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ABSTRACT 

Assessing the impact of Principal Component Analysis on accurately predicting Melanoma 

diagnosis on different classification models 

 

Juan Cristobal Olmedo Rivera, Master of Science in Industrial Engineering 

The University of Texas at Arlington, 2019 

 

Supervising Professor: Aera LeBoulluec 

 With huge amounts of data at our disposal in the medical field, mathematical models 

are built to diagnose diseases. This study focuses on melanoma because it’s the type of skin 

cancer that accounts for most deaths, up to 7,230 in 2019 according to the American Cancer 

Society. The study focuses on the effectiveness on diagnosing melanoma and how Principal 

Component Analysis (PCA) impacts the performance of four models being assessed, which are: 

K Nearest Neighbor (KNN), Logistic Regression (LR), Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN). Each model evaluates the melanoma dataset before and after 

performing the PCA transformation. Results show that PCA does not impact performance in this 

case. Even though PCA does not improve performance, the modeled results achieve better 

results when compared to dermatologist and other algorithms. 
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Introduction 
Now more than ever data is at our disposal to assist in the diagnosis of diseases. This study will 

focus on the effectiveness of diagnosing melanoma and how Principal Components Analysis 

impacts the performance of several models being assessed. This paper will focus on four 

machine learning and deep learning models which are as follows: k-nearest neighbor, logistic 

regression, support vector machines, and artificial neural networks.  

The reason why there is a strong interest in using modeling techniques in diagnosing melanoma 

it’s because is the most aggressive form of skin cancer and incidences continue to rise 

worldwide [7]. The American Cancer Society estimates in the 96,480 cases of melanoma for 

2019 in the United States 7,230 people are expected to die [8]. But if melanoma is diagnosed 

early (early stage melanoma) it remains very treatable with a high long-term survival rate [9]. 

Also, melanoma is unique when compared to other cancers because detection is performed 

through visual inspection [9]. Epiluminescence microscopy is a method that was developed to 

assist dermatologists in the diagnostic process, increasing expert performance [10]. The test 

uses a dermatoscope which may or may not use an oil immersion in the pigmented skin lesion, 

and an image is studied to obtain a distinction of benign and malignant melanocytic lesions [9-

11]. These dermoscopy images can be used and are being used in the development of models 

and systems to aid dermatologists in melanoma diagnosis [2-5]. These new systems take the 

images and perform: lesion segmentation, feature segmentation, and finally, classification [4, 

5]. For this study the focus will be in the last part, classification. The objective is to refine the 

models above to obtain or exceed the performance of current practices and methods. The 
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interest on Principal Components Analysis is that the data transformation will result in a smaller 

data set of uncorrelated variables [12], which may improve model performance. 

Materials and Methods 

1. Classification Models 

1.1 K-Nearest Neighbor 

The first model is k-nearest neighbor (KNN), a widely used algorithm. It basically involves two 

main steps: an initial step for building a classification model from the data, and a deducible step 

for applying the previous model to a new test of examples [13]. Unlike other models, KNN is 

both a lazy learner and non-parametric. Lazy learner’s just stores the data and holds up until 

new examples need to be evaluated. Also KNN is a non-parametric model so it makes no 

assumption to the underlying data distribution [14]. The KNN classifier represents each 

observation as a data point in a d-dimensional space, where d is the number of features [14]. 

When given a new data point (test set), the proximity to the rest of the observations in the 

training set are computed, using a proximity measured [14]. Finally that test data point is 

classified depending on the number of closest neighbors determined by k [14]. In medicine, 

usually the function of KNN is to be a benchmark of other models [15,16]. That is the reason 

why KNN was picked for this study. 

1.2 Logistic Regression 

Logistic regression (LR) like linear regression produces the logit(Y) equation that explains the 

relationship between the dependent variable and the independent variables [17]. Unlike 

regression LR evaluates the outcome variable when it is binary or dichotomous [18]. In LR the 
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general method of estimation is called maximum likelihood (MLE), which yields values for the 

unknown parameters that maximize the probability of obtaining the observed set of data [18]. 

The LR model outputs a number between 0 and 1 which are the estimated probabilities. If the 

output is greater or equal to 0.5 for a binary classification it will result in a class of 1; otherwise 

the class will be 0. In the medical field logistic regression has been widely used because of the 

ease of interpreting the impact of the parameters of the model (odds ratio) [19-21]. Also, 

logistic regression performs well on small data sets which is the case in this study. Another 

advantage of logistic regression is variable selection which improves the model by selecting the 

most significant features. 

