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ABSTRACT

COMPREHENSIVE STUDY OF GENERATIVE METHODS ON DRUG

DISCOVERY

SIYU XIU, M.S.

The University of Texas at Arlington, 2019

Supervising Professor: Junzhou Huang

Observing the recent success of the deep learning (DL) technology in multi-

ple life-changing application areas, e.g., autonomous driving, image/video search and

discovery, natural language processing, etc., many new opportunities have presented

themselves. One of the biggest ones lies in applying DL in accelerating the drug dis-

covery, where millions of human lives could potentially be saved. However, applying

DL into drug discovery task turns out to be non-trivial. The most successful DL

methods take fix-sized tensors/matrices, e.g., images, or sequences of tokens, e.g.,

sentences with variant numbers of words, as their inputs. However, none of these

registers with the inputs of drug discovery, i.e., chemical compounds. Due to the

structural nature of the chemical compounds, graph data structure is often used to

represent the atomic data for the compound. Seen as a great opportunity for im-

provement, deep learning on graph techniques are being actively studied lately.

In this paper, we survey the newest academic progress in generative deep learn-

ing methods on graphs for drug discovery applications. We will focus our study by

narrowing down our scope to one of the most important deep learning generative
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model, namely Variational AutoEncoder (VAE). We start our survey introduction by

dating back to the stage when each molecule atom is treated completely separately

and their structural information is completely ignored in VAE. This method is quite

limited given their structure information is scraped. We hence introduce the baseline

method Grammar Variational AutoEncoder (GVAE) where the chemical representa-

tion grammar information is encoded in the modeling. One improvement upon the

GVAE is by ensuring the syntax validation in the decoder. This method is named

Syntax-Directed Variational AutoEncoder (SDVAE). Since then, a couple of vari-

ants of these methods have bloomed. One of them is by encoding and decoding the

molecules in two steps, one being junction tree macro structure with chemical sub-

components as the minimum unit and the other one being the micro structure with

atom as the minimum unit. This method is named Junction Tree Variational Au-

toEncoder (JTVAE). Finally, we introduce another method named GraphVAE where

the pre-defined maximum atom number is enforced in the decoder. Those methods

turn out to be effective in avoiding generating invalid molecules. We show the effec-

tiveness of all the methods in extensive experiments. In conclusion, the light of hope

has been lit in the drug discovery area with deep learning techniques when a ton of

opportunities for growth are still open.
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CHAPTER 1

INTRODUCTION

In this chapter, we will introduce multiple drug discovery problem and it current

state of academic research. Also, we will present the current representation learning

system for drug compounds. Last but not least, we will survey the previous attempts

in addressing the drug discovery tasks.

1.1 Drug Discovery

In recent decades, drug discovery has become an essential problem, where mil-

lions of human lives could potentially be saved. The current solution is mostly

biological-experiment-based which costs billions of dollars and multiple years before a

new drug can be successfully invented and safely landed on markets. Observing the re-

cent success of the deep learning (DL) technology in multiple life-changing application

areas, e.g., autonomous driving, image/video search and discovery, natural language

processing, etc., many new opportunities have presented themselves. New hope has

raised in transferring the success of deep learning to drug discovery area. However,

applying DL into drug discovery task turns out to be a non-trivial task. The most

successful DL methods takes fix-sized tensors/matrices, e.g., images, or sequences of

tokens, e.g., sentences with variant numbers of words, as their inputs. However, none

of these registers with the inputs of drug discovery, i.e., chemical compounds. Due to

the structural nature of the chemical compounds, graph data structure is often used

to represent the atomic data for the compound which is still quite under-studied in

DL area.
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1.1.1 Drug Virtual Screening

Drug virtual screening is a computational technique applied in drug discovery

to search libraries of small molecules in order to identify those structures which are

most likely to bind to a drug target, typically a protein receptor or enzyme. With

deep learning, we can potentially identify the most-drug-like chemical compounds in

a faster and more accurate direction.

1.1.2 Drug Generative Methods

Drug candidate generation is a process of generating the drug candidates di-

rectly, often given some chemical property prior by human. The process normally

involves biologist identify some task-specific properties for the drug chemical com-

pound. Then the properties are fed into the computational model and the model

will automatically generates the drug candidate for further screening. This method is

more efficient than virtual screening where the drug search target library is generally

as huge as millions of molecules.

1.2 Machine/Deep Learning in Drug Discovery

1.2.1 Digital Drug Representations

1.2.1.1 SMILE Representations of Molecules

Vanilla SMILE Representation System To digitally store the molecules,

the molecule needs to be represented in some form of computer data structures. One

of most popular representations is a sequence representation named SMILE, which is

short for the Simplified Molecular-Input Line-Entry system [5]. SMILE is a line no-

tation for describing the structure of chemical species using text strings. The SMILE

system represents the graph-based definition of chemical structures in a text sequence,
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Figure 1.1: The examples of SMILE representations.
a) Melatonin: CC(=O)NCCC1=CNc2c1cc(OC)cc2
b) Thiamine: OCCc1c(C)[n+](cs1)Cc2cnc(C)nc2N

where the atoms, bonds and rings are encoded in a graph and represented in text se-

quences. Simple examples of SMILE representations are 1) hydrogen cyanide with

structure C ≡ N (C#N), 2) carbon dioxide with structure O = C = O (O=C=O),

where corresponding SMILE representations are included in the round brackets. Here,

atoms are represented by the standard symbol of the chemical elements, in square

brackets, e.g., [Fe] for iron, etc. However, it might be omitted in some case like when

the element is too common, e.g., C for carbon. Bonds are represented using symbols

like -, =, for single, double and triple bounds. For more details, readers are referred

to [5].

