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ABSTRACT

LEARNING EMBEDDINGS FOR WEARABLE-BASED HUMAN ACTIVITY

ANALYSIS

TAORAN SHENG, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Manfred Huber

The embedded sensors in widely used smartphones, wearable devices and smart

environments make the sensor data stream of human activity more accessible. With

the development of deep neural networks, extensive studies have been conducted

using deep learning methods to extract useful information from the sensor data to

recognize the human activity, identify the person, or monitor the health condition

of the person. However, applying deep neural networks to the sensor based human

activity analysis task remains a challenging research problem in ubiquitous comput-

ing. Some of the reasons are: (i) The majority of the acquired data has no labels;

(ii) Most of the previous works in activity and sensor stream analysis have been fo-

cusing on one aspect of the data, e.g. only recognizing the type of the activity or

only identifying the person who performed the activity; (iii) Segmenting a continuous

sensor stream and preserving the completeness of each human activity is difficult. In

this dissertation, various deep learning techniques have been studied to address these

problems in a weakly supervised, unsupervised, or semi-supervised manner. All the

developed techniques use deep learning networks to learn embedding spaces in which
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activities group and thus classifiers can be trained efficiently. For this, both siamese

network architectures for weakly supervised data and autoencoder-type networks for

unsupervised techniques are learned and combined.
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CHAPTER 1

Introduction

With the development and increased availability of embedded sensors in smart

environments and wearable devices, a vast potential to improve the quality of human

life has emerged in many different areas, such as: smart assistive technologies, human

computer interaction, health management, etc. These areas can benefit from the

information extracted from the sensor stream. While many current machine learning

methods have been studied in these areas and achieved impressive results, most of

the existing systems still suffer from the following limitations: (i) The sliding window

is used to segment the sensor stream [1, 2]. This segmentation method is simple, yet,

it can segment a complete activity into pieces and destroy the completeness of the

activity. In addition, designing the window requires domain knowledge to determine

the window size and the sliding speed. (ii) Existing methods rely heavily on labeled

data to guide the learning of the model [3, 4]. However, acquiring a huge amount of

labeled data is very difficult and the majority of the accessible data has no labels.

(iii) The previous methods intend to extract useful information from one aspect of

the sensor data. For example, some systems only recognize the type of the activity

[5, 6], some systems only identify the person who performed the activity [7, 8]. Very

few works have been done on solving these related tasks together. (iv) Most of the

current person identification systems depend on face, fingerprint, iris, or gait etc.

These identification methods are effective, but require specific input from the users

[9, 10], while the sensor based system can provide an unobtrusive and convenient way

to complete the task.
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This work presents approaches that attempt to mitigate these limitations. Firstly,

the proposed models are based on the siamese network and autoencoder architectures,

which enable the weakly supervised and unsupervised learning of the model, hence

reducing the needs for labeled data. Secondly, automatic segmentation of the sensor

stream has also been achieved by using the siamese architecture and the side informa-

tion of the data. Thirdly, it is intuitive that different persons perform the activities

in different ways, hence, distinct personal characteristics are commonly present in all

the activities performed by the person. Based on this observation, it seems natural

to address the activity recognition problem and the person identification problem

together. Thus, a multi-tasking model is proposed, which can solve multiple related

tasks (e.g. activity recognition, person identification etc.) using the sensor stream

at the same time. Fourthly, inspired by the physical property in the real world that

the objects have inertia and their states usually change slowly and infrequently, an

autoencoder based model is proposed to learn activity categories in a completely

unsupervised way. This autoencoder learns to retain the slow features [11] in the

activity data, which are more relevant to the activity type, and to disregard the fast

features, which relatively irrelevant to the activity type. Therefore the learned model

is more effective on retaining the activity type information, can provide more mean-

ingful representations to the subsequent activity clustering algorithm, and improves

the performance on the activity clustering task. In addition, this dissertation also in-

troduces a model that utilize an unsupervised learned embedding space for primitive

activities to build a hierarchical model for activity learning and recognition that facili-

tates zero-shot and few-shot learning of novel activities form very limited observations

for this model. Finally, combining principles and techniques for the supervised and

unsupervised learning approaches developed here, weakly semi-supervised techniques
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are developed to allow for improved classification using limited weakly supervised

data while utilizing a larger set of unsupervised data.

In the remainder of this dissertation, each chapter introduces one of the devel-

oped models and discusses the corresponding related work. In particular, Chapter 2

presents a model weakly supervised human activity recognition and segmentation

using a siamese network architecture [12]. Chapter 3 expands this architecture to

address multi-task representation learning [13]. A novel unsupervised representa-

tion learning approach for HAR [14] is then introduced in Chapter 4, before Chap-

ter 5 introduces a weakly semi-supervised technique that combines principles form

the weakly-supervised and unsupervised models to allow representation learning us-

ing small amounts of labeled data with larger amounts of unlabeled data for higher

accuracy learning. Chapter 6, finally, introduces a hierarchical activity modeling ap-

proach for zero-shot and few-shot learning of new activities. Chapter 7 then concludes

the dissertation.
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CHAPTER 2

Weakly Supervised Human Activity Segmentation and Recognition

2.1 Introduction

Human Activity Recognition (HAR) is critical in many research areas, includ-

ing human computer interaction, smart assistive technologies etc. These areas use

HAR systems to provide information about people’s activities and behaviors. The

common way to implement such a system is by collecting data from environmen-

tal or wearable sensors and processing this data with machine learning algorithms.

One of the dominant framework types [15] used in HAR systems relies on (i) sliding

window segmentation of time series data recorded by wearable sensors, (ii) manu-

ally designed features, such as statistical mean, variance, entropy of the signal, and

features extracted from the frequency domain, and (iii) different supervised classifica-

tion algorithms to recognize activity. This type of framework performs well; however,

domain knowledge is required to determine the window size, sliding speed, and to de-

sign the features manually. Recently, many deep neural networks (DNN) have been

developed and applied in HAR systems [3, 4, 5]. These methods can automatically

extract features from the data without any domain knowledge and have been shown

to be useful in HAR applications. But, they still require explicit labels to supervise

the training of the model and usually a hand designed sliding window method to seg-

ment the time series data. Our work is motivated by two factors: enabling automatic

segmentation of the time series and limiting the supervision required while learning a

recognition model. In this paper we propose an approach based on multiple siamese

networks to segment and recognize human activities in sensor data streams. The

4



proposed approach learns one siamese network to automatically segment the times

series without manually designing a sliding window, and another siamese network to

provide a similarity metric that can be used to cluster the activities without using

explicitly labeled data.

2.2 Related Work

The typical process [16] of human activity recognition includes signal prepro-

cessing, data segmentation, feature extraction, and applying machine learning to

recognize each activity. In this work, we mainly focus on the data segmentation stage

and the activity recognition stage.

2.2.1 Time Series Data Segmentation

The data segmentation stage identifies the segments in the data stream that

are likely to be an activity and determines the start time tstart and end time tend of

the activity. Once all the activity segments in the data stream are identified, they

can be fed into the recognition module.

Segmenting a continuous sensor stream is difficult. Because different activities

continuously performed by people smoothly blur into each other, they are not clearly

separated by a predefined posture or pause. One common approach used to segment

the sequence data is using a sliding window [1, 2]. A window with predefined length

and step size moves over the data stream, and the data sequence contained within the

window is used as one data sample, which has one data label. This method, however,

will introduce inaccuracy into the segmentation borders. A larger window size is

needed to catch complex activities; but the larger the window, the less accurately

the segmentation borders can be defined. Another segmentation method is based on

signal energy [17]. It assumes that the intensities of different activities are different

5



and that the different intensities can be used as an indicator to determine the borders

of an activity.

2.2.2 Feature Extraction and Recognition

In order to recognize an activity, discriminative features are needed. They

can be designed with domain knowledge manually or learned by neural networks

automatically. Hand designed features are widely used in HAR [15, 18]. They include

statistical features, such as mean, variance and entropy, or features extracted in the

frequency domain using a fourier transform, wavelet transform [19] or discrete cosine

transform [20] etc. The advantage of these features is that they can be derived from

the signal easily and have been shown to be effective in the HAR system.

With the advances of DNN, many HAR systems adopt DNN to allow auto-

matic extraction of meaningful features. Zeng et al. [3] used convolutional neural

networks (CNN) to capture local dependencies and identify scale invariant features

of the activity signals. The local connectivity constraint between adjacent layers in

the CNN forces the model to capture the local dependencies. Morales and Roggen

[21] proposed models that combine CNN and Long Short Term Memory cells (LSTM)

[22]. LSTM keeps track of an internal state that represents its memory. The memory

state eases the learning of long time scale temporal dependencies and helps the HAR

system to model more complex activities.

2.2.3 Siamese Neural Networks

A Siamese Network [23] is a neural network with two branches and tied weights.

It processes two different inputs and yields two comparable representation vectors,

which represent the features of each input, respectively. Then the representation vec-

tors are fed deeper into the network, which consists of a predefined metric layer [24]
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or a learned metric network to measure how similar the two inputs are. The siamese

network is widely used to learn non-linear metrics, and has been successfully applied

in computer vision, speech recognition, etc. A siamese CNN has been used to learn a

complex similarity metric for face verification in [25]. Mueller and Thyagarajan [24]

proposed a siamese RNN to measure semantic similarity between sentences. Zeghi-

dour et al. [26] used a multi-output triamese network to identify the speaker and

phonetic similarities jointly. Neculoiu et al. [27] used a siamese RNN for job title

normalization.

2.3 Proposed Approach

Our proposed model contains two modules, a segmentation module and a recog-

nition module. Both of them are using a similar siamese architecture (see Fig. 2.1)

but with different LSTM structures and similarity functions.

Figure 2.1: The basic siamese architecture used in our model
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2.3.1 Siamese Architecture in the Proposed Approach

As shown in Fig. 2.1, given an input pair of human activity data sequences

(xA, xB), the siamese network learns to map it to the representation space (f(xA),

f(xB)) ∈ Rd. Then the layers above the dual-branch represent a similarity function

that measures the distance between these two representation vectors. We will detail

the siamese architecture in this section. The segmentation module and recognition

module will be introduced in Subsections 2.3.2 and 2.3.3, respectively.

Our siamese networks share weights across their two branches. Each branch

uses the same building blocks: (i) Dilated temporal convolutional layers, and (ii)

Residual LSTM layers. Fully connected layers (FC) will be adopted to process the

outputs from both branches. Fig. 2.2 illustrates details in each branch.

Figure 2.2: Details of a single branch in the siamese network

• Dilated Temporal Convolutional Layer

The temporal convolutional layer is applied to the raw data sequences with

the aim of matching the local pattern of the input data and enabling transla-

tional invariance of each pattern in the activity data sequence. To increase the
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receptive field of the temporal convolutional layer, we adopt dilated temporal

convolution, as it supports faster expanding receptive fields without losing res-

olution or coverage [28]. Batch Normalization (BN) [29] is applied after each

temporal convolutional layer and before the non-linear activation function. BN

can accelerate the learning process by preventing the internal covariate shift

problem, allowing each intermediate layer not to have to adapt individually to

a new distribution in every training step. In addition, BN provides a slight

regularization effect to the network and can also prevent the early saturation

of the non-linear activation function. To further reduce the temporal dimen-

sions of the data sequence while introducing slight translational invariance in

time, we insert a temporal max-pooling layer after every two dilated temporal

convolutional layers. Max-pooling outputs the maximum within the region of

a predefined pooling size and corresponds to a subsampling. The output of the

max-pooling layer is fed into the subsequent LSTM layers.

• Residual LSTM Layer

The LSTM layers are responsible for modeling the higher level temporal patterns

in the data. The definition of an LSTM cell is as follows:

it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi) (2.1)

ft = σg(Wf ∗ xt + Uf ∗ ht−1 + bf ) (2.2)

c̃t = σc(Wc ∗ xt + Uc ∗ ht−1 + bc) (2.3)

ct = ft ◦ ct−1 + it ◦ c̃t (2.4)

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo) (2.5)

ht = ot ◦ σh(ct) (2.6)
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A LSTM unit maintains a cell state ct which contains the information from the

past. Eq. (2.1) defines an input gate, which decides how much of the input xt

will be fed into the cell state. Eq. (2.2) defines a forget gate which decides to

what level information will be removed from the cell state ct. Eq. (2.3) defines

the way to compute a cell state candidate c̃t that will be used to update the cell

state. Then we can use the gates and the candidate to update the cell state as

shown in Eq. (2.4). Eq. (2.5) defines an output gate. The output will be based

on the cell state but will be a filtered version. The output gate works as the filter

to decide what parts of the cell state will be the output, as shown in Eq. (2.6). It

can be seen from the equations that the output of an LSTM at time step t only

depends on xt and ht−1, which are the input at time step t and the information

from the previous time steps. Thus, the information from the time steps after

t is not used in the equations. To address this, we employ two different LSTM

structures for the segmentation module and the recognition module, which will

be covered in Subsections 2.3.2 and 2.3.3, respectively. Residual connections [30]

are adopted between adjacent LSTM layers in our model, because the residual

connection encourages the higher layer to learn something different from what

the lower layer has already learned. It also encourages gradient flow.

• FC Layer

The FC layers represent a sequence of non-linear transformations to the CNN-

LSTM extracted features. Each FC layer corresponds to a linear transformation

and a rectified-linear (ReLU) [31] activation function. Batch Normalization is

used after each linear transformation and before the activation function, fol-

lowing [29]. The FC layer yields different outcomes for different modules. For

the segmentation module it differentiates if the current frame belongs to the
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boundaries of an activity. For the recognition module it works as a similarity

metric that measures how similar the two inputs are.

Following the notation in [32], the shorthand description of each single branch

is as follows: C(64)−C(64)−P −C(64)−C(64)−P −R(128)−R(128), where C(n)

denotes a convolutional layer with n feature maps, P a max-pooling layer, and R(n)

a recurrent LSTM layer with n cells.

