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ABSTRACT

ANALYSIS AND OPTIMAL DESIGN OF BEAMS USING RADIAL BASIS

FUNCTION

Publication No. ______

Yung-Kang Sun, PhD.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Bo Ping Wang

The application of Multiquadric Radial Basis Function (MQ RBF) in the

analysis and optimal design of beams are addressed in this dissertation. For static

analysis, a new Least Square Collocation (LSC) method is introduced. For buckling and

vibration analysis, Rayleigh-Ritz analysis procedures are presented using MQ RBF

basis function. Numerical results show that LSC can provide better results than the

classical collocation method when the same number of collocation points are used. In

vibration analysis, MQ RBF-based Rayleigh-Ritz can be used to calculate natural

frequency accurately for several hundred modes. The important question of choosing

shift parameters is discussed and a guide line for choosing this parameter is developed.

Finally, the MQ RBF is also used for beam cross-section shape parameterization.
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Minimum weight design of beam under buckling and natural frequency constraints are

also presented in this dissertation.
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CHAPTER 1

INTRODUCTION

1.1 Review of Beam Equation

The beam is an important structural member designed to support loadings

applied perpendicular to its longitudinal axes. In structural terminology, a beam can

resist axial, lateral and twisting loads[2]. In the application on the civil engineering,

beams are used to support roof and floor loadings[1]. Thanks to the powerful computers

developed over 30 years, engineers can simulate stresses and strains on different

loading conditions. It not only reduces the budget to make prototypes for testing, but

also prevents buckling and fatigue before building structures. Before developing

computer codes in the application of the beam, the equation should be derived from the

beam’s theory.

The equation is derived from the beam’s theory based on the elastic curve. From

figure 1.1, the equation is written as

y

ε
ρ
=

1
………………………….. (1)



2

where ρ is the radius of curvature at a specific point on the elastic curve, and ε is the

strain. Because
E

σε = and
I

My
−=σ , equation (1) becomes

EI

M
=

ρ
1

…………………… (2)

where M is the internal moment in the beam at the point when ρ is to be determined, E

is the material’s modulus of elasticity, and I is the beam’s moment of inertia computed

about the neutral axis.

Figure 1.1 The elastic curve[1]

The elastic curve for a beam can be expressed as υ=f(x). The relationship

between υ and
ρ
1

is represented as



3

2

3

2

2

2

)(1

1





 +

=

dx

d

dx

d

ν

ν

ρ
………………… (3)

Now substitute
ρ
1

from equation (3) to equation (2), the new equation represents as

EI

M

dx

d

dx

d

=





 +

2

3

2

2

2

)(1
ν

ν

………………… .(4)

Because
2

21

dx

d ν
ρ
= based on the approximation, equation (4) is rewritten as

EI

M

dx

d
=

2

2ν
……………………………. (5)

From equation (5), it is possible to write the equation in two alternative forms.

Assume
dx

dM
=ν , the new equation is shown as

)()(
2

2

xV
dx

d
EI

dx

d
=

ν
…………………….. (6)

where V is the shear force. Now using the equation
dx

dV
xp =− )( to substitute equation

(6), the beam equation derived from the beam’s theory is shown as

)()(
2

2

2

2

xp
dx

d
EI

dx

d
−=

ν
…………………… (7)

where p(x) is the distributing load on the beam[1].
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In order to get the deformation equation, the boundary conditions are applied to

equation (7). The following is the boundary conditions with the mathematical

expression on the beam:

Fixed-Fixed: 0)(,0)(,0)0(,0)0( =′==′= LL νννν

Cantilever Beam (Fixed-Free): 0)(,0)(,0)0(,0)0( =′′′=′′=′= LL νννν

Fixed-Pin: 0)(,0)(,0)0(,0)0( =′′==′= LL νννν

Pin-Pin: 0)(,0)(,0)0(,0)0( =′′==′′= LL νννν

Also, Rayleigh-Ritz method is used for finding the deformation. Rayleigh-Ritz method,

also called the energy method, is the powerful method in the beam equation. Figure 1.2

shows the general forces on the beam with changes of sectional areas.