 

1.3 Support Vector Machines   

Support vector machines (SVM) create a set of decision boundaries that separate the classes (in 

a binary classification problem) by maximizing the margin between instances. One essential 

innovation link to SVM is the “kernel trick”, which consists of observing that many algorithms 

can be written in terms of dot product, and enabling them to be rewritten to improve 

performance [22, 23].  The kernel trick is powerful for two main reasons: first, it enables the 

algorithm to learn models that are nonlinear meaning the algorithm views, the decision 

function as being linear in a different space; second, the kernel function implementation allows 

it to be substantially more computationally efficient [23]. A simple SVM can only separate data 

linearly but thanks to the kernel functions the algorithm can separate nonlinear data. For this 

specific study three versions of the SVM are compared: normal SVM (linear), SVM utilizing the 

polynomial kernel, and SVM utilizing the Gaussian kernel. In medicine these types of algorithms 
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are becoming more popular [24-26]. SVM tends to perform well on small and medium size data 

sets and is a more powerful algorithm as it can deal with data sets that are not linearly 

separable.  

 

1.4 Artificial Neural Networks 

Artificial neural networks (ANN) usually outperforms other machine learning models on large 

data sets and complex problems. ANN is composed of neurons called linear threshold units 

(LTU). A single layer of LTUs compose a perceptron, and each neuron is connected to all the 

inputs [23]. “These chained structures are the most commonly used structures of neural 

networks” [23]. In this case the first structure is called the first layer, the next one second layer, 

and so on; the overall length of the chain gives the depth of the model [23] (deep learning 

name comes from). These layers, when the model is trained, do not display the desired output 

for each layer. That is why they are called hidden layers [23]. ANN like SVM has the capacity to 

model nonlinear functions giving it the chance to model more complex problems as stated 

before. Researches have been using ANN in medicine since the nineties [27, 28], and it is the 

interest of the study to see if it can outperform the other models and give a better prediction. 
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2. Data 

The data set was obtained for this study came from the IEEE Symposium on Computational 

Intelligence in Bioinformatics and Computational Biology (CIBCB) and Bioinformatics and 

Bioengineering Technical Committee (BBTC). The data set contains only 298 observations (small 

data set) and 17 features explaining positive and negative diagnosis of melanoma (binary 

classification: 1 results in a positive diagnosis, 0  results in a negative diagnosis). The following 

Table 1.1 contains the features used for modeling and predicting diagnosis. 

 

Table 1.1 
 
Features extracted for model prediction 
 
Geometric features: 
      
     Solidity 
     Filled area 
     Equivalent diameter 
     Perimeter 
     Area over perimeter 
     Eccentricity 
     Euler number 
     Entropy 
 
Imaging features: 
 
     Maximum red (RGB) 
     Maximum green (RGB) 
     Maximum blue (RGB) 
     Mean red (RGB) 
     Mean green (RGB) 
     Mean blue (RGB) 
     Mean standard deviation red (RGB) 
     Mean standard deviation green 
(RGB) 
     Mean standard deviation blue (RGB) 
 

Table 1.1 1 
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The features can be divided into two groups: imaging features, which use dermoscopy images 

consisting, in the red, green and blue (RGB) colors [29] and geometric features, which physically 

describe the skin lesion. The next step is to take a closer look at the features themselves. Figure 

1 shows the histogram of each feature, including diagnosis.  

 

 

 

Figure 1: Histograms of data set features 
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The histograms represent the frequency distribution of each feature. Most of the features 

make (or follow) some kind of distribution except diagnosis and Euler number histograms. Both 

diagnosis and Euler number are dichotomous variables, meaning they represent a category or  

 

levels. When taking a closer view to diagnosis, it can be observed that the data set fortunately 

is completely balanced (reference Figure 2). Because the features belong to a certain group 

(imaging and geometric) there is a high chance of relation between them. Figure 3shows the 

correlation heat-map between features. It shows how the imaging features are highly 

correlated. Likewise the distance features (such as Perimeter, Equivalent Diameter, etc.) from 

the geometric group. 

