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ABSTRACT

OPTIMIZING `1 LOSS REGULARIZER AND ITS APPLICATION TO EEG

INVERSE PROBLEM

KIRAN KUMAR MAINALI, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professors: Ren-Cang Li and Li Wang

Sparse reconstruction occurs frequently in science and engineering and real-world

applications, including statistics, finance, imaging, biological system, compressed

sensing, and, today more than ever, machine learning and data science in general.

Mathematically, they are often modeled as `1-minimization problems. There are a

number of existing numerical methods that can efficiently solve such `1-minimization

problems, such as Alternating Direction Methods of Multipliers (ADMM), Fast

Iterative Shrinkage Thresholding Algorithm (FISTA), and Homotopy algorithm.

In this dissertation, we will introduce a special type of `1-minimization problem

called the Sylvester Least Absolute Shrinkage and Selection Operator (SLASSO)

problem. In theory, an SLASSO problem can be converted to a standard LASSO

problem and then solved by any existing numerical method, but the converted LASSO

problem is too large scale to be practical even if the SLASSO problem is modest. The

first contribution of this dissertation is a novel method to solve an SLASSO problem

without conversion, making it practical to solve a fairly large sized SLASSO problem.

ix



Our second contribution is a new structured Electroencephalogram (EEG)/Mag-

netoencephalogram (MEG) Source Imaging (ESI) model that groups the time-varying

signals of a similar structure and uses the mixed norm estimation for accurate results.

The model is then solved alternatingly. Numerical simulations compare favorably

with the state-of-the-art ESI methods, demonstrating the effectiveness of the model

and efficient numerical treatment.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

High dimensional data are ubiquitous in the modern era of science and tech-

nology. This data is generated in a very large quantities from multiple sources.

Estimating the high dimensional data based on incomplete linear observations has

been discussed broadly in the compressed sensing community [5–8]. Acquisition of

compressible high dimensional data from minimal measurements has a wide variety of

applications in applied mathematics, computer science, and electrical engineering such

as magnetic resonance imaging (MRI) [9], image processing [10], signal processing [11],

imaging technique [12], and so forth. Mathematically speaking, when the equations

are linear, one would like to determine the object x ∈ Rn from the noisy observations

b = Ax+Nε, where A is an m×n measurement matrix with fewer rows than columns;

i.e., m� n and Nε is noise. If A has rank m, such a problem has (n−m) number of

free variables, thus by the fundamental principle of linear algebra, problems having

such attribute have infinitely many solutions and it is impossible to identify which of

these available solutions is correct without having some additional information about

the data. Figure 1.1 helps to describe this situation in a broad overview. However, in

many practical applications, the data we are interested in recovering are compressible

(sparse). For example, an image of millions of pixels is very sparse over the wavelet

basis, namely, a small fraction of wavelet coefficients that are enough to recover

images [13].
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Figure 1.1: Sparse signal recovery is the problem of estimating unknown signal of
dimension n based on m noisy observations, when m� n.

1.2 Inverse Problems

The data of practical interests are compressible over certain basis. This feature

of data opens the room for recovering the signals of interest accurately from incomplete

linear measurements in compressive sensing. However, even if the signal of interest is

sparse, it is a non trivial task to recover the signal as we do not know the locations of

the non-zero elements in the recovered signal a priori. Several algorithms are proposed

to solve this problem, for example, `1-magic [14], basis pursuit denoising [15, 16],

`1-homotopy [17], log-barrier method [18], LASSO (Least Absolute Shrinkage and

Selection Operator) [1, 19–21] , and so forth, namely the `1-minimization algorithm.

The term inverse problems refer to the general framework used to convert observed
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measurements into information about the object of interest. For example, given

tomographic measurements of an object, we might wish to know about the internal

composition and structure [22,23]. Having the ability to solve the inverse problems is

useful as it provides information about the physical quantities that we are unable to

observe directly. There are several applications of the inverse problem in physical

sciences. The work of Bal [24], Hansen [25], and the references therein illustrate

several areas where the inverse problem arises in applications and their mathematical

formulations. In this dissertation, we focus on an inverse problem that has to deal

with a system of linear algebraic equations. To proceed further, we define two key

terminologies that will be used repetitively throughout this dissertation.

Definition 1.2.1 (convex set). A set C is convex [18] if the line segment between

any two points in C lies in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1,

we have

θx1 + (1− θ)x2 ∈ C.

Definition 1.2.2 (convex function). A function f : Rn → R is convex if the domain

of f , D(f) is a convex set and if for all x, y ∈ D(f), and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Definition 1.2.3 (sparsity of a vector). A vector x = (x1, x2, · · · , xn)
T ∈ Rn is said

to be sparse if most of its entries are zero. In particular, x is said to be k-sparse, if

k out of n entries of x are zero. In the case where only a few entries of x are large

(significant) and the rest of the entries are zero or very small, then the vector x is

called weakly sparse or compressible.

Also, we consider the definition of well-posed problem by Hadamard [26];

Definition 1.2.4 (well-posed problem). A mathematical problem is well-posed if

1. a solution exists;
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2. the solution is unique;

3. the solution depends continuously on data.

If at least one of the conditions above does not hold, the problem is called ill-posed.

Suppose b ∈ Rm is a measured data and A ∈ Rm×n (m � n) a matrix of

measurement or matrix associated with measurement operator and we are interested

in recovering the data x ∈ Rn which is related by the following linear relation:

b = Ax+Nε, (1.1)

where Nε is a vector associated with measurement error. The problem associated

with obtaining the solution of the above underdetermined linear system (1.1) as

pictured in Figure 1.1 is a highly ill-posed inverse problem. As the underdetermined

system has infinitely many solutions, finding the right solution from the group of

infinitely many solutions is very challenging without any prior assumption to the

solution. But, in many practical applications, solutions that we are looking for are

sparse. For example, in mathematical biology where sparsity techniques are needed

to map DNA breakpoints in cancer genomes or select the most important genes from

high dimensional gene sequence [27, 28]. Similarly, in the literature of the simple

regression model, thousands of predictors are involved to get limited response variables

of particular interests. Out of the huge number of predictors, only a few of them have

important roles in building an efficient regression model. So appropriate variable

selection procedures are used to obtain the sparse solution [1, 20]. A similar situation

occurs in predicting the price of the stocks, the profit of the company, risk factors

for investment, etc. from significant predictors from the thousands of interactions in

market trends in finance and economics’s data [29–31].

To find feasible and meaningful solutions out of infinitely many possible solutions,

regularization plays an important role. In variable selection problems in linear
4
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Figure 1.2: For the randomly generated data with 80 responses (m = 80) and 100
predictors (n = 100), the solution generated by the ridge model provides many
coefficients estimations very close to zero whereas coefficient estimation by LASSO
are either non-zero or explicitly zero.

regression, the `2-penalty was introduced [32] and it is called ridge regression. The

ridge regression model can be expressed as

x̂ridge = arg min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖22, (1.2)

where ‖x‖22 =
∑n

i=1 x
2
i is the `2-norm of a vector x ∈ Rn. The objective function of

the ridge regression is strictly convex and (1.2) has a unique minimizer. The purpose

of the ridge regression is to estimate the predictors by making the residual r = Ax− b

small. The second term λ‖x‖22 is called a shrinkage penalty which is small when

x1, x2, · · · , xn are close to zero and which has the effect of shrinking the estimates

of xi towards zero. Moreover, λ > 0 is a tuning parameter which controls how fast

the coefficients are shrunk towards zero, i.e., the larger the value of λ the greater the

effect of shrinkage.

The solution of the ridge regression model turns to select all the predictors into

the model and that will cause difficulties in interpreting and analyzing the model. The
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major issues in high dimensional data are to choose the smallest subset of predictors

which can simplify the original model while fulfilling the certain statistical criteria,

e.g., the smallest possible Mean Squared Error (MSE), the largest adjusted R2, etc.

Also, the model with fewer predictors makes the interpretation of the model easier

than the model with a full set of active variables. To find the best subset selection

requires solving 2n sub-models which is not feasible when n (the number of predictors)

is very large. This is the reason why statisticians like to create the best variable

selection model. There are several stepwise subset selection methods such as stepwise

forward selection, stepwise backward elimination, and so forth [1, 20]. To overcome

the computational burden in multistep variable selection methods, R. Tibshirani

developed a one-step variable selection method in 1996 called the Least Absolute

Shrinkage and Selection Operator (LASSO) [19]. The LASSO model has several

applications in physical and biological sciences (see e.g. [27–31]). The LASSO model

is based on `1-penalty which can be described as

x̂lasso = arg min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (1.3)

where ‖x‖1 =
∑n

i=1 |xi| is the `1-norm of a vector x ∈ Rn. The LASSO model is strictly

convex and shrinks the coefficient estimates towards zero as ridge regression. However,

in the case of LASSO, the `1-penalty has the effect of forcing some of the coefficients

estimates explicitly equal to zero when the tuning parameter λ > 0 is sufficiently large.

In this regard, LASSO promotes the sparsity in coefficient estimation and performs

the best variable selection compared to the ridge regression. As a consequence, models

generated by LASSO are much easier to interpret. Figure 1.2 describes the nature of

the solution between the ridge regression and the LASSO model.
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Figure 1.3: Geometric illustration of the two-dimensional case of estimation for the
LASSO (left) and the ridge regression (right). This illustration for `1- and `2-penalty
is inspired by Figure 6.7 of [1] and Figure 10 of [2] and modified with text in the
context of this dissertation.

The geometric intuition behind the nature in solution between LASSO and the

ridge regression is presented in Figure 1.3, where we consider the estimation of two

dimensional vector x = (x1, x2) ∈ R2 for visualization purposes. The shaded areas

are the feasible sets for LASSO and the ridge regression. The `1-constraint creates

the convex diamond, whereas `2-constraint creates the shape of a disk. The x̂OLS in

the center of the contours represents the solution of an ordinary least square (OLS)

described by

x̂OLS = arg min
x∈Rn

1

2
‖Ax− b‖22.
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The elliptic contours are contours of squares error with the OLS estimator in the

center. Note that the ridge regression has a circular constraint and the intersection of

level curves and the feasible set do not intersect on an axis. So, the ridge estimate can

be shrunk close to zero, but not exactly equal to zero. On the other hand, the LASSO

constraint has a corner at each axis, and so the level curves often intersect the feasible

region at an axis. In Figure 1.3, the intersection occurs at x1 = 0, thus x2 is chosen

as the only relevant parameter in the model. The situation for a higher dimension is

more complicated to visualize but it follows the same principle. A 3-dimensional case

is depicted in [19, 21]. In this regard, LASSO is one of the better options for a sparse

solution or a method of better subset selection that provides the results with better

interpretability. In this dissertation, we will use `1-penalty heavily to build the new

models to solve brain source imaging inverse problems.

1.3 Major Contributions and Organization of the Dissertation

In this dissertation, we focus on the `1-minimization problems that relate

Electroencephalogram (EEG) Source Imaging (ESI) problems. We design a novel

mathematical model that incorporates plausible neurophysiological assumptions to

answer the challenges in ESI problems. We develop an efficient algorithm that solves

the proposed ESI model efficiently that outperforms the popular methods designed

to solve the problems in brain source imaging.

In Chapter 2, we discuss current state-of-the-art algorithms designed to solve

the problem (1.3). We discuss the mathematical backgrounds for solving convex

optimization problems in general and their solution procedures. We briefly discuss

the popular `1-minimization algorithms such as Alternating Direction Methods of

Multipliers (ADMM), Iterative Shrinkage and Thresholding Algorithm (ISTA), Fast

Iterative Shrinkage and Thresholding Algorithm (FISTA), and `1-homotopy. We dis-
8



cuss their convergence properties and their performances in `1-minimization problems.

Furthermore, we explore iterative reweighting techniques for sparsity enhancement

and better solution reconstruction for the inverse problems.

Chapter 3, focuses on the application of `1-minimization in the EEG inverse

problem for brain source reconstruction. We explore the classical ESI models and

the use of `1-minimization techniques in brain source imaging. We briefly discuss

the procedure for solving the basic ESI model which can be described as a matrix

recovery problem formulated as

arg min
S∈Rn×k

‖X − LS‖2F + λ‖S‖1,1,

where X ∈ Rm×k, L ∈ Rm×n, and S ∈ Rn×k are matrices whose context will be

described in chapter 3 in detail. Here, ‖ · ‖F and ‖ · ‖1,1 denote the Frobenius and

Lp,q with (p = 1, q = 1) norm of a matrix:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij

and

‖A‖1,1 =
m∑
i=1

n∑
j=1

|aij|

respectively, where A ∈ Rm×n . We analyze the results and visualize them in the

context of source reconstruction as well as the performances of the different algorithms

in the recovery process under different noise level.

In Chapter 4, we present our novel approach for solving a special type of

`1-minimization problem called the Sylvester LASSO model and show its relevance

to the ESI problem. The Sylvester LASSO is also a matrix recovery problem that

can be described by the following convex optimization model

arg min
X∈Rm×n

‖AX −B‖2F + ‖XC −D‖2F + ‖X‖1,1
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where A ∈ Rq×m, B ∈ Rq×n, C ∈ Rn×p, D ∈ Rm×p. Conversion of the problem from

the Sylvester form to a regular LASSO form will increase the size of the problem

drastically for which the benchmark `1-solvers cannot be employed because of huge

memory requirement and computational complexity. We present our novel ideas to

handle the large size data matrices by extracting their structures which allow solving

the large scale problem on a personal computer. We present our numerical results

and the performance of the algorithm in sparse source reconstruction in detail.

Chapter 5 focuses on solving a new ESI model by incorporating the group

structure of the similar EEG signals together. Classical ESI methods often assume

that the brain source activities at different time points are unrelated, which makes ESI

analysis sensitive to noise. To effectively deal with noise while maintaining flexibility

and continuity among brain activation patterns, we propose a new mathematical

model that groups the time-varying signals of a similar structure and apply the mixed

norm estimation for accurate results. We develop and discuss the solution procedure

for solving the following convex optimization model

arg min
S,C,R

h(S,C,R) = ‖X − LS‖2F + λ
Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k]

+ γ1

K∑
k=1

‖S diag(rk)‖2,1 + γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1,

where X ∈ RNc×Nt , L ∈ RNc×Ns , S ∈ RNs×Nt , R ∈ RNt×K , C ∈ RNs×K , and

diag(rk) =



r1,k 0 · · · 0

0 r2,k · · · 0

... . . . ...

0 0 · · · rNt,k


∈ RNt×Nt

is a matrix that populates k-th column of matrix R in diagonal. Context of the

model, algorithm, and numerical simulation results will be discussed in detal.
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In chapter 6, we discuss the relevance and importance of our work on solving

`1-optimization and ESI problems. We summarize the conclusions of the dissertation

and the extension of our work in other possible areas of data science.
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CHAPTER 2

REVIEW OF NUMERICAL OPTIMIZATION TECHNIQUES

In this chapter, we discuss numerical optimization techniques to solve the

standard LASSO problem

x̂lasso = arg min
x∈Rn

1

2
‖Ax− b‖22 + λ ‖x‖1 , (2.1)

where A ∈ Rm×n (m� n), b ∈ Rm×1, and λ > 0 is a regularization parameter. There

are several numerical optimization techniques to solve problem (2.1). Among them,

we will review current state-of-the-art `1-minimizing algorithms in this chapter. The

ideas of solving `1-minimization problems discussed in this chapter will be frequently

used in later chapters.

2.1 Iterative Shrinkage Thresholding Algorithm (ISTA)

We start this section by two important definitions.

Definition 2.1.1 (Proximal Operator [33, 34]). The proximal operator proxλ,f :

Rn → Rn of a function f with parameter λ > 0 is defined as

proxλ,f (v) = arg min
x

(
f(x) +

1

2λ
‖x− v‖22

)
.

Definition 2.1.2 (Shrinkage/Soft-thresholding Operator [35]). The shrinkage opera-

tor Sα : Rn → Rn with parameter α > 0 is defined as

Sα(x)i = sign(xi)(|xi| − α)+ =: shrink(xi, α) for 1 ≤ i ≤ n,
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where (p)+ = max(p, 0) and

sign(xi) =


1 if xi > 0,

−1 if xi < 0,

0 if xi = 0.

Definition 2.1.3 (subdifferential [34,36]). Suppose f : Rn → R is a convex function.

The subdifferential of f at x is a set, denoted by ∂f(x), and defined as

∂f(x) =
{
y | f(z) ≥ f(x) + yT (z − x) for all z ∈ D(f)

}
.

Before moving further, we present a result in Theorem 2.1.1 that will be used

in this dissertation multiple times.

Theorem 2.1.1. Let f(x) = λ‖x‖1 and p > 0. Then

x∗ = proxp,f (v) = arg min
x∈Rn

(
λ‖x‖1 +

1

2p
‖x− v‖22

)
(2.2)

is given by

x∗
i =


vi − pλ if vi > pλ,

0 if |vi| ≤ pλ,

vi + pλ if vi < −pλ

(2.3)

= sign(vi)(|vi| − pλ)+

= Spλ(v)i.

Proof. Since the optimization problem (2.2) is convex and decoupled, it suffices to

prove that x∗ given by (2.3) satisfies the following KKT optimality condition [18, page

241-245]

0 ∈ λ∂|x∗
i |+

1

p
(x∗

i − vi) for 1 ≤ i ≤ n, (2.4)
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where, by calculation,

∂|x∗| =


u : ui


= 1 if x∗

i > 0,

∈ [−1, 1] if x∗
i = 0,

= −1 if x∗
i < 0.




. (2.5)

Case I : Suppose vi > pλ. We have x∗
i = vi − pλ > 0 from (2.3). Now,

λ∂|x∗
i |+

1

p
(x∗

i − vi) = λ+
1

p
(vi − pλ− vi) (using (2.3) and (2.5))

= λ+ (−λ)

= 0.

Case II : Suppose vi < −pλ. We have x∗
i = vi + pλ < 0 from (2.3). Now,

λ∂|x∗
i |+

1

p
(x∗

i − vi) = −λ+
1

p
(vi + pλ− vi)

= −λ+ λ

= 0.

Case III : Suppose |vi| ≤ pλ. We have x∗
i = 0 from (2.3). Now,

|vi| ≤ pλ

=⇒ − pλ ≤ vi ≤ pλ

=⇒ − pλ− vi ≤ 0 ≤ pλ− vi

=⇒ − λ− vi
p
≤ 0 ≤ λ− vi

p

=⇒ 0 ∈
[
−λ− vi

p
, λ− vi

p

]
= λ∂|x∗

i |+
1

p
(x∗

i − vi).

Therefore, (2.4) holds.

Consider an unconstrained minimization problem of a continuously differentiable

function f : Rn → R

min
x∈Rn

f(x). (2.6)
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One of the classical methods for solving (2.6) is the gradient descent algorithm which

generates a sequence {x(k)} via the following iteration:

x(k) = x(k−1) − t(k)∇f(x(k−1)), given x(0) ∈ Rn, (2.7)

where t(k) > 0 is a stepsize.