Canonical SMILE: An One-on-one Mapping One problem the vanilla

SMILE system has is that the representation method is not a bijective mapping

between SMILE sequence and a molecule. For instance, a molecule can correspond to

multiple SMILE sequences, e.g., OCC, CCO and C(O)C. This is absolutely not ideal

in the computer world. For example, the vanilla SMILE representation of molecule is

not ”hash-able” in the sense that one item can potentially have multiple hash values.
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To standardize the representation, we need to provide an one-on-one mapping between

SMILE sequences and molecules. Hence, multiple ”canonicalization algorithms” are

invented to ensure the representation uniqueness of each molecular structure [6]. In

this paper, all of our SMILEs are canonical SMILEs to ensure the bijectiveness of the

mapping [7].

1.2.2 Continuous Representation

One of the major challenge in applying machine/deep learning techniques into

drug discovery tasks is the effective continuous representation of the molecular graph.

It is the continuous representation that can be thereafter fed into a machine learn-

ing system as an initial vector representation. A large number of previous research

progress are made to build new continuous representation systems.

1.2.2.1 Hand-crafted Fingerprint Methods

Previously, there is a major class of molecular representation system called

fingerprint, which is essentially a vector representation of a corresponding molecule.

Those methods are usually manually crafted. Among those hand-crafted methods,

there are hash-based methods and biological-property-guided fingerprint methods.

There has been many hash-based methods developed to generate unique molec-

ular feature representation [8, 9, 10]. The most fundamental and popular one is called

circular fingerprints. Circular fingerprints generate each layer’s features by apply-

ing a fixed hash function to the concatenated features of the neighborhood in the

previous layer. Based on the hash method used, the method can be further catego-

rized, with Extended-Connectivity Finger-Print (ECFP) [11] being one instance of

those methods. However, due to the non-invertibility of hash functions, the hash-

bashed fingerprint methods usually do not embed enough information in the contin-

4



uous representation. This usually leads to insufficient performance in the subsequent

discovery tasks.

On the other hand, there are other fingerprint methods that are designed

based on the biological experiments and the expertise knowledge and experience, e.g.,

[12, 13]. First, the task should be determined before generating the representation.

Then, biologists search for several most task-relevant sub-structures (fragments), e.g.,

CC(OH)CC for pro-solubility prediction, and count those sub-structures as local fea-

tures to produce fingerprints. This kind of fingerprint methods usually work well for

specific tasks, but poorly generalize for other tasks.

1.2.2.2 Graph Neural Network Fingerprint Methods

So far, deep learning methods have demonstrated their power on supervised

learning problems. Following this trend, many of deep learning-based fingerprint

methods are still trained in a supervised-learning fashion [14, 15]. For these methods,

they only use labeled molecular data samples. These methods take vanilla graph

embedding as inputs [16, 17, 18, 19] and update model weights via back-propagation

based on the loss computation between prediction and ground truths. However, as

mentioned earlier, the performance of the deep supervised learning models are par-

ticularly limited by the quality and quantity of the labeled data. Among them, the

state-of-the-art work is the neural fingerprint [20]. By mimicking the process of gener-

ating circular fingerprint, the neural fingerprint method generate each layer’s features

by applying a fixed hash function to the concatenated features of the neighborhood

in the previous layer. However, instead of using a fixed hash function, it utilizes a

non-linear activated densely connected layer.
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1.2.2.3 Seq2seq Fingerprint

One interesting idea of generating fingerprint is by using sequence to sequence

(seq2seq) model ,which is originally used in natural language translation, e.g. English-

to-French text translation, to generate molecular embedding. The high-level idea of

seq2seq fingerprint [21] is to treat the molecular SMILE sequence as a ”sentence” and

translate the it back to itself. The intermediate embedding will encode all the informa-

tion needed to recover the SMILE sequence. The seq2seq fingerprint/embedding can

be pipe-lined to other supervised/semi-supervised training with other models, e.g.,

Adaboost [22], GradientBoost [23], and RandomForest [24], etc. Since the seq2seq

fingerprint model training does not require any ground truths, the representation is

expected to embed sufficient information to recover itself and provide enough infer-

ence power. Given it is usually trained with a huge pool of unlabeled valid SMILE

sequences. It is robust to the specific labeled task, but might not provide optimal

inference performance for each task.