2.3.2 Segmentation Module

The periods that blur finishing and beginning two consecutive activities are

transitions. They have features from both sides and contain the boundary of activi-

ties. The exact position of the boundary is often difficult to define in the data stream.

But, we can define that the boundary is in the transition because the previous ac-

tivity has finished within this period and the subsequent activity has started within

this period. Thus, it is reasonable to either label the transition as an independent

transition activity or as an unknown activity, or to include it into the activity before

or after the transition period [15]. An unknown activity represents an infinite space

of arbitrary activities. The space of transitions is not infinite, but if there are n

different activities, there will be n!
(n−2)!

kinds of possible transitions that are all very

short. These reasons make learning an explicit model for transition and unknown

activity difficult. However, transitions and unknown activities occur between activi-

ties of interest; this characteristic allows transition and unknown activity to be used

as the boundary period to the activity sequence. It is important to notice that if

the transition and unknown activity are used as the boundary of an activity, then

the segmentation is not a hard segmentation but rather a soft segmentation. The

position of a soft segmentation is not a single frame but a period that contains one

or more than one frame. To address this ambiguity of the transition period, multi-
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ple segmentations and classifications of the resulting segments should be considered

accurate representations of the data.

Table 2.1 shows the error assessment [15] used in this paper for judging correct

segmentation and recognition. In the table, A, B, C are activities of interest, U is

unknown activity, T is transition.

Table 2.1: Error assessment table.

Ground-Truth Segmentation & Recognition Error Evaluation
Basic Activities

A-A-A A-A-A correct
A-A-A A-B-A incorrect
A-A-A A-T-A incorrect
A-A-A A-U-A incorrect

Without Transitions
A-B A-B correct
A-B A-C-B incorrect
A-B A-T-B incorrect
A-B A-U-B incorrect

With Transitions
A-T-B A-B correct
A-T-B A-C-B incorrect
A-T-B A-T-B correct
A-T-B A-U-B correct

Segmenting a data sequence with the proposed module can be formulated as fol-

lows: given the current time step tM and an activity sequence S =< a0, . . . , aM , . . . , aN >

from time step t0 to tN , (0 < M < N), the proposed segmentation module predicts

whether tM is a segmentation frame in the data sequence. We consider the boundary

as a frame or a list of consecutive frames that indicate that the activities before and

after it are different. Thus, we split the sequence S at time step tM into a pair of

subsequences (subA, subB). Let subA =< a0, . . . , aM > be the activity sequence from

time step t0 to tM , representing the history of information from previous time steps.
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And let subB =< aN , . . . , aM+1 > be the activity sequence from time step tM+1 to

tN in reverse chronological order, representing the future sequence that contains in-

formation from a future time step to the current time step. We restrict the length of

the future sequence, so that the time delay in the system is not infinite.

As shown in Fig. 2.1, for the segmentation module BranchA is responsible

to learn a representation vector ~Vhistory from the history sequence, while BranchB

is responsible to learn a representation vector ~Vfuture from the future sequence. We

assume here that if tM is a segmentation frame, ~Vhistory and ~Vfuture should be far away

from each other in the representation space; otherwise they should be close as they

are then considered to be part of the same activity. In this way, the distance metric

encoded in the representation space represents the transition process nicely, because

the distance between the two vectors changes from short to long when the previous

activity is finishing and the subsequent activity is starting.

The two branches in the segmentation siamese network use the information

before and after the current time step explicitly and process the data sequence in

opposite directions. The LSTM employed in each branch is a uni-directional LSTM,

not a bi-directional LSTM (BLSTM). The reason for this is that [33] shows that in an

LSTM autoencoder where the decoder decodes the target sequence in reverse order,

it can help the model to capture the short range correlations easily. Thus, BranchA

processing the history data in chronological order while BranchB processes the fu-

ture data in reverse chronological order also aims to capture short range correlations

because short range correlations can restrict the segmentation in a short region, while

long range correlations can not.

The FC layers after the LSTM learn a non-linear distance metric to measure

the similarity between ~Vhistory and ~Vfuture, then output this distance. A generalized

Gaussian function, GG(x; β) = β
2αΓ(1/β)

e−(|x−µ|/α)β , is used as the distance target to
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train the model. β here is a shape parameter of the function; if β is picked properly,

the generalized Gaussian function can have a flat top and sharp edge that represents

the occurrence and duration of a transition between activities. In the test stage,

we use the segmentation module as a classifier. For an input frame, if the output

from the segmentation module is above a threshold, we consider the input frame as a

segmentation frame. Note that, since we adopt soft segmentation, it is possible that

a list of consecutive frames can all be identified as segmentation positions.

2.3.3 Recognition Module

The recognition module sticks to the same siamese architecture described in

Subsection 2.3.1, but the LSTM layers are different. In contrast to the segmentation

network, a BLSTM is adopted here, which uses two uni-directional LSTMs working

on the same data but in opposite directions along the time domain. The outputs

from both uni-directional LSTMs are concatenated to be fed into the next layer of

the network. The BLSTM structure aims to extract the information from the full

sequence and balance the importance of both sides of the sequence. In comparison

to the LSTM layers used in the segmentation module, the BLSTM used here learns

to capture both short and long range correlations in the data sequence.

The recognition siamese network is trained with triplets (xA, xB, y), where xA

and xB are the segmented sequences and y ∈ {0, 1} indicates that xA and xB are the

same kind of activity, y = 1, or different kinds of activities, y = 0.

The similarity function for the recognition siamese network is predefined as

D(xA, xB) = exp(−|f(xA) − f(xB)|) ∈ {0, 1} [24]. It forces the model to learn a

mapping f(x) that captures the critical similarities between the input pairs (xA, xB),

and if y = 1, then f(xA), f(xB) ∈ Rd should stay close, while f(xA), f(xB) should be
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far away from each other if y = 0. The mean-squared-error (MSE) is used to measure

the loss between the model estimated similarity and the ground-truth similarity.

Assuming a list of segmented sequences: l = {act seq0, . . . , act seqM , . . . , act seqN},

the trained recognition siamese network maps all the activity segments in l into the

representation space. Then, different clustering algorithms can be used on those rep-

resentation vectors to build the clusters. Here, single-linkage clustering is adopted.

A drawback of single-linkage is that it tends to build long thin clusters in which the

nearby elements of the same cluster have small distance values while the elements

at the edge of a cluster may have larger distance to the elements from the opposite

side of the same cluster than they have to the elements of other clusters [34]. This

may be a problem in other research areas, but it aligns with some features of human

activity sequences. Here, the data stream of activities consists of activities of inter-

est interwoven with transitions. As discussed above, the exact borders of activities

and transitions are difficult to define. The beginning and ending stages of a transi-

tion can be viewed as part of the previous and subsequent activities that it connects

with. However, it should be noticed that transitions between different combinations

of activities are essentially different, e.g. the transition from lying to sitting can

not be the same as the transition from walking to standing. These transitions may

have a large distance between each other, but are close to their connected activities,

respectively. The single-linkage clustering preserves this feature naturally.
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2.4 Evaluation and Experiment

2.4.1 Datasets

For empirical evaluation and comparison with other approaches, we test our

method on three public datasets that contain the raw sensor data sequence of human

activity. The descriptions of the datasets are listed below.

The Daphnet Gait dataset (DG) [35]: This dataset is collected from 10

patients with Parkinson’s disease. Three triaxial acceleration sensors are fixed at the

patient’s ankle, upper leg, and trunk to record the activities performed by the patient

with a sampling rate of 64Hz. The patients were instructed to carry out activities

that are likely to induce freezing of gait (FoG). The FoG is a common symptom in

Parkinson’s disease that affects patient’s activities like walking. The objective is to

identify the FoG of the patients. We follow the same settings as in [4] and use the

records of patient 9 for validation, the records of patient 2 for test, and the rest for

training.

The WISDM dataset [18]: This dataset contains data collected from 36 users

performing 6 different activities, including jogging, ascending stairs, etc., in a con-

trolled experiment environment. The data is recorded with one triaxial accelerometer

in a smartphone at a sampling rate of 20Hz.

The SBHAR dataset [36]: This dataset provides data from a group of 30

volunteers with an age bracket of 19-48 years, carrying out 6 basic activities, such

as walking and lying, and 6 postural transitions such as stand − sit and sit − lie.

The data is recorded by letting the volunteers wear a smartphone on the waist during

the experiment. The smartphone’s embedded triaxial accelerometer and a gyroscope

recorded the data at a sampling rate of 50Hz.
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2.4.2 Performance Measures

In the experiments, we use two performance metrics: many-to-one accuracy and

weighted F1 score.

Because our model learned a metric without explicit labels, there is no straight-

forward way to compare the ground truth labels with the clusters found by an un-

supervised algorithm using our learned distance metric. Here, we use many-to-one

accuracy as a mapping-based performance measures to evaluate the performance. For

the cluster with label t, select the most frequent correct label t∗ for those frames in

the cluster. Replace t with t∗. After processing each cluster this way, compute the

accuracy as usual.

The weighted F1 score has been used as the performance metric (for the DG

dataset) in related work. In order to compare our results to the state-of-the-art we

also calculate the weighted F1 score:

Fw = 2
C∑
i=1

Ni

Ntotal

Precisioni ×Recalli
Precisioni +Recalli

(2.7)

where Ni is the number of samples in class i, Ntotal is the total number of samples,

and for the given class i, Precisioni = TPi
TPi+FPi

, Recalli = TPi
TPi+FNi

and i = 1, . . . , C is

the set of classes. TPi, FPi represent the number of true positives and false positives,

FNi is the number of false negatives.

2.4.3 Experimental Results

Tables 2.2, 2.3, and 2.4 illustrate the comparison of the proposed method against

existing supervised and unsupervised methods on the DG, WISDM and SBHAR

datasets.
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Table 2.2: Results on the DG dataset in terms of weighted F1 score.

Method F1 Score
LSTM baseline [37] 0.6675
DeepConvLSTM [37] 0.7344
LSTM-S [4] 0.7600
LSTM + Continuous Temporal, Sensor Attention [37] 0.8373
Proposed Method 0.8952

Table 2.3: Results on the WISDM dataset in terms of accuracy.

Method Accuracy(%)
Multilayer Perceptron [18] 91.7
Ensemble Learning [38] 94.3
CNN with partial weight sharing [39] 96.88
DBN+HMM[40] 98.23
Proposed Method 96.68

The results in Table 2.2 show that the proposed weakly supervised method

outperforms the state-of-the-art, LSTM with continuous temporal and sensor atten-

tion [37] , on the DG dataset. Tables 2.3, 2.4 show that the best performance on

the WISDM and SBHAR datasets are achieved by supervised methods, DBN+HMM

[40] and Convolutional Neural Network [41], respectively. However, expensive labeled

data is required to train these models. Although completely unsupervised methods

Table 2.4: Results on the SBHAR dataset in terms of accuracy.

Method Accuracy(%)
Probability SVM with Filter [15] 96.78
Convolutional Neural Network [41] 98.7
CNN Autoencoder with K-means [41] 55.0
PCA with K-means [41] 62.1
Proposed Method 92.68

do not need any labeled data, their performance are not comparable to supervised

methods [41]. The proposed weakly supervised method is trained under limited su-
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(a): Original Input Space (b): CNN Autoencoder (c): Proposed Method

Figure 2.3: t-SNE visualizations on the DG dataset: (a) Original input space, (b)
Representation space from the CNN autoencoder and, (c) Representation space from
the proposed method.

(a): Original Input Space (b): CNN Autoencoder (c): Proposed Method

Figure 2.4: t-SNE visualizations on the WISDM dataset: (a) Original input space,
(b) Representation space from the CNN autoencoder and, (c) Representation space
from the proposed method.

pervision by using only the information about the similarity between the activities

and achieves comparable results to supervised methods on the WISDM and SBHAR

datasets while significantly outperforming the unsupervised methods.

2.4.4 Visualization of the Representation Space

In order to better understand the distribution of the activity vectors in the

representation space, we applied t-sne [42] to map the representation vectors to two

dimensions for visualization. The results are shown in Figures 2.3, 2.4, and 2.5 for

dataset DG, WISDM and SBHAR, respectively.

Fig. 2.3(a), 2.4(a), and 2.5(a) show the activity sequences in the original input

space. In DG and WISDM all the activities are mixed together. In SBHAR only the

activity lying is separable from other activities.
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(a): Original Input Space (b): CNN Autoencoder (c): Proposed Method

Figure 2.5: t-SNE visualizations on the SBHAR dataset: (a) Original input space,
(b) Representation space from the CNN autoencoder and, (c) Representation space
from the proposed method.

Fig. 2.3(b), 2.4(b), and 2.5(b) show the results produced by a temporal convo-

lutional autoencoder. The idea is to let the autoencoder compress the input activity

sequence into a representation vector and reconstruct the sequence from this represen-

tation. It is expected that this compressed representation contains key information

of the input sequence that is useful to reconstruct itself and to differentiate it from

other activities. The results show that after being mapped into the representation

space by the autoencoder, some representation vectors are almost separable. In SB-

HAR the vectors of lying, sitting and standing are separated from other activities.

In WISDM the cluster of sitting is well formed. Thus, it is clear that the separa-

tion between static posture activities {lying, sitting, standing} and dynamic activi-

ties {jogging, walking, ascending stairs, descending stairs} is almost solved by the

mapping of the autoencoder. It confirms that the autoencoder can capture useful

information of the activities, especially the difference between static and dynamic ac-

tivities. However, the mapping of the autoencoder is not powerful enough to further

group each activity into its own cluster and it is not able to capture the difference

between FoG and normal activities, so in the DG dataset, the FoGs are still mixed

with normal activities.
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Fig. 2.3(c), 2.4(c), and 2.5(c) are the results generated by the proposed method.

In DG a long thin cluster is built. The possible reason is that most of the normal

activities in the experiment are normal walking, and no significant difference exists

between different walking sequences. FoG is an abnormal activity that shows up

during normal walking, thus FoG also carries the characteristics of normal walking.

