
 
 

 

1 

Prediction and Validation of Continuous Fiber Stiffened 

Plates Manufactured With Continuous Filament Fabrication  

by 
 

Nabeel Ahmed Khan 
 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements for the Degree of 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

May 2020 

 

  



 
 

 

2 

Acknowledgements 
 

Thank you Dr. Robert Taylor, for guiding me through my thesis research and helping me 

overcome many difficult and unforeseen challenges. Also, I must thank Dr. Ashfaq Adnan and 

Dr. Andrey Beyle for their support and feedback. Furthermore, I would like to thank my family, 

particularly my father Ludu Khan, who has supported me from the very beginning, both 

financially and via encouragement during difficult times.   

May 8, 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

3 

Abstract 

Prediction and Validation of Continuous Fiber Stiffened Plates 

Manufactured With Continuous Fiber Fabrication  

Nabeel Ahmed Khan, MS 
 

The University of Texas at Arlington, 2020 

 

 

Supervising Professor: Robert Taylor 

   The purpose of this thesis was to develop an analytical method for predicting the 

structural properties of continuous fiber stiffened plates, which was then validated both 

experimentally and via finite element analysis. The MarkForged Mark Two 3D printer 

enables parts to be printed with continuous carbon fibers embedded within them. A 

manufacturing process was developed for printing stiffened grids with our without skins, 

with continuous fiber reinforcement on the top and bottom of the stiffening ribs, which 

allows bending stiffness can be maximized. An orthotropic grid was printed using 

Continues Filament Fabrication (CFF), an additive manufacturing process that embeds 

reinforcing fibers into plastic parts manufactured with Fused Filament Modeling (FFM). 

The stiffness of this orthotropic grid was then analyzed with laminate plate mechanics. To 

accomplish this, the results of research conducted by Chen and Tsai was utilized to obtain 

the stiffness matrices of a grid stiffened plate. Chen-Tsai provided the formulation for the 

stiffness matrices, allowing the material properties of the carbon fiber and nylon, along 

with the moment of inertia of the ribs, to be used to calculate the matrices. The stiffness 

matrices allowed the calculation of bending stiffness, and in turn allowed the deflection to 

be calculated for a given load. Subsequently, the analytical deflection prediction was 
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validated via experimental and Finite Element Method analysis.  The cantilevered beam 

experiment provided a result that was very close to the analytical prediction. However the 

FEM analysis showed significant deviation from the other methods and there was a 50% 

difference between FEM results and analytical results. 
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1) Introduction 

 

 The Markforged Mark Two is a 3D printer that can print composite fiber parts, where the matrix 

is nylon, and the fiber can be carbon, Kevlar or fiberglass. This printer has two extrusion nozzles 

in its print head, for nylon and for fiber. The nylon extrusion head prints parts via Fused Filament 

Fabrication (FFF). The Continuous Fiber Extrusion embeds fiber reinforcement into plastic layers 

part using carbon fibers, Kevlar or fiberglass. To explore the capabilities of this manufacturing 

process, a methodology was developed to print stiffened grid structures both with and without 

skins, then the properties of the grids were evaluated analytically, experimentally and with finite 

element analysis.  

 

 

 

 

 

 

 

 

 

 

 

Stiffened panels can be printed with the Markforged mark 2, with or without skin. There is 

potential for creating lightweight parts in which the fibers are placed exactly where they have the 

maximum contribution to bending stiffness. In the future, it may be possible to place along 

optimized directions, where the fibers can follow any arbitrary two dimensional paths.  However 

Figure 1 Markforged Mark Two printer [6] 
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there major software limitations right now, which make such precise control fiber placement 

extremely difficult.  

To understand how to use the Mark Two to print stiffened panels, progressively more 

complex grids were printed. Mistakes, build failures and improper fiber placements were 

corrected on a trial and error basis. The fibers had to be placed on the top and bottom of the ribs, 

in order to maximize bending stiffness. Furthermore, in order to reduce mass, it had to be 

determined how thin the dimensions of the walls could be. The specific software options that 

allowed for single bead thick walls and specific fiber angles needed to be understood. However 

there were many difficulties due to print failures, which included burnt parts, delamination 

between layers, curling and bad surface finish. 

   An analytical procedure to determine the behavior of the grids was developed using laminated 

plate theory. The moments of inertia of each rib were first calculated, then the Tsai-Chen 

equations were used to calculate the rib stiffness matrices [1]. Then, from the PHD dissertation 

of Rios [4] an equation was found to calculate deflection from the stiffness matrices.  

FEM analysis was also performed using thin skin to represent nylon sections and one 

dimensional rods to represent carbon. The results didn't match but they had the same order of 

magnitude. Finally, experiments were performed to see what the real life performance of the 

parts were. The cantilevered beam deflection experiments produced results that agreed very 

closely with the analytical deflection predictions. 
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2) Background  

 

The ability to manufacture parts with continuous strands of carbon fiber can be taken advantage 

of to produce strong, stiff composite grids that are also light. Furthermore, carbon nylon 

composites have the potential to be tough and impact resistant, unlike most carbon fiber parts with 

epoxy matrix, which are brittle. Grids tend to be damage resistant because they do not delaminate, 

and cracks do not propagate between ribs due to empty space. The design process for continuous 

filament fabrication is the same as fused filament fabrication for the most part. However, certain 

considerations must be taken for making sure fiber placement is correct. For example, thin 

geometry must have a minimum width on order to allow fibers to be within them, correct setting 

must be used in order to avoid errors such as fiber curling or discontinuity. 

The behavior of thin panels must be understood in order to know how to stiffen them. A thin 

panel buckles when loading exceeds a critical value and this value changes depending upon the 

length of the thin plate and its thickness. Grids can be placed on a thin plate to break it up into 

smaller segments with much smaller lengths, and furthermore the ribs of the grid also add to the 

stiffness of the overall structure by reacting to loads. 

An equivalent stiffness model was used to analyze a laminated orthotropic grid. Such models 

are easy to use and simple to script with a programming language. Tsai and Chen used an 

equivalent stiffness model to develop an extension of laminate plate theory that would apply to 

grid stiffened structures [2]. 

 Altair Optistruct was used to analyze an idealized model where it was assumed that the thin 

nylon skin segments were modelled with thin skin and the carbon segments were modelled as one 

dimensional rods.  
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2.1)   Continuous Filament Fabrication 

 

The Markforged Mark Two 3d printer is a double nozzle additive manufacturing tool. There is 

a nylon extrusion nozzle that can print plastic parts using the FFF process. There is a second nozzle 

that is used to lay down continuous strands of carbon fiber into the nylon, thereby stiffening the 

part. Although there are  limitations in the software, the Mark Two is capable of laying down fiber 

in specific directions and therefore, there is potential for tailoring stiffness properties for specific 

requirements. One potential use for this printer is to construct grid stiffened panels, where the 

carbon fiber is placed at the top and bottom of the stiffening ribs. The carbon fiber can be placed 

at the top and bottom of the ribs to maximize bending stiffness. 

 

 

 

 

 

 

 

 

 

 

 

The Fiber Filament Fusion (FFF) process manufactures part by depositing heated plastic onto 

successive layers, where each layer fuses with a previous layer, until the whole part is formed [6]. 

The plastic is supplied to the heated nozzle as a solid filament that is stored near the printer in a 

Figure 2 FFM Process Diagram [7] 
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spool. The spool itself is stored in a separate container that is sealed and has silica gel packs to 

reduce moisture contamination of the nylon spool.  

 

 

 

 

 

 

 

 

The Continuous Filament Fabrication (CFF) process supplements the FFF process embedding 

continuous fiber into a part [6]. This is done with a second nozzle that heats up the fiber and pushes 

into a previously printed layer of nylon. Thus the nylon layers printed with the FFF process 

becomes the matrix into which fibers are embedded with the CFF process, enabling composite 

parts to be printed.  

 The combination of nylon layers with embedded carbon fiber results in a composite material. 

This material has a nylon matrix, which bonds the carbon fibers together, which in turn resist 

structural loads. Composite materials have different properties compared to their constituent 

materials. In the case of carbon nylon composite, the heated nylon bonds easily to both other nylon 

layers, and to the carbon. Compared to carbon fiber strands, the FFF printed nylon can withstand 

much higher strains, and endure significant plastic deformation before ultimate failure. By 

contrast, carbon fiber is brittle and breaks easily at very low strains, and does not undergo 

Filament Extruder Plastic Extruder 

Figure 3 CFF Diagram    [6] 
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appreciable plastic deformation before failure. However, it is much stiffer than nylon when 

subjected to tensile loads.   

 To find the material properties of the matrix and fiber, the Markforged Materials Datasheet 

2017 was referenced [8]. For the purposes of the stiffened grids research, the most important 

properties were the Young’s moduli of the materials. For nylon, Young’s Modulus is 0.94 GPa, 

and 54 GPa for carbon fiber. Thus it can be seen by simple division, that the carbon fiber is 

approximately 57 times stiffer than the nylon matrix. Therefore the stiffness of the carbon 

dominates the stiffness of the nylon, and provides the majority of the stiffness for composite parts 

that are printed with the Mark Two.  

 Furthermore it should be noted that the ability of the Markforged Mark Two to print parts with 

continuous carbon fibers, is unique to Markforged printers. Each fiber is stiff in tension, but has 

no resistance to compression or shear. However, when many fibers are bonded together within the 

nylon matrix, they can work together to resist loads, which becomes distributed continuously over 

the length of the fibers. Thus, the Mark Two printer can produce parts that have the potential to be 

much stiffer that alternative FFF printers, which use discontinuous (chopped) fibers within plastic 

filaments. 
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2.2)   Designing for CFF 

 

 As previously stated, Continuous Filament Fabrication (CFF) is an extension of Fused Filament 

Fabrication (FFM), ie CFF extends the capabilities of FFM by supplementing the strength of FFM 

manufactured plastics by embedding continuous fibers into the part to contribute structural 

stiffness. To design strong, stiff parts for a given loading condition, with acceptable surface finish 

and dimensional accuracy, certain considerations should be made during the design phase. 

Amongst these considerations are anisotropy, supports for bridges and overhangs, infill percentage 

and geometry, and the thickness of roof, wall and floor layers.   

