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ABSTRACT

RANDOMIZED AND EVOLUTIONARY APPROACHES TO DATASET

CHARACTERIZATION, FEATURE WEIGHTING, AND SAMPLING IN

K-NEAREST NEIGHBORS

SURYODAY BASAK, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Manfred Huber

K-Nearest Neighbors (KNN) has remained one of the most popular methods for

supervised machine learning tasks. However, its performance often depends on the

characteristics of the dataset and on appropriate feature scaling. In this thesis, char-

acteristics of a dataset that make it suitable for being used within KNN are explored.

As part of this, two new measures for dataset dispersion, called mean neighborhood

target variance (MNTV), and mean neighborhood target entropy (MNTE) are de-

veloped to help determine the performance we expect while using KNN regressors

and classifiers, respectively. It is empirically demonstrated that these measures of

dispersion can be indicative of the performance of KNN regression and classification.

This idea is extended to learn feature weights that help improve the accuracy of KNN

classification and regression. For this, it is argued that the MNTV and MNTE, when

used to learn feature weights, cannot be optimized using traditional gradient-based

optimization methods and we develop optimization strategies based on metaheuristic

methods, namely genetic algorithms and particle swarm optimization. The feature-
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weighting method is tried in both regression and classification contexts on publicly

available datasets, and the performance is compared to KNN without feature weight-

ing. The results indicate that the performance of KNN with appropriate feature

weighting leads to better performance. In a separate branch of the work, the ideas

of MNTV and MNTE are used to develop a sample-weighting algorithm that assigns

sampling probabilities to each instance in a training set. This too is tried in both

regression and classification with subsamples drawn using the sampling probabilities,

and the performance is compared to KNN without subsampling the training set.
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CHAPTER 1

INTRODUCTION

In the past few decades, the amount of data that is gathered and organized

in any domain has vastly increased [1]. Increasingly, people and organizations are

interested in better quantitative assessments and predictions. This has given rise to

opportunities to develop and deploy computational methods that use these massive

amounts of data. Through a merging of cutting edge computational capabilities

along with sophisticated methods of statistical analysis, the field of machine learning

(ML) has become one of the fastest growing areas that is studied within the realm

of computer science. The holy grail of machine learning is to be able to emulate

human intelligence, in order to make accurate estimates and decisions automatically.

In order to make any of this work within computers, statistical and mathematical

models are used.

Part of the reason why ML has become immensely popular in the recent decades

is because of strong applications in various areas, such as business, medicine, or any-

thing that enriches the human experience. Today, ML is used within applications of

fitness tracking [2, 3] , medical diagnosis [4, 5, 6], high-energy physics [7, 8], astronomy

[9, 10], business [11, 12], graphics and rendering [13], human-computer interaction

[14, 15], and almost anything where data can be collected. Increasingly, organiza-

tions and experts in all these domains are looking at results of advanced analytics

that can provide data-driven inferences about such problems. Data-driven inferences

are generally more informed, and can be explained with appropriate visualizations.
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Naturally, the latest trends in ML have been to develop really sophisticated

methods [16]. However, there still remains a plethora of tasks wherein simpler meth-

ods with clear explanations suffice, and where complex learning algorithms are an

overkill [17]. With this in mind, questions arise about how suitable a certain dataset

might be for a particular approach. From classical statistical analysis, popular mea-

sures of data dispersion such as histograms, distribution estimates, etc. are often used

to develop a working intuition about a dataset that is being dealt with. However,

such analyses fall short for ML approaches that are inherently unassuming.

K-nearest neighbors (KNN) is one of the simplest approaches that exist in ma-

chine learning. As an approch, the KNN model itself has very low bias [18], and does

not assume or require that the data it is used on follow any particular distribution

or exhibit any particular property. This simplicity is attractive for various compu-

tational and inferential reasons, but it comes at a cost. KNN is a non-parametric

instance-based learner, which means that the predictive capability of KNN is depen-

dent on individual samples in a dataset and not any other parameters learned from

the data; KNN also does not require any sort of functional relationship to exist be-

tween the independent and dependent variables in a dataset. The lack of a functional

relationship in KNN makes tasks like feature extraction or weighting inherently dif-

ficult (this is elaborated in Chapter 2). However, in order for it to perform well,

it is important to address a number of shortcomings, including its interactions with

characteristics and biases in the dataset, its dependence on feature magnitudes, and

complexity and size of the dataset it is used in.

Traditionally, tasks such as feature extraction is done independently based on

component analyses or data transformations. However, the independence of this step

does not always guarantee an improvement in performance, and the absence of a

functional relationship is one of the reasons for this. Thus, using KNN effectively has
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required careful analysis of the data being used, along with trying different approaches

for understanding the best signals inherent to the data. This thesis investigates

techniques to address these aspects by introducing data set characteristics, developing

new approaches to feature weighting, and by investigating subsampling techniques.

1.1 A Novel Approach for Analyzing Data for Instance-Based Learners

Since instance based learners like KNN do not have any strict requirements

related to distributions, separability, etc. in a dataset, an appropriate analysis of

how well-suited a dataset might be for an approach would involve an analysis of the

instances or sets of instances within a dataset that can lead to effective predictions.

For example, within KNN, all combinations of k training points may not be a neigh-

borhood that could be queried for any particular point in the domain of the data.

For those sets that can be a nearest-neighborhood set, an analysis of the dispersion of

their independent variables can give us an estimate of the error that we may expect

to encounter.

In this thesis, two new measures of dataset dispersion, called mean neighborhood

target standard deviation (MNTSD) and mean neighborhood target entropy (MNTE)

are introduced. Their formulations are elaborated in Chapter 3 and their usefulness

is empirically demonstrated by applying them to multiple freely-available datasets,

and comparing these measures to actual performance metrics.

1.2 Metaheuristic Optimization Approaches for Feature Scaling for Instance-Based

Learners

Based on the MNTSD and MNSE, feature weights are optimized using meta-

heuristic optimization methods. Feature weights that minimize the the MNTSD or

3



MNTE for a dataset are tested empirically for accuracy of the method. This is elab-

orated in Chapter 4. The results demonstrate that there is generally an improvement

in accuracy when features in a dataset are scaled based on minimizing the MNTSD

or MNTE.

1.3 A Novel Randomized Approach to Data Sampling for Instance-Based Learners

A randomized sampling approach is developed. Sample weights are optimized

using randomized sampling and reweighing based on the MNTSD and MNSE. Sample

sets that minimize the the MNTSD or MNTE for a dataset are tested empirically for

accuracy of the method. This is elaborated in Chapter 6. The results demonstrate

that there is generally an improvement in accuracy when sample weights are assigned

based on MNTSD or MNTE, as compared to uniform sampling.

4



CHAPTER 2

BACKGROUND

2.1 The Different Types of Machine Learning Tasks

Within the purview of ML, different kinds of methods and approaches exist

depending on the type of data that is available and the task that it is used for. The

following is a list of the most popular machine learning tasks:

Supervised Learning: Supervised learning broadly refers to ML tasks wherein

a mapping between two sets of variables is estimated. In supervised learning, the

algorithm has access to an input set X, and a target set Y . The task is to learn a

function f : X 7→ Y that has the lowest error. The most common tasks in supervised

learning are those of classification and regression [19].

Unsupervised Learning: In unsupervised learning, the algorithm has access to

an input set X, but there is usually no access to target set Y . Unsupervised learn-

ing methods learn patterns in the input set alone. Clustering is the most popular

unsupervised learning task [20], followed by methods in component analysis.

Semi-Supervised Learning: Semi-supervised learning is, in essence, a combination

of supervised and unsupervised learning, wherein a subset of the input set X has an

associated set of target values, and the rest of the set does not. Semi-supervised

learning is often used to prevent overfitting in ML models by allowing an often sig-

nificantly larger amount of unlabeled data to be utilized during learning, making

the resulting model more robust based on properties of unlabelled data [21], and in

generative models [22] that can generate samples that are realistic.
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Reinforcement Learning: Reinforcement learning (RL) deals with another set of

tasks wherein the input is interpreted as a state in a Markov decision process. Very

commonly, the input domain consists of states and the outputs consist of actions, that

are not directly available. The goal of RL is to learn an action for each state such that

some form of a performance measure is optimized. The difference to unsupervised

learning is that the performance estimate comes with the data rather than being built

into the algorithm.

2.2 Representation Categories in Supervised Learning

This thesis deals exclusively with supervised learning tasks. There are broadly

two categories of representations in supervised learning approaches distinguished by

the way the model is represented:

Parametric Approaches: Parametric learning algorithms employ a transformation

of the input based on an assumed functional form, whose parameters are optimized

[23]. Some popular examples of parametric approaches are linear regression, logistic

regression, neural networks, etc.

Non-Parametric Approaches: Non-parametric approaches do not assume an ex-

plicit functional form, rather they use the aspects of the data itself to represent the

structure of the learned model. As a result, there are usually no model parameters to

be optimized [23]. The aspects that are learned in non-parametric approaches vary

based on the particulars of the algorithm. K-nearest neighbors is one of the most

popular non-parametric algorithms that exist and forms the focal point of this thesis.
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2.3 The K-Nearest Neighbors Approach

K-nearest neighbors is a canonical learning method in machine learning and

yet, with reasonable tuning of model parameters, can easily perform well in non-

linear classification and regression. It is a form of lazy learning [24], which implies

that a generalization of the properties predicted for a test instance is not made unless

it is queried. Learning in KNN is based on a defined similarity metric which is used to

select k training instances that are most similar to the test point, where k is a number

that is set by the user. The target values of these k points are aggregated to make a

prediction for the test point. For classification, KNN usually uses a majority-voting

scheme, where the most occurring value is declared as the predicted value. In the

case of regression, the k target values are usually averaged. Various sample-weighting

schemes may also be used to consider a weighted-average, such as an inverse-distance

weighting, where more similar samples are given a larger weight, and samples that

are less similar to the test query are given a lower weight, based on the reciprocal of

the similarity metric.

2.3.1 Algorithm

A simple implementation of the KNN algorithm using a for loop is described

in Algorithm 1. In this description of the algorithm, the procedure similarity metric

refers to how the similarity between the test point and training samples is ascertained

– popular similarity metrics are L1 and L2 norms, or a weighted L2 norm. However,

KNN does not require that any particular metrics of similarity be used. The choice

of the metric should depend on the application [25]; the procedure aggregate refers

to how the target values of the k-most similar training instances are used to make a

prediction. This may be majority voting in the case of classification, and average or

weighted average for regression.
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Algorithm 1 K Nearest Neighbors

1: input: Xtrain is the training set
ytrain is the set of associated target values of X
Xtest is the test sample
k is the number of training samples used to make a prediction

2: output: ypred is the predicted target value of Xtest

3: procedure KNN(Xtrain, ytrain, Xtest, k)
4: n← Xtrain.length()
5: initialize similarity as an array of length n
6: for i← 0, i < n, i+ + do
7: similarity[i]← similarity metric(Xtrain, Xtest)

8: ktop ← argsort(similarity)[0:k]
9: ytop ← ytrain[ktop]
10: return aggregate(ytop)

Although the complexity of Algorithm 1 is O(nm+k), where m is the number of

attributes or features in the data, in practice, much faster implementations of KNN

exist that use datastructures such as K-D trees [26], and locality-sensitive hashing

[27, 28] . This thesis, however, does not focus on speeding up KNN.

2.3.2 The Choice of k and the Bias-Variance Tradeoff in KNN

The bias-variance (BV) tradeoff of any predictive model is a property that

indicates the tradeoff in errors that arise due to assumptions inherent to the model

and errors that arise due to variability in a dataset [18]. In KNN, the sources of

bias are in the selected k and the chosen similarity measure; the source of variance is

the variability of individual points that constitute a k-nearest neighborhood of a test

point.

KNN does not rely on any stringent assumptions about the data. Thus, the

bias in the model is low, but the model suffers from high variance, that is related to
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the k selected points, and that changes from region to region within the feature space

[18].

Figure 2.1. Effect of the decision boundary based on k.
Each of the above decision surfaces were created using the same dataset. However,
the decision surface for each value of k is very different. Thus, selecting the right

value of k greatly affects the predictive capabilities of KNN.

In Figure 2.1, all the plots are created based on the same two-dimensional

dataset. This dataset, indicated by the points in the graphs, has two classes in it,

with the colours of the points indicating the class each point belongs to. The color

of the background indicates the class that a corresponding data point would belong

to. The measure of similarity used here was the Euclidean distance, and the sample

weighting was uniform. For different values of k, the decision surfaces turn out to

be very different. Determining the best value of k to ensure an acceptable level of

variance is thus a challenging task in KNN.

The interpretation of this in terms of the BV-tradeoff is that if the value of k

is low, variability in predictions across regions in the feature space is expected to be

high and the bias to the dataset is low, whereas if k is high, then the model generalizes

more to the training data, with smaller fluctuations across regions, resulting in a high

bias and low variance.
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An extreme case of the BV-tradeoff is if k = n, where n is the size of the dataset.

Assuming that the unweighted Euclidean distance is used as the measure of similarity,

in the case of classification, any test point would be classified as the majority class in

the dataset, and in the case of regression, any test point would have the prediction

of the average of all the target values of the set: the variance in prediction is zero,

whereas the method is extremely biased to the dataset. The other extreme case is

that of 1-nearest neighbor, where the prediction of any test point depends on only

one point in the dataset, resulting in high variance in predictability across the entire

input domain, but low bias to the training set.

2.3.3 Advantages and Disadvantages of KNN

Despite an explosion in the amount of data that led to the development of

new and more complex methods in machine learning, a lot of specialized applications

still collect datasets that are small in size. For a lot of smaller datasets, powerful

methods such as neural networks are known to overfit [29]. Due to this reason,

classical methods in ML such as KNN are significant to this day.

KNN is a simple approach, it is generally a lot more transparent as a method

in a practical setting: for example, imagine that KNN is employed in diagnosis of

cancer. Data is collected and is classified into two classes: malignant and benign.

If KNN is used, it gives the analyst an opportunity to take a look at the instances

within the dataset that led to the prediction of a test sample. Since a misdiagnosis

of a malignant case could potentially be a life-hazard, the use of KNN, in addition to

providing a classification of a test sample, could point a doctor or an analyst towards

similar cases as the test case. Based on all this knowledge an informed decision can

be made about the diagnosis.
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On the other hand, the lack of an explicit functional relationship between the

input and target variables can sometimes be a disadvantage, especially in tasks such as

feature extraction, etc., compared to parameterized models such as logistic regression

where weights for each feature must be optimized [30]. For tasks such as feature

extraction, the most popular approaches involve a cascading of methods such as

principal component analysis (PCA), or independent component analysis (ICA) prior

to using KNN [31, 32].

2.4 Characteristics of Data

Some characteristics of data that are generally analyzed prior to using ML

algorithms are as follows:

1. Size of Dataset: The size of a dataset is one of the first attributes that is

generally looked at. As a rule of thumb, the larger the number of representative

and unbiased instances in a dataset, the better [33]. Often, the choice of a

learner depends on the size of data: for instance, modern deep learning generally

requires a large number of samples in order to not overfit on the training data

[34].

2. Dimensionality: The number of dimensions in the data is indicative of the

complexity of the learning task. The curse of dimensionality is a problem

pertinent in all kinds of machine learning. Generally, localized methods such

as KNN become less accurate with the increase in the number of dimensions:

in high dimensions, all training instances sparseley populate the input domain

[18].

3. Number of Classes: Often, like the dimensionality in the dataset, the number

of classes is indicative of the complexity of the learning task at hand. With

a larger number of classes, localized methods suffer. For example, a scenario

11



containing 100 classes would require a very high number of localized evaluations

by localized methods.

4. Correlation of Features: Generally, decorrelated features are preferred in

ML tasks as correlated features do not improve the quality of the information

that is available in the dataset.

5. Distribution of Features: Certain methods implicitly assume that the data

follows a certain distribution and hence, a confidence value of these assumptions

can be representative of how well the data conforms to the assumptions of

the method. For example, Gaussian Näıve Bayes (GNB) assumes that the

features in the data are decorrelated and normally distributed [35], and the

whole method is built on the basis of this assumption.

6. Clusters: Cluster analysis of a dataset can often tell us how different regions in

the input domain vary in properties [36]. When this information is used along

with information about the classes, we can get an idea about the distribution

of classes in the input domain.

7. Separability and Overlap of Classes: Almost any trained ML model may be

interpreted as a decision surface. In classification, the geometry of the decision

surface is a result of the model parameters and their optimization. Some meth-

ods, however, require that classes be separable, either linearly or upon some

transformation [37]. Support vector machines (SVM) work on the basis of this

model assumption. In the vanilla version of SVM the support vectors cannot be

discovered unless classes in the data are linearly separable; this requirement is

relaxed in soft-margin SVM wherein an overlap between classes is compensated

by introducing an error term [38]. In other popular variants, such as kernel

SVM, the data is implicitly transformed into higher dimensions where the data

may be linearly separable [39].
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2.5 Characteristics of Data Relevant to KNN

Since KNN is a highly localized method, localized characteristics of a dataset

would be relevant to gain an insight of how suitable a dataset might be to be used with

KNN. This is traditionally a little elusive since KNN does not assume any particular

distribution in the data, or use any explicit functional form between the input and

target domains. Also, in practice, all sets of k-points in the input domain may not

constitute a k-nearest neighborhood.