Due to this reason, a long thin cluster can represent the process of normal walking

that transfers to FoG gradually. As shown in Fig. 2.3(c), FoGs stay on one side of

the cluster, while normal walking activities stay on the other side. In WISDM and

SBHAR each kind of activity is grouped into its own cluster which is clearly separable.

Note that in Fig. 2.5(c) the transitions and unknown activities are viewed as an

independent special activity and grouped into 6 clusters. This result confirms our

assumption in Subsection 2.3.3 that transitions between different kinds of activities

are essentially different, and the unknown activities represent an infinite space of

arbitrary activities. Although we treat all the transitions and unknown activities the

same way, a long distance for different kinds of transitions and a small distance within

the same kind of transition is still maintained.

2.5 Conclusions

In this paper, we proposed a weakly supervised method that can learn to seg-

ment and recognize human activities under limited supervision without using explicit

labels. The proposed method uses a segmentation and a recognition module built

around a common siamese network architecture consisting of CNN and LSTM layers

to capture temporal relations efficiently. We verified its effectiveness on three HAR

datasets and further analyzed the learned mapping function by visualizing the activ-

ity vectors in the representation space. The results show that the proposed model

can map the activity sequences into a space where the distance metric indicates the
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similarity of the activities. The learned distance metric can be applied with differ-

ent clustering algorithms and achieve state-of-the-art or comparable performance to

supervised methods.
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CHAPTER 3

Weakly Supervised Multi-Task Representation Learning for Human Activity

Analysis

3.1 Introduction

The increased availability of sensors embedded in the environment and worn

on the body opens up a vast potential to improve many aspects of life and the work-

place, including health management, assistive technology, and workplace safety and

efficiency. To realize this potential, it is essential to address the arising need for im-

proved human activity analysis from the sensor data stream. Many different methods

have been developed to address this need. While current machine learning (ML)

methods have achieved impressive results, most of these methods have limitations

in the following perspectives: (i) The methods focus on one aspect of the data by

either only recognizing the activity [3] or only identifying the person who performed

the activity [7]; (ii) Most current person identification methods are based on iris,

face, fingerprint or gait identification, in which specific input or activity is needed

from the user side [10, 9]; (iii) Pure supervised training of the model is used which

requires large amounts of labeled data [21], that is often hard to come by, especially

in personalized applications.

This paper presents an approach that attempts to mitigate these limitations.

Intuitively, different persons perform activities in different ways. Distinct personal

characteristics are commonly present in all the activities performed by the person.

Thus, identifying a person with different types of activities can generalize the model to

activity-based identification which does not need a specific user cooperation. More-
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over, from the multi-tasking perspective, sharing knowledge between related tasks

leads to learning generalized representations, helping to reduce the risk of overfitting

one specific task. Since human activity recognition (HAR) and person identifica-

tion are closely related, combining them into one multi-task model is reasonable and

can be beneficial for both tasks. Furthermore, while learning of a selective repre-

sentation is commonly achieved by supervised training, previous works in computer

vision [43, 25] have shown the possibility to achieve similar performance in a weakly

supervised manner while dramatically reducing the effort needed to obtain training

data.

Based on these observations, this paper proposes a unified deep learning archi-

tecture centered around siamese networks and temporal convolutions for simultaneous

HAR and activity-based person identification, which is trained using only the infor-

mation about the similarity of the activities and the persons without knowing the

explicit labels. In addition, we further expand the model to learn representations

for additional attributes in the data along with HAR and person identification. The

experiments show that our model is not restricted to any specific task, can be easily

expanded to other related tasks, and achieves competitive performance compared to

state-of-the-art methods , including fully supervised methods that take advantage of

additional, explicit labels, on several datasets.

3.2 Related Work

3.2.1 HAR and Person Identification

There are two main directions in wearable sensor-based HAR, either hand-

crafted feature based methods or deep neural network (DNN) based methods. Hand-

crafted features are designed with domain knowledge. For example, [36, 15] used
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statistical features, e.g. mean, variance and entropy, in their models. Features ex-

tracted from a wavelet transform were utilized in [19]. He and Jin [20] used features

extracted by applying discrete cosine transform. The advantage of these features is

that they can be derived from the signal easily and have been shown to be effective in

the HAR system. However, domain knowledge is required to design the features man-

ually. Recently, many HAR models adopt DNN to allow automatic feature extraction.

Morales and Roggen [21] proposed a model consisting of convolutional neural network

(CNN) and long short-term memory (LSTM) components. CNN is used here to cap-

ture local temporal relations while the memory states of LSTM ease the learning of

long time scale dependencies. In [40], a hybrid approach was proposed, which used

a deep belief network as an emission matrix of a hidden Markov model to model

the sequence of human activities. These methods can automatically extract features

from the data without any domain knowledge. But, they still require explicit labels

to supervise the training of the model.

Many person identification methods are based on iris, face, and fingerprint.

Those kinds of methods require specific cooperation or explicit action/input from the

user side, e.g. standing in front of a camera, looking at a specific point, etc. [44], while

gait recognition-based person identification, e.g. [9, 45, 8], enables an inexpensive,

convenient, and unobtrusive way to complete the task. However, gait-based methods

assume that walking is the only activity to be performed during the identification. In

many real-world applications, this assumption may not hold. There have been only

a few studies that are identifying the person based on various activities recorded by

sensors. Kwapisz, Weiss, and Moore [7] proposed a model which used handcrafted

features and decision trees. Their model addressed the biometric identification task by

analyzing four types of dynamic activities (walking, jogging, ascending and descending

stairs). Elkader et al [44] expanded the person identification method from a limited
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number of specific activities to a set of various normal daily activities. However, these

works still focus on only one aspect of the data.

The most closely related works are perhaps [46, 47]. In [46], Reddy et al. pro-

posed a method to first identify the person’s states: standing, sitting, or walking, then

separate SVM based models are used for identifying the person for each of the three

mentioned states. Hernandez, McDuff, and Picard [47] collected the experimental

data from a wrist worn smartwatch, and their proposed model identifies the person

and three static body postures (sitting, standing, and lying) at the same time. These

two works address two tasks, but their methods are based on a very small number of

simple activities.

3.2.2 Siamese Networks and Temporal Convolution Networks

We take inspiration from siamese architectures, and temporal convolutional net-

works (TCN) to design our model that can efficiently capture the temporal patterns

and compute the semantic similarity between the pairs of data sequences.

A siamese network [23] is a neural network with dual branches and shared

weights. As illustrated in Fig. 3.1, it processes an input pair {xa, xb} and yields

a pair of comparable representation vectors {Ha, Hb}. The distance between the

comparable representation vectors is then used as the semantic similarity of the input

pair. The siamese architecture is widely used in many domains. Originally [23], a

siamese network was used to verify signatures. Mueller and Thyagarajan [24] used a

siamese recurrent neural networks to measure the semantic similarity between a pair

of sentences. In [25], a siamese CNN is proposed to learn a complex similarity metric

for face verification. In other areas, the siamese architecture has been applied in

unsupervised acoustic model learning [26, 48, 49], image recognition [50] and object

tracking [43].
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Figure 3.1: The basic architecture of a siamese network.

Figure 3.2: The basic architecture of a temporal convolutional network (TCN).

As shown in Fig. 3.2, a TCN uses a hierarchy of convolutions to abstract the

temporal relations of the data stream at different time scales. It has been successfully

applied in many different areas, e.g., computer vision (video data stream), natural

language processing (speech or text data), etc. In [51], Oord et al. proposed a model

that can generate raw speech signals. In [52, 53], TCN has been used to segment and

detect action in the video. In [54], a character-level TCN is used to classify text.

3.3 Proposed Method

Our work differs from previous works in several important ways. First, unlike

most of the previous methods, our proposed model can identify the activity and the
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person simultaneously and can be systematically expanded to identify additional types

of attributes. Second, in comparison to most of the previous wearable sensor-based

person identification methods, which have been customized to either only focused

on gait information, or only used a limited number of dynamic activities or static

body postures, our model uses a task-agnostic structure and is here evaluated on

four diverse public datasets [55, 56, 15, 18]. These datasets, respectively, contain

12, 12, 7, or 6 types of different activities performed by 9, 10, 30, or 36 different

persons. This evaluation offers a more realistic and challenging scenario, and through

the use of a wider range of activities may lead to a more robust identification model.

Moreover, since in the daily routine of a person in real life many different activities

will be performed, an identification system that is restricted to a very small number

of activities might fail to work, and even in situations where it can still make correct

classifications can only take advantage of a small part of the available data. Finally,

our model, by taking advantage of the siamese architecture, can be trained in a weakly

supervised manner, hence no explicit labels are needed.

To achieve these capabilities, we frame the problem as learning an invariant

mapping that maps the input data sequence into a semantic representation space.

The learning process relies only on the relationship of the data sequences in the input

pair, therefore the learned model will map two data sequences either to the same area

in the representation space if the two data sequences are semantically similar, or to

different areas if the data sequences are semantically dissimilar. Formally, given a

pair of sensor data sequences {xa, xb}, the aim is to learn a mapping f that maps the

pair {xa, xb} into a representation space such that:

Hxa = f(xa) (3.1)

Hxb = f(xb) (3.2)
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The distance between the representation pair {Hxa , Hxb} approximates the se-

mantic similarity of the input pair {xa, xb}. Specifically, our proposed model learns

two such mappings:

fact :


xa → Hact

xa

xb → Hact
xb

(3.3)

fpers :


xa → Hpers

xa

xb → Hpers
xb

(3.4)

The mapping fact is based on the activity similarity of xa and xb, such that if

xa and xb belong to the same type of activity, then Hact
xa and Hact

xb
will stay together,

while Hact
xa and Hact

xb
will stay away from each other, if xa and xb are from different

types of activities. The mapping fpers is based on the performer of the activity,

such that if xa and xb are performed by the same person, then Hpers
xa and Hpers

xb
will

stay together, while Hpers
xa and Hpers

xb
will stay away from each other if xa and xb

are performed by different persons. The mappings fact and fpers preserve different

semantic relationships between the input data sequences. The proposed model learns

these two mappings at the same time.

3.3.1 TCN Blocks

Suppose, we are given a pair of sensor data sequences {xa, xb}: xa = (xa1 , ..., xaτ ′ )

and xb = (xb1 , ..., xbτ ′′ ), where τ ′ and τ ′′ denote the time length of the signals and

xat = [s1
t , ..., s

n
t ] is the n-dimensional sensor reading in sequence xa at time t. The

learned mappings are then defined as follows:

fact :


(xa1 , ..., xaτ ′ )→ Hact

xa

(xb1 , ..., xbτ ′′ )→ Hact
xb

(3.5)
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Figure 3.3: A TCN block with two convolutional layers.

fpers :


(xa1 , ..., xaτ ′ )→ Hpers

xa

(xb1 , ..., xbτ ′′ )→ Hpers
xb

(3.6)

The TCN architecture is adopted as the basic building block for abstracting

the sequence due to its ability to efficiently abstract time series data at different

time scales. As illustrated in Fig. 3.3, each TCN block is composed of a series of

transformations, which includes the dilated temporal convolutions with dilation rate

d, batch normalization, non-linearity g(·), and residual connection ⊕. Assume that

the proposed model contains a sequence of N TCN blocks where each block contains

L convolutional layers with m different feature maps of width k, and the parameters

of the feature maps are w. For the nth block, the input pn−1 is the max-pooled output

from the (n− 1)th block, and the temporal convolutions that we apply in each TCN

block to capture the patterns over the course of an activity are constructed from the

following components.
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3.3.1.1 Dilated Convolutional Layer

The advantage of dilated convolutions is that they support faster expanding

receptive fields without losing resolution or coverage [28]. Batch Normalization (BN)

is applied after each dilated convolutional layer and before the non-linear activation

function. BN can accelerate the learning process by reparameterizing the underlying

optimization problem to make it more stable and smooth [57]. Formally, in the lth

convolutional layer of the TCN block, the computation is then defined as follows:

h
(n,l)
t =


∑ k−1

2

i=− k−1
2

wi · pn−1
t−d·i, if l = 1.∑ k−1

2

i=− k−1
2

wi · ĥ(n,l−1)
t−d·i , otherwise.

(3.7)

ĥ
(n,l)
t = g(h

(n,l)
t ) (3.8)

where h(n,l) is the output of the convolutions and ĥ(n,l) is the output of the non-linear

activation function.

3.3.1.2 Residual Connections

The output of the TCN block, on, is the sum of the result of the last convolution

ĥ
(n,L)
t and the input of the block, pn−1. However, in TCN blocks, the shapes of the

input tensor and the output tensor can be different [58]. To address this problem, if

ĥ
(n,L)
t and pn−1

t have different shapes, a 1x1 convolution will be used as the residual

connection. Otherwise, an identity function will be used as the residual connection:

ont = ĥ
(n,L)
t ⊕ pn−1

t (3.9)
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Figure 3.4: A dual-output siamese networks.

The temporal max pooling with width 2 is used between two consecutive TCN

blocks to reduce the size of the time dimensions while introducing slight translational

invariance in time:

pnt = max(ont−1, o
n
t ) (3.10)

3.3.2 Multi-Output Siamese Networks

The architecture of the proposed model is outlined in Fig. 3.4. It contains two

networks TCNa and TCNb. Each network has n TCN blocks, shares the weights,

and processes one of the data sequences in the input pair {xa, xb}. In order to dis-

entangle the activity and person information extracted by the TCN networks, two

fully-connected (FC) layers are connected to the TCN networks and are responsi-

ble to process the activity representations {Hact
xa , H

act
xb
} and person representations

{Hpers
xa , Hpers

xb
}, respectively. The weights of the FC layers are shared within the same

representation learning task.

