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ABSTRACT

TAIL LATENCY PREDICTION FOR FORK-JOIN STRUCTURES

SAMI MARZOOK ALESAWI, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Hao Che

The workflows of the predominant user-facing datacenter services, including web search-

ing and social networking, are underlaid by various Fork-Join structures. Due to the lack

of understanding the performance of Fork-Join structures in general, today’s datacenters

often resort to resource overprovisioning, operating under low resource utilization, to meet

stringent tail-latency service level objectives (SLOs) for such services. Hence, to achieve high

resource utilization, while meeting stringent tail-latency SLOs, it is of paramount importance

to be able to accurately predict the tail latency for a broad range of Fork-Join structures of

practical interests.

In this dissertation, we propose and conduct a comprehensive study of a model for tail

latency prediction for a wide range of fork-join structures of practical interests. The idea

is to introduce a detailed examination of two main approaches that can be applied to our

prediction model: 1) a black-box approach that covers a wide range of fork-join structures.

And 2) a white-box approach for a wide range of fork-join queuing models. Our extensive

testing results based on model-based and trace-driven simulations demonstrate that the

model can consistently predict the tail latency within 20% and 15% prediction errors at 80%

and 90% load levels, respectively. The experimental results confirmed the effectiveness of the
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prediction model in predicting tail latency at high load regions, making the model a valuable

tool for resource provisioning and supporting scheduling decisions in datacenter clusters for

guaranteeing users satisfaction.

Finally, the model is applied to the prediction of achievable resource utilization under

any given tail-latency SLO. We derive a cluster load bound for a particular class of OLDI

services. And for a simple Fork-Join queuing network model of M/M/1 Fork nodes, the

derivation helps characterize the performance upper bound of such services, assuming that

all the jobs have the same fanout degree. In general, due to the queuing effect, the tail

latency is difficult to contain without throwing a significant amount of cluster resources to

the problem, which would result in low cluster resource utilization.
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CHAPTER 1

INTRODUCTION

Fork-Join structures underlay many user-facing datacenter services, including web

searching and social networking. A Fork-Join structure is a critical building block in the

request processing workflow that constitutes a major part of request processing time and

hardware cost, e.g., more than two-third of the total processing time and 90% hardware cost

for a Web search engine [2]. In a Fork-Join structure (e.g., Fig. 2.1), each request in a flow

spawns multiple tasks, which are forked to, queued and processed at different fork nodes in

parallel; the task results are merged at a join node; and the final results are returned. Due to

barrier synchronization, the request response time is determined by the slowest task, making

it extremely challenging to predict the request performance, in particular, the request tail

latency. This is because tail latency is a probabilistic performance measure concerning the

tail probability, which is hard to capture, from both modeling and measurement points of

view. In particular, it is harder but more important1 to predict the tail latency under heavy

load conditions than light ones. This is because as the load becomes heavier, so does the

tail distribution, e.g., the 99th percentile of memcached request latencies on a server jumps

from less than 1ms at the load of 75% to 1s at the load of 89% [3].

Tail latency is considered to be the most important performance measure for user-facing

datacenter applications [4] and it is normally expressed as a high percentile request response

time, e.g., the 99th percentile response time of 200ms, to satisfy as many user requests as

1In the low load region, tail-latency requirements can be easily satisfied as the available resources are

abundant. In contrast, in the heavy load region in which the leftover resource is scarce, resource allocation

with high precision must be exercised to meet user tail-latency requirements.
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possible. Unfortunately, without a good tail-latency prediction model, especially in the high

load region, to provide high assurance of meeting tail-latency SLOs for user-facing services,

the current practice is to overprovision resources, which however, results in low resource

utilization in datacenters [5, 6]. For example, aggregate CPU and memory utilizations in

a 12,000-server Google cluster are mostly less than 50%, leaving 50% and 40% allocated

CPU and memory resources, respectively, idle almost at any time [5]. Similarly, in a large

production cluster at Twitter, aggregate CPU usage is within 20%–30% even thought CPU

reservations are up to 80% and aggregate memory usage is mostly within 40%–50% while

memory allocation consistently exceeds 75% [6]. Hence, how to improve resource utilization

or the load from currently less than 50% to, say, 80-90%, while meeting stringent SLOs has

been a challenging issue for datacenter service providers [6]. To this end, a key challenge

to be tackled is how to accurately capture the tail latency with respect to various Fork-Join

structures at high load.

Fork-Join structures are traditionally modeled by a class of queuing network models,

known as Fork-Join queuing networks (FJQNs) [7]. FJQNs are white-box models in the

sense that all the Fork nodes are explicitly modeled as queuing servers with given queuing

discipline and service time distribution. In this dissertation, we argue that attempting to use

FJQNs to cover a sufficiently wide range of Fork-Join structures of practical interests is not

a viable solution. Instead, a black-box solution that can cover a broad range of Fork-Join

structures must be sought.

On one hand, FJQNs are notoriously difficult to solve in general. Despite the great

effort made for more than half a century, to date, no exact solution is available even for the

simplest FJQN where all the queuing servers are M/M/1 queues [8]. Although empirical

solutions for some FJQNs are available, e.g., [9, 10, 11, 12, 13], they can only be applied to

a very limited number of Fork-Join structures, e.g., homogeneous case, the case of First-In-

First-Out (FIFO) queuing discipline, and a limited number of service time distributions.
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On the other hand, the design space of Fork-Join structures of practical interests is

vast. It encompasses (a) a wide range of queuing disciplines and service time distributions

(e.g., both light-tailed and heavy-tailed) [7]; (b) the case with multiple replicated servers

per Fork node for failure recovery, task load balancing, and/or redundant task issues for tail

cutting [14, 15] or fast recovery from straggling tasks [16]; (c) the case where the number of

spawned tasks per request may vary from one request to another [17]; and (d) the case of

consolidated services, where different types of services and applications may share the same

datacenter cluster resources [18]. Clearly, the existing FJQNs can hardly cover such a design

space in practice. Therefore, we provide comprehensive solutions to the above challenges,

which will be explained within the next chapters. This dissertation makes the following

major contributions:

(1) We proposed a black-box Fork-Join model that can be applicable to a wide range of Fork-

Join structures of practical interests, making tail-latency prediction for OLDI applications

a reality, chapter 2.

(2) With this model, the tail-latencies for a wide range of FJQNs are derived for the first

time, making a contribution to the queuing theory as well, chapter 2.

(3) We demonstrate that this model can be used at consolidated environments to predict the

tail of the target application among multiple existed applications, chapter 3.

(4) We present our analytical solution for tail prediction,i.e., the white-box approach, of both:

single and consolidated applications, and have it available at the disposal to interested

researchers, chapter 3.

(5) We demonstrate that this model can be extended to heterogeneous FJQNs. We apply

variable fanout degrees, which is presented in chapter 2. And we push it further, in chapter

4, with applying different (or variant): load utilization, distributions, distributions-tails,

or distributions service times, among nodes, where we find the tail-latency prediction error

stays within less than 15%.

3



(6) As an application of our proposed solution:

– We present our method to translate any given users requirements (SLOs) into task perfor-

mance budgets, which we do believe it will advance the current tasks scheduling algorithms

into a further level, for bettering user experience, chapter 4.

– We present our derived method to calculate the load bound for a particular class of OLDI

services, chapter 5.

Finally, the research works included in this dissertation are organized as the following:

1.1 Black-BOX Fork-Join Model

In chapter 2, we propose a solution for the black-box Fork-Join model, called ForkTail,

to cover a broad range of Fork-Join structures of practical interests. By “black-box”, we mean

that each Fork node is treated as a black box, regardless of how many replicated servers there

are and how tasks are distributed, queued, and processed inside the box. As we shall see in

this study, the proposed black-box model indeed adequately covers the most design space,

if not all. Comprehensive testing and verification of the proposed solution are performed

for all Fork-Join structures. Also, in this chapter, sensitivity analysis is provided, which

indicates that ForkTail can lead to accurate resource provisioning for user-facing interactive

datacenter services in a consolidated datacenter environment at a high load. Preliminary

ideas are introduced as to how to use this solution to facilitate tail-latency-SLO-guaranteed

job scheduling and resource provisioning.

1.2 White-BOX Model for Consolidated Applications

Consolidating applications in datacenters becomes a necessity to reduce cost and im-

prove the return on investment by increasing the utilization and allowing resource sharing

among different applications[19]. This comes at a price of poor user experience and high
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delays in processing user requests. Unfortunately, many research works primarily considered

only a flow of jobs from a single application. The work in chapter 2 included the approxi-

mation for the tail latency of consolidated applications but based on a black-box approach,

which approximates the task response time distributions using the measured means and vari-

ances of task response times on the Fork nodes. To the best of our knowledge, no previous

work attempts to provide an analytical solution for FJQNs with consolidated workloads.

This is the primary motivation for the work in chapter 3. In chapter 3, we propose a closed-

form solution, i.e., a white-box approach, to the approximation of the tail latency of a given

target application in FJQNs with a mixture of applications, each following a different service

time distribution.

1.3 Heterogeneous FJQNs

Nowadays, many applications’ requests poured into common heterogeneous infrastruc-

ture shared among applications. Therefore, heterogeneity in resources is also known to be

one of the leading causes of the high variability among task response times. Lack of having

enough studies for tail prediction at inhomogeneous environments is the main reason that

motivates the work in chapter 4. In addition, three new novel ideas contributed to the re-

search in chapter 4: 1) convergence point for reliable metrics, 2) resource usage predictability,

and 3) budget translation; which render the uniqueness of this work as it takes further steps

toward providing a practical, reliable, and budget guaranteed scheduling mechanisms in the

foreseeable future.

1.4 Achievable Cluster Utilization for OLDI applications

All the provided works in previous chapters were just a continuation of the model

verification at every probable circumstance that might exist. However, in this chapter 5, we

5



depart from that context and move toward covering one of its possible applications by pro-

viding an answer for one crucial question, which is: Is Datacenter Resource Overprovisioned

to Support OLDI Services? We are going to introduce our derived model for estimating the

achievable load level based on a given target-ratio between the desired tail latency SLO and

the average service time. As a beginning, we provide our numerical analysis of the derived

model. Then we verify the correctness of the derived model by comparing with several results

of simulation experiments, as well as numerical comparison with the GE prediction model.

Lastly, we provide intuition about the model’s effectiveness at predicting the upper bound

at different workloads conditions.
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CHAPTER 2

Black-BOX Fork-Join Model

To tackle the challenges mentioned previously in the introduction, in this chapter, we

propose to study a black-box Fork-Join model, called ForkTail, to cover a broad range of

Fork-Join structures of practical interests. By “black-box”, we mean that each Fork node

is treated as a black box, regardless of how many replicated servers there are and how

tasks are distributed, queued, and processed inside the box. It also allows the number of

spawned tasks per request, k, to be a random integer taking values in [1, N ], where N is

the maximum number of Fork nodes. As we shall see, our solution to this black-box model

indeed adequately covers the above design space.

However, a general solution to ForkTail is unlikely to exist, given the limited success in

solving the white-box FJQNs. Nevertheless, we found that for the black-box model, empirical

solutions under heavy load conditions do exist. Inspired by the central limit theorem for

G/G/m queuing servers under heavy load [20, 21], we were able to demonstrate [22] that in

a load region of 80% or higher, where resource provisioning with precision is most desirable

and necessary, an empirical expression of the tail-latency for a special case of the black-box

model, i.e., k = N for all the requests, exists, which can predict the tail latencies within

20% and 15% errors at load levels of 80% and 90%, respectively, for the cases (a) and

(b) in the design space mentioned above. As our sensitivity analysis in Section 2.3 shows,

such prediction errors can be well compensated for with no more than 5% and 3% resource

overprovisioning at these load levels, respectively.

The work in this chapter makes the following contributions. First, it generalizes the

solution in [22] to also cover cases (c) and (d) in the design space, hence, making it appli-
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cable to most Fork-Join structures of practical interests. Second, it gives the first empirical,

universal solution to any white-box FJQNs at high load and hence, it makes a contribution

to the queuing network theory as well. In fact, as we shall show in Section 2.2.1, for any

white-box FJQN with M/G/1 Fork queuing servers, our approach leads to closed-form ap-

proximate solutions, which are on par with the most elaborate white-box solutions in terms

of accuracy across the entire load range at much lower computational complexity. Third,

comprehensive testing and verification of the proposed solution is performed for all (a)-(d)

Fork-Join structures, based on model-based and trace-driven simulation, as well as a real-

world case study. Fourth, sensitivity analysis indicates that ForkTail can lead to accurate

resource provisioning for user-facing interactive datacenter services in a consolidated data-

center environment at high load. Finally, preliminary ideas are provided as to how to use this

solution to facilitate tail-latency-SLO-guaranteed job scheduling and resource provisioning.

The rest of the chapter is organized as follows. Section 2.1 introduces ForkTail and

the empirical tail latency approximations. Section 2.2 performs extensive testing of the

accuracy of the approximations. Section 2.3 presents the sensitivity analysis for ForkTail.

Section 2.4 discusses how ForkTail may be used to facilitate effective job scheduling and

resource provisioning with tail-latency-SLO guarantee. Section 2.5 reviews the related work.

Finally, Section 2.6 concludes the chapter and discusses future work.

2.1 ForkTail

The black-box model described in this section, called ForkTail, greatly extends the

scope of the black-box model introduced in [22] to address the entire design space mentioned

in Chapter 1.

Consider a black-box Fork-Join model with each request or job (hereafter, these two

terms are used interchangeably) in the incoming request flow spawning k tasks mapped to

k out of N Fork nodes where k ≤ N , as depicted in Fig. 2.1. The results from all k tasks
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Figure 2.1: Black-box Fork-Join model.

are finally merged at a Join node (i.e., the triangle on the right). Requests arrive following a

random arrival process with average arrival rate λ. Although the proposed solution applies to

arbitrary arrival processes, we consider only Poisson arrival process, as it is widely recognized

to be a reasonably accurate model for datacenter applications in practice [23]. Each Fork

node may be composed of more than one replicated servers for task-level fault tolerance,

load balancing, tail-cutting, and/or straggler recovery. An example Fork node with three

server replicas is depicted in Fig. 2.1.

The above model deals with a general case where k ≤ N . Note that the traditional

FJQNs cover only a small fraction of this design space, i.e., k = N , homogeneous Fork nodes

with a single server per node, which is modeled as a FIFO queuing system.

General solutions to ForkTail are unlikely to exists. Fortunately, we are most interested

in finding solutions in high load regions where precise resource provisioning is highly desirable

and necessary. There is a large body of research results in the context of queuing performance

in high load regions (e.g., see [24] and the references therein). In particular, a classic result,

known as the central limit theorem for heavy traffic queuing systems [20, 21] states that

for a G/G/m queue (i.e., general arrival process, general service time distribution, and

m servers) under heavy load, the waiting time distribution can be approximated by an

exponential distribution. Clearly, this theorem applies to the response time distribution

9



as well, since the response time distribution converges to the waiting time distribution as

the traffic load increases. The intuition behind this approximation is that in the high load

region, the long queuing effect helps effectively smooth out service time fluctuations (i.e., the

law of large numbers), which causes the response time to converge to a distribution closely

surrounding its mean value, i.e., the short-tailed exponential distribution, regardless of the

actual arrival process and service time distribution. Inspired by this result, we postulate that

for tasks mapped to a black-box Fork node and in a high load region, the task response time

distribution FT (x) for any arrival process can be approximated as a generalized exponential

distribution function [25], as follows,

FT (x) = (1− e−x/β)α, x > 0, α > 0, β > 0, (2.1)

where α and β are shape and scale parameters, respectively.

The mean and variance of the task response time are given by [25]

E[T ] = β[ψ(α + 1)− ψ(1)], (2.2)

V[T ] = β2[ψ′(1)− ψ′(α + 1)], (2.3)

where ψ(.) and its derivative are the digamma and polygamma functions.

