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ABSTRACT

Efficient and Adaptive Schemes for Consistent Information Sharing in Wireless Mobile

and Peer-to-Peer Networks

Publication No.

Zhijun Wang, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professors: Sajal K. Das and Mohan Kumar

With the tremendous growth of applications in wireless mobile and Peer-to-Peer

(P2P) networks, significant research efforts have been made to improve the quality of

sevice. Caching and replicating frequently used data objects or files in user’s local buffers

are popular mechanisms to effectively reduce the communication bandwidth requirement

and thus improve the overall system performance. However, the frequent disconnections

of users make data consistency a difficult task in wireless mobile and P2P networks.

In this dissertation, we design and analyze a Scalable Asynchronous Cache Consis-

tency Scheme (SACCS) for single cell wireless cellular networks. SACCS is a highly scal-

able, efficient, and low complexity scheme and works well in error-prone wireless mobile

environments. Analytical results indicate that SACCS provides very good cache consis-

tency in error-prone wireless environments. Comprehensive simulation results show that

SACCS offers more than 50% performance gain than that of existing Timestamp (TS) and

Asynchronous Stateful (AS) schemes; We also propose Dynamic SACCS (DSACCS) for

iv



multi-cell mobile environments. To the best of our knowledge, DSACCS is the first cache

consistency scheme that optimizes cache performance in multi-cell mobile environments.

In P2P networks, some files are heavily replicated to enhance their availability

and reduce the search cost. With the dramatic growth in P2P applications dealing

with dynamic files, file updates and the file consistency maintenance become critical.

To effectively propagate update information to the replica peers, we propose an efficient

algorithm, called Update Propagation Through Replica Chain (UPTReC), in decentralized

and unstructured P2P networks to provide weak file consistency. To provide strong file

consistency, we develop another algorithm, called file Consistency Maintenance through

Virtual servers (CMV). In CMV, each dynamic file has a virtual server and any file

update must be accepted through the virtual server to maintain one copy serilizability of

the file. To the best of our knowledge, CMV is the first strong file consistency algorithm

for decentralized and unstructured P2P networks. Our simulation results show that

UPTReC algorithm outperforms other existing algorithms, and CMV is an efficient file

consistency algorithm with very low overhead messages.
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CHAPTER 1

INTRODUCTION

Wireless mobile and peer-to-peer (P2P) networks are playing an increasingly im-

portant role in people’s daily life to provide ubiquitous information access including

integrated data, voice, and video services. With the significant growth of applications in

such networks, the quality of service (QoS) issues become critical. Caching and replicat-

ing frequently used data objects or files at the users’ local buffers are effective methods to

improve the communication quality, and hence overall system performance. To guarantee

consistent information access, efficient and scalable data consistency schemes must also

be designed. However, limited network resources and frequent user disconnections make

data consistency maintenance a challenging task. In this Chapter, we first introduce the

research background of data consistency maintenance in wireless mobile and P2P net-

works, and then present the research motivation and contributions of this dissertation.

1.1 Cache Consistency in Wireless Mobile Networks

Wireless mobile communication has increasingly become an important means for ac-

cessing various kinds of dynamically changing data objects such as news, stock prices, and

traffic information anytime anywhere. However, existing wireless mobile communication

systems are primarily designed for supporting voice and are not efficient in handling the

different characteristics and QoS requirements of data communications. Wireless mobile

networks have two main scarce resources: communication bandwidth and battery power

[23] [48] [51]. Moreover, they have to also deal with the user mobility and disconnections.

1
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Thus, data communication in such networks is much more challenging than that in wired

networks.

Orignal 

Server

Orignal 
Server

Wired Network

(MSC)
Mobile Switching Center

Mobile User (MU)

MSC

Base Station (BS)

MU Cache

Server Cache

1 0

1 0

Figure 1.1 Wireless Mobile Cache System Architecture.

Figure 1.1 shows a wireless mobile communication system architecture. It includes

a wired network, multiple original servers, mobile switching centers (MSCs), base stations

(BSs) and mobile users (MUs). Each (hexagonal) cell has a BS that is connected to a

MSC which is further connected to the original servers through wired networks. Each

BS serves multiple MUs through wireless channels and has a server cache (SC) to store

data objects. Each MU has also a local cache (MUC) storing some frequently used data

objects.

Caching frequently accessed data objects at the local buffer of a mobile user (MU)

is an efficient way to reduce data access delay, save bandwidth and improve the overall

system performance. With caching, the average data access delay is reduced since some

data requests can be satisfied from the local buffer, thereby obviating the need for data

transmission over the scarce wireless links. But, limited communication bandwidth as
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well as frequent disconnections and roaming of an MU make cache consistency a difficult

task in wireless mobile computing environments. A successful scheme must be bandwidth

efficient and must also effectively handle an MU’s disconnection as well as mobility.

Broadcast has the advantage of being able to serve an arbitrary number of MUs with

minimum bandwidth consumption. Thus, the broadcast and cache management schemes

must be carefully designed for an efficient mobile data transmission system to maximize

bandwidth utilization and also to minimize average data access delay. Additionally,

such schemes must be scalable to support large database systems as well as a large

number of MUs.

To guarantee consistent information sharing in wireless mobile networks, the cache

consistency must be strictly maintained. In the past decade, significant research efforts

have been made in the development of cache consistency schemes for wireless mobile

networks. In general, these existing schemes can be classified into two categorizes: state-

less and stateful. In the stateless schemes [4] [8] [10] [28] [30] [39] [57] [64] [68], the

server is unaware of the MUC’s content. The server periodically broadcasts data ob-

jects’ invalidation reports (IRs) to all the MUs. An IR of a data object includes the

data object’s identification (ID) and the latest update time. Even though stateless ap-

proaches employ simple database management schemes, their scalability and ability to

support disconnection are poor. On the other hand, in stateful schemes [31] [11], the

server maintains a cache state for each MU. Whenever a data object is updated, its IR

is multicast to the MUs that have a copy of the data object in their caches. The stateful

approaches can support disconnections and are scalable in terms of the number of data

objects in the server. However, such schemes incur significant overhead in the server for

maintaining cache state of each MU.

All the above existing caching schemes assume reliable communication between

the BS and the MUs for IR broadcast. However, any reliable communication mechanism



4

requires acknowledgement of IRs from the MUs. After an IR is broadcast (or multicast

for stateful schemes), the increased competition for uplink channel between the BS and

MUs will have an impact on the uplink queries, and further on the average access delay

and MU’s battery consumption. On the other hand, if an MU is disconnected during

the IR broadcast, the server cannot get its acknowledgement back, and must retransmit

the IR because it does not know if the IR is lost or the MU is disconnected. Also the

possible inconsistency and performance loss due to wireless channel errors are not studied

in the existing schemes. Therefore, there is a need for scalable and efficient schemes for

maintaining cache consistency in error-prone wireless channels. Moreover, existing cache

schemes focus on the single cell mobile environments, and the impact of the MUs’ mobility

is ignored. A cache consistency scheme designed for single cell mobile environments may

not be efficient for multi-cell environments. Hence it is important to develop cache

consistency schemes that achieve the optimized cache performance in multi-cell mobile

environments. The first part of the dissertation addresses the cache consistency issues in

error-prone, single cell as well as multi-cell wireless mobile networks.

1.2 File Consistency in Peer-to-Peer Networks

Peer-to-Peer (P2P) networks are self-organizing distributed systems, in which all

participating peers cooperatively provide and receive services from each other. P2P sys-

tems are rapidly growing due to such desirable characteristics as scalability, availability,

anonymity and authentication. Today, P2P network traffic may account for up to 85%

of the Internet bandwidth usage [27].

P2P systems can be classified as centralized and decentralized. Napster [26], is an

example of a centralized P2P system. The decentralized P2P systems can be further

categorized into structured and unstructured. In a structured P2P system, the topology

is tightly controlled and the files are well deployed [13] [41] [50] [52] [56]. In P2P systems,
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files are used instead of data object, because peers have much larger buffer space than

those of mobile devices and a file may include multiple data objects. On the other hand,

an unstructured P2P system has no control of its topology and file placement [2] [14] [17]

[19] [24] [35] [40] [43] [46]. Chord [56] is an example of a decentralized and structured

P2P system whereas Gnutella [43] is an example of a decentralized and unstructured

P2P system. The structured P2P systems enjoy efficient file search mechanisms through

distributed hash tables. However, they can not support key word search and incur

high overheads to maintain very transient peers. In contrast, the unstructured P2P

systems support key word searches. They also incur low overheads to maintain extremely

transient peers, and are robust to transients and general search queries [14]. Based on

these observations, we focus on decentralized and unstructured P2P systems in this

dissertation.

In decentralized and unstructured P2P systems, each peer maintains information

about its neighboring peers. Some files may be heavily replicated in the system to

improve the file availability and system fault-tolerance. To access a file, a peer searches

it through its neighboring peers. In order to make such P2P systems scalable and efficient,

significant efforts have been made on the development of search and replication algorithms

[14] [19][24][40]. In these algorithms, the locations of replicas for a file are well deployed

based on partial knowledge of the system, thus minimizing the search cost and balancing

the network load. Furthermore, these algorithms assume that files are rather static and

updates occur very infrequently. Indeed, the impact of the file update has not received

much attention.

With the tremendous growth in P2P applications, the issues related to file con-

sistency maintenance become even more critical. For example, in such applications as

shared calendar, P2P web cache [29], online game [34] and online auction [42] systems,

the files are updated frequently and hence the consistency needs to be strictly main-
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tained. Let us briefly sketch a scenario to justify the need for strict file consistency in

P2P systems. In the buyer-seller market using P2P systems, it is very convenient to

make a trading strategy if a trading file that lists all possible prices and quantities from

the sellers and buyers, is maintained for each type of goods. A potential buyer/seller

maintains a copy of the trading file and observes the trading progress. The offered price

may be changed by modifying the trading file. After the trading file is updated by a

buyer/seller, all others must view this update to track down the newest information to

formulate their trading strategies. Thus, a strict file consistency maintenance scheme is

essential for such P2P systems.

There exist very few file consistency maintenance algorithms [21] [36] for decen-

tralized and unstructured P2P networks. Moreover, they can only provide weak file

consistency, are not efficient and lack effective solutions for RPs with dynamic IP ad-

dresses. A peer is called a replica peer (RP) of a file if it has a replica of the file. In the

second part of the dissertation, we design an efficient strong file consistency maintenance

algorithm with effective solutions for RPs with dynamic IP addresses.

1.3 Research Motivation and Contributions

This dissertation aims at building ubiquitous, consistent information access sys-

tems for wireless mobile and P2P networks. Figure 1.2 shows a ubiquitous information

access system in which users can access information through wireless and P2P networks.

Caching and replicating frequently used data objects and files are effective methods to

improve system performance and enhance information availability. To guarantee consis-

tent information access, cache and replica consistency must be strictly maintained. We

focus on how to provide consistent information access through mobile cache and replica

peers.
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Figure 1.2 A Ubiquitous Information Access System.

Cache consistency maintenance in wireless mobile networks is a challenging task due

to MUs’ disconnection and mobility. Significant research efforts have been made on the

development of cache consistency maintenance schemes in the past decade. As explained

above, there is a need to develop cache consistency schemes that work efficiently in error-

prone communication channels and achieve optimized cache performance in multi-cell

mobile environments. This motivates our research work on the development of cache

consistency maintenance schemes for wireless cellular networks.

Initially P2P networks were designed for facilitating download of static multimedia

files that are not updated frequently. With the tremendous growth in P2P applications,

file consistency maintenance becomes a critical issue. For example, in online auction

systems, files are updated frequently and hence the file consistency needs to be maintained

to guarantee consistent file sharing. In decentralized and unstructured P2P systems, it is

necessary to develop efficient and scalable schemes for providing strong file consistency.

This dissertation make four major contributions.

• Scalable Asynchronous Cache Consistency Scheme (SACCS) by designing for

error-prone wireless mobile environments [58] [59].

• Dynamic SACCS (DSACCS) to achieve efficient cache consistency maintenance for

multi-cell environments[60] [61].
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• Update Propagation Through Replica Chain (UPTReC) algorithm to effectively

propagate updates in decentralized and unstructured P2P networks [62].

• A strong file consistency maintenance algorithm, called file Consistency Maintenance

through Virtual servers (CMV), for decentralized and unstructured P2P networks

[63].

Theses algorithms are briefly outlined as follows.

To improve mobile cache performance, we develop a novel algorithm, called Scalable

Asynchronous Cache Consistency Scheme (SACCS) [58] [59], which maintains cache con-

sistency between the BS cache, called the server cache (SC), and the MU caches (MUCs).

SACCS is a highly scalable, efficient, and low complexity algorithm, and provides weak

cache consistency with a small stale cache hit ratio under unreliable IR broadcast envi-

ronments. The properties are accomplished through the use of flag bits at SC and MUC,

an identifier (ID) in MUC for each entry after its invalidation and estimated time-to-live

(TTL) for each cached entry, as well as rendering of all valid entries of MUC to uncertain

state when an MU wakes up.

To address mobility of MUs in multi-cell environments, we design and evaluate a

Dynamic Scalable Asynchronous Cache Consistency Scheme (DSACCS) in which the IR

of a data object is broadcast globally or locally depending on which has the minimum

consistency maintenance cost. A globally maintained data object implies that its IR

is broadcast to every cell in the system. To the best of our knowledge, DSACCS is

the first cache consistency algorithm focusing on the development of optimized cache

performance in multi-cell mobile environments. An improvisation of DSACCS, called

DSACCS-G, is also proposed which groups cells in order to facilitate effective cache

consistency maintenance in multi-cell systems.

To effectively maintain file consistency in decentralized and unstructured P2P net-

works, we propose a novel algorithm, called Update Propagation Through Replica Chain
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(UPTReC). UPTReC provides a probabilistically guaranteed file consistency. It is an

efficient scheme for replica peers (RPs) with dynamic IP addresses and has low file con-

sistency maintenance cost.

To provide strong file consistency in decentralized and unstructured P2P networks,

we propose an algorithm called file Consistency Maintenance through Virtual servers

(CMV) in which each dynamic file has a virtual server (VS) that maintains file consistency

in the system. Any update to the file can only be accepted through the VS to ensure

strong file consistency.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents a background

of the data consistency maintenance in wireless mobile and P2P networks. The following

two chapters cover the mobile cache consistency maintenance schemes. In Chapter 3, a

Scalable Asynchronous Cache Consistency Scheme (SACCS) is proposed for error-prone

wireless mobile networks. SACCS provides a weak data consistency with small stale cache

hit probability. The upper bound of stale cache hit probability is analytically derived.

Comprehensive simulations are also done to compare the performance of SACCS with

existing schemes.

Chapter 4 first introduces three types of cache consistency IRs for multi-cell sys-

tems. Then we derive two consistency maintenance cost functions. Based on the two cost

functions, we design and evaluate a Dynamic Scalable Asynchronous Cache Consistency

Scheme (DSACCS) for multi-cell systems. Extensive simulations are done under various

system conditions. An improvisation of DSACCS, called DSACCS-G, is proposed for

grouping cells in order to facilitate effective cache consistency maintenance.

Chapters 5 and 6 include file consistency maintenance algorithms in decentralized

and unstructured P2P networks. Chapter 5 presents the design,analysis and performance
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of analgorithm called Update Propagation Through Replica Chain (UPTReC). In Chap-

ter 6, a strong file Consistency Maintenance through Virtual servers (CMV) algorithm is

proposed along with analytical derivation optimal parameter selections. The conclusion

and future work are drawn in Chapter 7.



CHAPTER 2

RESEARCH BACKGROUND

Caching and replicating frequently used data objects in users’ local buffers are

effective means to improve the system performance in wireless mobile and peer-to-peer

(P2P) networks. To guarantee consistent information access, the data consistency has to

be strictly maintained. In the past decade, significant research efforts have been made

on the development of efficient and scalable data consistency maintenance schemes. In

this chapter, we present an overview of these research works.

2.1 Cache Consistency Maintenance in Wireless Mobile Networks

Although cache techniques are used to improve system performance in wireless

mobile networks, the limited communication bandwidth as well as the mobility and dis-

connection of mobile users (MUs) make cache consistency maintenance a difficult task.

This section presents the research background of mobile cache consistency maintenance.

2.1.1 System Architecture

As shown in Figure 1.1, a wireless mobile communication system includes a wired

network, multiple original servers, mobile switching centers (MSCs), base stations (BSs)

and mobile users (MUs). Each BS serves multiple MUs through wireless channels and

has a server cache (SC) to store data objects. Each MU has also a local cache. When

an MU requests a data object, it first searches the local cache. If the requested data

object is valid in the cache, the request is answered immediately, thus reducing the data

access time and saving the communication bandwidth and device energy. But the cache

11
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consistency must be maintained to ensure consistent data access. The cache consistency

maintenance includes two parts: one part between SC and original servers, and the other

between SC and MUCs. The focus in this dissertation is on the second part. We assume

the data consistency in the first part is maintained by existing cache consistency schemes

in wired networks [12][38] [67].

2.1.2 Invalidation Methods

The content of data objects in MUCs can be changed by time and/or by MU’s

location. For example, news and stock prices change with time. A data object that

describes the location of the nearest hotel to an MU, changes with the MU’s location.

Such data objects are called location-dependent. In this dissertation, we consider dy-

namic data objects that change with time but are location independent. The cache

consistency maintenance schemes for location-dependent data objects including Bit Vec-

tor with Compression (BVC), Grouped Bit Vector with Compression (BVC) and Implicit

Scope Information (ISI) [37] [66] [70].

The cache consistency in MUCs is maintained through invalidation report (IR) that

includes the data object’s ID and the latest update time. When an MU gets an IR of

a data object, it invalidates the cached object. The different cache consistency schemes

have different invalidation methods. Existing cache consistency maintenance schemes can

be broadly categorized into stateless and stateful. Stateless schemes [4] [8] [28] [30] [39]

[57] [64] [68] periodically broadcast IRs to MUs and employ simple database management

in the BS, but their scalability and ability to support disconnection are poor. On the

other hand, stateful schemes maintain a cache state for each MUC, and the IR is sent

out asynchronously [31]. The stateful schemes are scalable in terms of the number of data

objects, but incur significant overhead due to server database management. An overview

of mobile cache consistency schemes is described in the following sections.
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2.1.3 Stateless Schemes

A great deal of research efforts have been made on the development of stateless

cache consistency schemes in the past years. In [4], three stateless schemes have been

proposed for wireless mobile networks. These are Timestamps (TS), Amnesic Terminals

(AT ) and Signature (SIG) schemes, in which the server (i.e., BS) broadcasts IR messages

to MUs every L seconds. An IR message includes the IDs and the update time of all

data objects updated during the past kL seconds, where k is a positive integer. An

MU can access the cached data objects only after it receives the next IR. If an MU has

been disconnected longer than kL seconds, all cached data objects must be dropped.

The advantage of these algorithms is that a BS does not maintain any state information

about its MU’s caches (MUCs), thus allowing simple management of the SC. However,

they suffer from the following drawbacks:

• They do not scale well to large databases and/or fast updating data systems, due

to increased number of IR messages;

• The average access latency is always longer than half of the broadcast period, simply

because all requests can be answered only after the next IR;

• When the sleep time (during which an MU is disconnected from its BS) is longer

than kL, all cache entries are deleted, thus leading to unnecessary bandwidth con-

sumption particularly if the data objects are still valid.

In order to handle long sleep-wakeup patterns, several algorithms have been pro-

posed. For example, in the bit-sequence (BS) algorithm [30], a hierarchical structure of

binary bit sequences with an associated set of timestamps to represent users with dif-

ferent disconnection times can contain information about half of recently updated data

objects (or all updated data objects if they are less than half of the total data objects

in the system). Hence all cache entries are deleted only when half or more of the cache
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entries have been invalidated. However, the model requires the broadcast of a larger

number of IR messages than TS and AT schemes and cannot save the valid cache entry

after very long disconnection. A validation check scheme is proposed in [64] to deal with

long sleep-wakeup patterns. In this scheme, an MU sends back to the server the IDs of all

cached data objects as well as their time stamps after a long disconnection. The server

identifies the updated data objects and sends an individual IR to the MU. However, the

scheme requires more uplink bandwidth and cannot handle arbitrary long sleep-wakeup

patterns due to the fact that all the cached entries must be dropped after a disconnection

longer that a time threshold. In order to reduce the IR messages, adaptive methods are

developed in [28] to broadcast different IRs based on update frequency, MU access and

sleep-wakeup patterns. In [68], an absolute validity interval (AVI) is employed for each

data object, but it fails to reduce the access delay introduced by periodic broadcast cy-

cles. In [8], an updated invalidation report (UIR) is introduced to reduce the access delay

due to the wait for the next IR broadcast. An UIR comprises the IDs of the data objects

that have been updated after the last IR has been broadcast. A fixed number of UIRs

are broadcast during the interval between two IRs. Each MU can access the cached data

object after each UIR receipt, thus reducing the waiting time for cache access. However,

the inserted UIRs cost scarce communication bandwidth.

In the preceding approaches, all MUs can benefit from broadcast only when they

retrieve the same data objects from the BS in the same broadcast cycle. If the MUs

retrieve the same data objects in separate broadcast cycles, they cannot share the broad-

cast data objects. This makes the broadcast inefficient and sensitive to the number of

MUs in the cell. The TS strategy is modified in [8] by keeping the invalidated data

objects in an MUC such that the MU can update a data object if it is received from the

broadcast channel. This approach increases the broadcast channel utilization. However,
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keeping invalid data objects in an MUC wastes precious cache memory. A comprehensive

performance evaluation of the existing stateless algorithms is studied in [57].

2.1.4 Stateful Approaches

Very few stateful cache consistency maintenance algorithms have been proposed

for wireless mobile environments. In [31], an Asynchronous Stateful (AS) algorithm is

proposed to maintain cache consistency in which a BS records all retrieved data objects

for each MU. When an MU first retrieves a data object after it wakes up, it needs to

send a wakeup message to the BS. The BS sends an IR to that particular MU based

on the MUC content record and sleep-wakeup time. Whenever a BS receives an update

from the original server for each recorded data object, it immediately multicasts that

object’s IR to MUs that have a copy of the data object in their caches. The advantage

of the AS scheme is that the BS avoids unnecessary IR broadcast to MUs. Moreover,

MUs can deal with any sleep-wakeup pattern without losing valid data objects. However,

in order to maintain a state of each MUC, the BS must record all cached data objects

for each MU. Hence an MU can only download data objects which it requested through

the uplink. This makes the broadcast channel utilization inefficient and sensitive to the

number of MUs. More recently, a counter based scheme is used in [9] to identify the

hot data and save unnecessary IR traffic. Whenever an MUC content is changed, the

MU must piggyback the change to the server, thus consuming battery power and uplink

bandwidth.