This model is trained using 4-tuples {xa, xb, yact, ypers}, where xa and xb are the

data sequences of the input pair. yact, ypers ∈ {0, 1} denote the semantic relationships
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of the input pair, where yact = 0 or ypers = 0 denotes that {xa, xb} is a semantically

negative pair, i.e. they are maximally dissimilar in terms of the corresponding prop-

erty. If yact = 0, xa and xb are different kinds of activities; if ypers = 0, xa and xb

are performed by different persons. yact = 1 or ypers = 1 denotes that {xa, xb} is a

semantically positive pair. If xa and xb are the same kind of activity, yact = 1; if xa

and xb are performed by the same person, ypers = 1.

3.3.3 Contrastive Loss Function

Given the input pair {xa, xb}, the model outputs a pair of activity represen-

tations, {Hact
xa , H

act
xb
}, and a pair of person representations {Hpers

xa , Hpers
xb
}. The loss

function used to train the model is also defined on the pairs. The similarity distance

Dists between the input pair is measured by the euclidean distance between their

representation pair:

Dists(xa, xb) = ||Hxa −Hxb ||2 (3.11)

To make the notation clearer, Dists(xa, xb) is rewritten as D. Then the loss function

for each of the categorizations used for training is defined as:

L(xa, xb, y) =
N∑
i=1

Li(xia, x
i
b, y

i) (3.12)

Li(xia, x
i
b, y

i) = yiLs(x
i
a, x

i
b) + (1− yi)Ld(xia, xib) (3.13)

where (xia, x
i
b, y

i) is the i-th sample in the data set. Ls, Ld are the loss terms for the

positive pair (y = 1) and the negative pair (y = 0). The forms of Ls, Ld are given by:

Ls =
1

2
(D)2 (3.14)

Ld =
1

2
{max(0, δ −D)}2 (3.15)

where δ is a margin hyperparameter. It defines that the negative pairs contribute to

the loss function if their distance is smaller than the margin δ. Then, the loss function
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is applied in each representation space, and the weighted sum of the loss function in

each representation space is defined for the final multi-task model (α and β are the

corresponding weights for each task):

L(xa, xb, y
act, ypers) =

α · Lact(xa, xb, yact) + β · Lpers(xa, xb, ypers)
(3.16)

To train the network, we use the standard backpropagation algorithm with stochastic

gradient descent. All the parameters are initialized to small values. The start learning

rate is lr = 0.05 and an exponential decay function is applied to the learning rate

every 10000 steps with a decay rate of 0.95. The network is tested on validation data

after each epoch. If the validation error stopped decreasing for a predefined number

of epoch, training is finished.

3.3.4 Cluster Construction

After all the parameters are learned, we can use the trained model to provide

metrics for a wide range of different clustering algorithms. Because the trained model

can map the data sample x into the representation space, where the representation

vector H is positioned such that data with the same semantic meaning are located

close to each other, clusters in this space should capture the corresponding property.

More specifically, in our experiments, the trained model maps the data samples into

the activity representation space and the person representation space. In the activ-

ity representation space, the data samples will be grouped into clusters according

to the activity type. In the person representation space, the data samples will be

grouped into clusters according to the identity of the person. Hence, after mapping

the data samples to the more clustering-friendly representations, different cluster-

ing algorithms can be used on these learned representations. In our experiments,

K-means is employed as the clustering method.
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3.4 Evaluation and Experiments

In order to evaluate the effectiveness of the proposed model, we use four public

datasets that contain raw sensor data sequences of different human activities per-

formed by different persons. We conduct activity clustering and person clustering on

the learned representations as described in Section 3.3.4.

3.4.1 Datasets

The datasets used here are selected from widely used benchmark datasets [59]

as the ones that contain a good number of different persons performing numerous

diverse activities. Those datasets are recorded by various sensors, e.g. accelerometer,

gyroscope, magnetometer etc, and include human activities in different scenarios. All

the sensor data sequences are segmented with a sliding window as described with

each of the datasets below.

The PAMAP2 dataset is collected from 9 participants performing 12 activities

over a total of 10 hours. It includes sport exercises (rope jumping, nordic walking etc),

and household activities (vacuum cleaning, ironing etc). One heart-rate monitor and

three inertial measurement units (IMUs) located on the chest, dominant wrist and

ankle were used to record the heart rate, accelerometer, gyroscope, magnetometer,

and temperature data. We replicate previous work [37, 4] to downsample the data

from 100Hz to 33.3Hz, and use a sliding window of 5.12 seconds with one second step

size.

The MHEALTH dataset contains data recorded from 10 volunteers carrying

out 12 physical activities, including primitive body parts movements (waist bends

forward, frontal elevation of arms etc), and composite body movements (cycling,

jumping front and back etc). The data is collected by using three sensors placed

on the subject’s chest, right wrist and left ankle to record accelerometer, gyroscope,
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and magnetometer signals. The chest sensor also records 2-lead ECG signals. The

sampling rate of all sensing modalities is 50Hz. As in previous work [60], we use a

sliding window of 5 seconds with a step size of 2.5 seconds.

The SBHAR dataset provides data gathered from 30 participants performing

6 basic activities, such as walking and lying, and 6 postural transitions, such as stand-

to-sit, sit-to-lie. In our experiment, we consider all the postural transitions as one

general transition. The data was collected by placing a smartphone on the waist of

the participant, and the inertial sensors in the smartphone were used to record the

accelerometer and gyroscope data at a sampling rate of 50Hz. As used in the previous

work [15], we use a sliding window of 2.56 seconds with a step size of 1.28 seconds.

The WISDM dataset contains data collected with one accelerometer in a

smartphone from 36 volunteers carrying out 6 activities, including jogging, climb-

ing stairs, etc. The sampling rate is 20Hz. We use the same settings as used in [18]

to set the sliding window size to be 10 seconds without overlap.

3.4.2 Performance Metrics

To compare with previous works, we use mean F1-score (Fm) and clustering

accuracy as the metrics. Fm is defined as follows:

Fm =
2

|C|

C∑
i=1

Precisioni ·Recalli
Precisioni +Recalli

(3.17)

where i = 1, . . . , C is the set of classes. For the given class i, Precisioni = TPi
TPi+FPi

,

Recalli = TPi
TPi+FNi

; TPi and FPi denote the number of true positives and false posi-

tives, and FNi is the number of false negatives.
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Table 3.1: Results on PAMAP2 in terms of Fm

Methods Activity Person
LSTM-F [4] 0.9290 -

CNN [4] 0.9370 -
DNN [4] 0.9040 -

PCA + k-Means 0.4244 0.2040
3-NN - 0.9416
5-NN - 0.9014

Decision Tree - 0.9781
Proposed Multi-Task Method 0.9893 0.9881

Table 3.2: Results on MHEALTH in terms of Accuracy

Methods Activity Person
CNN-1D [61] 0.9809 -
CNN-2D [61] 0.9829 -
CNN-pff [62] 0.9194 -

PCA + k-Means 0.4850 0.2361
3-NN - 0.8540
5-NN - 0.8380

Decision Tree - 0.6714
Proposed Multi-Task Method 0.9957 0.9948

3.4.3 Results

We used the same model architecture with 3 TCN blocks across all the ex-

periments. A shorthand description of the shared layers is: TCN (128) − P− TCN

(128)−P− TCN (128), where TCN(128) denotes a TCN block with 128 feature maps,

and P a max-pooling layer. The internal structure of a TCN block is the same as

Table 3.3: Results on SBHAR in terms of Accuracy

Methods Activity Person
Probability SVM [15] 0.9580 -

Probability SVM with Filter [15] 0.9678 -
CNN [41] 0.9870 -

PCA + k-Means 0.5282 0.1299
3-NN - 0.5330
5-NN - 0.5123

Decision Tree - 0.4957
Proposed Multi-Task Method 0.9885 0.8892
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Table 3.4: Results on WISDM in terms of Accuracy

Methods Activity Person
CNN with partial weight sharing [3] 0.9688 -

DBN+HMM [40] 0.9823 -
CNN+stat. features [6] 0.9332 -

Neural Net∗ [7] - 0.6950
Decision Tree∗ [7] - 0.7220
PCA + k-Means 0.5181 0.2430

3-NN - 0.2651
5-NN - 0.2470

Decision Tree - 0.2189
Proposed Multi-Task Method 0.9576 0.8112

∗ Experiment results based on 4 activities.

illustrated in Figure 3.3. In addition, above the last TCN block, one FC layer with

256 hidden nodes is used for each single representation learning task.

The experimental results are summarized in Tables 3.1, 3.2, 3.3, and 3.4. In

addition to previous published works which use fully supervised learning, we also used

principal components analysis (PCA), k-nearest neighbors (k = 3, 5), and a decision

tree algorithm (C4.5) as baselines. As shown in the result tables, our proposed multi-

task method achieved competitive performance on both tasks compared with the

supervised single-task approaches in most situations. Since most previous methods

were applied only to one of the tasks, only the performance results for that task are

listed in the tables.

3.4.4 Visualization and Analysis

To further analyze the representations learned by the proposed multi-task method

and compare it with other embedding techniques, we used t-sne [42] to visualize the

activity and person representation spaces. Due to the space limitation, we only list

the visualizations of the proposed multi-task method and PCA on two representative

datasets: PAMAP2 and SBHAR. PAMAP2 contains complex activities, which makes
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Figure 3.5: Visualizations on the activity aspect of PAMAP2.
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Figure 3.6: Visualizations on the person aspect of PAMAP2.

it difficult to model. SBHAR contains unbalanced class numbers in the two aspects

of the data. In particular, it includes 30 persons who perform 7 activities, which leads

to unbalanced sample sets across the two tasks in that there are significantly fewer

data samples for the person classes than for the activity classes. This, in turn, leads

to bias and difficulties learning these two highly unbalanced tasks simultaneously.

In Fig. 3.5, 3.6, 3.7 and 3.8, different colors denote different true semantic labels

in the datasets. From these figures, we can reach the following conclusions: (i) The

proposed multi-task method can effectively disentangle different semantic representa-

tions from the data. (ii) The learned representation clusters are compact and clearly

separated in each representation space. Thus, downstream tasks like clustering can

benefit from it and achieve promising performance. (iii) For those datasets that con-
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Figure 3.7: Visualizations on the activity aspect of SBHAR.
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Figure 3.8: Visualizations on the person aspect of SBHAR.

tain unbalanced class numbers in different aspects of the data, the qualities of the

learned representations are also unbalanced. For example, in Fig. 3.7 and 3.8, the ac-

tivity representations are more compact within the same cluster, and different clusters

are clearly separated with each other. But in the person representation space, some

data samples stay away from their corresponding clusters, and some clusters stay

relatively close to each other. The imbalance is also reflected on the performances.

As shown in Table 3.3, the accuracy on the activity recognition task is 10% higher

than on the person identification task.

After evaluating the effectiveness of the learned representations for each task, we

also visualize the output from TCN, which we consider a more general representation

because it is learned by the shared layers in the model without aiming at any specific

task. As shown in Fig. 3.9(a), 3.9(b), the general representations form a two-level
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Figure 3.9: Visualizations on the general representations of PAMAP2.

structure. At the higher level, illustrated in Fig. 3.9(a), the clusters are grouped in

accordance with the identity of the persons. At the lower level, shown in Fig. 3.9(b),

in each person’s cluster, different activities are further grouped into different smaller

sub-clusters.

3.4.5 Ablation Studies

As the experimental results in Section ?? show, the proposed multi-task model

can learn the two related tasks (activity recognition and person identification) suc-

cessfully. To further understand the effect of the multi-task training framework, a

series of ablation experiments are performed to separately measure the influence of

multi-task learning. In the ablation experiments, the original objective of the multi-

task learning is transformed into two separate objectives and two separate single-task

learning models are built based on the same underlying siamese network architecture.

Thus, each single-task model is trained to learn only one task, namely activity recog-

nition (AR) or person identification (PI). Comparing these to the model trained using

multi-task data should provide insight into the benefit of multi-task training and thus

any cross-fertilization occurring between the two tasks. The experiment results of the

ablation studies are provided in Table 4.5.
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Table 3.5: Ablation studies on effect of multi-task learning.

Methods Activity Person
PAMAP2

Single-Task Model AR 0.9856 −
Single-Task Model PI − 0.9812

Proposed Multi-Task Method 0.9893 0.9881
MHEALTH

Single-Task Model AR 0.9756 −
Single-Task Model PI − 0.9889

Proposed Multi-Task Method 0.9957 0.9948
SBHAR

Single-Task Model AR 0.9436 −
Single-Task Model PI − 0.8138

Proposed Multi-Task Method 0.9885 0.8892
WISDM

Single-Task Model AR 0.9629 −
Single-Task Model PI − 0.8080

Proposed Multi-Task Method 0.9576 0.8112

As shown in Table 4.5, expanding the model from single-task learning to multi-

task learning does not cause performance loss and degradation in most cases. On the

contrary, the performance of multi-task training is most of the time better than the

one of the single-task models. The only exception here is in the case of the WISDM

dataset where a small drop in accuracy for activity recognition goes along with an

increase in accuracy for person identification. One possible reason is that the WISDM

dataset is collected with one single accelerometer with a relatively low sampling rate,

providing significantly less data per time unit compard to the other datasets. Due to

this, the time window used in this dataset is also significantly longer (10 s), leading

to a much coarser grained set of labeled data points, making it potentially harder

to arrange them in spaces that clearly separate them based on multiple semantic

criteria due to the larger amount of overlap in the data. As a result, it might be

the case here that the data does not contain sufficient information for learning the

more complex multi-task model, necessitating the observed trade-off between activity
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Figure 3.10: Generation of data with partial similarity information from the original
data for partial information experiments.

recognition and person identification. However, it is important to note here that the

drop in activity recognition performance is relatively limited and smaller than the

obtained gain in person identification accuracy. This result confirms the assumption

that activity recognition and person identification are closely related tasks, thus,

sharing knowledge and learning a generalized representation between them can be

beneficial for both tasks.