From Eqs. (4.2) and (4.3), it is clear that the distribution in Eq. (4.1) is completely

determined by the mean and variance of the task response time. In other words, the task

response time distribution can be measured by treating each Fork node as a black box as

shown in Fig. 2.2. The rationale behind the use of this distribution, instead of the expo-

nential distribution, is that it can capture both heavy-tailed and light-tailed task behaviors

depending on the parameter settings and meanwhile, it degenerates to the exponential dis-

tribution at α = 1 and E[T ] = β. In [22], we showed that this distribution significantly

outperforms the exponential distribution in terms of tail latency predictive accuracy.
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Figure 2.2: A Fork node as a black box.

Now, with all the Fork nodes in Fig. 2.1 being viewed as black boxes, the response

time distribution for any request with k tasks can be approximated using the order statistics

[8] as follows,

F
(k)
X (x) =

k∏
i=1

FTi(x) =
k∏
i=1

(1− e−x/βi)αi , (2.4)

Note that the above expression is exact if the response times for tasks mapped to different

Fork nodes are independent random variables. This, however, does not hold true for any

Fork-Join structures, simply because the sample paths of the task arrivals at different Fork

nodes are exactly the same, not independent of one another. This is the root cause that

renders the Fork-Join models extremely difficult to solve in general. Our postulation is that

as load reaches 80% or higher where precise resource provisioning is desirable and necessary,

the tail-latency prediction errors introduced by this assumption will become small enough for

resource provisioning purpose. Our extensive testing results in this chapter provide strong

support of the postulation, making our modeling approach the only practically viable one.

Tail latency xp, defined as the pth percentile request response time, can then be written

as,

xp = F
(k)
X

−1
(p/100) . (2.5)

Eq. (4.5) simply states that in a high load region, the tail latency can be approximated as

a function of the means and variances of task response times for all k tasks at their corre-

sponding Fork nodes, irrespective of what workloads cause the heavy load. The implication

of this is significant. It means that this expression is applicable to a consolidated datacenter

cluster where more than one service/application share the same cluster resources. More-
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over, this expression allows tail latency to be predicted using a limited number of request

samples from the same service or different services with similar task service time statistics,

thanks to its dependence on the first two moments of task response times only, i.e., the

means and variances. Using the same example given in Section 2.5, with only 20 seconds of

measurement time, one can collect 20× 50 = 1000 task samples at individual Fork nodes to

allow a reasonably accurate estimation of the means and variances of task response times.

With moving average for a given time window, e.g., 20 seconds, these means and variances

and hence, the tail latency prediction, can be updated every tens of milliseconds, making

it possible to use ForkTail to enable fast online tail-latency-guaranteed job scheduling and

resource provisioning. This is in stark contrast to the 33-minute window required for the tail

latency prediction based on direct tail-latency measurement.

The results so far is general, applying to the inhomogeneous case, where task response

time distributions may be different from one task to another, due to, e.g., the use of het-

erogeneous Fork nodes and/or uneven background workloads. As a result, the tail latency

predicted by Eq. (4.5) may be different from one request to another or even for the two

identical requests, as long as their respective Fork nodes do not completely coincide with

one another, or they are issued at different times. In other words, Eq. (4.5) is a fine-grained

tail latency expression. For certain applications, such as offline resource provisioning (see

Section 2.4 for explanations) and coarse-grained, per-service-based tail-latency prediction,

one may be more interested in the homogeneous case only. In this case, the response time

distribution can be further simplified as,

F
(k)
X (x) = (1− e−x/β)kα. (2.6)
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Figure 2.3: Prediction errors for the 99th percentile response times for ForkTail and EAT.

This is because the means and variances given in Eqs. (4.2) and (4.3) are the same for the

homogeneous case. A coarser-grained cumulative distribution function (CDF) of the request

response time can then be written as,

FX(x) =
∑
ki

FX|K(x|ki)P (K = ki), (2.7)

where FX|K(x|ki) is the conditional CDF of the request response time for requests with ki

tasks, given by Eq. (2.6), i.e., FX|K(x|ki) = F
(ki)
X (x), and P (K = ki) = Pi is the probability

that a request spawns ki tasks.

Further assume that there are m request groups with distinct numbers of tasks ki’s,

i = 1, . . . ,m, and corresponding probabilities Pi’s. We then have,

FX(x) =
m∑
i=1

Pi · F (ki)
X (x). (2.8)

Correspondingly, the tail latency for the m groups of requests as a whole can then be readily

obtained, similar to Eq. (4.5), as follows,

xp = F−1X (p/100). (2.9)

For example, the tail latency for a given service can be predicted by collecting statistics for

ki’s and Pi’s, as well as mean and variance of task response time and applying them to the

tail latency expression in Eq. (2.9).

13



2.1.1 Application to White-Box FJQNs

Clearly, the above black-box approach leads to closed-form solutions for any white-box

models whose analytical expressions for the means and variances of task response times are

available, whether it is homogeneous or not. In fact, our solution works for the case where

different Fork nodes may have different service time distributions and queuing disciplines.

As an example, we apply our approach to a large class of FJQNs, where each Fork node is

an M/G/1 queue.

Let W , S, and T denote random variables for task waiting time, service time, and

response time, respectively. Since W and S are independent random variables, the mean

and variance of the task response time are given as,

E[T ] = E[W ] + E[S],

V[T ] = V[W ] + V[S].

From Takács recurrence theorem [26], the kth moment of the waiting time can be

computed by

E[W k] =
λ

1− ρ

k∑
i=1

(
k

i

)
E[Si+1]

i+ 1
E[W k−i].

Using this theorem, the mean and variance of the task response time can be derived

as follows,

E[T ] = E[S]

(
1 +

ρ

1− ρ
· 1 + C2

S

2

)
, (2.10)

V[T ] = E[W ]2 +
λE[S3]

3(1− ρ)
+ E[S2]− E[S]2, (2.11)

where E[Sk] is the kth moment of the service time; ρ is the server utilization, ρ = λE[S];

C2
S is the squared coefficient of variation of service times, C2

S = V[S]/E[S]2; and E[W ] is the

mean waiting time, E[W ] = λE[S2]/[2(1− ρ)].

The task response time distribution can then be approximated by Eq. (4.1) whose

parameters can be found by substituting Eqs. (2.10) and (2.11) into Eqs. (4.2) and (4.3),
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respectively. Finally, the tail latency for the homogeneous system can be obtained from

Eq. (2.9).

2.2 Tail Latency Prediction Validation

In this section, ForkTail is extensively validated against the results from model-based

simulation, trace-driven simulation, and a case study in Amazon EC2 cloud. The validation

is performed for the systems with k = N , k ≤ N , and consolidated services, separately. The

accuracy of the prediction is measured by the relative error between the value predicted from

ForkTail, tp, and the one measured from simulation or real-system testing, tm, i.e.,

error =
100(tp − tm)

tm
.

In this chapter, we only provide testing results for the 99th percentile tail latencies.

The testing results at the 99.9th percentile tail latencies are given in an extended version

of this work, which is available online [27]. All the conclusions drawn in this chapter stay

intact in [27].

2.2.1 Case 1: k = N

A notable example for this case is Web search engine [28] where a search request looks

up keywords in a large inverted index distributed on all the servers in the cluster. We validate

ForkTail with three testing approaches, i.e., white-box and black-box model-based testing

as well as a real-world case study in Amazon EC2 cloud.

White-Box Model-based Testing: Here we study the accuracy of ForkTail when applied

to homogeneous, single-server-Fork-node Fork-Join systems with the assumption that the

service time distribution is known in advance, the approach taken in previous works on

performance analysis of FJQNs [8]. The tail latency prediction involves the following steps:
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Figure 2.4: Prediction errors of the 99th percentile response times for white-box systems
with single-server Fork nodes.

– Compute the mean, variance, and third moment for the given task service time distribu-

tion.

– Find the mean and variance of task response times from Eqs. (2.10) and (2.11).

– Substitute the above mean and variance into Eqs. (4.2) and (4.3), respectively, and solve

that system of equations to find the scale and shape parameters of the generalized ex-

ponential distribution in Eq. (4.1), which is used to approximate the task response time

distribution.

– Calculate the pth percentile of request response times from Eq. (2.9).

First, we compare ForkTail against the state-of-the-art prediction approach for homoge-

neous FJQNs [13], referred to as efficient approximation for tails (EAT). This approximation

is based on analytical results from single-node and two-node systems. Fig. 2.3 shows the

comparative results for three service time distributions studied in [13], i.e., Erlang-2, Expo-

nential, and Hyperexponential-2, at the loads of 10%, 50%, and 90%1 and numbers of nodes

of 100, 500, and 1000.

EAT provides more accurate (from a few to several percentage points) approximations

for the 99th percentiles of response times across all the cases studied. Much to our surprise,

our approach yields most of the errors within 10%, across the entire load range. Although

1For EAT, the case for Hyperexponential-2 at the load of 90% is not available, due to a numerical error

running the code provided in [13].
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outperforming our approach, EAT has its limitations. First, it can be applied only to homo-

geneous FJQNs where each node can be generally modeled as a MAP/PH/1 queuing system,

i.e., Markovian arrival processes and phase-type service time distribution with one service

center. Second, the method requires the service time distribution to be known in advance

and converted into a phase-type distribution, which is nontrivial, especially for heavy-tailed

distributions [29]. Third, the method may incur high computational complexity, depend-

ing on the selection of a constant C, whose value determines the computational runtime

and prediction accuracy. It takes at least 2 seconds on our testing PC (Core i7-4940MX

Quad-core, 32GB RAM) to get the resulting percentiles even at the lesser degree of accuracy

with C = 100 (more than 300 seconds at C = 500). In contrast, our method takes less

than 5 milliseconds to compute the required percentiles. As a result, similar to other ex-

isting white-box solutions, EAT has limited applicability for datacenter job scheduling and

resource provisioning in practice.

To cover a sufficiently large workload space, we further consider service time distribu-

tions with heavy tails, which are common in practice [30] and cannot be easily dealt with

by EAT, including the following,

– Empirical distribution measured from a Google search test leaf node provided in [30],

which has a mean service time of 4.22ms, a coefficient of variance (CV) of 1.12, and the

largest tail value of 276.6ms;

– Truncated Pareto distribution [29] with the same mean service time and a CV of 1.2,

whose CDF is given by,

FS(x) =
1− (L/x)α

1− (L/H)α
0 ≤ L ≤ x ≤ H,

where α is the shape parameter; L is the lower bound; and H is the upper bound, which is

set at the maximum value of the empirical distribution above, i.e., H = 276.6ms, resulting

in α = 2.0119 and L = 2.14ms.
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– Weibull distribution [7], also with the same mean service time and a CV of 1.5, whose

CDF is defined as,

FS(x) = 1− exp[−(x/β)α] x ≥ 0,

where α = 0.6848 and β = 3.2630 are shape and scale parameters, respectively.

Fig. 2.4 presents the prediction errors for the 99th percentile response times for the

above cases. The Weibull distribution, which is less heavy-tailed, consistently yields smaller

errors, well within 5%, for the entire load range studied, similar to the short-tailed distribu-

tion cases studied earlier. The empirical and truncated Pareto distributions, which are more

heavy-tailed, provide good approximations for the 99th percentiles at the load of 80% or

higher, which is well within 17% and 5% at the load of 80% and 90%, respectively, agreeing

with our postulation.

Black-Box Model-based Testing: We now validate ForkTail without making assumption

on the service time distribution at each Fork node. We treat each Fork node as a black-box

and empirically measure the mean and variance of task response times at each given arrival

rate λ or load. These measures are then substituted into Eqs. (4.2) and (4.3), respectively,

to find the shape and scale parameters, which are in turn used to predict the tail latency

based on Eq. (2.9).

For all the three heavy-tailed FJQNs studied above, we consider two types of Fork

nodes, i.e., one with single server and the other with three replicated servers. For the one

with three servers, we explore two task dispatching policies. The first policy is the Round-

Robin (RR) policy, in which the dispatcher will send tasks to different server replicas in

an RR fashion. The second policy is still RR, but it also allows redundant task issues, a

well-known tail-cutting technique [14, 15]. This policy allows one or more replications of a

task to be sent to different server replicas in the Fork node. The replications may be sent

in predetermined intervals to avoid overloading the server replicas. In our experiments, at
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Figure 2.5: Prediction errors of the 99th percentile response times for black-box systems
with single-server Fork nodes.
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Figure 2.6: Prediction errors of the 99th percentile response times for black-box systems
with 3-server Fork nodes and Round-Robin dispatching policy.
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Figure 2.7: Prediction errors of the 99th percentile response times for black-box systems
with 3-server Fork nodes and redundant-task-issue dispatching policy.

most one task replication can be issued, provided that the original one does not finish within

10ms, which is around the 95th percentile of the empirical distribution above2.

Figs. 2.5–2.7 present the prediction errors at different load levels and N ’s for the 99th

percentile response times for all three FJQNs with single server and three servers per Fork

2As the 10ms in Truncated Pareto service time distribution is at the 40%tile, in Figure 2.7, the algorithm

at larger cluster sizes is expected to increase the number of issued copies, which the reason for the increase

in errors. Hence, it is a matter of how to apply the technique to suit each specific environment’s needs based

on its performance statistics.
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node, respectively. First, we note that the prediction errors for the cases in Fig. 2.5 are very

close to those in Fig. 2.4. This is expected as the white-box and black-box results, ideally,

should be identical. The differences are introduced due to simulation and measurement

errors. Second, the prediction performances of the cases with three replicas and the RR

policy in Fig. 2.6 are also very close to those of the cases in Fig. 2.5, with errors being well

within 20% and 10% at the loads of 80% and 90%, respectively, for all the case studies,

further affirming our postulation. The two scenarios have similar performances because they

are compared at the same load levels, where the RR policy in the second scenario simply

balances the load among three replicas, making each virtually identical to the single-server

scenario. In contrast to these two scenarios, Fig. 2.7 shows that with the application of the

tail-cutting technique, the prediction errors are substantially reduced, with less than 10% at

the load of 80% or higher. This is consistent with the earlier observation, i.e., the shorter the

tail, the smaller the prediction errors. This suggests that the tail-cutting techniques, often

utilized in datacenters to curb the tail effects, can help expand the load ranges in which

ForkTail can be applied.

A Case Study in Cloud: We also assess the accuracy of ForkTail for a real case study in

Amazon EC2 cloud. We implement a simple Unix grep-like program on the Apache Spark

framework (version 2.1.0) [31]. It looks up a keyword in a set of documents and returns the

total number of lines containing that keyword, as depicted in Fig. 2.8. The cluster for the

testing includes one master node using an EC2 c4.4xlarge instance and 32 or 64 worker nodes

using EC2 c4.large instances. We use a subset of the English version of Wikipedia as the

document for lookup. Each worker node holds a shard of the document whose size is 128MB,

corresponding to the default block size on HDFS (Hadoop Distributed File System) [32]. A

client, which runs a driver program, sends a flow of keywords, each randomly sampled from

a pool of 50K keywords, to the testing cluster for lookup. Each worker searches through

its corresponding data block to find the requested keyword and counts the number of lines
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containing the keyword. The line count is then sent back to the client program to sum up.

Clearly, this testing setup matches the black-box model.
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Figure 2.8: Experiment setup in Amazon EC2 cloud.

We measure the request response time, i.e., the time it takes to finish processing each

keyword at the client. We also collect the task response times, composed of the task waiting

time and task service time. The task waiting time is the one between the time the request

the task belongs to is sent to the cluster and the time the task is sent to a given worker

for processing. This is because in the Spark framework, all the tasks spawned by a request

are kept in their respective virtual queues corresponding to their target workers centrally.

A task at the head of a virtual queue cannot be sent to its target worker until the worker

becomes idle. Hence, to match our black-box model, the task response time must include

the task waiting time, i.e., the task queuing time plus the task dispatching time, and the

task service time, which is the actual processing time at the worker the task is mapped to.