More recently, two hybrid cache invalidation schemes [3] have been proposed,

namely Hybrid cache invalidation with Simple Broadcasting (HSB) and Hybrid cache

invalidation with Attribute Bit Sequence Broadcast (HABSB). In these schemes, the

server maintains a state for each MUC while periodically broadcasting IR. The main-

tained state is used for saving valid data objects after arbitrary long disconnection.
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However, the database management in the server is complicated as in stateful schemes

while the IR traffic is not minimized.

All above existing stateless and stateful caching consistency schemes are based

on reliable communication between the BS and the MUs. They do not discuss how

to handle possible inconsistency and performance loss due to wireless channel errors.

Further more, the existing cache schemes only consider single cell mobile environments

instead of multi-cell mobile environments. A cache consistency scheme designed for single

cell mobile environments may not be optimized for multi-cell environments. Hence it is

necessary to develop cache consistency schemes to achieve optimized cache performance

in error-prone multi-cell mobile environments.

2.2 File Consistency in Distributed Databases and P2P Networks

Consistency maintenance for replicated files has been well studied in distributed

databases, but only little attention has been paid to decentralized and unstructured P2P

systems. In this section, we provide a brief review of the existing work in this domain.

2.2.1 Distributed Databases

Maintaining file consistency of replicas is the most crucial function in distributed

databases. There are two types of replication algorithms: eager and lazy [25]. In eager

algorithms, all replicas are exactly synchronized. They provide strong consistency, but

are neither efficient nor practical. In lazy algorithms, on the other hand, the updates are

asynchronously propagated to all replicas. Although lazy algorithms are efficient, they

may cause inconsistency among replicas. The lazy replications can be categorized into

lazy master [33][44] and lazy group communication [22] models. The lazy master model

provides one-copy serializability for all replicas, whereas lazy group model allows any

replica to update the file. One-copy serializability defined as the concurrent execution of
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updates on the replicated files, is equivalent to a serial execution on a non-replicated file.

When a file is updated, the update is sent to all other replicas through a multicast tree

or epidemic scheme [22]. The above algorithms assume high availability of replica nodes.

Compared to the distributed databases, the P2P systems have to contend with the

following issues:

1. Highly transient replica peers (RPs): the probability of an RP to be online may be

as low as 0.1 [55].

2. Dynamic file acquisitions: some RPs may drop the replica and some other peers

may replicate the file.

3. Highly dynamic IP addresses of RPs: the IP address of an RP may be changed at

each reconnection.

4. Dynamic network topology: the network topology is changed from time to time.

5. Large number of replicas.

Due to the transient nature of the RPs, algorithms that assume master copy main-

tained by a single peer do not work for P2P systems. Algorithms based on group com-

munications are also inefficient to provide strict file consistency in such highly unreliable

systems. In other words, the existing consistency algorithms designed for distributed

databases can not be directly applied to P2P systems.

2.2.2 P2P Networks

P2P applications are major consumers of the Internet infrastructure. The data

management issues such as file consistency maintenance are becoming more and more

important. An overview of the existing file consistency maintenance schemes of P2P

networks is presented in this section.
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As mentioned eariler, the decentralized P2P networks can be classified into struc-

tured and unstructured. The files in structured P2P networks are well deployed through

distributed hash tables (DHTs). When a peer requests for a file, it first needs to get

the hash key value and then search the file through the DHTs. It takes O(log(n))(n is

the number of peers in the system) hops to find the location of the file. They are very

scalable and efficient for file search. However, they do not support keyword search and

inefficient for transient peers. In unstructured P2P networks, peers search files through

their neighbor peers. Recently, some file search schemes such as random walk and ex-

panded ring are developed in [18] for effective file search. Although unstructured P2P

networks do not scale well, they support key word search and play a more important role

in some applications.

2.2.2.1 File Consistency in Structured P2P Networks

In the structured P2P networks, if a file is replicated, a single node stores the loca-

tions of all replicas and hence the file consistency maintenance becomes simple. However,

it only works well for a small number of replicas.

To effectively maintain file consistency, an incentive-based algorithm called CPU

is proposed in [53]. In CPU, the metadata of the lookup results is kept and updated.

However, CPU only caches the metadata instead of the file itself, and the consistency

among the replicas are not maintained. More recently, a file consistency algorithm,

called Scalable COnsistency maintenance in structured PEer-to-peer systems (SCOPE)

is proposed in [15]. In this scheme, a replica-partition tree (RPT) for each key is built to

keep track of the locations of replicas and then propagate update notifications. However,

the write-write protection is not considered.
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2.2.2.2 File Consistency in Unstructured P2P Networks

Some research efforts have been devoted to the design of file consistency mainte-

nance algorithms in unstructured P2P networks. Based on epidemic theory, a hybrid

push/pull update propagation algorithm is proposed [21] for highly unreliable and un-

structured P2P systems. The algorithm provides probabilistic guarantees rather than

strict consistency. In this algorithm, each RP maintains a subset of all RPs as its respon-

sible peers. When an RP initiates an update, the updated file is pushed to its responsible

peers, which in turn propagate the updated file to their responsible peers with some prob-

ability. This process continues until all possible online RPs receive the update. When an

RP gets reconnected, it queries multiple responsible peers to synchronize itself with the

peer having the most updated file. The proposed algorithm is the first attempt to focus

on the effective propagation of updates to RPs in decentralized and unstructured P2P

systems. However, the overhead messages due to push updates are significant. Moreover,

the maintenance of the subset of responsible peers is not easy, especially for RPs with

dynamic IP addresses. If the subset of responsible peers is not well maintained, the file

consistency is not guaranteed.

An invalidation report based on push and pull (PAP) algorithm is developed in

[36]. In PAP, each file has a master peer and only the master peer can update the file.

An estimated time-to-expire (TTE) and the master peer information are associated with

each replica. When a file is updated, its IR is broadcast to the network. Any online peers

that have replicas of the file invalidate the replicas. Once the TTE of a file expires, the

file must be pulled from the master peer if it is accessed. Only the master peer updating

the file is a strong constraint in P2P systems. Moreover, the master peer may change

its IP address and go offline, thus resulting in a small probability of an RP successfully

pulling a master peer.
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The above algorithms can only provide weak file consistency. They are not efficient

and cannot effectively handle RPs with dynamic IP addresses.

In this chapter, we briefly introduced the existing cache consistency schemes in

wireless mobile networks and file consistency algorithms in P2P networks. We will present

our solutions in the next four chapters.



CHAPTER 3

SCALABLE ASYNCHRONOUS CACHE CONSISTENCY SCHEME

As mentioned in the last chapter, existing stateless cache consistency schemes for

wireless mobile networks [4] [8] [28] [30] [39] [57] [64] [68] are not scalable, whereas the

stateful schemes [31] [9] entail complex data management tasks in the server database.

Moreover, the existing schemes are based on error-free wireless channels. As wireless

mobile networks are error-prone, existing cache schemes are often inadequate for such

networks. In this chapter, a Scalable Asynchronous Cache Consistency Scheme (SACCS)

is proposed for error-prone wireless mobile environments. SACCS is a hybrid of stateful

and stateless schemes, and inherits the positive features of both stateful and stateless

schemes. In the rest of the chapter, we first give the algorithm details of SACCS, then

present the analytical results of stale cache hit probability and show the performance

comparisons of SACCS with existing schemes.

3.1 Proposed Scheme SACCS

The proposed scheme, SACCS, provides a weak consistency of MUCs in error-prone

wireless mobile environments. SACCS is a highly scalable, efficient, and low complexity

scheme. It provides cache consistency for dynamic public data objects such as news,

traffic information, live sport scores, etc. All such data objects are shared by MUs

without security considerations. The IRs of these data objects are broadcast to all MUs

without acknowledgement. If a reliable communication is used between the BS and an

MU retrieving the data object, the MU needs to send acknowledgement to the BS. All

21
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other awake MUs can download the data object without acknowledgement if they can

correctly receive it.

3.1.1 Data Structures and Message Formats

Let us look at the data structure of cache entries in the MUC and SC. For each

data object di with i as the unique ID, the data structures for SC and MUC are defined

as follows.

In the SC:

• (di , ti , li , fi): where ti is the last update time for the data object; li is the estimated

TTL and fi is the flag bit such that fi = 1 indicates that the next IR will be

broadcast.

In the MUC:

• (di , tsi , lli , si): where tsi is the time stamp denoting the last updated time for the

cached data object di ; lli is an associated TTL; and si is a two-bit flag identifying

four data entry states: 0, 1, 2, and 3, indicating valid di, uncertain di, uncertain di

with a waiting query, and ID-only, respectively.

The communication messages are as defined in Table 3.1. Each cache entry has

three states: valid, uncertain and ID-only. Figure 3.1 shows how the entry i changes

from one state to another.

3.1.2 MUC Management

Since we mainly focus on the cache consistency maintenance in this dissertation, we

use the Least Recently Used (LRU) based replacement algorithm for the management of

MUC. The impact of the cache replacement algorithms on SACCS is a subject of future

study. In the adopted LRU based replacement scheme, a newly cached data object or
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Table 3.1 Communication Messages in SACCS

Name Sender Receiver Comments

Update(i, d
′
i, t

′
i) original

servers
BS di has been updated to d

′
i at time t

′
i

V data(i, di, li, ti) BS MUs broadcast valid data object di with update
time at ti and TTL = li

IR(i) BS MUs cached di is invalid
Confirmation(i, li, ti) BS MUs di is valid if tsi = ti and TTL = li

Query(i) MUs BS query for data object di

Uncertain(i, tsi) MUs BS querying if di in uncertain state with up-
date time tsi, is valid or not

Uncertain ID−only

Valid

IR(  ) received i
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Figure 3.1 State Diagram of Cache Entry i.

one that receives a hit, is moved to the head of the cache list. When an object needs

to be cached while the cache is full, data entries with si 6= 2 from the tail are deleted

to make enough space for accommodating this new data object (the object with si = 2

must be kept because some requests are waiting for its confirmation). Any refreshed data

objects from uncertain or ID-only state are placed in their original location and again, if

necessary, enough data entries from the tail are removed.
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We limit the number of ID-only entries that can be used at any given instant, to a

certain value. This is to minimize frequent refreshment of old ID-only entries, which are

likely to be replaced before they are requested. One may set this number close to the

average number of data objects that can be cached. For example, if a cache can hold C

objects, then the number of ID-only entries is limited to C. Because the MU has limited

cache size, during a broadcast it caches only those objects whose ID-entries are already

in the cache. The memory overhead of ID-only entries is insignificant since the size of a

data object’s ID is usually much smaller than the object itself.

3.1.3 Algorithm Description

We present two procedures for SACCS, namely BSMain() and MUMain(), as shown

in Figures 3.2 and 3.3, respectively. The BS continuously executes the BSMain() proce-

dure to handle MUs’ query and data object update. Each MU continuously executes the

MUMain() procedure to handle its query and broadcast messages. These procedures are

described below.

BSMain(): When a BS receives a Query message, it broadcasts the queried data

object to all MUs. When a BS receives an Uncertain message, it checks if the uncertain

data object is valid or not by comparing the time stamps. If the uncertain data object is

valid, a confirmation message is broadcast; otherwise, a valid data object is broadcast.

Whenever a BS receives an Update message from the original server, it updates its cache

entry in the database and also estimates a new TTL for the entry based on the last

TTL and this update interval. If the corresponding flag bit is set for the entry, an IR is

immediately broadcast and the flag bit is reset.

MUMain(): When an MU has a request for a data object, it first searches its local

cache. If the requested data object is valid, the MU immediately answers the request

using the cached object. If the cached data object is in the uncertain state, an Uncertain
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BSMain() {
For BS receiving a message

IF (The message is Query(i))
fetch data entry i from the database
broadcast V data(i, di, li, ti) to all MUs
IF (fi == 0)

set fi = 1
IF (The message is Uncertain(i, tsi))

fetch data entry i from the database
IF (ti == tsi)

broadcast Confirmation(i, li, ti) to all MUs
ELSE

broadcast V data(i, di, li, ti) to all MUs
IF (fi == 0)

set fi = 1
IF (The message is Update(i, d

′
i, t

′
i) from the original server)

update the database entry i, as di = d
′
i and ti = t

′
i

update the TTL li
IF (fi == 1)

broadcast IR(i) to all MUs and reset fi = 0
}

Figure 3.2 BSMain Procedure.

message is sent to the BS. If the cache entry is in the ID-only state or the data object

is not in the local cache, a Query message is sent to BS to retrieve the data object.

When the MU receives a V data message, if it has a query waiting for the data object,

the MU answers the query and caches the data object. If the MU has an uncertain

entry in the cache, the data object is downloaded. If the MU has an ID-only entry,

the data object is also downloaded. Upon receiving an IR message, the MU sets the

entry into ID-only state. When a Confirmation message is received, if the MU has a

corresponding uncertain entry in the cache, it refreshes the entry if the time stamp on

the Confirmation message is later than that on the MU. When the TTL of an entry

expires, it is set to the uncertain state.
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MUMain() {
For MU receiving a message

IF (The message is a Request for di)
IF (di is valid in the cache)

answer the request with cached data object di

move the entry into the head of the cache list
ELSE IF (di is in uncertain state )

send Uncertain(i, tsi) message to the BS
add ID, i.e., i, to query waiting list
set si = 2 and move the entry into the head of cache list

ELSE IF (i is ID-only entry in the cache)
send Query(i) message to the BS
remove the entry i in the cache
add i to query waiting list

ELSE
send Query(i) message to the BS
add i to query waiting list

IF (The message is a V data(i, di, li, ti))
IF (i is in query waiting list)

answer the request with di

remove the uncertain entry i if it exists in the cache
add the valid entry i at the cache list head

ELSE
IF (i is ID-only entry in the cache)

download di to the original entry location in the cache
ELSE IF (i is an uncertain entry in the cache)

IF (tsi < ti)
download di to the original entry location in the cache
set tsi = ti, lli = li and si = 0

ELSE
set si = 0

IF (The message is an IR(i))
IF (entry i is valid or uncertain in the cache)

delete di and set si = 3
IF (The message is a Confirmation(i, li, ti))

IF (i is an uncertain entry in the cache)
IF (tsi == ti)

set si = 0 and lli = li
IF (i is in query waiting list)

answer the request with di

ELSE
delete di and set si = 3

IF (MU wakes up from the sleep state)
set all valid (si = 0) entries into uncertain state (si = 1)

IF (TTL expires for entry i)
set the valid entry i into uncertain state (si = 1)

}

Figure 3.3 MUMain Procedure.
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Figure 3.4 MUC Management Scheme.

3.1.4 Illustration of MUC Management

Let us illustrate the MUC management with the help of a simple example as shown

in Figure 3.4. Assume there are n entries (1, 2, ..., n) in the cache list and m queries (w1,

w2, ..., wm) in the query waiting list. In particular, we illustrate various actions of cache

management at an MU such as the ones upon receipt of a request, a valid data object, a

confirmation message and an invalidation message.

(1) Request for di :

There are four cases for the scheme as shown in Figure 3.4:

• Case 1: si = 0; Suppose i = n. The MU responds with di and moves the entry i to

the head of cache list; in other words, (di, tsi, lli, si) is inserted to the head of the

cache list.

• Case 2: si = 1; Suppose i = n− 2. The MU sends an Uncertain(i, tsi) message to

the BS, sets si = 2, moves the entry i to the head of the cache list and adds i to

the query waiting list.

• Case 3: si = 3; Suppose i = n− 1. The MU deletes the entry i from the cache list,

sends Query(i) message to the BS and adds i to the query waiting list.
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• Case 4: entry i is not in the cache list. The MU sends Query(i) message to the BS

and adds i to the waiting list.

(2) Vdata(i, di, li, ti):

There are three cases:

• Case 1: i is on the waiting list, the MU answers the request by downloading the

data object di and adds the entry i at the head of the cache list. If the MUC has

an uncertain entry i (e.g., i = n− 3 in Figure 3.4), the entry is deleted.

• Case 2: i is not in the query waiting list but in the cache list, e.g., i = n − 1 in

Figure 3.4, the MU downloads di at the location of entry n−1 and sets tsn−1 = ti,

lln−1 = li and sn−1 = 0. Assuming i = n − 2, the MU sets sn−2 = 0 when

tsn−2 = ti, or downloads di instead of dn−2 and sets sn−2 = 0, tsn−2 = ti and

lln−2 = li when tsn−2 < ti.

• Case 3: i is not in the query waiting list and cache list, the MU does nothing on i.

Each time before the MU adds or downloads a data object, if the free buffer space

in the cache is not enough, the entries n, n− 1, n− 2 from the tail are deleted such that

si 6= 2. (The entry i with si = 2 must be kept because an uncertain message for the en-

try has been sent to the BS, and if it is still valid, it will be used for answering the query).

(3) IR(i):

There are two cases:

• Case 1: si < 3, the MU deletes di and sets si = 3. If the total number of ID-only

entries is over a maximum limit, the last ID-only entry is deleted from the cache.
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• Case 2: i is the ID-only entry or no entry i is in the cache list, the MU does nothing

on it.

(4) Confirmation(i, li, ti):

There are three cases:

• Case 1: i = n− 3; If tsn−3 = ti, the MU answers the request with the cached data

object dn−3, then sets si = 0 and move the entry n − 3 to the head of the cache

list. However, if tsn−3 < ti, the request is still in the query waiting list; so delete

dn−3 from the cache.

• Case 2: If i = n− 2, the MU checks the timestamp tsn−2; if tsn−2 = ti, the MU sets

sn−2 = 0 and lln−2 = lx, else the MU deletes dn−2 from the entry and set sn−2 = 3.

• Case 3: Otherwise, the MU does nothing on it.

3.1.5 MUC Consistency Maintenance

In this section, we discuss the mechanism for consistency maintenance between the

SC and the MUCs. We first assume an error free channel, where the MUs which are

awake (i.e., the MU is not sleeping and connected to the BS) receive all IRs. The IR loss

situation discussed below.

For each cached data object, SACCS uses a single flag bit, fi, in SC in order to

maintain the consistency between the SC and MUC. When di is retrieved by an MU, fi

is set indicating that a valid copy of di may be available in an MUC. If and when the BS

receives an updated di, it broadcasts an IR(i) and resets fi. This action implies there

are no valid copies of di in any MUC. Furthermore, while fi = 0, subsequent updates do

not entail broadcast of IR(i). The flag bit fi is set again when the BS services a request

for retrieval (including request and confirmation) for di by an MU.
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In mobile environments, an MUC belongs to one of two states: awake or sleep. If

an MU is awake at the time of IR(i) broadcast, the copy of di is invalidated and an

ID-only entry is maintained by the MU. The data objects of an MU in the sleep state are

unaffected until it wakes up. When an MU wakes up, it sets all cached valid data objects

(including di) into the uncertain state. Consequently, MUs and their cached objects are

unaffected if IR(i) broadcast occurs during their sleep times.

It is probable for an MU to get a stale cache hit in the case of IR loss. A TTL

is associated with each cache entry. When the TTL of a cache entry expires, an MU

automatically sets it into the uncertain state, thus reducing the stale cache hit ratio. We

give a detailed analysis on stale hit probability in Section 3.3.

3.1.6 Efficiency and Cooperation

As mentioned earlier, a good cache consistency maintenance scheme must be scal-

able and efficient in terms of the database size and the number of MUs. We claim

that SACCS can handle large and fast updating data systems because the BS has some

knowledge about the MUCs. Only data entries which have flag bits set, result in the

broadcast of IRs when data objects are updated. Consequently, the IR broadcast fre-

quency is the minimum of the uplink query/confirmation frequency and the data object

update frequency. In this way, the broadcast channel bandwidth consumption for IRs is

minimized. Besides IR traffic, all other traffic in SACCS is also minimized due to the

strong cooperation among the MUCs. This is specifically due to the introduction of the

uncertain state and the ID-only state for the MUCs. The retrieval of a data object, di,

from the BS issued by any given MU brings the entries of i in the uncertain or ID-only

state in all the awake MUCs to a valid state. Moreover, a single uplink confirmation for

entry i makes all entries of i in the uncertain state in all the awake MUCs to be in the

valid or ID-only state. The addition of the uncertain state also allows an MUC to keep



31

all the valid data objects when it wakes up after an arbitrary sleep time. In contrast, for

asynchronous stateful (AS) and timestamp (TS) schemes, all the invalidated data objects

are completely deleted from the MUC. This allows little cooperation among the MUs,

resulting in a dramatic increase of traffic volume between the BS and the MUs as the

number of MUs increases. Although the scalability of the TS scheme can be improved by

retaining the invalid data objects [8], the cache efficiency is reduced by having to keep in

the MUC the invalid data objects, rather than IDs as is the case in the SACCS scheme.

In contrast with the AS scheme which requires O(MN) (M the number of MUs

and N the number of data objects in the system) buffer space in the BS to keep all states

of MUCs, SACCS requires only one bit per data object in the SC. The BS performs IR

broadcast for an updated data object if the corresponding bit is set. Thus, the database

management overhead is minimal requiring only a single bit check and set/reset.

The TTL expiration of a valid cache entry is checked only when its data object is

accessed or available on the channel, otherwise we do not care about the entry status.

When the data object of a valid entry is accessed or available on the channel, its TTL is

first checked. If the TTL has not expired, the entry is treated as valid. Otherwise, it is

handled as an uncertain entry. The cost of each TTL expiration check is the execution

of an addition (namely, tsi + lli) and a comparison (e.g., comparing tsi + lli with the

current time). The cost of these two operations is not much as compared with the cost

of a data object query and/or data object download. Thus, the cost of execution on the

TTL expiration is not significant.

3.1.7 Mobility

One advantage of the AS scheme is the efficient handling of mobility. SACCS can

also handle MUs’ mobility effectively. When an MU roams, it is either in the awake or

in sleep state. If an MU is in the sleep state, there is no extra action in SACCS as well
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as in AS. In SACCS, an MU sets all its valid cache entries to the uncertain state after

it wakes up. Hence, upon wake up, the mobility and location of an MU is irrelevant. In

AS, when a roamed MU wakes up, its first query will be sent to the new BS which can

retrieve its cache state from the previous BS which maintains the cache consistency.