An appropriate empirical analysis would thus require an analysis of sets of

points that can be reached as k-nearest neighborhoods to points in the input domain.

Since KNN has low bias, within sets of points that constitute k-nearest neighborhoods,

variance of the target values could provide us an estimate of the variance that we may

expect for each neighborhood that exists. An aggregation of the localized properties

for the whole dataset could tell, on average, how well-suited the whole dataset is for

KNN.

In the next chapter, the rationale of these ideas are elaborated along with an

implementation of the concepts and a coarse evaluation with results. These charac-

teristics will then be used to introduce novel feature scaling and data set sampling

approaches in subsequent chapters.

13



CHAPTER 3

LOCALIZED PROPERTIES IN DATASETS

As discussed in the previous chapter, characteristics of the dataset can be im-

portant in terms of the performance of KNN approaches. Due to its local behav-

ior characteristics, properties important for KNN should generally capture localized

characteristics of the data set. In this chapter, two measures of localized variance are

introduced. These measures are aimed at capturing important aspects of the data in

a local neighborhood and will be used in subsequent chapters to form techniques for

optimizing KNN techniques.

3.1 Definitions

1. k-Nearest Neighborhood Set : A k-nearest neighborhood set is a set of k points

in the training set that represents the k-nearest neighbors to at least one point

in the input domain, for a fixed k.

2. Target Variance: The variance of the target values of a dataset.

3. Target Standard Deviation: The standard deviation of the target values of a

dataset.

4. Target Entropy : The entropy [40] of the target values of a dataset.

Note that not all subsets of the points in the training set may constitute a

k-nearest neighborhood set. In most practical problems only a small fraction of k-

combinations of training instances constitute a k-nearest neighborhood, with some of

the factors determining the fraction being the dimensionality of the underlying feature

space compared to the size of the dataset as well as the density of the data points.
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Thus, an appropriate analysis of a dataset to decide if KNN is a suitable supervised

approach should take into consideration possible k-nearest neighborhood sets, or at

most, points that are very close to each other. In addition to that, the accuracy of

a KNN method entirely depends on the distribution of the target-values of k-nearest

neighborhood sets: if the variance of the target values of a k-nearest neighborhood set

is high, then it could indicate that the performance of the method could be prone to

errors. In the case of classification, additionally, measures of dispersion appropriate

for categorical values could be utilized. In the current work, we particularly use

entropy, similar to the measure used to split nodes in decision trees [40].

3.2 Mean Neighborhood Target Standard Deviation

We define the mean neighborhood target standard deviation (MNTSD) as:

1

N

N∑
n=1

√√√√ 1

k − 1

k∑
i=1

(yn,i − µn)2 (3.1)

where N is the number of distinct sets of k points that form k-nearest neighbor-

hood sets, k is the parameter of KNN, yn,i is the target value of the ith instance in

neighborhood n, µn is the mean of all the target values in neighborhood n.

This measures the average standard deviation of target values across all neigh-

borhoods in a dataset. This measure of variation in target values is particularly useful

when target values are continuous or ordinal. It was formulated with KNN regression

in mind, since target values in regression are usually continuous valued. However, this

can also be used within KNN classification if class labels are converted to numerical

values.
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3.3 Mean Neighborhood Target Entropy

We define the mean neighborhood target entropy (MNTE) as:

M = − 1

N

N∑
n=1

1

c

c∑
i=1

pi log(pi) (3.2)

where N is the number of distinct sets of k points that form k-nearest neighborhood

sets, c is the number of classes that are present in neighborhood n, pi is the probability

of encountering an instance of class i in neighborhood n.

This measures the average Shannon entropy of target values across all neighbor-

hoods in a dataset. This measure of variation in target values is particularly useful

when target values are discrete with no ordering in values. It was formulated with

KNN classification in mind, since target values in classification are usually discrete

and not ordinal. Since entropy does not care for ordering of values, this should not

be used in the context of KNN regression.

3.4 Computing Localized Dataset Characteristics

Some geometrical aspects must be taken into consideration prior to developing

a method to compute the MNTSD or MNTE of a dataset.

Lemma 1: Given a training population of n samples in m dimensions and a fixed k,

the number of unique sets of points that can constitute neighborhoods in KNN is upper

bounded by by the number of combinations of k elements from a set of n elements,

nCk = n!
(n−k)!k!

.

Proof: Given a set of n training instances, the number of unique sets of k points that

can be formed is nCk. Condsider a training set that can be perfectly arranged on the

surface of a hypersphere in m dimensions. From the center of this hypersphere, every

point in the training set is equally far away, with the distance to each point corre-
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sponding to the radius of the hypersphere. Thus, at this point, any set of k training

instances can be considered to be a neighborhood. The number of neighborhoods

reachable from the center is thus nCk. Hence, the number of unique neighborhoods

for any training set is upper bounded by nCk.

Lemma 2: A set of k points Ai in a training sample T can form a k-nearest neigh-

borhood set iff a convex hull can be constructed around Ai such that ∀x ∈ T and

x /∈ Ai, x does not lie within the convex hull of Ai.

Proof: Let there be some point xm ∈ T and xm /∈ Ai that lies within the convex

hull of the set Ai. Then, there exists at least one point xj ∈ Ai, and some point xt in

the space of T such that the distance between xt and xj is greater than the distance

between xt and xm, that is

D(xt, xj) > D(xt, xm) (3.3)

For this point, the set Ai − {xj} + {xm} is the k-nearest neighborhood. This

contradicts that Ai is a k-nearest neighborhood set. Thus, this result is proven by

contradiction.

Lemma 3:

nCk ≤ nk (3.4)

Proof:
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nCk =
n!

(n− k)!k!

=
n× (n− 1)× ...× (n− k + 1)× (n− k)!

(n− k)!k!

=
n× (n− 1)× ...× (n− k + 1)

k!
← k terms

≤ n× n× ...× n
k!

← k terms

=
nk

k!

≤ nk

(3.5)

Based on the above lemmata, we see that in order to calculate the mean neigh-

borhood target variance, first each neighborhood set in the dataset would have to be

discovered. The most exhaustive way of doing this would be to find each of the nCk

unique sets of k instances (lemma 1), determine if they are a neighborhood set or not

(based on lemma 2), and then find the target-variance if a k-set is a neighborhood.

The cost of finding each k-set is upper-bounded by O(nk) (based on lemma 3). In

order to determine if a k-set is a neighborhood, we may evaluate if any other point

in the dataset lies within the convex hull of the neighborhood. From the definition

of convex sets, a point p may lie inside the convex hull of n points x1, x2, ..., xn iff

there exists a convex combination of x1, x2, ..., xn that equals p. This may be set

up as the following linear programming problem:
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min 1

s.t. a1x1 + a2x2 + ... + anxn

aij > 0

−aij > 1

a11 + a21 + ...+ an1 = 1

a21 + a22 + ...+ an2 = 1

...

a1m + a2m + ...+ anm = 1

(3.6)

where a1, a2, ..., an are coefficient vectors of x1, x2, ..., xn and aij is the jth element of

ai. The complexity of the current fastest algorithm for solving a linear programming

problem is O∗(n2.055) [41]. Thus, the overall complexity of finding k-sets that are

possible k-nearest neighborhoods is a product of the complexity of finding unique

k-item combinations and the cost to evaluate an LP for each k-set. This is upper

bounded by O(nCk) +O∗(nCk · n2.055) ≤ O∗(nk(1 + n3.055)). While this is polynomial

in n and k, it is still computationally expensive even for smaller values of k and

moderately-sized datasets.

In order to avoid this computational complexity, we use a sampling-based strat-

egy to select fixed numbers of neighborhoods at random and use them for the compu-

tation of MNTV. In the current work, this is done by selecting a verification dataset

from the training set and finding the k-nearest neighbors of each point in the verifi-

cation set. The sample of the neighborhoods found in this way is used to calculate

the MNTV.
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3.5 MNTSD with Inverse-Distance Weighting of Samples

So far, the dispersion measures were considered for the Euclidean distance met-

ric, with equally weighted samples. However, the same considerations fail to exist

when samples themselves are unequally weighted.

Inverse-distance weighting is a popular sample-weighting scheme [42] that as-

signs larger weights to training points that are closer to a test point in a k-nearest

neighborhood, and vice versa. The weights are proportional to the reciprocal of the

distance, based on a chosen distance metric.

When all the instances in a neighborhood set are equally weighted, the decision

surface does not vary within a neighborhood. This is especially relevant for regression.

Equally weighted training samples result in a constant value across the points for

which a particular neighborhood set is the k-nearest neighborhood. Inverse-distance

weighting, however, results in a curved decision surface, parametric in the distance

from each training instance – for every point for which a set of k instances is the

k-nearest neighborhood, the predicted value is different. Thus, the variance of the

target values of a k-nearest neighborhood would not measure the deviation of each

point from a constant predicted value.

For example, in Figure 3.1, a neighborhood of 5 points is randomly created

to illustrate the effect of leaving a singe point out in KNN regression with inverse-

distance weighting. The subfigure in the top left consists of the decision surface

created with all five points, and in every other subfigure, a single point is left out.

From this figure, we can infer that KNN with inverse-distance weighting is extremely

sensitive to the variance of the set of points as the geometry of the decision surface

in each case is drastically different.

To simplify the formulation and interpretation of the MNTSD for inverse-

weighted KNN, we measure the effect of each point in a k-nearest neighborhood to the
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Figure 3.1. Example: Variation in decision surface while leaving one instance out at
a time.

The X1 and X2 axes represent the features and the y axis represents the target
value.

decision surface. This is done by calculating the variance in a leave-one-out manner:

by excluding a point and computing the target variance of the remaining points, for

each point in the k-nearest neighborhood. This is done by averaging the variance by

leaving one-sample-out. The leave-one-out variance for a k-nearest neighborhood is

described in Equation 3.7.

3.5.1 Average Leave-One-Out Variance

For a set of n points, S = {x1, x2, ..., xn} The average leave-one-out variance

for a set is defined as:

ALOOV =
1

n

n∑
i=1

1

n− 1

[( n∑
j=1

(xj − µi)
2
)
− (xi − µi)

2

]
(3.7)
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where n is the number of elements in the entire given set S, n − 1 is the number of

elements in a subset Si that excludes element xi, and µi is the mean of the subset Si.

Unbiased Average Leave-One-Out Variance: The unbiased average leave-one-

out variance for a set is defined as:

ALOOV =
1

n

n∑
i=1

1

n− 2

[( n∑
j=1

(xj − µi)
2
)
− (xi − µi)

2

]
(3.8)

The unbiased average leave-one-out variance has a nice property that it can be

shown to equal the unbiased variance of the set.

Equations 3.7 and 3.8 present the definitions of ALOOV in a general context.

In the context of target variance reduction, in the sets of points (represented using

x) would be the k target values of a k-nearest neighborhood set.

Theorem 1: The unbiased average leave-one-out variance is the same as the unbiased

variance of the set.

The proof of Theorem 1 is presented in Appendix A. Because of this result, the

square root of the unbiased variance is used whenever the MNTSD is calculated. And

because of this theorem, the unbiased variance can be used when training instances

are also weighted.

3.6 Empirical Results on Comparing the Performance of a Learner with Localized

Dispersion Measures

The effectiveness of using the MNTSD and MNTE as characteristics of a dataset

are demonstrated in the following experimental results. Here the correlation between

the proposed measures and the classification and regression performance of KNN are

investigated using a set of common datasets. The datasets were acquired from the

UCI repository.
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3.6.1 Datasets

For the evaluation of the metrics, the following datasets from the UCI repository

[43] were used. These datasets were selected to provide a representative set in terms

of feature number and complexity: they are all small to medium sized datasets, with

small to moderate number of features. For an initial exploration of the methods

formulated in this thesis, small to medium sized datasets were chosen.

The following datasets were used to evaluate MNTSD for regression:

• Airfoil Self Noise: This dataset is obtained from a series of aerodynamic and

acoustic tests of two and three-dimensional airfoil blade sections conducted in

an anechoic wind tunnel by NASA [44]. It has 1503 instances, 5 features, and

one label, corresponding to self-noise.

• Auto MPG : This dataset contains data of city-cycle fuel consumption of auto-

mobiles. It is revisited from the CMY StatLib Library [45]. It has 398 instances,

7 features (excluding the model name of the automobile), and one label corre-

sponding to miles per gallon (MPG) of an automobile.

• Concrete Compressive Strength: This dataset concerns different attributes of

concrete [46]. It has 1030 instances, 8 features, and one label representing

compressive strength.

• Energy efficiency : This dataset consists of requirements of heating and cooling

loads of buildings as a function of building parameters [47]. Each instance has

two labels: the heating load and the cooling load. In this thesis, predicting the

heating and cooling loads are treated as two independent learning tasks. This

dataset has 768 instances, 8 attributes, and two labels (corresponding to the

heating and cooling loads).

• QSAR aquatic toxicity : This dataset contains 8 attributes (molecular descrip-

tors) of 546 chemicals used to predict quantitative acute aquatic toxicity to-

23



wards Daphnia Magna, which is a small planktonic crustacean [48]. It has 546

instances (corresponding to 546 chemicals), 8 features, and one label represent-

ing a quantitative response to aquatic toxicity.

• QSAR fish toxicity : This dataset contains values for 6 attributes (molecular

descriptors) of 908 chemicals used to predict quantitative acute aquatic toxi-

city towards the fish Pimephales promelas (fathead minnow) [49]. It has 908

instances (corresponding to 908 chemicals), 6 attributes, and one label repre-

senting a quantitative response to aquatic toxicity.

• Wine quality (red): This dataset contains quantitative attributes of the ingredi-

ents of wine [50]. It has 4898 instances, 11 features, and one label representing

the quality of wine.

• Yacht Hydrodynamics : This dataset contains hydrodynamic data of sailing

yachts, and can be used to model the performance of yachts [51]. It has 6

features and one label.

The following datasets were used to evaluate MNTSD and MNTE for classifi-

cation:

• Blood Transfusion Service Center : This dataset contains attributes related to

blood donation and can be used to model if a donor donated blood in March

2007 [52]. It has 4 features and one binary classification label.

• Breast Cancer Wisconsin (Original): This is a popular dataset in the literature

of clinical trials of breast cancer [53]. It has 10 features and one binary label

representing a benign or malignant case.

• Cardioctography : This is a dataset of fetal cardioctograms [54]. It has 2126

instances, 22 features, and one label corresponding to three classes of fetal

state.
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• Caesarian Section: This dataset contains attributes related to cesarian sec-

tion (c-section) birthing [55]. There are 80 instances, 4 features and one label

representing whether a childbirth will be cesarian or not.

• Diabetic Retinopathy Debrecen: This dataset consists of features extracted from

images, used for modeling diabetic retinopathy [56]. It contains 1151 instances,

19 features and one binary label indicating whether signs of diabetic retinopathy

exist in a sample.

• Haberman’s Survival : The dataset contains cases from a study that was con-

ducted between 1958 and 1970 at the University of Chicago’s Billings Hospital

on the survival of patients who had undergone surgery for breast cancer. It

contains 306 instances, 3 features, and one binary attribute indicating survival

(greater than 5 years or less than 5 years) after surgery.

• Indian Liver Patient Dataset (ILPD): This dataset contains records of liver

patients [57]. It has 583 instances, 10 attributes, and one binary label indicating

the existance of a liver disease.

• Immunotherapy : This dataset contains information about wart treatment re-

sults of 90 patients using immunotherapy [58]. It consists of 90 instances, 7

features, and one binary label indicating the success of treatment.

• Wine: This dataset contains features from chemical analysis used to deter-

mine the origin of wines [59]. It has 178 instances, 13 attributes and one label

representing three classes of wine.

3.6.2 MNTSD for Regression

The results below show both MNTSD and Mean-Squared Error (MSE) as a

function of neighborhood size k for different regression problems. The results were

obtained by randomly selecting multiple neighborhoods for varying k. For each case,
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the data was divided into training and test data with MNTSD calculated over the

training set and the test set serving for the calculation of the MSE. Each case was

repeated ten times with Monte-Carlo cross-validation [60]. Here, each set was divided

into training and test sets using a 4 : 1 ratio. Care was taken to ensure that com-

putation of MNTSD and MSE were done on the same splits of the data to minimize

random errors from skewing the results.

For a majority of the datasets, it can be observed that the MNTSD is somewhat

indicative of the MSE performance of the method: we expect that a larger MNTSD

would indicate a larger error due to variance, and thus a larger MNTSD should

correspond to a larger MSE and vice versa. For the datasets Concrete and Qsar

Aqua Tox, there is a close correlation between the two. This is less apparent in

Energy-cool and Energy-heat, and somewhat apparent in Auto MPG. In the Airfoil

dataset, the MNTSD fails to indicate anything about the MSE for small values of k.

Upon close inspection, however, a correlation between MNTSD and MSE can be seen

for larger values of k. In Wine quality and yacht hydrodynamics, the fluctuations in

MNTSD and MSE correlate fairly well, albeit at different rates.
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Figure 3.2. Boxplots for the Airfoil dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a function of Neighborhood Size k for the Airfoil dataset.

