0.06 | 4.74 | 55.57 | 2.85 |
| 9 | 2720 | Forum | 56 | 0.0 | 33 | 15 | 0 | 27 | 56 | 0.03 | 2.49 | 28.74 | 1.58 |
| 10 | 1852 | Sara Jane Pkwy | 65 | 0.8 | 19 | 37 | 21 | 47 | 65 | 0.02 | 2.68 | 26.59 | 1.69 |
| 11 | 453 | IH 20 WBFR | 11 | 0.0 | 28 | 4 | 0 | 9 | 11 | 0.01 | 0.64 | 5.75 | 0.50 |
| 12 | 1093 | IH 20 EBFR | 19 | 0.0 | 39 | 2 | 0 | 3 | 19 | 0.01 | 0.98 | 12.23 | 0.64 |
| 13 | 887 | Bardin | 46 | 1.0 | 13 | 32 | 22 | 39 | 46 | 0.01 | 1.17 | 8.68 | 0.49 |
| 14 | 2504 | Claremont | 47 | 0.0 | 37 | 9 | 0 | 11 | 47 | 0.02 | 2.19 | 23.92 | 1.44 |
| 15 | 1040 | Fairmont | 38 | 0.4 | 19 | 22 | 11 | 29 | 38 | 0.01 | 0.81 | 7.54 | 0.21 |
| Total | 28411 |  | 703 | 6.2 | 28 | 268 | 129 | 367 | 703 | 0.30 | 28.56 | 302.49 | 17.50 |
|  |  | otal per mile | 131 | 1.2 | 5 | 50 | 24 | 68 | 131 | 0.06 | 5.31 | 56.22 | 3.25 |


| Reductions for AM Southbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{gathered} \text { Time } \\ <=55 \\ \text { MPH } \end{gathered}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { co } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 16 | 0.6 |  | 17 | 14 | 15 | 16 | 4E-03 | 5E-01 | 3E+00 | 3E-01 |
| 3 | 2441 | Bardin | -9 | 0.0 |  | -9 | -6 | -12 | -9 | -6E-04 | -5E-02 | -2E-01 | 9E-02 |
| 4 | 898 | IH 20 EBFR | 0 | 0.0 |  | 0 | 0 | -5 | 0 | -2E-03 | -4E-01 | -5E+00 | -3E-01 |
| 5 | 1102 | IH 20 WBFR | -10 | -0.6 |  | -10 | -8 | -14 | -10 | -2E-03 | -8E-02 | 1E+00 | 4E-02 |
| 6 | 446 | Sara Jane Pkwy | -5 | -0.2 |  | -5 | -1 | -10 | -5 | -8E-04 | -2E-01 | 6E-01 | -2E-01 |
| 7 | 1829 | Forum | -10 | -0.4 |  | -10 | -8 | -14 | -10 | -3E-03 | -4E-01 | -3E+00 | -3E-01 |
| 8 | 2729 | Mayfield | -6 | 0.0 |  | -6 | -10 | -11 | -6 | -4E-03 | -5E-01 | -6E+00 | -3E-01 |
| 9 | 5393 | Arkansas | 8 | 0.2 |  | 9 | 1 | 12 | 8 | 1E-04 | 7E-03 | -2E+00 | -9E-02 |
| 10 | 2081 | Pioneer | -12 | -0.2 |  | -12 | -16 | -11 | -12 | -2E-03 | -8E-02 | -8E-01 | 1E-01 |
| 11 | 3246 | Marshall | 26 | 0.8 |  | 27 | 19 | 26 | 26 | 6E-03 | 5E-01 | 3E+00 | 1E-01 |
| 12 | 2715 | Timberlake | 6 | 0.4 |  | 6 | 1 | 13 | 6 | 3E-03 | 5E-01 | 2E+00 | 5E-01 |
| 13 | 2800 | W.E. Roberts / Sherman | -26 | -1.0 |  | -27 | -22 | -28 | -26 | -4E-03 | -9E-02 | 2E+00 | 3E-01 |
| 14 | 1007 | Jefferson / Abram | 7 | 0.6 |  | 8 | 4 | 6 | 7 | -7E-04 | -4E-01 | -5E+00 | -5E-01 |
| 15 | 537 | Main St / Division | -8 | 0.0 |  | -8 | -10 | -5 | -7 | 5E-04 | 4E-01 | 4E+00 | 5E-01 |
| Total 28411 |  |  | -23 | 0.2 |  | -21 | -41 | -38 | -23 | -5E-03 | -3E-01 | -7E+00 | 2E-01 |
| Reduction per mile |  |  | -4 | 0.0 |  | -4 | -8 | -7 | -4 | 0.00 | -0.05 | -1.26 | 0.04 |
| \% Reduction |  |  | -3 | 3 |  | -8 | -46 | -11 | -3 | -1 | -1 | -2 | 1 |


| Mid Day Southbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{array}{\|l} \text { Time } \\ <=0 \\ \text { MPH } \end{array}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel <br> (gal) | HC <br> (gm) | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathbf{N O}_{\mathbf{x}} \\ \text { (gm) } \end{gathered}$ |
| 1 | 0 | SH 180/Main |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 613 | Jefferson/Abram | 43 | 0.8 | 10 | 34 | 17 | 43 | 43 | 0.01 | 1.50 | 10.11 | 0.92 |
| 3 | 1030 | W.E. Roberts/ Sherman | 20 | 0.0 | 35 | 4 | 0 | 7 | 20 | 0.01 | 1.54 | 17.14 | 1.23 |
| 4 | 2795 | Timberlake | 50 | 0.2 | 38 | 7 | 1 | 8 | 50 | 0.03 | 2.08 | 25.01 | 1.24 |
| 5 | 2682 | Marshall | 55 | 0.4 | 33 | 14 | 6 | 16 | 55 | 0.02 | 2.01 | 22.91 | 1.11 |
| 6 | 3210 | Pioneer Pkwy | 83 | 1.0 | 27 | 34 | 16 | 41 | 83 | 0.03 | 3.25 | 34.34 | 1.96 |
| 7 | 2129 | Arkansas | 40 | 0.0 | 37 | 7 | 0 | 14 | 40 | 0.02 | 2.20 | 25.15 | 1.55 |
| 8 | 5363 | Mayfield | 93 | 0.2 | 39 | 11 | 1 | 13 | 93 | 0.05 | 3.81 | 47.35 | 2.19 |
| 9 | 2699 | Forum | 54 | 0.6 | 34 | 13 | 3 | 15 | 54 | 0.03 | 2.19 | 24.60 | 1.33 |
| 10 | 1849 | Sara Jane | 34 | 0.0 | 37 | 6 | 0 | 9 | 34 | 0.02 | 1.63 | 18.42 | 1.09 |
| 11 | 447 | IH20 WB | 36 | 0.8 | 8 | 29 | 20 | 35 | 36 | 0.01 | 1.03 | 7.50 | 0.51 |
| 12 | 1076 | IH20 EB | 21 | 0.0 | 35 | 4 | 0 | 8 | 21 | 0.01 | 1.26 | 13.86 | 0.94 |
| 13 | 915 | Bardin | 16 | 0.0 | 38 | 2 | 0 | 1 | 16 | 0.01 | 0.66 | 8.19 | 0.38 |
| 14 | 2483 | Claremont | 49 | 0.2 | 35 | 11 | 2 | 7 | 49 | 0.02 | 1.40 | 15.44 | 0.60 |
| 15 | 1054 | Fairmont | 24 | 0.4 | 30 | 8 | 2 | 11 | 24 | 0.01 | 0.94 | 10.12 | 0.57 |
| Total | 28345 |  | 618 | 4.6 | 31 | 184 | 68 | 229 | 618 | 0.28 | 25.50 | 280.14 | 15.60 |
|  |  | tal per mile | 115 | 0.9 | 6 | 34 | 13 | 43 | 115 | 0.05 | 4.75 | 52.18 | 2.91 |