If a roaming MU is awake, SACCS treats it as if it just woke up from the sleep state,

i.e., all valid data entries are set to an uncertain state. The consistency is guaranteed

with this approach and all valid data objects are retained. Also SACCS is a simple

scheme in the sense that it is transparent to the BSs involved. But for AS, there exist

two situations:

1. An MU is sending a message to the BS when the MU roams. In this situation, the

BS can handle the MU’s handoff and transfer the MU’s cache state to the new BS.

So there is no extra action for cache consistency maintenance.

2. An MU is not sending a message to the BS when it roams. A wakeup event is

forced in this case. When the MU’s next query comes, the MU sends to the BS

a message, which includes the queried data object and cache state request. The

cache state request contains the information of the previous BS and roaming time.

After the BS gets the cache state request, it retrieves the MU’s cache state from

the previous BS and sends the data object IRs (which are updated after the MU

roamed) to the MU. Thus the cache consistency is maintained.

3.1.8 Failure Handling

Handling of MU failures is the same as handling of MU disconnections. If an

MU recovers from a failure, it sets all cached valid data entries into an uncertain state.

SACCS treats this situation as a wakeup from the sleep state. Furthermore, SACCS

handles server failures in a very simple way as described below. When a BS server is

back after a failure, it simply broadcasts a server-down message to all MUs which in turn
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set all valid data entries into the uncertain state. The MUs in the sleep state miss the

server-down message, but after they wake up, all valid entries are automatically set to

the uncertain state. Thus the cache consistency is maintained even if some cached data

objects are updated during the BS server failure. This is because the validity of each

cached data object is checked and refreshed before usage. After a server failure, all data

object in an MU are retained, but set to uncertain state. Thus avoiding download of

unchanged data objects.

3.2 Stale Cache Hit Probability

As mentioned above, SACCS provides a weak cache consistency. The stale cache

hit ratio is an important metric to evaluate the performance of SACCS. A stale cache

hit is counted when a cache access of a data object is the latest one. In this section, the

stale cache hit probability as a function of IR loss probability is analyzed and simulated

in Rayleigh fading wireless channels 3.8.

3.2.1 Analytical Modeling

The analytical model derives an upper bound of the stale cache hit probability in

SACCS under various channel conditions. The following assumptions are made in the

model:

1. The update process for data object di follows a Poisson distribution with average

update rate, µi.

2. The TTL, li, of di equals the average update interval time Tui. That is li = Tui =

1/µi.

3. The IR miss ratio of an awake MU is PmIR.
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Figure 3.5 Data Object Update Process.

Let Psi be the stale cache hit probability for data object di. Figure 3.5 illustrates

an object update process. After the nth update of di, the (n + 1)th update may occur

either before or after the TTL expiration. When an MU misses the (n + 1)th IR, there

is no stale hit if the update is after the expiration of the TTL, because the data entry is

automatically set to an uncertain state. If the update is before the TTL expiration and

the MU accesses the cached data object di between the (n + 1)th update time and the

TTL expiration time, it gets stale cache hits. Let Pshorti be the probability of the next

update occurrence which is before the TTL expiration; lvi be the average of all update

intervals which are earlier than the TTL expiration; and lsi be the interval between the

(n + 1)th update and estimated TTL expiration. These terms can be calculated as:

Pshorti =

∫ li

0

µie
−µitdt = 1− 1

e
(3.1)

lvi =

∫ li
0

µite
−µitdt

Pshorti

= (
e− 2

e− 1
)li (3.2)

lsi = li − lvi = (
1

e− 1
)li (3.3)

Suppose an MU is always awake and misses all IRs. Then, the stale cache hit for

data object di in the MU is given by:

Psi =
lsi

li
=

1

e− 1
(3.4)
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If an MU has IR broadcast miss probability of PmIR, then the stale cache hit

probability is:

Psi =
lsiPmIR

liPmIR + lvi(1− PmIR)
=

PmIR

PmIR + e− 2
(3.5)

Equation (3.5) implies that the stale cache hit probability is only dependent on

PmIR. Thus we conclude that the stale cache hit probability for data object di is inde-

pendent of i, i.e., Ps = Psi for any i. Figure 3.6 shows the stale cache hit probability

for various IR miss probabilities. The results show that the stale cache hit probability

is about 10% for an MU with 10% IR miss probability, independent of the data object

update frequency.
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Figure 3.6 Upper Bound on Stale Cache Hit Probability vs IR Miss Probability.

The above analytical model assumes that an MU is always awake. If we consider

the sleep-wakeup event for an MU, then the stale hit probability is reduced because

when the MU wakes up from the sleep state, all valid entries will be checked prior to

their usage. The stale cache hit probability for a frequently disconnected MU is much
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Figure 3.7 Simulation of Stale Cache Hit Probability vs IR Miss Probability.

smaller than the upper bound in Eqn. (3.5). A system with 100 MUs is simulated. In

the simulation, the sleep-wakeup period (in seconds), the sleep ratio, and the request

arrival rate are randomly picked from the set of values (600, 1200, 1800, 2400, 3000),

(0.2, 0.35, 0.5, 0.65, 0.8), and (1/20, 1/40, 1/60, 1/80, 1/100), respectively. The detailed

simulation setup is described in Section 3.3. Figure 3.7 shows the simulation results for

stale cache hit probability of the system, which is reduced significantly as compared to

that of MUs which are always awake. For example, when the IR miss probability is 10%,

the stale hit probability is only about 4%; and for the IR miss probability of 20%, the

stale hit probability is about 7%. In order to reduce the stale hit probability, we can

broadcast the IR multiple times when a data object is updated earlier than its TTL

expiration. Figure 3.7 shows the stale cache hit probability for broadcasting each IR

twice if its update is earlier than the TTL expiration. Our results indicate that if the IR

miss probability is less than 40%, the stale cache hit probability is less than 5%. These

results demonstrate that SACCS can provide very small stale cache hit probability by

broadcasting IR multiple times when the update is earlier than TTL expiration.
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3.2.2 Stale Cache Hit Probability for Rayleigh Fading Channels

The stale cache hit probability of SACCS with Rayleigh-fading model for wireless

channel is simulated in this section. We consider a Rayleigh-fading channel between the

BS and an MU be modeled by a two-state Markov chain as shown in Figure 3.8. An MU

can successfully receive packets from the BS if the channel between them is in good state,

and lose packets if the channel is in bad state. The channel states between the BS and

different MUs are independent. According to [49], a channel condition can be assumed to

be effectively stable during a period of Tc ≈ 9s/(16πfcV ), where s is the speed of light,

V is the MU speed (along the wave path) and fc is the carrier frequency. The channel in

the next Tc period has a probability of transiting to the other state. The state transition

probabilities such as Pgb (from good to bad state) and Pbg (from bad to good state) are

determined by V and the fading margin F , that is the maximum fading noise of received

signal without system performance falling below a specified value [16]. The probability

of a channel in bad state (PB) is dependent on F [16]. Table 3.2 shows Pgb, Pbg and PB

values for a carrier frequency fc = 900 MHz with various values of V and F . Note that

Pgg = 1 − Pgb is the transition probability from good to good state and Pbb = 1 − Pbg

is the transition probability from bad to bad state. The packet duration is set to 4 ms

(millisecond), because Tc ≥ 4 ms for fc = 900 MHz and V ≤ 50 Kmph (kilometer per

hour).

Table 3.2 State Transition and Bad State Probabilities for Values of V and F

V (kmph) 5 10 20 40 For all V
Pgb Pbg Pgb Pbg Pgb Pbg Pgb Pbg PB

F = 10 dB 0.013 0.125 0.026 0.248 0.050 0.474 0.079 0.747 0.095
F = 15 dB 0.011 0.156 0.021 0.307 0.038 0.566 0.056 0.818 0.065
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Figure 3.8 Two State Markov Chain Describing the Good and Bad Channel Model.

From Table 3.2, we note that the slower the MU speed, the smaller the state

transition probability. This means that the channel condition is more stable for a slow

moving MU than a fast moving one.

We study the performance of SACCS by simulation under Rayleigh fading channel

model. In this simulation, an MU requesting a data object uses reliable communication,

and all other awake MUs can passively download the data objects if they can successfully

receive all the packets of a data object. Each packet duration is set to 4 ms. In this

period of time, 100 bytes (i.e., packet size) can be transmitted in a 200 Kbps (kilobits

per second) channel. A Go-Back-N (Automatically Repeat reQuest) (ARQ) scheme is

used between the BS and the MU for retrieving data objects. The number of MUs is

set to 50. Each MU’s query access and sleep-wakeup pattern are set the same as in the

previous section.

Table 3.3 shows the performance of SACCS with the MU speed. We conclude that

the stale cache hit probability depends only on the fading margin. A smaller fading

margin leads to a larger probability of a channel in bad state, resulting in a larger IR

loss probability. For F = 10 dB, PB = 0.095 (note that PmIR = PB), the stale cache

hit probability is about 4%; while for F = 15 dB (i.e., PB = 0.065), the stale cache
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Table 3.3 Performance of SACCS at Different MU Speed

Fading Margin Performance Metrics Speed V (kmph)
5 10 20 40

F = 10 dB Stale Cache Hit Probability 0.0358 0.0374 0.0367 0.0371
Average Access Delay (sec) 1.387 1.595 1.650 1.762
Data Download Ratio 0.844 0.857 0.867 0.873

F = 15 dB Stale Cache Hit Probability 0.0236 0.0230 0.0223 0.0228
Average Access Delay (sec) 1.368 1.475 1.514 1.586
Data Download Ratio 0.843 0.855 0.866 0.871

hit probability is about 2%. These results, similar to those of Figure 3.7, demonstrate

that the proposed SACCS scheme can provide small stale cache hit probability in the

error-prone wireless environments. The average access delay and the data download

ratio (defined as the number of broadcast data objects divided by the number of queries)

increase as the MU speed increases. This is because a slow moving MU has a more

stable channel and stands a better chance to share the broadcast data objects. A larger

F results in a smaller PB, thus a smaller number of retransmissions and ultimately a

smaller average access delay.

3.3 Performance Evaluation By Simulation

The performance of SACCS is evaluated and compared with timestamp (TS) and

asynchronous stateful (AS) schemes. Recall that TS is a popular stateless scheme and

has been widely compared with other schemes. For meaningful comparison, we extend

TS with some advanced features of SACCS, such as: (1) introduction of uncertain state

for an MU keeping its valid data entry after long disconnection; (2) use of ID-only state

in MUC to trigger data object download; and (3) use of flag bits in SC to reduce the

IR broadcast traffic. We call a TS with these additional features as extended TS (ETS)

scheme. The AS scheme is also used for performance comparison because it is one of the
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few stateful schemes that successfully handle the MU disconnection and mobility. For

SACCS, an IR of a data object is broadcast twice if its update time is earlier than the

TTL expiration to reduce the stale hit probability. The other error recovery costs, such

as data retransmission, are ignored in all three schemes. The TTL, li, of a data object is

dynamically calculated as: li = li ∗ 0.5+ linterval ∗ 0.5, where linterval is the current update

interval for the data object.

We consider a single cell system with one SC and multiple MUs with identical cache

size. The parameters are defined as in Table 3.4.

Table 3.4 Parameter Definition

M number of MUs in the system
N number of data objects in the system
C cache size for MU (bytes)
λ average arrival rate of request for an MU
Tu average update time interval for a data object (sec)
Tp period for a sleep-wakeup cycle of an MU (sec)
s ratio of the sleep time to the sleep-wakeup period for an MU
bo data object size (bytes)
bu uplink message size (bytes)
bd downlink invalidation or confirmation message size (bytes)
D average query delay, i.e., the interval between the time request is issued

and the time the result is received by the application (sec)
UPQ uplink per query, defined as the total number of queries through uplink

channel divided by the total number of queries
L invalidation broadcast period for TS scheme (sec)

wsz broadcast window size for TS scheme

Each MU’s request process and the data object update process are assumed to

follow Poisson distributions. The sleep-wakeup process is modelled as a two-state Markov

chain (i.e., sleep and awake). The state transition probability from awake to sleep state

is α = 1/(1− s)Tp, and that from sleep to awake state is β = 1/sTp.
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In the simulations, we use two channels with bandwidth Wd and Wu for downlink

and uplink data transmissions, respectively. In the uplink channel, all messages are

buffered as FIFO (first in first out) queue. In the downlink, there are two FIFO queues,

one having higher priority than the other. The IR messages are buffered in the higher

priority queue. All other messages are buffered in the lower priority queue; this queue

can be scheduled only if the higher priority queue is empty. All requests are ignored when

an MU is in the sleep state. When a requested data object is available at an MUC, the

average query delay (D) is counted as 0. We consider Zipf-like distribution for MU access

pattern [7] [69] such that the access probability (pi) for data object di is proportional to

its popularity rank, rank(x). More specifically, pi = const/rank(x)z, where const is the

normalization constant and z is the Zipf coefficient. We assume the most popular data

has the smallest rank value.

In the following, we present the performance comparison of the proposed SACCS

with AS, TS and ETS in terms of such metrics as D and UPQ for three different cases.

The average waiting time (i.e., half of the IR broadcast period, L/2) is removed from D

for ETS to make a better comparison with SACCS and AS in our simulation experiments.

As shown in the previous section, for the same sleep-wakeup pattern, the stale cache hit

probability is less than 5% if the IR miss rate is smaller than 40%, hence the stale hit

probability is not presented as a metric in the result. In each case, bu = bd = 20 bytes

for both SACCS and AS; and bu = bd = 10 bytes for TS and ETS. The bandwidth is set

as Wd = 200 Kbps and Wu = 1 Kbps. The other parameters may be changed in some

cases. Some default values are set as: N = 10,000, M = 100, C = 5 MBytes, z = 0.9, L

= 20 sec and wsz = 5.

In all cases, we consider a system with 10 types of data objects. The data object

update rate (Tu), size and percentage of each type of objects over the total objects are

shown in Table 3.5. The chosen parameter values are based on the understanding that a
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Table 3.5 Ten Types of Data Objects in Database

Data Type 1 2 3 4 5 6 7 8 9 10

Size(Bytes) 1K 5K 10K 15K 20K 25K 30K 35K 40K 45K
Tu(sec) 50 100 200 400 800 1600 3200 64000 12800 25600

Percentage(%) 5 5 10 10 20 20 10 10 5 5

faster updated object usually has smaller size. The average data object size is about 25

Kbytes, which is based on the Internet measurements [5].

The MUs may be different from one another in terms of λ, s, Tp and Tr. These

parameters for each MU can take values from the corresponding given sets. Each value

has equal probability to be chosen in an MU. The sets of values used are as follows:

arrival rate is λ = (1/20, 1/40, 1/60, 1/80, 1/100); sleep ratio is s = (0.2, 0.35, 0.5, 0.65,

0.8), and sleep-wakeup period time is Tp = (600, 1200, 1800, 2400, 3000) sec.

The query patterns for each MU are assumed to follow Zipf-like distribution. The

access popularity ranking for each MU is shifted by a random number between 0 and 99.

For example, an MU picks up a shift number 50, which means the MU has the highest

access popularity for data object number 51. Suppose there are 1000 data objects in the

system. The popularity decreases from 51 to 1000, and 1000 to 1 and then from 1 to 50.

The data object 50 has the lowest access popularity.

3.3.1 Effect of the number of MUs

In this case, we study the impacts of three features in SACCS on the system

performance as compared with TS, ETS and AS. Let SACCS-nfg stand for SACCS

without flag bit set in SC; SACCS-nid be SACCS without ID in MUC; and SACCS-nuc

be SACCS without uncertain state in MUC. Recall that ETS is an extension of TS with

three SACCS features. We use tables to present the results.
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Table 3.6 average Access Delay D (sec) for varing number of MUs

M 20 40 60 80 100 120

SACCS 0.907 1.006 1.129 1.329 1.836 2.999
SACCS-nfg 0.912 1.021 1.153 1.372 1.932 3.393
SACCS-nid 0.968 1.129 1.346 1.736 3.128 13.300

SACCS-nuc 1.044 1.149 1.391 1.693 2.674 10.033
AS 0.969 1.139 1.376 1.824 3.619 18.429
TS 13.342 14.444 15.818 17.585 27.244 125.164

ETS 12.774 13.779 14.674 15.488 16.587 18.767

Table 3.7 The Uplink Per query (UPQ) for varying number of MUs

M 20 40 60 80 100 120

SACCS 0.902 0.894 0.874 0.866 0.854 0.838
SACCS-nfg 0.904 0.895 0.876 0.868 0.856 0.839
SACCS-nid 0.927 0.926 0.927 0.925 0.920 0.917

SACCS-nuc 0.909 0.896 0.884 0.871 0.862 0.850
AS 0.9000 0.904 0.906 0.910 0.909 0.901
TS 0.926 0.925 0.929 0.930 0.930 0.922

ETS 0.914 0.892 0.889 0.872 0.861 0.847

Tables 3.6 and 3.7 present the values of D and UPQ for varying number (M) of

MUs. For all schemes, the average delay (D) increases as the number of MUs increases.

The SACCS based schemes have much shorter D compared with AS, TS and ETS,

especially when M >100. Moreover, the turning off flag bit of cache entries in SC has

the least impact on D. This is due to the fact that the IR message is very small compared

to the data object size. SACCS has about 10% less delay than SACCS-nfg when M =

120. Turning off ID or uncertain entries in MUC makes SACCS less scalable and leads to

a larger D as M increases. This is because the ID-only and uncertain states allow MUs to

share the broadcast data objects, thus saving the downlink bandwidth and consequently

reducing the access delay. AS has smaller D than TS, but it does not scale as much as
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ETS, which allows strong cooperation among MUs because ETS incorporates all three

features of SACCS.

For SACCS based schemes and ETS, the UPQ metric decreases as M increases.

But for AS and TS, it is almost constant. This is due to the cooperation among MUs

in SACCS based schemes and ETS. Note that SACCS has the least UPQ, while turning

off ID has the largest increase on the UPQ.

The simulation studies validate our initial claims, namely, ID-only entry and un-

certain state in MUC are critical features of SACCS; and use of flag bit in SC reduces

IR traffic. Thus ETS performs better than TS, and hence we will use ETS instead of TS

in the following cases.

3.3.2 Effect of Database Size

Figures 3.9 and 3.10 present the simulation results showing the effects of database

size. For ETS, the average query waiting time (L/2 = 10 sec) is not counted. In other

words, only the queue delay and transmission time are counted for ETS in all the following

cases. SACCS outperforms AS and ETS in both D and UPQ because SACCS avoids

unnecessary IR traffic while retaining all the valid data objects in MUCs. As expected,

with increased number of data objects, the performance metrics also increase for all three

schemes, but SACCS has much smaller D than AS and ETS. Additionally, the average

gain (in terms of D) of SACCS over AS and ETS is more than 50% throughout the range

of database sizes. The UPQ of SACCS is a little bit lower than that of ETS, and about

6% less than that of AS.

3.3.3 Effect of Zipf Coefficient

In this case, we study the effect of Zipf coefficient, z, on the system performance.

Here we choose a small database with N = 1,000 objects. This is because for small Zipf
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Figure 3.9 Average Access Delay vs Number of Data Objects.
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Figure 3.10 Uplink Per Query vs Number of Data Objects.

coefficient, the access frequencies for different data objects are very close to each other.

Using a large database size results in very few cache hits, which makes the comparison

meaningless.

From Figures 3.11 and 3.12, we conclude that SACCS has much smaller D than

both AS and ETS. The average gain is more than 50% over other two schemes. AS has
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Figure 3.11 Average Access Delay vs Zipf Coefficient.
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Figure 3.12 Uplink Per Query vs Zipf Coefficient.

the largest UPQ while SACCS has the lowest UPQ when z > 0.6, and a little bit more

than ETS when z < 0.6. All three schemes perform better as z increases, because the

data accesses are more concentrated for larger z, thus increasing the cache hit ratio and

then reducing the access delay.
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Figure 3.13 Average Access Delay vs MU Cache Size.

3.3.4 Effect of cache size

Figures 3.13 and 3.14, respectively, depict D and UPQ versus MU cache size for the

three schemes. Once again, SACCS is much better than ETS and AS in terms of D, and

almost the same UPQ for SACCS and ETS which is less than that of AS. Surprisingly,

after the cache size reaches C = 3 Mbtyes, further increase in cache size does not help

improve the performance for AS. This can be explained as follows. As the cache size

increases, the time that a given data object stays in the cache before it is replaced, also

increases. However, the longer the data object stays in the cache, the better the chance

of its invalidation. Hence, as the cache size exceeds certain threshold, further increases

in cache size does not help to retain the data object. This is true for AS. However,

for SACCS and ETS, due to maintenance of only a data ID for the invalidated object,

the corresponding data object has the chance to be downloaded again when other MUs

retrieve the same data objects from the server cache (SC).
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3.4 Summary

In this chapter, we proposed the Scalable Asynchronous Cache Consistency Scheme

(SACCS) for mobile environments and evaluated its performance analytically as well as

experimentally. Unlike the previous methods, SACCS provides a weak cache consistency

under realistic environments for an MU with IR broadcast miss.

Strictly speaking, SACCS is a hybrid of stateful and stateless schemes. However,

unlike stateful schemes, SACCS maintains only one flag bit for each data object in BS

to determine when to broadcast the IRs. On the other hand, unlike the existing syn-

chronous stateless approaches, SACCS does not require periodic broadcast of IRs, thus

significantly reducing IR messages that need to be sent through the downlink broadcast

channel. SACCS inherits the positive features of both stateful and stateless schemes.

Our comprehensive simulation results show that the proposed scheme offers significantly

better performance than TS and AS schemes. So far we are focused on the single cell

mobile environments, the impact of multi-cell environments is studied in the following

chapter.



CHAPTER 4

DYNAMIC SCALABLE ASYNCHRONOUS CACHE CONSISTENCY

SCHEME

In the previous chapter, we focused on the cache consistency maintenance in single

cell wireless environments. However, due to the impact of MUs’ mobility on the cache

performance, a cache consistency scheme designed for single cell may not be efficient for

multi-cell environments. In this chapter, we first introduce three types of cache con-

sistency IRs for multi-cell systems. Then, we derive two consistency maintenance cost

functions that define the costs associated with roaming of MUs for locally and globally

maintained data objects. If a data object is locally maintained, then the IR is broadcast

only to the cells in which the data object is retrieved, whereas if a data object is globally

maintained, then its IR is broadcast to every cell in the system. The two cost functions

are derived by considering the data objects’ update frequency, the MUs’ access pattern

and the roaming frequency, the number of cells and the number of MUs in the system.

Based on these two cost functions, we design and evaluate a Dynamic Scalable Asyn-

chronous Cache Consistency Scheme (DSACCS) for wireless cellular networks. Finally,

an improvisation of DSACCS, called DSACCS-G, is proposed for grouping cells in order

to facilitate effective cache consistency maintenance in multi-cell systems.