Figure 3.3. Boxplots for the Auto MPG dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a function of Neighborhood Size k for the Auto MPG dataset.
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Figure 3.4. Boxplots for the Concrete dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE
(right) as a function of Neighborhood Size k for the Concrete compressive strength

dataset.

Figure 3.5. Boxplots for the Energy (cool) dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a function of Neighborhood Size k for the Energy (cool) dataset.
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Figure 3.6. Boxplots for the Energy (heat) dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a function of Neighborhood Size k for the Energy (heat) dataset.

Figure 3.7. Boxplots for the QSAR aqua toxicity dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE
(right) as a Function of Neighborhood Size k for the QSAR aqua toxicity dataset.
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Figure 3.8. Boxplots for the QSAR fish toxicity dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a Function of Neighborhood Size k for the QSAR fish toxicity dataset.

Figure 3.9. Boxplots for the Wine quality dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE

(right) as a Function of Neighborhood Size k for the Wine quality dataset.
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Figure 3.10. Boxplots for the Yacht hydrodynamics dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTSD (left) and MSE
(right) as a Function of Neighborhood Size k for the Yacht hydrodynamics dataset.

3.6.3 MNTSD and MNTE for Classification

The results below show MNTE, MNTSD, and accuracy as a function of neigh-

borhood size k for different classification problems. The results were obtained by

randomly selecting multiple neighborhoods for varying k. Once again, for each case,

the data was divided into training and test data with the MNTE and MNTSD calcu-

lated over the training set and the test set serving for the calculation of the accuracy.

Each case was repeated ten times with Monte-Carlo cross-validation. Each set was

divided into training and test sets in a 4 : 1 ratio, and care was taken to ensure

that computation of MNTSD and MSE were done on the same splits of the data to

minimize random errors from skewing the results.

Here again, it can be observed that the MNTSD is somewhat indicative of the

MSE performance of the method: we expect that a larger MNTSD would indicate

a larger error due to variance, and thus a larger MNTSD should correspond to a

lower accuracy and vice versa. For the datasets Cardioctography and Wine, there
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is a fairly good negative correlation between the MNTSD and accuracy. This is less

apparent in the remaining datasets, but once again, for certain ranges of k, there is a

good negative correlation between the MNTSD and the accuracy. The MNTE, on the

other hand, is generally less expressive of the accuracy than the MNTSD: for most

cases, we see that with an increase in MNTE, the accuracy also increases, which is

not what we expect. However, there are a few cases and ranges of k where the MNTE

is representative of accuracy: for example, in the C-Section dataset, with an increase

in MNTE, the accuracy is seen to decrease; in Haberman, for k ≤ 7, the MNTE and

and accuracy show a negative correlation.

Figure 3.11. Boxplots for the Blood Transfusion dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the Blood
Transfusion dataset.

In the next chapter, we use the MNTE and MNTSD to optimally scale features

to improve performance.
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Figure 3.12. Boxplots for the Breast Cancer dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the Breast
Cancer dataset.

Figure 3.13. Boxplots for the Cardioctography dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the
Cardioctography.
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Figure 3.14. Boxplots for the C-Section dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD
(center) and MSE (right) as a function of Neighborhood Size k for the C-Section.

Figure 3.15. Boxplots for the Diabetic Retinopathy dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the Diabetic
Retinopathy dataset.
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Figure 3.16. Boxplots for the Haberman dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD
(center) and MSE (right) as a function of Neighborhood Size k for the Haberman

dataset.

Figure 3.17. Boxplots for the ILPD dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the ILPD
dataset.
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Figure 3.18. Boxplots for the Immunotherapy dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the
Immunotherapy dataset.

Figure 3.19. Boxplots for the Wine dataset.
Boxplots for 10-fold Monte-Carlo Cross-Validation showing MNTE (left), MNTSD

(center) and MSE (right) as a function of Neighborhood Size k for the Wine
dataset.
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CHAPTER 4

OPTIMAL FEATURE SCALING

Some of the long-standing questions regarding KNN are related to the appropri-

ate distance metrics that should be used, the weighting of features and the selection

of appropriate features. An assumption that is made while building machine learning

algorithms is that the training and testing data are drawn from the same distribution.

With this assumption, we ask the question in the context of KNN: what if features

could be scaled in a manner that reduces the variance in the output variable in every

possible neighborhood? One particular approach is to reduce the error due to vari-

ance in a dataset. A minimization of model variance would lead to each neighborhood

predicting a consistent value for a large range of feature sets, or inputs, to which they

are the k-nearest neighborhoods. In the last section, two measures of label dispersion

were introduced that have been shown to provide empirical estimates of errors arising

due to variance of data.

In this chapter, we extend their usage from being an empirical estimate to be-

ing an objective function of an optimization problem: we introduce a new method

of optimizing feature weights, which can be used in both classification as well as

regression tasks called minimization of mean neighborhood target standard devia-

tion (MMNTSD), and a new method of optimizing feature weights, which can be

used in only classification called minimization of mean neighborhood target entropy

(MMNTE).

The optimization objective of the MMNTSD model is described in Eq. 4.1.
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min
1

N

N∑
n=1

√√√√ 1

k − 1

k∑
i=1

(yn,i − µn)2 (4.1)

The optimization objective of the MNTE model is described in Eq. 4.2.

min − 1

N

N∑
n=1

1

c

c∑
i=1

pi log(pi) (4.2)

4.1 Selecting the Right Optimization Approach

Since KNN does not establish an explicit functional relationship between fea-

tures and their target values, the functional relationship between the optimum weights

and the best target values is essentially a black-box. An optimization of feature

weights based on MMNTV cannot be done using a gradient-based approach. Hence

metaheuristic approaches are used to optimize the weights. Another important as-

pect of this model is that the objective is inherently a property of the dataset – thus

the optimization of this objective does not explicitly require a feedback based on the

performance of the learner. This is especially advantageous in cases with less data,

where a training-testing split could greatly alter the hypothesis space.

Most popular approaches to optimization utilize information about gradients

to move towards a local-optimum. When a function is convex or concave and has a

single global optimum, then gradient-based approaches are guaranteed to be able to

discover the optimum point. However, a larger family of optimization objectives are

non-convex in nature. A gradient-based algorithm such as gradient descent would

get stuck in a local optimum when tried on a non-convex function. In order to deal

with these objectives, various approaches such as relaxing the function to a convex

objective, or using algorithms that are suited for non-convex objectives have been

developed. Neither of these approaches are without caveats – optimization of non-
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convex functions is an NP-complete problem and therefore any computationally effi-

cient approach of optimizing a non-convex function does not guarantee that a global

optimum will be found. Nevertheless, these methods yield approximate solutions that

are usable and are generally better than what is found using gradient-based methods.

The three algorithms that are developed here are based on genetic algorithm,

local-best particle swarm optimization, and global-best particle swarm optimization.

These algorithms concurrently evaluate multiple candidate solutions and use a feed-

back mechanism to evaluate how good each solution is – they are inherently a form

of reinforcement learning used in the context of optimization. The details of their

working in the context of the MMNTSD and MMNTE models is outlined in Section

4.4.

4.2 Related Work on Feature Scaling for KNN

Two new methods of selecting the nearest neighbors, namely axis-balanced

KNN and box-KNN are reported in [61], wherein samples are directionally selected

to maintain uniformity of sample selection from multiple directions around the test

point. The performance of KNN with this modification is significantly higher than

for the simple Euclidean-distance based case for many data sets were data was col-

lected using non-uniform sampling and where thus significant variations in terms of

sample density exist. In [62], the authors propose a fusion-distance-metric based on

selecting the nearest neighbors of a point using two different distance metrics, whose

importances are weighted. The accuracies are reported for seven datasets from the

UCI repository and it is shown that their method achieves improvements over simple

Euclidean-distance based KNN classification. In [63], gravitation-based potentials of

influence of each point in a fixed search radius is used for classification – this is used

in imbalanced datasets and is shown to significantly improve accuracy over KNN. A
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method based on similarity of neighborhood points using angular projections, called

dependent KNN (dNN) is tried in [64] and tested on six synthetically generated, non-

linearly separable datasets: dNN generally performs well with non-linearities. Linear

feature weights, or equivalently, transformations of the distance metrics are learned

in [65] and [66]. In [65], a metric is learned for KNN regression that is modeled

using a convex optimization problem. In [66], methods of linear feature weighting

are tried based on principal component analysis and independent component analy-

sis. The results show that appropriately selecting linear feature weights can lead to

lower error of KNN. KNN classification based on fuzzy sets is tried in [67]. In this

work, the authors formulate a classifier based on intervals of values. The number of

intervals and the boundaries of each interval used are the hyper-parameters of the

system, which are optimized using the CHC genetic algorithm. The results show

that this optimization outperforms KNN and many other variants of KNN. A similar

optimization-oriented approach is tried in [68] where the parameter k is learned using

evolutionary computation. In [69], an adaptive distance metric is learned based on

modeling the non-linear spatial distribution of data. The metric is learned based

on empirical risk minimization, and the authors describe it as risk-based weighted

nearest neighbour (RBWNN) classification approach. Here, the risk associated with

each neighbor (in a neighborhood) in each dimension is computed based on a leave-

one-out cross-validation within the training process. The final risk is calculated by

averaging the risk over all the neighbors, and based on this, all of the features are

locally weighted. The method is tried on 10 datasets from the UCI repository and

significantly outperforms KNN and many other variants of KNN.

A majority of the current work involves either computing feature weights or

learning a distance metric. The contributions of this paper are thus concomitant to
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existing work that improves the performance of KNN using evolutionary computing.

The particular contributions of this thesis are:

• The MNTE and MNTSD are not measures of performance: The optimization

objectives in MMNTSD and MMNTE are not a feedback based on accuracy or

MSE, or any other measure of performance. Since the MNTE and MNTSD are

characteristics of a dataset, they can be calculated for any dataset (for a fixed

k) and for any transformation of a dataset, and their optimization is explainable

as an improvement of an estimate of the error due to variance in the dataset.

• Flexibility inherent to the methods : In this thesis, the methods used to optimize

the MNTSD or MNTE are based on the sampling method described in Section

3.4. However, the computation can be done in various different ways: based on

modeling the distribution of the input space, by exhaustive computation, etc.

This is useful as different strategies can be developed for different datasets with

varying sizes, distributions, etc.

• Small Datasets : Evaluation by training-testing splitting of smaller datasets

can often skew the hypothesis space for KNN. In that case, with appropriate

modeling and discovery of neighborhoods of in input space, one can preserve all

the training samples in the data and then provide an empirical estimate of the

error.

• Novel optimization approaches : The metaheuristic algorithms of genetic algo-

rithms and particle swarm optimization are two very different models. To the

best of the author’s knowledeg, particle swarm optimization has hitherto been

unexplored for feature optimization in KNN.

In this thesis, metaheuristic-driven approaches are used to optimize indepen-

dent feature weights. Reiterating the aspect of flexibility of the new methods: the

possible data transformations that can be used within MMNTSD and MMNTE are
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not restricted to independent feature weights. The reason for this restriction in the

evaluations here is to build on a simple paradigm that can help improve the accuracy

of KNN.

4.3 A Motivating Example

We begin with an illustration of the impact of good feature weights learned

using MMNTSD. We create an artificial dataset X with two features, X1 and X2 from

multivariate normal distributions, and a target y. The target value is linearly related

to only X1, and X2 is essentially an unimportant attribute. The data generation

model is as follows:

µ1 = (5, 2)

Σ1 =

1.0 0.8

0.8 1.0


µ2 = (0,−1)

Σ2 =

1.0 0.1

0.1 1.0


y = 5X1 +N (0, 1.0)

(4.3)

For this example, 50 instances are created using (µ1,Σ1), and 50 instances

are created using (µ2,Σ2). The use of two distributions essentially leads to two

clusters in the training set. The target variable y is calculated in the same way for

independent variables of either distribution. The set of points generated using this

method (without scaling) is visualized in the left graph in Fig. 4.1.
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Figure 4.1. Visualization of the effect of appropriate feature weights..

Assuming linear feature scaling where the scaled features are
∼
X1= w1X1 and

∼
X2= w2X2, we use a genetic algorithm (as described in Section 4.4.1) to minimize

the MMNTSD objective. This results in the following weights:

w1 = 0.646

w2 = 0.049

(4.4)

where w1 is the weight of X1 and w2 is the weight of X2. What should be observed here

is that the weight of X2 is much lower than X1. While feature weights by themselves

do not necessarily indicate a relative importance of features, it is interesting to note

that w2 is much closer to zero than w1. The dataset is visualized after these weights

are applied to them (after scaling) in the right graph of Fig. 4.1. Here we see that for

the most part, after the weights are applied, X1 seems to have a linear relationship

with y, and X2 is largely neglected. We know that is indeed true because the data

generation model is linear in X1.
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Likewise, a synthetic test was also performed. A test set with 50 points from the

distribution (µ1,Σ1) and 50 points from the distribution (µ2,Σ2) was created based

on the same simulation model as in Eq. 4.3. KNN regression was tested with scaling

using the weights in Eq. 4.4, and without using them. Without scaling, the MSE was

calculated to be 2.84 and with scaling, it was 1.74. Clearly, there is an improvement

in performance after the weights were applied.

Although this is a simple example, it provides us with the insight that this

method could improve the accuracy of KNN. The simplicity of the model helps us

gain intuition about its working and effect on the performance of the model.

In the following we first introduce the approaches for localized weight opti-

mization that were developed based on Genetic Algorithms and Particle Swarm Op-

timization, and then compare the resulting KNN performance with common KNN

techniques in Section 4.6.

4.4 Methods for Feature Scaling Optimization

In this section, genetic algorithms and particle swarm optimization, and their

use in the context of MMNTSD and MMNTE is explained.

4.4.1 Genetic Algorithm (GA)

Genetic algorithms [70, 71] are inspired by evolutionary biology and follow an

approach that is similar based on the idea of survival of the fittest. The fundamental

idea is drawn from the crossover of genes in living beings and the preservation of

genes over successive generations. The important aspects of GAs and their relation

to the problem of optimizing MNTSD or MNTE are described below.

1. Gene: A gene in a GA is a candidate solution of the optimization problem. In

the current context, feature weights are genes.
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2. Gene Fitnesses: The fitness of each gene is a measure of how good the gene is,

and in the context of the current problem, how good a feature weight vector

is. In the current work, it is calculated for each candidate solution by apply-

ing the weights to a training dataset and finding the MNTSD/MNTE – the

MNSD/MNTE thus calculated is used as the fitness of each gene.

3. Population Initialization: An initial population of genes are drawn randomly

from a specified distribution in the solution space. In the context of our problem,

the solution space is that of the feature weights. The initial set of solutions is

drawn from a uniform distribution in the space of the feature weights. The set

of candidate solutions is also called the gene pool.

4. Crossover: In a GA, a crossover refers to the derivation of a candidate solution,

called a child solution, from a set of other genes, called the parent solutions. In

the current work, a child is derived by averaging two parents.

5. Mutation: A mutation operation refers to the alteration of a gene. Here, muta-

tion is done by adding a uniform random variable in the range [−1, 1] to each

element in a child vector.

6. Selection: After a set of children are created, their fitness is calculated and a

specified number of the best children are preserved as parents for the succeeding

iteration in the GA. They form the next generation of genes and are in turn

crossed over and mutated. The process is repeated for either a number of steps

or until a better solution can’t be found. In the current work, we repeat the

GA for a fixed number of iterations.

The working of the GA as used in this work is illustrated in Figure 4.2 and the

algorithm is elaborated in Algorithm 2. Two feature weights in an arbitrary problem

are crossed-over by item-wise averaging and randomized mutation. The new gene has

it’s own fitness and the process is repeated many times.
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Figure 4.2. Working of GA on Feature Weights.

Algorithm 2 Genetic Algorithm

1: input: n dims is the number of dimensions in the solution space
n init is the size of the initial population
n cross is the number of individuals selected for crossover and mutation
n select is the number of individuals selected for the next generation

2: output: the gene with the best fitness

3: procedure GA(n dims, n init, n cross, n select)
4: pool← initialize(n init, n dims)
5: iter max← 100

6: for n iter ← 0, n iter < iter max, n iter + + do
7: children← crossover(pool, n cross)
8: children← mutate(children, n cross)
9: fitness← MNX(children, n cross)
10: best children← argsort(fitness)[n select]
11: pool← children[best children]

return children[0]

4.4.2 Particle Swarm Optimization (PSO)

Particle swarm optimization [72, 73] is inspired by the mechanism by which

swarms of birds or fishes find food. In this approach, a set of candidate solutions

called particles are concurrently evaluated, and successively updated to find the best

optimum of a function. All the particles can communicate with each other based on
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a star-topology or a ring-topology, leading to the global-best and local-best variants

of PSO, respectively. Each step in the algorithm is described below.

1. Particle: A particle is a candidate solution. In the current context, feature

weights are particles.

2. Swarm Initialization: The swarm of particles is initialized in a manner similar

to GA: as a set of uniform random vectors in the solution space.

3. Position: The position of each particle is the point that it occupies in the

solution space.

4. Velocity: Each particle has a corresponding velocity – in this context, that

means the distance each particle moves in an iteration. It is initialized as a set

of uniform random vectors with the same dimensions as the solution space.