From the collected samples, we compute the means and variances of task response times,

which are in turn used to derive the task response time distribution as in Eq. (4.1). Ideally,

the task response time distributions for all the tasks are the same, given that the workers are

identical. In other words, one would expect that this case study is homogeneous. However,

our measurement indicates otherwise. A careful analysis reveals that this is mainly due to

the task scheduling mechanism in the Spark framework. Each data block has three replicas

distributed across different workers. By default, the placement preference is to send a task to
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Figure 2.9: Predicted tail latencies for keyword occurrence counts in Amazon cloud with 32
(left) and 64 (right) nodes.

an available worker where the data block resides. Unfortunately, as the request arrival rate or

load increases, more tasks are mapped to workers that do not hold the required data blocks

for the tasks, causing long task response time due to the need to fetch the required data

blocks from the distributed file system. This results in higher variability in the task response

time distributions among different workers. Therefore, the inhomogeneous model given in

Eq. (2.4) is found to be more appropriate in high load regions. This observation is confirmed

by the experimental results, presented in Fig. 2.9. As one can see, the inhomogeneous model

(the blue lines) gives quite accurate prediction for both 95th and 99th percentiles at both

N = 32 and 64 cases, while the prediction from the homogeneous model (the green lines) gets

worse as the load becomes higher. Based on the inhomogeneous prediction, the prediction

errors at both N = 32 and 64 and the 99th percentile are well within 10% in a high load

region, i.e., 60% or higher. Note that the load here is measured in terms of request arrival

rate. Since the system is inhomogeneous, we estimated the equivalent loads corresponding

to different arrival rates based on the maximum value of means of task service times across

all the workers, as given in Table. 2.1.

Finally, we note that to achieve a reasonably good confidence of measurement accuracy

for the 99th percentile tail latency, we collected 80K samples in our experiments at the

maximum possible sampling rate equal to the average request arrival rate of 5.8 per second,
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Table 2.1: Estimated loads (%) for the testing cluster based on request arrival rates.

Request arrival rates (requests/s)

#workers 3.0 3.5 4.0 4.5 5.0 5.5

32 48.33 56.39 64.44 72.50 80.56 88.61
64 50.04 58.38 66.72 75.06 83.40 91.74

which translates into a measurement time of 13,793 seconds or about 4 hours. It takes even

more time to run the experiments at lower arrival rates. The average runtime across all the

request arrival rates in the experiments is about 6 hours. Due to the costly cloud services,

we have to limit our experiments to 64 worker nodes.

This example clearly demonstrates that it can be expensive and time consuming, if

practical at all, to estimate tail latency based on direct measurement. In contrast, ForkTail

is able to do so with far fewer number of samples at much lower cost. For example, with 800

samples collectable in less than three minutes, we can estimate the response-time means and

variances for all the tasks and hence the tail latency with reasonably good accuracy. This

means that our prediction model can reduce the needed samples or prediction time by two

orders of magnitude than the direct measurement.

2.2.2 Case 2: Variable Number of Tasks k ≤ N

Notable examples for this case are key-value store systems in which a key lookup may

touch only a partial number of servers and web rendering which requires to receive web

objects or data from a group of servers in a cluster.

In this case study, we assess the accuracy of our prediction model (i.e., Eqs. (2.8) and

(2.9)) for applications whose requests may spawn different numbers of tasks with distribution

P (K = ki). Specifically, we study two scenarios where P (K = ki) is nonzero for a specific

value of K and uniformly distributed. We further consider three different service time
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Figure 2.10: Prediction errors of the 99th percentile response times for an 1000-node cluster
when the number of tasks per job is fixed (k = 100, 500, 900).
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Figure 2.11: Prediction errors of the 99th percentile response times for an 1000-node cluster
when the number of tasks per job is uniformly distributed.

distributions: two heavy-tailed ones, the empirical and truncated Pareto as in Section. 2.2.1,

and a light-tailed exponential distribution, with the same mean service time, i.e., 4.22ms.

Scenario 1: Fixed Number of Tasks per Request: In this scenario, we consider the

cases when the number of forked tasks per request is a fixed number k (k ≤ N), i.e., every

incoming request is split into exactly k tasks which are dispatched to k randomly selected

Fork nodes in an N -node cluster.

From Eqs. (2.6) and (2.8), we have,

FX(x) = (1− e−x/β)kα, (2.12)

and the pth percentile is given by,

xp = −β log

(
1−

( p

100

)1/kα)
. (2.13)

Fig. 2.10 shows prediction errors for the 99th percentile response times for an 1000-

node cluster with k = 100, 500, and 900 tasks. ForkTail provides good prediction in high
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Figure 2.12: Prediction errors of the 99th percentile target response times in a consolidated
workload environment when the tasks of each target job reach all the nodes (left plot) and
randomly reach 50% number of nodes (right plot) in the cluster.

load regions, with all the errors within 10% at the load of 90% and 20% at the load of 80%

for all the cases studied. The case with the light-tailed exponential distribution gives quite

accurate prediction for the entire range under study, all within 6%.

Scenario 2: Uniform Distribution: Here we deal with cases when an incoming request is

forked to k random nodes in the cluster where k is randomly sampled from an integer range

[a, b], i.e., ki ∈ {a, a+1, . . . , b−1, b} with probability Pi = P = 1/m∀i, where m = b−a+1.

Therefore, the mean number of tasks is (a+ b)/2.

From Eqs. (2.6) and (2.8), we have,

FX(x) = P ·
m∑
i=1

(1− e−x/β)kiα. (2.14)

Fig. 2.11 presents prediction errors for an 1000-node cluster with k in four different

ranges, i.e., [80, 120], [400, 600], [800, 1000], and [10, 990]. The results again show that

ForkTail yields good approximations for the 99th percentile request response times when the

system is under heavy load, i.e., 80% or higher. Furthermore, again for all the cases with

the exponential distribution, ForkTail gives accurate predictions across the entire load range

studied.

The above prediction model applies to the case where a single tail-latency SLO is im-

posed on a service or application as a whole, a practice widely adopted in industry. However,

this practice can be too coarse grained. To see why this is true, Table. 2.2 provides the pre-
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dicted tail latencies for some given requests with distinct k values in a cluster of size 1000

and at the load of 90%. As one can see, the 99th percentile tail latencies for requests at

different k’s can be drastically different, e.g., the 10-task and 900-task cases. This suggests

that even for a single application, finer grained tail latency SLOs may need to be enforced

to be effective, e.g., enforcing tail-latency SLOs for request groups with each having k’s in

a small range. Table. 2.3 shows the accuracy of the prediction model at given k’s, all well

within 10% at load of 90%.

Table 2.2: The predicted 99th percentile of latencies (ms).

Number of forked tasks

Distribution 10 400 500 600 900

Exponential 291.32 446.97 456.38 464.08 481.19
Truncated Pareto 448.83 705.45 720.97 733.66 761.87
Empirical 391.27 616.22 629.83 640.95 665.68

Table 2.3: Errors in the 99th percentile prediction when tracking jobs with a given number
of tasks at load of 90%.

Number of nodes

Distribution 10 400 500 600 900

Exponential -0.861 0.052 0.433 0.647 2.791
Truncated Pareto -0.571 -0.403 1.763 -0.489 -1.433
Empirical -2.814 -6.929 -6.239 -5.322 -6.541

2.2.3 Case 3: Consolidated Services

In this case study, we evaluate the accuracy of ForkTail when applied to the consol-

idated datacenter where multiple applications, including latency-sensitive user-facing and
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background batch ones, share cluster resources. We conduct a trace-driven simulation based

on a trace file derived from the Facebook 2010 trace, a widely adopted approach in the

literature to explore datacenter workloads [33, 34, 18]. We test the accuracy of ForkTail in

capturing the tail latency for a given target application.

Workload: The trace file is generated based on the description of the Facebook trace in

some previously published works [33, 34, 18]. Specifically, we first generate the number of

tasks for job arrivals based on the distribution of the job size in terms of the number of tasks

per job, as suggested in [34]. It includes nine bins of given ranges of the number of tasks

and corresponding probabilities, assuming that the number of tasks is uniformly distributed

in the range of each bin. We then generate the mean task service time based on the Forked

task processing time information in [33]. Individual task times are drawn from a Normal

distribution with the generated mean and a standard deviation that doubles the mean as

in [18]. The resulting trace file contains a total of two million requests, each including the

following information: request arrival time, number of forked tasks, mean task service time,

and the service times of individual forked tasks.

In the experiments, the jobs in the trace file serve as the background workloads, which

are highly diverse, involving a wide range of applications with mean service times ranging

from a few milliseconds to thousands of seconds. The target jobs are generated at runtime

using the same approach the trace file is generated. The only difference is that the target

jobs are statistically similar with the same mean service time, to mimic a given applica-

tion or simply a group of jobs with similar statistic behaviors. For each simulation run, a

predetermined percentage, e.g., 10%, of target jobs are created and fed into the cluster at

random.

Simulation settings and results: In the simulation, the target and background jobs are

set at 10% and 90% of the total number of jobs, respectively. We evaluate two cases, one

with the number of tasks per target job set at one half of the cluster size and the other the
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Figure 2.13: Differences in the 99th percentile response times from simulation and ForkTail
for 1000-node systems with different service time distributions.

same as the cluster size. The tests cover multiple cluster sizes, i.e., 100, 500, 1000, and 5000

nodes with each having three servers. All the cases are homogeneous.

The prediction errors for the 99th percentiles of target response times for the two case

studies at loads of 50%, 75%, 80%, and 90% are shown in Fig. 2.12. As one can see, the

prediction errors are within 15% for all the cases studied.

2.3 Sensitivity Analysis

From all the experiments above, we can see that the proposed model can be applied to

a wide range of systems with reasonable prediction errors for the 99th percentiles, within 20%

and 15% at the loads of 80% and 90%, respectively. Now, the question yet to be answered

is how much impact these errors will have on the accuracy for resource provisioning at high

loads. To this end, we conduct a sensitivity analysis of tail latency as a function of load.

We perform experiments with different load levels in the high load region, i.e., 78% to

95%, for FJQNs with different service time distributions, i.e., exponential, Weibull, truncated

Pareto, and empirical. Fig. 2.13 shows results from both simulation and ForkTail for the 99th
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percentile response times for 1000-node systems. First, we note that ForkTail consistently

overestimates the tail latency for the exponential and Weibull cases, while mostly underes-

timates it for the truncated Pareto and empirical cases. In other words, the former causes

resource overprovisioning, whereas the latter leads to resource underprovisioning. Then the

question is how much. Take the exponential case as an example, the predicted tail latency

at 90% load is roughly equal to the simulated one at 90.5% load. This means that ForkTail

may lead to 0.5% resource over provisioning for the exponential cases. Following the same

logic, it is easy to find that for both exponential and Weibull cases, ForkTail may result in

no more than 1% resource overprovisioning in the entire 78%-95% load range. By the same

token, we can find that for the truncated Pareto and empirical cases, ForkTail may cause up

to 4% resource underprovisioning at 80% load and 2% at 90% load. This can be well com-

pensated for by leaving a 4% resource margin in practice. This implies that in the worst-case

when the actual service time distribution is short-tailed, ForkTail may cause up to 5% and

3% resource overprovisioning at 80% and 90% load levels, respectively. This is tolerable,

given that using our prediction model, we can improve datacenter resource utilization from

currently under 50% all the way to 90% or higher.

Our sensitivity analyses for other Fork-Join structures, which are not shown here,

have led to the similar conclusions. This means that ForkTail may serve as a powerful

means to facilitate tail-latency-SLO-guaranteed job scheduling and resource provisioning for

user-facing datacenter applications. The following section provides the preliminary ideas

how this may be done.

2.4 Facilitating Resource Provisioning

In this section, we discuss how ForkTail may be used to facilitate both tail-latency-SLO-

guaranteed job scheduling and resource provisioning. The proposed ideas are preliminary
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and somewhat sketchy, but yet, they do help reveal the promising prospects of ForkTail and

point directions for future studies on this topic.

Job scheduling: We describe the ideas of how a tail-latency-SLO-guaranteed hybrid cen-

tralized and distributed job scheduler can be developed, based on ForkTail.

The main idea is to rely on distributed measurement of the means and variances of

the task response times and centralized decision making as to how and whether the request

tail-latency SLO can be met, as depicted in Fig. 2.14. In the master server on the left resides

the central job scheduler to which users submit their requests with given tail-latency SLOs.

All the servers in the cluster measures the means and variances of task response times for

tasks of different sizes or in different bins on a continuous basis. All the servers periodically

convey their measurements to the central scheduler. Upon the arrival of a request with a

given tail-latency SLO and given k tasks to spawn, based on Eq. (4.5), the central scheduler

will run a Fork-node selection algorithm to determine which k Fork nodes should be used

such that the tail-latency SLO can be met. If such k Fork nodes are found, the request will

be admitted, otherwise, either the tail-latency SLO will be renegotiated or the request will

be rejected. At runtime, the central scheduler periodically run the prediction model using

the up-to-date means and variances as input to ensure that the tail-latency SLOs for the

on-going requests continue to be met.
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Figure 2.14: A hybrid, centralized-and-distributed job scheduler.
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Resource Provisioning: ForkTail for the homogeneous case (i.e., Eqs. (2.8) and (2.9))

naturally enables a resource provisioning solution involving two steps: (a) the evaluation

of the task-level performance requirements to achieve a given tail-latency SLO; and (b) the

selection of an underlying platform to meet the requirements. Here, step (a) is platform

independent and hence is portable to any datacenter platforms.

For example, consider a service deployment scenario with a given tail-latency SLO

and a minimum throughput requirement, R. Assuming that N , m, and P (K = ki) for the

given service are known, Eq. (2.9) can be used to first translate the tail-latency SLO into

a pair, i.e., the mean and variance of the task response time. This pair then serve as the

task performance budgets or the task-level performance requirements, which are platform

independent and portable. This completes step (a).

In step (b), a Fork node is set up, e.g., using three virtual machine instances purchased

from Amazon EC2 to form a 3-replica Fork node, loaded with a data shard in the memory.

Then run tasks at increasing task arrival rate λ until the measured task mean and/or variance

are about to exceed the corresponding budget(s). At this arrival rate λ, the tail-latency SLO

is met without resource over-provisioning. In other words, the λ value at this point would

be the maximum sustainable task throughput, or equivalently, the request throughput, in

order to meet the tail-latency SLO. If this throughput is greater than R, the minimum

throughput requirement is also met. This means that the resource provisioning is successful

and a cluster with 3N VM instances can be deployed. Otherwise, repeat step (b) by using

a more powerful VM instance or with a re-negotiated tail-latency SLO and/or minimum

throughput requirement.

2.5 Related Work

Fork-Join structures are traditionally modeled by FJQNs. To date, the exact solu-

tion exists for a two-Fork-node FJQN only [35, 9]. Most works primarily focus on the

31



approximation of mean response time [9, 10, 36] and its bounds [37, 38]. For networks with

general service time distribution, several works have introduced hybrid approaches that com-

bine analysis and simulation to derive the empirical approximation for mean response time

[9, 12].

Some analytic results are available on redundant task issues [39, 40, 41]. They ei-

ther address only a single replicated server subsystem with exponential task service time

distribution [40] or parallel request load balancing without task spawning [39, 41].

In terms of tail-latency related research, several works dealt with the approximation

of response time distribution assuming a simple queuing model for each Fork node, e.g.,

M/M/1 [42] or M/M/k [11]. Computable stochastic bounds on request waiting and response

time distributions for some FJQNs are provided in a recent work [43]. The most interesting

and relevant work is given in [13]. The authors of this work proposed a method for the

approximation of tail latency for homogeneous FJQNs based on the analytical results from

single-node and two-node cases. The approximation applies to FJQNs with any service time

distribution that can be transformed into a phase-type distribution. In Section 2.2.1, we

apply our approach to these FJQNs, which are then compared against the approximations

from this work, in terms of both prediction accuracies and computational complexity. Al-

though outperforming our solutions by a few percentage points in terms of tail prediction,

its computational complexity renders it infeasible to facilitate online resource provisioning.

Moreover, this work can only cover a small fraction of the aforementioned design space and

hence, cannot be used to facilitate resource provisioning in practice.