If f is differentiable, the first order linear approximation of f near x(k−1) can

be written as

f̃(x(k)) = f(x(k−1)) +∇f(x(k−1))T (x(k) − x(k−1)). (2.8)

The proximal operator of the function f̃ corresponding to t(k) > 0 is given by

proxt(k),f̃

(
x(k−1)

)
= arg min

x(k)

{
f̃
(
x(k)
)
+

1

2t(k)
∥∥x(k) − x(k−1)

∥∥2
2

}
= arg min

x(k)

{
f
(
x(k−1)

)
+∇f

(
x(k−1)

)T (
x(k) − x(k−1)

)
+

1

2t(k)
∥∥x(k) − x(k−1)

∥∥2
2

}
.

Setting ∇
(
proxt(k),f̃

(
x(k−1)

))
= ∇f

(
x(k−1)

)
+ 1

t(k)

(
x(k) − x(k−1)

)
= 0 gives

x(k) = x(k−1) − t(k)∇f
(
x(k−1)

)
,

which is the gradient descent iteration (2.7). Therefore, (2.7) can be viewed as

obtained by a proximal regularization of the linearized function f at x(k−1), i.e.,

x(k) = arg min
x

{
f
(
x(k−1)

)
+
〈
x− x(k−1),∇f

(
x(k−1)

)〉
+

1

2t(k)
∥∥x− x(k−1)

∥∥2
2

}
.

(2.9)

Linearizing function f in the nonsmooth `1 regularized problem

min
x∈Rn
{f(x) + λ‖x‖1}

gives the following iterative scheme

x(k) = arg min
x

{
f
(
x(k−1)

)
+
〈
x− x(k−1),∇f

(
x(k−1)

)〉
+

1

2t(k)
∥∥x− x(k−1)

∥∥2
2
+ λ‖x‖1

}
.

(2.10)
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Let r = x− x(k−1). We have

∇f
(
x(k−1)

)T
r +

1

2t(k)
‖r‖22 =

1

2t(k)
∥∥r + t(k)∇f

(
x(k−1)

)∥∥2
2
− t(k)

2

∥∥∇f (x(k−1)
)∥∥2

2
.

So (2.10) can be expressed as

x(k) = arg min
x

{
1

2t(k)
∥∥x− (x(k−1) − t(k)∇f

(
x(k−1)

))∥∥2
2
− t(k)

2

∥∥∇f (x(k−1)
)∥∥2

2
+ λ‖x‖1

}
= arg min

x

{
1

2t(k)
∥∥x− (x(k−1) − t(k)∇f

(
x(k−1)

))∥∥2
2
+ λ‖x‖1

}
= Sλt(k)

(
x(k−1) − t(k)∇f

(
x(k−1)

))
(2.11)

= shrink
(
x(k−1) − t(k)∇f

(
x(k−1)

)
, λt(k)

)
,

where (2.11) is justified by Theorem 2.1.1. In particular, when f(x) = (1/2)‖Ax−b‖22,

(2.11) can be written as

x(k) = Sλt(k)
(
x(k) − 2t(k)AT (Ax(k−1) − b)

)
, (2.12)

which is called the basic ISTA iteration with step size t > 0. Now we extend the

previous ideas to the following general problem

min
x∈Rn

F (x), (2.13)

where F (x) = f(x) + g(x), and

• g : Rn → R is a continuous convex function, possibly nonsmooth;

• f : Rn → R is a smooth convex function of the type C1,1, i.e., continuously

differentiable with Lipschitz continuous gradient

‖∇f(x)−∇f(y)‖2 ≤ L(f)‖x− y‖2 for every x, y ∈ Rn,

where L(f) > 0 is the Lipschitz constant of ∇f. In the standard LASSO

problem, f(x) = (1/2)‖Ax − b‖22 and g(x) = λ‖x‖1 for which the smallest

Lipschitz constant of the gradient ∇f is L(f) = λmax(A
TA).
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For any given L > 0, consider the following approximation of F (x) at a given point y,

QL(x, y) = f(y) + 〈x− y,∇f(y)〉+ L

2
‖x− y‖22 + g(x). (2.14)

Let PL(y) be the unique minimizer of (2.14) over x, i.e.,

PL(y) = arg min
x∈Rn

{
f(y) + 〈x− y,∇f(y)〉+ L

2
‖x− y‖22 + g(x)

}
, (2.15)

which can be expressed as

PL(y) = arg min
x∈Rn

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
2

}
. (2.16)

Therefore, the basic step of ISTA for solving the problem (2.13) is

x(k) = PL(x
(k−1)), (2.17)

where the reciprocal of L plays the role of a stepsize. Now, we summarize the ISTA

algorithm with a fixed stepsize for solving (2.13) in Algorithm 2.1.

Algorithm 2.1 ISTA with constant stepsize
Input: Lipschitz constant L := L(f) of ∇f , and error tolerance ε;

Output: a solution of problem (2.13).

1: Initialize: x(0) ∈ Rn, k = 1;

2: while |F (x(k))− F (x(k−1))| > ε do

3: x(k) = PL(x
(k−1));

4: k = k + 1;

5: end while

6: return last x(k) ∈ Rn.

For the standard LASSO problem (2.1), Algorithm 2.1 reduces to the iterative

shrinkage method (2.12) with step size t = 1
L(f)

. The major drawback of Algorithm 2.1
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is that the Lipschitz constant L(f) is computationally expensive to obtain for large

scale problems. For instance, in the LASSO problem L(f) depends on the largest

eigenvalue of the matrix ATA which is not readily known for large-scale problems.

Therefore, we now introduce an ISTA algorithm with backtracking to determine a

stepsize in each step.

Algorithm 2.2 ISTA with backtracking
Input: error tolerance ε and parameter η > 1;

Output: a solution of problem (2.13).

1: Initialize: x(0) ∈ Rn, L(0) > 0, k = 1;

2: while |F (x(k))− F (x(k−1))| > ε do

3: Find the smallest nonnegative integers ik such that with L̄ = ηikL(k−1)

F
(
PL̄(x

(k−1))
)
≤ QL̄

(
PL̄(x

(k−1)), x(k−1)
)
; . Backtracking line search step.

4: Set L(k) = ηikL(k−1) and compute

x(k) = PL(k)(x(k−1)); . Solution update step.

5: k = k + 1;

6: end while

7: return last x(k) ∈ Rn.

It is worth mentioning the performance of ISTA that we described in Algo-

rithm 2.1 and Algorithm 2.2. Here, we mention the convergence rate of the algorithm

in Theorem 2.1.2. For a detailed proof, the reader is referred to [35].

Theorem 2.1.2. Let {x(k)} be the sequence generated by the relation (2.17). Then

for any k ≥ 1

F (x(k))− F (x∗) ≤ αL(f)‖x(0) − x∗‖2

2k
for some x∗ ∈ X∗,
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where α = 1 in the constant stepsize setting and α = η in the backtracking stepsize

setting, and X∗ = arg min F .

Theorem 2.1.2 tells us that the objective function value F (x(k)) converges to the

minimum F (x∗) at a rate of convergence no worse than O
(
1
k

)
. In the next subsection

we discuss another algorithm with a much faster rate of convergence to ISTA.

2.2 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

As we know, ISTA converges at the rate of O
(
1
k

)
. When g(x) ≡ 0, the general

model (2.13) consists of minimizing a smooth convex function and ISTA reduces to

the gradient descent method. In this case, the existence of a gradient method with

an O
(

1
k2

)
convergence rate is proven in [37]. In [35], the same convergence result is

extended to model (2.13). We now present the fast version of ISTA with constant

stepsize in Algorithm 2.3.

Algorithm 2.3 FISTA with constant stepsize
Input: Lipschitz constant L := L(f) of ∇f , and error tolerance ε;

Output: a solution of problem (2.13).

1: Initialize: y(1), x(0) ∈ Rn, t(1) = 1, k = 1;

2: while |F (x(k))− F (x(k−1))| > ε do

3: x(k) = PL(y
(k));

4: t(k+1) =
1+

√
1+4(t(k))2

2
;

5: y(k+1) = x(k) +
(

t(k)−1
t(k+1)

)
(x(k) − x(k−1));

6: k = k + 1;

7: end while

8: return last x(k) ∈ Rn.
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We have the same issue of computational burden for finding the value of Lipschitz

constant L for large scale problems in Algorithm 2.3 as we had in Algorithm 2.1. As

a remedy, we now present FISTA with backtracking in Algorithm 2.4.

Algorithm 2.4 FISTA with backtracking
Input: error tolerance ε and parameter η > 1;

Output: a solution of problem (2.13).

1: Initialize: x(0), y(1) ∈ Rn, L(0) > 0, t(1) = 1, k = 1;

2: while |F (x(k))− F (x(k−1))| > ε do

3: Find the smallest nonnegative integers ik such that with L̄ = ηikL(k−1)

F
(
PL̄

(
y(k)
))
≤ QL̄

(
PL̄

(
y(k)
)
, y(k)

)
; . Backtracking line search step.

4: Set L(k) = ηikL(k−1) and compute . Updating solution.

x(k) = PL(k)

(
y(k)
)
;

t(k+1) =
1+

√
1+4(t(k))2

2
;

y(k+1) = x(k) +
(

t(k)−1
t(k+1)

)
(x(k) − x(k−1));

5: k = k + 1;

6: end while

7: return last x(k) ∈ Rn.

We now state the convergence result of Algorithm 2.3 and Algorithm 2.4. For a

detailed proof and further discussions, the reader is referred to [37] and references

therein.

Theorem 2.2.1. Let {x(k)} be generated by FISTA. Then for any k ≥ 1

F
(
x(k)
)
− F (x∗) ≤ 2αL(f)‖x(0) − x∗‖2

(k + 1)2
for some x∗ ∈ X∗,

where α = 1 in the constant stepsize setting (Algorithm 2.3) and α = η in the

backtracking stepsize setting (Algorithm 2.4).
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Theorem 2.2.1 says that the objective function value of FISTA converges at a

rate no worse than O
(

1
k2

)
.

2.3 Alternating Direction Method of Multipliers (ADMM)

In this section, we will discuss ADMM [38], popularly used algorithm for

solving optimization problems arising in a wide variety of applications such as deep

learning [39], constrained sparse regression [40], sparse signal recovery [41], image

restoration and denoising [42], the Dantzig selector [43], support vector machines [44],

signal processing and `1 optimization [45], and so forth. As ADMM consists of

minimizing an augmented Lagrangian function jointly with respect to primal and

dual variables update, we first discuss the key idea of dual ascent as a motivation to

this algorithm.

2.3.1 Dual ascent

We start with the concept of dual ascent from the notion of conjugate function.

Definition 2.3.1. ( [18]) Let f : Rn → R be a convex function. The function

f ∗ : Rn → R defined as f ∗(y) = sup
x∈D(f)

(yTx− f(x)) is called the conjugate function

of f .

Let us consider the equality constrained convex optimization problem

minimize f(x)

subject to Ax = b,

(2.18)

where A ∈ Rm×n, x ∈ Rn, and f : Rn → R is a convex function.

The Lagrangian function for the problem (2.18) is

L(x, y) = f(x) + yT (Ax− b)
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and the dual function is

g(y) = inf
x

L(x, y) = inf
x

{
f(x) + yT (Ax− b)

}
= inf

x

{
yTAx+ f(x)

}
− yT b

= −f ∗(−ATy)− bTy,

where y ∈ Rm is the dual variable, and f ∗ is the conjugate of f . The dual problem of

(2.18) is to find the maximizer of dual function g(y)

y∗ = arg max
y∈Rm

g(y) = arg max
y∈Rm

{
inf
x∈Rn

L(x, y)

}
.

Let x∗ be the optimal solution of primal problem (2.18), p∗ = f(x∗), and d∗ = g(y∗).

The weak duality condition gives the lower bound for the primal optimal value, i.e.

d∗ ≤ p∗. If f is strictly convex, then the strong duality holds, i.e., d∗ = p∗. Moreover,

we can recover a primal optimal solution x∗ from a dual optimal solution y∗ as

x∗ = arg min
x

L(x, y∗).

In the dual ascent method, we solve the dual problem using gradient ascent. It is

given by

x(k+1) := arg min
x

L
(
x, y(k)

)
, (2.19)

y(k+1) := y(k) + α(k)
(
Ax(k+1) − b

)
, (2.20)

where α(k) > 0 is a step size. The primal and dual variable updates are given by

(2.19) and (2.20), respectively. Intuitively, the algorithm is called dual ascent, since

with appropriate choice of stepsize α(k), the dual function increases in each step, i.e.,

g
(
y(k+1)

)
> g

(
y(k)
)
.
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2.3.2 ADMM Algorithm

The ADMM algorithm solves the problem of the following form

minimize
x∈Rn, z∈Rm

f(x) + g(z)

subject to Ax+Bz = c,

(2.21)

where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. We assume that both functions f and g are

convex. Here, the only difference between the general problem (2.18) and (2.21) is

that the variable x in (2.18) is split into two parts, namely x and z in (2.21). Also, the

objective function is separable according to the split. The augmented Lagrangian [38]

of the problem (2.21) is formulated as

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bz − c‖22 ,

where ρ > 0 is the augmented Lagrangian parameter. ADMM consists of the following

iterations

x(k+1) := argmin
x

Lρ

(
x, z(k), y(k)

)
, (2.22)

z(k+1) := argmin
z

Lρ

(
x(k+1), z, y(k)

)
, (2.23)

y(k+1) := y(k) + ρ
(
Ax(k+1) +Bz(k+1) − c

)
. (2.24)

The iterations consist of an x-minimization step (2.22), a z-minimization step (2.23)

and a dual variable update (2.24) which takes ρ as the stepsize. Let r = Ax+Bz− c.

We have

yT r + (ρ/2) ‖r‖22 = (ρ/2) ‖r + (1/ρ)y‖22 − (1/2ρ) ‖y‖22

= (ρ/2) ‖r + u‖22 − (ρ/2) ‖u‖22 ,

where u = (1/ρ)y is the scaled dual variable. We can reformulate the ADMM

iterations as

x(k+1) := arg min
x

{
f(x) + (ρ/2)

∥∥Ax+Bz(k) − c+ u(k)
∥∥2
2

}
,
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z(k+1) := arg min
z

{
g(z) + (ρ/2)

∥∥Ax(k+1) +Bz − c+ u(k)
∥∥2
2

}
,

u(k+1) := u(k) + Ax(k+1) +Bz(k+1) − c.

The stopping criteria for the ADMM algorithm are determined by the primal

and dual residuals. The primal and dual residuals at the k-th iteration are defined as

r(k) = Ax(k) +Bz(k) − c,

s(k) = ρATB
(
z(k) − z(k−1)

)
,

respectively. The ADMM algorithm is stopped when the primal and dual residuals

are smaller than preset tolerances, i.e.,

‖r(k)‖2 ≤ εpri and ‖s(k)‖2 ≤ εdual, (2.25)

where εpri > 0 and εdual > 0 are feasibility tolerances for the primal and dual feasibility

conditions, respectively. These tolerances can be chosen using an absolute and relative

criterion, such as

εpri =
√
p εabs + εrel max

{
‖Ax(k)‖2, ‖Bz(k)‖2, ‖c‖2

}
,

εdual =
√
n εabs + εrel‖ATy(k)‖2,

where εabs > 0 and εrel > 0 are absolute and relative tolerances, respectively. Theo-

retical justification of the above stopping criteria are explained in [38, §3.3.1].

2.3.3 Solving LASSO problem using ADMM

The LASSO problem

min
x∈Rn

(1/2)‖Ax− b‖22 + λ‖x‖1, (2.26)
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with A ∈ Rm×n (m� n), b ∈ Rm×1, and λ > 0 can be expressed into the standard

ADMM formulation as
minimize f(x) + g(z)

subject to x− z = 0,

where f(x) = (1/2)‖Ax− b‖22 and g(z) = λ‖z‖1. Its augmented Lagrangian function

is given by

Lρ(x, y, z) =
1

2
‖Ax− b‖22 + λ‖z‖1 + yT (x− z) +

ρ

2
‖x− z‖22.

Let r = x− z. We have

yT r +
ρ

2
‖r‖22 =

ρ

2
‖r + (1/ρ)y‖22 −

1

2ρ
‖y‖22

=
ρ

2
‖r + u‖22 −

ρ

2
‖u‖22,

where u = (1/ρ)y. The x-update rule then is

x(k+1) = arg min
x

{
1

2
‖Ax− b‖22 + λ‖z(k)‖1 + yT

(
x− z(k)

)
+

ρ

2

∥∥x− z(k)
∥∥2
2

}
= arg min

x

{
1

2
‖Ax− b‖22 +

ρ

2

∥∥x− z(k) + u(k)
∥∥2
2

}
=

(
ATA+ ρI

)−1 (
AT b+ ρ

(
z(k) − u(k)

))
.

Similarly, the z-update is

z(k+1) = arg min
z

{
1

2

∥∥Ax(k+1) − b
∥∥2
2
+ λ‖z‖1 + ρ

〈
y(k),

(
x(k+1) − z

)〉
+

ρ

2

∥∥x(k+1) − z
∥∥2
2

}
= arg min

z

{
λ‖z‖1 +

ρ

2

∥∥z − (x(k+1) + u(k)
)∥∥2

2

}
= Sλ/ρ

(
x(k+1) + u(k)

)
= shrink

(
x(k+1) + u(k),

λ

ρ

)
.

Finally, the dual variable u-update is

u(k+1) = u(k) + x(k+1) − z(k+1).

We now summarize the process for solving LASSO (2.26) by ADMM in Algorithm 2.5.
25



Algorithm 2.5 ADMM Algorithm for solving LASSO Problem.
Input: A ∈ Rm×n, b ∈ Rm, ε, ρ > 0, λ > 0, absolute tolerance εabs > 0, and relative

tolerance εrel > 0;

Output: a solution of the problem (2.26).

1: Initialize: k = 0, u(0), z(0) ∈ Rn;

2: while the convergence criteria (2.25) are not satisfied do

3: x(k+1) =
(
ATA+ ρI

)−1 (
AT b+ ρ

(
z(k) − u(k)

))
;

4: z(k+1) = Sλ/ρ
(
x(k+1) + u(k)

)
;

5: u(k+1) = u(k) + x(k+1) − z(k+1);

6: k = k + 1;

7: end while

8: return last z(k) ∈ Rn.

The convergence of ADMM has been widely discussed in many scientific research

[38,46]. Also, the objective function values in ADMM convergence at a rate no worse

than O
(
1
k

)
[47].

2.4 `1-Homotopy Algorithm

In this section, we discuss another `1 optimization technique called the `1-

homotopy. There are many algorithms based on the homotopy approach to solve

`1-minimization, e.g., [48,49]. Our presentation of `1-homotopy algorithm is based on

Asif and Romberg [17].