 

 

 

 

    

 

 

 

Figure 2: Diagnosis counts 

Figure 1.1 1 

Figure 2.1 1 
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Because some coefficients of determination values exceed 0.9; there is a strong correlation 

between features that may cause problems during modeling. Before analyzing, the data needs 

to be prepared. The data set is split randomly into a training set, which is composed of 80% of 

the observations and a test set which contains the remaining 20%. Then the training set is 

randomly split into a second training set (80%) and a validation test (20%). Then depending on 

the model being used, the data must go through a transformation for feature scaling. In this 

study two types of feature scaling are performed: min-max scaling and standardization. For 

min-max scaling the values are re-scaled so that all values are ranged from 0 to 1, while 

standardization subtracts the mean value and divides that result by its variance. Feature scaling 

is necessary because algorithms do not perform well when the numerical attributes are in 

different scales.  

3. Modeling and Analysis 

3.1 Modeling procedure 

All models were analyzed in Python and followed the same steps: first the data must be scaled 

accordingly (min-max scaling or standardization). Then the model will be trained using the 

second training set and using the validation set to test its performance and experiment with the 

model’s parameters. To get a better understanding how the data is organized, Figure 4 

graphically shows the data split. Once a preliminary model is picked, that model is used on the 

Figure 3: Correlation heat-map 

Figure 3.1 1 
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training set by performing 10 fold cross validation [30]. The results of the model are compared 

to get an idea how the model is behaving, meaning if the model tends to be overfitting or 

underfitting the data [31]. The next step is to find the best model, applying 10 fold cross 

validation on the training set and using accuracy as the performance metric. Several models are 

evaluated over the specified parameters and the best model is chosen. That final model is used 

to evaluate the test set.     

 

Original Data
n = 298 

Training Set
n = 238 

Testing Set
n = 60 

80% 20%

Second Training Set
n = 190 

Validation Set
n = 48 

80% 20%

 

  

 

3.2 Initial Modeling 

3.2.1 Initial KNN Modeling 

To start modeling KNN a measure of distance needs to be picked. There is no optimal distance 

metric that can be used for all types of data sets [14]; for this model Euclidean distance is used. 

Also, the data must be standardized. Data standardization is necessary to avoid high variation 

Figure 4: Melanoma Data Split 

Figure 4.1 1 
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of a specific feature to dominate the proximity measure. The parameter to determine is k, the 

number of neighbors. The initial k parameters for experimentation are the following: 

[3,6,9,12,15,18,21,24,27,30] in which k=9 gives the best performance. 

3.2.2 Initial Logistic Regression Modeling 

This LR model does not require the specification of any parameters but the model needs to be 

viable. By looking at the log likelihood ratio (LLR) p-value it can be determine if the model is 

feasible. In this case the LLR p-value is less than 0.5 making the LR model feasible. The 

preliminary model warns of possibly complete quasi-separation. When a model suffers from 

complete quasi-separation the model has high standard errors and generally but not always 

high coefficients [17]. The model does experience high standard errors corroborating complete 

quasi-separation, which may indicate problems in the data or analysis [17]  being used. A 

problem with the data in LR can be multicollinearity, which results in large standard errors [17] 

(reference Figure 3). The next step is to delete insignificant features that do not contribute to 

the model. In this study backward elimination (BE) is used [32]. In regression when using BE or 

another type of variable elimination it is standard to use an alpha level of 0.05 to determine 

significance, but according to Lee & Koval 1997 [18] it can be too stringent when performing 

feature elimination using forward stepwise logistic regression. The same principle is followed 

when performing BE so the significance level used is 0.2. 
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3.2.3 Initial SVM Modeling 

As explained before SVM is evaluated using three different kernels. The first one is linear, the 

second is polynomial and the third one is Gaussian. Like KNN, SVM is also sensitive to scaling so 

the data is standardized. In the linear SVM model, to make it more flexible, soft margin 

classification is used; therefore the parameter subject to change is C [33]. A small value of C 

tends to have a bigger margin causing more violations, while a large C will result in a smaller 

margin with fewer violations. The C parameters for experimentation are the following: 

[0.1,1,10,100] in which C=10 gives the best performance. The next SVM model uses the 

polynomial kernel trick, where first the degree of the polynomial needs to be specified [22, 33]. 

To avoid overfitting the model uses a 3rd degree polynomial kernel, and also like linear SVM, C 

needs to be specified. Two Cs are used [1,10] and the best model has a degree =3 and C=10. 