Due to the lack of theoretical underpinning, the existing tail-latency-SLO-aware re-

source provisioning proposals cannot provide tail-latency SLO guarantee by design. Instead,

various techniques such as tail-cutting techniques [14, 15], a combination of job priority and

rate limiting based on network calculus [44] are employed to indirectly provide high assur-

ance of meeting tail-latency SLOs. As indirect solutions, however, they cannot ensure precise
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resource allocation to meet tail-latency SLOs, while allowing high resource utilization, and

hence may result in resource overprovisioning. Yet, another alternative solution is to track

the target tail-latency SLO through online, direct tail-latency measurement and dynamic

resource provisioning [45, 46]. This approach, however, may not be effective, especially in

enforcing stringent tail latency SLOs. To see why this is true, consider the 99.9th percentile

request response time of 200ms, i.e., probabilistically, only one out of 1000 requests should

experience a response time greater than 200ms. Assume that the average request arrival

rate is 50 per second. To track, through direct tail-latency measurement, whether this tail

latency SLO is violated or not with reasonably high confidence, one needs to collect, e.g.,

100K samples to see if there are more than 100 requests whose response times exceed 200ms.

This, however, takes about 100K/50 = 2000 seconds or about 33 minutes of measurement

time! Given possibly high volatility of datacenter workloads, the tail latency SLO may have

been violated multiple times during this measurement period, even though the total number

of requests whose response times exceeding 200ms may be well within 100.

In summary, a solution that can predict the tail latency using a small number of

samples collected in a short period of time as input and that applies to a large design space

of Fork-Join structures must be sought, the primary motivation of the current work.

2.6 Conclusions and Future Work

A key challenge in enabling tail-latency SLOs for user-facing datacenter services and

applications is how to predict the tail latency for a broad range of Fork-Join structures

underlying those services and applications. In this chapter, we proposed to study a generic

black-box Fork-Join model that covers most Fork-Join structures of practical interests. On

the basis of a central limit theorem for queuing servers under heavy load, we were able to

arrive at an approximate tail latency solution for the black-box model. This approximation

was found to be able to predict the tail latency for most practical scenarios consistently within
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20% in a load region of 80% or higher, resulting in at most 5% resource overprovisioning,

making it a powerful tool for resource provisioning at high load. Finally, we discussed some

preliminary ideas of how to make use of the proposed prediction model to facilitate tail-

latency-SLO-guaranteed job scheduling and resource provisioning.

In our future work, based on ForkTail, we shall develop both job scheduling and on-

line/offline resource provisioning solutions with tail-latency SLO guarantee.
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CHAPTER 3

White-BOX Model for Consolidated Applications

3.1 Using Analytic Solution For Consolidated Environment

Parallel computing has become predominant in datacenters nowadays due to ever-

increasing amount of data to be processed in datacenter applications. Such applications

usually need to be split into smaller tasks that are executed concurrently on hundreds or

thousands machines for faster response time. While parallel computing can improve respon-

siveness and scalability, it makes effective job scheduling and resource provisioning extremely

challenging. For example, the run-time variabilities of distributed task execution times, espe-

cially in the presence of synchronization barriers, can result in highly variable job completion

times.

Similarly, consolidating applications in datacenters becomes a necessity to reduce cost

and improve the return on investment by increasing the utilization and allowing resource

sharing among different applications[19]. Unfortunately, this comes at a price of poor user

experience and high delays in processing user requests. Therefore, maintaining a good user

experience with guaranteed low latency in response time has become the current trend in

datacenters [47, 48]. This newly arising demand for providing users with guaranteed service

level objectives (SLOs) provoked lots of researchers to engineer many novel solutions to this

challenging problem[49, 50, 51]. However, due to the lack of a performance model for the

problem, a common practice today for datacenter applications is to overprovision resources

to ensure that a job can finish within the allocated time slot or meet a predefined SLO in

terms of, e.g., tail latency. Consequently, to meet the performance targets for applications,
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today’s datacenters typically run at 10%–50% of their capacities [5, 6]. This may result in

high costs from both user’s and service provider’s points of view.

Fork-Join structures are basic building blocks that underlay the workflows of many

datacenter applications, e.g., web search, machine-translation, and social networking [47].

In these structures, an incoming job spawns multiple tasks which are processed by multiple

processing nodes in the system. The job is considered to be completed when all of its tasks

are finished and all the partial results are merged, which is called barrier synchronization.

Therefore, the slowest task determines the response time of such a job. This processing

pattern exactly follows the classical Fork-Join queuing network (FJQN) model, which is

notoriously hard to solve in queuing theory [8]. Most of previous works on FJQNs in the

literature attempt to find the approximation for job mean response time [9, 10, 36, 12] and its

bounds [37, 38]. With the emergence of user-facing latency-sensitive applications, tail latency

has drawn more attentions recently. Several recent works [13, 43, 52, 53] attempted to provide

analytical solutions for the tail latency in FJQNs. However, they primarily considered only a

flow of jobs from a single application. The work in [53] included the approximation for the tail

latency of consolidated applications but based on a black-box approach, which approximates

the task response time distributions using the measured means and variances of task response

times on the Fork nodes.

To the best of our knowledge, no previous work attempts to provide an analytical solu-

tion for FJQNs with consolidated workloads. This is the primary motivation for this research

work. In this chapter, we propose a closed-form solution, i.e., a white-box approach, to the

approximation of the tail latency of a given target application in FJQNs with a mixture of

applications, each following a different service time distribution. We will elaborate more on

the effect of consolidated workloads on the accuracy of the prediction model through detailed

scenarios, considering different distributions for different applications and different percent-

ages of target application against the background applications. This was not adequately
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covered in [53] where only a trace-driven simulated result based on black-box measurements

was presented as a shrunken section in the published work. For all the cases studied, the

validation against simulation results shows that the proposed model yields all the predic-

tion errors well within 10% at the load of 75% or higher. This indicates the effectiveness

of the proposed model in predicting tail latency for a target application in a consolidated

environment at high load regions, where resource provisioning is most desirable.

The rest of the chapter is organized as follows. Section 3.2 presents the proposed

prediction model for the tail latency of a target application in a mixture of consolidated

applications. Section 3.3 shows experimental results for different scenarios of the consolidated

workloads. Section 3.4 reviews related work. Finally, Section 3.5 concludes the chapter and

discusses future work.

3.2 The Proposed Model

In this section, we present our proposed analytical solution to the approximation of

the tail latency of a target application in a consolidated environment, i.e., a mixture of ap-

plications sharing common datacenter resources. We shall derive a closed-form approximate

solution for the pth percentile of a target (or tagged) application in the mixture.

1

λ
k

n

λ

(fi(xi), pi)’s

Figure 3.1: A Fork-Join model with each node as an M/G/1 queue.
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Consider a system running a mixture of applications A1, A2, . . . , Am with corresponding

weights p1, p2, . . . , pm in the mixture as in Fig. 3.1. The applications flow into the system

with an average arrival rate of λ.

Assume that service times of application Ai follow distribution fi(x), i.e., Xi ∼ fi(x),

whose mean and variance are µi and σ2
i , respectively.

Let X be a random variable representing service times on each node in the system. For

a long runtime and load balanced between nodes, the effective service time distribution puts

on each node can be viewed as a mixture of individual distributions with their corresponding

weights, i.e.,

X ∼ f(x) =
m∑
i=1

pi · fi(x). (3.1)

The kth moment of X can be written as

µ(k) = E[Xk] =
m∑
i=1

pi · E[Xk
i ]

=
m∑
i=1

pi · µ(k)
i = E[E[Xk|µi]], (3.2)

where µ
(k)
i is the kth moment of Xi.

According to the law of total variance, the variance of X is given by

V ar(X) = E[V ar(X|µi)] + V ar(E[X|µi])

=
m∑
i=1

pi · σ2
i +

m∑
i=1

pi · µ2
i −

(
m∑
i=1

pi · µi

)2

(3.3)

In this work, we assume that the applications arrive at the system following Poisson

process, which is a reasonably acceptable model for datacenter applications in practice [54],

and their tasks are randomly distributed to the Fork nodes. Therefore, each Fork node can

be viewed as an M/G/1 queue system, i.e., a Poisson arrival process with a general service

time distribution and one service center.
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The first and second moments of the task waiting time at each Fork node, i.e., an

M/G/1 queuing system, are given as follows [26],

E[W ] =
λE[X2]

2(1− ρ)
=
ρE[X]

1− ρ

(
1 + C2

X

2

)
, (3.4)

E[W 2] = 2E[W ]2 +
λE[X3]

3(1− ρ)
, (3.5)

where E[Xk] is the kth moment of the service time of the mixture given by Eq. (3.2);

C2
X = V ar(X)/E[X]2 is the squared coefficient of variation with V ar(X) being the variance

given by Eq. (3.3); and ρ = λE[X] is the utilization or load on each Fork node at average

arrival rate λ.

Therefore, the mean and variance of response times of the target task at each Fork

node can be written as,

E[T ] = E[W ] + E[Xt], (3.6)

V ar(T ) = V ar(W ) + V ar(Xt),

= (E[W 2]− E[W ]2) + (E[X2
t ]− E[Xt]

2), (3.7)

where E[Xt] and E[X2
t ] are the first and second moments of the target task service time; and

E[W ] and E[W 2] are given in Eqs. (3.4) and (3.5).

It was proven that the waiting time distribution for G/G/m queue systems at heavy

traffic conditions converges to an exponential distribution [55, 56]. Inspired by this result,

the work in [52] postulated that the response time distribution can be approximated by

a generalized exponential distribution as in Eq. (4.1), which outperforms the exponential

distribution in term of tail latency prediction at high load regions for a wide range of service

time distributions, including light-tailed, heavy-tailed, and empirical distributions,

FT (x) = (1− e−x/β)α, x > 0, α > 0, β > 0, (3.8)

where α and β are shape and scale parameters, respectively.
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Similarly, in this work, the response time distribution of the target task on each Fork

node is also approximated by the generalized exponential distribution as in Eq. (4.1), whose

mean and variance are given by [57],

E[T ] = β[ψ(α + 1)− ψ(1)], (3.9)

V ar(T ) = β2[ψ′(1)− ψ′(α + 1)], (3.10)

where ψ(.) and its derivative are the digamma and polygamma functions. Given service time

distribution fi(xi)
1 and weight pi (i = 1, 2, . . . ,m) for each application, one can find parame-

ters α and β for the target task by plugging the calculated mean and variance from Eqs. (3.6)

and (3.7) into Eqs. (4.2) and (4.3), respectively, and solving this system of equations.

Assume that the jobs from the target application is forked to k nodes (1 ≤ k ≤ N)

with corresponding target task response time distributions FTj(x)’s (j = 1, 2, . . . , k), as in

[53], the system response time distribution for the target application can be approximated

as,

F (x) = P ( max
1≤j≤k

Tj ≤ x)

≈
k∏
j=1

FTj(x) =
k∏
j=1

(1− e−x/βj)αj , (3.11)

and the pth percentile can be written as,

xp = F−1(p/100). (3.12)

In case all the Fork nodes are homogeneous, the target response time distribution can

be simplified as,

F (x) = (1− e−x/β)kα (3.13)

1Indeed, the approximate solution in this work requires only the first three moments of the applications’

tasks, not the entire task distributions.
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from which the pth percentile can be derived as,

xp = −β log
(

1− (
p

100
)

1
kα

)
. (3.14)

Eqs. (3.12) and (3.14) show that the pth percentile, i.e., tail latency, of the target

application can be expressed as a function of αj’s and βj’s and in turn a function of means

and variances of the target task response times, according to Eqs. (4.2) and (4.3). Clearly,

this establishes a link between job-level SLO, i.e., the job tail latency requirement, and task

budgets.

3.3 Experiments and Results

In this section, we validate the predicted tail latencies, e.g., the 99th percentile of

response times, for a target application in a system with a mixture of applications against

those from the simulation. The accuracy of the prediction is measured by the relative error

between the predicted value from the proposed model, tpred, and the simulated one, tsim,

err = 100 · tpred − tsim
tsim

To illustrate the effectiveness of the proposed model, here we consider some typical

scenarios with two classes of applications, a target application, which needs to be kept track,

and a background application, which represents the remaining applications running in the

system. The validation is performed under different settings for the target and background

applications, including simple cases with the same type of service time distribution with

different parameters and complicated cases with two different distributions. We incorpo-

rate both light-tailed and heavy-tailed distributions in the scenarios to represent different

applications. In particular, we consider the following distributions:

– A light-tailed Exponential distribution (Exp) whose CDF is defined as [29]

FXi(x) = 1− e−
x
µ x ≥ 0, (3.15)
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where µ is the mean service time (µ > 0),

– A heavy-tailed truncated Pareto distribution (TPa) [29] whose CDF is given by

FXi(x) =
1− (L/x)α

1− (L/H)α
, (3.16)

where α is a shape parameter; L and H are lower and upper bounds, respectively.

We report the results for the systems with different numbers of Fork nodes, i.e., N = 10,

100, and 500, and different weights for the target application in the mixture, i.e., 10%,

50%, and 90%, assuming that the tasks spawned from all the incoming jobs are randomly

dispatched to N nodes in the system, i.e., k = N . Specifically, we consider three scenarios:

– Scenario 1–The same distribution (Fig. 3.2): Exponential distribution for both target

and background applications with different mean service times, µtg = 13.78ms for the

target and µbg = 4.22ms for the background.

– Scenario 2–The same distribution (Fig. 3.3): truncated Pareto distribution for both tar-

get and background applications with the same coefficient of variation CV = 1.2 and differ-

ent mean service times, µtg = 4.22ms for the target and µbg = 15.0ms for the background,

which results in the distribution parameters αtg = 2.0119, Ltg = 2.14ms,Htg = 276.63ms

for the target and αbg = 2.0119, Lbg = 7.75ms,Hbg = 276.63ms for the background.

– Scenario 3–Different distributions (Fig. 3.4): Exponential distribution with mean service

time µtg = 4.22ms for the target application and truncated Pareto distribution with

coefficient of variation CV = 1.2 and mean service times µbg = 15.0ms for the background

application.

Figs. 3.2–3.4 show the prediction errors for all the cases studied with different load

regions, i.e., 50%, 75%, 80%, and 90%. The results show that the prediction model is able

to yield quite accurate predictions for the 99th percentiles of job response times, with most

of the errors within 10% at the load of 75% or higher. This makes the proposed solution a
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Figure 3.2: Prediction errors for the cases of different exponential distributions for both
background and target tasks.
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Figure 3.3: Prediction errors for the cases of different truncated Pareto distributions for both
background and target tasks.

powerful tool for resource provisioning in datacenters with consolidated applications at high

load regions, where precise resource provisioning is most desirable.

3.4 Related Work

Fork-Join structures underlay many datacenter applications, in which the workflows

are usually handled by a large number of nodes and the partial results from those nodes are

then merged. Fork-Join structures are traditionally modeled by Fork-Join queuing networks

(FJQNs) [8]. FJQN models have been studied extensively in the literature. To date, the

exact solution exists for a two-node network only [35, 9]. Most of previous research efforts

mainly focus on the approximation of job mean response time [9, 10, 36] and its bounds

[37, 38, 43]. Some works attempt to find the approximation of response time distribution
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Figure 3.4: Prediction errors for the cases of truncated Pareto distribution for background
tasks and exponential distribution for target tasks.

for the networks applying simple queuing models for each Fork node, e.g., M/M/1 [42] or

M/M/k [11], i.e., Poisson arrival process and exponential service times with one or more

servers. For general service time distribution, the hybrid approach, which combines analysis

and simulation, are usually used to derive the approximation for job mean response time

[9, 12].

The approximation of tail latency for homogeneous FJQNs with phase-type service

time distributions is introduced in a recent work [13], which is based on the analytical results

from single-node and two-node networks. Unfortunately, the computational complexity of

this approach renders it inapplicable to online resource provisioning. Also, it only covers a

limited design space and thus cannot be used to facilitate resource provisioning in practice.

In [52, 53], the authors propose to use a black-box approach for the approximation of tail

latency at high load regions, in which each Fork node was treated as a black-box. The

approach requires only measured means and variances of response times at the Fork nodes

as input.

To our knowledge, no previous research effort provides analytical solutions for the

approximation of the tail latency in FJQNs with consolidated workloads. The work in [53]

does consider consolidated workloads but using the black-box approach, i.e., approximating

task response time distributions based on the measured means and variances of response
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times on the Fork nodes. Here we present an analytical solution, i.e., a white-box approach,

for the prediction of the tail latency in a consolidated environment and elaborate more on

the consolidated impact on the accuracy of the prediction model. The proposed solution

could be of great help for future research works that target the consolidated applications in

FJQNs.