Suppose y is a vector of observations that satisfies the linear system of equations

y = Ax̄ + Nε, where x̄ is a sparse unknown vector of interest, A ∈ Rm×n is a
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measurement matrix, and Nε is a noise vector. We solve the following `1-minimization

problem to recover x̄:

min
x∈Rn

‖Wx‖1 +
1

2
‖Ax− y‖22, (2.27)

where W = diag(w) ∈ Rn×n is a diagonal matrix containing the positive weights

w ∈ Rn on the diagonal. The choice of weights gives the flexibility for imposing

dynamic penalties instead of a single `1 penalty parameter in LASSO which is used

to enhance the performance of sparsity recovery in the signal [50–54]. The homotopy

methods give a general framework for solving the problem starting from the available

solution, and a series of simple problems are solved along the homotopy path toward

the final solution of the original problem. This process is controlled by a homotopy

parameter lying between 0 and 1, linking the two endpoints of the homotopy path.

We now describe the homotopy method for solving (2.27) by taking the homo-

topy parameter ε ∈ [0, 1], warm-start vector x̂, and solving the following optimization

problem as ε moves from 0 to 1.

fε = min
x
‖Wx‖1 +

1

2
‖Ax− y‖22 + (1− ε)uTx, (2.28)

where u is defined as

u ≡ −Wẑ − AT (Ax̂− y) : ẑ


= sign(x̂) on Γ̂,

< 1 on Γ̂c

(2.29)

with Γ̂ = {i | x̂(i) 6= 0} is the support set of the vector x̂ and Γ̂c is the complement

of the support set Γ̂. When ε = 0,

∂fε = Wẑ + AT (Ax̂− y)−Wẑ − AT (Ax̂− y) = 0,

which shows that x̂ is an optimal solution of (2.28) with ε = 0. The main idea of

the homotopy algorithm is, as ε changes from 0 to 1, the problem (2.28) gradually
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transforms into the problem (2.27) and the solution of (2.28) follows a piecewise linear

path from x̂ towards the solution of problem (2.27). Suppose x∗ is a solution of the

problem (2.28). Then it satisfies the following KKT optimality conditions [18, page

241-245]:

Wg + AT (Ax∗ − y) + (1− ε)u = 0, (2.30)

‖g‖∞ ≤ 1, gTx∗ = ‖x∗‖1,

where g ∈ ∂‖x∗‖1 denotes the subdifferential of ‖x∗‖1. For any values of ε ∈ [0, 1],

the solution x∗ must satisfy the following (splitting the KKT optimality condition

(2.30) into the support set and its complement),

aTi (Ax
∗ − y) + (1− ε)ui = −wizi for all i ∈ Γ, (2.31)

|aTi (Ax∗ − y) + (1− ε)ui| ≤ wi for all i ∈ Γc,

where Γ is the support set of the solution x∗, z denotes its sign on the support set,

and ai denotes the i-th column of the matrix A. In every homotopy step, we go from

one critical value (value of ε where support set changes) of ε to next by updating

the support set of the solution until it hits 1. As ε increases by a small value δ, the

objective function value fε changes to fε+δ, i.e.,

fε+δ = min
x
‖Wx‖1 +

1

2
‖Ax− y‖22 + (1− ε− δ)uTx. (2.32)

Thus, as ε is increased by a small value δ, the solution moving along the update

direction vx should satisfy the following optimality conditions :

aTi (Ax
∗ − y) + (1− ε)ui + δ(aTi Avx − ui) = −wizi for all i ∈ Γ, (2.33)

| aTi (Ax∗ − y) + (1− ε)ui︸ ︷︷ ︸
pi

+ δ(aTi Avx − ui)︸ ︷︷ ︸
di

| ≤ wi for all i ∈ Γc. (2.34)
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Therefore, the update direction that keeps the solution optimal as we change δ

can be expressed as

vx =


(AT

ΓAΓ)
−1uΓ on Γ,

0 otherwise.
(2.35)

Let δ− denote the smallest step size such that a active constraint in (2.33) becomes

inactive which shrinks an existing element at an index γ− on the support set Γ to 0.

We have

δ− = min
i∈Γ

(
−x∗

i

(vx)i

)
+

.

Let δ+ denote the smallest step size such that an inactive constraint in (2.34) becomes

active at an index γ+ indicating that it should enter into the support Γ. We have

from inequality constraint (2.34)

|pi + δdi| ≤ wi

=⇒ −wi − pi
di

≤ δ ≤ wi − pi
di

=⇒ δ+ = min
i∈Γc

(
wi − pi

di
,
−wi − pi

di

)
+

,

where min
x∈Rn

(x)+ means we just take the positive argument of the vector x and take the

minimum over those positive arguments. Thus, if one of the optimality conditions in

(2.33) and (2.34) is violated, we add or remove the elements from the support set Γ.

The smallest step size that causes one of these changes in the support is computed as

δ∗ = min (δ+, δ−). (2.36)

If γ+ is added to the support, then in the next iteration we check whether the sign

constraint in (2.33) is violated or not. If the sign of zγ+ and (vx)γ+ are different, then

we remove the entry of Γ at the position of γ+ and recompute the update direction

vx. In summary, the `1-homotopy algorithm is presented in Algorithm 2.6.
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Algorithm 2.6 `1-Homotopy Algorithm
Input: A ∈ Rm×n, y ∈ Rm, diagonal weight matrix W ∈ Rn×n, warm-start vector x̂,

and a vector u ∈ Rn as defined in (2.29);

Output: a solution of problem (2.27).

1: Initialize: ε = 0, x∗ = x̂;

2: while ε 6= 1 do

3: Compute vx as in (2.35); . Update direction;

4: Compute p and d as in (2.34);

5: Compute δ∗ = min(δ+, δ−) as in (2.36); . Step size

6: if ε+ δ∗ > 1 then

7: δ∗ = 1− ε . Last iteration

8: x∗ = x∗ + δ∗vx . Final solution

9: break

10: end if

11: x∗ = x∗ + δ∗vx . Update solution

12: ε = ε+ δ∗ . Update the homotopy parameter

13: if δ∗ = δ− then

14: Γ = Γ\γ− . Remove an element from the support

15: else

16: Γ = Γ ∪ γ+ . Add a new element to the support

17: end if

18: end while

19: return x∗ ∈ Rn.
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2.5 Iterative Reweighting via Homotopy

In this subsection, we present another variant of the homotopy algorithm,

called iterative reweighting via homotopy, to solve the `1-minimization problem. We

present a detailed discussion of iterative reweighting via homotopy algorithm based

on [55]. The idea behind the iterative reweighting via homotopy is similar to the ideas

discussed in `1-homotopy in Section 2.4. In `1-homotopy, we start with the initial

guess x̂ and a vector u defined by x̂ and initial weight W so that x̂ is optimal when

the homotopy parameter ε = 0. Then we trace the homotopy path along with this

initial solution x̂ and u to the exact solution as homotopy parameter ε changes from

0 to 1. But in iterative reweighting via homotopy, we want to solve the following

weighted `1-minimization problem:

minimize
x∈Rn

n∑
i=1

wi|xi|+
1

2
‖Ax− y‖22, (2.37)

where A ∈ Rm×n, y ∈ Rn, and wi is a positive weight serving as a `1 penalty for

each i. In the iterative reweighting algorithm, we solve the problem (2.37) for given

weights wi > 0, then we update wi to new weights w̃i > 0 and solve the following new

problem for better signal recovery

min
x

n∑
i=1

w̃i|xi|+
1

2
‖Ax− y‖22. (2.38)

To make the bridge between the problem (2.37) with starting weights and the

problem (2.38) with new weights, we solve the following homotopy path problem,

min
x

n∑
i=1

((1− ε)wi + εw̃i) |xi|+
1

2
‖Ax− y‖22, (2.39)

where ε ∈ [0, 1] is a homotopy parameter. Once ε changes from 0 to 1 in (2.39), the

solutions follow the linear homotopy path from the solution of (2.37) to the solution

of (2.38). From the similar discussion and analysis made in Section 2.4, for any value
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of homotopy paramater ε, the solution x∗ of optimization problem (2.39) satisfies the

following KKT optimality conditions:

aTi (Ax
∗ − y) = −((1− ε)wi + εw̃i)zi, for all i ∈ Γ,

|aTi (Ax∗ − y)| < (1− ε)wi + εw̃i, for all i ∈ Γc,

where ai, Γ, and zi denote the i-th column of the matrix A, support set of the solution

vector x∗, and the sign of x∗ on the support set Γ, respectively. As the homotopy

parameter ε is increased by a small step δ, the solution moves in the update direction

vx. The optimality condition is changed according to the new step δ and update

direction as follows:

AT
Γ(Ax

∗ − y) + δAT
ΓAvx = −

(
(1− ε)W + εW̃

)
z + δ(W − W̃ )z on Γ,(2.40)

| aTi (Ax∗ − y)︸ ︷︷ ︸
pi

+δ aTi Avx︸ ︷︷ ︸
di

| ≤ ((1− ε)wi + εw̃i)︸ ︷︷ ︸
qi

+δ (w̃i − wi)︸ ︷︷ ︸
si

, ∀ i ∈ Γc, (2.41)

where W and W̃ denotes |Γ| × |Γ| diagonal matrices with entries on diagonal being

w and w̃ on Γ, respectively. Here, |Γ| denotes the cardinality of the support set Γ.

The update direction vx as we move δ step further by keeping the solution along

the homotopy path can be obtained by analyzing the optimality condition (2.40) by,

vx =


(AT

ΓAΓ)
−1(W − W̃ )z on Γ,

0 on Γc.

(2.42)

The solution progresses in the homotopy path with small step size δ in update direction

vx until it violates one of the optimality constraints (2.40) or (2.41) which causes

either a new element to enter the support (inactive constraint (2.41) becomes active)

or the existing element shrinks to zero (when active constraint (2.40) is violated) on
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the support. The value of the stepsize δ that takes the solution to such a critical

value of ε can be computed as δ∗ = min(δ+, δ−), where

δ+ = min
i∈Γc

(
qi − pi
−si + di

,
−qi − pi
si + di

)
+

, (2.43)

δ− = min
i∈Γ

(
−x∗

i

(vx)i

)
+

.

Here, δ+ is the smallest step size that causes an inactive constraint in (2.41) to become

active which means the index for that instance, γ+ enters into the support. Also, δ−

is the smallest step size that causes a violation of a constraint in (2.40) which causes

an entry for that index γ− shrinks to zero . We perform the homotopic continuation

from one critical value to another critical value unless the homotopic parameter ε hits

1. In summary, the entire process of iterative reweighting via homotopy is described

in Algorithm 2.7.
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Algorithm 2.7 Iterative Reweighting via Homotopy
Input: A ∈ Rm×n, y ∈ Rm,warm-start vector x̂, weight vector w ∈ Rn, and modified

weight vector w̃ ∈ Rn;

Output: a solution of problem (2.37).

1: Initialize : ε = 0, x∗ = x̂;

2: while ε 6= 1 do

3: Compute vx as in (2.42); . Update direction;

4: Compute p, d, q, and s as in (2.41);

5: Compute δ∗ = min(δ+, δ−) as in (2.43); . Step size

6: if ε+ δ∗ > 1 then

7: δ∗ = 1− ε . Last iteration

8: x∗ = x∗ + δ∗vx . Final solution

9: break

10: end if

11: x∗ = x∗ + δ∗vx . Update solution

12: ε = ε+ δ∗ . Update the homotopy parameter

13: if δ∗ = δ− then

14: Γ← Γ\γ− . Remove an element from the support

15: else

16: Γ← Γ ∪ γ+ . Add a new element to the support

17: end if

18: end while

19: return x∗ ∈ Rn.
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2.6 Reweighted `1-minimization for sparsity enhancement

Consider the weighted `1-norm minimization problem:

min
x∈Rn

‖Wx‖1 +
1

2
‖Ax− y‖22, (2.44)

where A ∈ Rm×n, y ∈ Rm, and W = diag(w) ∈ Rn×n is a diagonal matrix containing

the positive weights w ∈ Rn on the diagonal. In the `1-minimization problem (2.44),

one of the major concerns is to choose appropriate weights to improve reconstruction

and sparsity in the solution. In this subsection, we provide some of the well-known

weight improvement techniques (see e.g. [50, 54]), which show that the reweighted

`1-minimization outperforms unweighted `1-minimization in many situations. The key

feature of reweighted `1-minimization is to solve the series of weighted `1 problems

min
x∈Rn

‖W (t)x‖1 +
1

2
‖Ax− y‖22, (2.45)

where W (t) = diag(w(t)), and w(t) ∈ Rn is a vector of positive weights determined by

the previous solution x(t−1) of (2.45). We determine the next improved solution x(t+1)

of (2.45) by a the new weight w(t+1) determined by the current solution x(t). The

whole process of iterative reweighting is presented in Algorithm 2.8.

Using Algorithm 2.8, we recalculate weights in each iteration for sparse and

improved signal reconstruction. In step 5 of Algorithm 2.8, we used the weight

modifying scheme introduced by Candès, Wakins, and Boyd (CWB) [50]. Besides

CWB, there are many other popularly used reweighted schemes which can be used in

step 5 of Algorithm 2.8. Here, we briefly review some [54, 56].

• (NW1 method) For p ∈ (0, 1) and δ > 0,

w
(t+1)
i =

p+ (|x(t)
i |+ δ)1−p

(|x(t)
i |+ δ)1−p

[
|x(t)

i |+ δ + (|x(t)
i |+ δ)p

] , i = 1, 2, · · · , n.
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Algorithm 2.8 Iterative Reweighting
Input: A ∈ Rm×n, y ∈ Rm, parameter δ > 0, and maximum iteration Nmax;

Output: a modified solution of problem (2.38).

1: Initialize : t = 0, w
(0)
i = 1 ∀ i;

2: while t ≤ Nmax do

3: Solve the weighted `1-minimization problem by any appropriate `1 solving

methods such as Algorithm 2.2, Algorithm 2.4, Algorithm 2.5, Algorithm 2.6,

or Algorithm 2.7.

x(t) = arg min
x∈Rn

‖W (t)x‖1 + 1
2
‖Ax− y‖22;

4: for i = 1, 2, · · · , n do

5: w
(t+1)
i = 1

|x(t)
i |+δ

; . Update weights.

6: end for

7: t = t+ 1;

8: end while

9: return last x(t) ∈ Rn.

• (Wlp method) For p ∈ (0, 1) and δ > 0,

w
(t+1)
i =

1

(|x(t)
i |+ δ)(1−p)

, i = 1, 2, · · · , n.

• (NW2 method) For δ > 0 and p, q ∈ (0, 1),

w
(t+1)
i =

q + (|x(t)
i |+ δ)1−q

(|x(t)
i |+ δ)1−q

[
|x(t)

i |+ δ + (|x(t)
i |+ δ)q

]1−p , i = 1, 2, · · · , n.

• (NW3 method) For δ > 0 and p, q ∈ (0, 1),

w
(t+1)
i =

1 + 2(|x(t)
i |+ δ)[

|x(t)
i |+ δ + (|x(t)

i |+ δ)2
]1−p , i = 1, 2, · · · , n.

• (NW4 Method) For p ∈ (0,∞) and δ > 0,

w
(t+1)
i =

1 + (|x(t)
i |+ δ)p

(|x(t)
i |+ δ)p+1

, i = 1, 2, · · · , n.
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For a detailed theoretical discussion and convergence results of the above reweighting

schemes, the reader can explore [54, 56], and the references therein. We will extend

these reweighting schemes to solve the Sylvester type LASSO problem in Chapter 4.

While performing the numerical simulation for the LASSO problem, parameter

tuning is one of the biggest issue. To find the right parameter value for λ, cross-

validation techniques are suggested. But, if we have a bound for λ for which the

output of the standard LASSO problem is a zero vector, then with the help of that

bound we can scale the value of λ down to get the idea of sparsity level in the solution.

In [38, §11.1.1-page 88] and [21, page 24 (exercise 2.1)], the largest possible value of

parameter λ for which LASSO will return a zero vector as the solution is provided.

We present the proof in Theorem 2.6.1 for the sake of clarity.

Theorem 2.6.1. Let A ∈ Rm×n and b ∈ Rm. If λ > ‖AT b‖∞, then the minimizer of

the LASSO problem

min
x∈Rn

f(x) with f(x) =
1

2
‖Ax− b‖22 + λ ‖x‖1 (2.46)

is x∗ = 0.

Proof. The problem (2.46) is a convex problem. Its minimizer x∗ satisfies

0 3 ∂f(x∗), the subgradient of f at x∗. (2.47)

We have

∂f(x∗) =


AT (Ax∗ − b) + λs : si


= 1 if (x∗)i > 0,

∈ [−1, 1] if (x∗)i = 0,

= −1 if (x∗)i < 0.




. (2.48)

The condition (2.47) implies that there is an s∗ whose entries (s∗)i are as described

in (2.48) such that

AT (Ax∗ − b) + λs∗ = 0 ⇒ ATAx∗ + λs∗ − AT b = 0,
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pre-multiplying which by xT
∗ gives

xT
∗A

TAx∗ + λxT
∗ s∗ − xT

∗A
T b = 0. (2.49)

It can be seen that xT
∗ s∗ = ‖x∗‖1 and thus

λxT
∗ s∗ − xT

∗A
T b ≥ λ‖x∗‖1 − ‖xT

∗ ‖∞‖AT b‖∞

= ‖x∗‖1(λ− ‖AT b‖∞)

≥ 0

because ‖x∗‖1 ≥ 0 and λ > ‖AT b‖∞. On the other hand, xT
∗A

TAx∗ ≥ 0 because

ATA is positive semi-definite. Therefore, in light of (2.49), we must have

‖x∗‖1(λ− ‖AT b‖∞) = 0 ⇒ ‖x∗‖1 = 0,

as expected.

We use this threshold for parameter λ to perform numerical simulations in the

following chapters.
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CHAPTER 3

APPLICATION OF `1-MINIMIZATION TO EEG BRAIN SOURCE

LOCALIZATION PROBLEM.

3.1 Introduction

The Electroencephalography(EEG) procedure measures the real-time electric

potentials of brain cells caused by activation of the neurons. The procedure is used to

diagnostically detect a potential disorder in the brain. Examples of EEG applications

in clinical use include real-time monitoring of patients’ sleep apnea [57, 58], detection

and prediction of epilepsy seizures [59,60], depth of anesthesia, coma, encephalopathies,

and brain death [61], etc. EEG electrodes measure the electric activities of the brain

from the scalp surface instead of directly measuring the active neurons in the brain.

However, it does not provide information about conclusive locations and distributions

of the related activated sources, which are of interest to the neuroscience community.

The problem of localizing neural activities in the cortical surface with the help of

recorded EEG signals is referred to as the source imaging (ESI) which is inherently an

“ill-posed” linear inverse problem because the number of the potential brain sources is

larger than the number of EEG recording sensors placed on the scalp, which implies

that the different neural activity patterns on source space could result in the same

electromagnetic field measurements.