5. Fitness: The fitness of a particle in PSO is the same as the fitness in a GA –

a measure of how good the particle is. In the current work, the fitness of each

particle is the MNTSD/MNTE.

6. Updating the Particles: The particles are updated in each iteration of the algo-

rithm by adding the velocity component to it. The velocity is updated based

on a star-topology or a ring-topology, leading to different variants of PSO.

4.4.2.1 Global-Best PSO:

The update rule in the gbest variant of PSO is described below:

pi+1 = pi + vi

vi+1 = vi + c1r1(pbest − pcurrent) + c1r1(gbest − pcurrent)
(4.5)
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where pi and vi are the positions and velocities, respectively, of a particle at the

ith iteration, pbest is the best position of an individual particle, pcurrent is the current

position of the particle, gbest is the global best position, r1 and r2 are standard uniform

random variables, c1 and c2 are exploitation factor and exploration factor, respectively.

Algorithm 3 shows the detailed operation of Global-Best PSO.

Algorithm 3 Global-Best PSO

1: input: n dims is the number of dimensions in the solution space
n pop is the number of particles in the swarm
c1 is the exploitation factor
c2 is the exploration factor

2: output: the particle with the best fitness

3: procedure GBestPSO(n dims, n pop, c1, c2)
4: p← initialize(n pop, n dims)
5: pbest ← p
6: v ← uniform random(n pop, n dims, [−1, 1])
7: iter max← 100
8: fitness← MNSD(p)
9: gbest ← p[argsort(fitness)[0]]
10: for n iter ← 0, n iter < iter max, n iter + + do
11: r1 ← uniform random(n pop, [−1, 1])
12: r2 ← uniform random(n pop, [−1, 1])
13: v ← v + c1r1(pbest − p) + c2r2(gbest − p)
14: p← p+ v
15: fitness← MNSD(p)
16: gbest ← p[argsort(fitness)[0]]
17: for i← 0, i < n pop, i+ + do
18: pbest[i]← p[i] : pbest[i] < MNSD(p[i]) : MNSD(pbest[i])

return gbest

4.4.2.2 Local-Best PSO:

The update rule in the lbest variant of PSO is described below:
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pi+1 = pi + vi

vi+1 = v1 + c1r1(pbest − pcurrent) + c1r1(lbest − pcurrent)
(4.6)

where the symbols have the usual meanings, lbest is the best position that is local to

a particle (local in terms of fitness). The only difference between the gbest and lbest

variants are in the use of the global best and local best positions in the update rule.

In the current work, the heuristic used to refer to neighbors in the context of

a ring-topology is that of indexes. For example, the topological neighbor of particle

p[i] is p[i + 1], with the exception of the neighbor of p[n − 1] being p[0], where n is

the number of particles in the swarm. Algorithm 4 shows the detailed operation of

Local-Best PSO.

4.5 Comparison with Principal Component Analysis

Component analysis is a category of unsupervised learning task wherein im-

portant signals or components within a dataset are discovered. Principal component

analysis (PCA) [66] is one of the most popular methods of component analysis and has

been extensively studied and used in the literature for feature extraction before train-

ing a supervised learning model. It discovers orthogonal, or decorrelated features in a

dataset, and decorrelated features provide more information to a supervised learner.

An important aspect of PCA is that it does not take into consideration the

target values, if they exist, in a dataset. The features extracted in PCA are based on

a learning task that is completely independent of reduction of error for any supervised

learning algorithm. This is in contrast with the principles on which MMNTSD and

MMNTE are built – MMNTE and MMNTSD scale features by considering the labels

of the dataset. The learning of the weights in itself is a supervised learning problem.
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Algorithm 4 Local-Best PSO

1: input: n dims is the number of dimensions in the solution space
n pop is the number of particles in the swarm
c1 is the exploitation factor
c2 is the exploration factor

2: output: the particle with the best fitness

3: procedure LBestPSO(n dims, n pop, c1, c2)
4: p← initialize(n pop, n dims)
5: pbest ← p
6: v ← uniform random(n pop, n dims, [−1, 1])
7: iter max← 100
8: fitness← MNSD(p)
9: for n iter ← 0, n iter < iter max, n iter + + do
10: r1 ← uniform random(n pop, [−1, 1])
11: r2 ← uniform random(n pop, [−1, 1])
12: lbest ← right rotate(pbest)
13: v ← v + c1r1(pbest − p) + c2r2(lbest − p)
14: p← p+ v
15: fitness← MNSD(p)
16: for i← 0, i < n pop, i+ + do
17: pbest[i]← p[i] : pbest[i] < MNSD(p[i]) : MNSD(pbest[i])

18: gbest ← p[argsort(fitness)[0]]
return gbest

In this thesis, without going into the details of the working of PCA, we use

it along with KNN for a benchmark comparison. For each of the datasets, 50% of

the principal components are used after transformation; using 100% of components

results in a re-aligning of the feature space, but does not affect relative distances

between points.

4.6 Results

All the results are reported after a 10-fold Monte Carlo cross validation. Each

method was executed on the same training-testing sets in order to prevent random
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Dataset
Existing Methods New Methods

Variant k Prep. Acc. Var. of Acc. Variant k Feat. Scaling Measure Acc. Var. of Acc.
Blood Transfusion KNN 9 None 74.87 0.10 KNN 7 GBest PSO MNTSD 75.93 0.06
Breast Cancer KNN 5 None 97.96 0.01 DKNN 3 GA MNTE 97.81 0.02
Cardio Octography Fetal KNN 3 PCA 90.26 0.0002 KNN 7 GBest PSO MNTE 92.49 0.05
C-Section KNN 13 None 60.62 0.44 KNN 9 GA MNTE 63.75 1.37
Diabetic Retinopathy KNN 7 None 67.19 0.04 KNN 11 LBest PSO MNTSD 68.57 0.07
Haberman KNN 9 PCA 73.87 0.17 KNN 9 GA MNTE 73.23 0.13
ILPD KNN 15 PCA 71.55 0.01 KNN 15 GA MNTSD 73.28 0.13
Immunotherapy DKNN 3 None 74.44 1.80 KNN 15 LBest PSO MNTE 77.78 2.26
Wine KNN 3 None 83.89 0.32 KNN 9 GA MNTSD 94.17 0.08

Table 4.1. Results of classification. Metaheuristic optimization done here was based
on MNTSD or MNTE.

errors. Classification accuracy and MSE are reported for classification and regression,

respectively, and the variance in MSE and accuracy that is reported was the variance

over 10 training-testing iterations.

The results shown here are a snapshot of the methods that resulted in the best

average accuracy achieved over 10 iterations. An exhaustive set of results of all the

methods is presented in Appendix B.

4.6.1 Classification

The classification experiments were performed on the datasets from the UCI

repository introduced in Section 3.6.1. The results of classification are shown in Table

4.1. In this table, the best classical and best new method for each of the datasets

are listed, together with the corresponding value for k, preprocessing method, and

localized dispersion measure used. The best results for each dataset are highlighted in

the table, showing that for most datasets the new feature scaling method outperforms

the classical methods. In the few examples where performance is not increased,

accuracy of the new method is very similar to the one achieved by the best classical

method.
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Dataset
Existing Methods New Methods

Variant k Prep. MSE Var. of MSE Variant k Feat. Scaling MSE Var. of MSE
Airfoil KNN 15 None 33.92 5.74 DKNN 7 GBest PSO 9.43 7.67
Auto MPG DKNN 9 None 15.78 5.36 DKNN 11 GBest PSO 7.96 1.02
Concrete DKNN 5 None 71.96 222.92 DKNN 5 GBest PSO 39.2 59.22
Energy (cool) KNN 5 None 3.61 0.46 KNN 15 LBest PSO 3.26 0.22
Energy (heat) KNN 3 None 5.07 0.95 DKNN 7 LBest PSO 0.39 0.03
QSAR Aqua Toxicity DKNN 5 None 1.64 0.07 DKNN 7 GBest PSO 1.24 0.01
QSAR Fish Toxicity DKNN 7 None 0.91 0.01 DKNN 9 LBest PSO 0.84 0.01
Wine (red) DKNN 9 PCA 0.32 0.002 DKNN 13 GBest PSO 0.25 0.002
Yacht DKNN 3 PCA 75.44 936.41 DKNN 9 GBest PSO 2.18 1.19

Table 4.2. Results of regression. All metaheuristic optimization done here was based
on MNTSD.

4.6.2 Regression

The regression experiments were performed on the datasets from the UCI repos-

itory introduced in Section 3.6.1. The results of regression are shown in Table 4.2.

Again, the table lists the best performing classical and new method with the cor-

responding parameter settings. The results show that the new method significantly

outperforms the classical method for all datasets, illustrating once more the benefit

of the new methods for feature scaling.

In the next chapter, a subsampling algorithm based on MMNTSD is introduced

and elaborated.
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CHAPTER 5

DATA SUBSAMPLING

Since KNN is an instance-based learning approach, the smallest number of

useful samples used to train a model would lead to the fastest querying times. For

this purpose, being able to subsample the training dataset optimally to preserve only

the most useful samples is imperative. However, since large sizes of datasets are

recommended for most ML approaches, subsampling a dataset is in contrast to the

best practices for data analysis and machine learning.

5.1 Related Work

The most common methods of data subsampling are to draw subsets uniformly

from a dataset, or based on an estimate of the distribution of data, and sampling to

overcome class imbalances. In [74], a method of undersampling specific to KNN is

developed that filters instances in neighborhoods that belong to the majority class.

There is an improvement in accuracy for unbalanced datasets. A novel hierarchical-

clustering based approach for classification tasks, called CLUKER is developed in

[75] wherein clusters of points are used as points in dense areas of points belonging to

the same class. This approach results in better execution time of the KNN classifica-

tion algorithm, while improving the accuracy. Another popular approach for solving

the data imbalance problem is SMOTE [76] – this, however, is not an undersam-

pling approach, but an oversampling approach, and it is not specific to KNN. The

principle of its working is based on generating samples by utilizing nearest neighbor

information. The samples generated by this method can be used within any learn-
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ing algorithm. Subsampling methods for specific supervised learning algorithms have

been developed. An optimal subsampling approach for softmax regression, based

on the A-optimality and L-optimality criteria is formulated in [77]. The asymptotic

normality is established, but the paper does not provide any experimental results

on real datasets. The authors, however, state that they expect it to lead to good

empirical error rates on real-world datasets. A similar approach has been developed

in [78] for very large samples in logistic regression, and it is shown to work fast for

large datasets. Two similar approaches based on ordinary-least squares and coeffi-

cient estimation are developed in [79]. Experimental results are provided and the

methods are shown to outperform other popular methods of uniform subsampling,

basic leveraging, approximate leveraging, and shrinkage leveraging.

Inspired by the methods that use optimality criteria to find subsamples that

work well for specific learning approaches, we developed a randomized iterative sub-

sampling method for KNN based on minimizing the MNTSD.

5.2 Method

The weight that is assigned to a sample in the training set is an estimate of

how much it contributes to the MNTSD of a subsample – the lesser a training sample

contributes to the label dispersion, the larger weight it is assigned and vice versa.

The implementation starts off with assigning equal weights to all points in the

training set. Let the weight for training sample i be represented using wi. The param-

eters that are set are those of k, and p, which is the desired proportion of the training

set to be sampled. From the size of the training set and the value of p, the size of the

resulting subsampled data set can be determined. Iteratively, training subsamples,

and independent verification sets (for discovering k-nearest neighborhoods in the sub-

sample) are drawn from the training set. Equal weights are initially assigned to all
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the training samples. Using the verification set, k-nearest neighborhood sets are dis-

covered and their MNTSD is calculated. Points in a training subsample could belong

to multiple k-nearest neighborhoods – for each point, the average MNTSD of all the

k-nearest neighborhoods it belongs to, is calculated. Let this value be represented us-

ing ṽi for the ith point in a training subsample. The weight updates are then assigned

using the rule: w̃i = (1 − ṽi). If point i does not belong to any queried k-nearest

neighborhood, the weights are updated as w̃i = −1. In principle, this assigns lower

weights to points that contribute to a large MNTSD and points that are not queried

frequently, and larger weights to points that are frequently queried and contribute

towards a lower MNTSD. The set containing all w̃i is then normalized between 0 and

1 and added to the sample weights w. The weights can be interpreted as probabilities

using appropriate scaling.

The method is described in Algorithm 5.

5.3 Results

The sampling algorithm is used with 5-fold cross validation on the following

regression datasets: Airfoil, Concrete, Energy (cool), Energy (heat) and Auto MPG.

The results are provided in Tables 5.1 through 5.5. The MSE of different settings of

the method are shown. Results are also provided for uniform sample weighting, for

comparison.

In general, the results in this case do not show a significant improvement in

the MSE. In most cases, uniform sampling and weighted sampling result in similar

performance. Only in the Concrete dataset, there seems to be a fairly significant

improvement for a subsampling proportion of 5% and for k = 13 and k = 15.

The next chapter concludes the thesis and discusses potential courses of future

work.
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Algorithm 5 Local-Best PSO

1: input: Xtrain is the training set
Ytrain is the set of training labels
Xverif is the verification set
n is the size of the training set
p is the proportion of the training set being sampled
w is the set of sample weights k is the parameter of KNN

2: output: updated sample weights

3: procedure MNTSDSubsampling(Xtrain, Ytrain, Xverif, Ytrain, n, p, w, k)
4: Draw a subsample Xsub, Ysub of Xtrain, Ytrain containing n× p instances, using

sample weights w
5: K ← the indexes of sets of neighborhoods that are found using Xverif

6: v ← MNTSD(K)
7: for i← 1, i < n, i+ + do
8: n hoods← 0
9: w̃i ← 0
10: for j ← 1, j ≤ K.len(), j + + do
11: if Xsub[i] ∈ K then
12: w̃i ← w̃i + (1− vi)
13: n hoods← n hoods+ 1

14: if n hoods == 0 then
15: w̃i ← −1

16: Normalize w̃ between 0 and 1.
17: return w + w̃

Method Proportion k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Weighted Sampling p = 0.05 48.357 41.983 41.759 41.628 39.21 39.173 39.553
Uniform Sampling p = 0.05 47.379 44.166 42.168 41.394 42.003 41.112 40.392
Weighted Sampling p = 0.1 43.443 40.493 40.489 39.928 39.844 39.559 40.15
Uniform Sampling p = 0.1 46.536 42.551 42.173 40.28 40.501 39.083 39.963
Weighted Sampling p = 0.25 43.217 38.053 35.59 37.903 38.71 37.125 38.215
Uniform Sampling p = 0.25 41.815 37.759 37.607 37.569 37.021 37.391 38.871
Weighted Sampling p = 0.5 39.868 37.225 36.063 34.889 34.433 33.714 34.105
Uniform Sampling p = 0.5 40.133 36.966 35.84 34.831 34.292 34.112 34.09

Table 5.1. MSE after sampling, Airfoil
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Method Proportion k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Weighted Sampling p = 0.05 205.632 196.618 193.696 211.375 214.674 218.969 213.198
Uniform Sampling p = 0.05 205.708 218.087 194.221 215.807 217.374 225.055 230.635
Weighted Sampling p = 0.1 176.979 177.939 179.89 180.413 178.251 188.558 198.64
Uniform Sampling p = 0.1 167.978 177.886 182.69 178.38 183.296 190.119 199.133
Weighted Sampling p = 0.25 132.342 135.775 141.229 143.754 151.028 146.391 154.79
Uniform Sampling p = 0.25 131.298 133.672 139.904 149.02 145.681 156.703 153.182
Weighted Sampling p = 0.5 104.312 110.71 112.257 116.796 124.488 130.142 133.781
Uniform Sampling p = 0.5 103.266 109.48 114.372 118.704 126.077 130.208 133.804

Table 5.2. MSE after sampling, Concrete

Method Proportion k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Weighted Sampling p = 0.05 11.696 14.393 16.87 16.533 16.744 17.484 20.918
Uniform Sampling p = 0.05 9.551 13.827 14.737 16.424 16.964 17.18 18.57
Weighted Sampling p = 0.1 9.506 9.329 8.866 10.963 13.902 15.632 14.662
Uniform Sampling p = 0.1 9.017 10.18 9.294 10.615 13.572 14.496 15.335
Weighted Sampling p = 0.25 7.304 7.831 7.973 7.423 7.618 7.251 7.19
Uniform Sampling p = 0.25 7.74 7.639 7.638 7.39 7.096 7.144 7.571
Weighted Sampling p = 0.5 4.824 6.024 6.696 6.927 7.416 7.166 7.272
Uniform Sampling p = 0.5 5.013 5.801 6.576 6.915 7.21 7.33 7.316

Table 5.3. MSE after sampling, Energy (cool)

Method Proportion k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Weighted Sampling p = 0.05 16.252 15.237 19.461 18.323 24.563 22.69 25.765
Uniform Sampling p = 0.05 15.557 19.266 19.041 20.939 19.284 20.196 23.548
Weighted Sampling p = 0.1 11.796 11.077 13.626 14.54 14.844 16.746 18.042
Uniform Sampling p = 0.1 11.709 12.487 13.572 15.636 14.639 17.241 18.475
Weighted Sampling p = 0.25 9.414 9.895 10.433 9.959 10.076 10.354 10.583
Uniform Sampling p = 0.25 9.39 9.593 9.94 10.093 10.117 10.087 10.706
Weighted Sampling p = 0.5 6.265 7.783 8.646 8.904 9.112 9.378 9.427
Uniform Sampling p = 0.5 6.197 7.577 8.611 8.976 9.413 9.414 9.483

Table 5.4. MSE after sampling, Energy (heat)
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Method Proportion k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
Weighted Sampling p = 0.05 24.815 20.098 27.914 28.814 32.277 41.112 43.515
Uniform Sampling p = 0.05 20.42 21.512 23.271 25.521 30.625 37.848 43.228
Weighted Sampling p = 0.1 22.087 19.018 19.911 22.966 19.648 22.02 21.014
Uniform Sampling p = 0.1 24.298 20.535 19.312 19.194 20.292 21.296 21.358
Weighted Sampling p = 0.25 21.878 18.055 18.905 17.878 17.505 17.211 17.7
Uniform Sampling p = 0.25 21.715 18.192 18.244 17.111 17.12 17.479 17.892
Weighted Sampling p = 0.5 19.052 18.024 17.713 17.339 17.609 17.44 17.612
Uniform Sampling p = 0.5 19.573 18.188 17.178 17.976 17.877 17.405 17.508

Table 5.5. MSE after sampling, Auto MPG
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis introduces new methods of dataset characterization, methods of fea-

ture scaling, and data subsampling in the context of KNN regression and classification

algorithms. Specific details of the implementation are theoretically justified. The new

methods are implemented on various publicly available datasets and the results are

compared with variants of KNN that are popular in the literature. The results from

each section demonstrate the effectiveness of the ideas developed as a part of this

research.