3.5 Conclusions and Future Work

In this chapter, we presented an analytical solution accompanied by several case stud-

ies for the prediction of tail latency regarding the consolidated applications in datacenter

environments. Provided the results of three scenarios with different load characteristics, the

prediction model has proven to be reliable, yielding all the errors well within the acceptable

window of accuracy, 10% at the load of 75% or higher, for all the cases studied. These en-

couraging results suggest that the proposed model could be used to translate user demands

into task budgets which in turn would help a scheduler make better scheduling decisions

to satisfy user requirements. We look forward to extending this work for more sophisti-

cated cases that include multiple processing stages, which is commonly in many production

environments [58].
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CHAPTER 4

Heterogeneous FJQNs

The unacceptable performance of many user-facing and online data-intensive (OLDI)

services, at commercial datacenters (DCs), revealed an emerging desire to developing smart,

lightweight, and fast scheduling algorithms. This unveiled interest dictates a requirement to

have an additional module devoted to predicting requests tail latencies. Where (1) applica-

tions tail SLOs translated into budgets, and (2) used to compare and secure proper resources

ahead of time. Principally, this dire need to predict long tails out of distributions of latencies

continues due to the sheer amount, and dynamic workload demands result in high variabil-

ity within task response times (RTs). Nowadays, many applications requests poured into

common heterogeneous infrastructure shared among applications. Therefore, heterogeneity

in resources is also known to be one of the leading causes of the high variability among task

response times. To this point, as a reason to mitigate the high latencies and to improve the

decision-making at scheduler(s), many earlier scheduling algorithms and abundant of engi-

neered techniques have been introduced [51, 59, 60]. Unfortunately, most of these scheduling

designs, if not all, were based on a homogeneous assumption which renders their inability

for adoption as practical solutions for heterogeneous environments. As a result, it becomes

one of the principal causes of the expected poor user experience for all proposed solutions.

Consolidating cloud ecosystems helps reduce cost and improve the return on invest-

ment by sharing clusters resources at datacenters. Enforcing such practice would increase

resources utilizations, but unfortunately, it comes with its pitfalls. In one hand, it introduced

a significant depart from using organization-specific clusters. For example, many machines

with various generational specifications and computing capacities are naturally used to sat-
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isfy the diversity in applications demands. At the other hand, consolidated applications

typically need to run their daemons or other software components in the backgrounds of

computing units. Sometimes, executing these software components lead to an increased

amount of different processes hiccups at DCs. Hiccups differ concerning their durations, or

the additional hardware characteristics might be required by daemons to operate. Further,

contention over resources, either between applications or among the same application re-

quests, maintenance activities, hotspots, energy management, thermal and power effects, all

these mentioned pitfalls contributed to the sum up result in creating various inhomogeneous

conditions [47, 61, 5]. Therefore, when non-homogeneous situations exist, providing low

latency services at scale considered of at most important to many service providers.

The emerging dilemma challenged lots of researchers to offer better ways to keep the tail

of latency distribution as short as possible for latency-sensitive services [49, 62, 63, 64, 65]. So

far, none of the presented works were thoughtfully designed to take into account users’ wishes

to maintain the promised guaranteed services. The leading cause is due to the missing link

between the system level requirements and the subsystem level performances. Fortunately,

we presented in previous publications a prediction model [53], which serve to compensate for

the missing baseline connection. The model has the potential to work as a universal answer

for all types of DCs infrastructures, either shared or not [1, 66].

The design space for creating the before-mentioned sophisticated and diverse DCs’

climates, at first glimpse, seems endless and very challenging. Still, it is possible to establish

simplified models for the study of this research. For example, fork-join structures used

generally to express the basic functional system at DCs, as they have become the core

foundation for such environments. Fork-join structures traditionally modeled by a class of

queuing network models known as fork-join queueing networks (FJQNs). The focus, mainly,

will be on enabling computing units independently to demonstrate distinct responses when

servicing a received group of tasks. Hence, by creating such heterogeneous FJQNs behaviors,

47



it is possible to mimic what happens in production environments. This can be easily done by

providing several case-scenarios of inhomogeneous situations linked to many examples from

reality.

However, the lack of establishing inhomogeneous conditions in all previously researched

models, particularly regarding the prediction of tail latency has become the downside that

reflected at all. Therefore, it is believed that the outcome of this work might pioneer future

studies of tail prediction concerning inhomogeneous conditions. Thus, the prime goal is to

demonstrate those complex HFJQNs using model-driven simulations. In addition, a math-

ematical explanation emphasizes the white-box approach which is closed-form solution for

any model whose analytical expressions for the means and variances of task response times

are available, and comparisons between the two methods of prediction: white and black-box,

will be drawn. Finally, as a contributed part to this research, a mathematical analysis for

the function of budget translating unit will be presented. This analysis will be used to de-

scribe how to translate requested SLOs requirements into tasks’ budgets to reserve proper

resources ahead of time.

As explained, outcomes of this research might become a real treasure, for researchers

interested in doing further investigations, utilizing the fork-join queuing models related to

subjects of parallel processing. The lack of having enough studies for tail prediction at inho-

mogeneous environments are the main reason that motivates this work we provide. There are

three new novel ideas that contributed to this research in the late sections: (1) convergence

point for reliable metrics, (2) resource usage predictability, and (3) budget translation; which

render the uniqueness of this work as it takes further steps toward providing a practical, re-

liable, and budget guaranteed scheduling mechanisms in the foreseeable future. Therefore,

our research work formulated as the following: In section 4.1, a general overview of the de-

rived prediction model and a closed-form solution for any inhomogeneous white-box models,

in general. In section 4.2, we present abstract definitions of how to model inhomogeneous
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conditions in fork-join structures and list all possible case-scenarios of the defined inhomoge-

neous types, and it will be followed by a discussion about the results of the experiments, in

section 4.3. The convergence point for reliable metrics described in section 4.4. In section 4.5,

our explained method for budget translation. Finally, the related work in section 4.6 and

the future work and summary in section 4.7.

4.1 An Overview of Prediction Model

There is a recognized fact about the behavior of tasks flow, in parallel systems, that

are waiting at lines for their turn to execute. Mainly, for any G/G/m queuing model that

is highly loaded, it is observed that the accumulated tasks waiting times behave as if they

were independent variables following a distribution. The waiting times are the result of the

build-up variabilities in tasks’ executions processed in front of the waiting lines and, obvi-

ously, in addition to the known differences in tasks arrivals. Further, it was noticed that the

distribution of the waiting times at a given line converged to a memoryless exponential distri-

bution. Following this convention, it posited that task sojourn times could be approximated

to a distribution too. Hence, it is assumed that the resulted fluctuations from variability in

service times are going to be alleviated, due to the impact of having long queues.

Consequently, on the basis of extreme value theory, requests response times can effi-

ciently approximate, if applying central limit theorem. In the sense that the two moments

of historically collected response times for a single line, i.e., mean and variance, can be used

to predict tail latency of response times, using any suitable distribution. Having mentioned

that, generalized exponential distribution was determined, that it can capture different be-

haviors for the arrived jobs requests, e.g., heavy-tailed and short-tailed behaviors with regard

to response times [1, 66, 53, 52]. The presented results in [52], had shown that generalized

exponential distribution outperformed exponential distribution in the matter of predicting

tail latencies. In the following is the generalized exponential distribution function:
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Figure 4.1: Simulation model for inhomogeneous scenarios, where incoming requests spawned
to equal number of fork nodes at a cluster.

FT (x) = (1− e−x/β)α, x > 0, α > 0, β > 0, (4.1)

distribution parameters α and β are shape and scale, respectively. The mean and variance

of the task response time are given [57]

E[T ] = β[ψ(α + 1)− ψ(1)], (4.2)

V[T ] = β2[ψ′(1)− ψ′(α + 1)], (4.3)

where ψ(.) and its derivative are the digamma and polygamma functions.

4.1.1 Prediction: Homogeneous

At a given fork-join structure, i.e., cluster of nodes, incoming users requests sent to

a scheduler and forked to sub-requests/tasks that are mapped to the cluster’s nodes. Now,

assuming an approximated response times distribution at homogeneous condition, the yield

is the derivation that can be used for tail prediction:

FX(x) =
k∏
i=1

FTi(x), (4.4)

xp = F
(k)
X

−1
(p/100) . (4.5)
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xp = −β log(1− (
p

100
)

1
kα ) (4.6)

Where xp is the pth percentile request response time; β and α parameters can be obtained

from the measured mean and variance at a single node, eqs. (4.2) and (4.3). k is the number

of forked tasks, 1 ≤ k ≤ N -nodes.

4.1.2 Prediction: Inhomogeneous

The experiments carried out on all previous works was based on the homogeneous

assumption. Many cases had been studied, even cases for consolidated applications were

covered [53, 1]. However, none of the works was enough to demonstrate the prediction per-

formance when tested under the non-homogeneous situations. Hence, putting the final piece

of the puzzle into this ongoing research, a necessity to define ways to establish inhomogeneous

conditions (i.e., HFJQNs) is direly needed for simulation experiments.

For the sake of clarity, consider a white-box approach and assume distinct distribu-

tion(s), either single or mixture of distributions, associated with each node in a given fork-join

system. Assume only one of many conditions causes heterogeneity in the fork-join structure

to be applied during the whole simulation period, and let G reference the condition type

that could exist. Heterogeneous conditions in this research, generally, are driven by one of

the followings: (1) node’s distribution f(x), (2) node’s utilization ρ, and/or (3) the tail of

distribution applied at each node τ .

Now, suppose there are N mixtures, of m distributions, at each of N nodes: SH1,

SH2,. . . ,SHN . Let us assume the distributions resulted from combined effects of both

Software and Hardware. It is possible that the mixture at each node/computing-unit might

be uniquely different, i.e., fj,i(x) 6= fj,i+1(x), for i = from 1 to N -nodes, as defined in follow-

ings:
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- Service times xj, for j = 1, 2, . . . ,m, follow fj(x) distribution, where xj ∼ fj(x) with µj

and σ2
j .

- Assume each distribution fj(x) at node i has weight pj in the mixture SHi, and assume

that for a long run experiment, if used uniform distribution to maintain the weights p′js,

the resulted distributions are balanced. And the effective random distributions used to

generate tasks service times:

Xi ∼ fi(x) =
m∑
j=1

pij · fij(x). (4.7)

The kth moment of X at any fork node i can be written as

E[Xk
i ] =

m∑
j=1

pij · E[Xk
ij]

=
m∑
j=1

pij · µ(k)
ij = E[E[Xk

i |Gi]], (4.8)

where µ
(k)
j is the kth moment of Xj, and G refer to one of the previously defined types of

heterogeneous conditions could exist at node i. Here, we assume only one for simplicity but

in reality it could be more complex.

According to the law of total variance, the variance of X at fork node i is given by

σ2
i = E[V ar(Xi|Gi)] + V ar(E[Xi|Gi])

=
m∑
j=1

pij · σ2
ij +

m∑
j=1

pij · µ2
ij −

(
m∑
j=1

pij · µij

)2

(4.9)

Since tasks spawned to the subsystems came out from a large pool of many indepen-

dent requests/applications, their arrivals at the system can be modeled using the Poisson

process. Several studies have found the dispersion around the interarrival-times distribution

is so small, i.e., C.V. = 1 to 2, which means using memoryless exponential is a reason-

ably acceptable model for simulating the arrivals of network traffics and datacenter appli-

cations [54, 67, 68]. Therefore, in this research, each Fork node viewed as an M/G/1 queue
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system, i.e., a Poisson arrival process with a general service time distribution and one service

center.

The first and second moments of tasks waiting time at any Fork node, i.e., an M/G/1

queuing system using Takács recurrence theorem [26], are given as follows:

E[Wi] =
λE[X2

i |Gi]

2(1− ρi)
=
ρiE[Xi|Gi]

1− ρi

(
1 + C2

X|G

2

)
, (4.10)

E[W 2
i ] = 2E[Wi]

2 +
λE[X3

i |Gi]

3(1− ρi)
, (4.11)

where C2
X|G = σ2

i /µ
2
i is the squared coefficient of variation with σ2

i being the variance given

by Eq. (4.9); and ρi = λ · µi is the utilization or load on ith Fork node at average arrival

rate λ.

Therefore, from task executions’ mean Eq (4.8) and variance Eq (4.9), respectively,

the mean and variance of response times of the target task at ith Fork node can be written

as,

E[Ti] = E[Wi] + E[Xi|Gi], (4.12)

V ar(Ti) = V ar(Wi) + V ar(X|G),

= (E[W 2
i ]− E[Wi]

2) + (E[X2
i |Gi]− E[Xi|Gi]

2), (4.13)

where E[X|G] and E[X2|G] are the first and second moments of target task service times;

and E[W ] and E[W 2] are given in Eqs. (4.10) and (4.11). The remainder is straight forward

using Eq. (4.5) and knowing the required moments for all of the N -nodes.

4.2 Definitions and Case-Scenarios

Thinking logically, any possible inhomogeneous condition, per node in a fork-join struc-

ture, mainly influenced by several elements. In this research, those elements categorized into

two primary factors: software and hardware. Many real scenarios can represent the soft-

ware side; for example, operating systems, resources management, queuing management,
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utilization level, frameworks, daemons, . . . , etc. While the hardware capabilities can be rep-

resented by differences in computing power, memory speed, hard disk, I/O, . . . , etc., both

sides participate in shaping any inhomogeneous situation at DCs. Hence, it is presumed that

in a DC, the noticed differences in computing capabilities among serving units are tangible.

This is due to the influences of both resources hardware and competing’s software, where

their footprints on waiting times, queues, and tasks’ executions are clearly witnessed. There-

fore, from the perspective of a primary cluster component, i.e., computing units, an abstract

description laid out to provide distinct realizations of how HFJQN could form. Each node

behaves in a different way as if it has a distinct distribution associated with it, or as the

collective mixture of distributions applied at each node is unique.

We will demonstrate the simulation experiments considering per node behavior (or a

unique group of nodes) following unique distribution. Several defined prospectives used in

modeling the heterogeneous simulations, where examples from real-world scenarios linked and

used to explain some of the following abstract definitions. Therefore, experiments conducted

assuming a cluster of: (1) different loads utilizations among nodes, (2) same utilization

level for all nodes but different distributions’ tails, (3) defined portions of homogeneous

and inhomogeneous nodes [61]1, and finally (4) with a help borrowed from multicores and

multiprocessing technologies, different architectural-design per node applied; e.g., different

number of replicas, distribution type, mean service time, . . . etc. For the later, as each

node function independently from others, we speculate this case-scenario might become the

key kernel for any future simulations targeting heterogeneous designs. Basically, it is done

by allowing each node to be handled independently as a separate event-based simulation

process, where a recipient fork node treats each encapsulated task arrived from the system

level as a newly arrived job at the subsystem level.

1it is reported that 93% of google cluster is homogeneous which render the remaining as inhomogeneous.
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4.2.1 Different load utilizations among nodes

Load imbalance among nodes might result from many arising factors. For example,

it happens due to combined operational effects of unbalanced scheduling policies (e.g., ran-

dom dispatching [51]) and/or running multi-degree of applications fanouts. Also, it might

occur due to: existing various computational powers of computing machines, the prolonged

effects of prioritization and resource reservations, or as a result of emerging hotspots, where

particular items/entities become popular, and the requesting workloads for specific hotspots

increase. Such unevenness in loads among a cluster’s nodes could induce, in the long run,

many distinguished levels of utilizations. Therefore, to establishing a similar scenario and

composing HFJQNs rendering a clear difference in nodes utilizations, an exponential distri-

bution selected for such case, but different mean service times put in use, where the max

one selected to maintain the flow of the arriving requests into the system.

Provided several experiments with clusters consists of group(s) of 18 distinguished

nodes, i.e., heterogeneous nodes, h−nodes = 18, where each one is uniquely utilized against

others. Exponential distribution is the only applied distribution in this case, but with a

different mean service time enforced at each node. Varied versions of utilizations for the

primary selected mean service time = 70ms, which is the one utilized for the 90%, ends up

creating a range of several mean service times for all provided N nodes at a given cluster.

Experimented clusters are synthesized with the different loads utilizations, starting at 5%

and ends with 90% utilizations and applying 5% incremental steps in between.