Figure 1.2 General forces on the beam with changes of sectional areas

P

c d

La

Lba

M

Kt θK fK

Lc Ld

P(x)
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Noted that in Figure 1.2,

P(x) =applied distributed load

ba LL , =bounds of P(x)

P =applied concentrated load

tK =translational spring constant

c =location of tK

θK =rotational spring

d =location of θK

fK =foundational constant

dc LL , =lower and upper bounds of elastic foundations

M =applied bending moment at x=L

The problem can be solved by Rayleigh-Ritz method. The total potential energy

of the system can be written as:

∫ ∫ ∫ ′++′−−+−′′=
L Lb

La

Ld

Lc

tf dKcKLMapdxKdxxpdxEI
0

2222 )(
2

1
)(

2

1
)()(

2

1
)()(

2

1 νννννννπ θ

………………………………………………………. (8)

The first step in Rayleigh-Ritz method is to select a set of basis functions [F]. By

assume [ ] [ ]{ }cF=ν , where{ }c is a set of unknown coefficients, we

have ]][[ cF ′=′ν , ]][[ cF ′′=′′ν . Substitute ννν ′′′,, into equation (8); the new equation is

represented as
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∫ ∫ ∫+−′′′′=
L Lb

La

Ld

Lc

TT
f

TT dxcFFcKdxcFxpdxcFFcEI
0

])][[][]([
2

1
]][)[(])][[][]([

2

1π

]))][()][([]([
2

1
]))][([)]([]([

2

1
])][([])][[([ cdFdFcKccFcFcKcLFMcaFp TTT

t ′′++′−− ϑ

……………………………………………………………………………………... (9)

Equation (9) can be written as

C
TT

c
T FccKc −=

2

1π ……………………………………………………………. (9A)

where

[ ] ∫ ∫ ′′+++′′′′=
L L

L

TT
t

T
f

T
c

d

c

dFdFKcFcFKdxFFKdxFFEIK
0

)]([)]([)]([)]([][][][][ ϑ

and ………………………………………………………………………..(10)

∫ +′+=
Lb

La

TT
c aFpLFMdxFxpF )]([)]([])[(][

Note that the { }c coordinates are not linearly independent coordinates. To get a set of

linearly independent coordinates, we apply boundary conditions to get the following set

of constraint equation:

[ ]{ } [ ]0=cA …………………….. (11A)

From Equation (11A), a set of independent coordinates can be defined:

Tqc = …………………… (11B)

Where

T=null (A)…………. (11C)

Note that
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[A]= [Function F(x) operated by the boundary conditions]

Substitute (11B) into Equation (9A), we get

q
TT

q
T FqqKq −=

2

1π ………………… (11D)

where C
T

qe
T

q FTFKKTK == , . 

Since the q coordinates are linearly independent, we may impose the necessary

condition for minimum potential energy

0=
∂
∂

q

π

This leads to the following set of equation

qq FqK = ………………… (11E)

Once q is computed from (11E), we may use Equation (11B) to compute c and finally

compute [ ]{ }cFx =)(ν .

1.2 Method of Weighted Residual

Three weight residual methods, collocation method, Galerkin method and

Rayleigh-Ritz method, are commonly used in mathematical approximation, and are

applied in this research. The following sections introduce the basic concept-collocation,

Galerkin and Rayleigh-Ritz methods. 

1.2.1. Collocation Method[25]

Collocation method is very popular in the approximation approaches with

ordinal and partial differential equations. With limited scope, we consider the one-
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dimensional differential equation as the example. Traditionally, any ordinary or partial

differential equations can be presented as

],[,0 baxgLu ∈=+ ………………………. (12)

where u(x) is the unknown function, g(x) is a known function, and L denotes a linear

differential operator, which specifies the actual form of the differential equation (12). In

the collocation method, we assume a solution of the form

∑
=

=
n

i
ii xfcu

1

)( …………………………….. (13) 

where )(xfi is the admissible function that is satisfied with the boundary conditions.