FFM manufactured parts are anisotropic, meaning that the parts have different strength/stiffness 

properties along different directions. An FFM printed part is weakest perpendicular to bead 

direction, (vertical to the printed layers) due to individual layers being bonded to each other. If 

loaded vertical to bead direction, the bond between the layers is loaded in tension, and the bond is 

weaker than the isotropic strength of the base material being printed.  

 

 

 

 

 

 

An FFM printed part is much stronger along the bead directions. Therefore, a part should be 

designed such that tension, compression or bending loads result in normal stresses that resolve 

along the longitudinal axes of the beads. Furthermore, when being printed, the part has to be 

oriented appropriately.   

Figure 4 Loading Direction vs Bead direction                   [10] 
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 Another factor to be accounted for while designing an FFF part, is supports. Supports are 

needed to print bridges and overhangs. Bridges occur when material must be printed between gaps, 

such as between two upright walls. The material in bridges tend to sag downwards due to weight. 

However if supports are printed between gaps, the bridge distance decreases, reducing the sagging 

tendency or effectively eliminating it if the gap between supports is small enough. Overhangs 

occur when surfaces are sloped such that previously printed layers do not fully support layers that 

are printed later. If the overhang is relatively upright (rule of thumb is less than 45 degrees of 

slope) then usually be it can be printed without many problems. However, if the overhang is long 

and deep, then there may be a number of printing issues, including bad bonding between layers, 

curling, bulging or bad surface finish. Supports help when printing overhangs by reducing the 

amount of material that is not constrained by the previously printed layers. After printing is 

finished supports can be removed from the final part.  

 The infill is the internal structure of a printed part. A printed part does not need to be a solid 

block of material, it can have empty space internally. In most cases, it is desirable to minimize 

material usage and maximize air pockets within an FFM manufactured part. This results in less 

material usage, lower print time and reduced weight. The infill is characterized by the layout of 

internal structural members and the percentage of volume occupied by material. 

 Infill structure can have many variants, however the default options available for the Mark Two 

are rectangular, triangular and hexagonal infill (along with solid parts). Furthermore, Eiger 

automatically decides percentage of infill that is allowable for any given part being sliced. For 

triangular and hexagonal infill, Eiger determines a recommended infill percentage, and a range of 

allowable infill percentages (the internal algorithm for determining these percentages is not 

known). In such cases, Eiger does not allow infill percentage that is higher or lower than the 
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allowable. However, for rectangular infill, any required infill percentage can be used, and the Eiger 

recommendations can be overridden.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Mark Two printer, Markforged recommends certain limitations for the print settings. 

Roof and floor layers are recommended to be at least four layers thick (0.5mm), where each layer 

is 0.125mm thick. Also, the thickness of walls are recommended to be a minimum of two layers. 

A single layer was measured to be 0.65mm thick, thus the minimum recommended thickness is 

1.3mm. However, it is possible to print thinner layers than the manufacturer recommended layers, 

albeit with the risk of print failures. Parts are also subject to significant shrinkage and warping.   

Figure 6 Rectangular Infill [10] Figure 5 Triangular Infill [10] 

Figure 7  Hexagonal infill [10] 
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2.3)    Stiffened Plates 

 Consider a plate under distributed loading q(x,y). The shows diagram a three dimensional 

coordinate system, with axes labeled x, y and z. The longitudinal axis is x, the lateral axis is y and 

z is the vertical axis. The length of the plate is a, width is b and the thickness is t. There is a 

uniformly distributed load applied along the x axis, across the thickness of the plate, Nx (per unit 

length). Assume the plate to be simply supported along all four edges.                                                       

  

 

 

 

 

 

 

 

 

The deflected shape of the loaded plate can be determined by solving the differential equation for 

w(x,y) [11, pp. 131]:  

(𝛻2 )2𝑤 =
𝑞

𝐷
  

The symbol D represents the flexural rigidity of the plate and it given by the following equation 

[11, pp. 124], where E is Young’s Modulus, t is plate thickness and ν is Poisson’s constant:  

𝐷 =
𝐸 𝑡3

12(1 − 𝜈)
 

Figure 8   Thin Plate under buckling load [11, pp.129] 
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To solve the differential equation, the boundary conditions of the simply supported plate must be 

considered. These boundary conditions must be determined at the extreme ends of the plate, but 

since a thin plate is considered (planar problem), conditions along the z axis can be neglected. 

The boundary conditions to be applied are:  

𝑤(𝑥, 𝑦) =  0 𝑎𝑛𝑑 
𝜕2𝑤

𝜕𝑥2
= 0 𝑎𝑡 𝑥 = 0, 𝑎 

𝑤(𝑥, 𝑦) = 0 𝑎𝑛𝑑 
𝜕2𝑤

𝜕𝑥2
= 0  𝑎𝑡 𝑦 = 0, 𝑏 

 Deflection and load can be represented as a Fourier series. The coefficients m and n are 

integers that represent the number of half wavelengths of the deformed shape, in x and y axes 

respectively. The coefficient Amn and amn are unknown and must be determined. 

 

𝑤(𝑥, 𝑦) =  ∑ ∑ 𝐴𝑚𝑛 sin(
𝑚𝜋

𝑎
𝑥) sin(

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

 

𝑞(𝑥, 𝑦) =  ∑ ∑ 𝑎𝑚𝑛 sin(
𝑚𝜋

𝑎
𝑥) sin(

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

 

  

 Substituting the Fourier series representations of w(x,y) and q(x,y) into the differential equation 

and arranging it to equal zero:  

∑ ∑{𝐴𝑚𝑛 [(
𝑚𝜋

𝑎
)
4

+ 2(
𝑚𝜋

𝑎
)
2

(
𝑛𝜋

𝑏
)
2

+ (
𝑛𝜋

𝑏
)
4

] −
𝑎𝑚𝑛

𝐷
}

∞

𝑛=1

∞

𝑚=1

sin(
𝑚𝜋

𝑎
𝑥) sin(

𝑛𝜋

𝑏
𝑦) = 0 

 The equation is valid for all values of x and y, and because it equals zero we can write:  

𝐴𝑚𝑛𝜋4 (
𝑚2

𝑎2
+

𝑛2

𝑏2
)

2

−
𝑎𝑚𝑛

𝐷
= 0 
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 This equation can be arranged to solve for Amn : 

𝐴𝑚𝑛 =
𝜋4

𝐷

𝑎𝑚𝑛

(
𝑚2

𝑎2 +
𝑛2

𝑏2)
2 

 

 For specific values of m and n coefficient amn\ can be found via integration:  

𝑎𝑚𝑛 =
4

𝑎𝑏
∫ ∫ 𝑎𝑚𝑛 sin(

𝑚𝜋

𝑎
𝑥) sin(

𝑛𝜋

𝑏
𝑦)

𝑏

0

𝑎

0

 𝑑𝑥 𝑑𝑦 

 For simplification, assume that load is uniformly distributed, the q(x,y) = q0 and that the plate 

is square, thus a=b. Maximum displacement occurs in the middle of the plate, where x=y= a/2. 

These simplifications result in:  

𝑎𝑚𝑛 =
16 𝑞0

𝜋2𝑚𝑛
 

 Which can be substituted into the equation for w(x,y) with x=y= a/2, to get wmax : 

𝑤𝑚𝑎𝑥 = 
16 𝑞0

𝜋6𝐷
∑ ∑

(sin(
𝑚𝜋
2 ) sin(

𝑛𝜋
2 )

𝑚𝑛 (
𝑚2

𝑎2 +
𝑛2

𝑎2)
2

∞

𝑛=1

∞

𝑚=1

 

 For further simplification, it should be noticed that the wmax becomes zero when m or n are even 

(or if both are even). Also, the summation converges very quickly, so only the first four odd 

numbered terms need to be considered.  Thus, the summation should be performed for m = 1,3,5,7 

and n = 1,3,5,7. This results in wmax being simplified to: 

𝑤𝑚𝑎𝑥 = 
16 𝑞0

𝜋6𝐷
 𝑎4 (0.2441) 

Substituting the formula for D (flexural rigidity): 

𝑤𝑚𝑎𝑥 = 
16 𝑞0

𝜋6

12(1 − 𝜐2)

𝐸𝑡3
 𝑎4(0.2441) 
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Thus for a square, simply supported plate with uniformly distributed loading, maximum 

deflection is:  

𝑤𝑚𝑎𝑥 =  0.0487
(1 − 𝜐2)

𝐸

𝑎4

𝑡3
 

From the equation for maximum deflection, it can be seen that wmax is proportional to the fourth 

power of length a, and is inversely proportional to the third power of thickness t. Thus for a given 

thickness, to decrease the maximum deflection (and effectively increase plate stiffness), the width 

and length dimensions could be shortened. 

 

 

 

 

 

 

 

 

    

 

 

 

 

      A grid of stiffeners may be placed on the surface of a thin plate. The plate will therefore be 

divided into subsections, each of which would act like a smaller plate.   Furthermore, longitudinal 

stiffeners can support axial stresses, which further increase critical load. 

  However, this simple explanation of stiffened plates is not entirely valid for parts printed 

with the Markforged Mark Two, because the plates end up being non isotropic, laminated plates. 

While the fundamental physics remain the same (by dividing into subsections and taking advantage 

of the stiffener to react to loads), analysis and prediction must take into account laminated plate 

mechanics. 

Figure 9 Stiffening Grid 
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2.4)    Laminate Plate Theory 

 

 

Consider a 2d orthotropic plate with reinforcing fibers. 