| Mid Day Southbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | Time $<=0$ MPH | $\begin{gathered} \text { Time } \\ <=35 \\ \text { MPH } \end{gathered}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel <br> (gal) | HC <br> (gm) | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathbf{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Main St / Division |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 621 | Jefferson / Abram | 22 | 0.2 | 19 | 12 | 3 | 21 | 22 | 0.01 | 1.22 | 9.91 | 0.94 |
| 3 | 1036 | W.E. Roberts / Sherman | 32 | 0.6 | 22 | 16 | 7 | 21 | 32 | 0.01 | 1.31 | 13.15 | 0.84 |
| 4 | 2789 | Timberlake | 47 | 0.0 | 41 | 4 | 0 | 7 | 47 | 0.03 | 2.56 | 31.83 | 1.74 |
| 5 | 2679 | Marshall | 72 | 0.6 | 26 | 31 | 23 | 34 | 72 | 0.03 | 2.04 | 21.86 | 0.86 |
| 6 | 3234 | Pioneer | 85 | 0.6 | 26 | 36 | 24 | 44 | 85 | 0.04 | 3.34 | 37.28 | 1.94 |
| 7 | 2111 | Arkansas | 60 | 1.0 | 24 | 28 | 10 | 37 | 60 | 0.02 | 2.58 | 25.12 | 1.71 |
| 8 | 5412 | Mayfield | 87 | 0.0 | 43 | 4 | 0 | 9 | 87 | 0.05 | 4.03 | 51.68 | 2.49 |
| 9 | 2701 | Forum | 41 | 0.0 | 45 | 0 | 0 | 0 | 41 | 0.02 | 1.49 | 19.85 | 0.74 |
| 10 | 1838 | Sara Jane Pkwy | 31 | 0.2 | 40 | 3 | 0 | 5 | 31 | 0.01 | 0.92 | 10.63 | 0.42 |
| 11 | 452 | IH 20 WBFR | 15 | 0.4 | 21 | 8 | 2 | 12 | 15 | 0.01 | 0.73 | 5.89 | 0.55 |
| 12 | 1070 | IH 20 EBFR | 19 | 0.0 | 38 | 2 | 0 | 5 | 19 | 0.01 | 1.04 | 12.96 | 0.71 |
| 13 | 926 | Bardin | 20 | 0.2 | 31 | 6 | 0 | 11 | 20 | 0.01 | 0.70 | 6.36 | 0.41 |
| 14 | 2465 | Claremont | 48 | 0.4 | 35 | 11 | 0 | 11 | 48 | 0.02 | 1.92 | 20.67 | 1.17 |
| 15 | 1032 | Fairmont | 20 | 0.0 | 35 | 4 | 0 | 8 | 20 | 0.01 | 1.10 | 12.06 | 0.79 |
| Total | 28366 |  | 600 | 4.2 | 32 | 166 | 69 | 226 | 600 | 0.28 | 24.98 | 279.23 | 15.30 |
|  | Total per mile |  | 112 | 0.8 | 6 | 31 | 13 | 42 | 112 | 0.05 | 4.65 | 51.98 | 2.85 |


| Reductions for Mid Day Southbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{array}{\|l\|l} \text { Time } \\ <=0 \\ \text { MPH } \end{array}$ | $\begin{array}{\|l\|l\|} \hline \text { Time } \\ <=35 \\ \text { MPH } \end{array}$ | Time <= 55 MPH | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \text { co } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathbf{N O}_{\mathrm{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 21 | 0.6 |  | 21 | 14 | 22 | 21 | 4E-03 | 3E-01 | 2E-01 | -2E-02 |
| 3 | 2441 | Bardin | -12 | -0.6 |  | -12 | -7 | -14 | -12 | -3E-04 | 2E-01 | 4E+00 | 4E-01 |
| 4 | 898 | IH 20 EBFR | 3 | 0.2 |  | 3 | 1 | 1 | 3 | -2E-03 | -5E-01 | -7E+00 | -5E-01 |
| 5 | 1102 | IH 20 WBFR | -16 | -0.2 |  | -17 | -17 | -18 | -16 | -3E-03 | -2E-02 | 1E+00 | 3E-01 |
| 6 | 446 | Sara Jane Pkwy | -3 | 0.4 |  | -3 | -8 | -3 | -3 | -1E-03 | -9E-02 | -3E+00 | 2E-02 |
| 7 | 1829 | Forum | -21 | -1.0 |  | -21 | -10 | -24 | -21 | -4E-03 | -4E-01 | 3E-02 | -2E-01 |
| 8 | 2729 | Mayfield | 7 | 0.2 |  | 7 | 1 | 4 | 7 | -1E-03 | -2E-01 | -4E+00 | -3E-01 |
| 9 | 5393 | Arkansas | 13 | 0.6 |  | 13 | 3 | 15 | 13 | 3E-03 | 7E-01 | 5E+00 | 6E-01 |
| 10 | 2081 | Pioneer | 3 | -0.2 |  | 3 | 0 | 4 | 3 | 2E-03 | 7E-01 | 8E+00 | 7E-01 |
| 11 | 3246 | Marshall | 21 | 0.4 |  | 22 | 18 | 23 | 21 | 4E-03 | 3E-01 | 2E+00 | -5E-02 |
| 12 | 2715 | Timberlake | 2 | 0.0 |  | 2 | 0 | 3 | 2 | 9E-04 | 2E-01 | 9E-01 | 2E-01 |
| 13 | 2800 | W.E. Roberts / Sherman | -4 | -0.2 |  | -4 | 0 | -10 | -4 | -5E-04 | -4E-02 | 2E+00 | -3E-02 |
| 14 | 1007 | Jefferson / Abram | 0 | -0.2 |  | 0 | 2 | -4 | 0 | -2E-03 | -5E-01 | -5E+00 | -6E-01 |
| 15 | 537 | Main St / Division | 4 | 0.4 |  | 4 | 2 | 3 | 4 | 0E+00 | -2E-01 | -2E+00 | -2E-01 |
| Total | 28411 |  | 18 | 0.4 |  | 17 | -1 | 3 | 18 | 1E-04 | 5E-01 | 9E-01 | 3E-01 |
| Reduction per mile |  |  | 4 | 0.1 |  | 3 | 0 | 1 | 4 | 0.00 | 0.10 | 0.21 | 0.06 |
| \% Reduction |  |  | 3 | 8.8 |  | 10 | -2 | 1 | 3 | 0 | 2 | 0 | 2 |


| PM Southbound Before Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { co } \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \mathbf{N O}_{\mathbf{x}} \\ \text { (gm) } \end{gathered}$ |
| 1 | 0 | SH 180/Main |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 620 | Jefferson/Abram | 21 | 0.0 | 20 | 11 | 0 | 20 | 21 | 0.01 | 1.24 | 9.90 | 1.00 |
| 3 | 1029 | W.E. Roberts/ Sherman | 19 | 0.0 | 38 | 3 | 0 | 5 | 19 | 0.01 | 1.16 | 14.85 | 0.83 |
| 4 | 2796 | Timberlake | 51 | 0.2 | 37 | 9 | 3 | 10 | 51 | 0.02 | 1.94 | 23.91 | 1.06 |
| 5 | 2671 | Marshall | 59 | 0.4 | 31 | 19 | 9 | 23 | 59 | 0.03 | 2.44 | 26.86 | 1.48 |
| 6 | 3224 | Pioneer Pkwy | 93 | 0.8 | 24 | 44 | 18 | 53 | 93 | 0.04 | 3.89 | 41.55 | 2.43 |
| 7 | 2128 | Arkansas | 55 | 0.4 | 26 | 23 | 10 | 31 | 55 | 0.02 | 2.36 | 25.59 | 1.49 |
| 8 | 5373 | Mayfield | 99 | 0.4 | 37 | 17 | 5 | 20 | 99 | 0.05 | 3.84 | 46.61 | 2.15 |
| 9 | 2705 | Forum | 44 | 0.0 | 42 | 3 | 0 | 2 | 44 | 0.02 | 2.00 | 25.64 | 1.21 |
| 10 | 1826 | Sara Jane | 57 | 1.0 | 22 | 29 | 10 | 37 | 57 | 0.02 | 1.62 | 13.91 | 0.78 |
| 11 | 464 | IH20 WB | 18 | 0.6 | 18 | 11 | 2 | 18 | 18 | 0.01 | 1.11 | 7.77 | 0.93 |
| 12 | 1074 | IH20 EB | 20 | 0.0 | 37 | 3 | 0 | 5 | 20 | 0.01 | 1.03 | 12.61 | 0.70 |
| 13 | 900 | Bardin | 34 | 0.6 | 18 | 20 | 8 | 24 | 34 | 0.01 | 1.19 | 11.07 | 0.69 |
| 14 | 2478 | Claremont | 78 | 0.6 | 22 | 40 | 24 | 41 | 78 | 0.03 | 2.51 | 26.06 | 1.25 |
| 15 | 1059 | Fairmont | 25 | 0.4 | 29 | 8 | 1 | 11 | 24 | 0.01 | 1.23 | 12.81 | 0.86 |
| Total | 28347 |  | 673 | 5.4 | 29 | 239 | 91 | 299 | 672 | 0.29 | 27.55 | 299.14 | 16.87 |
|  | Total per mile |  | 125 | 1.0 | 5 | 44 | 17 | 56 | 125 | 0.05 | 5.13 | 55.72 | 3.14 |