The EEG source localization problem is highly “ill-posed” and has infinitely

many solutions. Additional regularization terms are needed to determine an appro-

priate solution. Several studies have been done regarding the possible regularizations

in this context. The minimum norm estimate (MNE) [62] imposes `2-norm penalty
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and achieves a unique solution. There are variants of `2-norm penalties methods such

as the dynamic statistical parametric mapping (dSPM) [63] and the standardized

low-resolution brain electromagnetic tomography (sLORETA) [64]. Some of these

methods also use the combination of other methods such as the weighted minimum

norm-LORETA (WMN-LORETA) [65] which combines the LORETA method and

weighted minimum norm. The `2-norm based methods estimate the over-diffuse

source reconstruction. The minimum current estimate (MCE) [66] is introduced with

`1 penalty for sparse source reconstruction which overcomes the overestimation of

active area sizes obtained in `2-norm based methods.

The previously mentioned source localization methods estimate the source loca-

tions at each time point independently. A number of other regularization techniques

are studied to promote temporal smoothness. One of the popularly used methods is

the mixed-norm estimate (MxNE) [4]. This method uses two-level `1/`2 to achieve

smooth temporal estimates, and three-level mixed-norm to promote spatially non-

overlapping sources between different experimental conditions. The time-frequency

mixed-norm estimate (TF-MxNE) [67] uses structured sparse priors in the time-

frequency domain for a better estimation of the non-stationary and transient source

signal. The graph regularized EEG source imaging with in-class consistency and

out-class discrimination [68] is proposed to utilize the label information of the different

brain states and understand the source localization problem in a supervised way. Liu,

Wang, Rosenberger, Lou, and Quin proposed a task-related EEG source localization

via the graph regularized low-rank representation model [69] to characterize the low-

rank structure of the source activation. Recently, Wang, Liu, Lou, Li, and Purdon [70]

proposed a probabilistic structure learning for EEG/MEG source imaging with a

hierarchical graph prior to characterize the denoised micro-states and the manifold
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structure of the source activation pattern of the brain. This study effectively deals

with the bilevel noises existing in sources and channels.

We further discuss the source localization process based on MCE method in

the following section. We apply the `1 optimization methods discussed in Chapter 2

to find the solution of the EEG inverse problem.

3.2 The EEG Inverse Problem

In this section, we describe the EEG inverse problem mathematically and

present the results of source localization using the current state-of-the-art algorithms.

The EEG recording model can be represented in the following linear equation:

X = LS +N, (3.1)

where X ∈ Rm×k is the EEG measured signal for the set of m electrodes/EEG

channels at k time points, L ∈ Rm×n is the lead field matrix that maps the brain

source signal to sensors on the scalp, S ∈ Rn×k is a source matrix that represents the

electrical activity at n locations and the k time points in the brain, and N ∈ Rm×k

represents the noise on signal acquisition from each of the m EEG electrodes at the k

time points. In Figure 3.1, we present the brain model, where each triangle represents

the source space (brain voxel) and the number of the triangles is equal to n.
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Figure 3.1: Brain model with cortical surface represented by triangular mesh where
each triangle represents the brain voxel. We consider that each current dipole is located
at the center of the triangular mesh and orientation of the dipole is perpendicular to
the cortical surface.

The lead field matrix (or gain matrix) plays an important role. Each column of

the lead field matrix represents the brain activation pattern of the particular source to

the corresponding electrode. We obtain the lead field matrix by solving the Maxwell’s

equation. More technical details can be found in [71, 72]. In Figure 3.2, we illustrate

the process of EEG source localization visually.
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1 2

EEG signals for a given time unit.

Figure 3.2: In EEG inverse problem, we set up the EEG electrodes on the scalp as
shown in figure 1© from which we record the signal data X. With the help of recorded
signal information X and lead field matrix L, our task is to determine the activated
source location S as shown in 2©.
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The lead field matrix L has fewer rows than the columns, which makes the

source localization problem highly “ill-posed”. We use the `1-norm penalty as a

regularization to estimate an appropriate solution. The source estimation problem

under the `1 penalty is a convex optimization problem, which is expressed as

arg min
S∈Rn×k

‖X − LS‖2F + λ‖S‖1,1, (3.2)

where λ > 0 is a regularization parameter. Since the problem (3.2) is decoupled, we

can recover each column of S by solving the following k independent optimization

problems:

si = arg min
si∈Rn

‖xi − Lsi‖22 + λ‖si‖1, (3.3)

where xi and si denote the i-th column of the matrix X and S respectively. For each

i, the problem in (3.3) is the standard LASSO problem.

3.3 Numerical Results

3.3.1 Experiment setup

In any brain imaging problem, we do not know the underlying ground truth.

We form synthetic data to characterize the performance of the `1-minimization

algorithms to solve the `1-minimization problem (3.3). We use Brainstorm [73] GUI

available in MATLAB to plot the source activation results in a real head model

template. Brainstorm will be used for brain structure segmentation and cortical

surface reconstruction. For real head model design, we use standard ICBM 152

template for Neuroscan Quick Cap for 128 channels and edit the channel location to

create the head model for 108 channels. The electrode layout on the head surface is

shown in Figure 3.3.
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(a) Electrode layout on the left hemisphere. (b) Electrode layout on the right hemisphere.

Figure 3.3: EEG channel layout of ICBM 152 - Neuroscan Cap 128 edited in (a) and
(b) from two different sides of the head model.

In our experiment, the lead field matrix L is 108× 2004, and it represents the

mapping between 108 EEG electrodes (channels) and 2004 brain voxels. In reality,

EEG measurements are contaminated with noise. We consider the noise in the signal

acquisition process at different noise levels. The amount of noise is determined by

the signal-to-noise ratio (SNR) values. The SNR [17,68] value is defined as

Signal to noise ratio (SNR) = 20 log10

‖S‖F
‖S − Ŝ‖F

,

where S and Ŝ denote the ground truth and reconstructed source respectively. The

SNR values are measured in decibels (dB). By definition, the lower SNR values repre-

sent the larger amount of noise in data. The numerical results of source reconstruction

will be presented in the next section using both noisy and clean data.

3.3.2 Numerical Experiments

In this subsection, we present the numerical results of source reconstruction

for EEG problem (3.3) using the benchmark algorithms described in Chapter 2.
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We measure their performance in terms of run time (cputime in MATLAB) and

reconstruction error. The reconstruction error (RE) is defined as

Reconstruction Error(RE) = ‖Ŝ − S‖F
‖S‖F

.

The reconstruction estimate is considered good if the RE value is close to zero. Before

describing the numerical results, we observe how quickly different `1 optimization

algorithms help decay the objective function value of problem (3.3) in Figure 3.4.

In this result, we use zero vector (or cold start) as an initial guess for each column

recovery of source matrix S in all five algorithms, namely ADMM, ISTA, FISTA, and

`1-homotopy. The weighted `1-homotopy considers the solution of `1-homotopy as

an initial guess which we call a warm start. The choice of an optimal value of the

parameter λ is always a demanding task and problem dependent. In this work, we

first consider

λmax = max{‖LTx1‖∞, · · · , ‖LTxk‖∞},

and then we scale down λmax by a scaling factor C ∈ (0, 1), i.e., λ = Cλmax. We use

a fixed value of λ for each column recovery of matrix S in all the algorithms.
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Figure 3.4: Behavior in convergence of the objective value of the problem (3.3) by
different benchmark algorithms for C = 0.1.

From Figure 3.4, we see that the weighted `1-homotopy algorithm converges

faster to the optimum in less number of iterations than the other four algorithms.

The weighted `1-homotopy achieves the solution faster since it uses warm start

initialization. With the cold start, `1-homotopy converges faster among all.

We present the numerical results of `1 optimization algorithms on noise-free

synthetic data (SNR = ∞ dB) in Table 4.1. In this test, we choose regularization

parameter λ = Cλmax. The table shows the performance in source localization of the

benchmark algorithm discussed in Chapter 2 in terms of reconstruction error and

runtime. We use the cputime function in MATLAB to record the runtime of the
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algorithm in seconds. We use MacBook Pro PC having 16 gigabytes (GB) random

access memory (RAM) with 2.7 GHz Intel Core i7 processor to run all the numerical

simulations. In Table 4.1, the best performance results are highlighted.

SNR = ∞ dB (noiseless)

Algorithms Runtime (RT) Reconstruction
Error (RE)

ADMM 45.04 0.770588
ISTA 59.18 0.958876
FISTA 54.18 0.849367
`1-homotopy 31.73 0.571420
Weighted `1-homotopy 18.54 0.553751

Table 3.1: Results of source reconstruction by benchmark algorithms with scaling
factor C = 0.005 for λ.

From Table 4.1, we see that the weighted `1-homotopy has superior performance

on source localization in terms of RE and RT values. We use cold start for ADMM,

ISTA, FISTA, and `1-homotopy but a warm start for weighted `1-homotopy which

is the solution of `1-homotopy. Since the warm start for weighted `1-homotopy is

already improved, it takes less time to converge to the solution and gives a better

result. With the cold start, `1-homotopy has faster convergence and a better RE

value. Also, FISTA converges faster than ISTA and has better reconstruction.

In the next step, we consider noise with different noise levels (30 dB, 20 dB, and

10 dB) in the channels while keeping the source noise-free. The results in Table 4.2

present the performance of the benchmark `1-minimization algorithms for noisy data.

The results in Table 4.2 indicate the effect of noise in data. All of the benchmark `1

solvers have poor performance in source reconstruction compared to noise-free data.

The ADMM and homotopy based algorithms have better performance in all noise
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Algorithms SNR = 30 dB SNR = 20 dB SNR = 10 dB
RT RE RT RE RT RE

ADMM 33.28 0.9767 33.57 0.9774 32.06 0.9804
ISTA 60.17 0.9971 59.12 0.9971 58.80 0.9971
FISTA 61.77 0.9944 58.84 0.9944 59.99 0.9944
`1-homotopy 137.56 0.9842 134.17 0.9849 148.14 0.9894
Weighted `1-homotopy 75.82 0.9879 80.55 0.9886 98.60 0.9962

Table 3.2: Results of source reconstruction by benchmark algorithms in different
noise levels with scaling factor C = 0.0001 for λ.

levels. We used the same cold start initialization and a fixed value of λ for all the

five algorithms.

Figure 3.5: EEG signals from 22 out of 108 channels in the first 0.9 milliseconds.

We now visualize the numerical results of the benchmark `1-minimization

algorithms presented in Table 4.1 using Brainstorm GUI in MATLAB for source

localization on a real head model. In Figure 3.5, we present the sample of the first 22

out of 108 channels of EEG measurements out of 108 for the first 0.9 milliseconds
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(ms). In Figure 3.6, we visualize the plots of source recoveries from the benchmark

algorithms. In this experiment, we neglect the 10% of the smallest values from both

ground truth and reconstructed solutions of all the benchmark algorithms for clear

visualization. We compute solutions by widely used source localization methods such

as sLORETA and dSPM using Brainstorm. All the plots in Figure 3.6 are captured

for time instance at 75 ms. The first plot in Figure 3.6 (a) represents the true source

or ground truth activation. The color in the cortical surface represents the strength

of the activated signal around the region. We can see four different activated source

locations in ground truth. We can see the highly diffused and less accurate source

localization results from `2-norm based methods sLORETA and dSPM. The recovery

of FISTA is more accurate compared to ISTA as evidenced by brain plots. The

`1-homotopy and weighted `1-homotopy reconstruct the source location accurately.
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(a) Ground truth. (b) Source recovery by ADMM.

(c) Source recovery by ISTA. (d) Source recovery by FISTA.

(e) Source recovery by sLORETA. (f) Source recovery by dSPM.

(g) Source recovery by `1-homotopy. (h) Source recovery by weighted `1-
homotopy.

Figure 3.6: Source recoveries by benchmark `1-optimization algorithms against ground
truth.
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In summary, the `1-optimization techniques can help solving the EEG source

localization problem. The homotopy based methods can solve the highly “ill-posed”

inverse problem more accurately. We will use similar techniques to those explored in

this chapter in the following chapters.
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CHAPTER 4

SYLVESTER LASSO AND ITS APPLICATION TO EEG INVERSE PROBLEM

4.1 Introduction

In this section, we introduce the Sylvester type LASSO problem which is

formulated as follows:

min
X∈Rm×n

1

2
‖AX −B‖2F +

1

2
‖XC −D‖2F + λ‖X‖1,1, (4.1)

where A ∈ Rq×m, B ∈ Rq×n, C ∈ Rn×p, D ∈ Rm×p, and λ > 0 is a regularization

parameter.

Definition 4.1.1. For any matrix A = (aij) ∈ Rm×n, the vec-form of the matrix A

is defined as

vec(A) = A(:) = (a11, · · · , am1, a12, · · · am2, · · · , a1n, · · · , amn)
T ,

i.e., the entries of A are stacked columnwise to form a vector in Rmn.

Definition 4.1.2. (Kronecker product) The Kronecker product of A ∈ Rm×n and

B ∈ Rp×q is defined as

A⊗B =


a11B · · · a1mB

... . . . ...

am1B · · · amnB

 ∈ Rmp×nq.

The problem (4.1) can be rewritten in the vector form as

min
X(:)∈Rmn

1

2
‖(In ⊗ A)X(:)−B(:)‖22 +

1

2
‖(CT ⊗ Im)X(:)−D(:)‖22 + λ‖X(:)‖1. (4.2)

Define,

M =

 (In ⊗ A)

(CT ⊗ Im)

 ∈ R(nq+pm)×mn,V =

B(:)

D(:)

 ∈ R(nq+pm).
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Problem (4.2) can be reformulated as

min
X(:)∈Rmn

1

2
‖MX(:)− V‖22 + λ‖X(:)‖1, (4.3)

which is now a standard LASSO problem. In the next section, we will describe a

Sylvester LASSO to solve the EEG inverse problem under a specific neurophysiological

assumption.

4.2 Application of Sylvester LASSO to EEG Inverse Problem

The EEG recording signals as described in Chapter 3 can be represented in the

following linear equation:

B = AX +N, (4.4)

where B ∈ Rq×n is the EEG measured signal for the set of q electrodes/EEG channels

in n time points, A ∈ Rq×m is the lead field matrix that maps the m sources of

the brain to q sensors on the scalp, X ∈ Rm×n is a source matrix that represents

the electrical activity at m sources of the brain in n time points, and N ∈ Rq×n

represents the noise on signal acquisition from each of the q EEG electrodes in n time

points. In Chapter 3, we discussed the solution of the “ill-posed” inverse problem

(4.4), under the assumption that the brain source activation is sparse. Total variation

minimization of the source signals can be a feasible neurophysiological assumption of

the EEG inverse problem. The total variation (TV) of the brain sources in n time

points is expressed as,

TV(X) =
n−1∑
i=1

‖xi+1 − xi‖22 = ‖XC‖2F ,
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where xi denotes the i-th column of matrix X, and C =



−1 0 0 . . . 0

1 −1 0 . . . 0

0 1 −1 . . . 0

... ... . . . . . . ...

0 0 . . . 1 −1

0 0 . . . 0 1


.

Problem (4.4) for estimating the source X with both sparsity and TV minimization

assumptions is expressed as the following optimization problem

min
X∈Rm×n

‖AX −B‖2F + ‖XC‖2F + λ‖X‖1,1. (4.5)

Problem (4.5) is a particular case (when D = 0) of the Sylvester type LASSO problem

(4.1). In the next section, we will discuss computational challenges for solving problem

(4.1) and numerical techniques for handling those challenges.

4.3 Pre-processing

In this section, we discuss the process of solving problem (4.3) without explicitly

forming it. The matrix M has a blockwise non-zero structure in real applications,

it is too big to store on personal computers with limited memory. For example, for

A ∈ R108×2004, B ∈ R108×600, C ∈ R600×300, and D ∈ R2004×300, M ∈ R666,000×1,202,400

consumes 6,406 gigabytes of memory in double precision. Applying any `1 solvers

straightforwardly would be infeasible. We must exploit the structure of M. In this

regard, we keep it in the background without forming it explicitly and perform all

computations based on input matrices A, B, C, and D, which are easy to handle.

Many operations need to be performed with the matrix M while performing any `1

solvers like ADMM, ISTA, FISTA, or `1-homotopy algorithm as discussed in Chapter
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2. We now explain how we formulate and implement the algorithms without forming

M explicitly.

• Matrix-vector product with M. Let Y (:) ∈ Rmn be any vector for which we

want to compute the product with M, i.e., M× Y (:). We have

M× Y (:) =

 (In ⊗ A)

(CT ⊗ Im)

× Y (:)

=

 (In ⊗ A)Y (:)

(CT ⊗ Im)Y (:)



=

(AY )(:)

(Y C)(:)

 .

• Matrix-vector product withMT . Suppose p =
[
p1
p2

]
∈ R(nq+pm) is any vector for

which we need to compute the product MT × p, where p1 ∈ Rnq and p2 ∈ Rpm.

We have

MT × p =

[
(In ⊗ AT ) (C ⊗ Im)

]
× p

=

[
(In ⊗ AT ) (C ⊗ Im)

]p1
p2


= (In ⊗ AT )p1 + (C ⊗ Im)p2

= (ATP1 + P2C
T )(:),

where P1 = reshape(p1, q, n) ∈ Rq×n, P2 = reshape(p2,m, p) ∈ Rm×p are

matrices when p1 and p2 are folded back respectively.
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4.4 Algorithms for Sylvester type LASSO Problem

In this section, we discuss how to adapt the benchmark `1 optimization algo-

rithms to efficiently solve (4.3). We will present ADMM and FISTA in detail.

4.4.1 ADMM

As discussed earlier, solving (4.1) is equivalent to solving (4.3). To apply

ADMM, we reformulate problem (4.1) as

minimize f(X) + g(Z)

subject to X − Z = 0,

(4.6)

where f(X) = 1
2
‖AX − B‖2F + 1

2
‖XC −D‖2F and g(Z) = λ‖Z‖1,1. The augmented

Lagrangian function of problem (4.6) is:

Lρ(X,Y, Z) =
1

2
‖AX−B‖2F +

1

2
‖XC−D‖2F +λ‖Z‖1,1+〈Y, (X−Z)〉F +

ρ

2
‖X−Z‖2F ,

where 〈·, ·〉F denotes the inner product of matrices as defined in Definition 4.4.1 below.

Definition 4.4.1 (Matrix inner product). For A ∈ Cm×n and B ∈ Cm×n, the matrix

inner product between them is defined as

〈A,B〉F =
m∑
i=1

n∑
j=1

A∗
ijBij = trace(A∗B),

where A∗ is the complex conjugate transpose of A.

The ADMM algorithm consists of two primal updates (X- and Z-updates) and

dual variable update (Y -update). We start from the X-update which is to find the

minimizer of the augmented Lagrangian over X while keeping Y and Z constants:

min
X∈Rm×n

Lρ(X,Y, Z).