Equation (14) will be rewritten as

[u]= [f] [c]……………………………………….. (14) 

where [f] is the function matrix, and [c] is the unknown coefficient matrix.

In collocation method, the unknown coefficients are computed by requiring u(x)

satisfy the boundary conditions and the differential equation at the specified points. In

this research, we present a Least Square Collocation method. In the Least Square

Collocation (LSC) method, we select more collocation points than the unknown

coefficients. Thus, in LSC, we require the assumed solution satisfy all the boundary

conditions, while minimize the errors in the differential equation at the collocation

points. The following is a derivation of the proposed method. Let Du=P and Bu=s,

where D is the differential operator, and B is the boundary condition operator. Then

∑
∑

=

≈

sxfcB

PxfcD

ii

ii

))((

))((
……………………………. (15) 



9

Now equation (15) can be rewritten the new form as

bBCcABC

bEQcAEQ

=⋅
≈⋅

………………………………… (16) 

where AEQ is the equation matrix on the left-hand side of the linear equation, ABC is

the boundary condition matrix on the left-hand side of the linear equation, bEQ is the

equation matrix on the right-hand side, bBC is the boundary matrix on the right-hand

side, and c is the unknown coefficient matrix. Here the unknown coefficients are solved

by the following constrained minimization problem:

Find c to minimize eeF T=

where bEQcAEQe −⋅= ………………………………. (17) 

 subject to bBCcABC =⋅

Using Lagrange multiplier method, the above problem can be solved from the solution

of the following set of linear equations:









=















bBC

bEQc

ABC

ABCAEQAEQ TT

λ0
…………………… (18) 

Or, in matrix form, we have

[AA][cc]= [bb]………………………………………… (19)

where [ ] [ ] [ ] 







=








=








=

bBC

bEQ
bb

c
cc

ABC

ABCAEQAEQ
AA

TT

,,
0 λ

The unknown coefficient matrix [ ]cc can be obtained from Equation (19). When getting

the unknown coefficient matrix, substitute back Equation (14) to get the approximate

solution.
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1.2.2. Galerkin Method

Galerkin method is one of weight residual methods in approximation

applications. Like a variation statement of a problem, a Galerkin statement incorporates

differential equations in the weak formulation, so that they are satisfied over a domain

in an integral or average sense rather than at any point. Traditionally, Galerkin method

uses in the finite element formulation, especially in structural mechanics. This section

introduces basic concepts of Galerkin method.

The mathematical statement of a physical problem is as

In domain V: Du-f=0……………… (20) 

where D is a differential operator, u=u(x) is dependent variables, and f is a function of x

which may be constant or zero. Equation (21) stated in strong form and appropriate

boundary conditions, which imply the differential equation, must be satisfied at every

internal point and boundary conditions at every boundary point. In general, an

approximating function u~ does not satisfy equation (21) at every point. Thus a residual

R=R(x) remains:

Residual in domain V: fuDR −= ~ ………. (21) 

where )(~~ xuu = is approximate solution. Let u~ be a linear combination of basic

functions. Typically u~ is a polynomial of n terms whose ith term is multiplied by a

generalized degree of freedom ia . The n values of the ia are to be selected so that R is

small. According to a weighted residual method, values of the ia that are best satisfy the

following expression of governing equation in the weak form as
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∫ = 0RdVwi , for i=1, 2…n………………………… (22) 

where each )(xww ii = is a weight function. In Galerkin weighted residual method, each

iw is the multiplier of the corresponding ia inu~ .