The final SVM model used the Gaussian kernel trick or “radial basis function” which has two 

parameters: gamma and C [22, 33]. The gamma parameter makes a ball-shape narrower around 

the class. As gamma grows bigger as a result each instance range of influence is smaller making 

the decision boundary irregular twisting around individual instances; on the other hand if 

gamma is small that bell-shaped curve is wider and the decision boundary is smoother giving 

greater influence to each individual instance. The values for C used are [1,10] and for gamma 

are [0.1,5,100] and the best model is C=10 and gamma=0.1. 

 

3.2.4 Initial ANN Modeling 

For the ANN model the parameters to determine are the number of neurons and the number of 

hidden layers. This artificial neural network or multi-layer perceptron employs the 
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backpropagation training algorithm [34]. Alongside the backpropagation algorithm in our model 

the ReLU function is used as an activation function. The ReLU function was chosen because it 

speeds up convergence compared to other functions such as hyperbolic tangent function or 

sigmoid function [35]. For the initial model the ANN will have only one hidden layer while a 

different number of neurons are experimented with to obtain the initial model. The number of 

neurons tried are: [10,100,200,300,400]. The model with the best performance has number of 

neurons=200 with one hidden layer. Different strategies will be applied to obtain the final ANN 

model but for now the initial model is hidden layers=1 and number of neurons=200. 

 

 3.3 Initial Results 

Table 1.2       
       
Results: Initial model testing Validation Set 

 KNN LR SVM SVM Poly. SVM 
Gauss. 

ANN 

Avg. 
accuracy 

0.9375 0.8958 0.9792 1.0000 1.0000 0.9583 

Sensitivity 0.9600 0.9600 1.0000 1.0000 1.0000 0.9600 
Specificity 0.9130 0.8261 0.9565 1.0000 1.0000 0.9565 

Table 1.2 1 

Table 1.3       
       
Results: Initial model 10 fold cross validation Training Set 

 KNN LR SVM SVM Poly. SVM 
Gauss. 

ANN 

Avg. 
accuracy 

0.9286 0.9327 0.9412 0.9621 0.9416 0.9201 

Sensitivity 0.9397 0.9310 0.9310 0.9569 0.9483 0.8966 
Specificity 0.9180 0.9344 0.9426 0.9672 0.9344 0.9426 

Table 1.3 1 
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Looking at Table 1.2 and Table 1.3 the preliminary model results can be observed. Table 1.2 

show results of training the models using the Second Training Set and testing them on the 

Validation Set. Table 1.3 evaluates the same preliminary algorithms on the Training Set 

employing 10 fold cross validation. The performance of the models dropped when using k fold 

cross validation because the models tend to be overfitting the data, except for logistic 

regression.  

   

3.4 Final Model 

From the preliminary results the parameters picked are revisited to reduce the range of the 

search to refine the model. The final model will evaluate the new parameters through a “grid-

search”; meaning that all new parameters will be modeled using the Training Set (10 fold cross 

validation) and will be evaluated by the model performance. Whichever combination of 

parameters yields the highest accuracy will result in the final model to evaluate the Test Set. 

3.4.1 KNN Final Model 

For the final KNN model the new parameters are similar, just the range was reduced into [3, 7, 

9, 13, 15, 17] after performing the grid-search the best model is with k=7 

 

3.4.2 Logistic Regression Final Model 

For the final LR model the best performance was obtained by performing backward elimination 

and the following features were dropped from the model [Solidity, Mean standard deviation 
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green, Maximum green, Maximum blue, Euler number, Perimeter, Mean standard deviation 

red]. 

3.4.3 SVM Final Model 

For linear SVM the new parameters for C are [0.001, 0.1, 1, 10,100]. For Polynomial SVM the 

new parameters for C are [0.1,1,10,50,100] and are tested in different degrees = [3,4,5,6,7]. For 

Gaussian SVM the new C values are [0.1,1,10,50,100] and are tested in the following gamma 

values [0.001, 0.01, 1, 5, 10]. The overall best performing model its linear SVM C=10. 