Vertical stiffness is different from horizontal stiffness, thus:  

𝐸1 =  
σ1

ε1
 

𝐸2 =  
σ2

ε2
  

                                       𝜏12 =  𝛾12 𝐺12 

Poisson’s ratio also varies between the two directions. Thus: 

𝜈12 =  
𝜀1

𝜀2
 

𝜈21 =  
𝜀2

𝜀1
 

  Furthermore, there is a relation between Poisson’s ratio and Young’s moduli in each direction: 

𝜈21 𝐸1 =  𝜈21 𝐸2 

thus, 
𝜈21

E2
=

𝜈12

E1
 

Using the Young’s Modulus and Poisson’s ratio we can write equations for strain: 

є1 =  
σ1

E1
−  𝜈21

σ2

E2
 

є2 =  
σ2

E2
 − 𝜈12 

σ1

E1
 

Written in a matrix format this becomes: 

Figure 10 Orthotropic Plate [3] 
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[
ε1
ε2
𝛾6

] =  

[
 
 
 
 
 

1

𝐸1
− 

𝜈21

E2
0

− 
𝜈12

E1

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 

[
σ1
σ2
𝜏6

] 

This can be rewritten as:  

[
ε1
ε2
𝛾6

] =  [
𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [
σ1
σ2
𝜏6

]  

Where: 

S11 =  
1

𝐸1
 , S12 = − 

𝜈21

E2
 , S21= − 

𝜈12

E1
 = S12, S66 = 

1

𝐺12
 

In short, we can write: 

[ε] = [S][ σ ] 

[S] is called the compliance matrix. The inverse of the compliance matrix is the reduced 

stiffness matrix [Q]. 

[Q] = [S]-1 

[Q] = [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] 

Where:  

Q11 = 
𝐸1

1−𝜈12 𝜈21 
 , Q12 = Q21 = 

𝐸1

1−𝜈12 𝜈21 
 , Q66 = G12 

 

Therefore, the stress strain relation can be written as: 

[
σ1
σ2
𝜏6

] =  [
𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] [
ε1
ε2
𝛾6

]  
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Now consider a 2D stress cube. Let x and 

y be the global coordinate axes. The stress 

along the horizontal axis is σx and along 

vertical axis it is σy. Shear stress is τs. There 

is a second coordinate system, rotated 

counter clockwise relative to xy by angle θ, 

and the two axes are labeled 1 and 2. The 

stresses in global coordinates can be 

converted into stresses along the rotated 

axes. 

A transformation matrix needs to be used and this is stated in the Daniel and Ishai reference[3] 

to be: 

[T] = [
𝑚2 𝑛2 −2𝑚𝑛
𝑛2 𝑚2 2𝑚𝑛
𝑚𝑛 −𝑚𝑛 𝑚2 − 𝑛2

]     m = cos(θ), n = sin(θ) 

The T matrix can be used to convert the stress and strains to the rotated axes using the equations: 

[
σ1
σ2
𝜏6

] = [T] [
σx
σy
𝜏𝑧

]         

[

ε1
ε2

1

2
𝛾6

] = [𝑇] [

εx
εy

1

2
𝛾𝑠

] 

The ½ constant was introduced for convenience in order to allow the same [T] matrix to be used 

for transforming both the stress and the strain matrices.  

  

Figure 11 2D Laminate Stress Cube [3] 
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        Now consider a section of a laminate plate, shown before and after deformation. The center of 

the laminate is the reference plane, which is assumed to experience no strain after the deformation.  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Displacements of the reference plane in x and y dimensions are: 

u0 = u0(x,y) 

y0 = v0(x,y) 

Out of plane displacement occurs along the z axis and is described by: 

w = f(x,y) 

 

Figure 12 Laminate Section, pre and post Deformation [3] 
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The x and y axis rotations are: 

𝛼𝑥 = 
𝜕𝑤

𝜕𝑥
 

𝛼𝑦 = 
𝜕𝑤

𝜕𝑦
 

The curvatures of the laminate are:  

𝜅𝑥 = −
𝜕2𝑤

𝜕𝑥2
 

𝜅𝑦 = − 
𝜕2𝑤

𝜕𝑦2
 

𝜅𝑥𝑦 = 𝜅𝑠 = −2 
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 

In the diagram, point B has a displacement of zb along the z axis. After bending the displacement 

components of point B are: 

𝑢𝑏 = 𝑢0 − 𝛼𝑥𝑧𝑏 

𝑣𝑏 = 𝑣0 − 𝛼𝑦𝑧𝑏 

For any arbitrary point along the cross section of the lamina, the equations for the rotations can 

be substituted into the above relations and zb can be substituted with the z axis displacement for 

any required point, and we can obtain:  

𝑢𝑏 = 𝑢0 −  𝑧
𝜕𝑤

𝜕𝑥
 

𝑣𝑏 = 𝑣0 −  𝑧 
𝜕𝑤

𝜕𝑦
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These displacement relations can be used to obtain strain relations, by using the classical 

elasticity strain displacement partial differential equations.  

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=  

𝜕𝑢0 

𝜕𝑥
−  𝑧 

𝜕2𝑤

𝜕𝑥2
 

𝜀𝑦 =
𝜕𝑣

𝜕𝑥
=  

𝜕𝑣0 

𝜕𝑦
−  𝑧 

𝜕2𝑤

𝜕𝑦2
 

𝛾𝑥𝑦 = 𝛾𝑠 = 
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
= 

𝜕𝑢0 

𝜕𝑦
+

𝜕𝑣0 

𝜕𝑥
− 2𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦
   

Observe that the reference plane strain components can be written as: 

𝜀𝑥
0 = 

𝜕𝑢0 

𝜕𝑥
 

𝜀𝑦
0 =

𝜕𝑣0 

𝜕𝑦
 

𝛾𝑥𝑦
0 = 𝛾𝑠

0 =  
𝜕𝑢0 

𝜕𝑦
+

𝜕𝑣0 

𝜕𝑥
   

 

The strain components on the reference plane and the curvatures of the laminates can be 

substituted into the strain-displacement equation: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=  𝜀𝑥

0 +  𝑧 𝜅𝑥 

𝜀𝑦 =
𝜕𝑣

𝜕𝑥
=  𝜀𝑦

0 +  𝑧 𝜅𝑦 

𝛾𝑥𝑦 = 𝛾𝑠 = 
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑥
= 𝛾𝑠

0 + 𝑧𝜅𝑠   

Written as matrices we obtain: 

[

𝜀𝑥

𝜀𝑦

𝛾𝑠

] =  [

ε𝑥
0

𝜀𝑦
0

𝛾𝑠
0

] +  𝑧 [

𝜅𝑥

𝜅𝑦

𝜅𝑠

]     
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Thus the stress strain relation can be written as: 

[

σ𝑥

σ𝑦

𝜏𝑠

] =  [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

εx

εy

𝛾𝑠

] = [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] ([

ε𝑥
0

𝜀𝑦
0

𝛾𝑠
0

] +  𝑧 [

𝜅𝑥

𝜅𝑦

𝜅𝑠

]) 

[

σ𝑥

σ𝑦

𝜏𝑠

] =  [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

ε𝑥
0

𝜀𝑦
0

𝛾𝑠
0

] + 𝑧 [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

𝜅𝑥

𝜅𝑦

𝜅𝑠

] 

 

 Now consider a single laminate layer under loading, with normal forces Nx and Ny, shear for 

Ns and moments Mx, My and Ms. Thickness of the layer is t. Normal forces are: 

𝑁𝑥
𝑘 = ∫ σ𝑥  𝑑𝑧

𝑡
2

−
𝑡
2

 

𝑁𝑥
𝑘 = ∫ σ𝑦 𝑑𝑧

𝑡
2

−
𝑡
2

 

𝑁𝑠
𝑘 = ∫ τ𝑠 𝑑𝑧

𝑡
2

−
𝑡
2

 

 

The superscript k denotes that the relations apply to a specific layer within the laminate, also 

labeled k. The expressions for moment are similar:  

𝑀𝑥
𝑘 = ∫ σ𝑥 𝑧𝑑𝑧

𝑡
2

−
𝑡
2

 

𝑀𝑦
𝑘 = ∫ σ𝑥 𝑧𝑑𝑧

𝑡
2

−
𝑡
2

 

𝑀𝑠
𝑘 = ∫ τ𝑠𝑧 𝑑𝑧

𝑡
2

−
𝑡
2

 

Figure 13 Force and Moment Resultants on Single Layer Element [3] 
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Writing the integral equations as matrices:  

[

𝑁𝑥
𝑘

𝑁𝑦
𝑘

𝑁𝑠
𝑘

] =  ∫ [

σ𝑥

σ𝑦

𝜏𝑠

]  𝑑𝑧

𝑡
2

−
𝑡
2

 

 

[

𝑀𝑥
𝑘

𝑀𝑦
𝑘

𝑀𝑠
𝑘

] =  ∫ [

σ𝑥

σ𝑦

𝜏𝑠

] 𝑧 𝑑𝑧

𝑡
2

−
𝑡
2

 

Now we can consider a multilayer laminate and find the total force and moment components 

on it, by summing them layer by layer. 

[

𝑁𝑥

𝑁𝑦

𝑁𝑠

] = ∑ ∫ [

σ𝑥

σ𝑦

𝜏𝑠

]  𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

  

[

𝑀𝑥

𝑀𝑦

𝑀𝑠

] =  ∑ ∫ [

σ𝑥

σ𝑦

𝜏𝑠

]  𝑧 𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑛

𝑘=1

 

The limits of the integration represent the upper and lower surfaces of a layer k, and there 

can be an arbitrary number layers in the summation. 