4.1 Intra-Roaming and Inter-Roaming

We use roaming to indicate the movement of an MU from one cell into another.

There are two types of MU roamings. In intra-roaming, an MU roams between cells

that are all controlled by the same MSC. As shown in Figure 4.1, the movement of an

49
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MU, say A, from Cell 2 to Cell 3 is an example of intra-roaming. In inter-roaming, on

the other hand, an MU roams between cells belonging to different MSCs. The movement

of the MU B from Cell 4 to Cell 3 is an example of inter-roaming. In this chapter, we

assume the MSCs as well as BSs have caches, and the MSCs manage the IRs in the

system.

B

A

Orignal 

Server

Orignal 
Server

Wired Network

(MSC)
Mobile Switching Center

Mobile User (MU)

2

1

3

4 5

MSC

Base Station (BS)

MU Cache

Server Cache

1 0

1 0

Figure 4.1 Wireless Cellular Network Architecture.

A roaming MU is in one of the two states: awake or sleep. In the sleep state,

no extra action is needed for both SACCS and AS schemes. In SACCS, an MU sets

all of its valid cache entries to the uncertain state after it wakes up. In AS, when

a roaming MU wakes up, its first query is automatically sent to an MSC through the

current BS; then the MSC retrieves or resets the cache state corresponding to the current

BS, thus maintaining cache consistency. For a roaming MU in the awake state, the cache

consistency maintenance is different from the one in single-cell systems because the IR
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broadcast may be different in different cells. In the following subsections, we propose

three types of strategies for roaming MUs that are awake.

4.2 Three Cache Consistency Strategies for Multi-Cell Cellular Networks

In this section, we will introduce three cache consistency maintenance strategies

[60] and apply them to SACCS and AS to study the impact of the MUs’ mobility. These

strategies are evaluated in various multi-cell environments.

4.2.1 Homogeneous IR Strategy

In this strategy, all BSs in the system broadcast the same IR to MUs. When an

MU roams among these cells, there is no difference between a roaming and a static MU

with regard to cache consistency maintenance. Consequently, the impact of mobility on

the performance of an MUC is minimized. Therefore, such strategies are efficient for

fast roaming MUs. However, the total IR traffic for each cell is increased as the number

of cells increases. This is because any IR of a retrieved data object must be broadcast

to every cell even if it is only queried in one cell. The homogenous IR strategy is not

scalable for large number of cells as demonstrated in Section 3.2.2. The corresponding

schemes of SACCS and AS will be called HM-SACCS and HM-AS, where “HM” stands

for “homogeneous”.

In HM-SACCS, only a single retrieving flag bit is needed for each data entry in

an server cache (SC). When a data object is queried, its corresponding flag bit is set.

Whenever a data object with a set flag bit is updated, its IR is broadcast to every cell,

and the flag bit is reset. For a system with multiple MSCs, one MSC informs to all other

MSCs to set the flag bit for the same entry. This guarantees the broadcasts of the same

IR in every cell.
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In HM-AS, the MSC maintains a cache state that records all queried data objects

for each MU. When a recorded data object is updated, the MSC broadcasts its IR to

every cell, then the cache consistency is maintained as in a single cell. For a system with

multiple MSCs, an IR from one MSC is first broadcast to all other MSCs and from there

to the cells in the system.

4.2.2 Inhomogeneous IR without Roaming Check Strategy

In this strategy, the broadcast IR varies in different cells. A wakeup event is forced

by a roaming MU. The variations of SACCS and AS are called IM-SACCS and IM-AS,

respectively, where “IM” stands for “inhomogeneous”.

In IM-SACCS, a data object in an MSC’s cache has multiple retrieving flag bits,

each corresponding to a particular cell. If the data object is retrieved in one cell, the

corresponding flag bit is set. When a data object is updated, the MSC informs the BSs.

The BS in turn broadcasts the IR if the corresponding flag bit is set for that cell. All

flag bits are reset after the data object is updated. A wakeup event is forced for each

roaming MU in the sense that the MU sets all its valid data objects into uncertain state.

The cache consistency is guaranteed because an uncertain entry must be refreshed or

checked before its usage. In IM-SACCS, there is no difference between systems with one

or multiple MSCs.

In IM-AS, an MSC maintains a cache state for each MU. The IRs of cached data

objects in an MU are broadcast to the MU’s current resident cell. A forced wakeup

event is also used for a roaming MU. In other words, after an MU arrives in a new cell,

its first query and roaming time must be forwarded through its new BS to an MSC.

The roaming time is defined as the time when an MU switches the communication

channel from its previous cell to the new cell. After the MSC receives the first query

message, it resets the corresponding state to its new cell for an intra-roaming MU, or
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retrieves the corresponding state from the previous MSC and sets it to the new cell for an

inter-roaming MU. Then the MSC sends an invalidation-check message to the MU that

contains all cached data objects updated in the interval between roaming and current

time. This is because an MU may miss IR broadcast during roaming. After the MU

receives an invalidation-check message, it drops all invalid data entries, thus maintaining

cache consistency.

One advantage of this kind of strategy is that it minimizes IR traffic. But the

extra uplinks are introduced by a forced wakeup event for a roaming MU. The strategy

is superior to others in a system with slow roaming MUs and fast updating data objects.

It also exhibits better scalability than homogeneous strategy.

4.2.3 Inhomogeneous IR with Roaming Check Strategy

The IR traffic varies in different cells, similar to that in the inhomogeneous IR

without roaming check. The variations of SACCS and AS are called as CK-SACCS and

CK-AS, where “CK” stands for “check”.

In CK-SACCS, after an MU arrives into a new cell, it immediately sends its roaming

time and an ID list (that includes all valid cache data object IDs) to an MSC through the

new BS. The MSC in turn sends an invalidation-check message containing all updated

data objects in the MUC between the roaming and current time. The MU drops all

invalidated cache entries. Then the MSC sets the corresponding retrieving flag bit for

each valid entry in the new cell. After the flag bit is set, any future IRs for these valid

entries will be broadcast in that cell to maintain cache consistency.

In CK-AS, a roaming MU immediately sends a roaming check message to an MSC

through its new BS. The message includes its roaming time and previous MSC identifier.

After the MSC receives the roaming check message, it resets the corresponding cache

state to the new cell for an intra-roaming MU, or retrieves the cache state from the
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previous MSC and sets it to the new BS for an inter-roaming MU. If any data object is

updated between the roaming time and the current time, an invalidation-check message

is sent to the MU to invalidate the updated cache entries. Consequently, the future IRs

for these valid entries are broadcast to the new cell.

The cost for this strategy is an extra uplink for each roaming. But the valid entries

of an MU’s cache can be used immediately, resulting in reduced access delay for valid

cache data objects. Finally, the IR traffic is also minimized.

The features of the above three strategies are summarized in Table 4.1.

Table 4.1 Features of Three Cache Consistency Maintenance Strategies

Strategy Action on
Roaming

Broadcast
IR

Fast Roaming
MU

Fast Updating
Data Object

Scalability

Homogeneous no action all cells efficient not efficient poor
Inhomogeneous
without roam-
ing check

force a wakeup
event

one cell not efficient efficient good

Inhomogeneous
with roaming
check

immediately
send a roaming
check message

one cell not efficient efficient good

4.3 Performance Evaluation of Three Strategies

In this section, we study the performance of three proposed strategies under var-

ious system conditions through simulation experiments. The MU’s roaming process is

assumed to be Poisson with an average sojourn time, Tr. When an MU arrives in a

new cell, the data object queries that were sent to the previous BS are resent to the

current BS. After the current BS gets such requests, it sends a message to the previous

BS indicating that the retrieved data objects by the roamed MU are not necessary to
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be broadcast. The previous BS, in turn, removes those data objects from the broadcast

queue if they are not retrieved by other MUs in the cell.

Assume each cell has an uplink channel with bandwidth Wu bps (bits per second)

and a downlink channel with bandwidth Wd bps. There are two queues for downlink

channel, one having a higher priority than the other. Each queue is scheduled on a FIFO

(first in first out) basis. The IR messages are buffered in the higher priority queue, and

all other messages are buffered in the lower priority queue, that is scheduled only if the

higher priority queue is empty. All uplink messages in a cell are buffered in a queue

scheduled on FIFO basis. The following parameters are defined in our simulations:

• B: number of cells

• Tr: average sojourn time for an MU in a cell (sec)

The other parameters are the same as those defined in Chapter 3. We still use

average access delay (D) and uplink per query (UPQ) as two performance metrics.

Recall that UPQ is defined as the number of total uplinks that include missing queries,

uncertain queries, and roaming check messages divided by the number of queries in a

system. Hence, for CK-SACCS and CK-AS schemes, UPQ may be larger than 1 due to

an extra roaming check uplink for each roaming.

Figure 4.2 shows three multi-cell configurations. Configuration 1 (shaded cells

1 and 2) is a simple two-cell system. An MU from one cell can roam into another.

Configuration 2 (cells 1-7) is a tier one system such that an MU from cell 1 can roam

into any of the neighboring cells with a probability (1/6). An MU from one of cells

2 - 7 may roam into cell 1 with a probability 1/6 and another neighboring cell with a

probability 5/12. Configuration 3 (cells 1-19) is a tier two system. Each of cells 1 through

7 has 6 neighbors, also called inner cells. An MU from an inner cell has equal probability

(1/6) of roaming into any of its neighboring cells. A cell, which is not an inner cell, is

called an outer cell. An even numbered outer cell has four neighboring cells. An MU
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Figure 4.2 Three Configurations: (1) Cells 1 and 2, (2) Cells 1-7, (3) all cells.

from such a cell has 1/6 probability of roaming into one of its inner neighboring cells and

1/3 probability of roaming into one of its two outer neighboring cells. On the other hand,

an odd numbered outer cell has three neighboring cells originally, for each such cell we set

another odd numbered outer cell as its logical neighbor (indicated by arrow in Figure 4.2)

so that each odd numbered cell also has four neighbors. For example, cells 9 and 11 are

logical neighbors of each other. An MU from such a cell has 1/6 probability of roaming

into its inner neighboring cell, 1/3 into each of its even numbered outer neighboring

cells and 1/6 into the logical neighboring cell. This roaming probability balances the

number of MUs in each cell. For studying the impact of data object update frequency

(Section 4.3.1), only configuration 2 is used, and for studying impacts of the number of

cells (Section 4.3.2), all three configurations are used.

In all two cases, we set Wu = 4 Kbps, Wd = 50 Kbps, bu = 20 bytes, bd = 20 bytes,

z = 0.9, N = 10, 000 and C = 1 Mbytes. Note that the uplink roaming check message size
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for an MU using CK-SACCS is set as the number of valid cache data objects multiplied

by 4 bytes. Thus, for an MU with 50 valid cache entries, its roaming check message size

is 200 bytes. The third generation (3G) wireless system has up to 144 Kbps bandwidth

for high mobility traffic, the bandwidth includes all traffic in a cell. We consider a

system of applications without security consideration, such as news, traffic information,

etc. All other security based traffic can not be shared by MUs and must use a secure

communication model, e.g., email, ftp, etc. Hence we choose 50 Kbps for public data

communication traffic in our simulations.

Table 4.2 Ten Types of Data Objects in Database

Data Type 1 2 3 4 5 6 7 8 9 10

Size (Bytes) 500 1K 2K 3K 4K 5K 6K 7K 8K 9K
Update
interval(Tu) (Sec)

60 120 240 480 960 1920 3840 7680 15360 30720

Percentage (%) 5 5 10 10 20 20 10 10 5 5

We consider a database with 10 types of data objects, and values of their update

rate, size and percentage of the total database are shown in Table 4.2. In Section 4.2.1,

the effects of data object update frequency are studied, and hence the update frequency

of all data objects are set to be the same.

Each MU may be different from others. The parameters λ, s, and Tp for each MU

can take values from the corresponding given sets. Each value has equal probability to

be chosen for an MU. The values are set as λ = (1/20, 1/35, 1/50, 1/65, 1/80), s = (0.15,

0.3, 0.45, 0.60, 0.75), Ts = (500, 1000, 1500, 2000, 2500) sec, and Tr = (100, 400, 1600,

6400, 25600) sec . In Section 4.3.1, we assume all MUs are always in the awake state.

In this case, sleep-wake up events do not affect the performance. The most popular data

object in the Zipf distribution for each MU is shifted by a random number between 0
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and 99. The maximum number of IDs that can be kept for each MUC is set to 200 for

SACCS based schemes, since the average number of data objects that can be cached for

an MU is about 200. Similar to the single-cell case, each IR is broadcast twice to reduce

the stale cache hit probability.

4.3.1 Impact of Data Object Update Frequency

In this case, M = 350, i.e., 50 MUs per cell, and Tu of each data object is assumed

to be the same. In order to isolate the performance impacts caused by the sleep-wakeup

events, we assume that each MU is always in the awake state. Six schemes based on the

three proposed strategies are evaluated. We also consider a naive scheme, where an MU

has no cache in its local buffer and every data access needs to be retrieved from the BS,

and no IR is broadcast in the system.
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Figure 4.3 Average Access Delay (D) vs Average Data Update Interval.
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Figure 4.4 Average Uplink Per Query vs Average Data Update Interval.

Figures 4.3 and 4.4 show the relationship between Tu and the system performance

in terms of D and UPQ for six schemes. In the naive scheme, each data access is retrieved

from the BS and no IR is broadcast, hence D is independent on Tu. In the naive scheme,

D is about 31 secs (not shown in the Figure), observe that we know that D of the naive

scheme is much longer than those of the other schemes. This indicates that caching data

objects at the MU’s local buffer is an effective method to improve system performance.

In all these schemes, both D and UPQ decrease as the update interval increases.

The performance of SACCS based schemes is always better than that of AS based schemes

when Tu is in the range 200 to 1600 secs. SACCS based schemes have more than 50%

gain in terms of D over AS based schemes. These results indicate that SACCS based

schemes are superior to AS based schemes for multi-cell environments.

Among the variants of the SACCS based scheme, IM-SACCS has the best perfor-

mance in terms of D at the cost of slightly more UPQ than HM-SACCS, for small Tu (less
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than 800 secs). When Tu is larger than 800 secs, HM-SACCS has the best performance in

terms of both D and UPQ. The data objects with small Tu are updated more frequently,

leading to increased IR traffic in HM-SACCS. On the other hand, frequently updated

data objects in the cache become invalid quickly. Thus, the cache hit ratio is reduced

for fast updating data objects and results in fewer confirmation messages due to roaming

in IM-SACCS. Hence, IM-SACCS has better performance for frequently updated data

objects. For data objects with large Tu, the additional confirmation traffic is more than

the extra IR traffic and makes HM-SACCS superior to IM-SACCS. Similar patterns are

observed for the AS based schemes. For short Tu (less than 800 secs), HM-AS has the

best performance. But IM-AS and CK-AS are superior to HM-AS in terms of D when

Tr is over 800 secs.

In summary, the inhomogeneous strategies are more efficient for fast updating data

objects, but inhomogeneous strategies are better for slow updating objects.

4.3.2 Impact of the Number of Cells

The relationship between the performance and the number of cells in the system is

studied here. As shown in Figure 4.2, three multi-cell configurations are simulated. The

number of MUs for each cell is set to 100 initially. Thus, configurations 1, 2 and 3 have

200, 700 and 1900 MUs respectively.

From Figures 4.5 and 4.6, we observe that the performance of both the SACCS

and the AS based schemes are similar, though the SACCS based schemes perform better

than the AS based schemes. In Configuration 1, homogeneous IR strategies have the

best performance. In the other two configurations, inhomogeneous IR strategies have

better performance. For the homogeneous IR strategies, D increases much faster than

the inhomogeneous IR strategies as the number of cells (B) increases. UPQ is almost

a constant for all strategies in all three multi-cell environments. In the homogeneous
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IR strategies, every cell broadcasts the same IR for any retrieved data object. As the

number of cells increases, the additional IR traffic increases, thus leading to a longer D.

However, there is no such effect on inhomogeneous IR strategies. The results indicate

that the homogeneous IR strategies are not as scalable as inhomogeneous IR strategies

due to the increased IR traffic.

The results of AS based schemes are similar to those of SACCS based schemes.

But the difference among the three schemes is small. These results imply that the

inhomogeneous IR schemes are more scalable than homogeneous IR schemes in terms

of the number of MUs.

4.4 Dynamic Scalable Asynchronous Cache Consistency Scheme

From the above results, we know that no single cache consistency strategy for

roaming MUs always performs better than others. Hence, it is necessary to develop a

dynamic scheme that captures the positive features of these three strategies and achieves

the optimized cache performance for roaming MUs. For this purpose, we first derive two

consistency maintenance cost functions that define the costs associated with roaming

MUs for globally and locally maintained data objects. Then based on these two cost

functions, a Dynamic SACCS (DSACCS) is proposed to minimize the cache consistency

maintenance cost in roaming MUs.

4.4.1 Two Consistency Maintenance Cost Functions

Through the performance evaluation of the three proposed strategies, we conclude

that the homogeneous IR strategies are more efficient for slow updating data objects,

fast roaming MUs and small systems. While the inhomogeneous IR strategies are more
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efficient for fast updating data objects, slow roaming MUs and large systems. Hence, a

good scheme should inherit positive features from both.

In a multi-cell wireless system, the consistency of a data object is said to be globally

maintained if it is necessary to broadcast the IR to every cell in the system. Otherwise, it

is said to be locally maintained. For a globally maintained data object, broadcasting IR

to every cell results in additional IR traffic for those cells in which the data object is not

retrieved. For a locally maintained data object, after an MU roams into another cell, the

valid cache entry is set to the uncertain state even if the data object is still valid, thus

leading to additional confirmation messages when the data object is accessed. Based on

these observations, we derive two consistency maintenance cost functions that define the

costs associated with the roaming MUs for globally and locally maintained data objects.

The cost for a globally (locally) maintained data object is the number of additional IR

(confirmation) messages. Let us first define some parameters:

• αi: update arrival rate of ith data object di

• λij: access arrival rate of di for jth MU mj

• λc
ik: access arrival rate of di at cell k

• sj: ratio of sleep time to the sleep-wakeup period of mj

• hg
ij: hit ratio of globally maintained di (say dg

i ) for mj

• hl
ij: hit ratio of locally maintained di (say dl

i) for mj

• Cg
i : consistency maintenance cost associated with roaming of MUs of dg

i per update

period

• C l
i : consistency maintenance cost associated with roaming of MUs of dl

i per update

period

In our model, the data object update and MU’s query, roaming and sleep wake-

up processes are assumed to be Poisson. Cg
i is the number of extra IR messages for

each update of di. During an update interval, if di is retrieved in the system, the IR
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is broadcast to every cell. In this case, if di is not retrieved in a cell, Cg
i includes the

number of IR messages of di in the cell, then

Cg
i = 2B

∫ ∞

0

αie
−αit

∫ t

0

B∑

k=1

λc
ike

−PB
k=1 λc

ikτdτdt− 2
B∑

k=1

∫ ∞

0

αie
−αit

∫ t

0

λc
ike

−λc
ikτdτdt

=
B∑

k=1

2αi

αi + λc
ik

− 2Bαi

αi +
∑B

k=1 λc
ik

(4.1)

In Equation (4.1), the factor 2 is due to broadcast of each IR twice. The first term

is the number of IR messages for dg
i in an update interval. The IR messages of dg

i are

broadcast to every cell when di is retrieved in the system. The total retrieving rate for di

is
∑B

k=1 λc
ik. The second term is the number of IR messages for dl

i in an update interval;

the IR messages are only broadcast to cells in which di is retrieved.

The difference between hg
ij and hl

ij is caused by the roaming of mj. For dl
i in the

cache of mj, the valid entry for di is set to uncertain state after each roaming, and hence

reduces the hit ratio of di. Here C l
i is the summation of extra confirmation messages from

all MUs in the system during an update interval of di. The average update interval of

di is 1/αi. During this period, on the average, mj has (1−si)λij/αi accesses on di, thus

the additional confirmation messages due to reduced hit ratio is (hg
ij − hl

ij)(1− si)λij/αi.

Note that each confirmation incurs one uplink and one downlink message. Then C l
i is

given by,

C l
i =

M∑
j=1

2(hg
ij − hl

ij)(1− si)λij
1

αi

(4.2)

Equations (4.1) and (4.2) define two cost functions associated with roaming of MUs

for maintenance of data objects globally and locally. These cost functions are determined

by the number of cells (B), the number of MUs (M), the data object update rate and the
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hit ratio. The hit ratio is related to the data query pattern, data update rate and cache

size. The reduced hit ratio for a locally maintained data object in an MUC depends on

the MU’s roaming and query pattern.

4.4.2 Description of DSACCS

Based on the above two cost functions, DSACCS is proposed to minimize the

data consistency maintenance cost in a system. These costs for each data object are

computed at the MSC, in order to determine whether the data object is globally or

locally maintained.

Regardless of whether di is globally or locally maintained, Cg
i is measured as the

average number of cells in which di is not retrieved during an update interval. Whenever

di is updated, the number of cells in which di is not retrieved is counted, and then Cg
i is

recalculated by the MSC. C l
i is the average number of extra confirmations from all MUs

during an update interval. For dl
i, an extra confirmation may be introduced only when

the uncertain entry is accessed. In this case, an uncertain uplink message must be sent

to the MSC, and hence the MSC can record all extra confirmations in the system. For

dg
i , an MU can identify the saved extra confirmations and store at the local buffer. When

di is accessed through the uplink query, the extra confirmations are passed to the MSC.

To measure the derived costs for each data object, some parameters are introduced

for each cache entry in the MSC and MUs. In an MSC, five parameters (gi, Cg
i , C l

i , Rg
i ,

Rl
i) are associated with cache entry i. Here gi is a global flag bit indicating a globally

(value 1) or locally (value 0) maintained di. The parameters Rg
i and Rl

i are the current

measured values of Cg
i and C l

i . In an MUC, the entry i has three additional parameters

(gfi, rfi, cmi), where gfi is a global flag bit, rfi is a roaming flag bit (explained later) and

cmi records the number of saved extra confirmations for dg
i associated with roaming. A
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global flag bit is also associated with each downlink valid data and confirmation broadcast

messages. rfi and cmi are attached to each uplink query message of di.

In an MUC, gfi is used to identify a globally or locally maintained data object.

After an MU roams into a new cell, all valid entries i (i = 1, 2, ..., N) whose gfi= 0 is set

to uncertain and those with gfi= 1 are unchanged. Whenever an MU caches or refreshes

entry i, the parameter gfi is set to the same value as the global flag bit in the broadcast

message.