| PM Southbound After Retiming |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length <br> (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | Time $<=0$ <br> MPH | Time <= 35 MPH | $\begin{aligned} & \text { Time } \\ & <=55 \\ & \text { MPH } \end{aligned}$ | Fuel <br> (gal) | $\begin{aligned} & \mathrm{HC} \\ & (\mathrm{gm}) \end{aligned}$ | $\begin{gathered} \mathrm{CO} \\ (\mathrm{gm}) \end{gathered}$ | $\begin{gathered} \mathbf{N O}_{\mathbf{x}} \\ (\mathrm{gm}) \end{gathered}$ |
| 1 | 0 | Main St / Division |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 640 | Jefferson / Abram | 20 | 0.0 | 22 | 10 | 0 | 20 | 20 | 0.01 | 1.07 | 8.58 | 0.83 |
| 3 | 1031 | W.E. Roberts / Sherman | 20 | 0.0 | 35 | 4 | 0 | 13 | 20 | 0.01 | 0.95 | 11.12 | 0.63 |
| 4 | 2784 | Timberlake | 46 | 0.0 | 41 | 4 | 0 | 6 | 46 | 0.02 | 2.01 | 26.08 | 1.20 |
| 5 | 2692 | Marshall | 61 | 0.4 | 30 | 20 | 14 | 22 | 61 | 0.03 | 2.00 | 22.71 | 1.00 |
| 6 | 3190 | Pioneer | 185 | 2.2 | 12 | 136 | 91 | 158 | 185 | 0.05 | 5.30 | 48.41 | 2.37 |
| 7 | 2126 | Arkansas | 44 | 0.4 | 33 | 11 | 1 | 17 | 44 | 0.02 | 2.21 | 23.43 | 1.55 |
| 8 | 5409 | Mayfield | 84 | 0.0 | 44 | 1 | 0 | 1 | 84 | 0.05 | 3.37 | 45.91 | 1.84 |
| 9 | 2693 | Forum | 42 | 0.0 | 43 | 2 | 0 | 1 | 42 | 0.02 | 1.27 | 16.27 | 0.53 |
| 10 | 1809 | Sara Jane Pkwy | 120 | 3.4 | 10 | 92 | 47 | 107 | 120 | 0.03 | 3.06 | 25.30 | 1.24 |
| 11 | 444 | IH 20 WBFR | 33 | 0.4 | 9 | 26 | 18 | 33 | 33 | 0.01 | 1.19 | 9.86 | 0.70 |
| 12 | 1078 | IH 20 EBFR | 29 | 0.2 | 26 | 12 | 7 | 17 | 29 | 0.01 | 1.22 | 13.67 | 0.75 |
| 13 | 924 | Bardin | 45 | 0.6 | 14 | 31 | 21 | 39 | 45 | 0.01 | 1.44 | 12.15 | 0.76 |
| 14 | 2461 | Claremont | 51 | 0.4 | 33 | 14 | 3 | 15 | 51 | 0.02 | 1.98 | 21.08 | 1.18 |
| 15 | 1037 | Fairmont | 20 | 0.0 | 35 | 4 | 0 | 7 | 20 | 0.01 | 1.05 | 11.23 | 0.76 |
| Total | 28318 |  | 800 | 8.0 | 24 | 367 | 201 | 456 | 800 | 0.31 | 28.14 | 295.80 | 15.33 |
|  |  | otal per mile | 149 | 1.5 | 4 | 68 | 38 | 85 | 149 | 0.06 | 5.25 | 55.15 | 2.86 |


| Reductions for PM Southbound (Before-After) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node Number | Length (ft) | Node Names | Travel time (s) | \# of Stops | Avg Speed (mph) | Total Delay (s) | $\begin{aligned} & \text { Time } \\ & <=0 \\ & \text { MPH } \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & <=35 \\ & \text { MPH } \end{aligned}$ | Time <= 55 MPH | Fuel (gal) | $\begin{gathered} \mathrm{HC} \\ \text { (gm) } \end{gathered}$ | $\begin{gathered} \text { CO } \\ \text { (gm) } \end{gathered}$ | $\begin{aligned} & \mathrm{NO}_{\mathrm{x}} \\ & \text { (gm) } \end{aligned}$ |
| 1 | 0 | Fairmont |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 1187 | Claremont | 1 | 0.0 |  | 1 | 0 | 0 | 1 | 1E-03 | 2E-01 | 1E+00 | 2E-01 |
| 3 | 2441 | Bardin | -2 | 0.0 |  | -2 | 0 | -8 | -2 | 1E-03 | 2E-01 | 4E+00 | 2E-01 |
| 4 | 898 | IH 20 EBFR | 5 | 0.2 |  | 5 | 3 | 4 | 5 | 6E-04 | -7E-02 | -2E+00 | -1E-01 |
| 5 | 1102 | IH 20 WBFR | -1 | 0.0 |  | -1 | -5 | 1 | -1 | 1E-03 | 4E-01 | 4E+00 | 5E-01 |
| 6 | 446 | Sara Jane Pkwy | -92 | -1.4 |  | -93 | -73 | -105 | -92 | -2E-02 | -1E+00 | -7E+00 | 6E-02 |
| 7 | 1829 | Forum | 11 | 0.0 |  | 11 | 9 | 14 | 11 | 2E-03 | 2E-01 | 2E+00 | -6E-02 |
| 8 | 2729 | Mayfield | 15 | 0.4 |  | 16 | 5 | 19 | 15 | 2E-03 | 5E-01 | 7E-01 | 3E-01 |
| 9 | 5393 | Arkansas | 2 | 0.0 |  | 1 | 0 | 0 | 2 | 3E-03 | 7E-01 | 9E+00 | 7E-01 |
| 10 | 2081 | Pioneer | -62 | -2.4 |  | -62 | -37 | -71 | -62 | -1E-02 | -1E+00 | -1E+01 | -5E-01 |
| 11 | 3246 | Marshall | -15 | 0.2 |  | -16 | -16 | -15 | -15 | -2E-03 | -8E-02 | $-2 \mathrm{E}+00$ | 2E-01 |
| 12 | 2715 | Timberlake | -9 | -0.2 |  | -8 | -7 | -12 | -9 | -2E-03 | -2E-01 | -1E+00 | -5E-02 |
| 13 | 2800 | W.E. Roberts / Sherman | -11 | 0.0 |  | -11 | -13 | -14 | -11 | -2E-03 | -3E-01 | -1E+00 | -8E-02 |
| 14 | 1007 | Jefferson / Abram | 27 | 0.2 |  | 26 | 21 | 26 | 27 | 5E-03 | 5E-01 | $5 \mathrm{E}+00$ | 7E-02 |
| 15 | 537 | Main St / Division | 5 | 0.4 |  | 4 | 1 | 4 | 5 | 2E-03 | 2E-01 | 2E+00 | 1E-01 |
| Total | 28411 |  | -128 | -2.6 |  | -128 | -111 | -157 | -128 | -2E-02 | -6E-01 | 3E+00 | 2E+00 |
| Reduction per mile |  |  | -24 | 0 |  | -24 | -21 | -29 | -24 | 0.00 | -0.11 | 0.57 | 0.28 |
| \% Reduction |  |  | -19 | -48 |  | -54 | -123 | -53 | -19 | -5 | -2 | 1 | 9 |

Detailed Study Statistics for Pioneer Parkway Corridor

| Node No. | Length (ft) | Node Names | Travel Time $(\mathbf{s})$ | No. of Stops | Total Delay (s) | $\begin{gathered} \text { Time<= } \\ \text { 0 MPH } \\ \text { (s) } \\ \hline \end{gathered}$ | $\begin{array}{c\|} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1425 | Robinson | 46 | 0.8 | 24 | 13 | 31 | 46 | 0.02 | 1.84 | 17.42 | 1.15 |
| 3 | 1349 | Carrier | 46 | 0.4 | 26 | 16 | 35 | 46 | 0.02 | 1.89 | 18.34 | 1.18 |
| 4 | 2490 | SW 3rd | 44 | 0.0 | 6 | 0 | 6 | 44 | 0.02 | 2.39 | 29.13 | 1.65 |
| 5 | 1534 | Corn Valley | 67 | 0.8 | 43 | 33 | 48 | 67 | 0.02 | 1.99 | 19.06 | 0.94 |
| 6 | 1153 | Acosta | 24 | 0.0 | 6 | 0 | 14 | 24 | 0.01 | 1.69 | 18.45 | 1.34 |
| 7 | 1410 | Beltline | 40 | 0.6 | 18 | 6 | 25 | 40 | 0.02 | 1.73 | 16.08 | 1.17 |
| 8 | 3024 | SE 14th | 66 | 0.8 | 20 | 9 | 26 | 66 | 0.03 | 3.03 | 35.60 | 1.95 |
| Total | 12385 |  | 334 | 3.4 | 144 | 77 | 185 | 333 | 0.14 | 14.55 | 154.07 | 9.37 |
|  | Total per mile |  | 142 | 1.4 | 61 | 33 | 79 | 142 | 0.06 | 6.20 | 65.68 | 4.00 |