Following the white-box approach, table 4.1, we assume same distribution applied at

all nodes, but different utilization (ρi) at each, where i = 1 to N nodes. Hence, estimating

the needed two moments for all the N -nodes of fork-join structure can be easily done using

Eqs. (4.13), and (4.12). The remainder is straight forward when using Eq. (4.5) with the

required moments for the N -nodes. Prediction results presented in Figs. 4.2 and 4.3. Refer
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Figure 4.2: HFJQNs of different nodes utilizations, where the black-box approach used in
solution, and the load level (here) determined by max node utilization.

Figure 4.3: HFJQNs of different nodes utilizations, where the white and black-box methods
prediction performances are compared, given the max node utilization is at load 90%.

Table 4.1: HFJQNs of different nodes utilizations

Parameters pij = 1, m = 1, G = Utilization (ρ)
Arrival Distribution Poisson, E[X|ρ = 90%] = 70ms

Service Distribution(s) Exponential, E[Xi|ρi]
Manipulated at nodei ρi = in [5% to 90%], Step ρ = 5%

# Heterogeneous Nodes h−nodes = 18 (or multiples of h−nodes)
Cluster Sizes 18, 270, 540, 900

to discussions regarding all the experiments-results of this section as well others which will

be explained with more details in section 4.
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4.2.2 Variant distributions tails among nodes

At high load regions, where lots of incoming applications requests are in waiting lines,

contention for shared resources mounts up. Not to mention the diverse computing powers

of resources that could exists among nodes. This might exhibit distinct differences in the

overall tail response times at each node. Therefore, the combined effects of both, i.e., the

increasing amount of applications demands, and the noted varieties in cluster hardware, can

be presented in such case-scenario where each node bounded by a different tail τi than other

nodes. Consequently, to demonstrate the effectiveness of the prediction model, examples of

HFJQNs using multiples of distributions with different tails, and each node is presumably

associated with one of those several tailed-distributions.

In the following experiments, simulations with clusters consist of group(s) of nine

distinct tails for nodes, i.e., heterogeneous nodes, h−nodes = 9, where each one has a unique

distribution tail different than others. Heavy-tail Pareto distribution with the same mean

service time, µ = 4.22ms, and lower bound L = 2.14ms is assumed for all. The array of the

nine tails, table 4.3, originated by manipulating the shape parameter αi, where they used to

distinguish each node in a single group of nine tailed-nodes. When the cluster scale up, it

will become multiple of the same single nine-nodes group.

Following the white-box approach, table 4.2, we assume same distribution applied at

all nodes, the same utilization level as other nodes, but different tail (τi) at each, where

i = 1 to N nodes. You can solve the complete FJ structure knowing the required moments

for the N -nodes from using Eqs. (4.13), and (4.12) and then applying Eq. (4.5). Prediction

results presented in Figs. 4.4 and 4.5. Discussions regarding all the experiments results of

this section as well others will be explained with more details in section 4. .
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Figure 4.4: HFJQNs of nine distinct tails associated with all fork nodes, where the black-box
method used in solution.

Figure 4.5: HFJQNs of nine distinct tails applied at all fork nodes, where the white and
black-box methods prediction performances are compared at load 90%.

Table 4.2: HFJQNs of nine tails associated with all nodes

Parameters pij = 1, m = 1, G = Tail (τ)
Arrival Distribution Poisson, E[X] = 4.22ms

Service Distribution(s) Truncated Pareto, E[Xi|τi]
Manipulated at nodei τi = see Table 4.3

# Heterogeneous Nodes h−nodes = 9 (or multiples of h−nodes)
Cluster Sizes 9, 270, 540, 900

4.2.3 Separate portions of homogeneous and inhomogeneous nodes

A straggler is a well-known phenomenon that might temporarily occur when service

providers scale up their systems to cope with the growing needs for extra resources. Even

if a current state of a system kept intact, there would be a potential chance for one or
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Table 4.3: Pareto: different tails (τi) for different shapes (αi)

Distribution Tail τi Shape Parameter αi
503.53ms 2.0210
450.00ms 2.0200
402.65ms 2.0189
350.07ms 2.0173
301.53ms 2.0153
250.39ms 2.0123
200.59ms 2.0078
150.51ms 2.0000
100.09ms 1.9833

multiple serving units to slow down their executions of the incoming tasks. This might

happens due to: (1) spikes in requests for memory access or in CPU activity during tasks

processing, (2) interference, in accessing storage servers or from irrelative network traffic,

(3) maintenance activities such as garbage collections, data reconstructions, or (4) energy

management and so on. All could induce similar situations for having group of straggler

computing stations existed at any given cluster. For example, it has been known from

several studies on production traces of google cluster, that a realized significant division of

the cluster was homogeneous while the remaining division was inhomogeneous [61]. This

fact is the basis of the subsequent experiments.

Assuming, a 90% of the given cluster nodes associated with exponential distribution,

for µ = 4.22ms, and considered the homogeneous part. While the remaining nodes, i.e.,

10%, left to be handled by Truncated Pareto distribution with max tail (upper bound)

= 503.530ms. We will follow through this example setup, and in another experiment this

ratio will be tuned as depicted in figure 4.8.

For the white-box approach, table 4.4, the same utilization level are enforced at all fork

nodes. We assume two different distributions fi(x) associated with two groups of defined

nodes’ percentages, i.e., h−nodes = 90%(homogeneous) + 10%(inhomogeneous), where i = 1
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Figure 4.6: HFJQNs of applying 90% homogeneous (exponential) and 10% inhomogeneous
(bounded pareto) for all fork nodes, where the black-box method used in solution.

to N nodes. For solving the Fork Join structure of N -nodes refer to Eqs. (4.13), and (4.12)

to estimate the required moments for all N -nodes, and then use Eq. (4.5). Prediction results

presented in Figs. 4.6 and 4.7. Discussions regarding all the experiments results of this

section as well others will be explained with more details in section 4.

In a related scenario-experiments, explained in figure 4.8, we push this case a little fur-

ther and observed the impact when tuning the portion of the inhomogeneous nodes. Thus,

the changing effects on: jobs mean response times, the 99th percentile of the actual exper-

iments response times, and the predicted 99th percentile tail-response times were studied,

and the resulted outcomes presented as shown. Truncated Pareto distribution of the same

tail (i.e., 503.53ms), and exponential distribution with mean execution times = 4.22ms were

applied. The outcomes of this experiments are no different than the basic one, where the

errors in prediction stay the same even knowing that the situation changed completely to ho-

mogeneous at the two ends of the figure, i.e., totally dominated by exponential distributions

or Pareto distributions.
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Figure 4.7: HFJQNs of applying 90% homogeneous (exponential) and 10% inhomogeneous
(bounded pareto) for all fork nodes, where the white and black-box methods prediction
performances are compared at load 90%.

Figure 4.8: Jobs response times (RT) against increase percentage of inhomogeneous nodes
(bounded pareto with tail = 503.53 ms, and total cluster size = 900 nodes).

Table 4.4: portions of homogeneous and inhomogeneous nodes

Parameters pij = 1, m = 1, G = Distribution f(x)
Arrival Distribution Poisson, E[X] = 4.22ms

Service Distribution(s) TPareto & Exponential, µ = 4.22ms
Manipulated at nodei fi(x) = Expo or Pareto (τ = 503.53ms)

# Heterogeneous Nodes h−nodes = 90% Expo + 10% Pareto
Cluster Sizes 20, 270, 540, 900

4.2.4 Nested event-based simulations model for multicores technology

A proposed scenario for heterogeneous modeling is to deviate from usual practice in

implementing event-based simulations and construct a simulation model of different archi-
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tectural designs. For example, different nodes structures concerning: replicas, distributions,

utilizations, and even for establishing huge gaps between mean executions times, all can

apply at a single round if using such simulation models. Multicores technology and multi-

processing technique both were considered at the design stage to help exploit the suggested

modeling scenario to the limits. Therefore, it became the sole motivation for conducting the

following experiment, as it was desired to test the results of the prediction model when a

situation where different nodes structures exist.

A vector of twenty-six distributions synthesized initially from nine distinct distribu-

tions, ten different mean service times, and nine Pareto distributions of different tails set

with same mean service time, µ = 4.22ms, are used for the experiment. The elements from

the vector are assigned randomly to all nodes following uniform random distribution. A

range of random replicas numbers is set arbitrary for each node. Thus, diverse architectural

designs enforced per node. The Pareto distribution used to generate target requests based

on a predefined percentage to the system scheduler, where tagged forked-tasks sent to sub-

systems. Each subsystem handled as different event-based simulation processes, where the

tasks of the untagged job sent to null-event used to advance the sub-simulation time. All

sub-simulations function independently with varying configurations of their networks, and

the numbers of generated task requests at each node are set to be unlimited. The created

task requests considered as the influence of having background applications involved. Rec-

ognizing the behaviors of background applications helped to study their impacts on target

tasks received from the control system, i.e., from the parent simulation, see Fig 4.9.

4.3 Results and Discussion

To our knowledge, no one so far exploits the tail prediction at heterogeneous environ-

ments the way we did in this research work. Also, all the state-of-the-art prediction models

heard of, are known for targeting only homogeneous FJQNs, which lead to no available model
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Figure 4.9: HFJQNs of applying different architectural designs at all fork nodes, where the
black-box method used in solution..

for accuracy comparisons. Therefore, we used both approaches of our model: the white and

the black- boxes methods, for comparing prediction results where it applicable.

For the white-box approach, to relax the complexities in computing the root, we even

the number of nodes in all experiments groups, where the heterogeneous nodes of an exper-

iment group, h−nodes, have different computing capabilities, e.g., unique distributions, or

mean service times,. . . etc. Then it become multiples of the same h−nodes as the system

scale out to large cluster sizes, e.g., 270, 540, and 900. Except the last case-scenario, where

the h−nodes have different characteristics configurations per each scaled-out experiment,

and that explains why only black-box is presented in that case.

Further, we numerically computed the root using the Levenberg Marquardt algorithm

as the root-finding package comes by default with Matlab fsolve function. Applying the root-

finding function with this algorithm requires to assume an initial value to begin with. From

observations, it is found that this initial value has its impact and at the same time dictate

the accuracy of tail prediction results. Hence, we conducted a small research to observe the

proper range of initial values for all heterogeneous conditions, to determine one common

range that would work under the selected root-finding package. From our analyses, we find

that the right initial value for the utilization experiments using light-tailed distribution (e.g.,
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exponential) is any value (rinit) that fell within the range: 0.99 6 rinit 6 3.05. Also, for

the remaining tests types, either applying the heavy-tailed Pareto of different tails or in

combination with other distributions, the best initial value is: 0.24 6 rinit 6 0.47. The later

range works well too with the hetrogeneous cases covered in another research work conducted

in parallel with this one, where mixtures of distributions applied at each node. Actually, it

is not clear if this observation of range effect is due to the Matlab root-finding package or

the estimation method which needs another research outside the scope of current study.

For the types of HFJQNs in section 3, except the last, Figs. 4.2 −4.7 present the predic-

tion errors for the 99th percentile response times at loads: 50%, 75%, 80%, and 90%, for all

HFJQNs of N’s nodes that are running single serving unit at each. The odd figures, i.e., 4.3,

4.5, and 4.7, present comparisons of prediction errors between the Black-box HFJQNs and

the White-box HFJQNs at load 90% only. The model yields quite accurate approximations

for tail latency at high load region, less than 10% and 20% at the load of 90% and 80%,

respectively. Further, in Fig. 4.2, for all the cases with the exponential distribution, i.e., dif-

ferent nodes’ utilizations, the model gives accurate predictions across the multiple HFJQNs

sizes studied. This is consistent with earlier observations in [53], i.e., the lighter the tail,

the smaller the prediction errors. The results shown in the odd figures, i.e., the outcomes of

comparisons between white-box and black-box, ideally, should be equivalent. The differences

are introduced due to simulation and measurement errors, i.e., based on 95% confidence. For

the example case with the nested simulations utilizing multi-cores technology in subsection

3.4, the current implementation code rely heavily on memory where the experiments limited

to small cluster sizes, i.e., 10, 50, and 100, and that is due to the limited resources of using

single core7-CPU testing PC. Fig. 4.9, shows the prediction errors at the determined load

levels, which to our surprise the prediction errors are reduced, with less than 10% mostly

across all load regions, and less than 5% for loads at 75% or above. This further asserting

our postulation about the reliability of using this model assuming no advance knowledge of
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nodes distributions, and even under such heterogeneous scenarios where huge differences in

performance applied among nodes architectures.

Lastly, one of the main questions that haven’t been answered yet is the con-

siderable difference in prediction errors between heavy and light-tailed workload

distributions? It seems the model successfully predicts the light-tailed within the expected

window of errors across all load-levels. At the same time, it underestimated the heavy-tailed

distributions at low loads, and once it reaches high loads, it overestimated even though it

stayed within the expected window.

As known, there are two competing effects in the approximation: 1) the impact of

using extreme value theory, and, 2) modeling our solution using a generalized exponential

distribution. First, the solution is not an exact estimate but approximated; we use extreme

value theory, which predicts the worst-case scenario. That explains why there is an expected

small percentage of errors added to the approximation. Second, the basic concept is that at

high load regions, due to queuing effect, the distribution of task response times, of a single

forked-node, can be modeled as exponential as its CV becomes near to exponential in its

behavior/characteristics, i.e., CV in the range [1 − 1.2]. Third, the used generalized expo-

nential model is inherently exponential, where the long tail can be considered as an added

feature. Therefore, it will not have trouble predicting distributions of short tailed-family

at most load regions as we had seen with the Weibull and the Exponential distributions,

chapter 2. However, for heavy tail distributions, and based on the concept, at high load

regions, when queuing effects dominate the existed workload distribution, the 10% errors in

prediction observed in all applied scenarios of workload distributions, is considered enough

for the model to satisfy the argument.

Then why is there an increase in error if we increase the cluster size? To

provide more emphasis on this, it is known that based on the previous observations, there

will be high variance among queues lengths at all forked-nodes, i.e., increased chances of
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having the head of the line blocking phenomena, where at least in one queue node, several

long consecutive tasks could mount-up after each one, which cause underutilization for the

system as a whole. Once we monitor the entire FJ system and take utilization-snapshots at

every moment, it will become apparent the high variance of queues lengths as well as the

tasks service-times among nodes-queues, and even though, in the long run, the load (ρ) level

maintained fixed for each queuing node. Hence, the result of this momentary underutilization

in the FJ system is response times that are dispersed and clustered to form a distribution.

Consequently, the tail of this new converged response time distribution becomes longer due

to the high variance in jobs-responses, which escalate as we grow the forked-nodes size in

par with the forked-tasks amount, even though the result from prediction stays within the

10% error window.

4.4 Convergence Point for Reliable Metrics

The two performance metrics are essential for the work of the prediction model, and

both are used to interpret any node’s ability to serve a demanded latency response. Historical

collections of task completion times help in inferring the two metrics and determining the

resource capabilities as well. Therefore to gain better prediction, a crucial point is to learn

the least amounts of archived responses, which is necessary for assessing the reliability of

the metrics’ measurements at a node. For example, assuming homogeneous conditions, it is

known from the budget translation section that a single round of translation for a provided

target response helps achieve the required nodes’ measurements. Hence, µ and σ2 can be

obtained when numerically determine the value of C ratio2, and infer both: α and β. Now,

2In contrast to budget estimation, calculating C ratio is not restricted by selecting a value that causes

non-negative bounds, where C ratio could be less than 1. In some published analysis [54, 67, 68], it is

realized that the 1 < CV ≤ 1.2, which means CV = 1 + Const. Equivalently, when taking advantage of the

reciprocal relationship, C ratio = 1 - Const. Based on our observations of measuring the right Const, the
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assuming a 10% window of errors in prediction is acceptable and a required 95% confidence

level. Chebyshev’s inequality can apply besides the statistical metrics gathered from clusters

nodes.