3.4.6 Multi-Task Learning with Partial Similarity Information

Having analyzed the effect of the multi-task framework, we now consider an-

other, more challenging scenario. Previous experiments are all based on the assump-

tion that the similarity information of the activity types and the person identities

is fully visible to the model. However, in many real world applications it will be

impossible for the model to have complete and perfect information about the sim-

ilarities between all data items and for all attributes of interest. Therefore, in this

section, another additional constraint is imposed on the proposed multi-task method.

We conducted experiments where the model is trained with only partial observations

of the similarity information about the data. To be more specific, as illustrated in

Fig. 3.10, we divided the dataset into two parts of equal size. One part of the data

only provides the similarity information of the activity types, while the other part
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of the data only provides the similarity information of the person identities. It is

important to note here that this implies that no single data item in the training set

contained similarity information for both tasks and this can thus be seen as similar to

a case where data was separately collected for the two tasks and no re-assessment of

the similarity for the other task was performed after collection. Then, the proposed

multi-task method is trained to learn both AR and PI tasks with this data. The

experimental results are summarized in Table 3.6.

Table 3.6: Multi-task learning with partial similarity information.

Methods Activity Person
PAMAP2

Single-Task Model AR 0.9856 −
Single-Task Model PI − 0.9812

Proposed Multi-Task Method with Complete Similarity Information 0.9893 0.9881
Proposed Multi-Task Method with Partial Similarity Information 0.9849 0.9879

MHEALTH
Single-Task Model AR 0.9756 −
Single-Task Model PI − 0.9889

Proposed Multi-Task Method with Complete Similarity Information 0.9957 0.9948
Proposed Multi-Task Method with Partial Similarity Information 0.9744 0.9643

SBHAR
Single-Task Model AR 0.9436 −
Single-Task Model PI − 0.8138

Proposed Multi-Task Method with Complete Similarity Information 0.9885 0.8892
Proposed Multi-Task Method with Partial Similarity Information 0.9618 0.8247

WISDM
Single-Task Model AR 0.9629 −
Single-Task Model PI − 0.8080

Proposed Multi-Task Method with Complete Similarity Information 0.9576 0.8112
Proposed Multi-Task Method with Partial Similarity Information 0.9509 0.7791

As shown in Table 3.6, for both tasks, despite the data only containing partial

similarity information for the multi-task model and thus only providing information

regarding one task from each sample, the performance of the multi-task method is

relatively close to the performance of the multi-task method using the complete sim-

44



ilarity information for each data item and outperforms a few single-task learners

trained on the data with full information from the ablation study. This indicates

that our proposed method, which is trained to learn both tasks with partial simi-

larity information is capable of effectively utilizing cross-task information to achieve

performance that is competitive with other models trained with complete similarity

information for all tasks.

It is worth to mention that one of the reasons for the model performance loss on

SBHAR and WISDM is that these two datasets contain unbalanced class numbers,

SBHAR contains 30 persons performing 7 activities and WISDM contains 36 persons

performing 6 activities. This leads to the situation where each person class has

significantly fewer data samples than an activity class. Moreover, when the datasets

are divided into two parts of equal size, each part only contains partial information

of the data, and this further reduces the size of the data samples that can be used

for the PI task learning. Therefore, without enough training data, the performance

of the model will be degraded.

3.4.7 Attribute Representation Learning

In order to evaluate the scalability and robustness of the method, we also ex-

panded the proposed multi-task model to include additional attribute representation

learning. We selected PAMAP2 to evaluate the expanded model, because this dataset

provides extra attributes of the data that the model can learn. Here, we choose the

gender of the person attribute as another representation learning task. The expanded

model is illustrated in Fig. 3.11 and shows the simplicity of expanding the proposed

network to include additional representation and similarity learning tasks.

The experiment results are summarized in Table 3.7. As we can see from the

table, the expanded model works well on all three tasks. Three types of different
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Figure 3.11: A tri-output siamese network.

Table 3.7: Results of proposed multi-task method on PAMAP2 with attribute repre-
sentation learning in terms of Fm

Methods Activity Person Gender
Single-Task Model AR 0.9856 − -
Single-Task Model PI − 0.9812 -

Single-Task Model Gender − − 0.8678
Proposed Multi-Task Method with Dual-Output 0.9893 0.9881 -
Proposed Multi-Task Method with Tri-Output 0.9798 0.9827 0.8637

semantic representations are learned successfully. However, the unbalanced perfor-

mance is also presented in this model, i.e. the performance on gender attribute

learning is around 11% lower than the performances on the other two tasks.

3.5 Conclusions and Future Work

In this paper, we propose a weakly supervised multi-output representation

learning approach that is built around a siamese architecture consisting of temporal

convolutions to capture multiple semantic similarities in the data simultaneously. The

clustering results on the learned representations achieved promising performance and

even outperformed supervised models in most situations. The visualization analysis
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demonstrates that the proposed approach succeeds in disentangling the semantic rep-

resentations, while preserving the similarity metrics in all the representation spaces.

Moreover, a series of ablation studies analyzed the effect of the multi-task framework

and showed that the use of multi-task training in this architecture most of the time im-

proves performance over single task training, thus illustrating the frameworks ability

to efficiently share information between the tasks. Additional experiments showed

that the proposed method can also be applied to data with only partial similarity

information, can be expanded to learn new, additional task easily, and achieve com-

petitive results in both cases. The comprehensive experiments give useful insights for

the proposed multi-task method. Future work will be focused on designing a method

that learns to adapt to the unbalancing aspects in the data automatically.
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CHAPTER 4

Unsupervised Embedding Learning for Human Activity Recognition

4.1 Introduction

The typical process of sensor-based human activity recognition (HAR), as shown

in Figure. 4.1, consists of three important stages: data segmentation, feature extrac-

tion, and recognizing the type of the activity. Extensive studies have been conducted

in all the stages of the HAR process [16]. However, existing HAR methods rely heavily

on labeled data to supervise the model training and to perform the recognition [40],

thus a huge challenge for HAR system is collecting annotated data. In the meantime,

more and more wearable devices, smartphones, smart watches, etc., are used in peo-

ple’s daily lives. These wearable devices are usually equipped with various sensors,

such as accelerometers, gyroscope, GPS sensors etc., which can provide a massive

amount of unlabeled sensor activity data. Due to the above mentioned facts, most

of the existing HAR systems can not take advantage of the accessible unlabeled data

efficiently. Therefore, we aim at developing an unsupervised method to leverage the

unlabelled data to recognize the physical activities without requiring the labels.

The Autoencoder (AE) [63] is an unsupervised learning framework to find ef-

ficient encodings of data. It encodes important features of the inputs into a hidden

representation, and then reconstructs the inputs based on their hidden representa-

tions. It is applied for dimension reduction, deep hierarchical model pre-training etc.

Because of its simplicity and efficiency, we also design our model based on the AE

architecture. Yet only using reconstruction to guide the learning can lead the AE
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to encode a significant amount of unnecessary information, such as task-irrelevant

information, or even destructive information, such as noise.

Motivated by this observation, our approach utilizes the intrinsic properties

of the sensor activity data to project the data into a clustering-friendly embedding

space. Two fundamental observations contribute to the design and formation of this

space.

Firstly, slow feature analysis [11] finds that many properties in the real world

change slowly over time. Physical objects have inertia and their states usually change

gradually and infrequently. This rule also applies to human activity. In most situa-

tions, the period of a person performing an activity will take a a relatively significant

amount of time. It is rare that a person will switch between different activities very

frequently. On the other hand, while during the course of an activity the type of

the activity remains the same, the body pose of the activity varies over the time.

Hence, we include the temporal coherence property in the loss function, which al-

lows the model to learn the essential features of the activity and ignore the irrelevant

temporal details in the body pose.

Secondly, distinct activity and person characteristics are commonly co-present

in the sensor data. For the HAR task, only the activity characteristics are relevant.

For example, two persons can walk in two different styles, but people can still identify

they are performing the same type of activity: walking, because the activity-relevant

characteristics are used in the recognition process and the irrelevant person charac-

teristics are disregard. Based on this property, another local neighborhood based

objective function, which aims at removing irrelevant personal or individual details

in the data, is used to guide the learning of the model.
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Figure 4.1: The typical process of HAR.

4.2 Related Work

Many works have been proposed to recognize human activity with wearable

sensor data. As illustrated in Figure. 4.1, the first step in HAR is to segment the

sensor data sequence. One common method used to segment the sequence is to use

a sliding window [2] . We also adopted this method in our model for its simplicity

and tractability. Feature extraction and recognition are conducted on the segmented

data. To recognize the activity type, discriminative features are needed. They can

be designed with domain knowledge or extracted automatically using, for example,

neural networks (NN) [64].

Handcrafted features, when designed properly, have proven to be very useful

in HAR systems. In [18], statistical features are derived from the time series sensor

data. In [20] and [19], discrete cosine transform and wavelet transform are used to

convert the sensor signal from the time domain into the transformed domain. Then

features derived from the transformed domains are applied in the recognition process.

With the development of more competent deep learning techniques, and in

particular NNs, automatic feature extraction has become another effective way to

obtain discriminative features. In [40], a deep belief network was used as the emission

matrix of a hidden Markov model. In [21] and [3], convolutional neural networks and

recurrent neural networks are employed to extract the features and recognize the type

of the activity.

However, the features derived by these methods are then applied in a subsequent

supervised model learning phase [65] because they are usually not sufficient for direct
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Figure 4.2: The overall architecture of the approach.

use in an unsupervised model. There are only a few works that are recognizing the

activity type in an unsupervised manner. An variational AE is used in [66] to compress

the sensor data into meaningful features. In [67], a protein interaction method was

used to cluster the activity data. In [68], a set of time-frequency domain features are

adopted, and unsupervised methods, in particular DBSCAN and mixture of Gaussian

are used to cluster five basic activities.

4.3 Approach

Our approach differs from other works by using the aforementioned properties

with regard to the nature of the activities. Specifically, our approach attempts to

leverage two types of relationships: the temporal coherence of time series data, and

locality preservation in the feature space.

4.3.1 Architecture

As shown in Fig.4.2, the foundation of the overall architecture of our approach

is an AE framework. It consists of two parts: an encoder, and a decoder. The encoder
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defines the transformation: E(·), which transforms the input data sample xi to the

representation E(xi); and the decoder defines another transformation: D(·), which

attempts to reconstruct the original input xi based on the its representation E(xi):

x̃i = D(E(xi))

where, x̃i is the reconstructed input. In the traditional AE, the loss function of one

data sample can be defined as:

Φae(xi) = ||xi − x̃i||2

where ||·|| denotes the Euclidean distance. This loss function forces the reconstruction

x̃i to be as similar as possible to the original input xi. If a good reconstruction x̃i

can be decoded from the representation E(xi), it means the representation E(xi)

has retained much of the information that is important in the input xi, so that the

reconstruction x̃i can be very similar to the original input xi. Thus the representation

E(xi) can be used in other tasks, such as classification or clustering.

However, merely retaining information for reconstruction is usually not enough.

The aim of the traditional AE is to learn a representation E(xi) that contains suf-

ficient information to reconstruct the input, so an exact reconstruction also means

to reconstruct noise and all the details in the input data. But not all the informa-

tion in the learned representation is relevant to the subsequent task (e.g. noise as

well as some task-irrelevant details might not only be unnecessary but could even

be detrimental, especially in the context of subsequent clustering). Therefore, more

task-oriented loss functions are imposed in our approach to guide the learning of the

AE and make the learned representations more useful in the subsequent clustering

task.
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4.3.2 Temporal Coherence

Intuitively, a human activity can be decomposed into two components, a tempo-

rally varying component and a temporally stationary component. Specifically, certain

dynamic properties of a single activity can vary over the time. For example, while

walking the body pose varies over time: left foot and right foot alternatively step

forward. This type of dynamic property is recorded in the sensor data too, and we

refer it here as the temporally varying component. On the other hand, no matter

how the body pose varies over the time, the semantic content of the activity remains

the same. Namely, left foot and right foot can step forward alternatively, but the

type of the activity is still walking. We refer this part as the temporally stationary

component.

Based on this nature of the human activity, the temporal coherence loss forces

temporally close data samples to be similar to one another, and ignore the difference

in the temporal varying component. It is motivated by the intention that the semantic

content, i.e. the type of the activity, in which we are interested, should vary relatively

infrequently over time. If the data samples are temporally close to each other, they

may represent the same type of activity, even as they may be very distant in terms

of the Euclidean distance in the sensor data space. The temporal coherence loss

preserves the temporal continuity of the sensor data.

More formally, let xti denote a data sample i, which occurs at time t during the

course of an activity. Let M t
i denote the index set of m temporal neighbors, xj, of

xti. Then the temporal coherence loss Φtc for xti is defined as:

Φtc(x
t
i) =

1

m

∑
j∈Mt

i

||xj − x̃ti||2
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The temporal coherence loss encourages the reconstruction x̃ti to be similar

to its temporal neighbors so that the encoder can extract useful features from the

temporally stationary component and ignore irrelevant time varying details.

4.3.3 Locality Preservation

Locality preservation is inspired by the observation that different persons per-

form the same type of activity in different fashions, but different fashions don’t hinder

other people to identify the activity type. Hence we assume that the personal or in-

dividual features in the activity data may not be necessary in the activity clustering

stage, and the features, which are commonly present across multiple data points, may

be the essential features of the activity. The locality preserving loss function is based

on this assumption.

In past research works, the combination of carefully designed handcrafted high

level features to represent the main characteristics of a temporally varying signal

value, and of the k-Nearest Neighbor algorithm proved to be a powerful method to

classify the sensor data of human activities [55]. Due to its effectiveness and simplicity,

it is employed in this approach to define the local neighborhood of a data sample.

The locality preserving loss then aims to preserve the high level feature characteristics

that are generally present in the local neighborhood.