3.4.4 ANN Final Model 

ANN has great flexibility to deal with different kinds of problems and datasets but because of 

that flexibility there is one disadvantage which is adjusting all the different parameters to 

maximize performance. The preliminary model started with only one hidden layer and number 

of neurons=200. To find the best ANN model two strategies were followed. The first strategy 

tries a model with one hidden layer and increases it one by one, trying the same number of 

neurons per hidden layer until a “best” model is found [33]. The second strategy developed by 

Vincent Vanhoucke is to use a greater number of hidden layers with greater number neurons 

that the model would need and use early stopping [33, 36] which will stop the model when is 

not improving. Several models are tried and the first strategy outputs the best model resulting 

with: hidden layers=4 and number of neurons=200.  
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3.5 PCA Transformation and Analysis 

Principal Component Analysis (PCA) is a technique that transforms the variables in a data set 

which could result in dimensionality reduction with a set of uncorrelated variables [12]. This 

data analytic technique attains a linear transformation of correlated variables and returns new 

variables named principal components (pcs) which are the new uncorrelated variables. This pcs 

will have mean zero and variance li, ith characteristic root (eigenvalues) [12].  

 

 

 

Before performing the PCA transformation the data set must be scaled because the variables 

are recorded in different units [12]. After going through the transformation, the data is 

uncorrelated a test it’s picked to determine which pcs are significant. In this study the SCREE 

test is used, this test plots all eigenvalues of the covariance matrix vs. pcs number (eigenvalue 

number). The “scree being defined as the rubble at the bottom of the cliff, the retain pcs are 

the cliff and the deleted ones are the rubble” [12]. What it means is that there are few pcs that 

are significant (which are the cliff) and break away from the rest of the pcs (rubble). It is 

suggested to use the most significant pcs and the first one of the latter group [12]. Using the 

Figure 5: PCA Cumulative Explained Variance 

Figure 5.1 1 
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previous steps the melanoma dataset it’s scaled and transformed by performing PCA, Figure 5 

shows the cumulative explained variance by the principal components. On Figure 5 it can be 

observed that roughly the first 4 to 5 components account for most of the explained variation.  

 

 

Figure 6 is the SCREE test plot which shows the first three pcs as the “cliff” while the rest are 

the “rubble”. Following the SCREE Test recommendations the first four pcs are used to model 

the transformed data set. The modeling procedure used in section 3.1 is applied the same way 

to the new PCA transformed data set. Because the procedure was explained in detail previously 

only the final PCA models are shown. The final model for KNN is having a k=3. For LR the model 

followed the same trend as the best model results from backward elimination. For SVM after 

comparing all three models (linear, polynomial, and Gaussian) the best model is the linear SVM 

with a C = 0.1, it’s not a surprise as the data went through a linear transformation. For the final 

model, ANN the previous two strategies were followed; the same activation function (ReLU) 

was used and the best model has: hidden layer = 1 and number of neurons=30 
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Figure 6: SCREE Test 

Figure 6.1 1 
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 Results 

1. Final Results 

The final models are trained on the Training Set and finally evaluate the Test set, Table 1.4 

shows the results of all four models before going through the PCA transformation. 

 

Table 1.4     
     
Results: Final models evaluating Test Set 

 KNN LR (“BE”) SVM  ANN 

Accuracy 0.7843 0.9086 0.8476 0.8443 
Sensitivity 0.8148 0.9090 0.8485 0.8485 
Specificity 0.7576 0.8889 0.8148 0.8148 
AUC Score 0.8956 0.9845 0.9046 0.9371 

Table 1.4 1 

 

The best performing model overall is LR after performing backward elimination (reference 

Figure 7). It has the highest accuracy in classifying positive and negative diagnosis of melanoma. 

The other important metric is sensitivity, it tells us the true positive rate of correctly diagnosing 

melanoma. In other words, correctly identifying melanoma cases which are actually suffering of 

melanoma. The focus is to not just finding the model that gives the highest accuracy but 

maximizes sensitivity. Whereas specificity tells us the true negative rate, identifying a negative 

melanoma diagnosis for a case that does not suffer of melanoma. If these models were to be 

fully implemented in practice, it is preferable to maximize sensitivity at the cost of specificity. 

The final metric is the AUC score, which is the area under the ROC (receiver operating 

characteristic) curve which compares the false positive rate vs. the true positive rate. SVM and 
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ANN have very similar results, while KNN is the worst performing model. Table 1.5 contains the 

results of the final models after performing the PCA transformation. 