To obtain the closed form solution of the X-update rule, we set ∇XLρ(X,Y, Z) = 0

to get

AT (AX −B) + (XC −D)CT + U + ρ(X − Z) = 0
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=⇒ PX +XQ = K + ρ(Z − U), (4.7)

where U = 1
ρ
Y , P = (ATA+ρIm), Q = CCT , and K = ATB+DCT with Im ∈ Rm×m

is the identity matrix. The X-update rule for given Y (k) and Z(k) is thus expressed as

PX(k+1) +X(k+1)Q = K + ρ(Z(k) − U (k)). (4.8)

We need to solve the Sylvester equation (4.8) to find the solution of X-update.

Bartels and Stewart [74] proposed a numerically stable method known as the Bartels-

Stewart algorithm to solve the Sylvester equation. Following this work, Golub, Nash,

and Loan [75] introduced an improved version of the Bartels-Stewart algorithm known

as the Hessenberg-Schur algorithm to solve the Sylvester equation. We use the

MATLAB built-in function sylvester to solve (4.8) which uses the Hessenberg-Schur

variant of the Bartels-Stewart algorithm. The reader is referred to [74–76], and

references therein for a detailed discussion.

The Z-update rule is expressed as

Z(k+1) = arg min
Z∈Rm×n

Lρ(X
(k+1), Y (k), Z)

= arg min
Z∈Rm×n

{
λ‖Z‖1,1 +

ρ

2
‖Z − (X(k+1) + U (k))‖2F

}
= shrink

(
X(k+1) + U (k),

λ

ρ

)
, (4.9)

where shrink(A,α) = sign(aij)(|aij| − α)+ for A = (aij) ∈ Rm×n.

Finally, the dual update (U -update) rule is described as

U (k+1) = U (k) +X(k+1) − Z(k+1). (4.10)

We determine the stopping criteria for ADMM by the primal and dual residuals.

In Sylvester type LASSO problem, the primal and dual residuals at the k-th step are

defined as

R(k) = X(k) − Z(k),
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S(k) = −ρ
(
Z(k) − Z(k−1)

)
,

respectively. A reasonable stopping criterion is that the primal and dual residuals are

small, i.e.,

‖R(k)‖F ≤ εpri and ‖S(k)‖F ≤ εdual, (4.11)

where εpri > 0 and εdual > 0 are feasibility tolerances for the primal and dual feasibility

conditions, respectively. These tolerances are chosen using an absolute and relative

criterion, such as

εpri =
√
mnεabs + εrel max

{
‖X(k)‖F , ‖Z(k)‖F

}
,

εdual =
√
mnεabs + εrel‖ρU (k)‖F ,

where εabs > 0 and εrel > 0 are absolute and relative tolerances, respectively. The

reader is referred to [38, §3.3.1] for theoretical justification of the above stopping

criteria.

We summarize the ADMM algorithm for solving Sylvester type LASSO (4.1)

in Algorithm 4.1.

59



Algorithm 4.1 ADMM Algorithm for Sylvester type LASSO Problem (4.1)
Input: A ∈ Rq×m, B ∈ Rq×n, C ∈ Rn×p, D ∈ Rm×p, λ > 0, ρ > 0, absolute tolerance

εabs > 0, and relative tolerance εrel > 0;

Output: a solution of problem (4.1).

1: Initialize: U (0), Z(0) ∈ Rm×n as zero matrices, and k = 0;

2: while the stopping criteria (4.11) are not satisfied do

3: X-update as described in (4.8);

4: Z-update as described in (4.9);

5: U -update as described in (4.10);

6: k = k + 1;

7: end while

8: return last Z(k) ∈ Rm×n.

4.4.2 FISTA

Let H(X) = f(X) + g(X), where f(X) = 1
2
‖AX −B‖2F + 1

2
‖XC −D‖2F , and

g(X) = λ‖X‖1,1. For L > 0, the quadratic approximation of H(X) at Y can be

written as

QL(X,Y ) = f(Y ) + 〈X − Y,∇f(Y )〉+ L

2
‖X − Y ‖2F + g(X). (4.12)

The minimizer of (4.12) over X can be expressed as

PL(Y ) = arg min
X

{
g(X) +

L

2

∥∥∥∥X − (Y − 1

L
∇f(Y )

)∥∥∥∥2
F

}

= shrink
(
Y − 1

L
∇f(Y ),

λ

L

)
.

Algorithm 4.2 below describes the process for solving the Sylvester type LASSO

(4.3) using FISTA with backtracking.
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Algorithm 4.2 FISTA with backtracking for Sylvester type LASSO.
Input: A ∈ Rq×m, B ∈ Rq×n, C ∈ Rn×p, D ∈ Rm×p, λ > 0, η > 1, and tolerance ε;

Output: a solution of problem (4.1).

1: Initialize: Y (1), X(0) ∈ Rm×n as zero matrices, L(0) > 1, t(1) = 1, and k = 1;

2: while |H(X(k))−H(X(k−1))| > ε do

3: Find the smallest nonnegative integers ik such that with L̄ = ηikL(k−1)

H(PL̄(Y
(k))) ≤ QL̄(PL̄(Y

(k)), Y (k)); . Backtracking line search step.

4: Set L(k) = ηikL(k−1) and compute . Updating solution.

X(k) = PL(k)(Y (k)),

t(k+1) =
1+

√
1+4(t(k))2

2
,

Y (k+1) = X(k) +
(

t(k)−1
t(k+1)

)
(X(k) −X(k−1));

5: k = k + 1;

6: end while

7: return last X(k) ∈ Rm×n.

4.5 Iterative Reweighting for Sylvester FISTA

The major difficulty for any parameter dependent optimization model is to

determine the best parameter for the model. We are solving `1-minimization problem

(4.1) which is dependent on a single parameter value λ. Different values of regular-

ization parameter λ changes the sparsity level of recovery. Instead of working on

a single regularization parameter λ, we assign different weights to the elements to

control the sparsity. This helps us to keep the recovery in a meaningful direction. We

solve the weighted `1 problem with a dynamic `1 penalty as

min
X∈Rm×n

1

2
‖AX −B‖2F +

1

2
‖XC −D‖2F + ‖W �X‖1,1, (4.13)
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where W ∈ Rm×n is a matrix of positive weights, and A�B denotes the Hadamard

product of the matrices A and B as defined in Definition 4.5.1.

Definition 4.5.1 (Hadamard product [77]). The Hadamard product of two matrices

A = [aij] and B = [bij] of the same size is defined as entrywise product of A and B,

i.e.,

A�B = [aijbij].

In section 2.6 of Chapter 2, we discussed the iterative reweighting technique to

solve weighted `1-minimization problem under different weight modification schemes.

We adopt a similar idea to solve the weighted Sylvester type LASSO problem (4.13).

In iterative reweighting, we have to solve a series of weighted `1-minimization problems

using FISTA because of its convergence speed. We summarize the process of the

iterative reweighting to solve (4.13) in Algorithm 4.3, where we choose NW4 weight

scheme to update the weights in step 5.
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Algorithm 4.3 Iterative Reweighting for Sylvester type LASSO
Input: A ∈ Rq×m, B ∈ Rq×n, C ∈ Rn×p, and D ∈ Rm×p, δ > 0, p ∈ (0, 1), maximum

iteration Nmax;

Output: improved solution of problem (4.13).

1: Initialize : k = 0, W (0) =
(
w

(0)
ij

)
= 1 for all i, j ;

2: while k ≤ Nmax do

3: Solve the weighted `1-minimization problem (4.13) using Algorithm 4.2:

X(k) = arg min
X∈Rm×n

1
2
‖AX −B‖2F + 1

2
‖XC −D‖2F + ‖W (k) �X‖1,1;

4: for i = 1, 2, · · · ,m do

5: for j = 1, 2, · · · , n do

6: w
(k+1)
ij =

1+(|x(k)
ij |+δ)p

(|x(k)
ij |+δ)p+1

; . Update weights (NW4 weighted scheme) .

7: end for

8: end for

9: k = k + 1;

10: end while

11: return last X(k) ∈ Rm×n.

4.6 Numerical Experiments

4.6.1 Experimental setting

In this subsection, we solve the problem (4.1) with synthetic data under different

noise levels determined by signal-to-noise ratio (SNR). We generate the random input

matrices A ∈ R108×2004, B ∈ R108×600, C ∈ R600×300 and D ∈ R2004×300 to observe

the performance of the proposed algorithm. These matrices consist of the values

drawn from the standard uniform distribution on (0,1) using the rand function in

MATLAB. We discussed in section 4.3, M∈ R666,000×1,202,400 is too big to be stored
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on a regular laptop or personal computer. We perform all numerical computations

without forming M. We calculate the following quantities as error measurement

metrics to evaluate the performance of Algorithm 4.3.

• Sparsity Ratio: This is one of the important measures to compare the sparsity

of recovery defined as

Sparsity Ratio (SR) = Nonzero entries of the recovered solution
Total entries of the solution

.

• Runtime (RT): We check the total CPU time taken by an algorithm to solve the

problem. We use the cputime function of MATLAB to record the execution

time.

• Reconstruction Error (RE): For S and Ŝ, the exact and reconstructed solutions,

respectively, we define

RE =
‖S − Ŝ‖F
‖S‖F

.

4.6.2 Numerical Results

In this subsection, we provide the numerical solutions of problem (4.3) with

and without the reweighting technique. We first discuss the convergence behavior of

the solvers for solving (4.13).
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Figure 4.1: Decay of the objective function values in successive iterations when
λ = 1. In ADMM, the objective function value at the k-th iteration is referred to
f(X(k)) + g(Z(k)) whereas f(X(k)) + g(X(k)) in ISTA and FISTA.

In Figure 4.1, we plot objective function values evaluated at updated solution

in each iteration. As we can see in Figure 4.1, FISTA has a faster convergence than

ISTA, as expected. However, both ISTA and FISTA are slower than ADMM which

quickly converges to the global minimum solution in fewer than twenty steps.

In Figure 4.2, we plot the quantity |H(X(k)) − H(X∗)| against successive

iteration with regularization parameter λ = 1 in all three algorithms, where H(X(k)) =

f(X(k)) + g(X(k)) in ISTA and FISTA, and H(X(k)) = f(X(k)) + g(Z(k)) in ADMM.

It is clear from Figure 4.2 that ISTA has the poorest performance, FISTA progresses

slowly while ADMM converges to the solution, the fastest.
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Figure 4.2: Convergence of the three algorithms for solving the Sylvester type LASSO
problem (4.13).

We present numerical simulation results for problem (4.3) with a fixed value

of λ on simulated data without noise. For the synthetic data, the ground truth or

reference solution has SR value 0.0040 which means the matrix that we are interested

in recovering has only 4% non-zero entries. While comparing the performance of the

algorithms regarding the sparsity recovery, SR close to 0.0040 is considered good. In

Table 4.1, we present the performance of ADMM, ISTA, and FISTA in terms of RE,

SR, and RT values. ADMM has the best performance in solution recovery in terms

of RE and SR among the three algorithms.
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SNR = ∞ dB (noiseless)
Algorithms RE SR RT (sec.)

ADMM 0.5572 0.0209 514.06
ISTA 0.9792 0.9931 420.48

FISTA 0.6855 0.8423 446.95

Table 4.1: Recovery results for problem (4.3) with λ = 1.

We further explore the recovery results of the algorithms by adding noise to

the measurements with two different levels of noise at SNR values 30 and 20 dB. We

choose λ = 1 for all three algorithms. ADMM performs the best in solution recovery

even in noisy data compared to the ISTA and FISTA. In terms of running time,

ADMM is slowest.

Algorithms SNR = 30 dB SNR = 20 dB
RE SR RT (sec.) RE SR RT (sec.)

ADMM 0.5559 0.0491 584.92 0.6144 0.24211 531.14
ISTA 0.9792 0.9936 422.22 0.9792 0.9952 410.40

FISTA 0.6860 0.8662 436.79 0.6914 0.9313 424.44

Table 4.2: Recovery results for (4.3) with λ = 1 and two different levels of noise in
measurements.

The SR values in both situations presented in Table 4.1 and Table 4.2 suggest

that the sparsity recoveries by ISTA and FISTA are almost dense with λ = 1. It is

difficult to choose which model validation measurements are the best to judge the

quality of the recovery. If we wish to recover a more sparse solution by increasing λ,

then reconstruction error may get worse. To investigate this situation, we use the

same penalty for ADMM as we used for previous results in Table 4.2 and increase

it for ISTA and FISTA. We recall the result that we established in Theorem 2.6.1

which provides the least possible value of the penalty parameter λmax = ‖MTV‖∞
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for which the entries of the recovery are all zero. For different choices of penalty

parameter, we choose λ = Cλmax, where C ∈ (0, 1).

Algorithms SNR = 30 dB SNR = 20 dB
RE SR RT (sec.) RE SR RT (sec.)

ADMM 0.5559 0.0491 584.92 0.6144 0.24211 531.14
ISTA 0.9999 0.0207 341.11 0.9999 0.0207 343.50

FISTA 1.0121 0.0048 346.48 1.0121 0.0048 334.37

Table 4.3: Recovery results for the problem (4.3) with different noise levels. We use
λ = 1 for ADMM, and λ = 0.1× λmax for ISTA and FISTA.

It is seen in Table 4.3 that the large value of λ used in ISTA and FISTA helped

to recover sparse solutions. At the same time, the reconstruction error increases

compared to the results shown in Table 4.2.

The results in Table 4.1 and Table 4.2 suggests that the `1-minimization

problem (4.3) based on a fixed penalty parameter λ is not the best approach. Instead

of solving (4.3) with a fixed parameter λ, we should solve corresponding weighted

`1-minimization problem (4.13) that dynamically choose penalty parameter for better

solution recovery.

In Section 2.6 of Chapter 2, we discussed the advantage of iterative reweighting

techniques for solving the weighted problem (4.13) and different reweighting schemes

in the literature. We first present how iterative reweighting techniques help improve

recovery solutions in Figure 4.3. We use FISTA to solve the weighted `1-minimization

problem (4.13) in all six reweighting schemes with four reweighting steps (or four

iteration in Algorithm 4.3).
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Figure 4.3: Reconstruction error by different weighting schemes used in Algorithm 4.3.

The effectiveness of the iterative reweighting techniques is seen in Figure 4.3.

Without reweighting, FISTA recovers the solution with 68% reconstruction error. All

of the reweighting schemes contribute to improve the solution in the first reweighting

step. We do not see significant improvements from NW1, NW2, NW3, CWB, and

WLP reweighting schemes after the first reweighting step. NW4 helps to improve

the solution recovery in each reweighting step. Reducing RE from 68% to 30% in

one step of reweighting by NW4 is a great achievement. In four reweighting steps,

NW4 reduces RE form 68% to 24% which is a significant improvement in solution.

The result in Figure 4.3 motivates us to see the impact of iterative reweighting in all

three algorithms solving the weighted Sylvester type LASSO problem (4.13).
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Weight Schemes ISTA FISTA ADMM
RE SR RT RE SR RT RE SR RT

None ? 0.9792 0.9931 420.48 0.6855 0.8423 446.95 0.5572 0.0209 514.06

NW1 0.9784 0.4152 339.26 0.5450 0.0722 325.96 0.5358 0.0040 1028.84
0.9782 0.3772 322.10 0.5422 0.0431 317.73 0.5419 0.0039 1029.58

NW2
0.9789 0.6565 334.29 0.5909 0.1554 318.80 0.5287 0.0046 1102.67
0.9788 0.6442 339.64 0.5856 0.1237 317.56 0.5310 0.0042 1110.28

NW3
0.9790 0.7849 342.39 0.6096 0.2348 321.07 0.5281 0.0054 1101.29
0.9790 0.7808 330.90 0.6033 0.2085 319.02 0.5254 0.0048 1106.40

NW4
0.9759 0.0675 330.29 0.2986 0.0090 329.52 0.5995 0.0033 1020.96
0.9778 0.0407 331.51 0.2547 0.0047 321.99 0.6163 0.0031 1050.06

CWB
0.9782 0.3050 317.98 0.5035 0.0462 325.17 0.5462 0.0038 1101.39
0.9779 0.2575 322.09 0.4958 0.0217 325.98 0.5513 0.0037 1109.83

WLP
0.9790 0.7880 316.80 0.6102 0.2380 333.78 0.5211 0.0054 1105.08
0.9790 0.7838 318.14 0.6035 0.2107 331.76 0.5204 0.0048 1102.03

? This is the result without reweighting.

Table 4.4: Results of iterative reweighting via six different weight schemes with two
reweighting steps for each weight scheme.

The numerical results in Table 4.4 describe the performances of the algorithms

for the weighted Sylvester LASSO problem (4.13) using the iterative reweighting

technique as outlined in Algorithm 4.3 for all three methods ISTA, FISTA, and

ADMM. We use the cold start initialization in all three algorithms and initialize

the weight matrix having diagonal entries all one. The solutions of the weighted

problem (4.13) by the methods without reweighting is listed on the row called None?

in Table 4.4. Using these as initial solutions, we update weights according to the six

different weight schemes respectively. We run all three methods twice with updated

weights as outlined in Algorithm 4.3. The numerical results corresponding to six

different weight schemes are presented in Table 4.4.

In terms of RT, both ISTA and FISTA are similar but ADMM takes more

time for all reweighting schemes. ISTA has poor performance with all six different

reweighting schemes in each of the three measures, and could not reduce RE to

less than 90%. ADMM recovers SR to very close to the ground truth for all of the
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reweighting schemes. None of the weighting schemes could reduce RE by 52%. On

the other hand, FISTA has the best performance in terms of both RE and SR in

the first run without reweighting. All of the weighting schemes help to reduce the

error from an initial 68% to below 60% in one step of reweighting. Among the six

weight schemes, CWB and NW4 have the best performance in terms of reducing RE

and maintaining the sparsity in solution. Among the six weight schemes, the NW4

weight scheme has superior performance. After 2 reweighting steps, it almost recovers

the sparsity level similar to the ground truth. Also, only after two reweighting steps,

RE is reduced from 68% to 25%. The best solution recovery from FISTA algorithms

using NW4 is highlighted in Table 4.4.

The numerical results in Table 4.4 suggest that one of the best approaches for

solving the weighted Sylvester LASSO problem (4.13) is using the iterative reweighting

technique with NW4. Algorithm 4.3 summarizes the procedure for solving the problem

(4.13) with NW4.

SNR = ∞ dB (noiseless)
Number of iteration RE SR RT (sec.)

FISTA solution 0.6855 0.8423 319.95
Iteration 1 0.2986 0.0090 317.97
Iteration 2 0.2547 0.0047 317.69
Iteration 3 0.2456 0.0043 327.31
Iteration 4 0.2431 0.0042 318.76

Table 4.5: Recovery results by Algorithm 4.3 for noiseless data with initial weight
matrix having all diagonal entries one.

In Table 4.5, we summarize the performance of Algorithm 4.3 for noiseless

synthetic data. Measurements for the solution of the initial FISTA run are listed on
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the first row called FISTA initial. The proposed algorithm recovers solutions with

smaller reconstruction error and better sparsity recovery.