We use rfi to identify the extra confirmations for di. Note that rfi and cmi of

entry i are initially set to 0 when it is cached. These two values are passed to the MSC

when the MU retrieves di through the uplink query. When an MU roams into a new

cell, rfi is set to 1 for valid entry i. The roaming flag bit rfi is reset to 0 if any of the

following events occur: (1) the MU wakes up, (2) the MU receives an IR, a confirmation

or a valid data object for entry i, and (3) the MU accesses di. For dl
i (i = 1, 2, ..., N),

the valid entry i is set to the uncertain state after each roaming. If di is not updated

and refreshed, and the MU has no sleep wake up event after roaming, then access to di

results in an extra confirmation due to roaming.

For dg
i (i = 1, 2, ..., N), an extra confirmation is saved if it is accessed as a valid

entry with rfi = 1. This valid entry would be uncertain if di were locally maintained.

rfi = 1 indicates that the MU has no sleep wakeup event, did not receive an IR, refresh

or access di after the last roaming. Hence, a saved confirmation is counted for dg
i . Thus

the MU increases cmi by 1 and resets rfi = 0. After the entry becomes an uncertain or

ID-only, the next access to di is retrieved from the MSC. In this case, the value of cmi is

passed to the MSC and then reset to 0. The MSC in turn adds the cmi into Rl
i.

For dl
i (i = 1, 2, ..., N), an extra confirmation may be counted when an uncertain

entry with rfi = 1 is accessed. In this case, an uncertain query associated with rfi is

sent to the MSC, and if di is still valid, the MSC records an extra confirmation through



67

increasing Rl
i by 1. Hence, the value of Rl

i for dl
i is exactly measured, but for dg

i may be

different from the real value during each update period of di. However, the average value

(Cg
i ) is close to its real average value.

In an MSC, the retrieving flag bits for each cache entry are managed in the same

way as IM-SACCS scheme. When the MSC receives an update for di, if the retrieving flag

bit is not set for any cell in the system, the MSC just updates the cached di. Otherwise,

the MSC first checks gi. If gi is set, the IR of di is broadcast to every cell, else the IR is

only broadcast to the cells in which the retrieving flag bits are set. Now Rl
i is counted

as the number of cells in which the retrieving flag bits are not set. Then Cg
i and C l

i are

updated by using Cg
i = β1 Cg

i + (1− β1)R
g
i and C l

i = β2 C l
i + (1− β2) Rl

i, respectively.

Here β1 and β2 are two smoothing coefficients in the range 0 to 1. If Cg
i < C l

i , gi is set

to 1 (i.e., globally maintained), otherwise it is set to 0. Then the retrieving flag bits, Rg
i

and Rl
i are reset to 0. When the MSC receives a query for di, it sets the retrieving flag

bit for the corresponding cell, adds cmi which is attached to the uplink query message

into Rl
i. If the query is uncertain with rfi = 1 and the uncertain di is still valid, an

extra confirmation is added into Rl
i. When a valid data object or confirmation message

is broadcast, the global flag bit of the entry in the MUC is set to the same value as that

in the MSC cache. If there are multiple MSCs in the system, for each update of di, the

values of Rg
i and Rl

i in each MSC must be forwarded to all other MSCs.

DSACCS can be dynamically applied to different systems with some advanced

features. In the multi-cell system in Figure 4.7, all 16 cells are controlled under two

MSCs. Shaded Cells (i.e., cells 1-3, 5-8, and 12-13) are controlled by one MSC, and the

remaining cells are controlled by another MSC. Suppose, a university campus is located

in a region corresponding to Cells 7-11. Students in the university frequently roam within

the campus and rarely roam out. Students frequently access some common interesting

data objects that may not be of interest to MUs outside the campus. In this scenario,
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Figure 4.7 A multi-cell system.

some data objects may be highly accessed in the campus cells but rarely in other cells,

thus the additional confirmations for these data objects are caused by roaming within

the campus. We can define a cell group that includes all campus cells and allows some

data objects to be maintained as group data objects. For a group data object, its IR

is broadcast to every cell in the group if it is retrieved in any cell of the group. The

valid entry for a group data object is unchanged when an MU roams among the grouped

cells. This is an efficient mechanism because: (1) it minimizes the mobility impacts on

the MUs’ roaming within the grouped cells, and (2) all additional IRs from the grouped

cells are only broadcast in themselves, without affecting other cells.

Now we define DSACCS-G with cell grouping scheme. In DSACCS, the access

popularity of a data object in a cell can be measured through the retrieving flag bit for

that cell. When some data objects are observed to be very popular in some cells but not

popular in other cells, a cell group can be defined by grouping these cells into a logical

cell. After the group is defined, some data objects can be maintained as group data

objects. The IR of a group data object is broadcast to all grouped cells if it is retrieved
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in any cell of the group. When an MU roams among the grouped cells, the entry states

for group data objects in the cache are unchanged.

To manage group data objects, a group flag bit (fi) is introduced for cache entry i

in the caches of MSCs and MUs. fi = 1 implies that di is a group data object, and fi = 0

implies it is not a group object. Four parameters (Ei, Li, ei, li) are set for entry i in the

MSC. Here Ei and ei are the average and current measured extra IRs of di per update

interval in the grouped cells (i.e., the number of cells in the group in which the data

object is not retrieved during an update interval). Li and li are the average and current

number of extra confirmations during an update interval due to MUs roaming among the

grouped cells. Two extra parameters (ri, cri) are associated with each entry in the cache

of an MU. ri is used to identify the extra confirmations for the MU roaming among the

grouped cells. It is set to 1 for valid entry i when the MU roams from one grouped cell

to another. cri stores the number of extra confirmations of di. The management of these

extra parameters is the same as the management of parameters introduced in DSACCS.

In DSACCS-G, after di is updated, the MSC first checks if di is globally or locally

maintained by comparing Cg
i with C l

i . If di is globally maintained, there is no difference

between DSACCS and DSACCS-G. However, if di is locally maintained, the MSC sets it

as a group data object if Ei < Li, otherwise di is locally maintained.

4.4.3 Performance Evaluation

The performance of DSACCS is evaluated by varying the number of MUs per cell.

Section 4.4.3.2 evaluates DSACCS and DSACCS-G under various database sizes. Due to

the wired communication between the MSCs, the communication delay is insignificant

compared with low bandwidth wireless communications. Hence we do not consider the

cost for communications among the MSCs. In the simulations, the smooth coefficients

β1 and β2 are set as 0.5.
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As mentioned above, cmi of dg
i in an MUC is passed to the MSC in its next uplink

query for di. When entry i is invalid, cmi is associated with the ID-only entry. If the

number of ID-only entries is too small, some saved confirmations may be lost due to

the dropped ID-only entries. However, the globally maintained data objects should be

popular and hence have more chance of being retained in the cache. We varied the number

of ID-only entries in the simulation (not presented in here), and found that 200 ID-only

entries are enough for the MSCs to record most of the saved extra confirmations for

globally maintained data objects. Thus we choose 200 ID-only entries in the simulation.

4.4.3.1 Impact of the Number of MUs Per Cell

In this case, we use a 19-cell system similar to Configuration 3 shown in Figure 4.2,

and set N = 10,000 and z = 0.95. All other parameters for the MUs and the database

are set to the same as those in Section 4.3.2.
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Figure 4.8 Average Access Delay vs Number of MUs per Cell.
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Figure 4.9 Average Uplink Per Query vs Number of MUs per Cell.

Figures 4.8 and 4.9 show the performance of three extended SACCS schemes and

DSACCS. We can see that DSACCS has the best performance in terms of delay (D)

for varying number of MUs per cell. When the number of MUs per cell reaches 140,

DSACCS performs about 10% better than the other three schemes. Among the other

schemes, HM-SACCS has better performance for small number of MUs per cell; both

CK-SACCS and IM-SACCS are superior to HM-SACCS when the number of MUs per

cell is over 130. HM-SACCS has the minimum UPQ and CK-SACCS has the maximum

UPQ. DSACCS has a little bit larger UPQ than HM-SACCS varying number of MUs

per cell. The consistency maintenance cost of each data object is minimized in DSACCS,

thus resulting in better performance. These results indicate that DSACCS inherits both

positive features from homogenous and inhomogeneous strategies, and makes it more

scalable and efficient.
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4.4.3.2 Impact of Database size

In this case, DSACCS and DSACCS-G are evaluated for a system as shown in

Figure 4.7. Two types of MUs are set in the simulation. There are 1100 of the first type

MUs (initially 100 per cell) located in cells 1-6 and 12-16, and 1000 (200 per cell) MUs

of the second type (students) in cells 7-11.

The parameters for the first type of MUs are set the same as that of previous

section. For a student in the campus, the only different parameter from the first type of

MUs is the set of values of Tr (in sec); he/she randomly picks up a Tr value from the

set (100,400,1600). A student in a campus cell (7-11) has 90% probability roaming into

another campus cell, and 10% probability into a non-campus cell. A student in a non-

campus cell roams back to a campus cell. The first type of MUs have 10% probability of

roaming from a non-campus cell to a campus cell, and they roam back to a non-campus

cell if they are in a campus cell. The downlink bandwidth for cells 1-6 and 12-16 is set to

40 Kbps and for cells 7-11, it is set to 80 Kbps. The uplink channel is set to 4 Kbps for

cells 1-6 and 12-16, and 6 Kbps for cells 7-11. The most popular data object for students

is randomly picked from the ID 0-199, and for the first type of MUs is randomly picked

from the ID 500-599. The cache size is set as 1 Mbytes for each MU and the ID-only

entry is set to 200. Ten types of data objects are set in the database as shown in Table

6.1 except the set for Tu (in sec), for which the set is (100, 200, 400, 800, 1600, 3200,

6400, 12800, 25600, 51200).

Figures 4.10 and 4.11 show the performance of three extended SACCS schemes,

DSACCS and DSACCS-G. From the figures, we know that DSACCS-G has smaller de-

lay (D). DSACCS has better performance than other three schemes but poorer than

DSACCS-G. When N reaches 30,000, the D for DSACCS-G is about 5% smaller than

DSACCS, and 10% - 30 % smaller than IM-SACCS, CK-SACCS, and HM-SACCS. The
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Figure 4.11 Average Uplink Per Query vs Number of Data Objects in the System.

better performance of DSACCS-G is due to the saved extra confirmations of group data

objects while the IRs of group data objects retrieved in the grouped cells are only broad-

cast to themselves, resulting in very few additional IR traffic. For the three extended
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schemes, for small N , HM-SACCS has the smallest D and CK-SACCS has the longest

one. But for large N , CK-SACCS has the smallest D. HM-SACCS has the smallest

UPQ among the five schemes. But UPQ for DSACCS and DSACCS-G is very close

to HM-SACCS for the entire range of N . Similar to the result in the previous section,

CK-SACCS always has the most UPQ.

The above results show that DSACCS and DSACCS-G inherit the positive features

from both homogenous and inhomogeneous strategies, thus minimizing the additional

consistency maintenance cost for roaming MUs.

4.5 Summary

In this chapter, we first introduced three types of cache consistency maintenance

strategies: homogeneous IR, inhomogeneous IR without roaming check, and inhomoge-

neous IR with roaming check for multi-cell wireless cellular networks. These strategies

are evaluated under various multi-cell environments. Simulation results revealed that

no single strategy performs better than the other strategies for all parameter ranges.

More specifically, the homogeneous IR strategies perform better for slow updating data

objects, fast roaming MUs and small systems; on the other hand, the inhomogeneous IR

strategies are more efficient for fast updating data objects, slow roaming MUs and large

systems.

To achieve optimized cache performance in multi-cell environments, we derived

two functions to determine the cost of maintaining consistency of data objects locally

and globally. Based on these two costs, a Dynamic Scalable Cache Consistency Scheme

(DSACCS) is proposed for wireless cellular networks. In DSACCS, the IR of a data

object is broadcast globally or locally depending on which has the minimum consistency

maintenance cost. DSACCS inherits positive features of all the three strategies and hence
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outperforms these strategies in the entire parameter ranges. In addition, a variation of

DSACCS, called DSACCS-G, is developed for grouping cells in order to facilitate effective

cache consistency maintenance in multi-cell systems.



CHAPTER 5

UPDATE PROPAGATION THROUGH REPLICA CHAIN (UPTReC)

Wireless mobile and peer-to-peer (P2P) networks are employed to provide ubiqui-

tous information access, for which data consistency has to be maintained strictly. In the

previous two chapters, we developed cache consistency maintenance schemes for informa-

tion access in wireless mobile networks. In this chapter, we focus on the development of

algorithms for file consistent in P2P networks. Recently, P2P networks have been widely

used as self-organized distributed systems for information access and sharing. It is also

known that the Internet traffic based on P2P applications takes up to 85% of the Internet

bandwidth usage [27].

Initially, P2P networks were designed for downloading multimedia files which are

assumed to be rather static and where updates occur infrequently. Due to the tremendous

growth in P2P applications, the issues related to file consistency maintenance become

even more critical. For example, in many applications such as the shared calendar, P2P

web cache, online gaming and online auction systems, the files update frequently and

hence the consistency needs to be strictly maintained to guarantee consistent file shar-

ing. However, there is no efficient and scalable file consistency maintenance algorithms

that can be used in real P2P networks, hence there is a need to design efficient file consis-

tency algorithms for existing P2P networks. Two file consistency algorithms have been

developed in this and the next chapters. These algorithms can be effectively used in

the existing P2P networks to provide consistent information access and sharing. In this

chapter, we develop an update propagation through replica chain (UPTReC) algorithm to

76
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provide weak file consistency in P2P networks. We first give the details of the algorithm

and then present the performance analysis and comparisons with existing algorithms.

5.1 Description of UPTReC

There are two types of decentralized P2P networks: structured and unstructured.

The structured P2P networks enjoy efficient file search through distributed hash tables

(DHTs). However, they cannot support keyword search and incur high overheads to

maintain very transient peers. In contrast, unstructured P2P systems support keyword

searches and also incur low overheads to maintain extremely transient peers, and are ro-

bust to general search queries [14]. Based on these observations, we focus on decentralized

and unstructured P2P networks.

The main motivation behind Update Propagation Through Replica Chain (UP-

TReC) algorithm is to minimize the overhead messages for propagating updates of a file

to Replica Peers (RPs) which have replicas of the file in decentralized and unstructured

P2P systems. The detailed description of the proposed algorithm is given in the following

sections.

5.1.1 System Model and Assumptions

We consider a decentralized and unstructured P2P system, such as Gnutella [43]

where all peers are equal and no peer has a global view of the system. Each peer fre-

quently joins (online) and leaves (offline) the system and change its IP address with some

probability for each reconnection. We assume that any two online peers can communi-

cate with each other if one knows the IP address of the other. The system model and

assumptions are summarized as follows:
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1. A probabilistically guaranteed file consistency rather than a strong file consistency

is required.

2. The write-write conflict is ignored.

3. All peers frequently join and leave the system.

4. An online peer that gets an update has the ability to finish its push process.

5. An online peer can communicate with any other online peer if it knows the IP

address of that peer.

6. The physical connectivity and system topology are ignored.

7. Each RP has an ID and an IP address, the ID is fixed but the IP address may be

changed for each reconnection.

8. Each file is associated with a version and generation time used for synchronization.

Assumption 2 above is justified due to the lower write-write conflict rate [45] in P2P

systems. We make assumption (3) to simplify our algorithm analysis. The probability

of online peer to successfully finish its push process is usually over 0.95 [21]. If the

probability is low for a system, the assumption (3) above can be remedied by using a

reliable push process. In a reliable push process, the push process of RP1 does not stop

after it propagates the update to online RP2, which in turn forwards the update to other

RPs. RP1 must wait for the confirmation from RP2 indicating the update has been

successfully propagated. If the confirmation is not received within a certain period, RP1

probes RP2 again; and if RP2 is offline, RP1 contacts with another RP to continue the

push process. The reliable push process incurs some additional overhead messages for

confirmation.
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5.1.2 Push Update Through Replica Chain

Figure 5.1 (a) shows a logical replica chain for a file with N replicas. Each RP is a

node (we use RP and node interchangeably) on the chain and has a unique ID associated

with it. Each RP maintains ID and IP address information about k, typically O(10),

nearest RPs in each (left and right) direction of the chain1. These 2k RPs are called

probe RPs. Two RPs are said to have h-hop distance if there are h − 1 RPs between

them. For example, RPi and RPi+k are k-hop distance apart.

i−k i−1

Offline RP 

i

(b) 

1 2 i i+1 N−1 N

(a) 

ki+211k

i+1 i+k−2 i+k−1 i+k i+k+1

Online RP 

left k probe nodes right k probe nodes

Figure 5.1 (a) Logical Replica Chain; (b) Update Propagation of RPi.

Figure 5.1 (b) shows the update propagation process of RPi. When RPi initiates

an update, the update is pushed symmetrically along both left and right directions of the

chain. Now let us look at the process of RPi pushing the update to RPN (right end of

the chain). RPi has information of k probe RPs to the right (from RPi+1, called the 1st

probe RP, to RPi+k, called the kth probe RP). To push an update, RPi sends a probe

1Note that the RPs at or near the head or tail have less than k probe RPs in one direction
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message to each of the probe RPs in this direction (i.e., RPi+k, ..., RPi+1). The farthest

online probe RP (here RPi+k−1) is chosen to be the update relay RP, which will further

propagate the update through the chain along the direction. All other online probe RPs

of i, such as RPi+k−2, will receive but do not propagate the update. After RPi determines

its update relay RPi+k−1, it first sends the update to that RP with the relay flag bit set

as 1 and then sends the update to all other online probe RPs with the relay flag bit set

as 0. When an online probe RP receives the update, it first checks the update relay flag

bit. If the bit is 0, it only needs to receive the update. Otherwise, it needs to propagate

the update through the chain along the direction. The process of the update propagation

is similar to RPi except not to send the probe messages to its probe RPs which are also

the probe RPs of i. Because all these RPs are probed by i and they should be offline.

As shown in Fig. 5.1(b), when RPi+k−1 gets the update, it finds that the update relay

flag bit is 1, and hence it immediately sends the probe messages to its probe RPs on

the right hand side which are not the probe RPs of i, i.e., RPi+2k−1, ..., RPi+k+1. The

update propagation process is repeatedly executed through the replica chain. If all k

probe RPs of an update relay RP are offline, the propagation process is stopped and the

update cannot be propagated in this direction. The similar process is executed for RPi

to propagate the update to RP1.

5.1.3 Pull after Online

During the offline period of an RP, it may miss some updates of the file and/or

some information on the chain changes. Hence, when an offline RP gets reconnected, it

needs to pull some online RPs to synchronize the status of the file and its probe RPs. An

RP can probe RPs from nearest to farthest in each direction. Whenever an online RP is

probed in one direction, the file and the information of its probe RPs are synchronized.

If its IP address is not changed, the pull process in this direction is finished. The similar
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process is executed in the other direction. If the IP address of the reconnected RP is

changed, it needs to send its ID and new IP address to all its probe RPs. Then the pull

process is finished. If no online probe RP can be pulled (due to probe RPs going offline

or changing IP addresses), the reconnected RP needs to connect its probe RPs through

flooding search to synchronize the status of the file and the information of its probe RPs

if its IP address is changed.

5.1.4 Chain Construction and Maintenance

We discuss how to construct and maintain the replica chain in this subsection. After

a peer initiates a file in the system, the file can be searched, fetched and replicated by

other peers. Each replica is copied from one of the other replicas. If each RP maintains

the information of all RPs that fetched a file from it, then a replica tree is naturally

constructed. Figure 5.2 (a) shows a replica tree composed of 5 RPs as the root RP at

RP1. If all RPs are always online, any update from any RP can be successfully propagated

to any other RPs. For example, when RP3 initiates an update, it sends the update to

RP1, RP4 and RP5. Each RP in turn updates its replica and then relays the update to all

its children and parent except the one which sent the update. The update is successfully

propagated through all RPs. A new replica tree with RP3 as the root is shown in Figure

5.2 (b). However, frequently disconnected peers make such a replica tree ineffective in

terms of update delivery. In order to increase the probability of successfully propagating

the update, each RP must maintain the information of multiple RPs along each path.

Due to the properties of the general tree, some RPs may maintain the information of a

large number of RPs, while some other RPs maintain information of very few RPs. To

balance the overhead associated with the file maintained by each RP, a replica chain can

be constructed from the replica tree as explained below.
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Figure 5.2 Replica Trees: (a) Root at RP1; (b) New Tree with Root at RP3.

Figure 5.3 shows the process of constructing a replica chain during the replica

process. Figure 5.3 (a) presents the first four RPs which naturally form a chain. In this

case, a new RP locates at the head or tail of the chain. When a new peer replicates

the file fetched from another RP, the corresponding chain information is also fetched.

The information of a new RP is forwarded to all possible RPs which should have the

information of the new RP. Figure 5.3 (a) illustrates the process for an RP, such as

RP4 joining the chain. When RP4 fetches the file from RP3, the replica chain including

information about RP1 and RP2 is also fetched. Then RP3 adds RP4 into the chain, and

pushes information about RP4 to RP1 and RP2. However, if RP1 for example is offline

at that time, it needs to probe either RP2 or RP3 to get the latest chain information.

If a new peer joins in the middle of a chain, it needs to push its information to at

most k RPs in the chain along the direction opposite to the RP which provides the file.

For example, when RP5 joins the chain by obtaining the chain information from RP3,

RP5 pushes the information to RP4.

When RPi removes a replicated file, it sends a message to each of its probe peers

to get removed from the replica chain. All online probe peers get the message and in
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Figure 5.3 Replica Chain Constructing. Join at (a) Head or Tail; (b) Middle .

turn remove RPi from the chain. All offline probe peers get this message when they

reconnect. If all probe peers are offline, RPi is not removed from the chain and informs

the reconnecting peers when they probe. The process of adding or removing a replica

requires up to 2k messages.

5.2 Performance Analysis

An analytical model is developed in this section. One critical issue concerning the

UPTReC algorithm is to determine the value of k. If k is too small, an update may fail

to propagate through the chain. If k is too large, the overhead cost of chain maintenance

is high.