1.2.3 Generative Methods

1.2.3.1 Variational Auto-Encoder

Variational Auto-Encoder (VAE) model [25] is a variant type of artificial neural

network used to learn efficient data codings in an unsupervised manner, which uses a

encoder to encode the original representation to a vector or scalar then a decoder to

decode the vector to original representation. The difference is that the VAE model

puts the assumption that the embedded space follows some specific Gaussian distri-

bution. It becomes increasingly popular to use VAE to generate (especially smaller)

molecular graphs.

6



1.2.3.2 Generative Adversarial Network

Generative Adversarial Network (GAN) [26] has recently become popular in the

machine learning area. A GAN is constructed by a discriminator and a generator.

The discriminator acts as a cop to distinguish the training data samples from the

samples generated from the generator. Hence, the learning process actually learns

from both training data set and the generated fake data samples. It works well when

the scale of data sample is limited. But such network is harder to be trained to

converge to a reasonable solution.

1.3 Thesis Overview

So far, we have introduced the multiple tasks in drug discovery, the representa-

tion system of molecules and previous most relevant attempts in addressing multiple

drug discovery tasks. In this section, we will briefly overview the structure of the entire

thesis. In Chapter 2, we introduce the baseline method of variational auto-encoder

on molecule small graphs, namely Grammar Variational AutoEncoder (GVAE). In

Chapter 3, one improvement over GVAE is presented as the syntax validation is

induced in the decoder of the VAE. This method is named as Syntax-Directed Vari-

ational AutoEncoder (SDVAE). In Chapter 4, we introduce the junction tree-based

variational auto-encoder for molecular graph generation. Then, Chapter 5 introduces

the GraphVAE methods where the human prior of pre-defined maximum graph vertex

number is explicitly encoded in the graph. In Chapter 6, we present the experimental

results in comparing above methods.

As the ending, Chapter 7 draws our conclusions of the thesis, where we sum-

marize the presented deep learning [27, 28] methods for molecular graph generation

and provide some future research directions.
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CHAPTER 2

GRAMMAR VARIATIONAL AUTOENCODER

In this chapter, we introduce the Grammar Variational AutoEncoder method

[1]. Traditionally, a context-free grammar (CFG) consists of a finite set of non-

terminal symbols (V ), a finite set of terminal symbols (Σ ), a finite set of production

rules (R), and a different non-terminal symbol (S). It can be expressed as G =

(V,Σ, R, S) where Σ does not intersect V. In fact, production rules R can be considered

as a rule rewrite. α→ β for α ∈ V and β ∈ (V ∪ Σ)∗, where ∗ is a unary operation,

either on sets of strings or on sets of symbols or characters, is the formal formula to

present the rules R. The formal grammar is shown in Figure 2.1.

2.1 Methods

If we assume right-hand-side symbols of the production rule is child nodes of

left-hand-side symbols, the process of apply production rules becomes the process

of building a tree. Thus, grammar G can be seem as a series of production rule,

parent-child correspondences. After repeatedly calling the corresponding R rule, all

leaf nodes are terminal symbols in . From left to right of the leaf nodes, set of all

sequences of the leaf nodes is known as the language of G. Figure 2.2 shows how the

process of apply production rules becomes the process of building a tree. A parse tree

is the tree which S is the root and its leaf nodes is one of the language. For example,

if ”AGET” is a string in the language, then the parse tree is the tree which has S as

its root and the sequence of leaf is ”AGET”.

8



Figure 2.1: This is the Formal Grammar. In each box, there are several production
rules (R). Also, as shown, it contains terminal symbols (Σ) in the SMILES STRINGS
part and non-terminal symbol (S) in ORGANIC SUBBSET ATOMS, BRACKET
ATOMS, CHIRALITY, HYDROGENS, CHARGE, and BOND AND CHAINS.[1]
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Figure 2.2: The process of apply production rules becomes the process of building a
tree. The right-hand-side symbols of the production rule is child nodes of left-hand-
side symbols. The right side of this figure is the parse tree transform from production
rules. [1]

The mainstay of the probability generation model of a valid string can be com-

posed by a context-free grammar.By assigning probabilities to each production rule in

the grammar, a probability distribution on the parse tree can be defined [29, 30].The

way to generate a string is to iteratively sample from the start symbol and implement

the production rules if there are non-terminal symbols.The probability that modern

methods allow for use at each stage depends on the current state of the parse tree

[31].

As known, character variational autoencoders has a disadvantage that it may

frequently map latent points to invalid sequences instead of valid sequences. Accord-

ing to the grammar, We can parse any valid sequence into a sequence of production

rules which applied in order will product the original sequence. The process that

applying sequence of production rules in order to product the original sequence is

shown in Figure 2.3 Also, the valid set of rules can be selected at any time in generat-

10



ing. Therefore, grammar variational autoencoders can commit to learning semantic

properties of sequence data instead of learning syntactic constraints at same time.

there is a specific example which can hope to understand the grammar variational

autoencoder.