In this chapter, we conclude by mentioning the advantages and disadvantages

of each new method, and potential directions for future work.

6.1 Dataset Characterization

The bias-variance tradeoff for any statistical model provides a framework to

understand how different sets of parameters can lead to different levels of accuracy.

Since KNN has low model bias, an empirical estimate of error due to variance in a

dataset is a useful characteristic that could in-turn provide insights into how well

KNN could perform when applied to a dataset for different values of k. The MNTE

and MNTSD are estimates of error due to variance. These measures are easy to com-

pute, have an intuitive explanation, and can be computed using different methods

of sampling k-nearest neighborhoods. In this thesis, the MNTE and MNTSD are

computed based on a randomized approach by using verification data from a dataset.

However, the computation of these measures are not restricted to a randomized ap-
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proach: they can be exhaustively calculated using powerful computers, and by using

parallelization. Within a dataset, not all k-nearest neighborhoods are equally im-

portant, and thus, these measures may even be weighted based on how frequently a

k-nearest neighborhood is queried.

On the other hand, there are certain disadvantages. As demonstrated in Chap-

ter 3, the MNTSD and MNTE may not always be consistent. There could be special

cases when their use could be uninformative. Hence, it is important to use them

alongside other data characteristics in order to make well-informed guesses about

what kinds of ML methods and model parameters could work best.

Thus, in the future, the MNTSD and MNTE should be investigated in various

other contexts, and different methods of computing them should be studied.

6.2 Feature Scaling and Feature Extraction

Feature scaling approaches based on the minimization of MNTSD and MNTE

are developed and introduced in Chapter 4. The motivation for using metaheuristic

optimization approaches is explained in detail. The MNTSD and MNTE are used as

objective functions within genetic algorithms and particle swarm optimization. The

reason that independent feature weights were optimized was to keep the computa-

tional complexity low. The advantages of the methods introduced here are that they

are simple and can provide insights into useful transformations of a dataset. In the

future, these methods could be used to learn linear and non-linear transformations of

a dataset.

The disadvantage is that these are slower than other popular algorithms and so

in the future, efforts should be made to speed up execution using parallelism, or other

kinds of metaheuristic approaches. Efforts should also be made to relax the black-box

optimization problem based on approximate functions so that faster gradient-based
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algorithms can be used. Hybrid approaches combining gradient-based optimization

and metaheuristics should also be studied.

6.3 Data Subsampling

A data subsampling approach based on the selection of a fixed number of ran-

dom points that are weighted by their empirical likelihood of minimizing the MNTSD

of a dataset is developed. This approach was used to draw smaller training sets using

which KNN models were trained and tested. In this case, however, the results did

not seem promising, with uniform subsampling resulting in similar error rates as our

method of weighted subsampling.

This approach needs to be carefully studied in the future. There are a lot of

aspects of this approach that can be potentially improved. For instance, determining

the right number of iterations for which the weighting algorithm must be run, or

using scaling based on MMNTSD along with the subsampling. Additionally, the

distribution of the input space can be modeled and samples can initially be drawn

based on a probability density function.

Since this is an iterative algorithm, for large datasets, learning the sample

weights can take a long time. Approaches that can parallelize the computation of

the MNTSD in each iteration could potentially accelerate this significantly. Also, in

the method presented in this thesis, the sampling probabilities are for specific values

of parameter k – for large datasets, recomputing sampling probabilities for different

values of k could be very time consuming and thus, weighting for ranges of k should

be explored.
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6.4 Source Code

The source code for this research can be found on the author’s GitHub page:

https://github.com/SuryodayBasak

The particular repository containing the code for feature scaling is:

https://github.com/SuryodayBasak/mst-final-run

The particular repository containing the code for data subsampling is:

https://github.com/SuryodayBasak/mst-subsample-sel

62



APPENDIX A

PROOF OF THEOREM 1: THE AVERAGE UNBIASED LEAVE-ONE-OUT

VARIANCE IS THE SAME AS THE UNBIASED VARIANCE OF A SET
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In this appendix, the proof of Theorem 1 is presented. This result holds true

for single dimensional data.

Let µ refer to the mean of the entire set. The expression for any µi, without a loss of

generality, is as follows:

x1 + x2 + ...+ xn−1

n− 1
= µi

⇒
n−1∑
i=1

xi = (n− 1)µi

⇒
n−1∑
i=1

xi + xn = (n− 1)µi + xn

⇒n · µ = (n− 1)µi + xn

⇒µ =
(n− 1)µi + xn

n

⇒µi =
n

n− 1
· µ− xi

n− 1

(A.1)

The expression of the ALOOV can be rewritten as:

1

n

n∑
i=1

1

n− 2

[( n∑
j=1

(xj−µi)
2
)
−(xi−µi)

2

]
=

1

n(n− 2)

[( n∑
i=1

n∑
j=1

(xj−µi)
2
)
−
( n∑

i=1

(xi−µi)
2
)]

(A.2)

Substituting the expression of µi from Eq. A.1 in Eq. A.2, we get:

1

n(n− 2)

[
n∑

i=1

n∑
j=1

(
xj −

n

n− 1
·µ+

xi
n− 1

)2
−

n∑
i=1

(
xi−

n

n− 1
·µ+

xi
n− 1

)2]
(A.3)

For simplicity, let:
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T1 =
(
xj −

n

n− 1
· µ+

xi
n− 1

)2
T2 =

n∑
i=1

n∑
j=1

T1

T3 =
n∑

i=1

(
xi −

n

n− 1
· µ+

xi
n− 1

)2
(A.4)

Simplifying T1,

T1 =
(
xj −

n

n− 1
· µ+

xi
n− 1

)2
=
((n− 1)xj − nµ+ xi

n− 1

)2
=

1

(n− 1)2
(nxj − xj − nµ+ xi)

2

=
1

(n− 1)2

(
n(xj − µ) + (xi − xj)

)2
=

1

(n− 1)2

(
n2(xj − µ)2 + (xi − xj)2 + 2n(xj − µ)(xi − xj)

)
(A.5)

Substituting T1 in T2, we get:

n∑
i=1

n∑
j=1

[
1

(n− 1)2

(
n2(xj − µ)2 + (xi − xj)2 + 2n(xj − µ)(xi − xj)

)]

=
n∑

i=1

n∑
j=1

[
n2

(n− 1)2
(xj − µ)2 +

1

(n− 1)2
(xi − xj)2 +

2n

(n− 1)2
(xj − µ)(xi − xj)

]

=
n∑

i=1

n∑
j=1

n2(xj − µ)2

(n− 1)2
+

n∑
i=1

n∑
j=1

(xi − xj)2

(n− 1)2
+

n∑
i=1

n∑
j=1

2n(xj − µ)(xi − xj)
(n− 1)2

(A.6)

Simplifying T3,
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T3 =
n∑

i=1

(
xi −

n

n− 1
· µ+

xi
n− 1

)2
=
((n− 1)xi + xi

n− 1
− nµ

n− 1

)2
=
( nxi
n− 1

− nµ

n− 1

)2
=
( n

n− 1

)2
(xi − µ)2

=
n2σ2

n− 1

(A.7)

where σ2 is the unbiased variance of the set. From Eq. A.6, let T4, T5 and T6 be:

T4 =
n∑

i=1

n∑
j=1

n2(xj − µ)2

(n− 1)2

T5 =
n∑

i=1

n∑
j=1

(xi − xj)2

(n− 1)2

T6 =
n∑

i=1

n∑
j=1

2n(xj − µ)(xi − xj)
(n− 1)2

(A.8)

Simplifying T4,

T4 =
n∑

i=1

n∑
j=1

n2(xj − µ)2

(n− 1)2

=
n3

(n− 1)2

n∑
j=1

(xj − µ)2

=
n3

n− 1
σ2

(A.9)

Simplifying T5,
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T5 =
n∑

i=1

n∑
j=1

(xi − xj)2

(n− 1)2

=
1

(n− 1)2

n∑
i=1

n∑
j=1

(xi − xj)2

=
1

(n− 1)2

n∑
i=1

n∑
j=1

(x2i − 2xixj + x2j)

=
1

(n− 1)2

( n∑
i=1

n∑
j=1

x2i − 2
n∑

i=1

n∑
j=1

xixj +
n∑

i=1

n∑
j=1

x2j

)
=

1

(n− 1)2

(
n

n∑
i=1

x2i − 2
n∑

i=1

xi

n∑
j=1

xj + n
n∑

j=1

x2j

)

(A.10)

Since n
∑n

i=1 x
2
i = n

∑n
j=1 x

2
j , with xi = xj when i = j, we may replace the

index j with i in n
∑n

j=1 x
2
j . We may also write n

∑n
j=1 xj = nµ. Therefore, upon

making these substitutions, we get:

T5 =
1

(n− 1)2

(
n

n∑
i=1

x2i − 2
n∑

i=1

xi · nµ+ n
n∑

j=1

x2j

)
=

2n

(n− 1)2

( n∑
i=1

x2i −
n∑

i=1

µxi

)
=

2n

(n− 1)2

( n∑
i=1

x2i − 2
n∑

i=1

µxi + µ

n∑
i=1

xi

)
(A.11)

Substituting
∑n

i=1 xi with
∑n

i=1 µ, we get:
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T5 =
2n

(n− 1)2

( n∑
i=1

x2i − 2
n∑

i=1

µxi + µ

n∑
i=1

µ
)

=
2n

(n− 1)2

( n∑
i=1

x2i − 2
n∑

i=1

µxi +
n∑

i=1

µ2
)

=
2n

(n− 1)2

n∑
i=1

(x2i − 2µxi + µ2)

=
2n

(n− 1)2

n∑
i=1

(xi − µ)2

=
2n

(n− 1)
σ2

(A.12)

Simplifying T6,

T6 =
n∑

i=1

n∑
j=1

2n(xj − µ)(xi − xj)
(n− 1)2

=
2n

(n− 1)2

n∑
i=1

n∑
j=1

(xj − µ)(xi − xj)

=
2n

(n− 1)2

n∑
i=1

n∑
j=1

(xixj − x2j − xiµ+ xjµ)

=
2n

(n− 1)2

( n∑
i=1

n∑
j=1

xixj −
n∑

i=1

n∑
j=1

x2j −
n∑

i=1

n∑
j=1

xiµ+
n∑

i=1

n∑
j=1

xjµ
)

(A.13)

Note that
∑n

i=1

∑n
j=1 xiµ =

∑n
i=1

∑n
j=1 xjµ, and cancel each other out. There-

fore,
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T6 =
2n

(n− 1)2

( n∑
i=1

n∑
j=1

xixj −
n∑

i=1

n∑
j=1

x2j

)
=

2n

(n− 1)2

( n∑
i=1

n∑
j=1

xixj − n
n∑

j=1

x2j

)
= − 2n

(n− 1)2

(
n

n∑
j=1

x2j −
n∑

i=1

n∑
j=1

xixj

)
= − 2n

(n− 1)2

(
n

n∑
j=1

x2j −
n∑

i=1

xi

n∑
j=1

xj

)
= − 2n

(n− 1)2

(
n

n∑
j=1

x2j − nµ
n∑

j=1

xj

)
= − 2n2

(n− 1)2

( n∑
j=1

x2j − 2µ
n∑

j=1

xj + µ
n∑

j=1

xj

)
= − 2n2

(n− 1)2

( n∑
j=1

x2j − 2
n∑

j=1

µxj +
n∑

j=1

µ2
)

= − 2n2

(n− 1)2

n∑
j=1

(
x2j − 2µxj + µ2

)
= − 2n2

(n− 1)2

n∑
j=1

(xj − µ)2

= − 2n2

(n− 1)
σ2

(A.14)

Substituting expressions of T3, T4, T5 and T6 in A.3, we get:

1

n(n− 2)

[
n3

n− 1
σ2 +

2n

n− 1
σ2 − 2n2

n− 1
σ2 − n2σ2

n− 1

]

=
σ2

n(n− 1)(n− 2)
(n3 − 3n2 + 2n)

=
σ2

n(n− 1)(n− 2)
· n(n− 1)(n− 2)

=σ2

(A.15)

69



The above result is proven for a set of n points. When this is applied to a

k-nearest neighborhood set, k = n, and the set of points it is applied to is the set of

labels or target values of a k-nearest neighborhood.
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APPENDIX B

RESULTS OF OPTIMAL FEATURE SCALING
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B.1 Results of Regression

The results of regression are shown in Tables B.1 through B.8. The tables are

exhaustive with regards to the results presented.

The tables present average MSE and the variance of MSE after 10-fold Monte-

Carlo cross validation of every method studied, for different values of k. Below is a

glossary of the terms used:

1. KNN: k-nearest neighbors without any preprocessing or feature extraction

2. D-KNN: inverse distance KNN

3. PCA-KNN: KNN with PCA for feature extraction

4. PCA-D-KNN: D-KNN with PCA for feature extraction

5. GA-KNN: KNN with feature weights optimized using GA and MMNTSD

6. GA-D-KNN: D-KNN with feature weights optimized using GA and MMNTSD

7. GPSO-KNN: KNN with feature weights optimized using GBest PSO and MM-

NTSD

8. GPSO-D-KNN: D-KNN with feature weights optimized using GBest PSO and

MMNTSD

9. LPSO-KNN: KNN with feature weights optimized using LBest PSO and MM-

NTSD

10. LPSO-D-KNN: D-KNN with feature weights optimized using LBest PSO and

MMNTSD

The entry in the tables in red indicates the method that resulted in the lowest

average MSE; the entry in the tables in green indicates the method that resulted in

the lowest MSE variance.
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 41.18 36.71 35.3 34.97 34.53 34.19 33.92
D-KNN 44.47 41.16 39.86 39.05 38.45 38.03 37.59
PCA-KNN 43.5 38.88 36.77 35.98 35.71 35.14 34.71
PCA-D-KNN 46.79 43.32 41.7 40.65 40.08 39.57 39.07
GA-KNN 38.06 33.26 31.61 31.94 32.23 32.14 32.43
GA-D-KNN 41.35 38.24 36.39 34.55 34.13 34.51 34.09
GPSO-KNN 13.27 13.89 13.26 17.14 18.72 19.92 21.41
GPSO-D-KNN 11.01 11.13 9.43 12.18 14.69 15.48 16.0
LPSO-KNN 14.1 15.4 18.18 17.57 18.48 23.44 23.46
LPSO-D-KNN 11.25 12.75 13.99 14.59 14.46 19.01 19.86

Variance of MSE

KNN 10.22 7.08 7.96 5.89 6.18 5.37 5.74
D-KNN 9.8 7.43 6.2 5.49 4.38 4.58 4.33
PCA-KNN 10.03 6.02 7.04 5.53 6.2 5.77 6.82
PCA-D-KNN 8.87 6.92 5.98 5.33 4.38 4.48 4.38
GA-KNN 11.98 5.3 3.12 2.11 3.45 2.74 4.83
GA-D-KNN 9.26 7.23 4.4 58.93 66.9 45.94 50.5
GPSO-KNN 6.06 3.7 12.29 38.8 24.0 11.29 7.32
GPSO-D-KNN 8.16 3.6 7.67 14.41 33.0 21.14 17.71
LPSO-KNN 17.13 5.95 32.48 16.12 23.06 11.13 12.87
LPSO-D-KNN 10.37 2.35 20.8 16.41 19.72 22.0 25.84

Table B.1. Results of KNN Regression with all variants studied, on the Airfoil dataset.

Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 84.17 91.69 97.95 100.01 104.74 107.85 111.21
D-KNN 72.15 71.96 73.84 74.56 76.88 79.04 81.02
PCA-KNN 91.92 103.17 112.0 118.7 125.56 129.68 134.04
PCA-D-KNN 77.49 80.19 83.25 86.03 89.56 92.34 94.24
GA-KNN 62.19 71.25 70.31 78.01 75.06 86.4 85.37
GA-D-KNN 53.13 56.02 52.76 58.13 54.75 62.5 61.09
GPSO-KNN 48.98 46.15 48.2 51.14 50.77 50.85 53.82
GPSO-D-KNN 43.0 39.2 39.4 40.85 40.13 39.77 41.44
LPSO-KNN 48.63 46.48 47.91 50.23 52.79 54.2 54.83
LPSO-D-KNN 42.64 39.21 39.16 40.07 41.53 41.92 42.16

Variance of MSE

KNN 269.23 254.2 272.23 233.52 294.81 277.56 270.27
D-KNN 248.8 222.92 239.2 211.19 240.84 240.42 219.58
PCA-KNN 309.33 278.2 354.7 298.57 337.62 306.09 351.4
PCA-D-KNN 273.71 299.93 323.07 284.0 295.08 274.38 274.93
GA-KNN 88.59 170.87 129.77 205.69 133.24 157.09 184.99
GA-D-KNN 94.08 180.1 103.76 184.99 128.64 129.6 132.85
GPSO-KNN 54.85 34.5 45.07 49.94 36.44 15.57 24.38
GPSO-D-KNN 50.15 59.22 59.67 53.41 50.54 34.8 44.61
LPSO-KNN 49.04 32.86 44.88 35.54 84.13 40.19 40.9
LPSO-D-KNN 64.02 49.67 67.5 49.11 97.78 51.06 59.26

Table B.2. Results of KNN Regression with all variants studied, on the Concrete
Compressive Strength dataset.
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 3.91 3.61 4.85 5.75 6.22 6.35 6.51
D-KNN 5.01 4.56 5.05 5.51 5.74 5.79 5.85
PCA-KNN 8.53 6.88 6.03 6.31 6.77 7.07 7.29
PCA-D-KNN 7.13 7.28 7.38 7.49 7.55 7.58 7.6
GA-KNN 3.83 4.79 5.04 6.02 5.98 6.5 6.41
GA-D-KNN 3.47 4.31 4.32 4.72 4.94 5.82 5.63
GPSO-KNN 3.53 3.54 3.49 3.53 3.38 3.31 3.28
GPSO-D-KNN 3.5 3.36 3.24 3.35 3.53 3.45 3.21
LPSO-KNN 3.57 3.49 3.59 3.56 3.38 3.32 3.26
LPSO-D-KNN 3.49 3.28 3.33 3.29 3.4 3.38 3.27

Variance of MSE

KNN 0.34 0.46 0.69 0.72 0.75 0.82 0.91
D-KNN 0.26 0.37 0.5 0.52 0.58 0.61 0.64
PCA-KNN 0.79 0.64 0.73 0.85 0.81 0.84 1.07
PCA-D-KNN 0.5 0.49 0.51 0.49 0.55 0.52 0.52
GA-KNN 0.36 1.8 2.56 1.69 0.78 1.0 0.73
GA-D-KNN 0.33 0.8 1.56 0.68 1.13 0.65 0.48
GPSO-KNN 0.32 0.32 0.3 0.19 0.2 0.19 0.22
GPSO-D-KNN 0.38 0.44 0.26 0.39 0.35 0.39 0.3
LPSO-KNN 0.33 0.42 0.3 0.19 0.22 0.17 0.22
LPSO-D-KNN 0.33 0.53 0.27 0.33 0.41 0.38 0.41

Table B.3. Results of KNN Regression with all variants studied, on the Energy (cool)
dataset.
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 5.07 4.85 6.24 7.34 7.81 7.93 7.96
D-KNN 7.7 7.3 7.85 8.46 8.73 8.79 8.77
PCA-KNN 12.18 9.69 8.09 8.27 8.77 9.06 9.1
PCA-D-KNN 10.94 11.61 11.84 12.03 12.16 12.3 12.39
GA-KNN 2.04 3.91 4.59 6.94 6.36 6.22 6.21
GA-D-KNN 1.7 2.85 1.8 3.95 2.32 3.78 4.02
GPSO-KNN 0.86 1.03 1.28 1.51 1.71 1.86 2.06
GPSO-D-KNN 0.63 0.57 0.37 0.4 0.49 0.59 0.58
LPSO-KNN 0.97 1.02 1.27 1.51 1.68 1.88 2.06
LPSO-D-KNN 0.71 0.57 0.39 0.39 0.67 0.66 0.59

Variance of MSE

KNN 0.95 1.43 1.65 1.36 2.15 2.41 2.49
D-KNN 1.01 1.49 1.7 1.5 2.01 2.27 2.34
PCA-KNN 3.0 4.22 2.13 1.53 2.18 2.66 2.8
PCA-D-KNN 1.04 1.68 1.82 1.83 2.16 2.42 2.52
GA-KNN 2.13 3.22 3.56 1.52 1.44 1.79 4.48
GA-D-KNN 3.18 8.75 1.9 5.96 2.66 5.01 9.64
GPSO-KNN 0.35 0.14 0.22 0.3 0.36 0.44 0.45
GPSO-D-KNN 0.32 0.08 0.03 0.02 0.09 0.11 0.06
LPSO-KNN 0.41 0.14 0.22 0.3 0.35 0.43 0.46
LPSO-D-KNN 0.3 0.09 0.03 0.05 0.17 0.08 0.07

Table B.4. Results of KNN Regression with all variants studied, on the Energy (heat)
dataset.
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 1.77 1.83 1.87 1.96 1.97 2.0 2.04
D-KNN 1.71 1.64 1.64 1.67 1.66 1.66 1.67
PCA-KNN 1.76 1.82 1.88 1.97 1.97 2.0 2.06
PCA-D-KNN 1.74 1.69 1.68 1.71 1.69 1.69 1.7
GA-KNN 1.68 1.55 1.62 1.66 1.64 1.66 1.7
GA-D-KNN 1.64 1.46 1.46 1.46 1.43 1.43 1.45
GPSO-KNN 1.44 1.45 1.32 1.36 1.36 1.41 1.42
GPSO-D-KNN 1.41 1.38 1.24∗ 1.25 1.25 1.29 1.29
LPSO-KNN 1.58 1.42 1.34 1.39 1.38 1.37 1.4
LPSO-D-KNN 1.52 1.34 1.26 1.26 1.26 1.25 1.27

Variance of MSE

KNN 0.091 0.0921 0.1065 0.1075 0.0955 0.0875 0.0898
D-KNN 0.0819 0.0726 0.0835 0.0806 0.0732 0.0707 0.0769
PCA-KNN 0.1003 0.0984 0.1041 0.0998 0.0927 0.0847 0.0872
PCA-D-KNN 0.0856 0.0784 0.0846 0.0782 0.0721 0.0679 0.0718
GA-KNN 0.0711 0.0453 0.0588 0.0669 0.0503 0.0309 0.0574
GA-D-KNN 0.0557 0.0271 0.052 0.0464 0.0397 0.0352 0.0549
GPSO-KNN 0.0516 0.0279 0.0073 0.0155 0.0144 0.0137 0.0166
GPSO-D-KNN 0.0307 0.0226 0.0072∗ 0.0205 0.0132 0.0149 0.0153
LPSO-KNN 0.0658 0.0444 0.0087 0.0112 0.0141 0.0168 0.0123
LPSO-D-KNN 0.0688 0.0393 0.0138 0.0116 0.0133 0.0173 0.0181

Table B.5. Results of KNN Regression with all variants studied, on the Qsar Aqua
toxicity dataset.
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 0.9908 0.9613 0.9388 0.9499 0.9614 0.9572 0.9634
D-KNN 0.9757 0.942 0.9149 0.9176 0.9187 0.9135 0.9176
PCA-KNN 1.2511 1.2009 1.1769 1.1555 1.1502 1.1472 1.155
PCA-D-KNN 1.2329 1.158 1.1273 1.0986 1.0853 1.0755 1.0772
GA-KNN 0.964 0.903 0.9091 0.9033 0.8955 0.8972 0.9039
GA-D-KNN 0.9523 0.8943 0.8877 0.8802 0.8701 0.871 0.874
GPSO-KNN 1.035 0.9273 0.8826 0.8828 0.8941 0.8653 0.8977
GPSO-D-KNN 1.0201 0.9118 0.8707 0.8619 0.8681 0.844 0.8639
LPSO-KNN 0.9968 0.8993 0.8661 0.8617 0.9054 0.8957 0.8995
LPSO-D-KNN 0.9877 0.8802 0.8528 0.8418 0.8774 0.8713 0.8702

Variance of MSE

KNN 0.0194 0.0169 0.0111 0.0106 0.0083 0.0103 0.0099
D-KNN 0.0163 0.0144 0.0103 0.0098 0.0077 0.0093 0.0086
PCA-KNN 0.0069 0.0082 0.0076 0.0077 0.009 0.0109 0.0115
PCA-D-KNN 0.0082 0.0068 0.0062 0.006 0.0067 0.0085 0.0095
GA-KNN 0.0212 0.015 0.0038 0.0119 0.0091 0.0118 0.0089
GA-D-KNN 0.0168 0.0142 0.004 0.0088 0.0072 0.0089 0.0068
GPSO-KNN 0.025 0.0172 0.0091 0.0078 0.0036 0.005 0.0068
GPSO-D-KNN 0.0316 0.0172 0.01 0.0061 0.0051 0.0052 0.005
LPSO-KNN 0.0265 0.0107 0.0118 0.0086 0.0051 0.008 0.0099
LPSO-D-KNN 0.025 0.009 0.0098 0.0079 0.0062 0.0064 0.0068

Table B.6. Results of KNN Regression with all variants studied, on the Qsar Fish
toxicity dataset.

Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 0.4742 0.4976 0.5042 0.5209 0.5283 0.5344 0.5438
D-KNN 0.3664 0.3421 0.3239 0.3223 0.3177 0.3161 0.3185
PCA-KNN 0.4735 0.4988 0.5065 0.5217 0.5304 0.5366 0.5448
PCA-D-KNN 0.363 0.3413 0.3266 0.3228 0.3188 0.3171 0.3191
GA-KNN 0.4225 0.4344 0.458 0.4613 0.4468 0.4454 0.4593
GA-D-KNN 0.318 0.292 0.2936 0.285 0.2657 0.2644 0.2686
GPSO-KNN 0.3979 0.424 0.4116 0.412 0.4223 0.4218 0.4203
GPSO-D-KNN 0.2969 0.2912 0.2651 0.2585 0.263 0.255 0.2516
LPSO-KNN 0.3934 0.4092 0.4151 0.4205 0.4113 0.4196 0.4199
LPSO-D-KNN 0.3009 0.2771 0.2652 0.2675 0.2489 0.2497 0.2503

Variance of MSE

KNN 0.0034 0.0021 0.0018 0.002 0.0021 0.0023 0.0027
D-KNN 0.0029 0.0021 0.0019 0.0022 0.0022 0.0023 0.0026
PCA-KNN 0.003 0.002 0.002 0.002 0.0022 0.0022 0.0025
PCA-D-KNN 0.0028 0.0022 0.002 0.0021 0.0022 0.0023 0.0025
GA-KNN 0.0018 0.0016 0.002 0.0019 0.0010 0.0019 0.0013
GA-D-KNN 0.002 0.0017 0.0016 0.0013 0.0013 0.0022 0.0013
GPSO-KNN 0.0021 0.0029 0.0015 0.0019 0.0026 0.0019 0.0018
GPSO-D-KNN 0.0023 0.0024 0.0014 0.0018 0.0019 0.0017 0.0015
LPSO-KNN 0.0019 0.0036 0.0009 0.0028 0.0016 0.0014 0.0015
LPSO-D-KNN 0.0017 0.0023 0.0012 0.0022 0.0014 0.0017 0.0012

Table B.7. Results of KNN Regression with all variants studied, on the Wine (red).
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Performance Measure Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15

Average MSE

KNN 105.67 154.82 187.67 184.82 182.04 177.4 182.91
D-KNN 75.15 95.71 107.89 108.61 110.12 113.03 117.81
PCA-KNN 106.35 154.37 187.75 185.46 182.41 177.59 182.98
PCA-D-KNN 75.44 95.55 107.92 108.69 110.19 113.13 117.89
GA-KNN 69.57 62.84 73.84 100.23 114.98 109.36 116.04
GA-D-KNN 50.79 46.42 52.85 67.2 74.0 74.1 81.6
GPSO-KNN 2.32 2.82 2.91 2.48 2.78 3.42 2.99
GPSO-D-KNN 2.17 2.25 2.5 2.18 2.51 2.78 2.57
LPSO-KNN 3.44 2.9 2.73 4.43 3.16 3.35 3.11
LPSO-D-KNN 3.21 2.58 2.66 2.47 2.97 2.97 2.79

Variance of MSE

KNN 1425.03 2224.76 2353.58 1721.45 1895.11 2030.05 2212.22
D-KNN 951.42 1248.28 1276.27 1153.95 1211.78 1281.12 1370.78
PCA-KNN 1387.97 2189.28 2328.49 1849.34 1869.54 2004.38 2198.82
PCA-D-KNN 936.41 1243.8 1270.83 1170.86 1206.29 1275.44 1369.21
GA-KNN 1341.5 381.39 948.46 1450.76 1392.45 1253.77 1499.26
GA-D-KNN 722.24 235.11 426.13 725.67 699.8 559.32 774.96
GPSO-KNN 2.02 3.48 2.21 1.65 1.35 8.4 2.03
GPSO-D-KNN 1.42 1.08 1.04 1.19 1.22 4.3 1.42
LPSO-KNN 8.49 3.07 2.01 23.66 2.1 3.94 1.88
LPSO-D-KNN 4.74 1.7 1.71 1.13 2.0 2.77 1.31

Table B.8. Results of KNN Regression with all variants studied, on the Yacht.
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B.2 Results of Classification

The results of classification are shown in Tables B.9 through B.26. The tables

are exhaustive with regards to the results presented.

The tables present average accuracy and the variance of accuracy after 10-fold

Monte-Carlo cross validation of every method studied, for different values of k. Below

is a glossary of the terms used:

1. KNN: k-nearest neighbors without any preprocessing or feature extraction

2. D-KNN: inverse distance KNN

3. PCA-KNN: KNN with PCA for feature extraction

4. PCA-D-KNN: D-KNN with PCA for feature extraction

5. GA-KNN (MNTE): KNN with feature weights optimized using GA and MM-

NTE

6. GA-D-KNN (MNTE): D-KNN with feature weights optimized using GA and

MMNTE

7. GA-KNN (MNTSD): KNN with feature weights optimized using GA and MM-

NTSD

8. GA-D-KNN (MNTSD): D-KNN with feature weights optimized using GA and

MMNTSD

9. GPSO-KNN (MNTE): KNN with feature weights optimized using GBest PSO

and MMNTE

10. GPSO-D-KNN (MNTE): D-KNN with feature weights optimized using GBest

PSO and MMNTE

11. GPSO-KNN (MNTSD): KNN with feature weights optimized using GBest PSO

and MMNTSD

12. GPSO-D-KNN (MNTSD): D-KNN with feature weights optimized using GBest

PSO and MMNTSD
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13. LPSO-KNN (MNTE): KNN with feature weights optimized using LBest PSO

and MMNTE

14. LPSO-D-KNN (MNTE): D-KNN with feature weights optimized using LBest

PSO and MMNTE

15. LPSO-KNN (MNTSD): KNN with feature weights optimized using LBest PSO

and MMNTSD

16. LPSO-D-KNN (MNTSD): D-KNN with feature weights optimized using LBest

PSO and MMNTSD

The entry in the tables in red indicates the method that resulted in the highest

average accuracy; the entry in the tables in green indicates the method that resulted

in the lowest variance in accuracy.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 72.2667 72.1333 73.1333 74.8667 74.0 74.4 74.4667
D-KNN 63.8667 56.9333 54.0 52.0667 50.4 48.9333 47.1333
PCA-KNN 71.9333 71.9333 73.4 73.2667 73.8 74.6667 74.6667
PCA-D-KNN 61.8667 56.6 54.6 52.1333 50.0 48.4667 47.4
GA-KNN (MNTE) 71.6 73.0667 74.4 74.5333 74.1333 74.4 74.6667
GA-KNN (MNTSD) 72.2 73.2 74.0667 75.0 73.9333 74.6667 74.8
GA-D-KNN (MNTE) 63.8 58.0667 55.8667 54.6 52.4667 50.4 48.9333
GA-D-KNN (MNTSD) 64.5333 58.2667 55.5333 54.4667 52.2 50.0667 49.4
GPSO-KNN (MNTE) 72.2 74.1333 75.5333 75.0667 75.4667 75.3333 75.0667
GPSO-KNN (MNTSD) 72.0 73.2 75.9333 74.7333 76.0 75.5333 75.3333
GPSO-D-KNN (MNTE) 63.0667 60.0667 56.1333 53.8 52.6 51.4667 50.2667
GPSO-D-KNN (MNTSD) 63.8 60.1333 57.2 54.2 52.0 50.8667 49.8
LPSO-KNN (MNTE) 72.4667 74.2 75.6 75.2 75.4 75.6 76.1333
LPSO-KNN (MNTSD) 72.6667 74.2 74.6667 75.0 75.6667 76.2 75.0
LPSO-D-KNN (MNTE) 64.6 58.9333 56.4667 53.8 52.1333 51.6 50.0667
LPSO-D-KNN (MNTSD) 64.7333 60.2 56.8 54.0667 51.9333 50.4 50.6667