We present matrix sparsity plots (or spy plots) in Figure 4.4 using the spy

function in MATLAB for the results of recovery in Table 4.5. The figurative repre-

sentation of matrix recovery in Figure 4.4 shows the effectiveness of our proposed

method for solving Sylvester LASSO problem (4.13). The first spy plot in Figure 4.4

is for the ground truth or exact solution, the second plot is the recovery result of

the initial run of FISTA without reweighting, the third plot is the recovery from the

first reweighting, and the last plot is the recovery from the fourth reweighting of

Algorithm 4.3.
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(a) Ground truth:
SR = 0.0040

(b) FISTA solution:
RE=0.685, SR=0.842

(c) First iteration:
RE=0.298, SR=0.009

(d) Second iteration:
RE=0.254, SR = 0.0046

(e) Third iteration:
RE = 0.245, SR = 0.0042

(f) Fourth iteration:
RE = 0.243, SR = 0.0041

Figure 4.4: Sparsity plot of the solutions by Algorithm 4.3 in 4 reweighting steps
compared with the initial solution of FISTA and ground truth.
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Our proposed method works well for noise-free data as we witnessed Figure 4.4

and Table 4.5. But in practice, we have to deal with noise. We consider the noise

in synthetic data with three different noise levels determined by SNR being 30 dB,

20 dB, and 10 dB, respectively. The results of the recovery of the proposed method

with noisy data are shown in Table 4.6.

Number of iteration SNR = 30 dB SNR = 20 dB SNR = 10 dB
RE SR RT RE SR RT RE SR RT

FISTA solution 0.6859 0.8661 330.24 0.6914 0.9312 319.97 0.7549 0.9896 335.59
Iteration 1 0.2986 0.0090 340.76 0.3018 0.0093 321.48 0.3431 0.0121 336.32
Iteration 2 0.2535 0.0046 330.02 0.2585 0.0046 317.79 0.2900 0.0050 324.29
Iteration 3 0.2416 0.0043 317.74 0.2480 0.0043 318.20 0.2730 0.0044 328.84
Iteration 4 0.2389 0.0041 311.48 0.2452 0.0041 315.90 0.2667 0.0042 327.89

Table 4.6: Results of recovery by Algorithm 4.3 for the Sylvester type LASSO problem
with synthetic data at three different noise levels.

We used the cold start initialization and the identity matrix as an initial weight

to run Algorithm 4.3 for all three different noise levels. The results in Table 4.6

shows how the proposed model performs at different levels of noise. The first row

in Table 4.6 called FISTA initial shows the solution results of the initial FISTA

run. The results in Table 4.6 show that the proposed method is robust in solution

reconstruction for smaller to larger noises. When the data has 30 dB noise, the

initial FISTA run recovers the solution with RE 68% and SR 0.86. As we apply our

proposed algorithm with four reweighting with NW4, RE drops to 23% and SR is

almost the same as the ground truth. The larger noise on data affects recovery. Even

with larger noise in data, the recovery results of the proposed model is not highly

affected. We plot reconstruction error in three different noise levels in Figure 4.5 to

see the impact of noise on our proposed model for recovering the solution.
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Figure 4.5: Reconstruction error by the proposed algorithm at different noise levels.

The error plots in Figure 4.5 show the stability of our proposed model for

solution recovery in smaller to larger noise levels in data. The recovery of our

proposed algorithm is robust even though data has large noises. Similarly, we plot

SR by our proposed model at different noise levels in Figure 4.6.
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Figure 4.6: Sparsity recovery by the proposed algorithm at different noise levels.

The results in Figure 4.6 show the stability in the sparse reconstruction of our

proposed algorithm for three different noise levels. In terms of both sparsity and

reconstruction error, our proposed method works for both clean and noisy data.

In summary, our proposed algorithm to solve the Sylvester type LASSO problem

has superior performance in solution reconstruction. It can solve the computationally

expensive problem by extracting the features of the large data. Our comprehensive
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numerical simulation results show that the iterative reweighting techniques are

effective.
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CHAPTER 5

ESI MODEL CAPTURING THE SOURCE ACTIVATION PATTERN

5.1 Introduction

Over the past few decades, various techniques have been developed for non-

invasive measurements of brain source activities. EEG is one among those due to its

portability, low cost, and effectiveness for brain source localizations. Given recorded

EEG signals, reconstructing the source activities inside the brain is referred to as

the EEG source imaging (ESI). As we discussed in Chapter 3, ESI is a highly “ill-

posed” inverse problem and requires prior assumptions or regularizations to estimate

a solution. We also discussed some of the popular neurophysiological assumptions

(regularizations) that researchers considered and current state-of-the-art methods for

solving the ESI problem. The presences of noises in both EEG signals and brain

sources make the ESI problem challenging. Very few studies have considered noises

in both channel and source spaces in the ESI problem. Recognizing certain pattern

or structure in measured EEG signals is essential to denoise properly. To effectively

deal with noises in both sources and channels, Wang, Liu, Lou, Li, and Purdon [70]

proposed a probabilistic model with specially designed hierarchical prior that models

both the micro-states and manifold structure in ESI. Motivated by [70], we propose

a new ESI model that gathers EEG signals with a similar activation pattern and

use a mixed norm penalty to enhance group sparsity. Before moving to the model

formulation, we provide a brief description of the principle of maximum entropy in

the next section which will be used in our ESI model.
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5.2 The Principle of Maximum Entropy

The entropy measures the amount of uncertainty contained in a probability

distribution. It is applied to measure the disorder of a set and widely used in machine

learning [78], statistics [3], and information theory [79].

Definition 5.2.1 (Entropy [3, 78, 79]). Let S be a partition of the instances into n

target attributes {s1, s2, · · · , sn}. The entropy of S relative to n targets is defined as

Entropy(S) =
n∑

i=1

pi log
(
1

pi

)
,

where pi is the probability of an instance in target attribute si and
n∑

i=1

pi = 1, pi ≥ 0 for i = 1, · · · , n. (5.1)

The lowest value of the entropy is zero, which represents no disorder in a set,

i.e., all instances in a set have a single target attribute. The entropy is maximum

when a set has instances with equally mixed target attributes or the probability

distribution (5.1) is uniform. In general, the large value of the entropy represents the

higher disorder in a set.

As an example, consider a set having 10 instances of two classes, + and -. The

probabilities corresponding to positive and negative classes are denoted by p(+) and

p(−) such that p(+) = 1− p(−). In Figure 5.1, the set has all negative instances (

or p(+) = 0) at the lower left such that it has a minimal disorder and the entropy

zero. When we start to switch the class labels of elements of the set from - to +, the

entropy increases. Entropy is maximum when a set has instances mixed with equal

number of positive and negative classes. As positive classes are increased, the entropy

lowers again and hits zero when the set contains only the positive classes.

We observed that a high entropy translates to high unpredictability of the

probability distribution. Maximizing the entropy is consistent with maximizing the
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Figure 5.1: Entropy of two-class set as a function of p(+). Figure and example are
taken from [3].

unpredictability, given little information we may know about a distribution. If nothing

is known about the distribution except that it belongs to certain class, we choose the

distribution that maximizes the entropy. In another word, maximizing the entropy

minimizes the amount of prior information built into the distribution. For example,

the most informative distribution we can imagine is where we know that an event will

occur 100% of the time, giving an entropy zero. The least informative distribution we

can imagine is a uniform distribution, where each event in the sample space has an

equal chance of occurring, and has the maximum entropy. The principle of maximum

entropy is based on the premise that when estimating a probability distribution, one
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should select the distribution which leaves the largest remaining uncertainty, i.e., the

maximum entropy, consistent with the constraints of the probability distribution [80].

The general mathematical formulation of the entropy maximization can be expressed

as

maximize H(p) =
n∑

i=1

pi log
(
1

pi

)
subject to pi ≥ 0 for i = 1, · · · , n,

n∑
i=1

pi = 1,

n∑
i=1

pirij = βj for 1 ≤ j ≤ m.

(5.2)

The optimal solution of the problem (5.2) is obtained by solving the Lagrangian

of (5.2) for pi [80, 81]. For detailed mathematical description of maximum entropy

distribution, the reader is referred to [82].

5.3 Model Formulation

Let X ∈ RNc×Nt be a matrix of EEG signals from Nc sensors (or channels) in

Nt time points. The mapping from Ns brain sources to Nc channels is through the

lead field matrix L obtained by descretizing the Maxwell’s equation [71,72]. Given X

and L, the objective of ESI is to recover the source activations (or source signals),

denoted by S = [s1, s2, · · · , sNt ] ∈ RNs×Nt , where each column si of S represents the

electric potentials in Ns source locations for one of the Nt time points. The ESI

model with sparsity prior as described in Chapter 3 is expressed as

arg min
S∈RNs×Nt

‖X − LS‖2F + γ3‖S‖1,1, (5.3)

where γ3 > 0 is a penalty parameter for controlling the sparsity to the solution

estimate.
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(a) Principal cortical domains of the motor
system. The primary motor cortex (M1) gen-
erates the signals that control the execution
of movement.

(b) A figurative representation of the body
map encoded in primary motor cortex.

Figure 5.2: The relation of movements of certain body parts and corresponding
activation regions in the brain cortex. Both figures and their descriptions are taken
from Brain Connection blog available at https://brainconnection.brainhq.com/
2013/03/05/the-anatomy-of-movement/.

The human brain is divided into many cortical regions or brain sources. Each

region is activated with certain human action [83]. For example, voluntary movements

require activation of the motor and cerebral cortex. The cerebral cortex is also

activated by coordinated sequences of movements, decision making about appropriate

behavioral startegies and choices. These cortical regions generate signals to execute

the desired actions [84]. Figure 5.2 explains how certain physical movements activate

the motor cortex in the brain. In our proposed model, we would like to investigate

the intrinsic features of region-wise source activations determined by certain human

actions.

In the proposed model, we keep the classical sparsity prior and region-wise

source activations determined by different human actions. The region-wise source

activation is referred to as a block pattern of the source activation and would like
82
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to exploit these block structures in source localizations. We form the clusters of

similar source signals to study block structure by introducing the latent variables

in C = [c1, · · · , cK ] ∈ RNs×K , which we call the landmarks. We apply the clustering

technique to Nt time point signals of Ns brain sources and form K clusters or

landmarks out of them. Since the landmarks are the mean of the denoised source

signals in S, it is reasonable for landmarks ci to inherit the same sparsity property of

S [70]. The objective function (5.3) with landmarks ci is expressed as

arg min
S,C

‖X − LS‖2F + γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1, (5.4)

where γ2 > 0 is a sparsity penalty for landmarks.

The relation between landmarks and sources are described by introducing

a probability matrix R ∈ RNt×K , whose entries ri,k represent the probability of

associating si with landmark ck. Since we do not have much prior information about

the probability distribution of each row of the assignment matrix R, we apply the

principle of maximum entropy for the distribution in order to maximize the entropy.

To that end, for fixed i, we minimize the negative of the entropy. In other words, we

solve the following problem for estimating the probability distribution, the i-th row

of R

minH(ri,k) = −
K∑
k=1

ri,k log
(

1

ri,k

)
subject to ri,k ≥ 0 for k = 1, · · · , K,

K∑
k=1

ri,k = 1.

(5.5)

In addition to estimate the probability distribution for the rows of assignment

matrix R, we would like to minimize the square distance between the electric potentials

si in different time points associated with the same landmark. If si is associated with

ck, we minimize the square distance between them. If not, we do not want to consider
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the distance between them. To effectively deal with these situations, we scale the

square distance between si and ck by the probability of their assignment ri,k. Thus,

for each si, we would like to minimize the following sum of scaled squared distances

K∑
k=1

ri,k‖si − ck‖2.

Therefore, the scaled squared distances between all si and the landmarks ck are

obtained by solving the following problem

min
Nt∑
i=1

K∑
k=1

ri,k‖si − ck‖2. (5.6)

The combination of (5.5) and (5.6) are explained in [70] to estimate the true

probability distribution of the sources using the kernel density estimation on C with

the help of K landmarks. The reader is referred to [70] for a detailed probabilistic

approach to explain these two constraints. We incorporate the estimate of the joint

probability distribution of each row of assignment matrix R given by (5.5) along with

the interaction of all si to the landmarks ck given by (5.6) into the objective function

(5.4) to give

arg min
S,C,R

‖X − LS‖2F + λ
Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k] + γ2

K∑
k=1

‖ck‖1

+ γ3

Nt∑
i=1

‖si‖1, (5.7)

where λ > 0 and α > 0 are the regularization and smoothening parameters, respec-

tively.

In order to capture the structure of the region-wise source activations we bring

all the electric potentials si associated with the same landmark in one place. We form
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a matrix (Sdiag(rk)), rk being the k-th column of R, which gathers all si associated

with the landmark ck, where

diag(rk) =



r1,k 0 · · · 0

0 r2,k · · · 0

... . . . ...

0 0 · · · rNt,k


∈ RNt×Nt .

Let us consider a simple example where electric potentials for the first three

time points s1, s2, and s3 are associated to the landmark c1. In this case, the first

three probabilities r1,1, r2,1, and r3,1 are close to one. The rest of the probabilities

r4,1, · · · , rNt,1 are close to zero such that the entries in violet color in Sdiag(r1) in

(5.8) are close to zero, where

Sdiag(r1)

=



s1,1 s1,2 s1,3 s1,4 · · · s1,Nt

s2,1 s2,2 s2,3 s2,4 · · · s2,Nt

... ... ... ... ... ...

sNs,1 sNs,2 sNs,3 sNs,4 · · · sNs,Nt





r1,1 0 0 0 · · · 0

0 r2,1 0 0 · · · 0

0 0 r3,1 0 · · · 0

0 0 0 r4,1 · · · 0

... ... ... ... . . . ...

0 0 0 0 · · · rNt,1



=



r1,1s1,1 r2,1s1,2 r3,1s1,3 r4,1s1,4 · · · rNt,1s1,Nt

r1,1s2,1 r2,1s2,2 r3,1s2,3 r4,1s2,4 · · · rNt,1s2,Nt

... ... ... ... ... ...

r1,1sNs,1 r2,1sNs,2 r3,1sNs,3 r4,1sNs,4 · · · rNt,1sNs,Nt


.

Thus, all activated sources (rows in Sdiag(r1)) in the first three time points

(the first three columns in Sdiag(r1)) having a similar source activation pattern

determined by the landmark c1 are non-zero. In other words, the rows corresponding
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to the activated sources in the first three-time points of Sdiag(r1) have a non-zero

row structure. These non-zero row structures represent the block pattern on source

activation caused by certain human actions.

Our goal is to capture the non-zero row structures of Sdiag(rk) for each k. The

mixed-norm `2,1 penalty is suggested [4] to capture such structures. Figure 5.3 shows

the source estimations in terms of sparsity recovery for problem (5.3) under three

different norm penalties.

Figure 5.3: (a), (b), and (c) show the estimations of the source amplitudes of EEG
inverse problem (5.3) by `2−, `1−, and `2,1−norm penalty, respectively. The non-
zero coefficients are shown in white. While `2-norm penalty yields only non-zero
coefficients, `2,1-norm penalty promotes non-zero coefficients with a row structure
(only a few sources have non-zero amplitude over the entire time interval of interest).
This illustration is inspired by Figure 1 of [4].

Motivated by Figure 5.3, we incorporate the mixed-norm penalty to capture

the non-zero row structure of Sdiag(rk) into the objective function (5.7) as

arg min
S,C,R

h(S,C,R) = ‖X − LS‖2F + λ
Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k]

+ γ1

K∑
k=1

‖S diag(rk)‖2,1 + γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1, (5.8)
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where γ1 > 0 is a mixed-norm penalty parameter promoting the row structured

sparsity and

‖A‖2,1 =
m∑
i=1

√√√√ n∑
j=1

a2ij

is a Lp,q mixed-norm with p = 2, q = 1 of A = (aij) ∈ Rm×n.

5.4 Numerical Algorithm

In this section, we develop a numerical optimization method to solve the

proposed ESI model (5.8). Optimizing the model (5.8) over a mixed-norm directly

brings difficulty in computing the gradients. We change the formulation of the

proposed ESI model (5.8) to the following constrained optimization problem to

simplify the mathematical derivation

arg min
S,C,R,M

h̃(S,C,R,M)

subject to S diag(rk) = Mk for k = 1, · · · , K,

(5.9)

where

h̃(S,C,R,M) = ‖X − LS‖2F + λ
Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k]

+γ1

K∑
k=1

‖Mk‖2,1 + γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1,

M = {Mk}Kk=1 with Mk ∈ RNs×Nt for each k.

We apply the ADMM framework to solve K constraints optimization problem

(5.9). We minimize the following augmented Lagrangian function of (5.9)

arg min
S,C,R,M,P

g(S,C,R,M, P ) = ‖X − LS‖2F + λ

Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k]

+ γ1

K∑
k=1

‖Mk‖2,1 +
K∑
k=1

〈Pk, S diag(rk)−Mk〉
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+
σ

2

K∑
k=1

‖S diag(rk)−Mk‖2F

+ γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1, (5.10)

where σ > 0 is an augmented Lagrangian parameter, and Pk ∈ RNs×Nt is dual

variable for each k. We now find the minimizer of (5.10) with respect to the variables

S,C,R,M , and P , alternatingly.