The equations for stress in terms of strain and reduced stiffness can be substituted to obtain: 

 

[

𝑁𝑥

𝑁𝑦

𝑁𝑠

] = ∑  { [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

ε𝑥
0

𝜀𝑦
0

𝛾𝑠
0

]∫ 𝑑𝑧 
𝑧𝑘

𝑧𝑘−1

+ [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

𝜅𝑥

𝜅𝑦

𝜅𝑠

] ∫ 𝑧 𝑑𝑧 
𝑧𝑘

𝑧𝑘−1

} 

𝑛

𝑘=1

  

 

[

𝑀𝑥

𝑀𝑦

𝑀𝑠

] =  ∑  { [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

ε𝑥
0

𝜀𝑦
0

𝛾𝑠
0

]∫ 𝑧 𝑑𝑧 
𝑧𝑘

𝑧𝑘−1

+ [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] [

𝜅𝑥

𝜅𝑦

𝜅𝑠

] ∫ 𝑧2 𝑑𝑧 
𝑧𝑘

𝑧𝑘−1

} 

𝑛

𝑘=1
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These equations can be rewritten as:  

[𝑁]𝑥𝑦 = [𝐴]𝑥𝑦[𝜀0]𝑥𝑦 + [𝐵]𝑥𝑦[𝜅]𝑥𝑦 

[𝑀]𝑥𝑦 = [𝐵]𝑥𝑦[𝜀0]𝑥𝑦 + [𝐷]𝑥𝑦[𝜅]𝑥𝑦 

The equations have been organized in terms of four matrices, [A], [B] and [D]. These are called 

the laminate stiffness matrices and represent specific properties of a laminate. [A] is the 

extensional stiffness matrix and relates in plane loads to strains. [B] is coupling stiffness which 

relates in plane loads to curvatures and moments. [D] represents bending stiffness for the 

laminate, and relates moments to curvatures. These matrices are also symmetric.  The formulas 

for these matrices are :  

[𝐴]𝑖𝑗 = ∑ 𝑄𝑖𝑗
𝑘

𝑛

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1) 

[𝐵]𝑖𝑗 =
1

2
∑ 𝑄𝑖𝑗

𝑘

𝑛

𝑘=1

(𝑧𝑘
2 − 𝑧𝑘−1

2 ) 

[𝐷]𝑖𝑗 =
1

3
∑ 𝑄𝑖𝑗

𝑘

𝑛

𝑘=1

(𝑧𝑘
3 − 𝑧𝑘−1

3 ) 

The force and moment equations can be combined into one general equation in terms of the 

[A],[B], [D] matrices, strains and curvatures, which results in:  
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The formulas for the calculation of stiffness matrices [A] and [D] were found in the Chen-

Tsai journal article [2]. Matrix [B] is zero because the laminate is symmetric [3]. The formula 

for the [A] matrix is as follows: 

[Arib] =  

[
 
 
 
 
ExA0

d0
+ 2

ExAθ

dθ
m4 2

ExAθ

dθ
m2n2 0

2
ExAθ

dθ
m2n2 ExA90

d90
+ 2

ExAθ

dθ
n4 0

0 0 2
ExAθ

dθ
m2n2

]
 
 
 
 

 

Ex is the Young’s modulus, A0, A90 and Aθ are the cross sectional areas of the vertical, 

horizontal and angled ribs respectively. Similarly, d0, d90 and dθ are the lengths of the vertical, 

horizontal and angled ribs respectively. 

Composite matrix [D] can be calculated as follows:  

[𝐷𝑟𝑖𝑏] = [

𝐷11
𝑟𝑖𝑏 𝐷12

𝑟𝑖𝑏 0

𝐷21
𝑟𝑖𝑏 𝐷22

𝑟𝑖𝑏 0

0 0 𝐷66
𝑟𝑖𝑏

]                    

 

 

 

 

    

 

 

 

                                                                             

 

 

m = cos(θ) 

n = sin(θ) 

𝐷11
𝑟𝑖𝑏 =

𝐸𝑥𝐼0
𝑑0

+ 2
𝐸𝑥𝐼𝜃
𝑑𝜃

𝑚4 + 2
𝐸𝑠𝐽𝜃
𝑑𝜃

𝑚2𝑛2 

𝐷22
𝑟𝑖𝑏 =

𝐸𝑥𝐼90

𝑑90
+ 2

𝐸𝑥𝐼𝜃
𝑑𝜃

𝑛4 + 2
𝐸𝑥𝐽𝜃
𝑑𝜃

𝑚2𝑛2 

𝐷12
𝑟𝑖𝑏 = 𝐷21

𝑟𝑖𝑏 = 2
𝐸𝑥𝐼𝜃
𝑑𝜃

𝑚2𝑛2 − 2
𝐸𝑠𝐽𝜽
𝑑𝜽

𝑚2𝑛2 

𝐷66
𝑟𝑖𝑏 = 2

𝐸𝑥𝐼𝜽
𝑑𝜽

𝑚2𝑛2 +
𝐸𝑠𝐽0
4𝑑0

+
𝐸𝑠𝐽90

4𝑑90
+

𝐸𝑠𝐽𝜽
2𝑑𝜽

(𝑚2 − 𝑛2) 
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2.5)    Finite Element Analysis of Stiffened Plates 

 

Hypermesh and Optistruct were used for the FEM analysis, and both tools are part of the 

Altair HyperWorks software suite. HyperWorks was used because it enables easy selection of 

many different types of mesh elements, which reduces modeling and analysis time. Solid 

elements were inappropriate for simulating the geometry being analyzed.  

One dimensional rod elements were used to simulate the carbon segments on the top and 

bottom of the grid. Using 1D elements reduced run time, set up time and were more suited to 

simulating the behavior of the carbon segments. One dimensional elements are used when a 

single dimension of the geometry being analyzed is much larger than the other two [5 p.170]. 

The carbon segment cross section width was 1mm and the thickness was 0.125mm. However, 

the carbon fibers could be up to 254mm long.  Therefore one dimensional elements were 

appropriate for the simulation. Hypermesh allows easy use of 1D elements, where  the cross 

sectional area of the rod segments were set to be equal to the cross sectional area of the carbon, 

which was equal to 0.125mm2 . 

 Furthermore, rod elements were used over other types of one dimensional elements (such as 

bar or beam elements) because rod elements were judged to more appropriately simulated the 

behavior of the real carbon segments. Rod elements resist loads in tension, compression and 

torsion [5, p. 171]. However, the CROD elements were used for the analysis, and they support 

tension and compression only [5. p.182]. Bending loads ultimately resolve into compression and 

tension, and since the carbon is placed where it is most effective in resisting bending loads, rod 

elements were used.  

 Two dimensional shell elements are used when two dimensions (length and width) are much 

larger than the third dimension (thickness). The skin thickness can be assigned as a property of 
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the shell elements, and can be quickly changed when needed, without having to remodel the 

geometry. The wall thickness of the nylon ribs was 0.125mm, while the roof and floor layers 

were 0.5mm thick, but the height of the ribs was 12.7mm. The ribs are 254mm long. Therefore, 

shell elements were appropriate for modelling the nylon segments of the grids. As with 1D rod 

elements, 2D shell elements can significantly reduce the modeling time, and simulation run time 

for analysis when used correctly. 
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           3)    Methodology 

 

To manufacture parts with the Markforged Mark Two, they were first modeled using 

SolidWorks. In order to successfully print composite grids, it was very important to be ensure that 

the ribs were thick enough for carbon to be embedded in them. Then the parts were saved as STL 

files and uploaded to the cloud based Eiger software. Specific setting had to be used in Eiger to 

successfully print parts with thin nylon skin and to have carbon in the correct layers and 

orientation. In particular, each layer of the print that was to have carbon fiber needed to have 

customized settings, rather than relying on the automatic settings in Eiger. 

To calculate the stiffness matrices of the laminate stiffener grid, the moments of inertia of each 

rib must be calculated. The rib dimensions, moments of inertia and material properties are used to 

calculate the stiffness matrices [A] and [D], which can then be used to calculate bending stiffness. 

Once bending stiffness has been obtained, deflection can be calculated using Euler beam bending 

equations. Deflection was calculated for cantilevered and simply supported loadings, with a 9.81N 

applied force.  

 Altair Optistruct was used to computationally predict deflection, using the finite element 

method. Since nylon layers on the ribs are very thin, they were simulated using two dimensional 

shell elements. Since the carbon fibers are only effective at resisting bending loads, one 

dimensional rod elements were used to simulate the carbon layers.  

 For the cantilevered beam experiment, the grid was clamped down on one end to a table and a 

fixture with a hook was clamped onto free end. Then, masses were hung from the hook, to load 

the grid in bending. The progressively larger masses were loaded onto the hook, up to a maximum 

mass of 1000 grams (1kg) which resulted in a 9.81N force being applied to the end of the grid.  
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           3.1)    Manufacturing 

 

 The Markforged Mark two printer was used to print the stiffener grids. This particular printer 

was originally a Mark One, which was upgraded to a Mark Two. There are two separate heads that 

extrude Nylon and Carbon fiber filament. The Mark Two print Nylon parts via the Finite 

Deposition Modeling process and then embeds carbon fiber into the nylon parts via the heated 

carbon extrusion nozzle (the CFF process). Thus, the Markforged printer can produce layers of 

continuous carbon fiber with a nylon matrix.  

 The Markforged continuous fiber printing process offers great potential for printing light and 

stiff parts. Fiber orientation can be used to tailor stiffness properties. Nylon infill can be greatly 

reduced since the carbon fiber can be positioned to provide most of the stiffness.  

 However, the Mark Two printer owned by UTA demonstrated many different kinds of print 

failures, both due to hardware and software issues. Markforged requires the use of a cloud based 

slicing software to set up the prints, and the software is very limited regarding the degree of control 

available to the user.  

 The cloud based slicing software is named Eiger, and can be used ONLY with the Google 

Chrome browser, which is the first limitation encountered by a potential user. Although Chrome 

is free and easy to install, often there are university computers which do not have chrome installed 

due to school policy/security concerns.  

 The grids were initially modelled in SolidWorks, which is relatively simple and 

straightforward. The grid was sketched on a plane in a manner such that there were repetitive 

orthotropic cells. Then the lines were offset bilaterally 3.9 mm and the sketch was trimmed, to 

allow the grid to be extruded with a single sketch. The critical measurements is the width of the 

ribs. The ribs must have a minimum width in order to be able to put carbon in them.  
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 The minimum width was determined to be 3.9mm based on trial and error over many test prints 

on smaller parts. Sometimes, it was possible to reduce the rib width to 3.7 mm but that only worked 

for simpler parts (single ribs for example, with no grids). However, the results were very 

inconsistent with any width less than 3.9mm, thus it is recommended to be the minimum width for 

printing stiffening grids with the Markforged Mark Two.  

 

 

 

 

 

 

 The model is saved as an STL file and then uploaded to Eiger. When the Solidworks part is 

exported to STL, it should be ensured that the exported units are correct (check if it is exported as 

imperial or metric).  The part is then oriented such that it is flat on the plate and centered. 

Furthermore, it must be ensured that the units are set correctly in Eiger, otherwise the part will be 

far too large or small.  

 Eiger slices the part automatically. However, in order to ensure correct fiber placement, 

certain slicing setting must be applied and then individual layers must be modified.  Eiger has 

three subsections under which various settings are grouped, which affect the automated slicing. 

They are labelled ‘General’, ‘Settings’ and ‘Infill’.                        