5.2.1 Analytical Results

Our analytical modeling is based on the assumptions made in Section 5.1.1. Some

parameters and performance metrics are defined below:

• N : number of RPs in the chain, i.e., the total number of replicas for a file

• k: number of probe RPs in one direction
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• Pon: probability of an RP to be online

• Poff : probability of an RP to be offline (Poff = 1− Pon)

• PcIP : probability of an RP to change the IP address after reconnecting

• h: number of hops to an online RP from the update initiating peer

• T : average period of a peer online and offline cycle

• λ: access rate of a file for the whole system

• Tup: average file update period

• P s
h : probability of successfully propagating an update to an online RP with h-hop

distance

• P s
h(m): probability of successfully propagating an update to an online RP with

h-hop distance while the online RP only counts the contributions of its m farthest

(1 ≤ m ≤ k) probe peers, i.e., the kth, ..., (k −m + 1)th probe peers

• P s
pull(k): probability of a reconnected RP to successfully pull an online RP

• Cflood: average number of messages to find an online probe peer through flooding

search

• Cpush(N): maximum number of messages to push an update through a replica chain

with N RPs

• Cpull(k): average number of messages in each pull procedure of a reconnected peer

• OHQ: number of overhead messages per query of file consistency maintenance

(including overhead of push and pull)

• Pstale(N): stale query probability for a file with N replicas.

In UPTReC, the maximum number of messages to push an update is N , because

each RP at most receives one probe message. Thus, we have

Cpush(N) ≤ N (5.1)
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When an offline RP rejoins the system, it pulls an online RP from its probe peers

in each direction to synchronize the file status and probe peers’ information, the pull

process in one direction stops whenever an online RP is pulled. If a probe peer is offline

or online but with different IP address from its previous IP address that recorded by

the reconnected RP, it cannot be pulled. We use Pfail = Poff + PonPcIP to represent

the probability that a probe peer cannot be pulled by a reconnected peer. Then the

probability of a reconnected RP to successfully pull an online RP is

P s
pull(k) = 1− (Pfail)

2k (5.2)

If the IP address of the reconnected RP is changed, it needs to contact with all probe

peers once, hence 2k probe messages are needed. If no online probe peer is connected, it

needs to search a probe peer through flooding. So the average number of probe messages

for each pull process is:

Cpull(k) = 2(1− PcIP )[(1− Pfail)
k−1∑
i=1

i(Pfail)
i−1 + k(Pfail)

k−1)]

+PcIP [2k + (1− P s
pull(k))Cflood]

= PcIP [2k + (1− P s
pull(k))Cflood] + 2(1− PcIP )(

1− P k
fail

1− Pfail

) (5.3)

In Equation (5.3), the first term is the pull cost when its IP address is not changed,

the second term is the pull cost for a reconnected RP with changed IP address. In the

second term, if an online probe peer is pulled in a direction, the pull process is stopped

in that direction; and if no online probe peer is pulled, all k probe peers are needed to

be pulled once. The pull process is symmetrical in both directions.

Based on the definitions, we have P s
h = P s

h(k), and P s
h(m) can be recursively

calculated. Figure 5.4 shows the calculation diagram of P s
h(m). Here RPh has h-hop

distance from the update initiating peer. P s
h(m) represents the probability for RPh to
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Figure 5.4 Diagram of Calculating P s
h(m) .

get the update if only its farthest m probe peers (i.e., k-th, (k-1)-th, ..., (k-m)-th probe

peers) are considered, these probe peers are h− k, h− k + 1, ..., h− k + m− 1 hops

distance from the update initiating peer, we call these RPs as RPh−k, RPh−k+1, ..., and

RPh−k+m−1 as shown in Figure 5.4. For example, P s
h(2) is the probability for RPh to get

an update if only probe peers RPh−k and RPh−k+1 are considered to push the update to

RPh, and all probe peers RPh−k+2, ..., RPh−1 are not considered. All these probabilities

can be recursively calculated by the following three equations:

If h ≤ k and 1 ≤ m ≤ k,

P s
h(m) = 1 (5.4)

If h > k and m = 1,

P s
h(m) = PonP

s
h−k(k) (5.5)

If h > k and 1 < m ≤ k,

P s
h(m) = P s

h(m− 1) + PonP
m−1
off P s

h−k+m−1(k −m + 1) (5.6)

Equation (5.4) means that if an online RP is a probe peer of the update initiating

peer, it will definitely receive the update. Equation (5.5) indicates that RPi considers

its farthest probe peer RPh−k, that is online and successfully receives the update, then

RPh can successfully get the update. Equation (5.6) can be explained by considering the
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mth farthest probe peer RPh−k+m−1, the probability of successfully receiving the update

by RPh is the probability of successfully receiving the update through its farthest m− 1

probe peers plus the contribution of the mth farthest probe peer. The mth probe peer

has contributions only if all farthest m − 1 probe peers are offline, because if any of

these peer is online, the contribution would be accounted through that peer. In this

case, the probability of successfully receiving the update at the mth farthest probe peer

is only through its k −m + 1 probe peers (its first m − 1 probe peers are offline), i.e.,

P s
h−k+m−1(k −m + 1).

The number of overhead messages per query of file consistency maintenance is:

OHQ =
1

λ
{Cpush

Tup

+ N
Cpull(k)

T
} (5.7)

For a replica chain with N RPs, the maximum number of hops from an update

initiating peer to an online RP is N − 1. Hence, any online RP has a probability larger

than P s
N to get the update. An offline RP has P s

pull(k) probability to synchronize with an

online RP, thus each online RP has at least P s
NP s

pull probability with a valid file. Then

the stale query probability is upper bounded by:

Pstale(N) ≤ 1− P s
N(k)P s

pull(k) (5.8)

The performance of UPTReC is formulated by equations (6.1) - (6.7). All these

measurements are determined by Pon, PcIP , k and N .

5.2.2 Numerical Results

Some numerical results are shown in this subsection to characterize typical value

of k under some probabilistically guaranteed file consistency. The difference between the
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numerical and simulation results (not presented in the here) is within 2% for all these

cases.

5.2.2.1 Probability of successfully propagating an update through the chain

We study the impact of the number of probe peers (k) on the probability (P s
h)

of successfully propagating an update to an online RP when h = 10, 000 hops. The

relationship between P s
h and k is shown in Figure 5.5. When Pon ≥ 20%, P s

h is very close

to 1 for k ≥ 60. To achieve P s
h close to 1, k = 40 is enough for Pon = 30% and k is

reduced to 20 for Pon = 50%. For very small Pon = 10%, we get k = 110. The results

indicate that k = 60 ensures a near to 1 probability to propagate an update through a

10,000-node chain for Pon ≥ 20%. As stated in the previous section, a larger k leads

to more overhead messages for the replica chain maintenance. But the overheads per

update propagation is independent of k.
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5.2.2.2 Scalability on the number of replicas

The maximum number of hops of a replica chain increases as the number of RPs

increases. In P2P systems, the typical number of replicas for a file varies from tens to

thousands. We investigate the scalability of the algorithm on the number of RPs. Figure

5.6 shows the results of P s
h as h increases from 1,000 to 1,000,000. For a system composed

of peers with high online probability (Pon ≥ 50%), a small number of probe peers k = 20

can ensure a larger than 0.95 probability of successful propagation an update to an

online RP with 1,000,000-hop distance. For a system with peers having very low online

probability, k = 120 makes P s
h > 0.98 for h = 1, 000, 000. The probability of successful

propagation drops slowly as the number of hops increases. The results indicate that the

UPTReC algorithm has good scalability in terms of the number of RPs.
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5.3 Performance Comparisons

The performance comparisons between UPTReC and the update propagation scheme

based on the rumor spreading algorithm (in short, Rumor) proposed in [21] are presented

in this section. The overhead messages of file consistency maintenance come from push

and pull processes, the major messages of a fast (slow) updating file is from the push

(pull) process. We use simulations to study the impact on the performance of update

frequency because the analytical performance of update frequency is not presented in

[21].

Both algorithms, i.e., UPTReC and Rumor, focus on efficient update propagation

to all online RPs. Note that the update propagation is only through the RPs. Moreover,

both algorithms are independent of file search and replication. Therefore, we simulate

only RPs instead of a whole P2P system to focus on the file consistency maintenance

cost. The system topology and physical connectivity are ignored.

In the simulations, we assume each RP alternatively leaves and joins the system

as a Poisson process. The file update is also assumed to be a Poisson process. When

an update occurs, the initiating RP is randomly chosen from an online RP. In a real

P2P system, a file can be searched and replicated by other peers, and an RP may drop

a replica. As stated in the previous section, adding a new RP or removing an RP costs

2k messages to maintain the chain, but the subset maintenance is not discussed in the

Rumor algorithm [21]. Hence, we ignore the comparison on the costs of the chain and

subset maintenance in the simulation by assuming a static chain and subsets. Moreover,

all RPs are considered to have static IP addresses, because no method is discussed to

deal with dynamic IP address in the Rumor algorithm. The chain is randomly built,

i.e., each RP has equal probability to appear at any location on the chain. Each RP

keeps information of k probe peers in each direction. In the Rumor algorithm, each peer

randomly picks up L RPs as its responsible peers. In the 0th push round, the update as
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well as a replica list are forwarded to its all responsible peers. The replica list records

all RPs in which the update has been sent. In the t(≥ 1) push round, a peer has a

probability PF (t) = f t to push the update to any responsible peers that are not on the

replica list, where f is a constant between 0 and 1. An RP that receives an update is

assumed to have ability to finish its push process. The pull process in both algorithms is

similar. In UPTReC, when an online probe peer is probed in a direction, the pull process

in this direction is finished. In the Rumor algorithm, two online probe peers are probed

in each pull process.

Let the file have an access rate λ for the whole system, each access randomly fetches

the file from an online RP. When an online RP answers a query, if the file is generated

in its newest version, a valid query is counted; otherwise a stale query is counted. Due

to focus on the efficiency of file consistency maintenance, the parameters λ, T , and Tup

are set to unit time.

In our simulation model, for instance, when RP1 pushes an update to RP2, it

first probes RP2. If RP2 is online, the update is forwarded. Thus the total number of

updates sent out is equal to the number of online RPs which have received the update.

This number is almost equal in both algorithms if the stale query ratio is close to each

other. We compare the overhead messages for probing all RPs rather than the number of

updates themselves. Of course, the update can be sent out instead of the probe messages.

However, if the update is large, this may cause a large amount of extra traffic for sending

the update to offline RPs.

5.3.1 Overhead Messages for Each Push Process

The number of overhead messages in the push process and the stale query ratio

are studied under various probabilities of online peers. The probability of successfully

propagating an update is determined by the probability of a peer being online and the
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Table 5.1 Parameter Setup I

N λ T Tup

10000 1 10000 10000

number of probe (responsible) peers. Based on the analytical results in the previous

section, we set 2kPon = 20 (or LPon = 20) to ensure a low stale hit probability. Thus,

Pon = 10% corresponds to k = 100 (L = 200), and Pon = 50% corresponds to k = 20

(L = 40). The other parameters are set as in Table 5.1. Based on these setups, there are

one query per RP and one update in each RP online and offline cycle (T period) on the

average. Two different f values (0.8 and 0.9) are used in the Rumor algorithm to show

the relationship between the stale query ratio and the number of overhead messages. The

number of overhead messages in the Rumor algorithm is determined by the stale query

ratio, a larger f or L makes a lower stale query ratio. We set the L value as 2k which

is the total number of probe peers kept by an RP in UPTReC. For such L value, high

f values are needed to ensure a similar stale query ratio between UPTReC and Rumor

algorithms, therefore f is set to 0.8 and 0.9.

Figures 5.7 and 5.8 show the number of overhead messages in the push process and

the stale query ratio of both algorithms. As shown in these figures, a smaller f reduces

the number of overhead messages in the Rumor algorithm, but the stale query ratio is

increased. When f drops from 0.9 to 0.8, the number of overhead messages drops about

20%, but the stale query ratio is almost doubled.

The results show that the number of push overhead messages divided by the number

of RPs (N) in UPTReC is almost 1, and this value is more than 2.4 in Rumor. The stale

query ratio for the UPTReC is less than 1.2% for all ranges of Pon from 10% to 50%.

But the stale query ratio for the Rumor algorithm increases from 1.2% to 4.8% when

Pon increases from 10% to 50% with f = 0.8. The stale query ratio can be reduced



93

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 T
he

 n
um

be
r 

of
 p

us
h 

ov
er

he
ad

s 
pe

r 
up

da
te

 (
xN

)

Average peer online probability (%)

UPTReC
Rumor−f=0.8
Rumor−f=0.9

Figure 5.7 Number of Overhead Messages in Push vs Peer Online Probability.
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Figure 5.8 Stale Query Ratio vs Peer Online Probability.

to less than 2.5% but incurs more than 20% overhead messages if f is set to 0.9. The

results indicate that compared with Rumor, UPTReC reduces more than 60% overhead

messages to put an update while achieving a smaller stale query ratio.
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5.3.2 Overhead Messages Per Query

The number of overhead messages per query for various update frequencies is in-

vestigated in this experiment. We measure two performance metrics: (1) the number of

overhead messages per query, and (2) stale query ratio. The number of overhead mes-

sages per query is defined as the total number of consistency maintenance messages which

include overhead messages of the push and pull processes divided by the total number

of queries in the system. We set two L values (80 and 100) for the Rumor algorithm in

the simulation to study the effects of L. The other system parameters are specified as in

Table 5.2.

Table 5.2 Parameter Setup II

N λ Pon T k f
10000 1 30% 10000 40 0.9

Figures 5.9 and 5.10 show the results of the number of overhead messages per query

and stale query ratio versus different update frequencies. When the average update period

(Tup = 105) is much larger than the peer online and offline cycle, the overhead messages

of the pull process are the major source. Due to the similar pull process, the number

of overhead messages per query for two algorithms is close in this case. As the update

period decreases, the number of overhead messages from the push process increases and

dominates the number of overhead messages from the pull process. This leads to a better

performance of UPTReC than that of the Rumor algorithm. When the update period is

much shorter than the peer online and offline cycle, the number of overhead messages per

query in UPTReC is more than 70% lower than that of the Rumor. The stale query ratio

in UPTReC is less than 0.1% in all range of update periods. In the Rumor algorithm,

when the update frequency is high, the stale query ratio is about 2% for L = 80, and
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it is reduced to less than 1% when L = 100. The effect of L is similar to f . A larger

L or f gives a lower stale query ratio but costs more overhead messages. The results

show that the UPTReC can save up to 70% overhead messages while providing better

probabilistically consistency guarantee for highly update files compared to the Rumor

algorithm.
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Figure 5.9 Number of Overhead Messages Per Query vs Update Period.

Through these comparisons, we know that the UPTReC algorithm can significantly

reduce overhead messages to propagate an update with a smaller stale hit ratio compared

with the Rumor algorithm.

5.4 Summary

In this chapter, we propose a novel algorithm, UPTReC, to propagate update

through replica chain for decentralized and unstructured P2P systems. In UPTReC, each

file has a logical replica chain composed of all RPs. Each RP has a partial knowledge
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Figure 5.10 Stale Query Ratio vs Average Update Period.

of the chain. When an RP updates the file, it pushes the update to all possible online

RPs through the replica chain. When an offline RP gets reconnected, the file status is

synchronized by pulling an online RP.

An analytical model of the proposed algorithm is derived. The performance com-

parison of UPTReC with the Rumor algorithm show that UPTReC reduces up to 70%

overhead messages to propagate updates with a smaller query ratio for highly updated

files.

UPTReC provides probabilistically guaranteed file consistency, and can be used

in some systems such as P2P web cache and bulletin board systems. In these systems,

a file access with small stale probability is acceptable. However, in some applications,

such as online auction and online game systems, the file consistency needs to be strictly

maintained, thus requiring a strong file consistency algorithm.



CHAPTER 6

FILE CONSISTENCY MAINTENANCE THROUGH VIRTUAL SERVERS

The UPTReC algorithm in the last chapter provides weak file consistency. With

the growth of applications, the file consistency needs to be strictly maintained, such as

in online games and auction systems. However, to the best of our knowledge, there is

no strong file consistency algorithm designed for decentralized and unstructured P2P

networks. This motivates us to develop a strong file consistency maintenance scheme

for such networks to ensure strictly information access/sharing. To meet this goal, we

develop a file Consistency Maintenance through Virtual servers (CMV) algorithm for

decentralized and unstructured P2P networks. In this chapter, we first present the al-

gorithm details, then analyze the algorithm performance. Finally we give the numerical

performance results under various system parameters.

6.1 Proposed CMV Algorithm

The proposed CMV algorithm maintains one-copy serializability of the file in de-

centralized and unstructured P2P systems, such as Gnutella, in which no peer has a

global view of the system. The details of CMV are described in the following sections.

6.1.1 Logical Structure of RPs

In the CMV algorithm, there are three types of RPs: (1) virtual RPs (or VRP)

executing the role of the virtual server (or VS); (2) HRPs using push-based file consistency

maintenance scheme; and (3) LRPs using pull-based file consistency maintenance scheme.

97
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Figure 6.1 shows a logical structure of these RPs, where 1-6 are VRPs, 7-9 are HRPs,

and 10-15 are LRPs.
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Figure 6.1 Logical Structure of RPs in the CMV Algorithm.

Each RP has the ID and IP address information of all VRPs used for pulling the

VS. The VRPs are selected from the highly trusted [20] [32] [47] [65] and reliable RPs

and can be dynamically changed. Each online VRP maintains a list of other online

VRPs with a view to use this information for reducing communication costs associated

with file consistency maintenance. The information of all online HRPs is recorded in a
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dynamically maintained list by the VRPs. An LRP (or HRP) can join (or leave) the

push list when the cost of file consistency maintenance after the join (or leave) event is

less than the current cost.

6.1.2 Algorithm Description

The execution of the CMV algorithm in VRPs, HRPs and LRPs are described by

the procedures in Figures 6.2, 6.3 and 6.4, respectively.

6.1.2.1 The VRP Procedure

When a VRP initiates an update or is selected as the master VRP (i.e., in charge

of committing the update to the VS) by an update initiating RP, the VRP first checks

whether the file is being updated by another RP or not. If so, the VRP cannot commit

the update until the last update is finished. Then the VRP sends a ready-to-commit

message to each online VRP. If the VRP gets an agree-to-commit message back from

every other online VRP, the update is ready to be committed. if the file is not updated

by itself, the VRP first gets the updated file from the update initiating RP. Then the

updated file is pushed to all online VRPs. Finally, the VRP probes all HRPs. The VRP

pushes the updated file to each online HRP. Otherwise, the HRP is removed from the

push list. After the update is successfully committed, an update completed message is

sent back to the update initiating RP, and if the push list is changed, a message is sent

to each online VRP to update the push list. If a write-write conflict message is received

from an online VRP, the conflict information is sent back to the update initiating RP. All

the conflicting updates are serially done based on the update generation time through

all update initiating RPs, after which the last updated file is committed to the VS.
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Procedure for VRP:
fg = 0: flag bit for detecting write-write conflict
/*0: no conflict and 1: existing conflict */
rtc: ready-to-commit atc: agree-to-commit
IF (Initiating an update and ready to commit

OR selected as the master VRP by an RP)
IF (fg == 1) /* the file is being updated by another RP */

Wait till the update finished
Set fg = 1 and send an rtc message to each online VRP
IF (Receive an atc message from every online VRP)

Push the updated file to all online VRPs
Set fg = 0
FOR (Each HRP)

IF (It is online )
Send the updated file

ELSE
Remove the HRP from the push list

IF (The push list is changed)
Send a message to each online VRP to update the push list

ELSE /* resolve the write-write conflict */
IF (The update is from the other RP)

Send the conflict information to that RP
ELSE

The file is updated serially through communication with other
update initiating RPs

IF (Get an rtc message)
IF (fg == 0)

Record the information of the master VRP
Send an atc message back and set fg = 1

ELSE /* find a write-write conflict */
Send a write-write conflict message back

IF (Get an updated file from a master VRP)
Update the replicated file and set fg = 0

IF (Rejoin the system from offline)
Pull an online VRP to join the VS

Figure 6.2 Procedure for VRP.

When a VRP gets a ready-to-commit message, it first checks the write-write conflict

bit. If no conflict is detected, an agree-to-commit message is sent back. Otherwise, a

write-write conflict message including the conflict information is sent back. When the
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VRP receives an updated file from the master VRP, it updates the replicated file and

resets the write-write conflict bit. If the VRP is rejoining the system, it needs to pull an

online VRP to reconcile the file, the push list and the online VRP list. If any VRP in

the online list is offline, the VRP sends the corresponding information to all other online

VRPs to update the online list.

Procedure for HRP:
IF (Initiating an update and ready to commit)

Probe an online VRP as the master VRP
IF (Receive an atc message from the master VRP)

Send the updated file to the master VRP
IF (Receive a write-write conflict message)

Communicate with other update initiating RPs and update
the file serially

IF (Receive an updated file from the VS)
Update the replicated file

IF (Rejoin the system from offline)
Pull an online VRP to reconcile the file and
the information of VS, and join the push list

Figure 6.3 Procedure for HRP.

6.1.2.2 The HRP Procedure

When an HRP is ready to commit an update, it first probes an online VRP as the

master VRP for the update. If an agree-to-commit message is received from the master

VRP, the HRP commits the update and sends the updated file to the master VRP. If a

write-write conflict is detected, the HRP contacts all other update initiating RPs. The

updates are done serially based on the update generation time. When the HRP receives

an updated file from the VS, the replicated file is updated. When the HRP rejoins the
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system, it sends a message to the VS to join the push list and reconciles the status of

the file and the information of the VS.

Procedure for LRP:
IF (Initiating an update and ready to commit)

Probe an online VRP as the master VRP
IF (Receive an atc message from the master VRP)

Reconcile the replicated file
Commit and send the updated file to the master VRP

If (Receive a write-write conflict message)
Update the file serially through communication with all other
update initiating RPs

IF (Receive a file query)
Pull an online VRP to reconcile the status of the file
and the VS, then answer the query

IF (Rejoin the system)
Pull the VS to refresh the information of the VS

Figure 6.4 Procedure for LRP.

6.1.2.3 The LRP Procedure

When an LRP is ready to commit an update, it first probes an online VRP as the

master VRP for the update. If an agree-to-commit message is received from the master

VRP, the LRP first reconciles the file. The rest update committing process is the same

as that of an HRP. When an LRP gets a file query, it answers the query after checking

with the VS. If the file is updated, the updated file is retrieved. For each reconnection,

the LRP pulls an online VRP to refresh the information of the VS.
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6.1.2.4 RP Pull Procedure

When an RP comes back online, it needs to pull the VS to reconcile the information

of the VS and the status of the file. The backup RP first probes all possible VRPs one

by one through the recorded information. If an online VRP is found, the corresponding

information is synchronized and the pull process is finished. If no online VRP can be

probed, the RP must start a flooding search because there may exist some online VRPs

whose information is not maintained by the RP or whose IP addresses have changed.