P (|X − µ| > ε) 6 (1− confidence) (4.14)

Where, ε is the accepted error for mean of task responses, i.e., ε = (Accepted Error

Ratio · µ). Now, assuming collected samples are independent, central limit theorem can be

used for further derivation to normalize the σ2
x of the population distribution into σ2/n for

collected samples, as the following:

σ2
x

ε2
=

σ2

n · ε2
(4.15)

Therefore, we have,

P (|X − µ| > ε) 6
σ2

n · ε2
(4.16)

And from both Eqs. (4.14) and (4.16),

n =
σ2

ε2 · (1− confidence)
(4.17)

Fig. 4.10, demonstrate an example where the parameters empirically gathered from

carrying on two different types of experiments used for the estimation. The obtained statis-

tics are from conducted homogeneous experiments [1], where mean and variance in responses

observed only for tagged tasks at workers. The used clusters were of different sizes (e.g.,

10, 100, and 500 workers), and the collected responses of target tasks were based on pre-

determined target percentages (e.g., 10%, 50%, and 90%). Hence, the influence of having

value found to be the ratio between mean execution time over the mean response time is the best fit value.

Both parts of the ratio easily obtained from user’s required tail latency and its ratio to mean execution time.

The ratio (r) between target tail response time and mean execution time according to the determined load

level (ρ) as in ρ = 1 + r−1 ln(1− ( p
100 )

1
N ), more in next chapter.
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Figure 4.10: Samples amount required for reliable metrics, check scenarios: 2&3 in [1].

background applications was involved in the experiments. In the first scenario, the back-

ground was of the same distribution but applying different mean service time than the target,

and the second one, the background was of different distribution. The result in the figure

shows that if a particular application gets to dominate a large percentage of the entire work-

load, the number of needed samples slightly increases ≤ 20%, where both two ends stayed

within the expected 10% of target if set as a reference point when it dominates half of the

workload. That is, once considered the addition of this slight amount, it doesn’t matter

how significant the portion of a target application will be. We follow the above derivation

to mathematically estimate the required amount of samples for the same target tail once

translated into µ and σ2. The results found to be about the same within an accuracy of

more than 87.5% compared with the one estimated from measurements. It worth to mention

that the observed differences in the introduced errors caused by the average µ’s might be

due to simulation and measurement errors, which could also negatively play a role in the

changed portions of the target shown in the figure.

Further, the amount of the required samples can be tuned for a less amount once the

accepted error ratio of the mean latency increased from the 10% shown in the figure to a

little higher (e.g., 20%). Therefore, this method is a very crucial tool as it presents a way to
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estimate the required amount of sample response times for getting a reliable mean latency

measurements of task processing at a fork node. Finally, using this approximation approach

for estimating the required sample size is unique in a way that it doesn’t need to know

the distributions or nodes’ statistical performances beforehand [69]. At the same time, it

doesn’t require to use approximations, which incurred a high margin of errors when neither

distributions nor nodes’ measurements are known [70, 71].

4.5 Budget Translation

One of the unique and potential benefits using the prediction model is the ability to

translate any required latency into task performance budgets, e.g., µ and σ2. Consequently,

from the given allowed budget, any landed job request negotiates for a range of nodes, based

on the knowledge of subsystems performance metrics, that could serve while guaranteeing

SLO requirement satisfaction. For that reason, a question of how to work out the budget

translation using this model should arise. From Eqs. (4.2), (4.3) and (4.5) already have the

following:

µT = g(α, β) (4.18)

σT = h(α, β) (4.19)

xp = f(α, β, p, k) (4.20)

Where µT and σT are the mean and standard deviation of task responses, and xp is the re-

quired tail in response times. Now, assume ratio C = µT/σT , where C > 1. This provides us

with four equations and four variables We can numerically solve it, and hence, the translated

budget we will be:

BT = µT ± σT (4.21)
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Table 4.5: Translated budget using two different C ratios

K Latency C µSLO σSLO Upper limitSLO Lower limitSLO

20
100ms 1 13.16ms 13.16ms 26.32ms 0
100ms 15 60.46ms 7.22ms 67.68ms 53.23ms

Figure 4.11: Using translated budget to determine the right destination.

For a demonstration purpose, assume homogeneous condition with the given user re-

quirements: 99%ile, xp = 100ms, and amount of forked tasks k = 20. Having applied the

above method led to the results shown in table 4.5, where the translated budget can be

used to direct tasks as in Fig. 4.11. Choosing a C ratio ≈ 1 sounds reasonable to attain the

performance measurements of a single node. A core principle of this model approximation is

that at high load region, waiting times for a single node follow an exponential distribution,

which means µ and σ = 1/λ. Therefore, it is safe to assume for budget translation, setting

C ratio = 1 would provide us with approximately the same µ expected at any single node.

Accordingly, what happens if the C ratio changed to different values? For example,

assume changing C ratio takes the range between 1 to∞. Figures 4.12 and 4.13 demonstrate

the impact of tuning C ratio at the translated budget. Note that the observed changes in the

boundaries stop when C = 15, but the increase in µ and the decrease in σ values continue to

untile C = 31. This means, working different C ratios helps relax (low C) or tighten (high

C) the amount of provisioned resources for the allowed budget.
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Figure 4.12: The two boundaries of translated budget.

Figure 4.13: Translated Budget area: the enclosed area between the two boundaries.

4.6 Related Work

Fork-Join structures underlay many big data applications, whose execution usually are

handled by a large number of nodes and the partial results from those nodes are then merged.

Fork-Join structures are traditionally modeled by Fork-Join queuing networks (FJQNs) [8].

FJQN models have been studied extensively in the literature. To date, the exact solution

exists for a two-node network only [35, 9]. Most of previous research efforts mainly focus on

approximating mean response time for FJQN model [9, 10, 36] and its bounds [37, 38, 43].

Some works attempt to find the approximation of response time distribution for the networks

applying simple queuing models for each node, e.g., M/M/1 [42] or M/M/k [11], i.e., Poisson
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arrival process and exponential service times with one or more servers. For general service

time distribution, the combination of analysis and simulation are usually employed to derive

the approximation for mean response time [9, 72, 12].

The approximation of tail latency for homogeneous FJQNs with phase-type service

time distributions was introduced in a recent work [13], which is based on the analytical

results from single-node and two-node networks. In [52, 53], the authors proposed to use

black-box approach for the approximation of tail latency at high load regions, treating each

processing node as a black-box. The approach requires only means and variances of re-

sponse times at the processing nodes as input. However, it was based on the homogeneous

assumption. Therefore, in this research analytical approach derived for use in the introduced

inhomogeneous FJQNs.

4.7 Future Work and Conclusion

So far, provided there is a clear distinction between the inhomogeneous and homo-

geneous environments, the original-derived prediction model still holds. At schedulers, if

decision-makings established only based on queues lengths, it could sometimes be deceiv-

ing [51]. Henceforth, engaging the knowledge of the computing capabilities for cluster nodes

to derive the resources allocation is more reasonable for gaining reliable performance. Sched-

ulers would become able to define budget boundaries for guaranteed users’ satisfaction.

Based on the performance measurements feedbacks, dispatching systems can specify ranges

of nodes that could afford to serve users’ requests within the given SLOs requirements. A

good example is to perceive an experienced taxi-driver who takes advantage of the knowledge

he has about destination. And he uses the knowledge to ride his vehicle and steer the wheel

toward their proper addresses. This is a crucial improvement that we could get from using

the prediction model, which seems already lacked to exist at other models.
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In this chapter, while assuming heterogeneous conditions existed, we provided several

study cases regarding the prediction of tail latency. Many conditioned-scenarios were covered,

where different distributions and unique characteristics considered for the demonstration of

cluster nodes. The model has proved to be reliable as it performed well within an acceptable

window of errors for all the studied cases. The encouraging outcomes stand for adopting

this prediction model in designed schedulers for improved decision-making and providing

guaranteed services. Furthermore, it is expected that this model could fits rightly in more

sophisticated scenarios, where multi-stage scheduling is acquired [58]. Therefore, extending

the use of the prediction model is the next future work, as the design nature of many

production environments requires to include more processing stages instead of only one fork-

join phase.
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CHAPTER 5

Achievable Cluster Utilization for OLDI applications

Scale-out applications are on the track of becoming the norm in users’ everyday life.

The use of such applications seems to be extending in many internet services that we tend

to use heavily. For instance, keywords-searching, social-networking, user-facing services of

big data analysis, and so on make it essential to realize the significant impact of the kind of

applications that are referred [to] in this context, in users’ daily works. More demanding is

that these particular-types, known as online data-intensive (OLDI) services, usually require

rigorous response times toward the satisfaction of end-users. For example, OLDI-services

jobs may fan out a large number of tasks, where they processed at different computing units

in cluster(s) at a data-center. At the same point, they have to meet stringent tail-latency

Service Level Objectives (SLOs). Therefore, service providers usually resort to allocating

more resources to such applications without following clear guidance about how much needed

for serving a required tail SLO.

Usually, this approach of allocating resources often leads to data-center resource over-

provisioning and result in high-cost excised from wasted-resources. Also, not forgetting to

mention that it generally causes resources to run at low loads. For example, aggregate

CPU/memory utilizations in a Google cluster with 12,000 servers [5] and a Twitter cluster

with thousands of servers [6] are mostly less than 25%/50% and 20%/40%, respectively.

However, and again, due to various demands of the arriving stream of diverse job-requests,

where all are competing for cluster resources, and a possible high variance that might exist

within the DC workload, the desired tail latency would become difficult to contain without

throwing a significant amount of resources to overcome the problem. There is no way to
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interpret the current malpractice of handling clusters-resources into something else except a

lack of having a good understanding of the issue at hand.

Therefore, this unveiled-absence of having a good comprehension of exactly how much

resources should be overprovisioned and to what degree? was the primary motivation of our

research work. Thus, we derived an approximation tool for estimating the performance upper

bound of a utilization level, ρ, that can be achieved at a given data center. This estimate

is based on assumption of a relationship for a selected target-ratio between the desired tail

latency SLO of response times and the average service time, i.e., tail-to-mean-ratio (r).

Hence, the proposed tool can be used for characterizing the upper bound performance of the

achievable utilization level.

However, as an application of our proposed solution, chapters [2, 3, 4], the model is

applied to the prediction of achievable resource utilization under any given tail-latency SLO.

First, as mentioned, we will provide a derivation for characterizing the performance upper

bound for a particular class of OLDI services. Then we will use our model solution to validate

the derivation and, at the same time, use both: the solution-model and the derivation to

predict achievable resource utilization under any given tail-latency SLO. Also, to push the

barrier a little further, we will use two extremely workload scenarios with respect to workload

variance and study their effects on the utilization prediction.

Lastly, handing out this approximation tool at the hand of datacenters service providers

would allow them to overcome many obstacles stemmed from using that lame old-style where

they rely on blind-overprovisioning of clusters-resources. The remaining sections of this

research formulated as the followings: In section 5.1, a general overview of the derived upper-

bound performance model. In section 5.2, we present an analysis of our model assuming best

case scenario of workload conditions. And, in section 5.3, we validate our model comparing

its results with simulations and, numerically - using the GE-prediction model. Also, it will

be followed by a discussion about possible ways that could be used to improve the utilization,
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Figure 5.1: Fork-join process: a job request R arrives at a task dispatcher which spawn and
distributes N tasks to N workers.

in section 5.4. Finally, the related work in section 5.5 and the future work and summary in

section 5.6.

5.1 Model and Solution

In the field of parallel computing systems, it is recognized as a fact that the behavior of

tasks flow, can be generally modeled as a Fork-Join Queuing Network (FJQN), see figure 5.1,

which represent the job execution process for most of OLDI services. Each arriving job forked

to several tasks that are dispatched to different fork-nodes and they wait at lines for their

turn to execute. Jobs arrivals can be modeled following a distribution process, and the same

goes for tasks executions, and both distributions are either similar or different. The finished

tasks of a job are merged and the last processed task will dictate that job response time.

For this approximation to work, it is assumed an M/M/1 Fork-Join-queuing-network

model design, and the worst case of fanout numbers that equal to the Fork nodes. The

basic concept behind these two assumptions is that if we considered the best-case scenario

of low variance among workloads that leads to estimate the maximum barrier of achievable

utilization, ρ, we can easily derive a model to predict the achievable upper bound utilization

for other conditions, where a high variance in system workload do exist. It is already known
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for a fact that the usually encountered workloads, in reality, have high variance (i.e., C.V

> 1), which is due to the mix between short and long jobs at the waiting lines of processing

nodes. Several studies have found the dispersion around the interarrival-times distribution

is so small, i.e., C.V = 1 to 2, which means using memoryless exponential is a reasonably

acceptable model for simulating the arrivals of network tracs and datacenter applications [54,

67, 68]. This selection become clear since tasks spawned to the subsystems assumed that

they came out from a large pool of many independent requests/applications. Hence, due to

its coefficient of variation (i.e., C.V = 1), using the exponential distribution for simulating

cluster-workloads makes it the best candidate to serve as modeling component of our solution

for both the task interarrival time distribution and the service time distribution at each

queuing server. This means that both distributions are found to be shorter tailed than

the measured statistics for datacenter applications with coeffeciant of variation C.V > 1 in

general [30], including the Google search service [54, 30]. As a result, due to low variance

one can expect that the solution to the current model would lead to load upper bounds as

a function of the tail-latency SLO.

Next, we establish a link between ρ and {r, p}. We first note that given the cumulative

distribution function for normalized job response time t/S, G(t/S, ρ,N), which is load and

fanout degree dependent, we have,

p

100
= G(T/S, ρ,N) = G(r, ρ,N) (5.1)

This expression establishes the relationship between the cluster load ρ and the tail-

latency SLO tuple, {r, p}, at any N . So the key is to derive G(t/S, ρ,N) for the above

Fork-Join queuing network model.

To this end, we first note that the cumulative distribution function for the task response

time at each M/M/1 Fork queuing server, F (t), is known [73] and can be expressed as follows,
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F (t) = 1− e−(1−ρ)t/S (5.2)

Now assuming that the task response times for tasks at different queuing servers are

independent of one another, we have, according to the extreme value theorem [74],

G(t/S, ρ,N) = F (t)N = (1− e−(1−ρ)t/S)N (5.3)

Interestingly, it can be easily shown that the above solution coincides with the black-

box solution given in [53] in the case of the FJQN with M/M/1 Fork nodes. The key

difference is that the current approach is much more straightforward, elegant and easy to

understand. This solution is an approximate one because the independent assumption does

not hold true for the Fork-Join queuing network model, in which the task arrival processes

at different queuing servers are perfectly synchronized and hence, are not independent of

one another. This may result in the load estimation lower than the exact one. Nevertheless,

as verified by simulation [53], in the case of the M/M/1 Fork nodes, the approximation is

pretty accurate, as it is consistently within a margin of error of 10% in terms of tail latency

prediction, which translates to a margin of error of less than 2% in terms of load.

Now, substituting Eq 5.3 into Eq 5.1 and solving for ρ, we finally have,

ρ = 1 + r−1 ln (1− p
1
N ) (5.4)

Since both the job interarrival time and task service time distributions are found to

be longer tailed than the exponential one in practice, as mentioned earlier, this solution can

serve as a rough upper bound on the achievable load, ρ, at a given tail-latency SLO in terms

of {r, p} and fanout degree N .
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Figure 5.2: Maximum system utilization to achieve the 90th and 99.9th tail latency with
various tail-mean ratio at five different fanout degrees, i.e., 500, 1000, 5000, 10000 and 20000.

5.2 Analysis

In this section, we perform numerical analyses of Eq 5.4. Figure 5.2 depicts the load,

ρ, as a function of the tail-to-mean ratio, r, at five different fanout degrees, i.e., K =

500, 1000, 5000, 10000 and 20000 for p = 90 and 99.9 in the left and right subplots, respec-

tively. These values cover wide parameter ranges of practical interests [75]. We note that

when the load that satisfies Eq 5.4 becomes zero or negative, the corresponding tail-latency

SLO cannot be met. We include the negative data points in both subplots to help identify

how far it is from being able to meet the tail latency SLO. For example, for both p = 90 and

99.9 cases

(i.e., the left and the right subplots, respectively), the tail latency SLO cannot be met

at r = 10 and K = 5000, as the corresponding load bars are both negative. However, since

the load bar for the p = 90 case is much shorter than that of the p = 99.9 case, one can

expect that the former is much closer to meet the tail-latency SLO than the latter; the tail

latency SLO in terms of {r, p} = {10, 90} is much looser than that of {r, p} = {10, 99.9}.