 Under General, ‘Reinforcement Material’ must be selected to be Carbon fiber. For ‘Settings’, 

the ‘Layer Height’ could not be adjusted and was fixed at 0.125 mm. However, the ‘Original Units’ 

were set to Metric, ‘Use Supports’ and ‘Expand Thin Features’ were turned off, but ‘Brim’ was 

turned on to reduce the tendency of parts to curl. Under ‘Infill’, Fill Pattern was selected to be 

Figure 14 Orthotropic Grid Model, viewed in Eiger 
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Rectangular Fill, Fill Density was set to 5%, Roof & Floor layer was set to three, and there was 

only one Wall Layer. 

 

 

 

 

 

 

 

 

 

 

 

 It should be noted however, these settings do not agree with those recommended by 

Markforged. The recommended settings are four layers for the roof and floor, and at least two wall 

layers. Furthermore, Eiger shows that the thickness of a single wall layer is 0.4mm, however 

measuring the wall layers of printed parts showed they were 0.65mm thick. 

  To develop a process for printing grids with carbon on the top and bottom surfaces of stiffening 

ribs, an iterative process was used, where simple shapes were printed first and then more complex 

grids were modelled and sliced. Along the way there, were many failed parts and errors in printing, 

some of which could not be corrected. However, even with the errors it was possible to print the 

desired beam, constructed out of orthotropic grid cells.  

The first step was to print a single orthotropic grid cell, with horizontal, vertical and angled 

ribs. It was discovered that it was not possible to instruct the software to print the carbon along the 

Figure 15 General Options on Eiger 
Figure 17 Settings Options on Eiger Figure 16 Infill Options on Eiger 
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correct direction, unless multiple layers of carbon were printed, witch the fiber oriented along 

particular directions. For example, it was found that it was possible to print horizontal and vertical 

fibers, but not angled fibers on the same layer.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 To print fibers along the angled ribs, certain settings had to be selecting within the Eiger 

slicing software. For a given layer, the ‘Use Fiber’ option must be select and the ‘Fiber Fill 

Type’ must be set to ‘Isotropic Fiber’ (although the fiber layout is not actually going to result in 

isotropy at all, this is the option that needs to be used).  There must be no ‘Concentric Fiber 

Rings’ (set to zero) and ‘Start Rotation Percent’ seems to be irrelevant and can be at any 

arbitrary value that the software picks. The key setting however, is ‘Fiber Angle’.  

Figure 18 Layer with 19.76 degree fiber angle 

Figure 19  Orthotropic Grid with wavy fibers 
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 ‘Fiber Angle’ must be set to the angle of the ribs. Otherwise there is a chance that the slanted 

ribs will not have any fiber placed in them. Furthermore, it was found from trial and error that the 

angle must be accurate to the second decimal place (0.01 degrees). To put down fiber along the 

ribs angled in the opposite direction, the next layer of carbon should be sliced using the exact same 

settings, but with the negative value of the required angle.   

 However, as complexity of the geometry increased, the errors in fiber placement also 

propagated. When the final geometry was sliced for printing, there were many errors with carbon 

fiber layout that could not be removed by adjusting settings within Eiger. In particular, with the 

final part, there were layers with wavy filaments laid down in places where there should not have 

been any fiber at all, especially when the layer had been set to have fibers along the angled ribs. 
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3.2) Analytical Deflection Prediction 

 All the ribs have the same cross section and are hollow. The Markforged Mark Two printer can 

be instructed to print with very low infill percentage. For the orthotropic grids, 5% rectangular 

infill was used. Thus, the ribs can be treated as small box beam. Furthermore, the beam can be 

divided into separate nylon and carbon segments, which allows for moment of inertia to be 

calculated for them separately.  

 

 

 

 

 

 

 

 

 

 The outer dimensions of the rib are h1 and w1, which respectively represent the height and 

width. The dimensions h2 and w2 are the height of the composite layers of the rib. The dimensions 

of the central cavity are h3 and w3. Thickness of the top layer of nylon is t1 and the carbon layer 

is t2. The thickness of the skin on the sides of the rib is t3. Also, since the cross section is a 

rectangle, the centroid is located in the center. The centroid is chosen to be the origin of a co-

ordinate system. 

 The rib cross sectional area is divided into small rectangular segments, that are labeled 

alphabetically from A to J. Segments A to H are nylon. Segments I and J and are carbon. Since the 

cross section was divided into rectangles, the centroid of each individual segment was simply the 

height and width (mm)

h1 12.7

h2 11.95

h3 11.7

w1 2.69

w2 1.39

w3 1

skin thickness (mm)

t1 0.375

t2 0.125

t3 0.65
Figure 20 Rib dimensions diagram 

Table 1 Height and Width Values 

Table 2 Thickness Values 
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location of the center of each rectangle. The y coordinates of each centroid was labeled yA to yJ, 

in alphabetical order. In the same way, the z coordinates of each centroid was labeled zA to zj. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The values of the centroid coordinates were calculated and then tabulated. Calculation of the 

centroid coordinates was performed initially by hand, then implemented with a Python script.     

The moment of inertia of each segment was calculated and in order to do that, the height and width 

of each segment were determined. The heights were labeled hA to hJ. The width were labeled hA 

to hJ. The values were again, calculated both by hand and then with a python script.  

segment material

A nylon

B nylon

C nylon

D nylon

E nylon

F nylon

G nylon

H nylon

I carbon

J carbon

centroid y coordinate dimension (mm)  centroid z coordinate (mm)dimension (mm)

yA -1.02 zA 0

yB 0 zB 6.16

yC 0 zC -6.16

yD 0.598 zD 5.91

yE -0.598 zE -5.91

yF -0.598 zF 5.91

yG 0.598 zG -5.91

yH 0.598 zH 5.91

yI 0 zI -5.91

yJ 0 zJ 5.91

Figure 21 Rectangular Segments 

Figure 22 segment centroid co-ordinates 

Table 3 Segment Labels and Material 

Table 4 segment centroid coordinates  
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The ribs were arranged in  an orthotropic grid, to construct a 10.00in by 3.33in rectangle. The 

grid was constructed of nine orthotropic grid elements that are repeated until the whole rectangle 

was formed.  

segment height dimension(mm) segment width dimension(mm)

hA 12.7 wA 0.65

hB 0.375 wB 1.39

hC 0.375 wC 1.39

hD 12.7 wD 0.65

hE 0.125 wE 0.195

hF 0.125 wF 0.195

hG 0.125 wG 0.195

hH 0.125 wH 0.195

hI 0.125 wI 1

hJ 0.125 wJ 1

rib legths dimension

d0 12.55(mm)

d90 40.89(mm)

dθ 42.77(mm)

θ 17.06 (degree)

Figure 23 Segment dimensions 

Figure 24 Orthotropic Grid Unit  

Table 5 Segment heights and widths 

Table 6 Rib length dimensions 
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 A larger test piece should be constructed in the future, however there were serious constraints 

in the 3d printing process. The large pieces were suffering curling and shrinkage issues, as well as 

burning and delamination between layers. 

To attempt to predict the behavior of the ribs analytically, the moment of inertia of the rib 

needed to be calculated using the basic formula for a square cross section, and by using parallel 

axis theorem. Since there are equivalent layers of carbon on the top and bottom surfaces, the 

beam can be thought of as a symmetric laminate, thereby simplifying the calculation of 

composite stiffness matrices. Also, the method for calculating the compliance matrices for a 

composite orthotropic grid were available in prior work conducted by Tsai Chen 

 

 

 

 

Also, since the rib cross section was divided into several segments, the moment of inertia can 

also be calculated separately for carbon and nylon segments, which can give be used to separately 

calculate the stiffness of the carbon and nylon segments. This can help with understanding the 

Figure 25 Orthotropic Grid  Test Piece 

Figure 26 2nd moments of inertia of rectangle [1] 
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contribution of nylon to the structural performance of the rib. The formula for rectangular cross 

sections was found in the Gere solid mechanics book [1, p.966]. 

Parallel axis theorem was then used to calculate the moment of inertia about the neutral axis of 

the rib. The theorem and the formula were also found in the Gere book [1, p. 912].  Second moment 

of inertia was calculated about both the z and y axes. This because torsional stiffness would need 

to be considered. 

𝐼𝑥 = 𝐼𝑥𝑐  +  𝐴𝑑2 

Then, the laminate stiffness matrices had to be calculated, the [A], [B] and [D] matrices. The 

[A] matrix relates in plane stress to in plane strain and it is called the extensional stiffness matrix. 

The [B] matrix relates in plane stress to curvature, and in plane moments to plane strain, and it is 

called the coupling stiffness matrix. Moments are related to curvatures with the [D] matrix, the 

bending stiffness matrix. [3, p.165] 

 In order to find utilize the formulas, a number of geometric properties must be calculated, 

especially moment of inertia and cross sectional area. The cross sectional areas of the ribs are 

constant. Thus Aθ, A90 and A0 (the areas of angled, horizontal and vertical ribs) are all equal to 

34.163mm2. The moments of inertia were calculated with a script and the results are tabulated.  

 

 

 

 

 

 

 

y inertia value (m4) z inertia value (m4)

IAy 1.11E-10 IAz 8.88E-12

IBy 1.98E-11 IBz 8.39E-14

ICy 1.98E-11 ICz 8.39E-14

IDy 1.11E-10 IDz 8.88E-12

IEy 8.52E-13 IEz 8.78E-15

IFy 8.52E-13 IFz 8.78E-15

IGy 8.52E-13 IGz 8.78E-15

IHy 8.52E-13  IHz 8.78E-15

IIy 4.37E-12 IIz 1.04E-14

IJy 4.37E-12 IJz 1.04E-14

Iy Total 2.74E-10 Iz Total 1.80E-11

Table 7 Inertia Table 
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Polar moments of inertia can be calculated from Iy Total and Iz Total with the formula: 

𝐽 =  𝐼𝑥 + 𝐼𝑦 

 The reference book uses the symbol Ip for polar moment, but the Tsai article uses J. For the 

rest of this document, J will be used for polar moment of inertia. 

From the PHD dissertation of UTA student GIANFRANCO RIOS [4, p.29], a formula was 

found for calculating the bending stiffness of the test piece. Consider a beam with a wide cross 

section (width is much larger than thickness), with a width of w.                    