The locality preserving loss forces the decoder to decode a data sample by using

the learned representation of its nearby data samples. The rationale here is that if

the data samples are close to each other in the handcrafted feature space, they may

represent the same type of activity. Thus the features shared across multiple nearby

data samples should be the essential features of that type of activity. If the features

do not exist in all the nearby data samples, then the features may represent personal

or individual features, but not activity features.
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Formally, let xfi denote data sample i in the feature space, and
˜
xfi the recon-

struction of xfi . Let N f
i denote the index set of n local neighbors, xk, of xfi in the

handcrafted feature space. Then the locality preserving loss Φlp for xfi is defined as:

Φlp(x
f
i ) =

1

n

∑
k∈Nf

i

||xk − ˜
xfi ||2

The locality preserving loss forces the model to recover data sample xk with the

representation of its nearby point xfi . It drives the encoder to encode the informa-

tion that has generally occurred across the neighborhood and to disregard individual

features of single samples.

4.3.4 Joint Loss Function

The joint loss function is the sum of the temporal coherence loss and the locality

preserving loss. It is used to train the model and is defined as follows:

min
S∑
i=1

(1− α− β)Φae(xi) + αΦtc(x
t
i) + βΦlp(x

f
i )

where i is the index of the sample, S is the size of the dataset, α and β are the

parameters to balance the contribution of Φae, Φtc, and Φlp. While Φtc and Φlp

preserve more task relevant information in the representation, the Φae component is

also necessary in the learning process because without the reconstruction loss Φae,

the risk of learning trivial solutions or worse representations will be increased [69].

4.3.5 Feature Extraction

After the description of the proposed model, this section focuses on the features

used in the experiments. In the feature extraction stage, the segmented raw sensor

signals are converted into the feature vectors. Formally, let ri denote the sample i in
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Table 4.1: List of the used statistical features.

Feature extraction function Description

mean(ri) = 1
N

∑N
j=1 rij Mean

var(ri) = 1
N

∑N
j=1(rij −mean(ri))

2 Variance

std(ri) =
√
var(ri) Standard deviation

median(ri) Median values
max(ri) Largest values in array
min(ri) Smallest value in array

iqr(ri) = Q3(ri)−Q1(ri) Interquartile range

the set of the segmented raw sensor signals, xi the converted feature vector, C the

feature extraction function. Then the feature extraction can be defined as:

xi = C(ri)

The xi is used as the input to the proposed model. Table 4.1 illustrates the statistical

high level features that are used in the proposed approach. Mean, variance, stan-

dard deviation, median, which are the most commonly adopted features in the HAR

research works, are used in the approach. In addition, some other features, which

have been shown to be efficient in previous works [15], are included here as well. For

example, the feature interquartile range (iqr), Quartiles (Q1, Q2 and Q3) divide the

time series signal into quarters. And iqr is the measure of variability between the

upper and lower quartiles, iqr = Q3 −Q1.

All these features are computed for each axis separately. Since the data from

different sensors is synchronized, combining different sensor data is achievable. In

the training process, the proposed model takes these derived features as input and

learns to retain the task-relevant information in the features, and to disregard the

unnecessary task-irrelevant parts.
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4.3.6 Cluster Construction

To train the network, the standard backpropagation algorithm with stochastic

gradient descent is used. All the weights are initialized to small values and the network

is evaluated on the validation data after each epoch. When the validation error stops

decreasing for a predefined number of epochs, the training process is complete.

After the learning process to establish the hidden representation within the AE

architecture, the trained model (i.e. the encoder of the architecture) can project the

input data sample x into a clustering-friendly embedding space. More specifically,

with the temporal coherence loss and the locality preserving loss, the encoder in

the model is learned to encode the essential features across multiple data samples

and disregard individual or temporal details that are irrelevant to the clustering

task. The learned representations are evaluated in the subsequent clustering task.

k-means (KM), which is arguably the most popular clustering algorithm, is used in

the experiments. The number of clusters is chosen to be the true number of classes

in each dataset.

4.4 Evaluation and Experiments

To evaluate the proposed network, three publicly available benchmark datasets,

which contain wearable sensor data of different human activities, are used in the ex-

periments to verify the effectiveness of the approach. The architecture of our approach

for the three datasets is summarized in Table 4.2. The activation function used in

the model is LeakyReLu.
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Table 4.2: The architecture of our approach for different datasets. Here, only the
architecture of the encoder is shown. The decoder reverses the encoder.

Dataset The number of neurons in each layer
PAMAP2 Input - 128 - 64

REALDISP Input - 256 - 128
SBHAR Input - 30 - 20

4.4.1 Datasets

The three HAR datasets used here are PAMAP2 [55], REALDISP [70], and

SBHAR [36]. We use five-fold cross-validation to measure performance and all the

sensor data sequences are segmented with the sliding window method.

PAMAP2 is collected from 9 participants performing 12 activities using 3 iner-

tial measurement units placed on the wrist, chest and ankle. The dataset contains

data of sport exercises (rope jumping, nordic walking etc.), and household activities

(vacuum cleaning, ironing etc.). During the experiments, heart rate, accelerometer,

gyroscope, magnetometer, and temperature data is recorded. In accordance with pre-

vious research on this dataset, a sliding window of 5.12 seconds with one second step

size is used to segment the data.

REALDISP is recorded from 17 volunteers carrying out 33 activities using 9

sensors placed on both arms, both legs, and the back. Each sensor provides acceler-

ation, gyroscope, magnetic field orientation and quaternions. This dataset contains

data of fitness exercises, warm up, and cool down. The sliding window used here has

a size of 2 seconds without overlapping.

SBHAR is gathered from 30 participants performing 6 basic activities, such

as walking, lying, and 6 postural transitions, such as sit-to-lie, sit-to-stand. In our

experiments, all the postural transitions are treated as one general transition. The

dataset was collected by using a smartphone placed on the waist of the participants.
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The data is segmented using a sliding window of 2.56 seconds with a step size of 1.28

seconds.

4.4.2 Validation Metrics

Three evaluation metrics are adopted to measure the performance of the ap-

proach: clustering accuracy (ACC), adjusted Rand index (ARI), and normalized

mutual information (NMI). The ARI and NMI are computed as follows:

ARI =

∑
ij

(
nij
2

)
− [
∑

i

(
ni
2

)∑
j

(
nj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ni
2

)
+
∑

j

(
nj
2

)
]− [

∑
i

(
ni
2

)∑
j

(
nj
2

)
]/
(
n
2

)

NMI =

∑
i

∑
j nijlog(

n·nij
ni·nj )√∑

i nilogni
n

∑
j njlog

nj
n

where nij is the number of samples in cluster i and class j, ni is the number of samples

in cluster i formed using the unsupervised appraoch, nj is the number of samples in

class j as indicated by the labels in the dataset, and n is the number of samples.

4.4.3 Results and Analysis

Our proposed approach is a domain-specific extension based on traditional AE,

so we compare the performance of the proposed method with the traditional AE and

principal components analysis (PCA). The results of the experiments are summarized

in Table 4.3.

As shown in the table, our approach achieves improved results over all three

datasets. KM is applied in the embedding space. The number of clusters is chosen

manually, and different cluster numbers are tested. The true number of classes in

each dataset is used as the basis: tn. The results show that our approach can derive

meaningful features to the subsequent activity clustering tasks. Figure. 4.3 and
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4.4 also show and compare the performance of the traditional AE and the proposed

approach by means of confusion matrices.

Table 4.3: The comparison between the proposed unsupervised approach and other
unsupervised methods on the wearable sensor-based human activity datasets.

Methods ACC ARI NMI
PAMAP2

PCA + KM 0.6993 0.6440 0.7905
AE + KM 0.7706 0.6862 0.7994

Proposed Method + KM (tn) 0.8543 0.8016 0.8730
Proposed Method + KM (tn+ 1) 0.8622 0.8089 0.8898
Proposed Method + KM (tn+ 2) 0.9211 0.8288 0.8909
Proposed Method + KM (tn+ 3) 0.9150 0.8590 0.9144

REALDISP
PCA + KM 0.5723 0.4035 0.6890
AE + KM 0.6401 0.5446 0.7764

Proposed Method + KM (tn) 0.6812 0.6051 0.8043
Proposed Method + KM (tn+ 1) 0.6829 0.6062 0.7965
Proposed Method + KM (tn+ 2) 0.7057 0.6349 0.8215
Proposed Method + KM (tn+ 3) 0.7149 0.6508 0.8282

SBHAR
PCA + KM 0.6589 0.5784 0.7194
AE + KM 0.6369 0.5090 0.7048

Proposed Method + KM (tn) 0.7401 0.6343 0.7569
Proposed Method + KM (tn+ 1) 0.7596 0.6718 0.7982
Proposed Method + KM (tn+ 2) 0.8018 0.6548 0.7552
Proposed Method + KM (tn+ 3) 0.8073 0.6645 0.7652

In addition, Table 4.4 shows the comparison between the best results from our

unsupervised approach and the results from previous published supervised methods

on these three datasets. Note that, because ARI and NMI are metrics used to measure

the performance of clustering algorithms, only ACC is adopted here to compare the

results. As shown in the table, supervised methods can still achieve much better

performance than unsupervised methods, but, as discussed before, the labeled data

is usually difficult to acquire.

The results of the experiments show the efficiency of the approach, but we

also noticed some inaccuracies introduced by this approach. One problem is locality
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Table 4.4: The comparison between the proposed unsupervised approach and other
supervised methods on the wearable sensor-based human activity datasets.

Methods ACC
PAMAP2

Probability SVM with Filter [15] 0.9304
Decision Tree (C4.5) [71] 0.9709

Boosted C4.5 [71] 0.9980
Proposed Method + KM (tn+ 2) 0.9211

REALDISP
Probability SVM with Filter [15] 0.9952

kNN [70] 0.9600
Proposed Method + KM (tn+ 3) 0.7149

SBHAR
Probability SVM with Filter [15] 0.9678

CNN [41] 0.9870
Proposed Method + KM (tn+ 3) 0.8073

preserving loss will mix some similar activities. For example, the activities jogging

and running are located closely in the embedding space. The possible reason is that

the difference between jogging and running is subtle. Jogging can be seen as a slow

form of running. Moreover, different people jog or run at different speeds. Thus, the

locality preserving loss can drive the model to project these two different activities to

adjacent locations in the embedding space. Another problem is that when a person

switches between different activities, the temporal coherence assumption does not

hold. During the activity transition process, the temporally adjacent data samples

may represent different types of activities, hence the temporal coherence assumption

will introduce inaccuracy into the model.

However, the problems mentioned above are usually infrequent. Therefore, the

proposed approach can still learn useful representations and boost the performance

of the subsequent clustering algorithm.
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Figure 4.3: Confusion Matrices of Traditional AE on PAMAP2, REALDISP, and
SBHAR.
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Figure 4.4: Confusion Matrices of Proposed Method on PAMAP2, REALDISP, and
SBHAR.

4.4.4 Ablation Studies

To further understand the effect of the different loss terms, a set of ablation

experiments are conducted to measure the influences of the different loss terms sep-

arately. In the ablation experiments, the original joint loss function is transformed

into two separate objectives: (i) the temporal coherence (TC) loss with the AE recon-

struction loss; (ii) the locality preservation (LP) loss with the AE reconstruction loss.

Each objective is used to train the model separately, thus comparing their results

should provide insight into the benefit of each loss term. The results of the ablation

studies are listed in Table 4.5.

We notice that including both loss terms in the objective function can clearly

improve the clustering performance. These results suggest that both loss terms guided
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Table 4.5: Ablation studies on the effect of each loss term.

Methods ACC ARI NMI
PAMAP2

TC Loss + AE Loss 0.7859 0.7253 0.8140
LP Loss + AE Loss 0.8065 0.7493 0.8337

Joint Loss 0.8543 0.8016 0.8730
REALDISP

TC Loss + AE Loss 0.6341 0.5348 0.7639
LP Loss + AE Loss 0.6610 0.5890 0.7829

Joint Loss 0.6812 0.6051 0.8043
SBHAR

TC Loss + AE Loss 0.6449 0.5173 0.7087
LP Loss + AE Loss 0.7308 0.6182 0.7440

Joint Loss 0.7401 0.6343 0.7569

the model to capture different useful information in the human activity sensor data

in an unsupervised manner.

4.5 Conclusions

In this work, we have presented an unsupervised embedding learning approach,

which is based on an autoencoder framework and uses the properties of human activ-

ities: temporal coherence and locality preservation, to project the activity data into

the embedding space. We have demonstrated the effectiveness of the approach by

applying it to three widely used HAR benchmark datasets. The results of the experi-

ments show that our approach can group similar activities together in the embedding

space and therefore help improve the performance of the subsequent clustering task.
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CHAPTER 5

Knowledge-Guided Human Activity Recognition with Limited Data

5.1 Introduction

Many different machine learning techniques have been studied to address various

problems in wearable based human activity analysis. While most of them employed

supervised approaches, hence heavily relying on labeled data, very limited works have

been proposed to solve the recognition problem in an unsupervised or semi-supervised

way. However, due to the fact that labeled data is very scarce and the majority of the

collected data has no labels, using supervised methods to recognize various human

activities remains a challenging research problem in pervasive computing. On the

other hand, unsupervised methods don’t need labeled data to train the model, yet,

the performance of unsupervised methods are usually inferior to supervised methods.

To address the aforementioned challenges we aim at developing an approach that

can leverage the domain knowledge of human activity, a limited amount of similarity

information of data samples, and a huge amount of unlabeled data. The proposed ap-

proach is motivated by two factors: first, using domain knowledge and a large amount

of unlabeled data to simplify the learning task of the model and force the model to

retain useful task-specific features, and second, limiting the supervision needed for

training the model by only using a very small amount of labeled data and only using

the similarity of the data samples, but not using the labels explicitly. Experiments

have been conducted to evaluate the effectiveness of our proposed approach.
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Figure 5.1: The overall architecture of the proposed approach.

5.2 Proposed Approach

In this section, we first introduce the architecture of the proposed model. Then

we show the definitions of various consistency criteria that are used in the model, and

how the domain knowledge is employed in the model in the form of these consistencies.