With the above preparation, we can now explore important features of our model.

First, we note that r = 10 is too tight to achieve reasonable computing resource utilization
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in the entire parameter range in terms of both p and N . Both subplots strongly suggest that

r needs to be at least around 30 to be effective - assuming the workload takes an exponential

behavior. For example, in Google search, the average web indexing at a worker is about

4.2ms [30]. This means that striving to achieve a 99th-percentile tail latency of 150ms [65]

leads to a r of 36, or a load upper bound of about 60%, regardless cluster size. This

means that if the cluster load for an OLDI service already reaches 30− 50%, and assuming

no intervene from a dynamically-efficient scheduling algorithm, the room for further load

improvement is actually quite limited, given that the tail behavior of production workloads

is longer than that of the exponential one.

Second, under the assumption of best case scenario of workload, i.e., exponential be-

havior, the achievable load ramps up quickly as r increases to 30 but then increases slower

afterwards, eventually leveling off as r increases further. Moreover, as r increases, the achiev-

able load saturates at about 75−85% in the range of p = 90−99.9 and becomes less sensitive

to N as r becomes larger.

In summary, at best case scenarios, to achieve the best trade-offs between the system

resource utilization and the tightness of the tail latency SLO, one should set r in the range of

[30−50]1 and avoid setting r below 20. However, although its help identify the ceiling bar for

workload types, we should be aware that this is not a suitable range for long tail workloads.

As it will be explained in the validation section, we learn that a need to implement better

tail cutting techniques and/or efficient scheduling algorithms, which could overcome existed

high variance in workload, to achieve this best case scenario of N forked tasks.

1In the case of the achieved resource utilization in Google cluster that we mentioned before, i.e., the

load (ρ) found to be ≤ 25% for CPU and ≤ 50% for memory, and as in Figure 5.2, if tail-to-mean-ratio

(r) used = 70, that means they are not doing a good job in the matter of managing cluster resources.

They should achieve higher utilization for that ratio, e.g., (ρ) should be about or even greater than 80% at

tail-to-mean-ratio (r) = 70 for p = 99.9 percentile and 90 percentile, respectively.
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5.3 Validation Experiments

Workloads types: The existence of high variance in processing a task is terrible when

it comes to garnering all elements for better resource utilization. For example, if a specific

target-tail response time needs to be maintained, considering the occurrence of high variance

in tasks executions as well queues lengths, it become hard to control. Taking the significant

difference caused in existing tail response times into account, more overprovisioned resources

needed, to maintain the pth responses below or equal to the required target-tail and avoid

long waitings in queues. Consequently, the utilization would become worse, as guessed.

This condition is contrary to other circumstances when a low variance in system workload

is dominating the workload sojourn times. Therefore for the validation purpose, there was

a need to experiment a contradicting behavior of two uniquely selected types of workloads.

Due to its high variance, Pareto distribution elected to be used as a good model for imitating

workload of high variances, which its variance is easy to control as changing the value of

alpha parameter. While exponential distribution for its low variance, that could results in

better resource utilization, picked to be used in imitating the best-case-scenario of workload.

In particular, we consider the following distributions:

– A light-tailed Exponential distribution (Exp) whose CDF is defined as [29]

FXi(x) = 1− e−
x
µ x ≥ 0, (5.5)

where µ is the mean service time (µ > 0),

– A heavy-tailed truncated Pareto distribution (TPa) [29] whose CDF is given by

FXi(x) =
1− (L/x)α

1− (L/H)α
, (5.6)

where α is a shape parameter; L and H are lower and upper bounds, respectively.

Validation strategy: To validate the correctness of this model, while following the context

of our original work, in previous chapters [2, 3, 4], of predicting the tail latency, the observed
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results using theoretical model can be supported following two typical approaches: numer-

ical analysis and simulation measurements. Using the latter to confirm the results when

applying same ratios (r)’s was a little bit subtle for two main reasons. First, in the realm of

simulation measurements, where ρ ≥ 0, ratios of negative load regions cannot be conducted

and measured as to the ones encountered in the current derived-model, see figure 5.2. There-

fore, the simulated-experiments were forced to be limited just for the tail-to-mean-ratios that

result in loads ρ’s > 0. Second, the implementation-nature of FJQNs-simulations dictates

determining load regions as pre-setting to the beginning of any simulation experiment before

collecting the final statistical measurements and the required tail-percentiles. Consequently,

as to the nature of simulation-measurements that expected not to provide the exact target-

ratios, we resorted to applying linear interpolation on the all captured measurements, see

tables in Figs 5.3, 5.4, to achieve the exact required r-ratios. Also, it worth asserting that

the experimented-simulations end with approximated measurements that are based on a 95%

confidence level, which means an applied margin of errors should be expected. Lastly, we

limit all the validation experiments to only two different cluster sizes, i.e., N = [500, 1000],

due to experienced cost of having long-running times operating FJQNs-simulations.

We report the results for the systems of the two different sizes of Fork nodes, i.e.,

N = 500, and 1000, and running over different loads ρ’s based on the determined ratios,

assuming that the tasks spawned from all the incoming jobs are randomly dispatched to N

nodes in the system, i.e., k = N . Specifically, we consider these scenarios:

– Workload scenario 1–Exponential distribution with mean service times, µ = 4.22ms.

– Workload scenario 2–Truncated Pareto distribution with coefficient of variation CV =

1.2 and mean service times, µ = 4.22ms, which results in the distribution parameters

α = 2.0119, L = 2.14ms,H = 276.63ms.

Following the numerical approach, the same distributions parameters were employed

against the simulated ones for the validation purposes. This numerical approach using our
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Figure 5.3: Using GE model for predicting load level and Exponential as its workload at
99.9%tile.

Figure 5.4: Using GE model for predicting load level and Truncated pareto as its workload
at 99.9%tile.
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previous GE-prediction model for tail latency, chapters [2, 3, 4], was needed, too, for providing

a comprehensive study when compared to the utilization-levels predicted by the model. We

determined the distribution parameters ahead of the estimation time. Then we follow-step

the following algorithm to predict the upper bound of load level. First, for every provided

N -cluster size, we locate the distributions over a range of assumed loads (ρ)’s = [0, 1] with

changing steps = 0.0001 at each loop2 − you may choose any level of accuracy. Next, while

obtaining the distribution, we search for ρ of the required tail-to-mean-ratio (r) = xp / µ

that satisfied the determined pth percentile. Finally, we repeat the same for all ratios (r)’s

= xp’s / µ.

It worth mentioning that the resulted-loads from numerical analysis plus the same

distribution parameters, configured as inputs for the simulation experiments, to ensure that

the same ratio (r) (or close) can be achieved for our validation purpose. We apply the

assumption of homogeneous FJ condition for all the carried on experiments; therefore, only

the homogeneous derivation of the tail latency GE-prediction model was applied; Eq 2.13.

We list all three results at the same figure to show the difference.

Key observations: So far, we found that the model serves its purpose as an upper bound

for predicting the load level, see figures [5.5, 5.6, 5.7]. Here, we aim to provide our view

about how the model act as upper bound by pointing out the significant elements of the

errors found in prediction. We find that the results stay consistent with our speculation,

where exponential can be predicted very well. And at the same time, the model can serve as

upper bound for heavy tail distributions, e.g., Pareto - even if we by assumption increased the

alpha parameter and the distribution tail. There are two key observations that we need to

2For further explanation, on how it is achieved, the mean of task response time and variance of task

response time are analytically estimated for a single node to get the distribution’s parameters (i.e., shape

and scale of the generalized exponential distribution). Then it used for N -nodes with the requested tail-to-

mean-ratio (r) to find the load (ρ).
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Figure 5.5: Using GE model for predicting load level and Exponential as its workload.

Figure 5.6: Using GE model for predicting load level and Truncated pareto as its workload.

Figure 5.7: load prediction of GE[Tpareto] vs upper bound of proposed model.

acknowledge. First, workload incorporating high variance in its processing when compared

to the workload of smaller variance, reveals bad performance in system utilization and tail

responses as well. And as we increase the ratio, i.e., relaxing the requested tail SLO, it starts

to perform better. Second, when we pay attention to effect of the fanout degree size, for
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more extended fanout degrees, the load prediction shows worse performance than a smaller

fanout degrees. This later observation applies to all studied workload distributions either:

light or heavy.

Therefore, the aim is to understand the errors behind both observations. For instance,

why heavy Pareto has worse performance than exponential? And why for a longer fanout

degree, any workload distribution performs much better than smaller fanout degrees?

First, we have to study the inter-relationship between the elements that play major

role in Eq 5.4, see diagram 5.8. For simplicity, let us assume a homogeneous model of

the FJ system. For a target tail-to-mean ratio (rt), if we maintain the same amount of

computing resources (RN) and increase workload variance (V arw), system utilization (ρ) will

decrease due to possible variance in queues lengths. The same holds, i.e., system utilization

(ρ) will reduce, if we fixed the workload variance (V arw), and increased the amount of

provisioned resources (RN), while keeping the origional amount of spawned tasks without

change. Further, for the same system condition applied, i.e., all the previous elements:

the supplied amount of computing resources (RN), workload variance (V arw), and system

utilization (ρ) set to fixed values, logically, it is correct to speculate from the reciprocal

relationship among the required amount of the pth% percentile and the needed ratio (rt)

in Eq 5.4. That if we strictly tune the ratio required to a small amount, we have to relax

the required percentile of the target tail response time for user satisfaction. This unraveling

inter-relationship between the elements of effect in the equation, and on system utilization

figure 5.8, demonstrates the level of challenges that are faced by service providers.

Second, we stated that the high variance in task processing ends up with bad resource

utilization. Hence, speaking of tail-to-mean ratios and about climbing the ladder of better

performance toward achieving high utilization levels. Due to high variance (CV > 1), Pareto

requires high ratios, r’s, to achieve acceptable performance levels in comparison to the expo-
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Figure 5.8: Circle of Effects: System prospective VS TailSLO prospective.

nential, where the exponential for its almost fixed CV = 1 gets about the same performance

levels for smaller ratios.

Now, to get to understand why, for a more extended fanout degree, load prediction

performs worse than smaller fanout degrees, we need to comprehend that this observation

makes sense. On the one hand, under the same condition of a load level as we increase the

fanouts numbers, the tail also increases in its value. So, looking at Equation 5.4, if the tail

for both different fanout degrees kept fixed, mathematically, the effect of larger fanout is

going to be reflected negativity at the estimated load level by reciprocal relationship. Hence,

the achievable utilization of a more extended fanout degree is going to be lower than a

smaller fanout degree. On the other hand, for providing more emphasis on this, practically

speaking, it is known that based on the previous observations, there will be high variance

among queues lengths at all forked-nodes, i.e., increased chances of having the head of the

line blocking phenomena, where at least in one queue node, several long consecutive tasks

could mount-up after each one, which cause underutilization for the system as a whole.

Once we monitor the entire FJ system and take utilization-snapshots at every moment, it

will become apparent the high variance of queues lengths as well as the tasks service-times

among nodes-queues, and even though, in the long run, the load (ρ) level maintained fixed for

each queuing node. Hence, the result of this momentary underutilization in the FJ system is

response times that are dispersed and clustered to form a distribution. Consequently, the tail
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of this new converged response time distribution becomes longer due to the high variance in

jobs-responses, which escalate as we grow the forked-nodes size in par with the forked-tasks

amount.

Finally, as we have seen that best case of workload is the one of low variance. How-

ever this is not always the case in real production environments as it might become worse.

Therefore, possible ways for cutting the tail short and use better scheduling algorithms help

circumvent such condition if existed.

5.4 Discussion and Future Work

Improve ceiling bar of Cluster Load: The previous model analysis, of best workload

scenario, indicates that to achieve a reasonably high cluster resource utilization, the tail-

to-mean ratio, r, must be kept in the range of [30 − 50]. Then the question is: what if

a stringent tail-latency SLO must be enforced, despite the fact that r is smaller than 30?

Without considering the possibility of service consolidation, perhaps the only effective way

to accommodate such stringent tail-latency SLOs is by scaling up workers, or equivalently,

reducing mean task service time, S, and hence, increasing r. This, unfortunately, is a brute-

force solution.

One possible alternative solution is to cut the tail for task response time shorter by

load balancing andor the multiple issuing of a task to a small number of worker replicas [47].

However, this solution may not be very effective. First, we note that the multiple issuing of

a task only works when the tail is very long, e.g., due to stragglers [76]. For task response

time distributions that are already short tailed, the multiple issuing of a task may no longer

be able to further reduce the tail, but rather waste worker resources, as the probability for

multiple issues to be in service simultaneously increases as the tail becomes shorter. Then

what about load balancing? Before answering this question, we first derive an interesting

property for the tasks at each M/M/1 Fork queue.
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Denote Rt and Tt as the mean task response time (i.e., the mean task queuing time

plus S) and the pth-percentile task tail latency, respectively. The mean response time (using

the Little’s law):

Rt =
1

µ(1− ρ)
(5.7)

With the task response time distribution given in Eq. 5.4, it can be easily shown that,

Tt =
1

µ(1− ρ)
· ln (

100

100− p
) (5.8)

And finally, we have,

Tt
Rt

= ln (
100

100− p
) (5.9)

Namely, the ratio of the task tail latency and task mean response time only depends on p,

independent of load ρ.

Interestingly, at p = 95, this ratio is about 3, coinciding with the measured ratio for

a leaf server in a google search engine reported in [54]. This leaf server is composed of 16

cores, which form a group of worker replicas. Incoming tasks are first placed in a FIFO

queue and the tasks that reach the head of the queue are load balanced among these cores.

Hence, the server can be modeled as a G/G/16 queuing server. In general, one can expect

that a G/G/16 queue should give a smaller ratio than that of a G/G/1 queue [77], due to

resource pooling. However, if no better load balancing approach that take into consideration

variance in tasks executions, the fact that the measured ratio is almost the same as that of a

M/M/1 queue, strongly suggests that traditional load balancing approach has limited effect

on further enhancing the cluster resource utilization.

The Case for Ki ≤ N : The current solution cannot deal with the case where different

jobs may have different fanout degrees, which is fairly common in the case of OLDI social

networking services. So an interesting research direction is to develop models to capture the

performance bounds for such workloads.
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5.5 Related Work

No exact solution to the general FJQN is available. Approximation solutions for job

response time distributions are available for FJQNs with M/M/1 [42] and M/M/k [43] Fork

nodes. Also, computable stochastic bounds on job waiting and response time distributions

for both blocking and non-blocking FJQN are given in [43]. The approximate tail latency

solutions for FJQNs based on the analytical results from single-node and two-node cases are

also derived [13]. These solutions, however, cannot be expressed in a simple closed form as

the one presented in this paper. More recently, black-box approximate tail-latency solutions

for a wide range of FJQNs were obtained [53], which led to the same solution given in this

paper in the case of the FJQN with M/M/1 Fork nodes. However, the current derivation is

much more straightforward, elegant and easy to understand.

To the best of our knowledge, the work presented in this paper is the first one that

applies FJQN to the analysis of the job tail-latency bounds for OLDI services. Most existing

works on the tail impact on the performance of OLDI services are measurement-based and

focused exclusively on a single Fork node, e.g., [78], [30]. Most relevant to the current

work is the work on the study of the tail latency impact on the datacenter multicore server

speedup [79]. Like our work, it is based on the job response time distribution for a M/M/1

queuing model. However this work is exclusively focused on a single Fork node, as mentioned

previously.

5.6 Conclusion

Jobs for online data-intensive (OLDI) services may fan out a large number of tasks

to be processed at different workers in a datacenter cluster, while having to meet stringent

taillatency Service Level Objectives (SLOs). In this research work, we derive a cluster

load bound for a special class of OLDI services. We use a simple Fork-Join queuing network
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model with M/M/1 Fork nodes to characterize the performance upper bound of such services,

assuming that all the jobs have the same fanout degree. We find that due to the queuing

effect, the tail latency is, in general, difficult to contain without throwing a significant amount

of cluster resources to the problem, which would result in low cluster resource utilization.
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