1.2.3. Rayleigh-Ritz Method

The Rayleigh-Ritz method, also known as the energy method, has a classical

form and a Finite Element form. In the 1870s, Lord Rayleigh originated for studies of

vibration problems. He used an approximating field contained a single degree of

freedom. In 1909, Ritz generalized the method by building an approximating field from

several functions. Each function is satisfied essential boundary conditions, and

associated with a separate degree of freedom. Ritz applied the method to equilibrium

problems and to eigenvalue problems. In general, the Rayleigh-Ritz method is a

procedure for determining parameter in an approximating field so as to achieve an

extremum of a function F of the field. In the practical application of the Rayleigh-Ritz

method, vibration analysis and buckling problems are always used. The detail of

Rayleigh-Ritz method for static analysis is presented in section 1.

1.3 Review of Beam Buckling

Buckling is one of the main concerns in the structural design. Based on the

definition from energy consideration, buckling means loss of the stability of an

equilibrium configuration without fracture or separation of the material or at least prior

to it. Usually the buckling occurs when the compression or tension is on the axial

load[2]. Traditionally, columns are divided into three types: short column, intermediate



12

column, and long columns. This section reviews the equation of beam buckling from

Eular’s equation and energy method with different boundary conditions.

In 1757, Leonard Euler developed a relationship for the critical column load which

would produce buckling. For the system below in Figure 1.3, the governing equation for

the computing buckling load is presenting

Figure 1.3 Loaded Pined-Pined Columns[1]

………………………….. (23) 

 

where E is the elasticity of the strength material, I is the moment of inertia, υ is the

deflection distance, w is the distributed load, and P is the axial load.

From equation (23), the general solution form is

x
EI

P
Bx

EI

P
A cossin +=ν ……………………………. (24) 

Now we apply the boundary condition of the pinned-pinned case:

w
dx

d
P

dx

d

dx

d
EI

dx

d
=



+







 υυ
2

2

2

2

2

2
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0)(,0)(,0)0(,0)0( =′′==′′= LL υυυν ……………... (25) 

Here we get the critical load as:

2

2

L

EI
Pcr

π
= ……………………….. (26)[26]

The critical load is important in the engineering design of the beam. It avoids

structural buckling on the axial axis with tension or compression loads. Figure 1.4

shows the requirement of length and K on the following boundary conditions.

Figure 1.4 Requirement of length and K on the pin support column

In energy method, the beam buckling with the total energy is represented as:

∫ ∫ ′+′′=
L L

dxPdxEI
0 0

22 )(
2

1
)(

2

1 υυπ ……………. (27) 

Assume [ ][ ] [ ][ ] [ ][ ]cfcfcf ′′=′′′=′= υυυ ,, and [f] is the 1-D basis function matrix.

Substitute υυυ ′′′,, into equation (27), we get

cKccKc g
T

c
T

2

1

2

1
+=π ……………… (28)
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where [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] dxcffcPKdxcffcEIK T
L L

T
g

TT
c )(

2

1
,)(

2

1

0 0

′′=′′′′= ∫ ∫ ……… (29)

Note that the { }c coordinates are not linearly independent. To get a set of linearly

independent coordinates, we apply boundary conditions to get the following set of

constraint equation:

[ ]{ } { }0=cA ………………….. (30)

From Equation (30), a set of independent coordinates can be defined:

C=Tq……………… (31)

Where

T=null (A)………………. (32)

Note that [A] = [Function F(x) operated by the boundary condition]

Substitute (31) into Equation (28), we get

qKqqKq gq
TT

q
T

2

1

2

1
+=π

Where TKTKTKTK g
T

gqc
T

q == ,

Since the q coordinates are linearly independent, we may impose the necessary

condition for minimum of Rayleigh quotient

qKq

qKq
P

gq
T

q
T

=−

This leads to the following eigenvalue problem

qKqK qgq λ= …………………. (33)
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Where P−=λ .Once q is computed from (33), we may use Equation (31) to compute c

and finally q compute the buckling vector by using

[ ]{ }cFxu =)( . 