5.2.1 Architecture of the Proposed Model

As shown in Fig. 5.1, the foundation of the overall architecture of this approach

is a combination of an autoencoder and siamese networks.

Autoencoder is a powerful, widely used unsupervised deep architecture for

feature learning. It consists of two parts: an encoder, and a decoder. The encoder

defines the nonlinear transformation: E(·) that encodes the input data sample x into

the representation E(x). The decoder defines another nonlinear transformation D(·)
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that aims at decoding the representation E(x) and reconstructing the original input

x.

x̃ = D(E(x))

Here, x is the input data, E(x) is the encoded representation from the encoder,

and x̃ is the decoded reconstruction from the decoder. The learning process of an

autoencoder is to minimize the reconstruction loss:

Φae(x) =
∑
x∈X

||x− x̃||2

where X denotes the dataset. This loss function forces the reconstruction x̃ to be as

similar as possible to the original input x. If a good reconstruction x̃ can be decoded

from the representation E(x), it means the representation E(x) has retained much

of the information that is important in the input x, so that the reconstruction x̃ can

be very similar to the original input x. Thus the representation E(x) can be used in

other tasks, such as classification or clustering.

Siamese Networks, as illustrated in Figure 5.1, are dual-branch neural net-

works with shared weights such that Brancha = Branchb. Given an input pair of

human activity data samples {xa, xb}, the siamese network learns to project the input

pair to the representation pair {E(xa), E(xb)}. The distance between the representa-

tion pair is then used as the semantic similarity of the input pair.

To learn a good representation for correctly classifying activities, however,

merely retaining information for reconstruction is usually not enough. Instead, the

representation should represent relevant information for the task while largely ignor-

ing irrelevant aspects. The aim of an autoencoder is to learn a representation E(x)

that contains sufficient information to reconstruct the input, so an exact reconstruc-

tion also means to reconstruct noise and all the details in the input data. But not all

the information in the learned representation is relevant to the subsequent task (e.g.
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noise as well as some task-irrelevant details might not only be unnecessary but could

even be detrimental, especially in the context of subsequent clustering). Therefore,

more task-oriented loss functions are needed to be imposed on our model to guide the

learning of the autoencoder and make the learned representations more useful in the

subsequent clustering task. To allow this in a semi-supervised setting, the proposed

architecture utilizes unsupervised consistency criteria within the autoencoder com-

ponents as well as weakly-supervised criteria through the siamese network structure.

These consistency criteria complement each other, permitting high accuracy activity

recognition with only limited amounts of weakly supervised data.

5.2.2 Consistency Definition

The consistencies employed in the model are the common sense knowledge or

domain knowledge, which can provide useful task-oriented information to the model,

guide the model to learn task-relevant information, and ignore task-irrelevant infor-

mation, hence improving the performance of the model.

Temporal Consistency: Let xti denote the i-th data sample that occurs at

time t during the course of an activity. Let X t
i denote the set of m data samples which

are the nearest neighbors of xti based on the temporal closeness during the course of

an activity, and x̃ti the reconstruction of xti.

Φtc(x
t
i) =

1

m

∑
xj∈Xt

i

||xj − x̃ti||2

Temporal consistency attempts to structure data such that data samples that occur

directly after each other are closer together in representation space, representing the

intuition that activities are usually longer than a single data sample and thus that

consecutive data samples are often still part of the same activity.
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Feature Consistency: Let xfi denote the i-th data sample in feature space f ,

and Xf
i the set of n data samples which are the nearest neighbors of xfi in the feature

space f , and
˜
xfi the reconstruction of xfi .

Φfc(x
f
i ) =

1

n

∑
xk∈Xf

i

||xk − ˜
xfi ||2

Feature consistency aims to keep data samples that have very similar features close

together in the embedding space. This reflects the intuition that data segments that

exhibit very similar sensor readings are more likely to belong to the same activity.

Label Consistency: With the help of siamese networks and a very small

amount of labeled data, a group of pairwise constraints can be defined on the input

data. This group of pairwise constraints can drive the proposed model to map the data

into a representation space, in which the clusters satisfy the given constraints. More

formally, given an input pair of human activity data sequence {xa, xb}, the encoder

of the siamese networks learns to encode the input pair to the representation pair

{E(xa), E(xb)}. Then, a distance function, which measures the similarity between

the encoded representations, is calculated.

Φlc(xa, xb) = ||E(xa)− E(xb)||2

The similarity distance Dist(xa, xb) indicates if the input pair represents the same

type of activity. A large distance indicates two different types of activities, while a

small distance indicates the same types of activity.

The aforementioned three types of consistency criteria imposed on the proposed

model enable the learning to capture the information that is useful to the activity

recognition task.
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5.2.3 Joint Loss Function

The training process of the model is divided into two stages. In the first stage

the model is trained with the following joint loss function:

min

S∑
i=1

(1− α− β) · Φae(xi) + α · Φtc(x
t
i) + β · Φfc(x

f
i )

where i is the index of the sample, S is the size of the dataset, α and β are the

parameters to balance the contribution of Φae, Φtc, and Φfc. While Φtc and Φfc

retain task-relevant features and disregard the unnecessary task-irrelevant features,

the Φae component is also necessary in the learning process because without the

reconstruction loss Φae, the risk of learning trivial solutions or worse representations

will be increased [69]. This represents and initial unsupervised training phase in which

the embedding space is trained to reflect the basic structure of the data.

In the second training stage, the label consistency loss Φlc is added to further

improve the performance of the model. Since in the first stage, most clusters are

already formed, the second stage imposes a small amount of pairwise constraints on

the data using the limited amount of available weakly supervised data to readjust

the already formed clusters to adapt to the available information about the intended

classes. The joint loss function is defined as follow:

min
S∑
i=1

(1− α− β − γ) · (Φae(xa) + Φae(xb))+

α · (Φtc(x
t
a) + Φtc(x

t
b)) + β · (Φfc(x

f
a) + Φfc(x

f
b )) + γ · Φlc(xa, xb)

The label consistency supervision Φlc used in the model is limited, but it is directly re-

lated to the activity recognition task, so in the second stage, the label consistency will

have a larger weight and dominate the learning process, and the other loss functions

will have smaller weights, so that the model can learn directly task-related features.

In addition, the amount of label consistency supervision used in the model is very
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limited, therefore, the other 3 unsupervised loss functions are still needed to work as

regularization terms to prevent potential overfitting.

5.2.4 Feature Extraction

After the description of the proposed model, this section focuses on the features

used in the experiments. In the feature extraction stage, the segmented raw sensor

signals are converted into the feature vectors. Formally, let ri denote the sample i in

the set of the segmented raw sensor signals, xi the converted feature vector, C the

feature extraction function. Then the feature extraction can be defined as:

xi = C(ri)

The xi is used as the input to the proposed model. Table 5.1 illustrates the sta-

tistical high level features that are used in the proposed approach. Mean, variance,

standard deviation, median, which are the most commonly adopted features in the

HAR research works, are used in the approach. In addition, some other features,

which have been shown to be efficient in previous works [15], are included here as

well. For example, the feature interquartile range (iqr), which is based on Quartiles

(Q1, Q2 and Q3) that divide the time series signal into quarters. Using these, iqr is

the measure of variability between the upper and lower quartiles, iqr = Q3 −Q1.

All these features are computed for each axis separately. Since the data from

different sensors is synchronized, combining different sensor data is achievable. In

the training process, the proposed model takes these derived features as input and

learns to retain the task-relevant information in the features, and to disregard the

unnecessary task-irrelevant parts.
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Table 5.1: List of the used statistical features.

Feature extraction function Description

mean(ri) = 1
N

∑N
j=1 rij Mean

var(ri) = 1
N

∑N
j=1(rij −mean(ri))

2 Variance

std(ri) =
√
var(ri) Standard deviation

median(ri) Median values
max(ri) Largest values in array
min(ri) Smallest value in array

iqr(ri) = Q3(ri)−Q1(ri) Interquartile range

5.2.5 Cluster Construction

The standard backpropagation algorithm with stochastic gradient descent is

used to train the network. All the weights are initialized to small values and the

network is evaluated on the validation data after each epoch. When the validation

error stops decreasing for a predefined number of epochs, the training process is

complete.

After the two stage training process to establish the hidden representation

within the siamese and autoencoder architecture, the trained model (i.e. the encoder

of the architecture) can project the input data sample x into a clustering-friendly

embedding space. The learned representations are evaluated in the subsequent clus-

tering task. k-means (KM), which is arguably the most popular clustering algorithm,

is used in the experiments. The number of clusters is chosen to be the true number

of classes in each dataset.

5.3 Evaluations and Experiments

5.3.1 Datasets

We evaluate the performance of the model on dataset PAMAP2 [55]. And all

the sensor data sequences are segmented with the sliding window method.
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PAMAP2 is a dataset collected from 9 participants performing 12 activities us-

ing 3 inertial measurement units placed on the wrist, chest and ankle. The dataset

contains data of sport exercises (rope jumping, nordic walking etc.), and household

activities (vacuum cleaning, ironing etc.). During the experiments, heart rate, ac-

celerometer, gyroscope, magnetometer, and temperature data is recorded. In accor-

dance with previous research on this dataset, a sliding window of 5.12 seconds with

one second step size is used to segment the data.

To evaluate the performance of the weakly semi-supervised architecture, it was

applied with 1%, 5%, and 10% weakly supervised data and its performance was com-

pared to fully supervised methods as well as to the unsupervised approach from Chap-

ter 4. In all experiments, the total dataset (i.e. unlabeled and labeled) comprised all

data segments of the PAMAP2 dataset, giving the supervised comparison approaches

access to all the labels while the weakly semi-supervised technique has access only

to similarity information for a small subset. To apply the weakly semi-supervised

method, the set of data segments were split according to the above-mentioned per-

centage and labels were removed from the samples in the unlabeled data set. The

small percentage of labeled data was then converted into weakly supervised data pairs

which only contain information whether they belonged to the same or a different class.

5.3.2 Results and Analysis

As shown in result table 5.2, the proposed weakly semi-supervised approach

achieved significant improvement over the purely unsupervised method with the same

number of clusters even with very limited data and improved performance with the

increase of available weakly supervised data. Moreover, performance was reasonable

good even with only one percent of the labeled training data. With only 5% of

weakly supervised data, performance of the model exceeded all but one of the fully
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Table 5.2: Results on PAMAP2
Methods Activity

LSTM-F [4] 0.9290
CNN [4] 0.9370
DNN [4] 0.9040

Probability SVM with Filter[15] 0.9304
Decision Tree (C 4.5) 0.9709

Boosted C 4.5 [55] 0.9969
Unsupervised Learner in chapter 4 + KM (TN) 0.8543

Unsupervised Learner in chapter 4 + KM (TN+2) 0.9211
Proposed weakly semi-supervised model + 1% training 0.9128
Proposed weakly semi-supervised model + 5% training 0.9755
Proposed weakly semi-supervised model + 10% training 0.9904

supervised comparison methods, and with 10% of the labeled data, the proposed

approach can achieve competitive performance compared with even the best of the

purely supervised methods, despite it having access to only a fraction of the labeled

data.

5.4 Conclusions

In this work, we have presented a weakly semi-supervised embedding learning

approach, which is based on an autoencoder architecture and a siamese architecture.

The proposed approach uses the properties of human activities: temporal consistency

and feature consistency to project the activity data into the embedding space, then

imposes a small amount of pairwise constraints on the data to fine-tune the model in a

weakly supervised fashion. We have demonstrated the effectiveness of the approach by

applying it to a widely used HAR benchmark datasets. The results of the experiments

show that with only ten percent of the labeled data, the proposed approach can

achieve competitive result, which significantly reduced the supervision needed to train

the recognition model.
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CHAPTER 6

Learning Embeddings for New Activities Using Hierarchical Human Activity

Modeling

6.1 Introduction

The recognition of human activities is a crucial component in many user-centric

application, such as assistive technology, user behavior model, and health manage-

ment. There has been extensive research on wearable-based human activity recogni-

tion system. A typical recognition system is built to recognize the activities that were

previously observed in the training data. However, in many real-world application

scenarios, the recognition system needs to recognize new unobserved activities. One

common solution for this problem is to ask users to label additional data samples of

the new unobserved activities, and retrain the system on these newly labeled data.

Nonetheless, due to the fact that labeling data samples is usually time consuming

and expensive, it is impractical to expect to get enough labeled data from the users.

Thus, a recognition system that can learn new activities with a small amount of la-

beled data is needed. The major problems of such a system are: (i) With very limited

data, the recognition model is prone to overfit to the new activity data samples. (ii)

If the new activity has only a few training samples, the recognition model tends to

underestimate the probability of the occurrence of the new activity in the dataset,

therefore, the new activity will not be correctly predicted.

To address the aforementioned problems, we proposed an approach that learns

the hierarchical structure of the human activity, and based on the hierarchical struc-

ture, a high-level activity can be decomposed into a series of mid-level primitive
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Figure 6.1: Hierarchical Human Activity Modeling

activities. Therefore, even if the high-level activity is new and unobserved to the

recognition system, it can still share the same types of mid-level primitive activities

with the previously observed high-level activities. Figure 6.1 shows how a high-level

activity can be decomposed into multiple mid-level primitive activities. We assume

that the primitive activity describes an intrinsic property or a basic characteristic

of a high-level activity, and intrinsic properties or basic characteristics are generally

present in different high-level activities. Therefore, a new unobserved activity can be

described with the primitive activities that are extracted from other observed activi-

ties. Experiments have been conducted to evaluate the effectiveness of the proposed

approach.

6.2 Proposed Approach

Essentially, human activity embedding with limited amounts of data faces four

great challenges to achieve a good embedding result:

• Insufficient data: the amount of data samples for the new unobserved activity

is limited.

• Imbalanced data: while training data for the new activity is limited, the amount

of training data for all the other previously observed activities is significantly

larger.
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• Need for mid-level activites: Most previous works [72, 73] on zero-shot or few-

shot learning with sequential sensor data focused on using well-established se-

mantic attributes (such as arm swinging, leg still, body medium motion). On

the one hand, the semantic attributes provide effective guidance to the model

training, but on the other hand, employing semantic attributes requires addi-

tional annotation work.