## AM Eastbound After Retiming

| Node <br> No. | Length (ft) | Node <br> Names | Travel <br> Time (s) | No. of <br> Stops | Total <br> Delay <br> $(\mathbf{s})$ | Time<= <br> $\mathbf{0} \mathbf{M P H}$ <br> $(\mathbf{s})$ | Time<=35 <br> $\mathbf{M P H}(\mathbf{s})$ | Time<=55 <br> $\mathbf{M P H}(\mathbf{s})$ | Fuel <br> $(\mathbf{g a l s})$ | $\mathbf{H C}$ <br> $(\mathbf{g m})$ | $\mathbf{C O}(\mathbf{g m})$ | $\mathbf{N O} \mathbf{( g m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1379 | Robinson | 23 | 0.0 | 2 | 0 | 4 | 23 | 0.01 | 1.04 | 12.74 | 0.65 |
| 3 | 1310 | Carrier | 23 | 0.0 | 3 | 0 | 6 | 23 | 0.01 | 1.01 | 12.45 | 0.61 |
| 4 | 2437 | SW 3rd | 38 | 0.0 | 0 | 0 | 0 | 38 | 0.02 | 1.44 | 19.42 | 0.75 |
| 5 | 1505 | Corn Valley | 23 | 0.0 | 0 | 0 | 0 | 23 | 0.01 | 0.79 | 10.49 | 0.37 |
| 6 | 1147 | Acosta | 17 | 0.0 | 0 | 0 | 0 | 17 | 0.01 | 0.54 | 7.01 | 0.23 |
| 7 | 1389 | Belt Line | 22 | 0.0 | 1 | 0 | 1 | 22 | 0.01 | 0.65 | 8.21 | 0.27 |
| 8 | 2949 | SE 14th | 56 | 0.2 | 11 | 5 | 11 | 56 | 0.03 | 1.81 | 22.33 | 0.86 |
| Total | 12116 |  | 203 | 0.2 | 17 | 5 | 23 | 203 | 0.10 | 7.29 | 92.65 | 3.73 |
|  | Total per mile |  | 88 | 0.1 | 7 | 2 | 10 | 88 | 0.04 | 3.18 | 40.38 | 1.63 |

Reductions for AM Eastbound

| Node No. | Length (ft) | Node Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH <br> (s) | $\begin{array}{\|c} \text { Time<= }=35 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \\ \hline \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 23 | 0.8 | 22 | 13 | 26 | 23 | 0.01 | 0.79 | 4.68 | 0.50 |
| 3 |  | Carrier | 23 | 0.4 | 23 | 16 | 29 | 23 | 0.01 | 0.88 | 5.88 | 0.57 |
| 4 |  | SW 3rd | 6 | 0.0 | 5 | 0 | 6 | 6 | 0.00 | 0.95 | 9.71 | 0.90 |
| 5 |  | Corn Valley | 43 | 0.8 | 43 | 33 | 48 | 43 | 0.01 | 1.19 | 8.57 | 0.56 |
| 6 |  | Acosta | 7 | 0.0 | 6 | 0 | 14 | 7 | 0.00 | 1.15 | 11.45 | 1.11 |
| 7 |  | Belt Line | 18 | 0.6 | 17 | 6 | 24 | 18 | 0.01 | 1.08 | 7.87 | 0.90 |
| 8 |  | SE 14th | 11 | 0.6 | 10 | 3 | 15 | 10 | 0.01 | 1.22 | 13.27 | 1.10 |
| Total |  |  | 131 | 3.2 | 127 | 71 | 162 | 130 | 0.04 | 7.27 | 61.42 | 5.64 |
| Reduction per mile |  |  | 54 | 1.4 | 54 | 30 | 69 | 54 | 0.02 | 3.03 | 25.31 | 2.37 |
| \%reduction |  |  | 38 | 94.0 | 88 | 93 | 88 | 38 | 26.98 | 48.83 | 38.53 | 59.32 |

MD Eastbound Before Retiming

| Node No. | Length <br> (ft) | Node <br> Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{gathered} \text { Time<= }=35 \\ \text { MPH (s) } \end{gathered}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1419 | Robinson | 42 | 0.6 | 20 | 8 | 28 | 42 | 0.0169 | 1.8098 | 17.6198 | 1.1941 |
| 3 | 1379 | Carrier | 51 | 0.4 | 29 | 9 | 38 | 51 | 0.0184 | 1.9616 | 18.8663 | 1.2098 |
| 4 | 2475 | SW 3rd | 48 | 0.2 | 10 | 0 | 17 | 48 | 0.0215 | 1.8941 | 21.0153 | 1.1239 |
| 5 | 1536 | Corn Valley | 38 | 0.4 | 14 | 3 | 23 | 38 | 0.0149 | 1.3044 | 11.9813 | 0.7431 |
| 6 | 1126 | Acosta | 28 | 0.4 | 10 | 2 | 14 | 28 | 0.0122 | 1.2735 | 12.5487 | 0.8758 |
| 7 | 1455 | Beltline | 47 | 0.6 | 25 | 8 | 29 | 47 | 0.0182 | 1.8611 | 19.0654 | 1.1428 |
| 8 | 3009 | SE 14th | 64 | 0.6 | 19 | 2 | 20 | 64 | 0.0281 | 2.4187 | 27.1604 | 1.3935 |
| Total | 12399 |  | 318 | 3.2 | 128 | 31 | 169 | 317 | 0.1301 | 12.523 | 128.257 | 7.6829 |
|  | Total per mile |  | 135 | 1.4 | 55 | 13 | 72 | 135 | 0.06 | 5.33 | 54.62 | 3.27 |

MD Eastbound After Retiming

| Node No. | Length (ft) | Node <br> Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH <br> (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5999 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1380 | Robinson | 23 | 0.0 | 2 | 0 | 0 | 23 | 0.0119 | 0.9711 | 12.8925 | 0.5589 |
| 3 | 1334 | Carrier | 22 | 0.0 | 1 | 0 | 3 | 22 | 0.0109 | 0.807 | 10.5349 | 0.4263 |
| 4 | 2442 | SW 3rd | 40 | 0.0 | 3 | 0 | 3 | 40 | 0.0208 | 1.6821 | 21.7385 | 0.9735 |
| 5 | 1504 | Corn Valley | 25 | 0.0 | 2 | 0 | 1 | 25 | 0.0125 | 0.9392 | 12.3329 | 0.4969 |
| 6 | 1116 | Acosta | 18 | 0.0 | 1 | 0 | 0 | 18 | 0.0092 | 0.6668 | 8.7199 | 0.3417 |
| 7 | 1390 | Belt Line | 42 | 0.4 | 20 | 13 | 22 | 42 | 0.0149 | 1.1163 | 11.4884 | 0.4408 |
| 8 | 2958 | SE 14th | 58 | 0.4 | 13 | 5 | 18 | 58 | 0.0263 | 2.1833 | 26.6668 | 1.1972 |
| Total | 12124 |  | 227 | 0.8 | 42 | 18 | 46 | 227 | 0.11 | 8.37 | 104.37 | 4.44 |
|  | Total per mile |  | 99 | 0.3 | 18 | 8 | 20 | 99 | 0.05 | 3.64 | 45.45 | 1.93 |

Reductions for MID Eastbound

| Node No. | Length (ft) | Node <br> Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \\ & \hline \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 19 | 0.6 | 18 | 8 | 28 | 19 | 0.01 | 0.84 | 4.73 | 0.64 |
| 3 |  | Carrier | 29 | 0.4 | 28 | 9 | 35 | 29 | 0.01 | 1.15 | 8.33 | 0.78 |
| 4 |  | SW 3rd | 8 | 0.2 | 7 | 0 | 14 | 8 | 0.00 | 0.21 | -0.72 | 0.15 |
| 5 |  | Corn Valley | 13 | 0.4 | 13 | 3 | 22 | 13 | 0.00 | 0.37 | -0.35 | 0.25 |
| 6 |  | Acosta | 10 | 0.4 | 10 | 2 | 14 | 10 | 0.00 | 0.61 | 3.83 | 0.53 |
| 7 |  | Belt Line | 5 | 0.2 | 5 | -5 | 8 | 5 | 0.00 | 0.74 | 7.58 | 0.70 |
| 8 |  | SE 14th | 6 | 0.2 | 6 | -4 | 2 | 6 | 0.00 | 0.24 | 0.49 | 0.20 |
| Total |  |  | 91 | 2.4 | 87 | 13 | 123 | 90 | 0.02 | 4.16 | 23.88 | 3.25 |
| Reduction per mile |  |  | 36 | 1.0 | 36 | 5 | 52 | 36 | 0.01 | 1.69 | 9.16 | 1.34 |
| \%reduction |  |  | 27 | 74.4 | 67 | 39 | 72 | 27 | 16.28 | 31.68 | 16.78 | 40.96 |

PM Eastbound Before Retiming

| Node No. | Length (ft) | Node <br> Names | Travel <br> Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH <br> (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \\ & \hline \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1409 | Robinson | 56 | 0.8 | 34 | 13 | 43 | 56 | 0.0194 | 2.0344 | 18.4846 | 1.2278 |
| 3 | 1365 | Carrier | 51 | 0.8 | 30 | 8 | 42 | 51 | 0.0191 | 2.1954 | 19.0334 | 1.5108 |
| 4 | 2451 | SW 3rd | 66 | 1.0 | 29 | 5 | 37 | 66 | 0.0276 | 2.8155 | 27.5099 | 1.8527 |
| 5 | 1545 | Corn Valley | 47 | 0.6 | 23 | 5 | 35 | 47 | 0.0197 | 2.2656 | 21.5607 | 1.611 |
| 6 | 1139 | Acosta | 25 | 0.2 | 7 | 0 | 12 | 25 | 0.0125 | 1.427 | 15.5806 | 1.0491 |
| 7 | 1435 | Beltline | 28 | 0.0 | 6 | 0 | 10 | 28 | 0.0134 | 1.2309 | 12.947 | 0.8035 |
| 8 | 2995 | SE 14th | 54 | 0.2 | 8 | 0 | 9 | 53 | 0.0257 | 2.2242 | 27.2218 | 1.3294 |
| Total | 12339 |  | 326 | 3.6 | 137 | 32 | 189 | 325 | 0.1374 | 14.193 | 142.338 | 9.3844 |
|  | Total per mile |  | 140 | 1.5 | 59 | 14 | 81 | 139 | 0.06 | 6.07 | 60.91 | 4.02 |