We minimize (5.10) over the variable S while C,R,M,P are being fixed. We

denote the i-th column of the k-th dual variable Pk by (pk)i. Also, the i-th column of

the k-th matrix Mk is denoted by (mk)i. The S-subproblem takes the following form

arg min
S

g(S,C,R,M, P )

= arg min
S

‖X − LS‖2F + λ
Nt∑
i=1

K∑
k=1

ri,k‖si − ck‖2 +
K∑
k=1

〈Pk, S diag(rk)−Mk〉

+γ3

Nt∑
i=1

‖si‖1 +
σ

2

K∑
k=1

‖S diag(rk)−Mk‖2F

= arg min
si

Nt∑
i=1

(
‖xi − Lsi‖22 + γ3‖si‖1 + λ

K∑
k=1

ri,k‖si − ck‖2

+
σ

2

K∑
k=1

‖ri,ksi − (mk)i‖2
)

+
K∑
k=1

trace(P T
k S diag(rk))

= arg min
si

Nt∑
i=1

(
‖xi − Lsi‖22 + γ3‖si‖1 + λ

K∑
k=1

ri,k‖si − ck‖2 +
K∑
k=1

ri,k(pk)
T
i si

+
σ

2

K∑
k=1

‖ri,ksi − (mk)i‖2
)

= arg min
si

Nt∑
i=1

(
sTi L

TLsi − 2xT
i Lsi + xT

i xi + γ3‖si‖1 + λsTi si

K∑
k=1

ri,k

−2λ
K∑
k=1

ri,kc
T
k si + λ

K∑
k=1

ri,kc
T
k ck +

K∑
k=1

ri,k(pk)
T
i si +

σ

2

K∑
k=1

r2i,ks
T
i si
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−σ
K∑
k=1

ri,k(mk)
T
i si +

σ

2

K∑
k=1

(mk)
T
i (mk)

T
i

)

= arg min
si

Nt∑
i=1

(
sTi L

TLsi + λsTi si +
σ

2

K∑
k=1

r2i,ks
T
i si + γ3‖si‖1

−2

{
xT
i L+

K∑
k=1

[
λri,kc

T
k − ri,k(pk)

T
i +

σ

2
ri,k(mk)

T
i

]}
si

)

= arg min
si

Nt∑
i=1

(
sTi

{
LTL+

(
λ+

σ

2

K∑
k=1

r2i,k

)
I

}
si − 2bTi si + γ3‖si‖1

)
(5.11)

= arg min
si

Nt∑
i=1

(
sTi U

TUsi − 2bTi si + γ3‖si‖1
)

= arg min
si

Nt∑
i=1

(‖Usi − U−T bi‖22 + γ3‖si‖1), (5.12)

where U is the Cholesky factor of LTL +
(
λ+ σ

2

∑K
k=1 r

2
i,k

)
I = UTU and bi =(

xT
i L+

∑K
k=1

[
λri,kc

T
k − ri,k(pk)

T
i + σ

2
ri,k(mk)

T
i

])T
in (5.11). Therefore, the S-subproblem

(5.12) is equivalent to solving Nt independent strictly convex subproblem:

st := arg min
st

‖Ust − U−T bt‖22 + γ3‖st‖1. (5.13)

The objective function of R-subproblem is expressed as

arg min
R

g(S,C,R,M, P )

= arg min
R

‖X − LS‖2F + λ

Nt∑
i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,klog ri,k]

+γ1

K∑
k=1

‖Mk‖2,1 +
σ

2

K∑
k=1

‖S diag(rk)−Mk‖2F +
K∑
k=1

〈Pk, S diag(rk)−Mk〉

+γ2

K∑
k=1

‖ck‖1 + γ3

Nt∑
i=1

‖si‖1

= arg min
R

λ

Nt∑
i=1

K∑
k=1

[
ri,k‖si − ck‖2 + αri,klog ri,k

]
+

σ

2

K∑
k=1

‖S diag(rk)−Mk‖2F

+
K∑
k=1

trace
(
P T
k S diag(rk)

)
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= arg min
R

λ

Nt∑
i=1

K∑
k=1

[
ri,k‖si − ck‖2 + αri,klog ri,k

]
+

σ

2

Nt∑
i=1

K∑
k=1

‖ri,ksi − (mk)i‖22

+
Nt∑
i=1

K∑
k=1

ri,k(pk)
T
i si

= arg min
R

Nt∑
i=1

K∑
k=1

[
λri,k‖si − ck‖2 + λαri,klog ri,k +

σ

2
r2i,ks

T
i si − σri,ks

T
i (mk)i

+
σ

2
(mk)

T
i (mk)i + ri,k(pk)

T
i si

]
= arg min

R

Nt∑
i=1

K∑
k=1

[
λαri,klog ri,k +

σ

2
r2i,ks

T
i si + ri,k

(
λ‖si − ck‖2 + (pk)

T
i si

− σsTi (mk)i

)]
.

Each row of R represents the probabilities associated the i-th electric potential

si with source activation to each landmark ck and thus the i-th row of R lies in

Ri = {ri,k|ri,k ≥ 0,
∑K

k=1 ri,k = 1}. To recover R(i, :), the i-th row of R, we use

the projected gradient descent (PGD) [85] method which solves the following Nt

subproblems:

arg min
ri,k∈Ri

K∑
k=1

[
λαri,klog ri,k +

σ

2
r2i,ks

T
i si + ri,k

(
λ‖si − ck‖2 + (pk)

T
i si − σsTi (mk)i

)]
.

(5.14)

Also, the elementwise gradient of the objective function of (5.14) can be expressed as

λα(1 + log ri,k) + σri,ks
T
i si + λ‖si − ck‖2 + (pk)

T
i si − σsTi (mk)i. (5.15)

We transform the objective of (5.14) and elementwise gradient (5.15) in vector form

which helps formulating the PGD to solve (5.14). We define the following

ti,k = λ‖si − ck‖2 + (pk)
T
i si − σsTi (mk)i,

v = (ti,1, · · · , ti,K) ∈ R1×K ,

R(i, :) = (ri,1, · · · , ri,K) ∈ R1×K , and
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d = (log ri,1, · · · , log ri,K) ∈ R1×K .

The optimization problem (5.14) can be reformulated in the vector form as

arg min
R(i,:)∈Ri

f(R(i, :)), (5.16)

where f(R(i, :)) = λαR(i, :)dT + σ
2
sTi siR(i, :)TR(i, :) +R(i, :)vT . Conventionally, the

gradient of the objective function that can be decomposed into the columns is defined

as a column vector. In our case, we decompose the objective function of (5.14) into

the rows and define the gradient as a row vector which is expressed as

∇f(R(i, :)) = λα(1T + d) + σsTi siR(i, :) + v, (5.17)

where 1 ∈ RK is a vector of all ones.

We define the projection of a vector to a set in Definition 5.4.1 before describing

the PGD to solve (5.14).

Definition 5.4.1. The projection [34] of a vector y, onto a nonempty convex set X

is defined as

ΠX(y) = arg min
x∈X

‖x− y‖22.

For R-subproblem (5.14), projection set is Ri in Algorithm 5.1,

ΠRi
(y) = arg min

x∈Ri

‖x− y‖22. (5.18)

There are several well-studied optimization methods in the literature [86–88]

to solve (5.18). We use the method proposed by Duchi, Shalev-Shwartz, Singer,

and Chandra [88] and their MATLAB package1 for the projection step. We use the

formula suggested in [70] to initialize R as

ri,k =
exp

(
−‖si−ck‖2

α

)
∑K

k=1 exp
(
−‖si−ck‖2

α

) ,∀ i, k. (5.19)

1Code available online: https://web.stanford.edu/~jduchi/projects/DuchiShSiCh08/

ProjectOntoSimplex.m
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Algorithm 5.1 Projected Gradient Descent for R-subproblem.
Input: small fixed step-size γ > 0, maximum iteration Nmax;

Output: a solution of R-subproblem (5.14).

1: Initialize: R(0) = R by (5.19);

2: for i = 1, · · · , Nt do

3: set t = 1, R(1)(i, :) = R(0)(i, :) ;

4: while t ≤ Nmax do

5: R(t+1)(i, :) = ΠRi

(
R(t)(i, :)− γ∇f(R(t)(i, :))

)
;

6: t = t+ 1 ;

7: end while

8: end for

9: return last R(t).

We summarize the PGD algorithm for solving the Nt independent problems in (5.14)

for the R-subproblem of the proposed algorithm in Algorithm 5.1.

The M -subproblem of the optimization problem (5.10) is expressed as

arg min
M

g(S,C,R,M, P ) = arg min
Mk

γ1

K∑
k=1

‖Mk‖2,1 +
σ

2

K∑
k=1

‖S diag(rk)−Mk‖2F

+
K∑
k=1

〈Pk, S diag(rk)−Mk〉. (5.20)

The optimization problem (5.20) for a fixed k is expressed as

arg min
Mk

γ1‖Mk‖2,1 +
σ

2
‖S diag(rk)−Mk‖2F + 〈Pk, S diag(rk)−Mk〉

= arg min
Mk

γ1‖Mk‖2,1 +
σ

2
‖S diag(rk)−Mk‖2F − trace(P T

k Mk)

= arg min
Mk

γ1‖Mk‖2,1 +
σ

2
‖S diag(rk) + Uk −Mk‖2F

= arg min
M

(1)
k ,M

(2)
k ,··· ,M(Ns)

k

Ns∑
i=1

{
γ1‖M (i)

k ‖2
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+
σ

2
‖(S diag(rk) + Uk)

(i) −M
(i)
k ‖

2
2

}
, (5.21)

where Uk =
1
σ
Pk, and M

(i)
k is the i-th row of Mk. For each i, (5.21) can be decomposed

into the following Ns independent subproblems,

arg min
M

(i)
k

{
γ1‖M (i)

k ‖2 +
σ

2
‖(S diag(rk) + Uk)

(i) −M
(i)
k ‖

2
2

}
. (5.22)

The problem (5.22) has a closed form solution (see e.g. [4, 89, 90]), which is expressed

as

M̂
(i)
k =

(
1− γ1/σ

‖(S diag(rk) + Uk)(i)‖2

)
+

(S diag(rk) + Uk)
(i).

Therefore, the minimizer of (5.20) for fixed k can be expressed as

M̂k =



(
1− γ1/σ

‖(S diag(rk)+Uk)(1)‖2

)
+
(S diag(rk) + Uk)

(1)(
1− γ1/σ

‖(S diag(rk)+Uk)(2)‖2

)
+
(S diag(rk) + Uk)

(2)

...(
1− γ1/σ

‖(S diag(rk)+Uk)(Ns)‖2

)
+
(S diag(rk) + Uk)

(Ns)


. (5.23)

We now solve the C-subproblem of optimization problem (5.10), which is

expressed as

arg min
C

g(S,C,R,M, P ) = arg min
C

λ
Nt∑
i=1

K∑
k=1

ri,k‖si − ck‖2 + γ2

K∑
k=1

‖ck‖1. (5.24)

Suppose Λ = diag(1TR). The optimization problem (5.24) can be reformulated as

min
C

trace
(
C(λΛ)CT − 2λSRCT

)
+ γ2‖C‖1,1. (5.25)

The diagonal matrix Λ is positive definite (ri,k > 0), invertible, and
√
Λ = diag(

√
Λi,i).

Let P = λΛ. Problem (5.25) takes the following form

min
C

trace
(
CPCT − 2λSRCT

)
+ γ2‖C‖1,1

= min
C

trace
[
C
√
P
√
PCT − λC

√
P (
√
P )−1RTST − λSR(

√
P )−1

√
PCT+
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SR(
√
P )−T (

√
P )−1RTST

]
+ γ2‖C‖1,1

= min
C

trace
[
C
√
P − λSR(

√
P )−1

] [√
PCT − λ(

√
P )−1RTST

]
+ γ2‖C‖1,1

= min
C

trace
[√

PCT − λ(
√
P )−1RTST

]T [√
PCT − λ(

√
P )−1RTST

]
+γ2‖C‖1,1. (5.26)

Since ‖A‖2F = trace (ATA) for A ∈ Rm×n, the optimization problem (5.26) can be

expressed as

C := arg min
C

‖
√
PCT − λ(

√
P )−1RTST‖2F + γ2‖C‖1,1. (5.27)

The problem (5.27) is a `1 regularized quadratic programming, and strictly convex

and hence there exists a unique solution. Furthermore, it can be efficiently solved by

many well developed benchmark `1 solvers discussed in Chapter 2.

After updating all the variables S, C, R, and M , the Lagrange multipliers Pk

are updated by the following rule

Pk = Pk + σ(S diag(rk)−Mk). (5.28)

In summary, the overall ADMM framework for solving the optimization problem

(5.10) is presented in Algorithm 5.2 with the following initializations: S is solved using

FISTA for the inverse problem (5.3), the landmark C is obtained using K-means

clustering algorithm [91] on initialized S, and R is obtained by (5.19) using the

initialized S and C.
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Algorithm 5.2 The ADMM framework for the proposed ESI model
Input: lead field matrix L ∈ RNc×Ns , preprocessed EEG signal matrix X ∈ RNc×Nt ,

tolerance ε, and positive parameters α, λ, γ1, γ2, γ3, σ;

Output: solution of the source localization problem (5.10).

1: Initialize: S, C, R, Pk = 0, Mk = 0 for all k, and t = 1.

2: while
∣∣∣g(S(t+1), C(t+1), R(t+1),M (t+1), P (t+1)) − g(S(t), C(t), R(t),M (t), P (t))

∣∣∣ > ε

do

3: Update S by solving LASSO problem (5.13);

4: Update C by solving LASSO problem (5.27);

5: Update R using PGD as described in Algorithm 5.1;

6: Update Mk using (5.23) for each k;

7: Update the dual variables Pk using (5.28) for each k;

8: t = t+ 1;

9: end while

10: return last S(t).

5.5 Numerical Experiments

In this section, we discuss numerical simulation results of optimization problem

(5.10) for our proposed ESI model. We compare the performance of our method to

other popular ESI methods on simulated data to illustrate its effectiveness. Since

each variable updates of Algorithm 5.2 are independent, we parallelize our code using

a parallel toolbox of MATLAB to speed up the numerical simulations. We consider

different levels of noise in sensors and sources in terms of SNR values. We perform

the visual studies of our model in the real head model template in Brainstorm [73]

GUI available in MATLAB.
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5.5.1 Experiment setting

In this subsection, we provide the description of the error metrics used to

compare the results of the proposed method to other popular ESI methods. We

consider three different benchmark methods for comparison, namely minimum current

estimates (MCE) [66], minimum norm estimates (MNE) [62], and mixed norm

estimates (MxNE) [4].

1. Minimum Norm Estimates (MNE): MNE uses the `2 penalty to estimate the

solution of the underdetermined linear system

SMNE = arg min
S∈RNs×Nt

‖X − LS‖2F + α‖S‖2F

= arg min
si∈RNs

Nt∑
i=1

‖xi − Lsi‖22 + α
Nt∑
i=1

‖si‖22, (5.29)

where α > 0 is a penalty parameter. The objective function (5.29) is differen-

tiable, and SMNE can be uniquely determined as

SMNE = (LTL+ αI)−1LTX, (5.30)

where I ∈ RNs×Ns is an identity matrix. In Statistics, the solution of MNE

objective (5.29) is referred to an estimator of the Ridge regression [32]. The

`2-norm based method usually provides an over-diffused solution which we will

observe in our numerical simulation.

2. Minimum Current Estimates (MCE): To capture the sparsely activated brain

sources, Uutela, Hämäläinen, and Somersalo [66] used the `1-norm based penalty

to estimate the solution of the underdetermined linear system

SMCE = arg min
S∈RNs×Nt

‖X − LS‖2F + λ‖S‖1,1

= arg min
si∈RNs

Nt∑
i=1

‖xi − Lsi‖22 + λ

Nt∑
i=1

‖si‖1, (5.31)
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where λ > 0 is a penalty parameter controlling sparsity. The objective function

of (5.31) is not differentiable. But, we can estimate each column of SMCE using

`1-minimization algorithms discussed in Chapter 2. In statistics, MCE (5.31) is

called the LASSO problem.

3. Mixed Norm Estimates (MxNE): MxNE promotes spatially focal sources with

smooth temporal estimates with a two-level `1/`2 mixed-norm. It also uses a

three-level mixed-norm to promote spatially non-overlapping sources between

different experimental conditions. To be specific, we are considering a bilevel

mixed-norm, namely, the `1-norm on the source space and `2-norm across the

time space. The reader can explore different bilevel and multilevel mixed-norm

penalties in [4]. In our comparison studies, MxNE refers to the following

optimization problem:

SMxNE = arg min
S∈RNs×Nt

‖X − LS‖2F + β‖S‖2,1, (5.32)

where β > 0 is a penalty parameter controlling the group sparsity. In order to

solve (5.32), we need to solve the `2,1 based proximal operator problem. MxNE

promotes sparsity along the rows in recovery. The reader is referred to [4] for a

theoretical derivation of the `2,1 based proximal operator.

The results of source estimation in Figure 5.4 explain how different norms used in

MCE, MNE, and MxNE change sparsity in solution.
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(d) Solution by MxNE.

Figure 5.4: Sparsity comparison of different ESI methods.

5.5.2 Description of Data and Parameters

In our numerical simulations, we use synthetic data to validate the performance

of our model. We consider measurement matrix X ∈ R64×120 with 64 channels (Nc)

and 120 time points (Nt) in milliseconds, and lead field matrix L that maps 350

brain sources (Ns) to 64 channels, i.e., L ∈ R64×350. The proposed model attempts to

recover 350 brain sources at 120 time points, i.e., S ∈ R350×120. In our synthetic data,

the ground truth matrix S has a row-wise block pattern as shown Figure 5.4-(a). We

consider these patterns in S to represent region-wise source activations in the brain
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at different time instances, i.e., 0-40, 40-80, 80-120 milliseconds respectively. We

expect our proposed model would successfully capture such activation patterns. We

use standard BioSemi Neuroscan cap for 64 channels under the ICBM152 template

in Brainstorm to present our visual study. The electrodes layout on the head surface

is presented in Figure 5.5.

(a) Electrodes layout (in front view). (b) Electrodes layout (in back view).

Figure 5.5: EEG channel layout of BioSemi Neuroscan cap with 64 channels (in front
and back views).

We perform simulation studies with different parameters involved in our pro-

posed model. Our simulation studies showed that the proposed model is not

highly sensitive to the parameters, where λ ∈ {0.001, 0.0001}, α ∈ {0.01, 0.001},

γ1 ∈ {0.1, 0.001}, σ ∈ {0.02, 0.2, 0.8}, and γ2 = γ3 with γ2 ∈ {0.001, 0.01, 0.3}. The

reconstruction is not sensitive to cluster number K in landmarks, i.e., the column

number of matrix C. In our simulation, K ∈ {5, 10, 15}. We choose the penalty

parameter for MNE α = 0.4, for MCE λ = 0.5, and for MxNE β = 0.01, respectively.
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We compute SMNE as in (5.30) for the solution by MNE. The `1-homotopy

algorithm is used to estimate the solution of MNE due to its superior performance.

The solution estimates by MxNE is found using Scikit learn package for solving the

multi-task LASSO problem in Python.

5.5.3 Model Validation Metrics

In this subsection, we discuss the metrics that we use to evaluate the perfor-

mances of the proposed method and other competing methods.

1. Reconstruction Error (RE): This metric is used to evaluate the performances of

the different `1-minimization algorithms in Chapter 3 and algorithms for solving

the Sylvester LASSO problem in Chapter 4. A reconstruction is considered

good if its RE value is close to zero.

2. Data Fitting (DF): In regression analysis, DF is a measurement of fitness for

the regression model. To understand it in our context, consider the following

linear relation in our EEG problem

X = LS + E , (5.33)

where X ∈ RNc×Nt , L ∈ RNc×Ns (Nc � Ns), S ∈ RNs×Nt , and E ∈ RNc×Nt is a

measurement error. The linear model (5.33) is underdetermined, and we impose

different regularizations to estimate its solution Ŝ. We calculate the sum square

total (SST) value to check the total deviation of the signals from each channel

(xi) to the mean (x̄) of the signals along the time axis:

Etot =
Nt∑
i=1

‖xi − x̄‖22.
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We also measure the total deviation of the signals from each channel (xi) to

the corresponding fitted value x̂i = Lŝi, i.e., the residual sum square (RSS):

Eres =
Nt∑
i=1

‖xi − x̂i‖22.

Finally, the value of the fitness or DF value (r2), which describes the model

fitting is defined as

r2 =

∣∣∣∣∣1− Eres

Etot

∣∣∣∣∣.
In the best scenario, when the estimated EEG signals x̂i exactly match the

observed EEG signals xi, Eres is zero and thus r2 = 1. In general, the closer r2

to 1, the better the model fitting.