1.4 Review of Beam Vibration

Structural response is time-dependent if loading is time-dependent. If loading is

of higher frequency or is applied suddenly, dynamic analysis is required. Dynamic

analysis uses the same stiffness matrix as static analysis, but also requires mass and

damping matrices. For a given magnitude of loading, dynamic response may be greater

or less than static response. It will be much greater if loading is cycle with frequency

close to a natural frequency of the structure. In the analysis of the structural dynamics,

we need to get the natural frequencies and mode shapes. To calculate frequencies and

mode shapes, the eigenvalue problem needs to be solved.

To calculate frequencies and mode shapes, we need to get the mass and stiffness

matrices in the non-damping vibration system. Assume [ ]{ }cfu = , the stiffness and

mass matrices in c coordinates are shown as:

[ ] [ ] [ ] TdxffEITK
L

TT ))((
0
∫ ′′′′= ………………… (34) 

 [ ] [ ] [ ] TdxfAfTM
L

TT )(
0
∫= ρ ………………….. . (35) 

where E is the elasticity of strength material, I is the moment of inertia, ρ is the density

of the material, A is the area of the beam, [K] is the stiffness matrix, [M] is the mass

matrix, and [f] is the function used in the beam. Note that the{ }c coordinates are not
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linearly independent. To get a set of linearly independent coordinates, we apply

boundary conditions to get the following set of constraint equation:

[ ]{ } { }0=cA ………………… (36)

From Equation (36), a set of independent coordinates can be defined:

C=Tq…………………. (37)

Where

T=null (A)………………… (38) 

Note that [A] = [Function F(x) operated by the boundary condition].

Using the transformation of Equation (37), the stiffness and mass for the

independent coordinates q are obtained as

MTTM

KTTK
T

q

T
q

=

=

and the natural frequencies can be solved from the following eigenvalue problem.

[ ] [ ]qMqK qq λ= …………….. (39) 

where q is the eigenvectors. Once q is known, the associated mode shape can be

calculated from the following equation

[ ][ ][ ]qTxfxu )()( =

1.5 Motivation of This Research

Traditionally, engineers use polynomial methods in the beam vibration and

buckling cases. However, the higher polynomial terms reduce the calculation time and

accuracy, and the error between the approximate value and exact solution is increased.
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Although the polynomial method has been used in the numerical approximation for

forty years, the error gap is still the main obstacle for engineering analysis.

The following is the motivation of this dissertation:

1. Develop an innovate technique using the Radial Basis Function (RBF to be

defined in Chapter 2) on both strong and weak formulations.

2. Investigate approximate methods with the Radial Basis Function to reduce

computational time and memory.

3. Evaluate advantages and technical obstacles of applying the Radial Basis

Function in structural analysis.

At the end of this chapter, the author points out three main contributions in this

research:

1. The Radial Basis Function cooperates with the Least Square Collocation method

for structural static analysis. This allows the user to obtain more accurate

solution using the same number of collocation or the traditional collocation

method.

2. The Radial Basis Function is applied in the beam design optimization. This is

the first time the Radial Basis Function is applied in engineering optimization

problems. The examples of using the Radial Basis Function in the beam design

will be introduced in chapter 5 of this dissertation.

3. A guideline in choosing RBF parameter is proposed in this dissertation.
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CHAPTER 2

LITERATURE REVIEW

2.1 Radial Basis Function

Radial Basis Function (RBF) is popular for interpolating scattered data as the

associated system of linear equations guaranteed to be invertible under very mild

conditions on the locations of the data points. Theorically, the Radial Basis Function

does not require the data lied on the regular grid.