PM Eastbound After Retiming

| Node No. | Length <br> (ft) | Node <br> Names | Travel <br> Time (s) | No. of Stops | Total Delay <br> (s) | Time<= 0 MPH <br> (s) | $\begin{gathered} \text { Time }<=35 \\ \text { MPH (s) } \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5987 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1365 | Robinson | 21 | 0.0 | 0 | 0 | 2 | 21 | 0.0112 | 0.7064 | 9.5522 | 0.3379 |
| 3 | 1349 | Carrier | 21 | 0.0 | 0 | 0 | 1 | 21 | 0.0114 | 0.8742 | 11.8536 | 0.4966 |
| 4 | 2420 | SW 3rd | 37 | 0.0 | 0 | 0 | 0 | 37 | 0.0204 | 1.452 | 20.2955 | 0.766 |
| 5 | 1520 | Corn Valley | 23 | 0.0 | 0 | 0 | 0 | 23 | 0.0126 | 0.8611 | 11.9248 | 0.4353 |
| 6 | 1136 | Acosta | 17 | 0.0 | 0 | 0 | 0 | 17 | 0.0099 | 0.7549 | 10.8576 | 0.4232 |
| 7 | 1369 | Belt Line | 22 | 0.0 | 1 | 0 | 1 | 22 | 0.0106 | 0.6491 | 8.0326 | 0.2829 |
| 8 | 2954 | SE 14th | 53 | 0.2 | 9 | 2 | 10 | 53 | 0.0257 | 2.0801 | 27.3972 | 1.1526 |
| Total | 12113 |  | 194 | 0.2 | 11 | 2 | 14 | 193 | 0.10 | 7.38 | 99.91 | 3.89 |
|  | Total per mile |  | 85 | 0.1 | 5 | 1 | 6 | 84 | 0.04 | 3.22 | 43.55 | 1.70 |

Reductions for PM

|  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node No. | Length <br> (ft) | Node Names | Travel <br> Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH <br> (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \end{gathered}$ | $\begin{aligned} & \text { Fuel } \\ & \text { (gals) } \end{aligned}$ | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 35 | 0.8 | 34 | 13 | 41 | 35 | 0.01 | 1.33 | 8.93 | 0.89 |
| 3 |  | Carrier | 30 | 0.8 | 29 | 8 | 41 | 30 | 0.01 | 1.32 | 7.18 | 1.01 |
| 4 |  | SW 3rd | 29 | 1.0 | 28 | 5 | 37 | 29 | 0.01 | 1.36 | 7.21 | 1.09 |
| 5 |  | Corn Valley | 24 | 0.6 | 23 | 5 | 35 | 24 | 0.01 | 1.40 | 9.64 | 1.18 |
| 6 |  | Acosta | 7 | 0.2 | 7 | 0 | 12 | 7 | 0.00 | 0.67 | 4.72 | 0.63 |
| 7 |  | Belt Line | 6 | 0.0 | 5 | 0 | 9 | 6 | 0.00 | 0.58 | 4.91 | 0.52 |
| 8 |  | SE 14th | 0 | 0.0 | -1 | -2 | -1 | 0 | 0.00 | 0.14 | -0.18 | 0.18 |
| Total |  |  | 132 | 3.4 | 126 | 30 | 175 | 132 | 0.04 | 6.82 | 42.42 | 5.49 |
| Reduction per mile |  |  | 55 | 1.5 | 54 | 13 | 75 | 55 | 0.01 | 2.86 | 17.36 | 2.32 |
| \%reduction |  |  | 39 | 94.3 | 92 | 94 | 92 | 39 | 24.53 | 47.05 | 28.50 | 57.73 |

AM Westbound Before Retiming

| Node No. | Length <br> (ft) | Node <br> Names | Travel Time (s) | No. of Stops | Total Delay <br> (s) | Time<= 0 MPH <br> (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1287 | Robinson | 21 | 0.0 | 1 | 0 | 1 | 20 | 0.0109 | 0.8913 | 12.2921 | 0.5203 |
| 3 | 1355 | Carrier | 23 | 0.0 | 2 | 0 | 0 | 23 | 0.0115 | 0.9593 | 12.6846 | 0.5602 |
| 4 | 2491 | SW 3rd | 41 | 0.0 | 2 | 0 | 1 | 41 | 0.02 | 1.4011 | 18.1756 | 0.6823 |
| 5 | 1531 | Corn Valley | 27 | 0.0 | 3 | 0 | 2 | 27 | 0.0132 | 1.1863 | 14.3223 | 0.73 |
| 6 | 1174 | Acosta | 21 | 0.0 | 3 | 0 | 6 | 21 | 0.0092 | 0.6358 | 7.3566 | 0.2935 |
| 7 | 1419 | Beltline | 25 | 0.0 | 3 | 0 | 5 | 25 | 0.0162 | 1.9352 | 24.1096 | 1.4987 |
| 8 | 3075 | SE 14th | 84 | 1.0 | 37 | 22 | 45 | 84 | 0.0377 | 3.9134 | 41.4243 | 2.6103 |
| Total | 12332 |  | 241 | 1.0 | 51 | 22 | 59 | 240 | 0.1186 | 10.922 | 130.365 | 6.8954 |
|  | Total per mile |  | 103 | 0.4 | 22 | 9 | 25 | 103 | 0.05 | 4.68 | 55.82 | 2.95 |

AM Westbound After Retiming

| Node No. | Length <br> (ft) | Node Names | Travel <br> Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH <br> (s) | $\begin{array}{\|c} \text { Time<= }=35 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5900 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1369 | Robinson | 21 | 0.0 | 0 | 0 | 0 | 21 | 0.0109 | 0.6949 | 9.1323 | 0.3172 |
| 3 | 1346 | Carrier | 22 | 0.0 | 1 | 0 | 1 | 22 | 0.0132 | 1.3474 | 18.0037 | 0.9331 |
| 4 | 2411 | SW 3rd | 42 | 0.2 | 5 | 0 | 6 | 42 | 0.0201 | 1.3964 | 16.4295 | 0.7053 |
| 5 | 1540 | Corn Valley | 27 | 0.0 | 3 | 0 | 7 | 27 | 0.0168 | 1.9601 | 24.4702 | 1.4756 |
| 6 | 1130 | Acosta | 32 | 0.6 | 15 | 1 | 21 | 32 | 0.0121 | 1.0195 | 7.6168 | 0.5983 |
| 7 | 1398 | Belt Line | 25 | 0.0 | 3 | 0 | 7 | 25 | 0.0159 | 1.9371 | 23.8974 | 1.501 |
| 8 | 3059 | SE 14th | 94 | 1.0 | 48 | 24 | 58 | 94 | 0.0394 | 4.0456 | 40.4532 | 2.6087 |
| Total | 12253 |  | 264 | 1.8 | 75 | 26 | 101 | 264 | 0.13 | 12.40 | 140.00 | 8.14 |
| Total per mile |  |  | 114 | 0.8 | 32 | 11 | 43 | 114 | 0.06 | 5.34 | 60.33 | 3.51 |

Reductions for AM Westbound

| Node No. | Length (ft) | Node <br> Names | Travel <br> Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Fuel } \\ \text { (gals) } \end{gathered}$ | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 0 | 0.0 | 1 | 0 | 1 | -1 | 0.00 | 0.20 | 3.16 | 0.20 |
| 3 |  | Carrier | 0 | 0.0 | 0 | 0 | -1 | 0 | 0.00 | -0.39 | -5.32 | -0.37 |
| 4 |  | SW 3rd | -1 | -0.2 | -2 | 0 | -6 | -1 | 0.00 | 0.00 | 1.75 | -0.02 |
| 5 |  | Corn Valley | 0 | 0.0 | 0 | 0 | -5 | 0 | 0.00 | -0.77 | -10.15 | -0.75 |
| 6 |  | Acosta | -11 | -0.6 | -12 | -1 | -15 | -11 | 0.00 | -0.38 | -0.26 | -0.30 |
| 7 |  | Belt Line | 0 | 0.0 | 0 | 0 | -2 | 0 | 0.00 | 0.00 | 0.21 | 0.00 |
| 8 |  | SE 14th | -11 | 0.0 | -11 | -2 | -13 | -11 | 0.00 | -0.13 | 0.97 | 0.00 |
| Total |  |  | -23 | -0.8 | -24 | -4 | -41 | -24 | -0.01 | -1.48 | -9.64 | -1.24 |
| Reduction per mile |  |  | -11 | -0.3 | -10 | -2 | -18 | -11 | 0.00 | -0.67 | -4.51 | -0.56 |
|  | \%re | duction | -10 | -81.2 | -47 | -19 | -71 | -11 | -8.96 | -14.27 | -8.09 | -18.80 |