  

Table 1.5     
     
Results: Final PCA models evaluating Test Set 

 KNN LR (“BE”) SVM  ANN 

Accuracy 0.8105 0.8838 0.8505 0.8329 
Sensitivity 0.8182 0.8485 0.8485 0.8182 
Specificity 0.8148 0.9259 0.8519 0.8519 
AUC Score 0.8956 0.9405 0.9506 0.9125 

Table 1.5 1 

Looking at the results, PCA did not improved LR. Also, it did marginally affect SVM and ANN. 

The only model that slightly improved thanks to PCA was KNN. The only marginal trend resulted 

from the PCA transformation is an increase on specificity across the models, resulting in the 

opposite direction of what is desired (increase sensitivity at the cost of specificity).  
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Discussion 

Melanoma is the most aggressive form of skin cancer [7], it is highly desirable to improve the 

accuracy in which dermatologists predict a positive diagnosis. In preliminary studies it was 

reported that dermatologist’s accuracy in making a positive diagnosis was 64% [10]. As time 

and diagnosis improved a study using computerized database of skin lesions showed that 

dermatologists partaking in the study reached a sensitivity of 80.8% and a specificity of 99.2% 

[10]. Due to improved performance of models and algorithms and the use of dermoscopy 

images for melanoma diagnosis; melanoma diagnosis is experiencing a new interest in using 

models to aid with diagnosis. More recently a study asked dermatologists to classify melanoma 

just by looking at the dermoscopy image, the result showed an average sensitivity of 82%, an 

Figure 7: Logistic Regression Final Model 

Figure 7.1 1 
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average specificity of 59% and an average AUC Score of 0.71 [37]. Even though these studies 

evaluate different lesions, both of them reach similar sensitivity levels. The second study also 

took those images and used three machine learning methods for classification (greedy 

ensemble fusion, linear binary SVM, and SVM using histogram intersection kernel) and 

compared them to the top 5 performance algorithms from 25 participants. The best 

performance algorithm was the SVM model using the histogram intersection kernel with a 

sensitivity of 70% and a specificity of 88% [37]. The LR model of this study performed with a 

sensitivity of 90% and a specificity of 89%. Even though the LR model greatly surpassed the 

SVM model they cannot be compared directly as one study modeled the data after going 

through lesion segmentation, feature segmentation before classification (this study 

concentrated on the latter part: classification) while the SVM model skips those steps and 

directly predicts diagnosis from the images. In another study a convolutional neural network 

was used to predict melanoma diagnosis directly from dermoscopy images and resulted with a 

sensitivity of 95%, a specificity of 80% [2]. Further research is needed to determine which 

strategy yields the best result: directly predicting diagnosis from the images or perform lesion 

segmentation, feature segmentation and classification [4, 5]. 
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Study 1: Grin et al. 1990 
Study 2: Marchetti et al. 2016 
Study 3: Haenssle et al. 2018 

Table 1.6: Study discussion comparison 
 
Study Sensitivity Specificity 

Study 1: Dermatologists 80.80% 99.20% 
Study 2: Dermatologists 82% 59% 
Study 2: SVM histogram intersection 70% 88% 
Study 3: Convolutional Neural 
Networks 

95% 80% 

This Study: Logistic Regression (BE) 90% 89% 
   

Table 1.6 1 

 

 

Conclusion 

The preliminary results showed that KNN, SVM and ANN tended to be overfitting the data and 

in the case of LR the high correlation may pose issues in the model. The hypothesis of this study 

is to use PCA to transform the data resulting in a new uncorrelated data set which also reduces 

the dimensionality; resulting in a less complex model and improving the model’s performance. 

The final results shows that PCA marginally improves KNN which was the worst performer. It is 

improved because KNN suffers the “curse of high dimensionality” so the PCA model with 4 

features performed better compared to the original model with 17. ANN and SVM have 

insignificant changes, basically performing at the same rate. The original dimensionality of the 

model is not high enough to cause issues to the ANN and SVM models therefore a reduction of 

dimensionality did not improved the models. Finally the best model, LR is not improved by PCA. 

In the preliminary LR model there were warnings of multi-collinearity but it was not high 

Table 1.6 2 
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enough to degrade the final LR model. Overall PCA does not have a significant impact in the 

models, other techniques and transformations have to be researched to see if they impact and 

improve model performance in the melanoma problem. 
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