Table B.9. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Blood Transfusion dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.1217 0.0996 0.085 0.0978 0.0533 0.0446 0.0386
D-KNN 0.0561 0.0743 0.0385 0.0953 0.1325 0.1177 0.1314
PCA-KNN 0.0725 0.0834 0.0933 0.0696 0.0613 0.0563 0.0356
PCA-D-KNN 0.1065 0.112 0.0923 0.1549 0.1452 0.1591 0.1525
GA-KNN (MNTE) 0.0901 0.0604 0.0437 0.0808 0.062 0.0456 0.0602
GA-KNN (MNTSD) 0.1008 0.0788 0.0725 0.0615 0.0656 0.0642 0.0581
GA-D-KNN (MNTE) 0.0731 0.1111 0.0926 0.1328 0.1719 0.1385 0.1197
GA-D-KNN (MNTSD) 0.0996 0.1325 0.0929 0.1492 0.1492 0.1674 0.118
GPSO-KNN (MNTE) 0.1304 0.1183 0.0959 0.0555 0.0571 0.0869 0.1424
GPSO-KNN (MNTSD) 0.0711 0.148 0.0617 0.0992 0.077 0.0642 0.0711
GPSO-D-KNN (MNTE) 0.096 0.0656 0.1687 0.1729 0.0962 0.1055 0.1069
GPSO-D-KNN (MNTSD) 0.1028 0.1381 0.1341 0.2628 0.1551 0.1512 0.1057
LPSO-KNN (MNTE) 0.1097 0.1442 0.1622 0.14 0.1061 0.098 0.0966
LPSO-KNN (MNTSD) 0.2035 0.1117 0.162 0.1336 0.0467 0.1156 0.0704
LPSO-D-KNN (MNTE) 0.0686 0.179 0.1117 0.1709 0.1252 0.097 0.0903
LPSO-D-KNN (MNTSD) 0.0725 0.1492 0.1242 0.1555 0.1802 0.1849 0.2311

Table B.10. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Blood Transfusion dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 97.7372 97.9562∗ 97.0803 96.8613 96.8613 96.9343 97.2263
D-KNN 97.5182 97.5912 97.2993 96.9343 96.6423 96.3504 96.2774
PCA-KNN 97.6642 97.8102 97.9562 97.8102 97.5182 97.5912 97.5912
PCA-D-KNN 97.6642 97.2263 96.5693 96.4964 96.2044 96.1314 96.1314
GA-KNN (MNTE) 97.5182 97.5182 97.3723 97.3723 97.0073 97.3723 96.6423
GA-KNN (MNTSD) 97.3723 97.3723 97.0803 97.2263 96.9343 97.0803 97.0073
GA-D-KNN (MNTE) 97.8102 97.1533 96.2774 96.1314 96.3504 95.9854 95.7664
GA-D-KNN (MNTSD) 97.5182 96.7883 96.7153 96.0584 96.1314 95.9854 95.9854
GPSO-KNN (MNTE) 96.4234 96.3504 96.7883 97.0073 96.8613 96.6423 96.2774
GPSO-KNN (MNTSD) 96.8613 96.8613 96.8613 96.7153 96.2044 96.7153 96.6423
GPSO-D-KNN (MNTE) 96.7153 95.8394 95.9124 95.7664 95.0365 94.6715 95.0365
GPSO-D-KNN (MNTSD) 96.7883 96.2774 95.9124 95.8394 95.7664 95.6204 94.8905
LPSO-KNN (MNTE) 96.7883 96.4234 96.4234 96.7153 95.7664 96.4964 96.2044
LPSO-KNN (MNTSD) 96.4964 96.6423 96.8613 96.4234 96.7883 96.0584 95.9854
LPSO-D-KNN (MNTE) 96.8613 96.3504 95.6204 95.3285 94.8175 94.8175 94.8175
LPSO-D-KNN (MNTSD) 96.3504 96.5693 95.9124 95.6204 95.4745 95.3285 94.5985

Table B.11. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Breast Cancer dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.0171 0.0057∗ 0.0118 0.0155 0.0202 0.0294 0.0211
D-KNN 0.0133 0.0166 0.0131 0.014 0.0144 0.0083 0.01
PCA-KNN 0.0234 0.0154 0.0092 0.0118 0.0133 0.0131 0.0131
PCA-D-KNN 0.0175 0.014 0.0155 0.0152 0.0199 0.0214 0.0214
GA-KNN (MNTE) 0.0097 0.0239 0.0156 0.018 0.01 0.0144 0.0085
GA-KNN (MNTSD) 0.0133 0.0133 0.0107 0.0128 0.0092 0.0095 0.0183
GA-D-KNN (MNTE) 0.0154 0.0088 0.0065 0.0095 0.013 0.0157 0.0116
GA-D-KNN (MNTSD) 0.0062 0.0097 0.0062 0.0121 0.0119 0.0169 0.0157
GPSO-KNN (MNTE) 0.0254 0.013 0.0133 0.0195 0.0214 0.0215 0.0337
GPSO-KNN (MNTSD) 0.0166 0.0261 0.0178 0.011 0.0092 0.0228 0.0263
GPSO-D-KNN (MNTE) 0.0062 0.0166 0.0121 0.0081 0.0211 0.0261 0.0092
GPSO-D-KNN (MNTSD) 0.0121 0.0171 0.0073 0.0415 0.0104 0.0107 0.0059
LPSO-KNN (MNTE) 0.0156 0.0136 0.0195 0.0228 0.0412 0.0388 0.0199
LPSO-KNN (MNTSD) 0.0282 0.018 0.0119 0.023 0.0121 0.0251 0.0157
LPSO-D-KNN (MNTE) 0.0083 0.0154 0.0213 0.0109 0.0076 0.0112 0.0112
LPSO-D-KNN (MNTSD) 0.0083 0.019 0.0168 0.0095 0.0199 0.0109 0.0204

Table B.12. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Breast Cancer dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 90.2582 89.7887 89.3192 88.8498 88.0282 87.6761 87.6761
D-KNN 87.9108 82.7465 79.4601 75.3521 72.4178 70.4225 68.1925
PCA-KNN 90.2582 89.6714 88.8498 88.9671 87.9108 87.5587 87.5587
PCA-D-KNN 88.1455 82.8638 79.2254 75.3521 72.3005 69.7183 67.9577
GA-KNN (MNTE) 90.9624 89.9061 90.2582 89.554 90.3756 88.8498 89.2019
GA-KNN (MNTSD) 90.3756 90.1408 89.9061 89.7887 89.7887 88.7324 88.3803
GA-D-KNN (MNTE) 88.8498 84.6244 81.338 78.2864 75.1174 72.6526 72.4178
GA-D-KNN (MNTSD) 87.6761 83.4507 78.2864 76.9953 74.5305 72.4178 70.7746
GPSO-KNN (MNTE) 90.2582 92.3709 92.4883 90.2582 91.3146 91.4319 90.6103
GPSO-KNN (MNTSD) 90.493 90.9624 90.6103 89.7887 90.0235 90.7277 90.0235
GPSO-D-KNN (MNTE) 88.1455 88.2629 85.5634 80.3991 80.5164 78.9906 76.4085
GPSO-D-KNN (MNTSD) 88.3803 85.3286 83.216 80.8685 75.5869 77.4648 73.9437
LPSO-KNN (MNTE) 91.0798 91.6667 91.784 91.784 90.9624 90.6103 90.0235
LPSO-KNN (MNTSD) 90.6103 91.1972 92.2535 91.784 90.3756 90.8451 91.5493
LPSO-D-KNN (MNTE) 88.0282 87.0892 83.5681 83.9202 79.2254 75.8216 73.7089
LPSO-D-KNN (MNTSD) 87.4413 87.4413 83.0986 83.5681 79.5775 77.23 75.1174

Table B.13. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Cardioctography dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.0001 0.0001 0.0034 0.0012 0.005 0.0068 0.0068
D-KNN 0.0068 0.0001 0.0001 0.0138 0.0068 0.0138 0.0233
PCA-KNN 0.0001 0.0006 0.0034 0.0022 0.0068 0.0088 0.005
PCA-D-KNN 0.0012 0.0006 0.0001 0.0088 0.0198 0.005 0.0167
GA-KNN (MNTE) 0.0167 0.027 0.0012 0.0034 0.0022 0.0068 0.0042
GA-KNN (MNTSD) 0.0138 0.0006 0.0006 0.0167 0.0001 0.0353 0.0112
GA-D-KNN (MNTE) 0.0112 0.0012 0.0167 0.0233 0.0138 0.0398 0.0167
GA-D-KNN (MNTSD) 0.0068 0.0012 0.0233 0.0551 0.0112 0.0233 0.0608
GPSO-KNN (MNTE) 0.0167 0.0034 0.0138 0.0112 0.0138 0.0112 0.027
GPSO-KNN (MNTSD) 0.0034 0.0012 0.0022 0.0012 0.0001 0.0034 0.0001
GPSO-D-KNN (MNTE) 0.0233 0.0551 0.0233 0.031 0.3174 0.0167 0.0729
GPSO-D-KNN (MNTSD) 0.0233 0.0001 0.0112 0.031 0.027 0.0353 0.0551
LPSO-KNN (MNTE) 0.0022 0.0012 0.0022 0.0006 0.0012 0.005 0.0012
LPSO-KNN (MNTSD) 0.0006 0.0012 0.0031 0.0012 0.0014 0.0030 0.0327
LPSO-D-KNN (MNTE) 0.005 0.0667 0.0138 0.0034 0.0497 0.0667 0.005
LPSO-D-KNN (MNTSD) 0.0012 0.0312 0.0271 0.0328 0.0555 0.0345 0.0618

Table B.14. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Cardioctography dataset. Multiple
cases result in very low variance of accuracy.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 55.0 53.75 59.38 60.62 60.0 60.62 60.62
D-KNN 53.75 53.12 53.75 53.75 53.75 53.75 53.75
PCA-KNN 56.25 60.0 57.5 58.75 59.38 60.62 55.62
PCA-D-KNN 55.0 55.62 53.75 53.75 53.75 53.75 53.75
GA-KNN (MNTE) 58.13 59.38 60.0 63.75 63.75 60.62 57.5
GA-KNN (MNTSD) 58.75 60.0 63.12 61.25 62.5 60.0 57.5
GA-D-KNN (MNTE) 50.0 52.5 53.12 53.75 53.75 53.75 53.75
GA-D-KNN (MNTSD) 51.25 51.25 53.75 53.75 53.75 53.75 53.75
GPSO-KNN (MNTE) 58.13 60.62 58.13 59.38 55.62 54.37 57.5
GPSO-KNN (MNTSD) 59.38 60.62 58.13 58.75 56.88 56.25 56.88
GPSO-D-KNN (MNTE) 51.25 53.75 53.12 53.12 53.75 53.75 53.75
GPSO-D-KNN (MNTSD) 49.38 50.62 52.5 51.88 53.75 53.75 53.75
LPSO-KNN (MNTE) 54.37 58.13 60.62 63.12 55.62 56.88 58.13
LPSO-KNN (MNTSD) 58.13 59.38 58.13 62.5 57.5 53.12 58.13
LPSO-D-KNN (MNTE) 51.25 51.88 52.5 53.75 53.75 53.75 53.75
LPSO-D-KNN (MNTSD) 50.62 52.5 52.5 52.5 53.75 53.75 53.75

Table B.15. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the C-Section dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.76 1.32 1.15 0.61 0.36 0.44 0.79
D-KNN 0.8 1.06 0.89 0.89 0.89 0.89 0.89
PCA-KNN 1.3 1.06 0.68 0.54 0.37 0.61 1.43
PCA-D-KNN 0.85 0.99 0.89 0.89 0.89 0.89 0.89
GA-KNN (MNTE) 2.17 1.06 1.67 1.37 1.28 0.53 1.63
GA-KNN (MNTSD) 1.93 1.06 1.78 1.2 1.39 2.1 1.72
GA-D-KNN (MNTE) 0.69 0.62 0.72 0.89 0.89 0.89 0.89
GA-D-KNN (MNTSD) 0.42 0.68 0.89 0.89 0.89 0.89 0.89
GPSO-KNN (MNTE) 2.17 0.61 1.31 1.93 1.08 0.87 1.2
GPSO-KNN (MNTSD) 1.93 1.22 1.31 2.27 1.08 0.95 1.43
GPSO-D-KNN (MNTE) 0.68 0.97 0.72 0.72 0.89 0.89 0.89
GPSO-D-KNN (MNTSD) 0.3 0.65 0.71 0.61 0.89 0.89 0.89
LPSO-KNN (MNTE) 1.57 0.79 1.48 1.6 0.91 1.25 1.22
LPSO-KNN (MNTSD) 1.65 0.98 1.48 1.48 1.46 1.32 1.57
LPSO-D-KNN (MNTE) 1.11 0.87 0.62 0.89 0.89 0.89 0.89
LPSO-D-KNN (MNTSD) 0.73 0.97 0.71 0.62 0.89 0.89 0.89

Table B.16. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the C-Section dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 62.5974 65.6277 67.1861 66.0173 66.1472 66.0606 66.8831
D-KNN 58.8312 55.1082 55.4113 54.8918 54.1558 53.5065 53.5065
PCA-KNN 62.7706 65.5844 67.0563 66.2771 66.3203 66.1472 66.7965
PCA-D-KNN 58.8312 55.1515 55.3247 54.8918 54.1991 53.5065 53.5065
GA-KNN (MNTE) 64.7186 66.9264 66.7532 67.0996 67.3593 66.9697 67.2294
GA-KNN (MNTSD) 64.8485 65.7143 68.0952 66.7965 67.316 68.4848 66.9697
GA-D-KNN (MNTE) 58.3117 55.8442 55.4978 54.7619 54.1991 53.7662 53.6797
GA-D-KNN (MNTSD) 58.1818 55.7576 55.2814 54.5455 53.9827 53.6797 53.7229
GPSO-KNN (MNTE) 65.4545 67.5758 66.4502 68.0952 67.0996 67.5758 66.4935
GPSO-KNN (MNTSD) 66.1039 66.8398 66.8831 67.013 67.8355 66.8831 67.316
GPSO-D-KNN (MNTE) 60.1732 56.9264 54.8485 54.4156 53.9394 53.5931 53.29
GPSO-D-KNN (MNTSD) 60.4329 57.4026 55.0649 54.3723 53.7229 53.3766 53.3766
LPSO-KNN (MNTE) 65.5844 66.1472 67.0563 65.7576 68.2684 66.3203 67.2294
LPSO-KNN (MNTSD) 65.1082 66.4502 66.2338 66.4935 68.5714 66.4069 66.9697
LPSO-D-KNN (MNTE) 59.4372 57.6623 55.1515 54.4156 53.7229 53.7229 53.4199
LPSO-D-KNN (MNTSD) 59.3506 57.1861 55.4545 54.1991 53.8961 53.29 53.5065

Table B.17. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Diabetic Retinopathy dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.0313 0.0471 0.0445 0.0526 0.0815 0.0359 0.038
D-KNN 0.1014 0.0925 0.0866 0.0753 0.0631 0.0696 0.0696
PCA-KNN 0.0296 0.0459 0.046 0.0593 0.0774 0.0349 0.0313
PCA-D-KNN 0.0935 0.0913 0.0907 0.0753 0.0636 0.0696 0.0696
GA-KNN (MNTE) 0.048 0.0601 0.0728 0.0479 0.0238 0.1379 0.0625
GA-KNN (MNTSD) 0.0561 0.0266 0.035 0.0542 0.0505 0.0212 0.0525
GA-D-KNN (MNTE) 0.1341 0.0883 0.0969 0.0771 0.0736 0.0636 0.0612
GA-D-KNN (MNTSD) 0.0846 0.1011 0.0783 0.0925 0.0704 0.0695 0.0631
GPSO-KNN (MNTE) 0.0845 0.0318 0.0288 0.1016 0.0504 0.0793 0.1554
GPSO-KNN (MNTSD) 0.0533 0.0388 0.0288 0.0953 0.0596 0.1159 0.1171
GPSO-D-KNN (MNTE) 0.1403 0.1013 0.1129 0.0483 0.065 0.0649 0.0606
GPSO-D-KNN (MNTSD) 0.1792 0.1425 0.1032 0.0775 0.0627 0.0558 0.0612
LPSO-KNN (MNTE) 0.0992 0.0449 0.0318 0.0485 0.0517 0.0886 0.0746
LPSO-KNN (MNTSD) 0.0471 0.0938 0.0879 0.0555 0.0734 0.0526 0.0408
LPSO-D-KNN (MNTE) 0.1245 0.1648 0.073 0.0779 0.0618 0.0585 0.0617
LPSO-D-KNN (MNTSD) 0.1222 0.1193 0.1384 0.0707 0.0622 0.0652 0.0671