Figure 2.3: Applying a sequence of production rules in order will product the original
sequence. The left side of this figure is the parse tree, sequence of production rules.
The root is SMILES which is the left part of the first rule. CHAIN is its child which
is on the right side of first rule. Therefore, it is obvious that the parent node in the
parse tree is the right-hand-side symbols of the production rule, and their children
are located in the left-hand-side. [1]

2.2 Encoding

2.2.1 Context-free Grammars

Normally, to analyze the Grammar VAE, we separate it into two parts, encoding

and decoding. The whole process of encoding is shown in Figure 2.4. In Figure 2.5,

there is a subset of the SMILES grammar on the left side which includes many

11



Figure 2.4: This is the process of encoding. It includes six boxes. It contains the
process that how SMILES grammar is transformed to parse tree, hot to extract rules
from parse tree, how convert rules to 1-hot vectors, and how to achieve information
from vectors and map it to latent space.[1]

production rules that may be used for constructing a molecule. Assume that the

input SMILES is ‘c1ccccc1’ which has the molecule shown on the right of Figure 2.5.

First, we transform this string into a parse tree, shown on the right of Figure

2.5 , by utilizing the SMILES grammar. After this process, molecule is encoded to a

continuous latent portrayal.

Then, we break up this tree into several production rules. To implement this

splitting, we apply the pre-order depth-first search. Every formula which present

the relation between parent and child is seemed as a production rule. Thus, after

traversing this tree, we achieve a sequence of production rules shown on the right side

of Figure 2.6.

Next, these rules are transformed into 1-hot indicator vectors. Each dimension

in the 1-hot indicator vectors matches a rule in the SMILES grammar. This process

is shown as Figure 2.7. The size of the 1-hot indicator vectors is T (X) ×K matrix

X, where K is the total number of production rules of the entire grammar and T (X)

is the total number of productions rules which is utilized in whole encoding process.

In the last step of encoding, as shown in 2.8, we map the 1-hot indicator vectors

to a continuous latent vector by using a regularized versions of multi-layer perceptrons,

CNN.
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Figure 2.5: This is the process how to transform SMILES grammar to parse Tree
with the specific input SMILES. As we can see the first rule is start from SMILES
symbol. Thus, SMILES is the root of parse tree. The left-hand-side symbols of the
production rule is parent nodes of right-hand-side symbols. After the whole process,
from left to right of the leaf nodes marked in green, set of all sequences of the leaf
nodes is as same as the original SMILES, ’c1ccccc1’. [1]

2.3 Decoding.

After mapping a sequence of production rules to continuous latent vector, we

need to map them back. In this process, we create a decoder. The whole process of

decoding is shown in Figure 2.9. This decoder can help to mask out invalid rules and

only choose valid rules. Therefore, only the valid parse sequence can be produced. At

the beginning, we extract the continuous vector from latent space and convert it to

a set of unnormalized log probability vectors (or ‘logits’), shown in Figure 2.10. As

same as the 1-hot vectors in encoder, each dimension in the logit vectors matches a

rule in the SMILES grammar. Thus, matrix can be used to present these collection

of logit vectors as well. Tmax is the maximum number of production rules allowed

by the decoder, so the matrix can be shown as F ∈ RTmax×K .

13



Figure 2.6: This describe how apply a sequence of production rules which is trans-
formed from real SMILES to product the original sequence. Because the root of parse
tree is SMILES, the first sequence is the rule start from SMILES and CHAIN is its
child. As same as the process of creating parse tree, the parent node in the parse tree
is the right-hand-side symbols of the production rule, and their children are located
in the left-hand-side. The green symbols are the leaf nodes[1]

Next, we keep tracking the status of the anatomising through a last-in first-

out (LIFO) stack to guarantee that we only achieve valid production rules from the

decoder. It is significant that smiles on the stack must be the start symbol of every

valid parse. Then, we pop off the next non-terminal symbol on the top of the stack. In

addition,it is utilized to mask out the invalid dimensions in the logit vector. Officially,

we define mα ∈ [0, 1]K as a fixed binary mask vector where is non-terminal. In the

other words, at the beginning of process, the first and only production rule in the

grammar begin with smiles. So, we only keep the first dimensions and zero-out the

rest, shown in Figure 2.11. We then utilize values of the rest of unmasked rules in

14



Figure 2.7: Convert rules to one hot vectors. Each dimension in the 1-hot indicator
vectors matches a rule in the SMILES grammar. When the rule translate from parse
tree can match with one dimension, the dimension will be marked. After apply this
method iteratively, all used rule could be marked in one hot vectors. That is how
convert rules to one hot encoding. [1]

Figure 2.8: Map one hot vectors to latent space. [1]
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Figure 2.9: This is the process of decoding. Similarly, it includes six boxes which
describe how extract information from latent space and convert it to vectors, how to
utilize stack to mask out invalid rules from vectors, and how use the after marked
vector to achieve objective SMILES and translate it to molecule.[1]

the logit vector to sample. To sample from this masked logit at any timestep t we

form the following masked distribution:

p((x)t = k|α, z) =
mα,k exp(ftk)∑k
j=1mα,k exp(ftj)

, (2.1)

where ftk is the (t, k)-element of the logit matrix F.Because all rules are marked

expect the first rule, this rule smiles → chain will be selected as the first rule in our

generated sequence.