Here is the definition of the Radial Basis Function. A radial basis function is

any function that has a radial symmetry. RBF can be used to approximate a nonlinear

function in the form:

∑
=

∈−+=
N

i
iii Rxxxcxpxs

1

),()()( ϕ …………………. (40)

In the numerical application, three popular Radial Basis Function have been

used: The Thin-Plate Spline, Gaussian and the Multiquadric (MQ) function. The

following are the definition of each of the above Radial Basis Function type[20]:

• The Thin-Plate Spline: )log()( 2 rrr =ϕ ………………….(41) 

• The Gaussian: hrer −=)(ϕ …………………………………(42) 

• The Multiquadratic (MQ): hrr += 2)(ϕ …………………(43) 
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where r is the distance as ixx − , and h is the shift or smooth parameter. Figure 2.1

shows the Radial Basis Function with the Thin-Plate Spline type; Figure 2.2 shows the

Radial Basis Function with Gaussian type, and Figure 2.3 shows the Radial Basis

Function with Multiquadratic (MQ) type.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2

3

4

5

6

x value

R
B
F

va
lu

e

The relationship between x and Radial Basis Function in 1-D

Figure 2.1 Thin-Plate Spline Type

Figure 2.2 Gaussian Type

0 0 . 5 1 1 . 5 2 2 . 5 3 3 .5 4 4 . 5 5
0 . 9 6

0 . 9 6 5

0 . 9 7

0 . 9 7 5

0 . 9 8

0 . 9 8 5

0 . 9 9

0 . 9 9 5

1

1 . 0 0 5
T h e re l a t io n sh i p b e tw e e n x a n d R a d i s B a si s F u n c tio n i n 1 -D

x v a l u e

R
B

F
V

al
u

e



20

Figure 2.3 Multiquadric (MQ) Type

In this research we use Multiquadratic (MQ) function in the Least Square

Collocation method for static analysis. MQ function is also used in Optimal Design and

vibration and buckling analysis that use Rayleigh-Ritz method. More discussions of MQ

function are given in Chapter 6.

2.2 Radial Basis Function for Engineering Applications

The Radial Basis Function was applied for different types of interpolation

problems in the 1970s. Originally, this method was to solve problems in the networking

and curves and surface fitting. In 2006, Dr. Subbarao introduced the idea of using the

Radial Basis Function in the direction dependent learning approach networks[3]. In the

1980s, the Radial Basis Function was introduced in solving structural problems in the

civil engineering field. Because the Radial Basis Function does not need any mesh to

approach the numerical calculation, this method is also called the meshless method.

From 1998 to 2005, many scholars presented their ideas of using the Radial Basis
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Function in the engineering analysis. For example, Dr. Grindeanu introduced using the

Radial Basis Function (Meshless method) in the application of the design sensitivity

analysis and optimization in the field of hyperelastic structures[6, 7]. Dr. Wang

presented his idea to analyze the parameter optimization and application of solving

Boundary Value Problems with the Radial Basis Function[9, 10, 20]. Dr. Chen

presented using coupling finite element and meshless local Petro-Galerkin methods for

2-D potential problems[11]. Other applications of using the Radial Basis Function are

as follows[20]:

1. Curves and Surface Fitting

2. Photogrammetry

3. Surveying and Mapping

4. Geology and Mining

5. Hydrography

6. Solution of Partial Differential Equations

7. CFD

8. Optimization
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CHAPTER 3

RADIAL BASIS FUNCTION FOR 1-D PROBLEM

3.1 Bar

This chapter discusses the application of using the Radial Basis Function with

the strong formulation in the collocation method and the proposed Least Square

Collocation (LSC) method for the 1-D bar, 1-D beam and higher order system

problems. This section introduces the basic concept of applying the Radial Basis

Function with the strong formulation in the Collocation method. The following sections

will use the same concept in the 1-D beam and higher order system.