Table B.18. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Diabetic Retinopathy dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 70.97 68.71 71.13 73.06 73.87 73.06 72.26
D-KNN 57.9 52.42 48.06 45.0 41.94 38.55 35.97
PCA-KNN 72.58 74.19 73.23 73.87 73.71 73.06 73.06
PCA-D-KNN 57.74 50.65 45.97 43.39 40.0 37.26 35.48
GA-KNN (MNTE) 71.77 71.61 71.94 73.23 71.29 71.45 71.61
GA-KNN (MNTSD) 71.45 70.97 72.42 73.06 71.13 71.61 72.26
GA-D-KNN (MNTE) 58.39 51.29 47.1 43.06 41.61 38.06 37.1
GA-D-KNN (MNTSD) 58.23 52.42 45.81 43.23 40.65 37.9 36.94
GPSO-KNN (MNTE) 69.19 71.29 69.35 71.45 71.29 72.1 70.97
GPSO-KNN (MNTSD) 69.35 70.97 71.13 73.23 71.61 72.42 70.48
GPSO-D-KNN (MNTE) 59.03 53.23 48.87 45.0 40.81 39.19 38.06
GPSO-D-KNN (MNTSD) 59.52 52.26 47.26 44.19 43.23 39.84 38.23
LPSO-KNN (MNTE) 69.68 70.0 68.71 72.26 70.65 72.1 70.97
LPSO-KNN (MNTSD) 69.03 70.16 70.0 71.45 70.81 71.94 71.29
LPSO-D-KNN (MNTE) 58.87 52.58 47.9 45.0 41.61 39.84 37.9
LPSO-D-KNN (MNTSD) 58.06 53.71 47.42 44.68 41.77 39.52 37.9

Table B.19. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Haberman dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.13 0.3 0.23 0.16 0.21 0.17 0.05
D-KNN 0.33 0.22 0.3 0.25 0.32 0.33 0.36
PCA-KNN 0.16 0.24 0.21 0.17 0.12 0.12 0.13
PCA-D-KNN 0.4 0.54 0.58 0.36 0.39 0.36 0.4
GA-KNN (MNTE) 0.17 0.31 0.2 0.13 0.2 0.17 0.14
GA-KNN (MNTSD) 0.08 0.31 0.27 0.13 0.16 0.16 0.1
GA-D-KNN (MNTE) 0.61 0.18 0.32 0.3 0.2 0.35 0.35
GA-D-KNN (MNTSD) 0.42 0.24 0.16 0.18 0.35 0.24 0.22
GPSO-KNN (MNTE) 0.36 0.41 0.28 0.27 0.32 0.2 0.21
GPSO-KNN (MNTSD) 0.4 0.37 0.38 0.19 0.26 0.25 0.12
GPSO-D-KNN (MNTE) 0.74 0.32 0.39 0.41 0.31 0.2 0.27
GPSO-D-KNN (MNTSD) 0.51 0.21 0.17 0.44 0.35 0.24 0.28
LPSO-KNN (MNTE) 0.4 0.46 0.25 0.31 0.23 0.15 0.19
LPSO-KNN (MNTSD) 0.36 0.34 0.24 0.27 0.27 0.23 0.12
LPSO-D-KNN (MNTE) 0.54 0.37 0.17 0.25 0.2 0.23 0.28
LPSO-D-KNN (MNTSD) 0.6 0.33 0.13 0.32 0.2 0.25 0.3

Table B.20. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Haberman dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 69.62 69.06 68.77 68.78 68.78 69.06 69.93
D-KNN 61.87 58.43 48.69 46.11 44.11 42.67 42.39
PCA-KNN 69.4 69.4 69.83 70.26 69.4 69.83 71.55
PCA-D-KNN 59.05 54.31 45.26 42.24 40.52 38.79 38.79
GA-KNN (MNTE) 70.69 70.69 71.98 72.84 69.4 73.71 73.28
GA-KNN (MNTSD) 70.26 71.12 69.83 68.1 71.12 72.41 73.28
GA-D-KNN (MNTE) 59.91 52.16 43.1 41.38 40.52 38.79 38.79
GA-D-KNN (MNTSD) 60.34 51.72 47.41 43.53 40.52 41.81 38.79
GPSO-KNN (MNTE) 67.67 72.84 67.24 66.81 70.69 71.55 72.41
GPSO-KNN (MNTSD) 72.84 67.67 66.81 66.38 68.97 72.84 70.69
GPSO-D-KNN (MNTE) 56.03 52.59 47.41 43.97 42.67 40.52 39.22
GPSO-D-KNN (MNTSD) 58.62 53.88 47.41 44.4 41.81 40.09 39.22
LPSO-KNN (MNTE) 70.69 69.4 67.24 67.67 71.55 71.55 71.98
LPSO-KNN (MNTSD) 71.12 73.71 67.24 70.26 66.38 69.83 67.24
LPSO-D-KNN (MNTE) 61.64 53.02 48.28 43.1 41.81 40.95 38.79
LPSO-D-KNN (MNTSD) 56.9 50.86 47.84 43.1 39.66 39.66 38.79

Table B.21. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the ILPD dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.1325 0.0135 0.0222 0.0928 0.0551 0.0299 0.0958
D-KNN 0.1706 0.2736 0.2468 0.2993 0.2575 0.3057 0.2632
PCA-KNN 0.1505 0.0167 0.0083 0.0019 0.0167 0.0074 0.0074
PCA-D-KNN 0.0167 0.0074 0.0167 0.0062 0.0047 0.0074 0.0074
GA-KNN (MNTE) 0.0042 0.1858 0.2248 0.1505 0.0464 0.091 0.2675
GA-KNN (MNTSD) 0.2248 0.2248 0.0669 0.0424 0.0019 0.1189 0.0669
GA-D-KNN (MNTE) 0.0019 0.0464 0.0074 0.0074 0.0031 0.0074 0.0074
GA-D-KNN (MNTSD) 0.0016 0.0297 0.1189 0.0464 0.0064 0.0167 0.0074
GPSO-KNN (MNTE) 0.091 0.0167 0.2675 0.091 0.0297 0.1189 0.1858
GPSO-KNN (MNTSD) 0.0019 0.091 0.1505 0.0297 0.1189 0.0464 0.1858
GPSO-D-KNN (MNTE) 0.0669 0.0297 0.0074 0.0074 0.0464 0.0297 0.0019
GPSO-D-KNN (MNTSD) 0.0074 0.0464 0.1189 0.0464 0.0464 0.0019 0.0167
LPSO-KNN (MNTE) 0.1858 0.091 0.1189 0.0167 0.0074 0.1189 0.091
LPSO-KNN (MNTSD) 0.0464 0.0019 0.1189 0.0019 0.0241 0.0138 0.0336
LPSO-D-KNN (MNTE) 0.0464 0.091 0.0669 0.0297 0.091 0.0167 0.0089
LPSO-D-KNN (MNTSD) 0.0074 0.0669 0.091 0.0033 0.0015 0.0018 0.0042

Table B.22. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the ILPD dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 68.89 71.11 73.33 73.89 74.44 74.44 74.44
D-KNN 74.44 74.44 74.44 74.44 74.44 74.44 74.44
PCA-KNN 66.11 70.0 74.44 73.89 74.44 74.44 74.44
PCA-D-KNN 74.44 74.44 74.44 74.44 74.44 74.44 74.44
GA-KNN (MNTE) 65.0 67.78 71.11 72.22 74.44 73.89 73.89
GA-KNN (MNTSD) 67.78 72.22 72.22 72.22 73.89 74.44 74.44
GA-D-KNN (MNTE) 73.89 74.44 74.44 74.44 74.44 74.44 74.44
GA-D-KNN (MNTSD) 74.44 74.44 74.44 74.44 74.44 74.44 74.44
GPSO-KNN (MNTE) 70.0 73.89 71.67 72.78 74.44 74.44 75.56
GPSO-KNN (MNTSD) 72.22 72.22 71.11 72.22 73.33 73.89 75.0
GPSO-D-KNN (MNTE) 72.22 74.44 75.0 74.44 74.44 74.44 74.44
GPSO-D-KNN (MNTSD) 76.11 74.44 74.44 74.44 74.44 74.44 74.44
LPSO-KNN (MNTE) 72.78 72.22 70.56 73.33 73.89 76.11 77.78
LPSO-KNN (MNTSD) 71.11 72.22 72.78 73.33 73.33 75.56 77.22
LPSO-D-KNN (MNTE) 74.44 74.44 75.56 74.44 74.44 74.44 74.44
LPSO-D-KNN (MNTSD) 75.56 74.44 74.44 74.44 74.44 74.44 74.44

Table B.23. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Immunotherapy dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 1.39 1.56 1.77 1.79 1.8 1.8 1.8
D-KNN 1.8 1.8 1.8 1.8 1.8 1.8 1.8
PCA-KNN 1.47 1.52 1.87 1.79 1.8 1.8 1.8
PCA-D-KNN 1.8 1.8 1.8 1.8 1.8 1.8 1.8
GA-KNN (MNTE) 1.17 1.29 1.5 1.65 1.8 1.79 1.79
GA-KNN (MNTSD) 1.43 1.44 1.51 1.71 1.79 1.8 1.8
GA-D-KNN (MNTE) 1.65 1.8 1.8 1.8 1.8 1.8 1.8
GA-D-KNN (MNTSD) 1.8 1.8 1.8 1.8 1.8 1.8 1.8
GPSO-KNN (MNTE) 1.73 1.99 2.16 2.16 2.0 2.28 2.07
GPSO-KNN (MNTSD) 2.19 1.71 2.18 2.19 1.91 2.06 2.21
GPSO-D-KNN (MNTE) 1.51 1.8 1.87 1.8 1.8 1.8 1.8
GPSO-D-KNN (MNTSD) 2.27 1.8 1.8 1.8 1.8 1.8 1.8
LPSO-KNN (MNTE) 1.88 2.19 1.86 2.04 2.06 2.34 2.26
LPSO-KNN (MNTSD) 0.6 2.26 1.54 1.91 2.11 2.07 2.29
LPSO-D-KNN (MNTE) 2.0 1.8 2.07 1.8 1.8 1.8 1.8
LPSO-D-KNN (MNTSD) 2.0 1.8 1.8 1.8 1.8 1.8 1.8

Table B.24. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Immunotherapy dataset.
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Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 83.89 82.22 81.39 78.33 76.67 77.22 76.11
D-KNN 81.94 75.56 68.06 56.94 49.17 45.56 41.94
PCA-KNN 77.5 78.06 77.78 76.39 75.28 74.44 74.44
PCA-D-KNN 71.39 62.22 56.11 48.06 45.0 41.94 39.44
GA-KNN (MNTE) 91.11 91.67 91.39 92.22 91.39 93.06 93.06
GA-KNN (MNTSD) 91.11 90.83 92.22 94.17 92.22 92.5 93.06
GA-D-KNN (MNTE) 91.39 88.61 87.5 86.39 81.67 79.17 79.72
GA-D-KNN (MNTSD) 93.06 87.5 87.5 85.0 82.22 79.17 75.28
GPSO-KNN (MNTE) 93.06 92.5 93.61 93.06 93.06 93.06 94.44
GPSO-KNN (MNTSD) 93.61 93.89 93.33 93.06 93.89 93.06 93.89
GPSO-D-KNN (MNTE) 94.17 88.06 88.06 87.5 88.33 84.72 83.89
GPSO-D-KNN (MNTSD) 94.44 92.5 92.5 88.61 85.83 84.72 86.67
LPSO-KNN (MNTE) 93.89 92.22 93.06 92.78 93.33 94.17 93.33
LPSO-KNN (MNTSD) 93.33 93.06 91.94 92.22 93.06 92.22 93.61
LPSO-D-KNN (MNTE) 93.33 90.0 88.89 88.89 86.11 86.67 84.17
LPSO-D-KNN (MNTSD) 93.06 91.94 88.61 86.39 86.94 84.17 85.0

Table B.25. Average accuracy of KNN Classification over 10-fold Monte-Carlo cross-
validation with all variants studied, on the Wine classification dataset.

Method k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15
KNN 0.32 0.72 0.62 0.48 0.47 0.41 0.5
D-KNN 0.31 0.43 0.47 0.66 0.7 0.59 0.45
PCA-KNN 0.49 0.61 0.41 0.43 0.49 0.6 0.51
PCA-D-KNN 0.84 0.26 0.51 0.62 0.61 0.32 0.29
GA-KNN (MNTE) 0.13 0.27 0.32 0.15 0.18 0.14 0.18
GA-KNN (MNTSD) 0.22 0.16 0.22 0.08 0.2 0.07 0.12
GA-D-KNN (MNTE) 0.2 0.47 0.31 0.3 0.69 0.91 0.98
GA-D-KNN (MNTSD) 0.21 0.55 0.43 0.62 1.07 0.76 0.66
GPSO-KNN (MNTE) 0.12 0.16 0.16 0.16 0.14 0.11 0.14
GPSO-KNN (MNTSD) 0.09 0.17 0.12 0.14 0.19 0.16 0.08
GPSO-D-KNN (MNTE) 0.11 0.62 0.22 0.4 0.27 0.48 0.51
GPSO-D-KNN (MNTSD) 0.15 0.19 0.16 0.32 0.25 0.4 0.31
LPSO-KNN (MNTE) 0.1 0.19 0.18 0.07 0.14 0.18 0.12
LPSO-KNN (MNTSD) 0.12 0.16 0.18 0.12 0.14 0.1 0.09
LPSO-D-KNN (MNTE) 0.09 0.48 0.26 0.36 0.45 0.24 0.41
LPSO-D-KNN (MNTSD) 0.19 0.25 0.38 0.56 0.48 1.12 1.0

Table B.26. Variance of accuracy of KNN Classification over 10-fold Monte-Carlo
cross-validation with all variants studied, on the Wine classification dataset.
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fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets,”

Information Sciences, vol. 329, pp. 144–163, Feb. 2016. [Online]. Available:

https://doi.org/10.1016/j.ins.2015.09.007

[68] N. Biswas, S. Chakraborty, S. S. Mullick, and S. Das, “A parame-

ter independent fuzzy weighted k -nearest neighbor classifier,” Pattern

Recognition Letters, vol. 101, pp. 80–87, Jan. 2018. [Online]. Available:

https://doi.org/10.1016/j.patrec.2017.11.003

[69] Y. Miao, X. Tao, Y. Sun, Y. Li, and J. Lu, “Risk-based adaptive metric learning

for nearest neighbour classification,” Neurocomputing, vol. 156, pp. 33–41, May

2015. [Online]. Available: https://doi.org/10.1016/j.neucom.2015.01.009

[70] M. Mitchell, An introduction to genetic algorithms. Cambridge, Mass: MIT

Press, 1996.

[71] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-

jective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Compu-

tation, vol. 6, no. 2, pp. 182–197, 2002.

[72] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–

1948 vol.4.

[73] A. Theophilus, S. Saha, S. Basak, and J. Murthy, “A novel exoplanetary

habitability score via particle swarm optimization of CES production functions,”

in 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,

Nov. 2018. [Online]. Available: https://doi.org/10.1109/ssci.2018.8628669

98



[74] M. Beckmann, N. F. F. Ebecken, and B. S. L. P. de Lima, “A KNN

undersampling approach for data balancing,” Journal of Intelligent Learning

Systems and Applications, vol. 07, no. 04, pp. 104–116, 2015. [Online]. Available:

https://doi.org/10.4236/jilsa.2015.74010

[75] Y. Xiang, Z. Cao, S. Yao, and J. He, “CW-kNN,” in Proceedings of the 4th Inter-

national Conference on Communication and Information Processing - ICCIP 18.

ACM Press, 2018. [Online]. Available: https://doi.org/10.1145/3290420.3290431

[76] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

“SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial

Intelligence Research, vol. 16, pp. 321–357, June 2002. [Online]. Available:

https://doi.org/10.1613/jair.953

[77] “Correction to: Erroneous pagination in volume 60, issue 2 and issue 3,”

Statistical Papers, vol. 60, no. 5, pp. 1799–1802, Sept. 2019. [Online]. Available:

https://doi.org/10.1007/s00362-019-01131-w

[78] H. Wang, R. Zhu, and P. Ma, “Optimal subsampling for large sam-

ple logistic regression,” Journal of the American Statistical Associa-

tion, vol. 113, no. 522, pp. 829–844, Apr. 2018. [Online]. Available:

https://doi.org/10.1080/01621459.2017.1292914

[79] R. Zhu, P. Ma, M. W. Mahoney, and B. Yu, “Optimal subsampling approaches

for large sample linear regression,” 2015.

99



BIOGRAPHICAL STATEMENT

Suryoday Basak was born in Kolkata, India, in 1995. He received his Bachelor

of Engineering degree from PESIT Bangalore South Campus (when it was affiliated

to Visvesvaraya Technological University), Bangalore, India, in 2017, in Computer

Science and Engineering, his Master of Science from The University of Texas at Ar-

lington in 2020, in Computer Science. From 2017 to 2018, he was with the department

of Computer Science and Engineering, PESIT Bangalore South Campus as a Research

Associate, working with Dr. Snehanshu Saha. His current research interest is in the

area of machine learning and cyberphysical systems.

100