Then, we push next rule onto the stack,sample and mask out all of invalid

rules. As show in Figure 2.11, we achieve the vector, chain chain, branched atom.

Because there are more than one elements on the right side of the vector, we push

the nonterminals into stack from right to left. Thus, the element on the top of the

stack is the leftmost nonterminal in the vector. Then, we pop the last rule on top

of the stack, mask out invalid rules, and push non-terminals onto stack iteratively

until the stack is empty or the number of logit vectors is maxium. The pseudocode

in Algorithm 1 provides the detail and technological process of this iteration.

Obviously, because of processes mask out invalid rules and push non-terminals

onto stack, GVAE always select syntactically-valid sequences. Oppositely, character
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Figure 2.10: The process of mapping continuous vectors from latent space and convert
them to logits is shown in the figure. Because continuous vectors are translate by
taking the logarithm, the dimension has different colors. Also, due to the difference
in log values, it is easy to mask out invalid rules. [1]

VAE sample any possible character due to no stack or masking operation. However,

syntactically valid molecules doesn’t mean semantically valid molecules. One possible

reason is using grammar may create unstable molecules or not chemically-valid which

means not exist in real life. Another reason is the the non-context free feature of

SMILES. Another reason is the non-context free portion of SMILES. because digits

are not nested, it is harder to match digits than match grouping symbols. In addition,

for each ringbond, the process of tracking digits is not context-free. Also, it is possible

that the GVAE can output an indeterminate sequence if stack still have non-terminal

symbols after achieve the Tmax. There are two way to solve this problem. One is

converting these non-terminals to the terminal. The other one, which we utilize, is

marking these sequences as invalid.
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Figure 2.11: This is the whole process of mask out invalid rules. By using last-in
first-out stack, only valid production rules can be achieved. First, we push SMILES
symbol into stack. Because it is the start label, we only keep the first production rule
in vectors and remove zero-out dimension from the second to the rest. By apply the
rule we just achieved, we can get the next symbol, CHAIN. We push it into the stack.
Then, we utilize values of the rest of unmasked rules in the logit vector to sample.
After sample other symbols can be achieved, and we push them into last-in first-out
stack. By applying this process iteratively, several letter and digit can be extracted
which are factors of SMILES from left to right. [1]
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CHAPTER 3

SYNTAX-DIRECTED VARIATIONAL AUTOENCODER

In the previous chapter, we introduce the Grammar Variational AutoEncoder

(GVAE) [1], which encodes the grammar information into the variational autoen-

coder (VAE) to generate syntax valid molecules. However, Grammar Variational

AutoEncoder is still incapable to regularize the model for generating semantically

valid molecules. For example, in general, the rings in the molecule should be closed

to be semantically reasonable. In this case, the Grammar Variational AutoEncoder

cannot guarantee the semantic validity. That being said, more constrains need to be

introduced into the variational autoencoder modeling.

In this chapter, we present the Syntax-Directed Variational AutoEncoder (SD-

VAE) [2] which is another improvement upon the basic character variational autoen-

coder (CVAE). Syntax-direct variational autoencoder borrows the idea from compiler

theory by attaching semantics to a parse tree generated by a context-free grammar

(CFG). The syntax-directed generative mechanism in the decoder is able to further

constrain the output space hence to ensure the semantic correctness in the molecule

generation process.

3.1 Attribute Grammar for SMILES

Attribute grammar is a formal way to define attributes for the productions of

a formal grammar, associating these attributes with values. There are two groups of

attributes: synthesized attributes and inherited attributes. A synthesized attribute is
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computed from the values of attributes of the children. An inherited attribute at a

node in parse tree is defined using the attribute values at the parent or siblings.

Ringbond matching Ringbond is in general σ-bond. When representing in

graphs, it comes in pairs of a single bond plus a double bond. Each pair should be

associated with an index and a bond-type. It forms as an attribute grammar named

as ringbond matching. This attributes grammar also generates to other languages,

even some computer programming languages where the parentheses of brackets should

match.

Figure 3.1: In the top, he example of context-free grammar parsing is presented in
syntax-directed variational autoencoder. The bottom is the cross-serial dependencies
check as semantic check for SMILE string [2].

Explicit valence control In chemistry, a valence electron is an outer shell

electron that orbits around an atom, and that usually takes part in the formation of

a chemical bond especially when the outer shell is not closed. In a single co-valent

bond, both atoms in the bond contribute one valence electron in order to form a

shared pair. However, the valence electrons cannot form the bond wildly. There are
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certain restrictions on the number of bonds each type of atom can form. For example,

oxygen has six electrons in its outer shell, needs two more, and will form two covalent

bonds to get those two additional electrons. Thus, oxygen is said to have a valence

of two. Similarly, carbon has four electrons in its outer shell, so it have a valence

of four. Those examples constructs the upper limits of the valance which is also an

important constrain in SMILE semantic structure.