 

 

 

 

 

 

 

 

 

 

 

The equation 𝐷𝑥
𝑤𝑖𝑑𝑒refers to bending stiffness of the wide beam: 

𝐷𝑥
𝑤𝑖𝑑𝑒 = 𝑤 (𝐷11 −

𝐵11
2

𝐴11
) 

For a symmetric laminate, [B] is zero, and the equation reduces to  𝐷𝑥
𝑤𝑖𝑑𝑒 = 𝑤𝐷11 , where w 

represents the width of a wide beam. This means there is an extremely simple formula for 

calculation of bending stiffness for composite grids with symmetric laminates.  

Figure 27 Wide beam with deformed cross section [4] 
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To explain the logic of the calculations, 

several flow charts were drawn. Even though a 

single program was used, it was easier to draw 

three flow charts to explain the calculations. One 

flow chart was drawn for the [A] Matrix, another 

for the [D] matrix and a final flow diagram which 

illustrates how the [D] matrix is used to calculate 

bending stiffness. After obtaining bending 

stiffness, it is simple to use the deflection 

formulas to obtain deflections for an applied 

load. These calculations can then be compared to 

FEM analysis. 

 To calculate the [A] matrix with a script, the 

rib dimensions (height, width, thicknesses of 

skin layers and angle of the ribs) need to be in 

the input. Other inputs needed are elastic and 

flexural moduli of nylon and carbon. The matrix 

can be calculated using the formula from the                                      

                                                                              Tsai-Hill paper, which was stated in the                                   

                                                                              background section. 

The extensional stiffness matrices for Carbon and Nylon segments were to be calculated 

separately, then they need to be added together to get [A] Total, which is the needed extensional 

stiffness matrix.  

 

Figure 28 [A] Matrix Calculation Flowchart 
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The [A] matrix is not dependent upon moment of inertia, which makes it much simpler to calculate 

compared to the [D] matrix. However, the extensional stiffness matrix was not utilized for 

calculating the bending stiffness because a very simple formula was used. It was included in the 

calculations though, because there is potential for predicting other properties, or to use more 

refined analytical methods for calculating stiffness and deflection. In particular, axial loading and 

buckling behavior would be worth investigating. 

  

Figure 29 [D] Matrix Calculation Flowchart 
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 To calculate the bending stiffness matrix [D], the moments of inertia of each segment of the 

rib cross section must be calculated separately. Thus, the dimensions of the ribs and the segments 

from A to J must be inputted. Second moment of inertia for the carbon and nylon segments need 

to calculated along both the x and y axes. 

  

 

 

 

 

  Rib angle, elastic and flexural moduli of both nylon and carbon must also be inputted, and 

then they can be used along with the moments of inertia to calculate [D] Carbon and [D] Nylon 

separately. Summing them results in [D] Total, which is the laminate bending stiffness for the 

whole grid.   

 Once the bending stiffness matrix has been calculated, bending stiffness can be found. Input 

the beam width and the already calculated D Total matrix, then multiply D11 with the beam 

width. The product is the bending stiffness. The bending stiffness can be used in beam deflection 

formulas to predict maximum deflection.  

 

 

 

 

 

 

 

Figure 30Bending Stiffness Calculation Flowchart 

Figure 32 Cantilever beam diagram and deflection formula  [1] Figure 31 Simply supported beam diagram and formula [1] 
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 For the cantilevered beam, length L was 8.5 inches and length a was 7.750 inches. In metric 

units, L was 215.9mm and a was 196.85mm. Load P was 9.81 N. For the simply supported 

beam, L was 7 inches, or 177.8mm. P was again 9.81 N. In both deflection formulas, the product 

EI was replaced with the bending stiffness Dx
wide.  
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3.3) Optistruct deflection prediction 

 The beam was analysed with Optistruct for two load cases. A cantlivered beam loading and a 

simply supported beam loading. The deflection for each case was to be analysied, for a 9.81N load 

applied onto the beam. The beam was modeled using 2d surfaces rather than solid elements, due 

to the walls of the ribs consisting of very thin layers of nylon. The carbon segments on the top and 

bottom of the ribs were modelled as 1 dimensional rods.   

 

 

 

 

 

 The cantilevered beam was supported in a manner that simulates it being clamped down with 

an aluminum bar, with a 1.5 inch width (38.1 mm). The load was placed at the centroid of a 

rectangular distributed load, that would be placed on the beam by a 1.5in (38.1mm) inch wide 

wooden block, with a 9.81 N weight on it.  

 

 

 

                                                                                                                                                                                                                                    

 

 

 

 

Figure 33 Cantilevered beam model 

Figure 34 Cantilevered beam deflection plot 
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The simply supported beam analysis placed supports that were 7 inches (177.8 mm) apart. 

This was done because the expirimental test fixture that was supposed to be used for the physical 

testing, was only seven inches wide, even though a ten inch fixture would have been preferable. 

A force of 9.81 N was applied to the middle of the beam, divided between seven nodes.   

 

 

 

 

 

 

 

           

 

 

 

 

 

 

     After comparing the results of the FEM analysis with the analytical and experimental results, 

it was discovered that the FEA results did not agree with the other ones. The sources of this error 

could not be discovered in the time that was available, however the most likely source of error 

are the carbon material properties and the one dimensional elements.  

Figure 35 Simply supported beam 

Figure 36 Simply Supported beam deflection 
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3.4) Experimental method 

 To test the grid in cantilevered loading, the apparatus in the figure below was used (due to 

lack of access to more sophisticated apparatus). The dial indicator used to measure the 

displacements was graduated in thousandths of an inch (0.001”). Therefore, the displacements 

had to be converted to millimeters after being measured. The test piece was clamped onto a table 

using a steel C clamp, with an aluminum bar being used to distribute the clamping forces over 

the whole width of the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 To apply load onto the test piece, a fixture was used, that had previously been manufactured 

by previous graduate student. The fixture has a slot carved into each block, which are clamped 

onto the test piece with screws. There is also a hook on the bottom of the fixture, where a  weight 

can be hung to apply load onto the test piece.   

Figure 37 Cantilvered Beam Test Setup 
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 The masses used in the experiment are pictured below. Five progressively larger masses were 

used. The masses and the resultant weights are presented in a tabulated form.  The smallest mass 

was 50 grams, which had a weight of 0.491 N. The largest mass used was 1000 grams (1 kg) and 

resultant force was 9.81 N. The 9.81 N load was used to compare results to the analytical and 

FEM predictions.  

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

  To obtain deflection readings, the masses were loaded onto the hook, then the dial indicator 

gauge was brought into contact with the top surface of the fixture. Then, the dial was set to zero 

and the mass was removed, after which the test piece would spring back. The dial indicator 

reading was then recorded.  

 

  

Mass (gram) Force(N)

50 0.4905

100 0.981

200 1.962

500 4.905

1000 9.81

Figure 38 Masses used in experiment 

Table 8 Masses and resultant weights 
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4)  Results and Discussion 

 

 Stiffened grids were successfully printed, however there were many kinds of print errors, such 

as fiber misplacement, delamination, burns and curling. Analytical and experimental results were 

close to each other for cantilevered loading and suggests correlation. However, the simply 

supported experiment has not yet been performed. FEM analysis results did not agree with the 

experimental and analytical results. The FEM deflection prediction was half that of the analytical 

or experimental deflection.  

 

4.1) Manufacturing 

 Several stiffened grids were printed successfully, but all of them had some form of observable 

printing errors. Two example are shown in photos. 

 

                                                                Figure 39 Grid angled grid superimposed on orthogrid 

  

 

 

 

 

 
Figure 40 Orthotropic grid, on composite build plate 
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 The major limitation of the Eiger software, is the lack of control over fiber orientation and 

placement. The Eiger software does not have the ability to place individual fiber strands, and has 

limited capability of placing fibers along curved paths. To elaborate, it is impossible to embed 

individual strands, or grouped strands within a layer of nylon. Either the entire layer must be 

carbon-nylon composite, or it must be pure nylon. Workarounds for these issues include having 

raised feature where the software may be instructed to use carbon fiber. However for more 

complicated geometry this does not work reliably.  

 

                                                                     Figure 41 Fiber discontinuity and curling 

 There were also numerous, and very consistent problems that caused a very high failure rate 

while printing parts. The parts often curl and become detached from the build plate. Even if the 

part does not curl during printing, the part may curl after it is removed from the plate, due to heat 

distortion. The two photos below display curling in both the longitudinal and lateral planes. The 
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part is an orthotropic grid that was printed without a skin, but a brim was used. One end of the 

part had lifted up due to curling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 When observed from the front, it was seen that the corners had curled more than the center. 

Thus lateral curling had also occurred. Also the parts are prone to bond failures, where layers of 

nylon would not adhere during printing, and strings of material may stick out of the finished part. 

In many cases, the printer cannot detect this failure and continues the print operation. This may 

Figure 42Curling along the length 

Figure 43 Curling along width 
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cause the print head to gum up with nylon, because the material accumulates without being 

deposited onto the part. The carbon fiber also fails to bond with the nylon on occasion. 

Furthermore, almost every print has some degree of burning on the part. There were numerous 

times that the burns were so bad that the prints failed, or had to be discarded even when the print 

was completed.  

 Both bond failure and burning can be noticed on the pictures. It should be noted that in this 

case, the failures were minor and did not cause the entire print to fail. However, it should also be 

noted that these failures occur in almost every part and as such, these examples represent the best 

case scenario for consistent performance. 

4.2) Analytical Deflection Prediction  

  

 The most significant results for analytically predicting the stiffness and thus, the deflection for 

the stiffener grid was the calculation of grid matrices. Once the matrices were calculated, other 

properties could be predicted. Matrices [A] and [D] for the whole grid (with carbon and nylon 

segments summed) are: 

Atotal = [
77188.75323415 3904.34331575 0
3904.34331575 33798.28299308 0

0 0 3904.34331575
] 

Dtotal = [
0.08609656 0.00021072 0
0.00021072 0.02227988 0

0 0 0.02603088
] 

 

 The bending stiffness was calculated to be 7.289 N m2. Deflection for cantilevered beam was 

calculated to be 0.00392m, or 3.92mm. Deflection for simply supported beam was calculated to 

be 0.000158m or 0.158mm. 
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4.3) Optistruct deflection prediction 

 

The maximum simulated deflection for the cantilevered beam was 1.97mm. This was less 

than the analytical deflection prediction by approximately 50%, however it was within the same 

order of magnitude. As expected, the maximum deflection for the simply supported beam was at 

the middle. The maximum value was 0.093mm. Again, this was less than the analytical 

prediction for the same loading and supports, but they were in the same order of magnitude.  