The differential equation for a fixed-free bar under axial static loading can be

represented as

FuKuAE −=′−′′ , B.C.: 0)(,0)( 10 =′= xuxu …………… (44) 

In order to apply the collocation method with the Radial Basis Function, the function u

is rewritten as

[ ] [ ]{ }cfu = ……………………………….. (45)

and [ ] [ ]{ }cfu ′=′ ……………………………… (46) 

 [ ] [ ]{ }cfu ′′=′′ ……………………………… (47)

where [f] = [Radial Basis Function Polynomial Term] and {c} = { Nccc ,,, 10 L }. Now

we substitute [ ] [ ] [ ]uuu ′′′ ,, into equation (45). The new equation will be presented as



23

[ ] [ ] { } FcfKfAE =−′′ )( ………………….. (48)

Next, we apply boundary conditions and equation (48) with collocation points

into the Radial Basis Function. The classical collocation method will be reformed to the

matrix form as

[ ] [ ]
[ ]

[ ]














=

















−′′
′

F

b

a

c

xfKxfAE

xf

xf

cc )()(

)(

)(

1

0

………………… (49) 

Here we get [c] through the matrix operation, and substitute [c] to equation (45) to get

each value in the collocation point. The following shows operations of [c] and [u]

matrices.

[ ]
[ ] [ ] [ ]
































−′′
′=

−

F

b

a

xfKxfAE

xf

xf

c

cc

1

1

0

)()(

)(

)(

………………. (50)

Once c is known, we can calculate u(x) from

[u]= [f] [c]………………………………………….. (51) 

 Here we introduce the concept of the Radial Basis Function in the Least Square

Collocation method for the 1-D bar problem. This is the contribution for the 1-D strong

formulation in this dissertation. The same steps will be followed in the classical

collocation method described in previous paragraphs. Now we introduce Du=p and

Bu=s into the strong form equation, where D is the differential operator, and B is the

boundary operator. Applying the differential operator and the boundary operator into

the strong formulation, the equation is written as
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∑
∑

=

=−

sxfcB

epxfcD

ii

ii

))((

))((
………………………….. (52) 

Using Equation (45) to (47), Equation (52) becomes [ ]{ } bEQcAEQe −= and

[ ]{ } bEQcABC = . Where

[ ] [ ][ ])()( cc xfKxfAEAEQ −′′= ………………… (53) 

 [ ][ ]FbEQ = ………………………………………. (54) 

 







=

)(

)(

1

0

xf

xf
ABC ……………………………………. (55) 

 







=

b

a
bBC …………………………………………… (56) 

 [ ] [ ]Ncccc L,, 10= …………………………………. (57) 

Next, we will find the [c] through the concept of the optimization. The formulation is

shown as

Find [c] to minimize eeF T=*

where bEQcAEQe −⋅= ……………………………. (58) 

 subject to ABC·c=bBC

Using Lagrange multiplier method, the solution of the above equation can be

found by solving the following system of linear equation:

[ ] 







=















bBC

bEQc

ABC

ABCAEQAEQ TT

λ0
………………………. (59) 

That is
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[ ] 















=







−

bBC

bEQ

ABC

ABCAEQAEQc TT 1

0λ
…………………….. (60)

Once c is known, we can calculate

[ ] [ ][ ]cfu = ………………………………………………. (61) 

 As a numerical example, consider the following problem:

0)1(,0)0(:..,15 =′=−=−′′ uuCBuu …………………………. (62) 

The problem is solved using Radial Basis Function with classical collocation method

and the Least Square Collocation method.

The Matlab code including the classical collocation method, the least square

collocation method and exact solution for solving this problem is in Appendix A. Figure

3.1 shows the comparison of using the classical collocation method and the least square

collocation method with the exact solution. We found that the least square collocation

method is close to the exact solution if inputting many geometrical points on the 1-D

bar. This is the first advantage of applying the least square collocation method in the

truss analysis.
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Figure 3.1 Compared Results with Three Method in 1-D Bar

3.2 Beam

The classical formulation for a uniform beam on elastic foundation is: 

 wkuuEI =−′′′′ With Boundary Conditions ……………… (63) 

In order to apply the collocation method with the Radial Basis Function, the function u

is assume to be

[ ] [ ]{ }cfu = ……………………………….. (64) 

 then [ ] [ ]{ }cfu ′=′ ……………………………… (65)