3. Area under curve (AUC): A receiver operating characteristic (ROC) curve is one

of the popularly used model validation techniques for evaluations of machine

learning (ML) models [1, 20, 92]. The area under the ROC curve is called AUC

which determines the accuracy of the ML models. We use this model validation

technique in our context to assess the source detection accuracy of the proposed

model. To construct the ROC curve, we need to understand the notion of true

positive (TP), true negative (TN), false positive (FP), and false negative (FN).

These are statistical concepts and their detailed descriptions can be found in

any of [1, 20,92]. Suppose pi denote the i-th brain source in source space and ti

denote the i-th time point in time space.

• True Positive (TP): If pi is activated at ti and the proposed model predicts

the same outcome, then it is called a true positive.

• True Negative (TN): If the source pi is not activated at ti and the proposed

model predicts the same outcome, then it is called a true negative.
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• False Positive (FP): If the source pi is not activated at ti but the proposed

model predicted that pi is activated at ti, then it is called a false positive.

This type of prediction inaccuracy is also called a type I error.

• False negative (FN): If the source pi is activated at ti but the proposed

model predicted that pi is not activated at ti, then it is called a false

negative. This type of prediction inaccuracy is also called a type II error.

We define the true positive rate (TPR) and the false positive rate (FPR) in

terms of TP, TN, FP, and FN as follows:

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
.

The ROC curve is then created by plotting TPR against FPR. In the case of

100% prediction accuracy, we get the value of AUC 1. In general, the closer

AUC to 1, the better the prediction accuracy.

5.5.4 Convergence of the Proposed Model

In this subsection, we discuss the convergence behavior of our proposed ESI

model. For this, we calculate the norm difference between the estimated solution

Ŝ(k) in each step and the ground truth S, i.e., ‖Ŝ(k) − S‖F . In Figure 5.6, we plot

‖Ŝ(k) − S‖F against iteration k of the proposed model for clean and noisy synthetic

data. In both plots (a) and (b) of Figure 5.6, algorithm stops when it meets the

stopping criteria
∣∣‖Ŝ(k+1) − S‖F − ‖Ŝ(k) − S‖F

∣∣ < 10−4. The results in Figure 5.6 (a)

and (b) are obtained using clean and noisy data with noise level 30 dB in channels,

respectively. The result shows that the estimation of the proposed ESI model in each

successive iteration quickly converges to the ground truth. For clean data, the norm
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difference ‖Ŝ(k) − S‖F goes to zero faster than for the case of noisy data, indicating

the adverse effect of noise in solution reconstruction.
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(a) Convergence result for clean data.

1 2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

(b) Convergence result for noisy data.

Figure 5.6: Convergence of the proposed ESI method on clean and noisy data.

In our proposed model (5.10), we have variables to update, namely S, C, R,

M , and P . In Figure 5.7, we record the objective function values after each variable

update and plot them against the successive iterations. All of the five updates

contribute to decrease the objective function value monotonically in each successive

iterations.
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Figure 5.7: Evolution of the objective function values evaluated at each variable
updates in successive iterations.

5.5.5 Simulation Results

In this subsection, we present numerical simulation results of our proposed

method in terms of model validation metrics DF, RE, and AUC. To calculate the

AUC value for each method, the average of the AUC values from each column recovery

of the solution estimate Ŝ is used. We calculate DF and RE using the formulas
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explained in Subsection 5.5.3. We compare the performance of the proposed model

and three different competing ESI models. First, we compare the performance of the

proposed model with MNE, MCE, and MxNE on clean data. The summary of the

performance results is presented in Table 5.1 and the best results are highlighted.

We see that the proposed model outperforms other competing ESI methods. The

proposed model captures the block structure of the synthetic data very well and

recovers the solution with a reconstruction error only 0.02%. In terms of DF and AUC

values, the proposed model performed very well. Moreover, MCE has comparable

performance to our proposed ESI model.

SNR = ∞ dB (Noiseless)
Algorithms DF AUC RE

MCE 1.0000 0.9905 0.0043
MNE 0.9999 0.9018 0.9053
MxNE 0.9757 0.9997 0.0495

proposed 1.0000 1.0000 0.0002

Table 5.1: Quality of source reconstructions in different error metrics for clean data.
The parameter values used in the proposed model are α = 0.01, γ1 = 0.001, γ2 = γ3 =
0.001, λ = 0.0001, and σ = 0.02.

The EEG signals are contaminated with noise during the signal acquisition

process in the real application. We consider three different noise levels in channels,

smaller to larger, namely SNR = 30 dB, 20 dB, and 10 dB. To understand the

contamination of the noise to the clean signal in different noise levels, we plot the

clean signal acquired from the 40-th channel in the first 60 time points and the noisy

signal with different noise levels from the same channel in Figure 5.8. According to

the definition of SNR large noise corresponds to small SNR value.
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Figure 5.8: Clean data vs. noisy data at different noise levels.

We present a summary of the performance of competing methods and the

proposed method in Table 5.2 for the data having noise in channels with three

different noise levels. MNE has a highly diffusive solution that produces largest DF

values but poorest AUC and RE in all three cases. In our synthetic data, the true

source has non zero block structures which MxNE is capable to capture well, and thus

results in the largest AUC in all three cases. In terms of model fitting and reducing

the reconstruction error, MxNE is weaker compared to the proposed method. For

all three noise levels, the proposed method has superior performance on capturing
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the block structures of the data, superior model fitting, and superior reconstruction

error.

Methods SNR = 30 dB SNR = 20 dB SNR = 10 dB
DF AUC RE DF AUC RE DF AUC RE

MCE 0.997 0.985 0.057 0.974 0.954 0.223 0.989 0.845 0.856
MNE 1.000 0.903 0.906 1.000 0.890 0.913 1.000 0.841 0.980
MxNE 0.921 0.998 0.103 0.563 0.992 0.300 0.721 0.955 0.717
proposed 0.996 0.988 0.057 0.970 0.956 0.194 1.000 0.936 0.500

Table 5.2: Quality of source reconstructions in different error metrics for the data
with different noise levels. The parameter values used in the proposed model are as
follows: for SNR = 10 dB, α = 0.01, γ1 = 0.1, γ2 = γ3 = 0.01, λ = 0.01, and σ = 0.1;
for SNR = 20 dB, α = 0.01, γ1 = 0.1, γ2 = γ3 = 0.6, λ = 0.01, and σ = 0.2; for SNR
= 30 dB, α = 0.01, γ1 = 0.1, γ2 = γ3 = 0.3, λ = 0.001, and σ = 0.8.

We plot the ROC curves in Figure 5.9 for one column recovery of the noisy

data having noise level SNR = 20 dB. When the data has noise level SNR = 20 dB,

MxNE has the largest AUC observable as having the largest area under the ROC

curve in Figure 5.9.

Many ESI methods only consider noise in channels and discard the presence of

noise in sources. We perform numerical experiments by considering additive white

noise in both sources and sensors at different noise levels. We denote the level of

noise in channels by SNRC and in sources by SNRS for a clear distinction. We

perform the numerical experiments by keeping a fixed level of noise in channels

and varying different levels of noise in sources. In the next two experiments, we

fix two levels of noise SNRC = 30 dB and SNRC = 20 dB in channels and vary

SNRS = 30 dB, and 20 dB in sources. Experimented results are summarized in

Table 5.3 and Table 5.4.
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Figure 5.9: ROC curves by different ESI models.

SNRC = 30 dB

Algorithms SNRS = 30 dB SNRS = 20 dB
DF AUC RE DF AUC RE

MCE 0.987 0.926 0.471 0.997 0.746 1.324
MNE 1.000 0.882 0.927 1.000 0.785 1.091
MxNE 0.106 0.982 0.468 0.147 0.903 0.987
proposed 1.000 0.974 0.253 1.000 0.858 0.938

Table 5.3: Quality of source reconstructions by different ESI algorithms in different
error metrics for synthetic data with noise in channels 30 dB, noise in sources 30
dB, and 20 dB. The parameter values in the proposed model: for SNRS = 20 dB,
α = 0.001, γ1 = 0.1, γ2 = γ3 = 0.01, λ = 0.1, and σ = 0.01, and for SNRS = 30 dB,
α = 0.01, γ1 = 0.1, γ2 = γ3 = 0.01, λ = 0.1, and σ = 0.01.
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In Table 5.3, we present the numerical results of the ESI methods with SNRC

= 30 dB and varying noise in sources from SNRC = 30 dB to SNRC = 20 dB. For

relatively large noise SNRC = 20 dB in channels and vary noise in the sources from

SNRC = 30 dB to SNRC = 20 dB, the results are presented in Table 5.4.

SNRC = 20 dB

Algorithms SNRS = 30 dB SNRS= 20 dB
DF AUC RE DF AUC RE

MCE 0.986 0.902 0.534 0.998 0.727 1.330
MNE 1.000 0.876 0.933 1.000 0.773 1.095
MxNE 0.260 0.980 0.506 0.062 0.890 1.002
proposed 1.000 0.960 0.287 1.000 0.848 0.931

Table 5.4: Quality of source reconstructions by different ESI algorithms under different
error metrics for synthetic data with noise in channels 20 dB, noise in source 30 dB,
and 20 dB. The parameter values in the proposed model: for SNRS = 20 dB and 30
dB, α = 0.5, γ1 = 0.1, γ2 = γ3 = 0.01, λ = 0.1, and σ = 0.01.

The results in Table 5.3, and Table 5.4 show the superior performance of the

proposed model in source reconstruction at different noise levels. MxNE keeps row

sparsity in reconstruction sources, so it is successful to capture the block pattern in

data that is reflected in AUC in both tables. The model fitting (DF) values for MxNE

are also lower compared to others. MCE has superior model fitting (DF) values due

to its higher diffusive solution. However, smaller value of the prediction accuracy

(AUC) and higher reconstruction error make MNE less favorable compared to other

ESI methods. In nutshell, the proposed model has the best performance among all

in terms of reconstruction error (RE) and data fitting (DF) values and comparable

AUC to MxNE for data with bilevel noises.
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(a) Real source recovery plot having 350 tri-
angular vertices.

(b) Corresponding projected source space
with 15002 triangular vertices available in
default anatomy in Brainstorm.

Figure 5.10: Figure (a) displays the cortical region and source activation based on
synthetic data having 350 brain voxels. Figure (b) shows the corresponding projected
source in the high resolution cortical region having 15002 triangular vertices.

(a) Ground Truth (b) By proposed (c) By MNE

(d) By MCE (e) By MxNE (f) SNRC = 10 dB

Figure 5.11: Source recovery plots by different ESI methods with SNRC = 10 dB and
SNRS =∞.

We visualize the numerical results shown in the above tables via the brain plot

to examine the effectiveness of our proposed model. Our synthetic data considers

110



only 350 number of sources which are represented by 350 triangular meshes in cortical

regions. The brain plot results have low resolution image because of fewer number of

triangular brain meshes in real head model. In order to achieve high quality brain plot,

we project our source recovery data to the source template having 15002 triangular

vertices available in Brainstorm default anatomy, as depicted in Figure 5.10.

(a) Ground Truth (b) By proposed (c) By MNE

(d) By MCE (e) By MxNE
(f) SNRC = 30 dB, SNRS =
30 dB

Figure 5.12: Source recovery plots by different ESI methods with SNRC = 30 dB and
SNRS = 30 dB.

In Figure 5.11, we visualize the source reconstruction results of the simulation

considering noise in channels only with SNRC = 10 dB, and SNRS =∞ dB for which

numerical results are shown in Table 5.2. In Figure 5.11 (a), activation of the ground

truth in 825 mili seconds is shown. The rest of the brain plots in Figure 5.11 (b)-(e) are

for the source recovery by the proposed method, MNE, MCE, and MxNE, respectively.

The last plot, Figure 5.11 (f), presents the recorded EEG signals contaminated with

noise having noise level SNRC = 10 dB.
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(a) Ground Truth (b) By proposed (c) By MNE

(d) By MCE (e) By MxNE

(f) SNRC = 20 dB, SNRS =
30 dB

Figure 5.13: Source recovery plots by different ESI methods with SNRC = 20 dB and
SNRS = 30 dB.

Similarly, in Figure 5.12 and Figure 5.13, we visualize the results for noise in

both channels and sources at different noise levels. In any case, whether we consider

noise in channels only or both channels and sources, source reconstruction by the

proposed method is always more accurate than any other competing ESI methods.
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The proposed method is significantly better when the data has high noise levels in

sources and channels.

In conclusion, all simulation results show that the proposed model is successful

to capture activation pattern in brain. When noises are presented in both sources

and channels, the proposed model has superior performance in source reconstruction.

The proposed model is successful in recognizing the precise source activation in all

the cases. It has the best model fitting (DF), prediction accuracy (AUC), and less

reconstruction error (RE) values for clean and noisy data compared to other popular

state-of-the-art ESI models. The ESI problem with noise in both sources and channels

was less studied, and this research fills that gap.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

In this section, we summarize the mathematical optimization methods that we

proposed in this dissertation to solve the inverse problem arising in electroencephalog-

raphy source imaging (ESI). We studied the uses of different matrix norms and their

abilities to fulfill different neurophysiological assumptions in the ESI problem.

We studied the Sylvester LASSO problem in Chapter 4 that uses the `1-norm

minimization technique to recover the solution of the inverse problem under sparse

prior. We find that this type of `1-minimization technique can be used to solve

the EEG source imaging problem by minimizing the total variation of activated

source signals in the brain. The conversion of the Sylvester LASSO to standard

LASSO problem brings many computational challenges. We explore the technique to

handle large coefficient matrixM and long vector V by extracting the block structure

that makes problem solvable in personal computers with limited memory. We use

iterative reweighting techniques to better solve the following weighted Sylvester

LASSO problem

minimize
X(:)∈Rmn×1

1

2
‖MX(:)− V‖22 + ‖WX(:)‖1. (6.1)

We use FISTA to solve each reweighted problem (6.1) which converges quickly to

the solution. Only 3 to 4 numbers of reweighting steps achieve the reconstruction

error up to 24%. The sparsity recovery in the solution is very close to the ground

truth solution for synthetic data. From all numerical simulations based on synthetic

data, the proposed method for solving (6.1) is very efficient. The proposed method
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is robust on recovering the solution with smaller to high noise data. In this regard,

our proposed model can be a good option to consider solving the Sylvester LASSO

problem.

The precise source reconstruction helps cure several brain disorders. The

activities inside the brain are always related to certain human behaviors. Detection of

the source activation pattern is the primary task at any mathematical model for ESI.

The proposed ESI model in Chapter 5 can effectively capture the block-wise activation

pattern of the brain sources. The mathematical optimization problem developed

in Chapter 5 can be solved efficiently by ADMM. Each matrix variable update can

be decoupled and parallel computation is used to speed up the computations. The

proposed method outperforms state-of-the-art ESI methods. The proposed method

deals with data having noise in the source space and channels effectively. The plots

of source localization results in a real head model by the proposed model show

correct detections of the activated source locations very precisely compared to other

competing ESI methods.

The research presented in this dissertation to model the ESI problem with new

realistic neurophysiological assumptions to capture the block-wise source activation

pattern of the brain fills the gap in the research in ESI. The proposed model captures

the source activation pattern efficiently. In dealing with bilevel noises in ESI problems,

the proposed model is a good choice compared to other popular ESI methods.

According to the Global Burden of Disease Study 2010 (GBD 2010)1 report,

a substantial proportion of the world’s diseases came from mental and neurological

disorders. In the global population, mental disorders accounted for the largest

proportion of Disability-adjusted life years (DALYs) (56.7%), followed by 28.6% of
1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320057/
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neurological disorders. In the U.S., WHO estimates 2 18.7% of DALYs are in the

category of neuropsychiatric disorders followed by 13.6% mental and 5.1% neurological

disorders for which the U.S. alone spends $15.5 billion each year for neurological

treatment. In this regard, research in brain source imaging has a high impact on

medical practice to detect any brain disorder accurately and reduces the cost of

diagnosis and treatment of patients. We believe that the model we developed to

answer some practical neurophysiological conditions will contribute to the literature

to develop efficient technology in this field.

6.2 Future Work

The research in this dissertation is motivated by the quest for better mathemat-

ical optimization models and tools for solving ESI inverse problems. We would like

to contribute to a diverse spectrum of mathematical questions and challenges related

to data science, image reconstruction, medical imaging, remote sensing, etc. The

mathematical optimization plays a key role in wide areas of data science applications.

Many machine learning tasks have a very similar structure to inverse problems, such

as matrix completion, classification, clustering, and segmentation. We would like to

enhance the ideas of convex and non-convex optimization techniques to broaden the

applicability of our research in recent trends and applications in data science.

Hyperspectral imaging [93,94] is a popular imaging technique in remote sensing.

The purpose of hyperspectral imaging is to obtain the spectrum of reflectance or

radian values for each pixel in the image of a scene, with the purpose of finding objects

and identifying materials (endmembers) along with their proportions (abundances). In

order to accurately identify the materials presented in the scene, a spectral unmixing
2https://www.ncbi.nlm.nih.gov/pubmed/23842577
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(SU) problem has to be solved. SU is a source separation problem whose goal is

to recover the signatures (properties of the materials) of the pure materials and to

estimate their relative proportions (fractional abundances) in each pixel of the image.

Let X ∈ RL×N be a hyperspectral image formed by gathering the N many

pixels xk having L number of spectral bands (feature of the pixels such as color) in

the columns of X. The signatures sp, p = 1, · · · , P of the P endmembers considered

for the unmixing are gathered in the column of a matrix S ∈ RL×P . The abundance

coefficients apk for each pixel k = 1, · · · , N and material p = 1, · · · , P are stored in a

matrix A ∈ RP×N . The linear mixing model for the whole hyperspectral image can

be expressed as

X = SA+ E, (6.2)

where E ∈ RL×N is noise. Since the abundances are interpreted as proportions

and they are required to be positive and the sum of the abundances in each pixel

is required to be one. Therefore, estimating the matrix of abundances A of the

material presented in each pixel of the hyperspectral image X using the information

of extracted endmembers S is often carried out by solving the following constrained

optimization problem:
arg min
A∈RP×N

‖X − SA‖2F

subject to 1T
PA = 1T

N

aij ≥ 0 ∀i, j,

(6.3)

where 1P ∈ RP denotes the vector of ones.

The ideas of grouping the similar source activation pattern using a mixed-norm

strategy proposed in the ESI model in Chapter 5 can be extended to solve the spectral

unmixing problem (6.3). We would like to extend our knowledge of solving the
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optimization problem with simplex constraint in our proposed ESI method to solve

problem (6.3) by inducing group sparsity among the similar abundance coefficients.

Answering challenges in imaging problems of several domains requires extensive

knowledge of mathematical optimization, mathematical modeling skills, and synthesis

of powerful novel mathematical concepts. We would like to continue working on

inverse problems in imaging and on related problems in data science. The effort on

advancing the mathematical research on solving the challenges in the domain of data

science will be continued.
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