## MID Westbound Before Retiming

| Node No. | Length <br> (ft) | Node Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{aligned} & \text { Time<=35 } \\ & \text { MPH (s) } \end{aligned}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1326 | Robinson | 41 | 0.6 | 21 | 11 | 22 | 41 | 0.0157 | 1.5467 | 17.3815 | 0.8894 |
| 3 | 1362 | Carrier | 27 | 0.0 | 6 | 0 | 10 | 27 | 0.0123 | 1.1195 | 12.0919 | 0.7052 |
| 4 | 2473 | SW 3rd | 46 | 0.2 | 8 | 0 | 9 | 46 | 0.0219 | 1.9254 | 21.6552 | 1.1723 |
| 5 | 1544 | Corn Valley | 36 | 0.4 | 13 | 1 | 21 | 36 | 0.0154 | 1.5678 | 15.8152 | 1.0314 |
| 6 | 1132 | Acosta | 25 | 0.2 | 8 | 0 | 14 | 25 | 0.0106 | 0.9583 | 8.8317 | 0.5979 |
| 7 | 1442 | Beltline | 30 | 0.2 | 7 | 0 | 10 | 30 | 0.0156 | 1.79 | 19.7866 | 1.3368 |
| 8 | 3091 | SE 14th | 87 | 0.8 | 40 | 21 | 49 | 87 | 0.0354 | 3.4755 | 36.9014 | 2.1122 |
| Total | 12370 |  | 292 | 2.4 | 102 | 34 | 135 | 292 | 0.1268 | 12.383 | 132.464 | 7.8452 |
|  | Total per mile |  | 125 | 1.0 | 44 | 14 | 58 | 124 | 0.05 | 5.29 | 56.54 | 3.35 |

MID Westbound After Retiming

| Node No. | Length <br> (ft) | Node <br> Names | Travel Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{array}{\|c} \hline \text { Time }<=35 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{gathered} \text { Time<=55 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathbf{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5878 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1358 | Robinson | 25 | 0.2 | 4 | 2 | 5 | 25 | 0.0125 | 1.0278 | 12.947 | 0.5965 |
| 3 | 1357 | Carrier | 25 | 0.0 | 3 | 0 | 6 | 25 | 0.014 | 1.6188 | 20.5857 | 1.1896 |
| 4 | 2410 | SW 3rd | 49 | 0.4 | 12 | 2 | 18 | 49 | 0.0215 | 1.6627 | 17.558 | 0.9135 |
| 5 | 1533 | Corn Valley | 27 | 0.0 | 4 | 0 | 9 | 27 | 0.0167 | 2.0001 | 24.4666 | 1.5278 |
| 6 | 1129 | Acosta | 38 | 1.0 | 21 | 5 | 27 | 38 | 0.0135 | 1.1802 | 8.8251 | 0.6658 |
| 7 | 1391 | Belt Line | 25 | 0.0 | 4 | 0 | 7 | 25 | 0.0157 | 1.9473 | 23.9188 | 1.512 |
| 8 | 3066 | SE 14th | 98 | 0.8 | 51 | 28 | 63 | 98 | 0.0386 | 3.9862 | 40.5226 | 2.4778 |
| Total | $12244$ |  | 287 | 2.4 | 99 | 37 | 135 | 287 | 0.13 | 13.42 | 148.82 | 8.88 |
|  | Total per mile |  | 124 | 1.0 | 43 | 16 | 58 | 124 | 0.06 | 5.79 | 64.18 | 3.83 |

Reductions for MID Westbound

| Node No. | Length (ft) | Node Names | Travel Time (s) | No. of Stops | Total Delay <br> (s) | Time<= 0 MPH (s) | $\begin{gathered} \text { Time<=35 } \\ \text { MPH (s) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \\ & \hline \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 16 | 0.4 | 17 | 9 | 18 | 16 | 0.00 | 0.52 | 4.43 | 0.29 |
| 3 |  | Carrier | 2 | 0.0 | 2 | 0 | 4 | 2 | 0.00 | -0.50 | -8.49 | -0.48 |
| 4 |  | SW 3rd | -2 | -0.2 | -3 | -2 | -9 | -2 | 0.00 | 0.26 | 4.10 | 0.26 |
| 5 |  | Corn Valley | 9 | 0.4 | 9 | 1 | 12 | 9 | 0.00 | -0.43 | -8.65 | -0.50 |
| 6 |  | Acosta | -13 | -0.8 | -13 | -5 | -13 | -13 | 0.00 | -0.22 | 0.01 | -0.07 |
| 7 |  | Belt Line | 4 | 0.2 | 4 | 0 | 3 | 4 | 0.00 | -0.16 | -4.13 | -0.18 |
| 8 |  | SE 14th | -11 | 0.0 | -11 | -7 | -14 | -11 | 0.00 | -0.51 | -3.62 | -0.37 |
| Total |  |  | 5 | 0.0 | 3 | -3 | 1 | 5 | -0.01 | -1.04 | -16.36 | -1.04 |
| Reduction per mile |  |  | 1 | 0.0 | 1 | -1 | 0 | 1 | 0.00 | -0.50 | -7.64 | -0.48 |
|  | \%re | duction | 1 | -1.0 | 2 | -10 | -1 | 1 | -5.57 | -9.51 | -13.51 | -14.39 |

PM Westbound Before Retiming

| Node No. | Length <br> (ft) | Node <br> Names | Travel <br> Time (s) | No. of Stops | Total Delay <br> (s) | Time<= 0 MPH (s) | $\begin{array}{\|l} \hline \text { Time<= }=35 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{aligned} & \text { Time<=55 } \\ & \text { MPH (s) } \\ & \hline \end{aligned}$ | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\mathrm{CO}(\mathrm{gm})$ | $\mathrm{NO}_{\mathrm{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | West Frwy |  |  |  |  |  |  |  |  |  |  |
| 2 | 1317 | Robinson | 26 | 0.2 | 6 | 0 | 12 | 26 | 0.0134 | 1.5029 | 16.386 | 1.1116 |
| 3 | 1363 | Carrier | 62 | 0.8 | 41 | 18 | 53 | 62 | 0.0207 | 2.2967 | 20.8133 | 1.3895 |
| 4 | 2452 | SW 3rd | 86 | 1.0 | 48 | 18 | 58 | 86 | 0.0302 | 2.941 | 28.0392 | 1.6457 |
| 5 | 1561 | Corn Valley | 42 | 0.6 | 18 | 5 | 26 | 42 | 0.0168 | 1.6424 | 15.3106 | 1.0384 |
| 6 | 1143 | Acosta | 21 | 0.2 | 4 | 0 | 4 | 21 | 0.0097 | 0.761 | 8.3103 | 0.4216 |
| 7 | 1412 | Beltine | 26 | 0.0 | 4 | 0 | 5 | 26 | 0.0139 | 1.526 | 18.3896 | 1.0952 |
| 8 | 3082 | SE 14th | 89 | 1.0 | 42 | 11 | 51 | 89 | 0.0361 | 3.6521 | 37.2159 | 2.3111 |
| Total | 12330 |  | 353 | 3.8 | 163 | 52 | 209 | 352 | 0.1408 | 14.322 | 144.465 | 9.0131 |
|  | Total per mile |  | 151 | 1.6 | 70 | 22 | 90 | 151 | 0.06 | 6.13 | 61.86 | 3.86 |

PM Westbound After Retiming

| Node No. | $\underset{(f t)}{\text { Length }}$ | Node <br> Names | Travel <br> Time (s) | No. of Stops | Total Delay (s) | Time<= 0 MPH (s) | $\begin{array}{\|c\|} \hline \text { Time }<=35 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Time }<=55 \\ \text { MPH (s) } \\ \hline \end{array}$ | $\begin{gathered} \text { Fuel } \\ \text { (gals) } \end{gathered}$ | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | CO (gm) | $\mathrm{NO}_{\mathbf{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5862 | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 | 1391 | Robinson | 21 | 0.0 | 0 | 0 | 0 | 21 | 0.0125 | 1.0724 | 15.4556 | 0.6665 |
| 3 | 1339 | Carrier | 24 | 0.0 | 3 | 0 | 7 | 24 | 0.0144 | 1.7234 | 21.9662 | 1.2872 |
| 4 | 2425 | SW 3rd | 50 | 0.4 | 13 | 1 | 19 | 50 | 0.0224 | 1.891 | 20.7157 | 1.1078 |
| 5 | 1522 | Corn Valley | 26 | 0.0 | 2 | 0 | 2 | 26 | 0.0154 | 1.6722 | 22.176 | 1.1928 |
| 6 | 1141 | Acosta | 29 | 0.4 | 11 | 0 | 20 | 29 | 0.0118 | 1.1286 | 9.0337 | 0.764 |
| 7 | 1375 | Belt Line | 24 | 0.0 | 3 | 0 | 6 | 24 | 0.016 | 1.9399 | 24.7729 | 1.4944 |
| 8 | 3054 | SE 14th | 102 | 1.0 | 55 | 32 | 68 | 102 | 0.0397 | 4.0684 | 42.1634 | 2.466 |
| Total | 12247 |  | 276 | 1.8 | 88 | 33 | 123 | 276 | 0.13 | 13.50 | 156.28 | 8.98 |
|  | Total per mile |  | 119 | 0.8 | 38 | 14 | 53 | 119 | 0.06 | 5.82 | 67.38 | 3.87 |