Figure 3.2: The illustration example of how the decoder sample the stochastic lazy
attributes for semantic check [2].

In this chapter, we have presented the Syntax-Directed Variational AutoEn-

coder (SDVAE) method for molecule graph generation with application in drug dis-

covery. This approach introduces additional structural constrain on the decoder part

of the variational autoencoder model. In addition to the grammar information used

in Grammar Variational AutoEncoder (GVAE), the Syntax-Directed Variational Au-

toEncoder (SDVAE) incorporate the attribute grammar as an decoder constrain to

produce the semantically reasonable molecule generation. This addresses the incapa-
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bility of semantic validity regularization of decoder, which drastically improves the

validity and reconstruction accraucy of the variational autoencoder.
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CHAPTER 4

JUNCTION TREE VARIATIONAL AUTO-ENCODER FOR MOLECULAR

GRAPH GENERATION

In previous chapters, we introduces the baseline method, namely Grammar

Variational AutoEncoder (GVAE), which uses the Grammar information in the vari-

ational autoencoder and improves the validity and reconstruction accuracy in drug

discovery applications. Also, we have introduces another improvement brought by en-

forcing syntax constrain in the decoder part of the Variational Autoencoder (VAE).

This method is called Syntax-Directed Variational AutoEncoder (SDVAE).

In this chapter, we bring up yet another variant called Junction Tree Varia-

tional AutoEncoder (JTVAE) [3]. This method uses two-step fashion. The first step

generates a junction tree-structured scaffold over chemical substructures and then

combines multiple scaffolds into molecules using the Syntax-Directed Variational Au-

toEncoder (SDVAE).This method significantly improves the validity of the molecule

generation.

Junction Tree The junction tree algorithm, aka, Clique Tree, is a method

used in machine learning to extract a subset of a collection of random variables is the

probability distribution of the variables contained in the subset in general graphs. In

short, it entails performing a breadth search on a modified graph called a junction

tree. The graph is called a tree because it connected, acyclic and rooted.

For molecule graphs, they are naturally connected. However, it is tricky remove

cycles from molecule graphs. In this paper, the basic crux to eliminate cycles is by

clustering them into single nodes. It is natural in chemical world given there are
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multiple rings with chemical priors. There are different algorithms to meet specific

needs and for what needs to be calculated. In this paper [3], tree decomposition

method [32] is used to merge multiple rings into a single node. Hence the molecule

graph can form a junction tree after the extra step.

Figure 4.1: The overall process of junction tree variational autoencoder (JTVAE). [3]

In figure 4.2, we show an example process of the junction tree decomposition

process. The basic idea is to separate atom clusters and group it as a single node in
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the tree. A simple ring and branch atom is easier to separate out. The difficulty here

is when multiple ring share a same set (two or more) of atoms. If that case happens,

in Junction Tree Variational AutoEncoder (JTVAE) method, they will be merged

into one cluster as bridged rings.

In the bottom of the figure 4.2, we also show an example set of chemical sub-

structure vocabularies. One can read rings, branch atoms, etc., in the chemical sub-

structure cluster vocabulary.

Figure 4.2: When multiple rings share atoms, as shown in the light blue and light
green circles, they will be merged as a single cluster (bridged rings).

To conclude this chapter, we introduced the junction tree variational autoen-

coder (JTVAE) method. The method generates the molecules in a two-phase ap-

proach. The first step will generate the molecule scaffold which is the bird-view

structure of the molecule. As a second step, the finegrained detail of the molecule is

generated. The two step approach ensures the overall validity of the entire molecule

graph and hence avoid the invalid generation of molecules in practice.
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CHAPTER 5

GRAPHVAE: TOWARDS GENERATION OF SMALL GRAPHS USING

VARIATIONAL AUTOENCODERS

In this chapter, we discuss a largely different method from previous three ones

called GraphVAE which is short for Graph Variational AutoEncoder. Instead of

encoding a sequence of grammar rules as previous three methods do, this method

directly encodes the graph into adjacency matrices, edge attribute matrices and node

attribute matrices and form as model input. Compared with pure Character Vari-

ational AutoEncoder (CVAE), it preserves a lot of structure information and hence

provides better reconstruction quality. Also, the variational auto-encoder’s decoder

is co-regularized by pre-defined maximum graph size. This method shows an drastic

improvement, especially on smaller molecule graphs.

Figure 5.1: The overall process of GraphVAE. [3]
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In figure 5.1, we show the general overall process of how GraphVAE works.

The basic idea is by encoding the graph structure directly by its digital format using

adjacency matrix A ∈ [0,1]n×n, edge attribute matrix E, and F being the node at-

tribute matrix. Each metric can represent different aspect of the graph. For example,

adjacency matrix indicates the connection between nodes within the graph, where

Ai,j = 1 if node i and j is connected, and Ai,j = 0 if node i and j is disconnected. For

edge attribute matrix E, in the context of drug discovery molecule generation, it can

represent the bond information, e.g., whether the bond is a single-bond, double-bond

or a σ-bond, etc. In node attribute matrix F , it can generally represent the atom

attribute, for example, whether the atom is carbon or oxygen, etc., in the application

of molecule generation.