4.4) Experimental Results 

 

 For the cantilevered beam, the maximum deflection was 3.84mm, which agrees very closely 

with the analytical prediction of 3.92mm. The experimental deflection was 2% lower than 

analytical. Compared to the Optistruct analysis, the experimental result showed a 48% great 

deflection. However, it should be noted that the experimental method was very basic and more 

sophisticated methods should be used in the future.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force(N) Deflection (mm)

0.4905 0.2032

0.981 0.3556

1.962 0.7112

4.905 1.8542

9.81 3.8354

Method Deflection (mm)

Analytical 3.92

Optistruct 1.97

Experimental 3.84

Table 9 Forces and Deflections 

Table 10 Deflection Comparison 

Figure 44 Force vs. Deflection 
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5) Conclusion 

 

  

 The ability of the Markforged Mark Two printer to manufacture parts with continuous carbon 

fiber was used to develop a methodology of printing stiffened grids for thin plates. Subsequently, 

the properties of the grids were investigated analytically, experimentally and computationally. To 

manufacture stiffened grids, it was necessary to determine how to manipulate the software into 

laying fiber along desired directions, on the top and bottom of thin ribs. The minimum rib width 

had to be determined through experimental trial and error, since fiber cannot be placed on ribs that 

are too thin. Next, the specific settings in the slicing software had to be determined. The key setting 

was found to be fiber angle of the ‘isotropic fiber’ option (the name is a misnomer because an 

individual layer of fiber cannot be isotropic). For any layer, the angle of the fiber must be equal to 

the angle of the ribs. Furthermore, it was found that the Mark Two can print geometry much thinner 

than the recommended settings. For example the walls were recommended to be two layers thick, 

but it was possible to consistently print ribs that were only a single layer thick, and there could be 

as little as three percent infill.  

 Another significant achievement was the development of an analytical method to obtain the 

laminate stiffness matrices for the stiffened grids. Because there was carbon on the top and bottom, 

and the layers were equidistant apart from the centroid, the grids could be treated abstractly as 

symmetric laminates, which greatly simplified analysis. Prior work done by Tsai-Chen provided a 

formulation to obtain stiffness matrices, provided that moments of inertia were available for the 

ribs. The moments of inertia of the nylon and carbon sections of the ribs were calculated separately, 

which were then used to calculated stiffness matrices for nylon and carbon segments. The matrices 

were summed to obtain total stiffness matrices for the grids, which were then used to predict 

deflection for a 9.81 Newton load (1kg hanging mass), using an equation from the PhD dissertation 



 
 

 

60 

of Rios, a previous UTA student. The predicted deflection for the test grid in cantilevered loading 

was 3.92mm. With the same load and simply supported, the grid was predicted to have 0.158mm 

of deflection. 

 Furthermore, Altair HyperWorks was used to predict deflection with FEM analysis. Since the 

nylon segments of the grid were very thin, shell models were used. Shell models have two 

dimensional elements, and the thickness can be set as a parameter. For the simulating the carbon 

segments, one dimensional rod elements were used, since the thin lines of carbon only contribute 

stiffness in bending.  Cantilevered deflection prediction for 9.81N load was 1.97mm, and simply 

supported grid deflection for the same load was 0.093mm. 

 The cantilevered deflection experiment was performed using simple apparatus. The grid was 

fixed to the side of the table by using a C-clamp and loaded on the other end using a series of 

weights, which were hung from a fixture. Maximum experimental deflection with 9.81N load was 

3.84mm, which agrees very closely with the analytical prediction of 3.92mm. 

 For future work, a heated build plate should be considered in order to improve the build 

quality of parts printed with the Markforged Mark Two. At least one of the older build plates 

could be modified to have heating elements installed, which would possibly reduce curling of 

parts due to distortion while cooling, and improve adhesion of parts to the build plate. Another 

objective would be to develop a method for printing optimized grids. Optimized grids tend to 

have organic shaped ribs. The problem encountered with printing such shapes was that it was 

impossible to instruct Eiger to put carbon fiber along the correct paths. A solution to this 

problem should be investigated. Related to this, the problems with fiber placement such as 

breaks in the fibers, or curling should also be solved. There is also potential to use ONYX 

instead of nylon. ONYX has chopped carbon fiber within the plastic filament, which enhances 
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strength and stiffness. It is also possible to embed continuous carbon fibers within ONYX parts, 

in the same way as was done with nylon.  

 Further testing needs to be done, with proper test machines and fixtures instead of low budget 

improvised devices. The tests already performed indicates that the analytical method of stiffness 

prediction provides good results, however there should be further investigation. If optimized 

grids can be printed, there should also be testing done for such parts. 

 The FEM analysis provided inaccurate results. Although the deflections were in the same 

order of magnitude, the predictions were off by about fifty percent. This analysis should be 

redone and the cause of the discrepancy found and corrected. The most likely source of error is 

within the carbon elements and material properties, since they dominate stiffness.  
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  Appendix  

rib_stiffness_matrices 

October 12, 2019 

In [2]: #parallel ribs, square grid 

import numpy as np from numpy.linalg import * 

angle=22.3 #degrees, horizontal ribs 

th=np.deg2rad(angle) #convert angle to radians 

Ex_nylon = 0.94*(10**9) #0.94 gigapascals 

Es_nylon =0.84*(10**9) #0.84 gigapascals 

Ex_carbon= 54*(10**9) #54 gigapascal 

Es_carbon=51*(10**9) #51 gigapascal 

 

In [3]: #outer rib dimensions  

h1 = 0.5*0.0254 #inches to meters  

w1 = 2.69/1000 #mm to meters 

t1 = 3*(0.125)/1000 # thickness of the roof and                

floor layers, 0.125 mm per layer 

  

t3= 0.65/1000 # wall thickness 0.65 mm converted 

to meters 

 

#composite layer dimensions 

 t2 = 0.125/1000 #single layer thickness, 0.125mm 

to meters  

 

h2 = h1 - 2*t1 

w3= 1/1000 #w3 is approx 1 mm 

 

#inner cavity dimensions  

h3 = h2-2*t2  

w2 = w1 - 2*t3 

 

#ribs lengths 

d0 =12.55/1000  

d90=40.88/1000  

dth =42.77/1000  

 

In [4]: #beam dimensions 

  

L_beam = 10*0.0254  
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#inch to meters  

w_beam = 3.333*0.0254 

In [5]: h1 

Out[5]: 0.0127 

In [6]: h2 

Out[6]: 0.011949999999999999 

In [7]: h3 

Out[7]: 0.011699999999999999 

In [8]: w1 

Out[8]: 0.00269 

In [9]: w2 

Out[9]: 0.0013900000000000002 

In [10]: w3 

Out[10]: 0.001 

In [11]: t1 

Out[11]: 0.000375 

In [12]: t2 

Out[12]: 0.000125 

In [13]: t3 

Out[13]: 0.00065 

In [14]: 

def Iy( y,z,d ): 

A=y*z 
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Iy = (y*z**3)/12 + A*d**2  

return Iy 

 

def Iz( y,z,d ): 

A=y*z 

Iz=(z*y**3)/12 + A*d**2 

return Iz 

# function definitions to calculate A and B matrix 

 def D_matrix( Iy,Iz,Ex,Es,angle ): 

m = np.cos(angle)  

n = np.sin(angle) 

I0 = Iy #remember, bending around the x axis 

Ith = Iy 

I90=Iy 

J0= Iy+Iz 

J90=Iy+Iz 

Jth =Iy+Iz 

D11 = Ex*I0/d0 + 2*Ex*Ith*(m**4)/dth + 2*Es*Jth*(m**2)*(n**2)/dth 

D12 = 2*Ex*Ith*(m**2)*(n**2)/dth - 2*Es*Jth*(m**2)*(n**2)/dth 

D13=0 

D21 = D12 

D22 = Ex*I90/d90 + 2*Ex*Ith*(n**4)/dth + 2*Es*Jth*(m**2)*(n**2)/dth 

D23=0 

D31 = 0 

D32=0 

D66 = 2*Ex*Ith*(m**2)*(n**2)/dth + Es*J0/(4*d0) + Es*J90/(4*d90) + (Es*Jth*((m**2  

D = np.array([ [ D11,D12,D13],[ D21,D22,D23],[ D31,D32,D 66]]) 

return D  

 

def A_matrix( Ex,Es,rib_height,rib_width,angle ): 

)  
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m = np.cos(angle)  

n = np.sin(angle) 

A90=Ath=A0=rib_height*rib_width #in this case, because cross section of flat, upr 

A11=Ex*A0/d0 + 2*Ex*Ath*(m**4) /dth 

A12= 2*Ex*Ath*(m**2)*(n**2)/dth 

A13= 0 

A21= 2*Ex*Ath*(m**2)*(n**2)/dth 

A22= 2*Ex*A90/d90 + 2*Ex*Ath*(n**4)/dth 

A23= 0 

A31= 0 

A32= 0 

A33= 2*Ex*Ath*(m**2)*(n**2)/dth 

A = np.array([ [ A11,A12,A13],[ A21,A22,A23],[A31,A32,A33] ]) 

return A 

In [15]:  

#heights,width,x displacement,y displacemnt of the discrete rectangles 

# I and J are the carbon portions 

 

hA=h1  

hB=h1/2 - h2/2  

hC=h1/2 - h2/2  

hD=h1  

hE=h2/2 - h3/2  

hF= h2/2 - h3/2  

hG= h2/2 - h3/2  

hH= h2/2 - h3/2  

hI= h2/2 - h3/2  

hJ= h2/2 - h3/2 

 

In [16]: hA 

Out[16]: 0.0127 

 

In [17]: hB 

Out[17]: 0.00037500000000000033 

 

In [18]: hC 

Out[18]: 0.00037500000000000033 

 