Reductions for PM Westbound

| Node No. | $\begin{array}{\|c} \text { Length } \\ (\mathrm{ft}) \end{array}$ | Node Names | Travel <br> Time (s) | No. of Stops | Total <br> Delay <br> (s) | Time<= 0 MPH (s) | $\begin{gathered} \text { Time }<=35 \\ \text { MPH (s) } \end{gathered}$ | Time<=55 <br> MPH (s) | Fuel (gals) | $\begin{gathered} \mathrm{HC} \\ (\mathrm{gm}) \end{gathered}$ | $\mathrm{CO}(\mathrm{gm})$ | $\mathrm{NO}_{\mathbf{x}}(\mathrm{gm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | W Freeway |  |  |  |  |  |  |  |  |  |  |
| 2 |  | Robinson | 5 | 0.2 | 6 | 0 | 11 | 5 | 0.00 | 0.43 | 0.93 | 0.45 |
| 3 |  | Carrier | 38 | 0.8 | 37 | 18 | 46 | 38 | 0.01 | 0.57 | -1.15 | 0.10 |
| 4 |  | SW 3rd | 36 | 0.6 | 35 | 17 | 39 | 36 | 0.01 | 1.05 | 7.32 | 0.54 |
| 5 |  | Corn Valley | 16 | 0.6 | 16 | 5 | 23 | 16 | 0.00 | -0.03 | -6.87 | -0.15 |
| 6 |  | Acosta | -7 | -0.2 | -7 | 0 | -16 | -7 | 0.00 | -0.37 | -0.72 | -0.34 |
| 7 |  | Belt Line | 1 | 0.0 | 1 | 0 | -2 | 1 | 0.00 | -0.41 | -6.38 | -0.40 |
| 8 |  | SE 14th | -13 | 0.0 | -13 | -21 | -16 | -13 | 0.00 | -0.42 | -4.95 | -0.15 |
| Total |  |  | 77 | 2.0 | 75 | 18 | 86 | 76 | 0.01 | 0.83 | -11.82 | 0.03 |
| Reduction per mile |  |  | 32 | 0.9 | 32 | 8 | 36 | 32 | 0.00 | 0.31 | -5.51 | -0.01 |
| \%reduction |  |  | 21 | 52.3 | 46 | 35 | 41 | 21 | 5.47 | 5.13 | -8.91 | -0.29 |

## APPENDIX D

DATA COMPILED FOR INDEPENDENT VARIABLES

Data compiled for independent variables



| Arterial | Start | End | City | Length | Number of signals | Signal density | $\begin{gathered} \text { Log (Signal } \\ \text { density) } \end{gathered}$ | No. of lanes | Mean spacing | St dev | ADT | $\begin{array}{\|c\|} \hline \text { FRTI } \\ \text { ME } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forest | US 75 | IH-635 | Dallas | 2.21 | 10 | 4.52 | 0.66 | 6 | 0.25 | 0.16 | 49792 | 274 |
| Belknap/Grapevine Hwy | Sylvania | Rufe Snow | Fort Worth, Haltom City, NRH | 5.18 | 10 | 1.93 | 0.29 | 4 | 0.58 | 0.34 | 25751 | 540 |
| FM 3040/Hebron/Park Blvd | Edmonds | Lakepointe | Lewisville | 2.37 | 12 | 5.06 | 0.70 | 6 | 0.22 | 0.1 | 43048 | 310 |
| Harry Hines | Empire Central | Wycliff | Dallas | 2.29 | 9 | 3.93 | 0.59 | 6 | 0.29 | 0.25 | 40883 | 299 |
| Forest | Harry Hines | US 75 | Dallas | 7.37 | 20 | 2.71 | 0.43 | 6 | 0.39 | 0.26 | 47584 | 908 |
| Collins | Abram | Bardin | Arlington | 4.45 | 12 | 2.70 | 0.43 | 6 | 0.4 | 0.22 | 41977 | 486 |
| Belt Line | Coit | Jupiter | Richardson | 5.09 | 16 | 3.14 | 0.50 | 6 | 0.34 | 0.17 | 43719 | 631 |
| Preston | Arapaho | IH-635 | Dallas | 2.56 | 10 | 3.91 | 0.59 | 6 | 0.28 | 0.18 | 37008 | 262 |
| Inwood | Alpha | Mockingbird | Dallas | 6.67 | 15 | 2.25 | 0.35 | 4 | 0.48 | 0.28 | 33706 | 808 |
| Pioneer Pkwy (Spur 303) | Susan | SE 14 ${ }^{\text {th }}$ | Grand Prairie | 4.25 | 10 | 2.35 | 0.37 | 6 | 0.47 | 0.32 | 35351 | 388 |
| First | Buckingham | Avenue D | Garland | 1.51 | 5 | 3.31 | 0.52 | 6 | 0.38 | 0.4 | 47205 | 235 |
| Pleasant Run | Hampton | IH-35E | Desoto | 2.02 | 7 | 3.47 | 0.54 | 4 | 0.34 | 0.2 | 22460 | 235 |
| Royal | US 75 | IH-635 | Dallas | 3.45 | 8 | 2.32 | 0.37 | 6 | 0.49 | 0.29 | 27056 | 476 |
| Great Southwest Pkwy | Division/Main | Fairmont | Grand Prairie | 5.3 | 15 | 2.83 | 0.45 | 4 | 0.38 | 0.25 | 20328 | 560 |
| SH 78 | Naaman School | Castle | Garland | 1.8 | 4 | 2.22 | 0.35 | 6 | 0.6 | 0.03 | 40627 | 147 |
| Division/Main | Bowen | Great SW Pkwy | Arlington | 6.09 | 13 | 2.13 | 0.33 | 4 | 0.51 | 0.29 | 24094 | 703 |
| Wabash/Granbury | Seminary | Gorman/Wedgemont | Fort Worth | 1.39 | 7 | 5.04 | 0.70 | 4 | 0.23 | 0.11 | 27645 | 136 |
| Rowlett Road | Castle | Roan | Rowlett | 5.54 | 9 | 1.62 | 0.21 | 4 | 0.69 | 0.32 | 40613 | 464 |
| Belknap/Grapevine Hwy | Rufe Snow | Precinct Line | Haltom City, NRH | 4.1 | 12 | 2.93 | 0.47 | 4 | 0.37 | 0.26 | 35709 | 301 |
| FM 1709 | US 377 | SH 114 | Keller, Southlake | 9.12 | 21 | 2.30 | 0.36 | 4 | 0.46 | 0.24 | 47162 | 750 |
| Marsh/Lemmon | Almazon | US 75 | Dallas | 5.75 | 21 | 3.65 | 0.56 | 6 | 0.29 | 0.19 | 55994 | 766 |
| Irving Blvd | Willowcreek | Norwood | Irving | 4.81 | 16 | 3.33 | 0.52 | 4 | 0.32 | 0.19 | 30590 | 782 |
| SH 183 | Ridgmar Mall | SH 199 | Fort Worth | 4.31 | 9 | 2.09 | 0.32 | 4 | 0.54 | 0.34 | 35244 | 361 |
| Frankford | Campbell | Coit | Dallas | 2.18 | 6 | 2.75 | 0.44 | 6 | 0.44 | 0.23 | 38080 | 269 |
| Valley View Ln | Senlac | Alpha | Farmers Branch | 3.69 | 14 | 3.79 | 0.58 | 4 | 0.28 | 0.25 | 35059 | 560 |
| Arapaho | US 75 | Jupiter | Richardson | 2.66 | 9 | 3.38 | 0.53 | 6 | 0.33 | 0.28 | 44044 | 320 |
| Inwood | Mockingbird | Conveyor | Dallas | 2.78 | 11 | 3.96 | 0.60 | 6 | 0.28 | 0.14 | 58072 | 419 |
| Preston | PGBT | Arapaho | Dallas | 3.47 | 9 | 2.59 | 0.41 | 6 | 0.43 | 0.17 | 65325 | 342 |