As the input to encoder is G = (A,E, F ), its output pair is noted as (Ã, Ẽ, F̃ ).

Interestingly, it is worth noting that the Ã ∈ [0,1]k×k might have different shape

as A ∈ [0,1]n×n. While in general, n <= k. However, the decoder can be super

ineffective when k gets super large. So the pre-defined maximum number of graph

nodes will be required for the Graph Variational AutoEncoder to function properly.

For loss function, Graph Variational AutoEncoder uses the negative log-likelihood

− log(pθ(G)):

L(φ, ε;G) = Eqφ(z|G)[− log pθ(G|z)] +KL[qθ(z|G)||p(z)], (5.1)

where the first term in L is the reconstruction loss, minimizing the regression error.

The second term is the KL divergence regularize the code space to allow the re-sample

from re-parametrized distribution later.

We now look into details of the loss, while G = (A,E, F ), we can expand the

− log pθ(G|z) by

− log pθ(G|z) = −λA log p(A′|z)− λE log p(E|z)− λF log p(F |z). (5.2)
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However, this method is limited by the pre-defined maximum number of nodes

in the molecule graphs. And the maximum number should be small in general. This

is due the growth of GPU memory and the number of the parameters. The space

complexity is O(k2) and the time complexity is O(k4). This level of complexity is

almost prohibitive in the large scale application. However, for many application,

small graph generation will suffice so the method might still be worth studying.

We discussed yet another graph variational autoencoder method in this chapter

named GraphVAE : Graph Variational AutoEncoder. This method takes in graph

directly instead of a sequence of grammar or syntax rule embeddings. The method

is also regularized by a pre-defined human prior on maximum graph node number.

The effectiveness of this method has been observed particularly on smaller molecule

graph generation.
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CHAPTER 6

EXPERIMENTS AND RESULTS

In this section, we present experiments on various applications across multiple

VAE methods. In section 6.1, we will start this chapter by presenting the experimental

results on molecule reconstruction performance on different Variational AutoEncoders

(VAEs). We will show the representation learning power gain from encoding the

structure information comparing with pure text-based VAE in section 6.2. We will

conclude the chapter by discussing pros and cons for different methods observed from

experiments.

6.1 Molecule Reconstruction

In this section, the comparison among four Variational AutoEncoders (VAEs)

[1, 2, 3, 33] discussed in previous chapters is presented with application in the molecule

reconstruction. Basically, the initial valid molecule is fed into the encoder of the VAE

and the output molecule from the decoder is fetched as result. The performance is

measured by comparing the output molecule’s the validity and consistency with the

original input molecule.

Setup The result reported here is trained on ZINC drug-like datasets [34] and

uses the train/test split in [1]. ZINC is a free database of commercially-available com-

pounds for virtual screening. The drug-like dataset from ZINC contains 18,691,354

molecular SMILE representations.
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Metrics For validation metrics, the ratio between valid generated molecules

and total generated molecules is reported as Validity, i.e.,

V alidity =
number of valid generated molecules

total number of generated molecules
. (6.1)

For reconstruction metrics, the exact match accuracy (EM Accuracy) is reported.

EM Accuracy [21] is essentially the ratio between exactly matched input/output

molecule pairs and the total number of input molecules, i.e.,

EM Accuracy =
number of exactly matched molecules

total number of tested molecules
. (6.2)

Due to the randomness in molecule generation, the result is reported as an accumu-

lative value of 10 encode/decode runs.

Table 6.1: The comparison of Validity among different VAE methods.

GVAE [1] SDVAE [2] GraphVAE [33] JTVAE [3]
7.2% 43.5% 13.5% 100.0%

Table 6.2: The comparison of EM accuracy among different VAE methods.

GVAE [1] SDVAE [2] JTVAE [3]
53.7% 76.2% 76.7%

Results and Analysis In table 6.1, the validity metric for each of the four vari-

ational auto-encoders (VAEs) is reported. It is clear that Junction True Variational

AutoEncoder (JTVAE) outperforms all other methods. The Grammar Variational

AutoEncoder (GVAE) only uses grammar syntax of SMILE sequence. This is assumed

to be the least structure information usage among the four methods, which leads to

the worse validity result here. Syntax-Directed Variational AutoEncoder (SDVAE)
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applies the additional constrain on molecule decoder over GVAE. This hence yields to

a decent improvement over GVAE. GraphVAE is in a different method branch which

only uses maximum graph vertex (or pre-defined max atom number in molecule) as

structural information. So the validity performance is still worth than the SDVAE.

Finally, the winner JTVAE here uses almost all of the information above and hence

has the best performance.

In table 6.2, three out of the four VAE methods are compared for reconstruction

1. One can easily observe that the Junction Tree Variational AutoEncoder outper-

forms all other methods in terms of reconstruction accuracy due to its exhaustive

use of structural information. Comparing with Grammar Variational AutoEncoder

(GVAE), its decode has the syntax prior to ensure the validity of the generated

molecule and hence leads to higher chance for exactly matching in terms of recon-

struction. Comparing with Syntax-Directed Variational AutoEncoder (SDVAE), its

first step of using bird-view information of the molecule helps correct the overall archi-

tecture of generated molecule. This hence results in better reconstruction accuracy.