6.1.3 File Consistency Maintenance

The CMV algorithm uses a lazy-master copy replication model to maintain one-

copy serializability of the file. All updates are first accepted by the VS, and then pushed

to all possible online HRPs. Hence, the replicas in all online VRPs and HRPs are

synchronized. Any file query from these RPs is valid. An LRP may have a stale replica,

but any file query from it must be reconciled from the VS and thus guarantees the file

consistency. If a VRP rejoins the system, it needs to reconcile the replicated file from

another online VRP. This ensures the replicated file in a backup VRP to be consistent.

A backup HRP also needs to reconcile the replicated file and then joins into the push

list.

The above description assumes the VS is always on the system. If no VRP is online,

the VS fails. No update can be committed until the VS is recovered. The VS recovery

process is described next.
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6.1.4 Failure Handling

First we discuss the master VRP recovery. If the master VRP goes offline during the

update process, the update may not be successfully committed. Hence, a time threshold

is set. If the update initiating RP has not received an update completed message from the

master VRP within the threshold time, it probes the master VRP again. If the master

VRP is still online, it sets another threshold time waiting for the update completed

message. Otherwise, it immediately probes another online VRP to commit the update.

This procedure is repeatedly executed until the update is successfully committed.

Next let us explain how to handle virtual server recovery. If all VRPs are offline,

the virtual server goes into the fail state. In this case, no update can be committed and

no file access from LRPs can be accepted. However, the file accesses from online HRPs1

are accepted because an HRP has the newest version of the file, and no new update can

be accepted when the VS is in the fail state.

The VS comes back when any VRP rejoins the system. The rejoining VRP can

detect the VS in the fail state because it cannot find another online VRP. If two VRPs

come back online at the same time, they can probe each other. But neither of them has

valid information of the push list and online VRP list, thus they can detect the VS in

the fail state. A VS recovery message including the IP address and the file version of the

backup VRP is broadcast to the system. Each HRP must send a message to the VRP

to join the push list after it gets the VS recovery message. If an HRP has a more recent

version of the file, the VRP reconciles the file from that HRP. An LRP, which has a more

recent version of the file than that of the backup VRP, needs to contact the backup VRP.

The replicated file of the VRP is synchronized with the most recent version among all

1A backup HRP that fails to probe the VS is considered as an LRP, and cannot accept file access.
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online HRPs and LRPs. If all RPs with the most recent version of the file are offline, the

most recent update cannot be viewed in the system and considered to be aborted. When

an RP with the most recent updated file comes online, it needs to redo the update and

commit the update into the system again.

The recovery cost can be very high if the VS enters the fail state even for a short

period of time. Thus, a high availability of the VS is critical to the performance of

the CMV algorithm. However, a VS with high availability needs more VRPs and incurs

additional maintenance costs. The performance analysis is carried out in the next section

with an objective to determine the parameters for optimal performance of the CMV

algorithm.

6.1.5 Virtual Server Construction and Maintenance

The number of VRPs must be large enough to provide a highly available VS. When

a file is initiated by a peer, a certain number of peers (analyzed in the next section) must

be selected as the VRPs to form a VS. These VRPs can be chosen by applying replication

rules [18]. An RP with high trust value has more chance to be selected. Any selected

peer can accept or reject to be a VRP depending on its traffic load, local buffer space,

etc.

After the VS of a file is constructed, the file can be searched and replicated by

other peers. If a more reliable peer replicates the file, that peer should be selected to be

a VRP to enhance the VS availability. On the other hand, the replicated file in a VRP

may be replaced by other more useful files, and hence the RP should leave from the VS.

Thus the VS should be dynamically managed.
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When a VRP decides to leave the VRP list, it selects an online HRP with high

trust value as the new VRP. Then the information of this exchange is sent to all online

VRPs which in turn update the corresponding information. All offline VRPs miss the

information but will be informed when they synchronize the VS information from an

online VRP. The next updated file associated with the newest information of the VS

will be pushed to all HRPs. An LRP gets this information when it connects to the VS.

The VRP with changed IP address has the same effect, the changed IP address must be

informed to all RPs so that they can update the corresponding information.

A VRP may permanently leave the system without notice. Such VRPs should

be removed from the VS to enhance the VS availability. To handle this case, the last

appearing time for each VRP is recorded by all VRPs (managed in the same manner as

its IP address). If a VRP does not appear in the system over a period time (e.g., one

day), it is removed from the VS and replaced by a new VRP.

If the VRPs and/or their IP addresses are changed too fast, an RP may fail to probe

an online VRP through the maintained information of the VS. If so, a flooding search

is needed to probe an online VRP. This significantly increases the number of overhead

messages for file consistency maintenance. The members of the VS should be slowly

changed so that an RP has very high probability to successfully probe an online VRP

using the maintained information.

6.2 Performance Modeling

One critical concern of the CMV algorithm is the number of VRPs. If the number

is too small, the VS may go down, thus resulting in a significant VS recovery cost. If the

number is too large, the costs of committing updates and maintaining the VS are high.
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An analytical model is derived in this section to determine the optimal number of VRPs

under various system conditions.

6.2.1 Parameters and Notations

In our analytical model, all RPs are assumed to be independent. The file update

and access, as well as the RP process for going online and offline are assumed to follow

Poisson distribution. The file access and update are only from the online RPs. The

parameters and notations are defined below:

• Nv: number of VRPs

• Nh: number of HRPs

• Nl: number of LRPs

• N : total number of RPs, i.e., N = Nv+Nh+Nl

• P on
i : online probability of RPi

• P off
i : offline probability of RPi (i.e., P off

i = 1− P on
i )

• P cIP
i : probability of RPi changing its IP address at each reconnection

• P vf : probability of the VS in fail state

• P p
i : probability of RPi successfully pulling an online VRP using the maintained

information

• T c
i : on-off cycle time for RPi

• T vf : average time of a VS in fail state

• αi: file update arrival rate from RPi during its online period

• α: file update arrival rate of the system (α =
∑N

i=1 αiP
on
i )

• λi: file access arrival rate of RPi during its online period

• λ: total file access rate in the system (λ =
∑N

i=1 λiP
on
i )
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• βi: arrival rate of RPi coming online from offline (βi = 1/P off
i T c

i )

• Cfld: cost of search of an online VRP using flooding method

• Cbrd: cost of broadcasting a message in the system

• Cp
i : cost of each pulling process by RPi

• Cr: cost of the VS recovery

• Hv
i : number of overhead messages per unit time of V RPi maintaining the file

• Hh
i : number of overhead messages per unit time of HRPi maintaining the file

• H l
i : number of overhead messages per unit time of LRPi maintaining the file

• H: total number of overhead messages per unit time in the system for maintaining

the file ( H =
∑Nv

i=1 Hv
i +

∑Nv+Nh

i=Nv+1 Hh
i +

∑N
i=Nv+Nh+1 H l

i )

• F vh
i : file retrieval rate of RPi as a VRP or an HRP

• F l
i : file retrieval rate of LRPi

• F : total file retrieval rate in the system (F =
∑Nv+Nh

i=1 F vh
i +

∑N
i=Nv+Nh+1 F l

i )

6.2.2 Performance Analysis

In our model, there are a total of N RPs in the system. Among them, Nv are

VRPs, Nh are HRPs and are Nl LRPs. Without loss of generality, if i ≤ Nv, we assume

the RPi is a VRP; if Nv < i ≤ Nv+Nh, it is an HRP; otherwise, it is an LRP. The on-off

cycle time, T c
i , of RPi is defined as the interval between its two successive rejoining time.

Because the effects of a VRP leaving the VRP list are the same as those due to IP address

change, we only consider the probability of its IP address change.

If all VRPs are offline, the VS is down, and therefore the probability of the VS in

fail state is given by:
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P vf =
Nv∏
i=1

P off
i (6.1)

If the VS is in fail state, it recovers when any VRP comes online. The average time

of the VS in fail state is:

T vf =

∫ ∞

0

te−
PNv

i=1 βitdt =
1∑Nv

i=1 βi

(6.2)

The probability of successfully pulling an online VRP is critical to the performance

of the CMV algorithm. Each RP maintains the information of all VRPs, the RP can

randomly pull these VRPs one by one, and the process continues until an online VRP

is pulled. For a VRP, it cannot be successfully pulled by the RP if one of the following

two cases occurs: (1) the VRP is offline; or (2) the VRP is online but with an IP address

different from that recorded by the RP. Moreover, RPi pulls the VS at least once in each

of its on-off cycle to get the newest VS information.

Let nij denote the number of on-off cycles of V RPj between two successive pull

times of RPi. Then

nij = T c
i /T c

j (6.3)

In each on-off cycle, V RPj changes its IP address with probability P cIP
j . Then the

probability of RPi successfully pulling an online VRP through recorded information is

given by,

P p
i = 1−

Nv∏

j=1,j 6=i

P u
ij (6.4)
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where P u
ij is the probability of RPi for unsuccessfully pulling V RPj as an online VRP. It

is given by:

P u
ij = P off

j + P on
j [1− (1− P cIP

j )nij ] (6.5)

If no online VS can be pulled through the recorded information, an RP will try to

pull one through flooding search which costs Cfld messages. Thus the cost of each pull

process including these two steps is computed as:

Cp
i =

Nv−1∑
j=1

j(1− P u
ij)

j−1∏

k=1

P u
ik + Nv

Nv−1∏

k=1

P u
ik + (1− P p

i )Cfld (6.6)

If a VRP comes online during the period the VS is in fail state, the VS is recovered.

Also a VS-recovery message including the VRP’s information as well as the file version

are broadcast to the system. The online HRPs as well as LRPs that have more recent

version of the file need to contact the VRP. Then the VS recovery cost is upper bounded

by:

Cr = Cbrd +
N∑

i=Nv+1

P on
i (6.7)

Now we calculate the number of overhead messages for file consistency maintenance.

A back up VRP needs to pull another online VRP to rejoin the VS. If an online VRP is

found, the rejoining VRP retrieves the online VRP list and the push list, reconciles the

file status and the information of the VS. Then a message is sent to each online VRP

for joining the online list. If some VRPs on the online list have gone offline, an extra

message is sent to inform all other online VRPs to remove these offline VRPs from the

list. In this case, two messages are needed for each online RP.
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If the VS is in fail state, the VRP broadcasts a VS-recovery message in the system

to recover the VS at a cost of Cr. For each file update, each online VRP receives a read-

to-commit message and sends an agree-to-commit message back. Moreover, if the push

list is changed, another message is incurred to update the push list. In summary, each

online VRP incurs up to 3 messages for each update commitment. When the updates

are in conflict, extra communication messages are needed to resolve the conflict through

all conflicting RPs. However, only the final updated file is pushed to the VRPs, thus

reducing the number of messages to transmit the updated file. Based on this observation,

we ignore the write-write conflict cost in our analysis. Then, Hv
i is obtained as:

Hv
i =

1

T c
i

[Cp
i + 2(1− P vf )

Nv∑
j=1

P on
j + P vfCr] + 3αP on

i (6.8)

An HRP pulls the VS when it rejoins the system or updates the file. For each

rejoining, a message is sent to each online VRP to update the push list. Hence, Hh
i is

given by:

Hh
i = αiP

on
i Cp

i +
1

T c
i

(Cp
i +

Nv∑
j=1

P on
j ) (6.9)

For each file access or update from an LRP, the LRP must pull an online VRP

to reconcile the file status or commit the update. For each reconnection, the LRP also

needs to pull the VS to get the newest VS information. Then H l
i is given by:

H l
i = [(αi + λi)P

on
i +

1

T c
i

]Cp
i (6.10)

The total number of message for file consistency maintenance per unit time in the

system is:
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H =
Nv∑
i=1

Hv
i +

Nv+Nh∑
i=Nv+1

Hh
i +

N∑
i=Nv+Nh+1

H l
i (6.11)

If RPi is a VRP or HRP, and also online, it receives the updated file for each

update. When RPi rejoins in the system, the replicated file is retrieved if the file was

updated during its offline time. The file retrieval rate for RPi is:

F vh
i = αP on

i +
1

T c
i

(1− e−αP off
i T c

i ) (6.12)

The file retrieval rate of LRPi is the minimum of the file access rate and file update

rate. Note that if the file is updated when LRPi is offline, the next access needs to

retrieve the file, thus resulting in additional update rate of (1− e−αP off
i T c

i )/T c
i . Then the

file retrieval rate of LRPi is given by:

F l
i = min{λiP

on
i , αP on

i +
1

T c
i

(1− e−αP off
i T c

i )} (6.13)

The total file retrieving rate in the system is

F =

Nv+Nh∑
i=1

F vh
i +

N∑
i=Nv+Nh+1

F l
i (6.14)

Equations (6.1) - (6.14) represent the file maintenance cost of RPs under various

system conditions. The file maintenance cost of an RP is determined by the file access

and update rate, on-off cycle and the online probability of the RP, the file update rate

in the whole system and the probability of the VS in fail state. If the file size equals s

overhead messages, the total communication costs per unit time including both overhead

messages and the updated files for an HRP or LRP are given by Mh
i and M l

i respectively,

as shown below:
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Mh
i = Hh

i + sF vh
i (6.15)

M l
i = H l

i + sF l
i (6.16)

The file maintenance cost for RPi as an LRP or an HRP is dependent on Mh
i

and M l
i . Considering only the file maintenance cost2, RPi chooses to be an LRP when

Mh
i > M l

i , and an HRP when Mh
i ≤ Ml

i. The file update rate in the whole system and the

probability of the VS in fail state can be measured by the VS. When a peer first fetches

a file, it retrieves the corresponding parameters from the VS and decides to be an HRP

or LRP depending on the computed file maintenance cost. The file maintenance cost can

be periodically calculated based on the most recent parameters of the system.

From Equations (6.12) - (6.14), we know that the number of updated files retrieved

by an RP is the same whether it is a VRP or an HRP. In other words, the number

of updated files retrieved does not depend on the number of VRPs. Thus the value of

Nv is determined by minimizing the number of overhead messages in the system, i.e.,

∂H/∂Nv = 0. To derive an explicit expression for Nv, we assume that there are three

types of RPs, each type having the same parameters. For example, the first type is

VRP, each with the same P on
v , P cIP

v , T c
v , βv, αv and λv. The second type is HRP, the

corresponding parameters being specified with the subscript h, such as P on
h and so on.

The third type is LRP, the parameters of which are indicated with the subscript l. Based

on these, Nv is determined by the following equations,

2The other factors, such as file access delay, may be considered more important for an RP to be an

HRP or LRP in real systems. We do not discuss these issues because our focus is on the file maintenance

cost.
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Hv
v + Nv(

∂Hv
v

∂Nv

) + Nh(
∂Hh

h

∂Nv

) + Nl(
∂H l

l

∂Nv

) = 0 (6.17)

where

∂Hv
v

∂Nv

=
1

T c
v

[2P on
v (1− P vf (1 + Nv ln(P off

v ))) +

CrP vf ln(P off
v ) + (P u

v )Nv ln(P u
v )(

−1

1− P u
v

+
Cfld

P u
v

)] (6.18)

∂Hh
h

∂Nv

= (αhP
on
h +

1

T c
h

)(P u
h )Nv ln(P u

h )× (
−1

1− P u
h

+ Cfld) +
P on

v

T c
i

(6.19)

∂H l
l

∂Nv

= ((αl + λl)P
on
l +

1

T c
l

)× (P u
l )Nv ln(P u

l )(
−1

1− P u
l

+ Cfld) (6.20)

where ”ln” stands for natural logarithm.

6.3 Numerical Results

The numerical results are presented in this section to quantify the performance of

the CMV algorithm. The characteristics of RPs in the Gnutella system are measured

in [6] and [55]. The results in [55] show that about 60% peers have 0.2 or less online

probability, and 10% peers have more than 0.8 online probability; Moreover, about 50%

peers have 60 minutes or less and 10% peers have 300 minutes or more in each online

session. The IP address of a peer may be changed for each rejoining; the results in [6]

indicate that about 40% peers changed their IP address in one day and about 50% in
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seven days. The parameters of RPs in the numerical results are selected based on these

measurements.

The optimal number of VRPs (Nv) varies with different system conditions, we

assume all updates are generated by HRPs and LRPs to maintain a constant file update

rate (i.e., α = NhαhP
on
h + NlαlP

on
l = constant) in the whole system. We set Cbrd =

1, 000, 000 and Cfld = 10, 000 messages. A flooding search costs fewer messages because

multiple VRPs may be online with changed IP address. Moreover, an online HRP may be

searched and hence a more recent information of the VS can be obtained, thus resulting

in reduced search cost. The performance impacts of file update arrival rate (α), VRP

online probability (P on
v ), the probability of VRP changing its IP address for each rejoining

(P cIP
v ) and number of RPs (i.e., Nh + Nl) are studied in the following.

6.3.1 Impact of File Update Rate

In this case, we assume that all RPs except VRPs are the same. The total number

of messages per query (MPQ) including both overhead and file retrieval messages are

calculated by assuming that all these RPs are HRPs or LRPs, respectively. The MPQ

for a system is defined as M = (
∑Nv

i=1 M v
i +

∑Nv+Nh

i=Nv+1 Mh
i +

∑N
i=Nv+Nh+1 M l

i )/λ, where

M v
i = Hv

i + sF vh
i . If RPi is not a VRP, we set λi = 0.2 per minute (min−1), T c

i = 300

minutes (min), P on
i = 0.25 and the number of RPs as 4000. The parameters of VRPs

are set as P on
v = 0.7, P cIP

v = 0.4, T c
v = 330 (min), and λv = 0.2 (min−1). Each RP has

the same update rate and the total update rate in the system is α. The file size can be

different, we set s = 5 and 50 representing a small and middle sized file. For very large

files, the update description can be propagated, thus the cost of propagating update for

large file is the same as that of a small file.
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Table 6.1 Optimal Nv vs α

α (min−1) 0.01 0.1 1 10
s = 5 LRP 27 26 23 19

HRP 16 16 15 15
s = 50 LRP 27 26 23 19

HRP 16 16 15 14

Table 6.1 shows the optimal Nv for various file update rates (α) in a system that

all RPs except VRPs are HRPs or LRPs . The optimal Nv is less than 30 in all update

rates. As α increases, the updates in the system also increase, and hence the optimal

Nv decreases to reduce the overhead messages for each update. The optimal Nv for a

system with LRPs is larger than that of a system with HRPs. Because the pull list needs

to be updated for each HRP rejoining, the optimal Nv is decreased to save the overhead

messages for each HRP rejoining. The file size has no effect on the optimal Nv which is

determined by minimizing overhead messages.

Table 6.2 Messages per query (MPQ) vs α

α (min−1) 0.01 0.1 1 10
s = 5 LRP 3.00 5.35 8.11 13.05

HRP 1.52 3.85 26.74 255.53
s = 50 LRP 7.99 31.28 56.75 87.99

HRP 6.49 29.61 257.12 2530.59

Table 6.2 presents the total number of messages per query (MPQ) with different

file update rates (α). The results show that the push based scheme is more efficient for

slow updating file while the pull based scheme is more efficient for fast updating files.

For slow updating files, an HRP has multiple file accesses on each updated file. These
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file accesses are directly answered, thus saving the file reconciling messages as compared

to file accesses from an LRP. When the update rate is larger than the file access rate,

some updated file pushed by the VS may not be accessed, thus making the push based

scheme inefficient compared with the pull based scheme. The MPQ increases for larger

files (larger s) due to the increased cost of propagating the updated files. In summary,

an RP selects to be an LRP or HRP depending on the file update and access rates.

6.3.2 Impact of Online Probability of VRPs

In the rest of this chapter, we assume a system with both HRPs and LRPs, and the

parameters are set as: P on
l = 0.2, P on

h = 0.4, T c
l = 270 (min), T c

h = 300 (min), λl = 0.05

(min−1), λh = 0.2 (min−1), and s = 10. The parameters of the VPRs are set as T c
v = 330

(min−1), λv = 0.5 (min−1). Two different file update arrival rates (α = 0.002 and 0.2

min−1) are used, both LRPs and HRPs have the same file update arrival rate during

their online time. The other parameters may change in different cases. Here, we set

P cIP
v = 0.3, Nh = 500 and Nl = 4000. We use the number of overhead messages per

query (OHPQ) and the number of retrieved files per query (FPQ) as two metrics. They

are defined as OHPQ = H/λ, and FPQ = F/λ. The parameter setup ensures that the

file maintenance cost of an HRP and LRP is minimized based on the Equations (6.15)

and (6.16).

Figure 6.5 shows optimal Nv as a function of P on
v . We observe that the optimal

value of Nv decreases from about 33 to approximately 10 as P on
v increases from 0.4 to

0.9. This is due to the fact that a VS composed of a smaller number of VRPs with larger

P on
v can provide the same availability as a VS composed of larger number of VRPs with

smaller P on
v . The file update rate has very little impact on the optimal Nv in this case.
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This is because the total update rate is much smaller than the total file access rate. This

is true in many database and file sharing systems.
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Figure 6.5 Optimal Number of VRPs vs VRP Online Probability.

From Figure 6.6, we can see that the FPQ is only dependent on the file update rate.

A fast updating file corresponds to a larger FPQ, because the replicas of a fast updating

file become stale quickly. Subsequently, the file accesses from these replicas need to be

retrieved from the VS, thus resulting in a larger FPQ. The OHPQ is decreased from

approximately 2.5 to just above 1 as P on
v increases from 0.4 to 0.9. A larger P on

v leads

to a smaller value of optimal Nv and hence smaller OHPQ. The results indicate that the

overhead messages for file maintenance are very low in the CMV algorithm.
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Figure 6.6 Overheads and File Retrieval Per Query vs VRP Online Probability.

6.3.3 Impact of Probability of VRP Changing its IP Address

We set P on
v = 0.7, and all other parameters are the same as in the previous case.

In our model, the effects of VRPs leaving the VRP list are considered as equivalent to

the IP address changing. Thus, we vary the value of P cIP
v from 0.1 to 0.5 in this study.

We observe that P cIP
v has negative impact on the performance of the CMV algo-

rithm as opposed to P on
v . The VS composed of VRPs with faster changing IP address

needs larger Nv and results in higher value of OHQP. The optimal Nv is about 13 for

P cIP
v = 0.1 and increases to about 24 for P cIP

v = 0.5. The average number of online

VRPs increases as Nv increases, thus resulting in more overhead messages for each file

update and hence a larger OHPQ. However, FPQ has no such effect, and only depends

on the update rate.
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Figure 6.7 Optimal Number of VRPs vs IP Address Change rate.
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Figure 6.8 Overheads and File Retrieval Per Query vs IP Address Change Rate .