| Arterial | Start | End | City | System type | Measured TT | TT at SP <br> Limit | Delay/ veh | Delay/ veh/ signal | Delay/ veh/ mile | \#Stops/ veh | \# Stops/ veh/ mile | \# Stops/ veh/ signal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forest | US 75 | IH-635 | Dallas | 1 | 309 | 195 | 114 | 12.6 | 51.6 | 2.0 | 0.9 | 0.2 |
| Belknap/Grapevine Hwy | Sylvania | Rufe Snow | Fort Worth, Haltom City | 3 | 771 | 493 | 278 | 27.8 | 53.4 | 6.0 | 1.2 | 0.6 |
| FM 3040/Park Blvd | Edmonds | Lakepointe | Lewisville | 2 | 379 | 186 | 193 | 14.8 | 80.4 | 5.8 | 2.4 | 0.5 |
| Harry Hines | Empire Central | Wycliff | Dallas | 1 | 305 | 188 | 117 | 13.0 | 51.0 | 2.8 | 1.2 | 0.3 |
| Forest | Harry Hines | US 75 | Dallas | 1 | 921 | 669 | 252 | 12.0 | 35.4 | 5.5 | 0.7 | 0.3 |
| Collins | Abram | Bardin | Arlington | 2 | 552 | 381 | 171 | 14.3 | 38.9 | 5.5 | 1.2 | 0.5 |
| Belt Line | Coit | Jupiter | Richardson | 1 | 734 | 527 | 207 | 12.9 | 40.5 | 4.0 | 0.8 | 0.3 |
| Preston | Arapaho | IH-635 | Dallas | 1 | 365 | 204 | 161 | 16.1 | 62.0 | 1.8 | 0.7 | 0.2 |
| Inwood | Alpha | Mockingbird | Dallas | 1 | 827 | 622 | 205 | 13.6 | 32.5 | 4.8 | 0.7 | 0.3 |
| Pioneer Pkwy | Susan | SE 14 ${ }^{\text {th }}$ | Grand Prairie | 1 | 426 | 326 | 100 | 11.1 | 23.8 | 3.5 | 0.8 | 0.4 |
| First | Buckingham | Avenue D | Garland | 1 | 169 | 127 | 42 | 10.5 | 28.0 | 1.0 | 0.7 | 0.2 |
| Pleasant Run | Hampton | IH-35E | Desoto | 2 | 338 | 170 | 168 | 23.9 | 88.2 | 3.0 | 1.5 | 0.4 |
| Royal | US 75 | IH-635 | Dallas | 1 | 479 | 346 | 133 | 16.6 | 39.1 | 2.3 | 0.7 | 0.3 |
| Great Southwest Pkwy | Division/Main | Fairmont | Grand Prairie | 1 | 750 | 424 | 326 | 21.7 | 63.9 | 4.0 | 0.8 | 0.3 |
| SH 78 | Naaman School | Castle | Garland | 1 | 174 | 124 | 50 | 12.4 | 29.3 | 0.8 | 0.4 | 0.2 |
| Division/Main | Bowen | Great SW Pkwy | Arlington | 1 | 777 | 570 | 207 | 13.0 | 33.4 | 6.0 | 1.0 | 0.5 |
| Wabash/Granbury | Seminary | Gorman/Wedgemont | Fort Worth | 2 | 274 | 114 | 160 | 20.0 | 122.9 | 2.8 | 2.0 | 0.4 |
| Rowlett Road | Castle | Roan | Rowlett | 3 | 545 | 426 | 119 | 17.0 | 23.8 | 3.0 | 0.5 | 0.3 |
| Belknap/Grapevine Hwy | Rufe Snow | Precinct Line | Haltom City, NRH | 3 | 580 | 338 | 242 | 18.6 | 59.1 | 5.8 | 1.4 | 0.5 |
| FM 1709 | US 377 | SH 114 | Keller, Southlake | 1 | 947 | 757 | 190 | 9.0 | 21.1 | 4.8 | 0.5 | 0.2 |
| Marsh/Lemmon | Almazon | US 75 | Dallas | 1 | 714 | 536 | 178 | 8.5 | 32.9 | 3.5 | 0.6 | 0.2 |
| Irving Blvd | Willowcreek | Norwood | Irving | 2 | 847 | 555 | 292 | 17.2 | 47.1 | 5.8 | 1.2 | 0.4 |
| SH 183 | Ridgmar Mall | SH 199 | Fort Worth | 2 | 511 | 340 | 171 | 15.5 | 38.0 | 3.3 | 0.8 | 0.4 |
| Frankford | Campbell | Coit | Dallas | 1 | 250 | 191 | 59 | 9.8 | 28.0 | 1.5 | 0.7 | 0.3 |
| Valley View Ln | Senlac | Alpha | Farmers Branch | 1 | 497 | 360 | 137 | 9.8 | 37.0 | 3.8 | 1.0 | 0.3 |
| Arapaho | US 75 | Jupiter | Richardson | 1 | 322 | 226 | 96 | 9.6 | 38.5 | 1.8 | 0.7 | 0.2 |
| Inwood | Mockingbird | Conveyor | Dallas | 1 | 347 | 264 | 83 | 6.3 | 30.6 | 3.0 | 1.1 | 0.3 |
| Preston | PGBT | Arapaho | Dallas | 1 | 319 | 274 | 45 | 5.6 | 12.9 | 1.8 | 0.5 | 0.2 |

## REFERENCES

Institute of Transportation Engineers. Traffic Signal Timing.
http://www.ite.org/signal/index.asp, Accessed on February 16, 2006.
Sunkari, Srinivasa. (2004). The Benefits of Retiming Traffic Signals, ITE
Journal, April, 26-29.
Husch, David and Albeck, John. (2004). Synchro 6 User Guide, Trafficware.
Turochy, R E. (2001). Prioritizing Proposed Transportation Improvements: Methods, Evaluation, and Research needs. Transportation Research Record, 1777, 123128.

Witkowski, James M. (1992). Prioritizing signalized intersection operational deficiencies. Transportation Research Record, 1360, 4-12.

Guegan, D P, Martin, P T, Cottrell, W D. (2000). Prioritizing Traffic Calming Projects using the Analytic Hierarchy Process. Transportation Research Record, 1708, 61-67.

Tindale, Steven A., and Peter Hsu. (2005). Crash Data and Signal Coordination: a One-Way Pair Study. Journal of Safety Research- Traffic Records Forum Proceedings, 36 (5), 481-482.

McShane, William R., Roess, Roger P., Prassas Elena S. (1998). Traffic Engineering, 2nd edition, Prentice Hall,

City of Arlington. (2002). Pioneer and Arkansas Timing Project Report, 1-6.
City of Arlington. (2002). South Cooper Street Timing Project Report, 1-6.
Jamar Technologies Inc. (2004). PC-Travel for Windows Manual.

Rupangi Munshi. (2005). Impacts of Signal Synchronization on Vehicular Emissions - an On-Board Measurement Case Study, M.S. Thesis, The University of Texas at Arlington,

NCTCOG. (2000) Dallas-Fort Worth Regional Travel Model (DFWRTM): Description of the Multimodal Forecasting Process, V-1 to V-5.

Mattingly, S. P., A. Upayokin, and J. Li (2004). A Driver's Dilemma: Main Lane or HOT Lane. Proceedings of the 4th International Conference on Decision Making in Urban and Civil Engineering, CD.

American Automobile Association (2006). Today's Regional Gasoline Averages. http://www.fuelcostcalculator.com/, Accessed on April 06, 2006.

Zabrowsky, Peter. Evolution Markets LLC (2006). E-mail Response. http://www.evomarkets.com/, Accessed on February 15, 2006.

Texas Commission on Environmental Quality (TCEQ). Archived Emissions Banking. Transactions. http://www.tceq.state.tx.us/permitting/air/banking/ ebanktransarchive.html, accessed on April 26, 2006.

Texas Commission on Environmental Quality (TCEQ). ERC Transactions. http://www.tceq.state.tx.us/permitting/air/banking/erctrades_985340.pdf, accessed on April 26, 2006.

## BIOGRAPHICAL INFORMATION

Pulipati Sasanka Bhushan was born in Andhra Pradesh state in India on $25^{\text {th }}$ May 1981. He obtained his Bachelor's degree in Civil Engineering from Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India. He worked as a Highway Engineer with RITES Ltd, New Delhi, India for two years (2002-2004).

During his stay at RITES Ltd, he took part in one of the prestigious highway projects in India, the North - South - East - West Corridor project. He also worked in Afghanistan for the detailed field survey and soil investigation for transmission line between Kabul and Phul-E-Khumri, a rehabilitation project.

Sasanka earned his Master of Science in Civil Engineering from the University of Texas Arlington. Transportation Engineering was his specialization. During his study at UT Arlington, he served as a Graduate Teaching Assistant in the Department of Civil and Environmental Engineering where he taught Geodesy Lab.

Pulipati's research interests are in the field of transportation planning. His master's research is focused on the "Regional prioritization of corridors for traffic signal retiming". He proposes a new methodology based on estimated benefits to prioritize retiming projects.

As the president of ITE (Institute of Transportation Engineers) Student Chapter at UTA, he made the chapter to be recognized as an active student chapter in Texas. He received the "Outstanding student award" by the TexITE (Texas Institute of

Transportation Engineers) at the summer meeting, 2005. He was also initiated to Tau Beta Pi, an all engineering honors society in November, 2005.

Pulipati aims at returning to research in Transportation Engineering after a few years of experience in the field.