6.2 Ablation Study of Structural Information Fusion in Molecule Graph

Setup The experiment is conducted to ablatively study whether the struc-

tural/grammar information could help concentrate the information in the molecule

latent space [1]. To serve this purpose, the result reported here is trained on ZINC

drug-like datasets [34]. ZINC is a free database of commercially-available compounds

for virtual screening. The drug-like dataset from ZINC contains 18,691,354 molecular

SMILE representations. For the ease of visualization, the VAE model latent space

dimension is set to 2.

1GraphVAE result is missing here due to implementation difficulty.

31



Figure 6.1: The CVAE [4] vs GVAE [1] latent space visualization. The color depth
represents the LogP value of the corresponding molecule in the latent space.

Results In figure 6.1 (left), it is shown that, in Character Variational Au-

toEncoder (CVAE) which is a text-based encoding method for molecule graph, the

lower right portion of the latent space tends to have higher LogP value. However,

the molecule distribution is still sparse and seems to have multiple gap/holes in the

latent space. In this case, if we sample molecule around a high LogP candidate using

Monte Carlo method, we are likely getting into the holes and end up a much lower

LogP candidate which is likely to be semantically invalid.

On the other hand, if we look at the 6.1 (right), the high LogP value area is

more concentrated and tangled. If sampled from the high logP area, it is more likely

to hit more valid high LogP candidates.

Analysis Overall, the Grammar Variational AutoEncoder (GVAE), when trained

properly, can generate a more meaningful latent space in terms of chemical proper-

ties, like LogP value than Character Variational AutoEncoder (CVAE). The CVAE

latent space is more sparse than GVAE one. This is likely due to the lack of grammar

information of the molecule, which leads to higher probability in invalid molecule
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generation. These invalid molecules can form the holes and gaps in the latent space

as shown in figure 6.1.
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CHAPTER 7

CONCLUSIONS

In this paper, we survey modern deep learning on graphs techniques with ap-

plication in drug candidate generation task. The drug candidate generation task is

challenging due to the structural nature of the graph data input. How to incorporate

the structural information into modeling is yet another open question.

Within a couple of available methods [35, 36], we select methods that fall in the

range of variational autoencoder (VAE). We started our introduction gradually from

a baseline VAE method by encoding only the grammar information of the graph into

the modeling, namely GVAE. This method does not ensure the syntax correctness

in the decoder. The gap was filled in another method named Syntax-Directed Vari-

ational AutoEncoder (SDVAE) by correcting syntax directly in the decoder. These

methods have been improving in the direction of drug candidate valid ratio. Then, the

method has been improving using various method by encoding different structural, hu-

man prior information. For example, GraphVAE encodes the maximum graph vertex

number information into the graph generation. Junction Tree Variational AutoEn-

coder (JTVAE) takes a two-step approach. The first step is to generate a junction

tree structured macro graph based on the sub-components, and then the detail of each

sub-component is generated. This method ensures 100% valid generation of chemical

compounds. We will then break down the conclusion further for each of the method

mentioned above.

Grammar Variational AutoEncoder In this method [1], the authors pro-

posed to represent the molecule graph as parse trees, which clearly outperforms text-
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based representation. It can be extended to multiple other areas like representation

learning, optimization and also in a boarder range of applications where the atom

data can be represented in a context-free grammar, e.g., programming language.

Syntax-Directed Variational AutoEncoder In this paper, the major nov-

elty of SD-VAE [2] has been formed as a new method to improve the valid rate of

generation by infusing both syntax and semantic constraints in generative model on

graphs. Within the method, the authors introduce the stochastic lazy attribute to

perform the offline syntax and semantic check when guiding online stochastic genera-

tion. Empirically, SDVAE present consistently improvement over the previous models

in terms of validation accuracy, while the computational costs remain modestly same

as before.

JTVAE: Junction Tree Variational AutoEncoder In JT-VAE, the au-

thors propose a two-stage approach for drug candidate molecule graph generation.

This method significantly improve the valid generation rate for drug candidates, out-

performing most of the previous works. The authors would like to explore general

low-tree-width graphs as a future direction.

GraphVAE: Towards Generation of Small Graphs Using Variational

AutoEncoder In this paper, the authors proposed Graph Variational AutoEncoder

and approach the decoder part to address the problem that generates the molecule

graph from a continuous latent variable. The method itself encodes the human prior

of maximum graph size into the modeling and evaluate the effectiveness of priors

on two different sets. Experiments have shown reasonable quality on small molecule

graphs.

So far, we have been discussing a couple of variational autoencoder based drug

generative methods. However, in the deep learning on graphs research area, there are

a few other models available for graphs that might be worth further studying, e.g.,
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sequence-based generation methods [21, 7], etc. Future exploration can also goes to

more diverse set of data modality.
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