• Highly non-linear time series data: usually, the activity data is collected from

multiple sensors that record the movement of different body parts over time.

This data is highly non-linear, thus it is difficult to capture the non-linearity.

To address these challenges, we developed a new approach that decomposes

high-level activities into a series of mid-level primitive activities. The architecture

of the proposed model is illustrated in Figure 6.2. In this approach, feature vectors

for primitive activities are learned in an unsupervised fashion using an autoencoder

framework to reduce the need for labeling semantic properties in the data. These are

then concatenated to present the input space for the high-level activity recognition

system.

6.2.1 Insufficient and Imbalanced Data

To mitigate the insufficient and imbalanced data limitation in the context of a

new activity, we avoid to train the activity model on the high-level new activity, which

does not have enough training data. Instead, we proposed to decompose high-level

activities into a series of mid-level primitive activities.

The amount of training data for a new activity is small, but the primitive activi-

ties, which are the components of the new activity, are commonly present in the other

previously observed high-level activities. Thus, mid-level primitive activity models

can be trained by using the primitive activity data from previous activities. Then the
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Figure 6.2: The architecture of the proposed model

trained primitive activity models can be used to represent the unobserved or newly

observed activity to alleviate insufficient and imbalanced training data problems for

the new activity.

6.2.2 Temporal Primitive Activity

Most previous works [72, 73, 74] rely on additional semantic attributes to label

the data and reduce the burden of training the model on an unobserved activity. How-

ever, labeling the semantic attributes is also associated with additional cost. Thus,

in our proposed model, we leverage the hierarchical and sequential characteristics

of activity data to decompose high-level activity into a series of mid-level primitive

activities. In the sequence of primitive activities, each primitive activity represents

the high-level activity during a specific stage. That is to say concatenating all the

primitive activities in the correct temporal order will regenerate the original high-

level activity. Similarly, learning a high-level activity model can be decomposed to

learning a series of mid-level primitive activity models.
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Formally, let AT = (a0, a1, · · · , aT ) denote a high-level activity data sequence.

AT can be decomposed into a series of n primitive activities (P0, PT
n
, · · · , PT−T

n
),

where Pt = (at, at+1 · · · , at+T
n
−1) is a primitive activity data sequence, which starts

at time t with the duration length T
n

. Then, instead of training the model on high-

level activity AT , we train a series of primitive activity models using the decomposed

mid-level activities (P0, PT
n
, · · · , PT−T

n
). Because a high-level activity consists of a

series of primitive activities, we use a concatenation of the primitive activities to

represent the original high-level activity. Hence, an unobserved high-level activity can

be represented by a series of observed primitive activities. In addtion, the learning

models for primitive activities are trained in an unsupervised way, therefore, the

proposed approach achieved (i) an unobserved high-level activity can be represented

by a series of observed primitive activities. (ii) no additional labeling work is needed

for the primitive activity.

6.2.3 High Non-linearity

To capture the highly non-linear structure in the data, each primitive activity

model is trained as an autoencoder. The autoencoder is a widely used unsupervised

deep learning model for feature extraction. It consists of two parts: an encoder,

and a decoder. The encoder defines the nonlinear transformation: E(·) that encodes

the input data sample x into the representation E(x). The decoder defines another

nonlinear transformation D(·) that aims at decoding the representation E(x) and

reconstructing the original input x.

x̃ = D(E(x))

Here, x is the input data, E(x) is the encoded representation from the encoder, and

x̃ is the decoded reconstruction from the decoder. In order to capture the high non-
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linearity in the data, more than one encoding layer can be employed in the encoder,

correspondingly, the same number of decoding layers are also needed in the decoder.

x̃ = Dn(· · ·D1(En(· · ·E1(x))))

The learning process of an autoencoder is to minimize a reconstruction loss:

Φae(x) =
∑
x∈X

||x− x̃||2

where X denotes the dataset. This loss function forces the reconstruction x̃ to be as

similar as possible to the original input x. If a good reconstruction x̃ can be decoded

from the representation E(x), it means the representation E(x) has retained much

of the information that is important in the input x, so that the reconstruction x̃ can

be very similar to the original input x. Thus the representation E(x) can be used in

other tasks, such as classification or clustering.

The data fed to the model is the features extracted from the sensor data. In

the feature extraction stage, the segmented raw sensor signals are converted into the

feature vectors. Formally, let ri denote the sample i in the set of the segmented raw

sensor signals, xi the converted feature vector, and C the feature extraction function.

Then the feature extraction can be defined as:

xi = C(ri)

Here xi is the input to the model. Table 6.1 illustrates the statistical features that

are used in the approach. In particular, mean, variance, standard deviation, median,

which are among the most commonly adopted features in the human activity recogni-

tion research works, are used here. In addition, some other features, which have been

shown to be efficient in previous works [15], are included here as well. For example,

the feature interquartile range (iqr), which is based on Quartiles (Q1, Q2 and Q3)
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Table 6.1: List of the used statistical features.

Feature extraction function Description

mean(ri) = 1
N

∑N
j=1 rij Mean

var(ri) = 1
N

∑N
j=1(rij −mean(ri))

2 Variance

std(ri) =
√
var(ri) Standard deviation

median(ri) Median values
max(ri) Largest values in array
min(ri) Smallest value in array

iqr(ri) = Q3(ri)−Q1(ri) Interquartile range

which divide the time series signal into quarters. Using these, iqr is the measure of

variability between the upper and lower quartiles, iqr = Q3 −Q1.

All these features are computed for each axis separately. Since the data from

different sensors is synchronized, combining different sensor data is achievable. In the

training process, the model takes these derived features as input and learns to retain

useful information in the features, and to disregard the unnecessary parts.

6.2.4 Joint Activity Model

In the proposed approach, a high-level activity will be represented by a con-

catenation of multiple primitive activity models, as shown in Figure 6.2. Then the

concatenated representation will be fed into (i) multiple decoders that decode the rep-

resentation and reconstruct the original primitive activities. (ii) an activity predictor

that will predict the activity type of the data.

The decoder part drives the autoencoder architecture in the model to learn

effective features of the primitive activities. The predictor part uses the observed

activities data to refine the primitive activity models. The goal here is to let the

primitive activity models retain the features that help distinguish activity types, and

disregard activity type-irrelevant features.
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6.2.5 Cluster Construction

To train the network, the standard backpropagation algorithm with stochastic

gradient descent is used. All the weights are initialized to small values and the network

is evaluated on the validation data after each epoch. When the validation error stops

decreasing for a predefined number of epochs, the training process is complete.

After the learning process, in order to establish the hidden representation within

the primitive activity models, the joint trained model (i.e. the joint primitive activity

models) can project the input data sample x into an embedding space where data

representations from the same type of activity stay together and data representations

from different types of activities stay far away from each other. More specifically,

the learned representations are evaluated in the subsequent clustering task. k-means

(KM), which is arguably the most popular clustering algorithm, is used in the exper-

iments. The number of clusters is chosen to be the true number of classes in each

dataset.

6.3 Evaluations and Experiments

In the training stage, we leave one activity as a new unobserved activity and

the remaining activities as observed activities. For observed activities, all the data

samples are used to train the model, but only a limited number of training samples

from the unobserved activity are selected to test the performance of the proposed

model under the zero-shot and few-shot learning setup.

6.3.1 Datasets

The performance of the model is evaluated on dataset MHEALTH [56]. And

all the sensor data sequences are segmented with the sliding window method.
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Figure 6.3: The recognition of unobserved activities on MHEALTH
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Figure 6.4: The recognition of observed activities on MHEALTH

The MHEALTH dataset contains data recorded from 10 volunteers carrying

out 12 physical activities, including primitive body parts movements (waist bends

forward, frontal elevation of arms etc), and composite body movements (cycling,

jumping front and back etc). The data is collected by using three sensors placed

on the subject’s chest, right wrist and left ankle to record accelerometer, gyroscope,

and magnetometer signals. The chest sensor also records 2-lead ECG signals. The

sampling rate of all sensing modalities is 50Hz. As in previous work [60], we use a

sliding window of 5 seconds with a step size of 2.5 seconds.

We compared our proposed approach with a previously published work [73],

in which semantic attributes are employed. Here, HHAM represents our proposed

hierarchical human activity modeling, FE represents the traditional feature-based
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learning, AT represents the semantic attribute-based learning, and FE-AT is the

combination of them.

Figures 6.3 and 6.4 show the average accuracy over all the leave-one-out experi-

ments for the unseen and the seen acitivites, respectively, as a function of the number

of available samples for the previously unseen activity. As shown in Figure 6.3, our

proposed approach achieves comparable results for the unobserved activities. Since

KM is applied in the embedding space, it shows that our approach can derive mean-

ingful representation for the unobserved activities. In Figure 6.4, the experimental

results demonstrate that the increasing amount of unobserved data samples in the

training data does not affect the performance of the models on previously observed

activities.

The results of the experiments show the efficiency of the approach. When

no label is available, the proposed HHAM method and FE-AT method can achieve

comparable performance. But in the FE-AT method, semantic attributes take the

place of labels, and provide guidance to the model training. However, as we discussed,

labeling semantic attributes requires additional work, while the proposed approach

learns the primitive activity models in an unsupervised way and thus does not require

this additional work.

6.4 Conclusions

In this work, we have presented a hierarchical human activity modeling ap-

proach, which can learn a previously unobserved new activity using limited training

samples. The approach consists of a series of unsupervised primitive activity mod-

els and does therefore not rely on any additional labels or semantic attributes. The

trained model maps the activity data into the an embedding space in which the

subsequent classification and clustering tasks can achieve better results. We have
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demonstrated the effectiveness of the approach by applying it to a widely used hu-

man activity recognition benchmark dataset. The results of the experiments show

that our approach can group the same type of activities together in the embedding

space, therefore helping improve the performance of the subsequent tasks including

the model learning for novel high-level activities for which only a very limited number

of instances are available.
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CHAPTER 7

Conclusions

With the increasing availability of embedded sensors in smartphones, wearable

devices and smart environments, the sensor data stream of human activity is more

accessible. In order to extract effective information from the wearable-sensor data

and use it to build better ubiquitous computing applications, we focus on developing

various learning models that can improve the effectiveness of the wearable-sensor

human activity analysis.

7.1 Contributions

The presented work used different learning models to analyze the wearable hu-

man activity data. In Chapter 2, we apply a weakly supervised method that can learn

to dynamic segment sensor time-series data and recognize human activity under lim-

ited supervision. The proposed method uses only the information about the similarity

between pairs of data samples to capture temporal relations efficiently without know-

ing the explicit labels. In Chapter 3, a multi-task model is presented to recognize

human activities and identify the person simultaneously. We investigate the scala-

bility of the proposed method by expanding it to learn representations for additional

attributes in the data along with human activity recognition and person identifica-

tion. The experiments show that the proposed architecture can scale to increasing

numbers of tasks with very little loss of accuracy. In addtion, further experiments

on training the model with imperfect data demonstrate that the model is capable of

effectively utilizing cross-task information to achieve competitive performance.
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In Chapter 4, an unsupervised model is proposed, which is based on an autoen-

coder framework and uses the properties of human activities: temporal coherence and

locality preservation to supervise the model learning, learn effective features from the

data without using the labels, and project the activity data into a clustering-friendly

embedding space. In Chapter 5, based on the model architecture in Chapter 4, we in-

clude limited supervision to improve the model performance. The experiment results

show that with limited amount of supervision, the weakly semi-supervised model can

achieve comparable performance to supervised models. In Chapter 6, leveraging the

hierarchical structure of human activities, we develop a recognition model that can

recognize a previously unobserved activity without the need for additional labeling

of semantic attributes or subactivities.

The approaches introduced in this dissertation successfully solve various prob-

lems in human activity analysis, overcoming some of the limitations of existing meth-

ods in terms of the need for extensive data labeling, and improve the performance on

many real-world applications.
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[23] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verifica-

tion using a ”siamese” time delay neural network,” in Proceedings of the 6th In-

ternational Conference on Neural Information Processing Systems, ser. NIPS’93.

89



San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993, pp. 737–744.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2987189.2987282

[24] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for learning

sentence similarity,” in Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 2786–2792.

[Online]. Available: http://dl.acm.org/citation.cfm?id=3016100.3016291

[25] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimi-

natively, with application to face verification,” in 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1,

June 2005, pp. 539–546 vol. 1.

[26] N. Zeghidour, G. Synnaeve, N. Usunier, and E. Dupoux, “Joint learning of

speaker and phonetic similarities with siamese networks,” in INTERSPEECH,

2016.

[27] P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text similarity with siamese

recurrent networks,” in Rep4NLP@ACL, 2016.

[28] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

CoRR, vol. abs/1511.07122, 2016.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in Proceedings of the 32Nd

International Conference on International Conference on Machine Learning -

Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 448–456. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3045118.3045167

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778, 2016.

90



[31] V. Nair and G. E. Hinton, “Rectified linear units improve re-

stricted boltzmann machines,” in Proceedings of the 27th Interna-

tional Conference on International Conference on Machine Learning,

ser. ICML’10. USA: Omnipress, 2010, pp. 807–814. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3104322.3104425

[32] L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and J. Dambre,

“Beyond temporal pooling: Recurrence and temporal convolutions for gesture

recognition in video,” International Journal of Computer Vision, vol. 126, no. 2,

pp. 430–439, Apr 2018. [Online]. Available: https://doi.org/10.1007/s11263-

016-0957-7

[33] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of

video representations using lstms,” in Proceedings of the 32nd International Con-

ference on Machine Learning, ser. Proceedings of Machine Learning Research,

F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 843–

852. [Online]. Available: http://proceedings.mlr.press/v37/srivastava15.html

[34] B. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster analysis, 5th ed. Wiley,

2011.
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