6.3.4 Impact of the Number of RPs

The impacts of the number of RPs are studied here. P on
v is set as 0.7, and all other

parameters are the same as in Section 6.3.2.
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Figures 6.9 and 6.10 show that the CMV algorithm has very good scalability in

terms of the number of RPs. The performance of the CMV algorithm is the same when

the number of RPs increases from 4,500 (4,000 LRPs and 500 HRPs) to 45,000 (40,000

LRPs and 5000 HRPs). When the number of RPs reduces to 450 (400 LRPs and 50

HRPs), the optimal value of Nv, OHPQ and FPQ have very small difference. For a large

number of RPs in the system, the effect of VRPs is insignificant. However, the effect is

significant when the number of VRPs is close to the number of HRPs and LRPs.

In the above cases, P vf is in the order of 10−9 or less and T vf is only a few (<10)

minutes for all parameter ranges. These results show that the CMV algorithm is efficient

to provide one-copy serializability file consistency for decentralized and unstructured P2P

networks.

6.4 Summary

File consistency is a critical problem in P2P systems that are subjected to continual

file updates. In this chapter, we proposed a novel algorithm for file Consistency Main-

tenance through Virtual servers (CMV) in decentralized and unstructured P2P systems.

In the CMV algorithm, each dynamic file has a VS composed of multiple RPs. The

virtual server RPs (or VRPs) cooperatively maintain the master copy of a file. In order

to maintain one-copy serializability, any update can only be accepted through the VS.

Mathematical analysis is carried out to determine the optimal number of VRPs and the

overhead messages for file maintenance under various system parameters. The results

indicate that the CMV algorithm is an efficient file consistency maintenance algorithm

and can be used in P2P based electronic business systems such as online auctions and

online games.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation addressed the issue of consistent information sharing in wireless

mobile and Peer-to-Peer (P2P) networks.

To improve mobile cache performance, we proposed a Scalable Asynchronous Cache

Consistency Scheme (SACCS). The performance of SACCS is evaluated analytically and

experimentally. The results show that SACCS is a highly scalable, efficient, and low

complexity algorithm, and provides weak cache consistency with a small probability of

stale cache hit under unreliable invalidation report (IR) broadcast environments.

Strictly speaking, SACCS is a hybrid of stateful and stateless algorithms. However,

unlike stateful algorithms, SACCS maintains only one flag bit for each data object in

mobile support station (MSS) to determine when to broadcast the IRs. On the other

hand, unlike the existing synchronous stateless approaches, SACCS does not require

periodic broadcast of IRs, thus significantly reducing IR messages that need to be sent

through the downlink broadcast channel. The SACCS inherits the positive features of

both stateful and stateless algorithms.

To design effective cache consistency schemes and achieve the optimized cache per-

formance in multi-cell wireless networks, we introduced three strategies including: 1)

homogeneous IR; 2) inhomogeneous IR without roaming check; and 3) inhomogeneous

IR with roaming check. These strategies are evaluated under various multi-cell envi-

ronments. Our simulation results revealed that the homogeneous IR strategies perform

123
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better for slow updating data objects, fast roaming MUs and small systems whereas

the inhomogeneous IR strategies are more efficient for fast updating data objects, slow

roaming MUs and large systems. We also derived two consistency maintenance cost

functions to determine the cost of maintaining data objects locally and globally. Based

on these two cost functions, a Dynamic Scalable Cache Consistency Scheme (DSACCS)

is proposed for wireless cellular networks. In the DSACCS scheme, the IR of a data

object is broadcast globally or locally depending on which action results in a minimum

consistency maintenance cost. The simulation results show that DSACCS outperforms

three extended cache strategies for various multi-cell environments.

To effectively maintain probabilistic file consistency in decentralized and unstruc-

tured P2P networks, we proposed a novel algorithm, called Update Propagation Through

Replica Chain (UPTReC). In UPTReC, each file has a logical replica chain composed of

all RPs and each RP has a partial knowledge of the chain. When an RP updates the

file, it pushes the update to all possible online RPs through the replica chain. When an

offline RP gets reconnected, the file status is synchronized by pulling an online RP. An

analytical model of the proposed algorithm is derived. The performance comparison of

UPTReC with the Rumor algorithm shows that UPTReC reduces up to 70% overhead

messages to propagate updates with a smaller query ratio for highly updating files.

To provide strong file consistency in decentralized and unstructured P2P net-

works, we proposed an algorithm for file Consistency Maintenance through Virtual servers

(CMV). In the proposed approach, each dynamic file has a virtual server (VS) composed

of multiple RPs. The VRPs cooperatively maintain the master copy of a file. Any up-

date can only be accepted through the VS to maintain the one-copy serializability. We

analytically determine the optimal number of VRPs and the overhead messages for file
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maintenance under various system parameters. The results indicate that CMV is an

efficient file consistency maintenance algorithm for decentralized and unstructured P2P

systems.

7.1 Future Work

The future research works related to the dissertation include the data management

issues in mobile P2P networks and trust management in P2P networks.

Data management in mobile peer-to-peer networks

Wireless mobile P2P networks inherit all the challenges in wireless cellular and P2P

networks, such as limited bandwidth and battery power, frequent disconnections and dy-

namic IP addresses. Moreover, the network topology changes from time to time. Thus,

providing data consistency for mobile P2P networks is more challenging than that for

traditional wired P2P networks. Our future plan on this topic is to develop design prin-

ciples for data consistency management in wireless mobile P2P networks.

Trust Management in Peer-to-Peer networks

Anonymity is one of the most attractive features of P2P networks. However, this feature

makes the network more vulnerable to malicious peers. To protect the system, some

P2P systems introduce the community-based reputations to estimate the trust value of a

peer which is accessed by other peers in the system. A high trust value indicates a good

reputation of a peer. Using the trust value, a malicious peer can be identified. The trust

value can effectively protect the system by identifying the malicious peers. The trust
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value is a dynamic file and must be efficiently and accurately maintained. Our research

will explore efficient trust management schemes in P2P networks.



REFERENCES

[1] K. Aberer, “P-Grid: A Self-organizing Access Structure for P2P information Sys-

tems”. In Proceedings of the Sixth International Conference on Cooperative Infor-

mation Systems, pp 179-194, 2001.

[2] K. Aberer, Z. Despotovic, “Managing Trust in a P2P Information System”. In Pro-

ceedings of the 10th International Conference on Information and Knowledge man-

agement, pp 310-317, ACM press 2001.

[3] Y. Bao, R. Alhajj and K. Barker, “Hybrid Cache Invalidation Schemes in Mobile

Environments”. In Proceedings of IEEE/ACS International Conference on Pervasive

Services, pp 209-218, 2004.

[4] D. Barbara and T. Imielinksi,“ Sleeper and Workaholics: Caching Strategy in Mobile

Environments”. In Proceedings of the ACM SIGMOD Conference on Management

of Data, pp 1-12, 1994.

[5] P. Barford, M. Crovella,“Generating Representative Web Workloads for Network

and Server Performance Evaluation”. Proceedings of the ACM SIGMETRICS Con-

ference, pp 151-160, 1998.

[6] R. Bhagwan, S. Savage and G. M. Voelker, “Understanding Availability”. In Pro-

ceedings of the 2nd International Workshop on Peer-to-peer systems, pp 256-267,

2003.

127



128

[7] L. Breslau, P. Cao, J. Fan, G. Phillips and S. Shenker, “Web caching and Zipf-Like

Distributions: Evidence and Implications”. In Proceedings of IEEE INFOCOM, pp

126-134, 1999.

[8] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environ-

ments”. ACM Intl. Conf. on Computing and Networking (Mobicom), pp 200-209,

August, 2000.

[9] G. Cao, “On Improving the Performance of Cache Invalidation in Mobile Environ-

ments”. ACM/Kluwer Mobile Network and Applications, 7(4), pp 291-303, 2002.

[10] G. Cao, “Proactive Power-Aware Cache Management for Mobile Computing Sys-

tems”. IEEE Transactions on Computers, 51(6), pp. 608-621, 2002.

[11] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environ-

ments”. IEEE Transactions on Knowledge and Data Engineering, 15(5), pp. 1251-

1265, 2003

[12] P. Cao and C. Liu, “Maintaining Strong Cache Consistency in the World-Wide

Web”. In Proceedings of the International Conference on Distributed Computing

Systems, pp 12-21, 1997.

[13] M. Castro, P. Druschel, A. Ganesh, A. Rowstron and D. Wallach, “Secure Routing

for Structured Peer-to-peer Overlay Networks”. In Proceedings of the 5th Usenix

Symposium on Operating Systems Design and Implementation, 2002.

[14] Y. Chawathe, S. Ratnasamy, L. Breslau, N. lanham and S. Shenker, “Making

Gnutella-like Peer-to-Peer Systems Scalable”. In Proceedings of ACM SIGCOMM,

pp 407-418, 2003.

[15] X. Chen, S. Ren, H. Wang and X. Zhang, “SCOPE: Scalable Consistency Mainte-

nance in Structured P2P Systems”, In Proceedings of IEEE INFOCOM, 2005.



129

[16] A. Chockalingam, M. Zorzi, L. B. Milstein and P. Venkataram, “Performance of a

Wireless Access Protocol on Correlated Rayleigh-Fading Channels with Capture”.

IEEE Transaction on Communication, pp 644-655, 1998.

[17] I. Clarke, O. Sandberg, B. Wiley and T. Hong, “Freenet: a Distributed Anony-

mous Information Storage and Retrieval System”. In Sedigning Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and Unob-

servability, 2001.

[18] E. Cohen and S. Shenker, “Replication Strategies in Unstructured Peer-to-Peer Net-

works”. In Proceedings of the ACM SIGCOMM , pp 177-190, 2002.

[19] E. Cohen, A. Fiat and H. Kaplan, “Associative Search in Peer-to-Peer Networks:

Harnessing and Latent Semantics”. In Proceedings of IEEE INFOCOM, pp 1261-

1271, 2003.

[20] F. Cornelli, E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati, “Choosing Rep-

utable Servents in P2P network”. In of the International World Wide Web Confer-

ence, pp 376-386, 2002.

[21] A. Datta, M. Hauswirth and K. Aberer, “Updates in Highly Unreliable, Replicated

Peer-to-Peer Systems”. In Proceedings of IEEE ICDCS, pp 76-88, 2003.

[22] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, and J. Larson, “Epidemic Al-

gorithms for Replicated Database Maintenance”. In Proceedings of the 21th ACM

Symposium on Principles of Distributed Computing (PODC), pp 1-12, 1987.

[23] L. Feeney and M. Nilsson,“Investigating the Energy Consumption of a Wireless

Network Interface in an Ad hoc Networking Environment”. In Proceeding of IEEE

INFOCOM, pp 1548-1557, 2001.



130

[24] B. Gedik and L. Liu, “PeerCQ: A Decentralized and Self-Configuration P2P Infor-

mation Monitoring System”. In Proceedings of IEEE ICDCS, pp 490-499, 2003.

[25] J. Gray, P. Helland, P. O’Neil and D. Shasha, “The Dangers of Replication and a

Solution”. In of ACM SIGMOD, pp 173-182, 1996.

[26] http://www.napster.com.

[27] http://linuxreviews.org/news/2004/11/05-p2p.

[28] Q. Hu and D. K. Lee, “Cache Algorithms Based on Adaptive Invalidation Reports

for Mobile Environments”. Cluster Computing, 1(1), pp 39-50, 1998.

[29] S. Iyer, A. Rowstron and P. Druschel,“ Squirrel: A Decentralized Peer-to-peer Web

Cache”. In Proceedings of the 21th ACM Symposium on Principles of Distributed

Computing (PODC), pp 213-222, 2002.

[30] J. Jing, A. Elmagarmid, A. Heal, and R. Alonso. “Bit-Sequences: an Adaptive Cache

Invalidation Method in Mobile Client/Server environments”. ACM Mobile Networks

and Applications, 2(2), pp 115-127, 1997.

[31] A. Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani,“ A Strategy to Manage

Cache Consistency in a Distributed Mobile Wireless Environment”. IEEE Trans. on

Parallel and Distributed Systems, 12(7), pp 686-700, 2001.

[32] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The EigenTrust Algorithm for

Reputation Management in P2P Networks”. In Proceedings of International Word

Wide Web Conference, pp 536-543, 2003.

[33] B. Kemme and G. Alonso, “Don’t be Lazy, be Consistent: Postgres-R, a New Way

to Implement Database Replication”. In Proceedings of VLDB, pp 134-143, 2000.

[34] B. Knutsson, H. Lu, W. Xu and B. Hopkins, “Peer-to-Peer Support for Massively

Multiplayer Games”. In Proceeding of IEEE INFOCOM, pp 96-107, 2004.



131

[35] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, and D. Geels,

“Oceanstore: an Architecture for Global-Scale Persistent Storage”. In Proceedings

of ACM ASPLOS-IX, pp 190-201, 2000.

[36] J. Lan, X. Liu, P. Shenoy and K. Ramaritham, “Consistency Maintenance in Peer-

to-Peer File Sharing Networks”. In Proceedings of Third IEEE Workshop on Internet

Applications, 2002.

[37] D. Lee, W. Lee, J. Xu and B. Zhang, “Data Management in Location-dependent

Information Services: Challenges and Issues”. IEEE Pervasive Computing, 1(3), pp

65-72, 2002.

[38] D. Li and R. Cheriton, “Scalable Web Caching of Frequently Updatted Objects

Using Reliable Multicast”. In Proceedings of The USENIX Symposium on Internet

Technologies and Systems, October, pp 1-12, 1999.

[39] G.Y. Liu and G.Q. McGuire Jr, “A Mobility-Aware Dynamic Database Caching

Scheme for Wireless Mobile Computing and Communications”. Distributed and Par-

allel Databases, 4(5), pp 271-288, 1996.

[40] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication in Unstruc-

tured Peer-to-Peer networks”. In Proceedings of the 16th Annual ACM International

Conference on Supercomputing, pp 84-95, 2002.

[41] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map discovery”. Pro-

ceedings of IEEE INFOCOM, pp 1371-1380, 2000.

[42] E. Ogston and S. Vassiliadis, “A Peer-to-peer Agent Auction”. In Proceeding of

ACM International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pp 151-159, 2002.

[43] “Open Source Community, Gnutella”. In http://gnutella.wego.com, 2001.



132

[44] E. Pacitti, P. Minet and E. Simon, “Fast Algorithms for Maintaining Replica Con-

sistency in Lazy Master Replicated Databases”. In Proceeding of VLDB, pp 126-137,

1999.

[45] T. W. Page, R. G. Guly, J. S. Heidemann, D. Reiher, A. Goel, G. H. Kuenning,

and G. J. Popek, “Perspectives on Optimistically Replicated Peer-to-Peer Filing”.

Software-Practice and Experience, pp 155-180, 28(2), 1998.

[46] Y. Saito, C. Karamanolis and M. Mahalingam, “Taming Aggressive Replication in

the Pangaea Wide-Area File System”. In Proceedings of USENIX OSDI, 2002.

[47] S. Park, L. Liu, C. Pu, M. Srivatsa, J. Zhang, “Resilient Trust Management for Web

Service Integration”. In Proceedings of the 3rd IEEE International Conference on

Web Services, 2005.

[48] R. Powers, “Batteries for Low Power Electronics”. Proceedings of IEEE, pp 687-693,

83(4) 1995.

[49] T. S. Rappaport, Wireless Communication: Principles and Practice, Prince Hall,

1996.

[50] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable

Content-Addressable Network”. In Proceedings of ACM SIGCOMM, pp 161-172,

2001.

[51] V. Rodoplu and T. Meng, “Minimum Energy Mobile Wireless Networks”. IEEE

Journal on Selected Areas in Communications, pp. 1333-1344, 1999.

[52] A. Rowstron and P. Druschel,“ Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems”. International Conference on Distrib-

uted Systems Platforms (Middleware), 2001.



133

[53] M. Roussopoulos and M. Baker, “CUP: Controlled Update Propagation in Peer-to-

Peer Networks”. In Proceedings of the 2003 Annual USENIX Technical Conference,

June 2003.

[54] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-Peer Systems”. In Middle Ware, pp 329- 350, 2001.

[55] S. Saroiu, P. K. Gummadi and S. Gribble, “A Measurement Study of Peer-to-Peer

File Sharing Systems”. In Proceeding of SPIE Conference on Multimedia Computing

and Networking (MMCN), 2002.

[56] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications”. In Proceedings of

ACM SIGCOMM, pp 149-160, 2001.

[57] K. Tan, J. Cai and B. Ooi, “An Evaluation of Cache Invalidation Strategies in

Wireless Environments”. IEEE Trans. on Parallel and Distributed Systems, 12(8),

pp 789-807, 2001.

[58] Z. Wang, S. K. Das, H. Che and M. Kumar, “SACCS: Scalable Asynchronous

Cache Consistency Scheme for Mobile Environments”. In Proceedings of Interna-

tional Workshop on Mobile and Wireless Networks, pp 797-802, 2003.

[59] Z. Wang, S. K. Das, H. Che and M. Kumar, “Scalable Asynchronous Cache Consis-

tency Scheme (SACCS) for Mobile Environments”. IEEE Transactions on Parallel

and Distributed Systems, 15(11), pp 983-995, 2004.

[60] Z. Wang, M. Kumar, S. K. Das and H. Shen, “Investigation of Cache maintenance

Strategies for Multi-Cell Environments”. In Proceedings of 4th International Con-

ference of Mobile Data Management (MDM), pp29-44, 2003.



134

[61] Z. Wang, M. Kumar, S. K. Das and H. Shen, “Dynamic Cache Consistency Schemes

for Wireless Cellular Networks”. To appear to IEEE Transactions on Wireless Com-

munications, 2006.

[62] Z. Wang, M. Kumar, S. K Das and H. Shen, “Update Propagation Through Replica

Chain in Decentralized and Unstructured P2P Systems”. In Proceedings of IEEE

International Conference on Peer-to-Peer Computing, pp 64-71, 2004.

[63] Z. Wang, S. K Das, M. Kumar and H. Shen, “File Consistency Maintenance through

Virtual Servers in P2P Systems”. Technique Report, University of Texas at Arling-

ton, 2005.

[64] K. L. Wu, P. S. Yu and M.S. Chen, “Energy-Efficient Caching for Wireless Mobile

Computing”. In Proceedings of 20th International Conference on Data Engineering,

pp 336-345, 1996.

[65] Li Xiong and Ling Liu, “PeerTrust: Supporting Reputation-Based Trust for Peer-

to-Peer Electronic Communities”. IEEE Transactions on Knowledge and Data En-

gineering, 16(7), pp 843-857, 2004.

[66] J. Xu, X. Tang and D. Lee, “Performance Analysis of Location-Dependent Cache

Invalidation Schemes for Mobile Environments”, IEEE Transactions on Knowledge

and Data Engineering, 15(2), pp474-488, 2003.

[67] H. Yu, L. Breslau and S. Shenker, “A Scalable Web Cache Consistency Architec-

ture”. In Proceedings of the ACM SIGCOMM, pp 163-174, 1999.

[68] J. C. Yuen, E. Chan, K. Lam and H.W.Leung, “Cache Invalidation Scheme for

Mobile Computing Systems with Real-time Data”. SIGMOD Record, pp 34-39, 2000.



135

[69] J. Zhang, R. Izmailov, D. Reininger and M. Ott, “Web Cache Framework: Analytical

Models and Beyond”. In Proceedings of IEEE Workshop on Internet Applications,

pp 132-141, 1999.

[70] B. Zheng, J. Xu and D. Lee, “Cache Invalidation and Replacement Strategies for

Location-Dependent Data in Mobile Environments”. IEEE Transactions on Com-

puters, 51(10), pp 1141-1153, 2002.



136

Publications

1. Z. Wang, M. Kumar, S. K. Das and H. Shen, “Investigation of Cache maintenance

Strategies for Multi-Cell Environments”, In Proceedings of 4th International Con-

ference of Mobile Data Management (MDM), pp 29-44, 2003.

2. Z. Wang, S. K. Das, H. Che and M. Kumar, “SACCS: Scalable Asynchronous Cache

Consistency Scheme for Mobile Environments”, In Proceedings of International

Workshop on Mobile and Wireless Networks, pp 797-802, 2003.

3. H. Shen, M. Kumar, S. K Das and Z. Wang, “Energy-Efficient Caching and Prefetch-

ing with Data Consistency in Mobile Distributed Systems”, IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pp 67-76, 2004.

4. H. Shen, S. K Das, M. Kumar and Z. Wang, “ECOR: Energy Efficient Cooperative

Caching with Optimal Radius in Hybrid Wireless Networks”, IFIP Networking

Conference, pp 841-853, 2004.

5. Z. Wang, M. Kumar, S. K Das and H. Shen, “Update Propagation Through Replica

Chain in Decentralized and Unstructured P2P Systems”, In Proceedings of IEEE

International Conference on Peer-to-Peer Computing, pp 64-71, 2004.

6. Z. Wang, S. K. Das, H. Che and M. Kumar, “Scalable Asynchronous Cache Consis-

tency Scheme (SACCS) for Mobile Environments”, IEEE Transactions on Parallel

and Distributed Systems, 15(11), pp 983-995, 2004.

7. Z. Wang, H. Che, M. Kumar and S. K Das, “CoPTUA: Consistent Policy Ta-

ble Update Algorithm for TCAM without Table Locking”, IEEE Transactions on

Computers 53(12), pp 1602-1614, 2004.



137

8. H. Shen, M. Kumar, S. K Das and Z. Wang, “Energy-Efficient Data Caching and

Prefetching for Mobile Devices Based on Utility”, ACM Mobile Networks and Ap-

plications (MONET), Special Issue on Mobile Services, 10(4), pp 475-486, 2005.

9. Z. Wang, M. Kumar, S. K. Das and H. Shen, “Dynamic Cache Consistency Schemes

for Wireless Cellular Networks”, To appear in IEEE Transactions on Wireless Com-

munications, 2006.

10. Z. Wang, S. K Das, M. Kumar and H. Shen, “File Consistency Maintenance through

Virtual Servers in P2P Systems”, Technique report, University of Texas at Arling-

ton, 2005.



BIOGRAPHICAL STATEMENT

Zhijun Wang was born in Hunan, China. He received his Ph.D. degree in Computer

Science and Engineering from The University of Texas at Arlington in 2005 and his Master

degree in Electrical Engineering from the Pennsylvania State University in 2001. Before

he came to USA, he graduated from the Huazhong University of Science and Technology

in Physics major. His current research interests including data management in wireless

mobile and peer-to-peer networks, network processor, network security and distributed

systems.

138