In [19]: hD 

Out[19]: 0.0127 
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In [20]: hE 

Out[20]: 0.0001250000000000001 

 

In [21]: hF 

Out[21]: 0.0001250000000000001 

In [22]: hG 

Out[22]: 0.0001250000000000001 

In [23]: hH 

Out[23]: 0.0001250000000000001 

In [24]: hI 

Out[24]: 0.0001250000000000001 

In [25]: hJ 

Out[25]: 0.0001250000000000001 

In[26]:  

 

wA= w1/2 –                  

w2/2                           

                                                                                                                                                                                                           

wB= w2  

wC= w2  

wD=w1/2 - 

w2/2  

 

wE= w2/2 - 

w3/2  

wF= w2/2 - 

w3/2  

wG= w2/2 - 

w3/2  

wH= w2/2 - 

w3/2  

wI= w3  

wJ= w3 

In [27]: wA 

Out[27]: 0.00065 

In [28]: wB 

Out[28]: 0.0013900000000000002 
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In [29]: wC 

Out[29]: 0.0013900000000000002 

In [30]: wD 

Out[30]: 0.00065 

 

In [31]: wE 

Out[31]: 0.00019500000000000008 

In [32]: wF 

Out[32]: 0.00019500000000000008 

In [33]: wG 

Out[33]: 0.00019500000000000008  

 

In [34]: wH 

Out[34]: 0.00019500000000000008 

In [35]: wI 

Out[35]: 0.001 

In [36]: wJ 

Out[36]: 0.001 

In [37]:  

yA= w1/2 - t3/2 

 yB= 0 

 yC= 0  

yD= w1/2 - t3/2  

yE= w3/2 + (w2/2 - w3/2)/2 

yF= w3/2 + (w2/2 - w3/2)/2 

yG= w3/2 + (w2/2 - w3/2)/2 

yH= w3/2 + (w2/2 - w3/2)/2 

yI= 0 

yJ= 0 

 

In [38]: yA 

Out[38]: 0.00102 

 

In [39]: yB 

Out[39]: 0 

 

In [40]: yC 

Out[40]: 0 

 

In [41]: yD 
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Out[41]: 0.00102 

 

In [42]: yE 

Out[42]: 0.0005975 

 

In [43]: yF 

Out[43]: 0.0005975 

In [44]: yG 

Out[44]: 0.0005975 

In [45]: yH 

Out[45]: 0.0005975 

In [46]: yI 

Out[46]: 0 

In [47]: yJ 

Out[47]: 0 

In [48]:  

zA= 0  

zB= h1/2 -t1/2 

zC= h1/2 -t1/2 

zD= 0  

zE= h2/2 - 

t2/2  

zF= h2/2 - 

t2/2  

zG=h2/2 - t2/2 

zH=h2/2 - t2/2 

zI=h2/2 - t2/2 

zJ=h2/2 - t2/2 

In [49]: zA 

Out[49]: 0 

In [50]: zB 

Out[50]: 0.0061625 

In [51]: zC 

Out[51]: 0.0061625 

In [52]: zD 

Out[52]: 0 
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In [53]: zE 

Out[53]: 0.005912499999999999 

In [54]: zF 

Out[54]: 0.005912499999999999 

In [55]: zG 

Out[55]: 0.005912499999999999 

In [56]: zH 

Out[56]: 0.005912499999999999 

In [57]: zI 

Out[57]: 0.005912499999999999 

In [58]: zJ 

Out[58]: 0.005912499999999999 

In [59]:  

IAy=Iy(wA,hA,zA) 

IBy=Iy(wB,hB,zB) 

ICy=Iy(wC,hC,zC) 

IDy=Iy(wD,hD,zD) 

IEy=Iy(wE,hE,zE) 

IFy=Iy(wF,hF,zF) 

IGy=Iy(wG,hG,zG) 

IHy=Iy(wH,hH,zH) 

Iy_nylon = IAy+IBy+ICy+IDy+IEy+IFy+IGy+IHy 

In [60]: IAy 

Out[60]: 1.1095407916666665e-10 

In [61]: IBy 

Out[61]: 1.9801310156250016e-11 

In [62]: Icy 

Out[62]: 1.9801310156250016e-11 

In [63]: IDy 

Out[63]: 1.1095407916666665e-10 

In [64]: IEy 

Out[64]: 8.521246093750009e-13 
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In [65]: IFy 

Out[65]: 8.521246093750009e-13 

In [66]: IGy 

Out[66]: 8.521246093750009e-13 

In [67]: IHy 

Out[67]: 8.521246093750009e-13 

In [68]: Iy_nylon 

Out[68]: 2.6491927708333324e-10 

In [69]: 

 IAz=Iz(wA,hA,yA) 

IBz=Iz(wB,hB,yB) 

ICz=Iz(wC,hC,yC) 

IDz=Iz(wD,hD,yD) 

IEz=Iz(wE,hE,yE) 

IFz=Iz(wF,hF,yF) 

IGz=Iz(wG,hG,yG) 

IHz=Iz(wH,hH,yH) 

Iz_nylon = IAz+IBz+ICz+IDz+IEz+IFz+IGz+IHz 

In [70]: IAz 

Out[70]: 8.879146791666669e-12 

In [71]: IBz 

Out[71]: 8.392559375000011e-14 

In [72]: ICz 

Out[72]: 8.392559375000011e-14 

In [73]: IDz 

Out[73]: 8.879146791666669e-12 

In [74]: IEz 

Out[74]: 8.779265625000013e-15 

In [75]: IFz 

Out[75]: 8.779265625000013e-15 

In [76]: IGz 

Out[76]: 8.779265625000013e-15 
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In [77]: IHz 

Out[77]: 8.779265625000013e-15 

In [78]: Iz_nylon 

Out[78]: 1.7961261833333333e-11 

 

 

 

In [79]:  

IIy=Iy(wI,hI,zI) 

IJy=Iy(wJ,hJ,zJ) 

Iy_carbon = IIy+IJy 

In [80]: IIy 

Out[80]: 4.369869791666669e-12 

 

In [81]: IJy 

Out[81]: 4.369869791666669e-12 

In [82]: Iy_carbon 

Out[82]: 8.739739583333338e-12 

In [83]:  

IIz=Iz(wI,hI,yI) 

IJz=Iz(wJ,hJ,yJ) 

Iz_carbon = IIz+IJz 

In [84]: IIz 

Out[84]: 1.0416666666666676e-14 

In [85]: IJz 

Out[85]: 1.0416666666666676e-14 

In [86]: Iz_carbon 

Out[86]: 2.0833333333333353e-14 

In [87]: #total moment of inertia 

Iy_total = Iy_carbon+Iy_nylon 

Iz_total = Iz_nylon + Iz_carbon 

In [88]: Iy_total 

Out[88]: 2.736590166666666e-10 

In [89]: Iz_total 

Out[89]: 1.7982095166666667e-11 
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In [90]: 

A_nylon = A_matrix(Ex_nylon,Es_nylon,h1,w1,th) 

A_carbon = A_matrix(Ex_carbon,Es_carbon,h2,w3,th) 

D_nylon = D_matrix(Iy_nylon,Iz_nylon,Ex_nylon,Es_nylon,th) 

D_carbon = D_matrix(Iy_carbon,Iz_carbon,Ex_carbon,Es_carbon,th) 

 

 

A_total = A_nylon + A_carbon  

D_total = D_nylon+D_carbon 

a_total = inv(A_total)                                        

d_total = inv(D_total) 

In [91]: A_nylon 

 

Out[91]: array([[ 3659183.70198603, 185087.96721469, 0. ] , 

[ 185087.96721469, 1602229.87289643, 0. ] , 

[ 0. , 

In [92]: A_carbon 

0. , 185087.96721469]]) 

Out[92]: array([[ 73529569.53216098, 3719255.34853372, 0. ] , 

[ 3719255.34853372, 32196053.1201813 , 0. ] , 

[ 0. , 

In [93]: D_nylon 

0. , 3719255.34853372]]) 
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Out[93]: array([[ 29.74493188, 0.06573087, 0. ] , 

                           [ 0.06573087, 7.70255725, 0. ] ,  

                           [ 0. , 0. , 9.03022117]]) 

In [94]: D_carbon 
Out[94]: array([[ 56.35162687, 0.14499343, 0. ] , 
                           [ 0.14499343, 14.57732346, 0. ] , 
                           [ 0. , 0. , 17.00065993]]) 

In [95]: A_total 
Out[95]: array([[ 77188753.23414701, 3904343.31574841, 0. ] , 
                           [ 3904343.31574841, 33798282.99307773, 0. ] , 
                           [ 0. , 0. , 3904343.31574841]]) 

In [96]: D_total 
Out[96]: array([[ 86.09655875, 0.2107243 , 0. ] , 
                           [ 0.2107243 , 22.27988071, 0. ] , 
                           [ 0. , 0. , 26.0308811 ]]) 

In [97]: a_total 
Out[97]: array([[ 1.30313997e-08, -1.50537406e-09, 0.00000000e+00] , 
                           [ -1.50537406e-09, 2.97612011e-08, 0.00000000e+00] , 
                           [ 0.00000000e+00, 0.00000000e+00, 2.56125017e-07]]) 

 

In [98]: d_total 

Out[98]: array([[ 0.01161513, -0.00010986, 0. ] , 

                        [-0.00010986, 0.04488458, 0. ] , 

                        [ 0. , 0. , 0.03841591]]) 

In [99]: #beam bending stiffness 

flex_wide = w_beam*D_total[0][0] 

In [100: flex_wide 

Out[100]: 7.289 
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                               cantilevered deflection 
 

In [15]:  

 

P = 9.81 

L = 8.50*0.0254 

a = 7.75* 0.0254 

flex_wide = 7.289 

deflection_max = P*a**2*(3*L - a)/(6*flex_wide) 

 

In [16]: deflection_max 

Out[16]: 0.003918796568002384 
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  simply_supported 
 

In [1]:  

flex_wide=7.289 

P = 9.81 

L= 7*0.0254  

deflection_max =( P*L**3)/(48*flex_wide) 

 

In [4]: deflection_max 

Out[4]: 0.00015759959230552886 
 
 

 

 

 

 

 