[ ] [ ]{ }cfu ′′=′′ ……………………………… (66) 

 [ ] [ ]{ }cfu ′′′=′′′ ………………………………. (67) 

 [ ] [ ]{ }cfu ′′′′=′′′′ ……………………………… (68) 

where [f] = [Radial Basis Function Polynomial Term] and {c} = { Nccc ,,, 10 L }. Now

we substitute [ ] [ ] [ ]uuu ′′′ ,, into equation (45). The new equation will be presented as
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[ ] [ ] { } wcfKfEI =−′′′′ )( ………………….. (69) 

 Next, we apply boundary conditions and equation (70) with collocation points

into the Radial Basis Function. The classical collocation method will be reformed to the

matrix form as

[ ]
[ ] [ ][ ] [ ]

[ ]
[ ]






=








−′′′′ w

c
xfKxfEI

conditionsboundaryf

cc

0

)()(

)(
………………… (70)

Here we get [c] through the matrix operation, and substitute [c] to equation (65) to get

each value in the collocation point. The following shows operations of [c] and [u]

matrices.

[ ] [ ]
[ ] [ ][ ]

[ ]
[ ]














−′′′′

=
−

wxfKxfEI

conditionsboundaryf
c

cc

0

)()(

)(
1

………………. (71) 

 [u]= [f] [c]………………………………………….. (72) 

 Here we introduce the concept of the Radial Basis Function in the Least Square

Collocation method for the 1-D beam problem. This is the contribution for the 1-D

strong formulation in this dissertation. The same steps will be followed in the classical

collocation method described in previous paragraphs. Now we introduce Du=p and

Bu=s into the strong form equation, where D is the differential operator, and B is the

boundary operator. Applying the differential operator and the boundary operator into

the strong formulation, the equation is written as

∑
∑

=

=−

sxfcB

epxfcD

ii

ii

))((

))((
………………………….. (73) 

Using Equation (64) to (68), Equation (73) becomes
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[ ]{ }
[ ]{ } bBCcABC

ebEQcAEQ

=
=−

Where

[ ] [ ][ ])()( cc xfKxfEIAEQ −′′′′= ………………… (74) 

 [ ][ ]wbEQ = ………………………………………. (75) 

 [ ])( conditionsboundaryfABC = ………………. (76) 

 [ ][ ]0=bBC ……………………………...………… (77) 

 [ ] [ ]Ncccc L,, 10= …………………………………. (78) 

Next, we will find the [c] through the concept of the optimization. The formulation is

shown as

Find [c] to minimize eeF T=*

where bEQcAEQe −⋅= ……………………………. (79) 

 subject to ABC·c=bBC

The above problem can be solved by Lagrange multiplier method, and the solution can

be obtained from the following set of linear equation:

[ ] 







=















bBC

bEQc

ABC

ABCAEQAEQ TT

λ0
………………………. (80)

Note that λ is the vector of Lagrange multipliers. Explicitly, we have

[ ] 















=







−

bBC

bEQ

ABC

ABCAEQAEQc TT 1

0λ
…………………….. (81)

Once c is known, we an compute u(x) from

[ ] [ ][ ]cfu = ………………………………………………. (82) 
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The following fixed-fixed beam example is used to demonstrate the classical

collocation method and the Least Square Collocation method using Radial Basis

Function. The governing equation and the boundary conditions in the following:

0)20(,0)20(,0)0(,0)0(:..,125.2 =′′′=′′=′==+′′′′ uuuuCBuu …………………. (83) 

The Matlab code including the classical collocation method, the least square collocation

method and exact solution for solving this problem is in Appendix B. Figure 3.2 shows

the comparison of using the classical collocation method and the least square

collocation method with the exact solution. We found that the least square collocation

method is close to the exact solution if inputting many geometrical points on the 1-D

beam. This is another advantage of applying the least square collocation method in the

truss analysis, and we conclude that the least square collocation method is the best

approximating method in the bar and beam simulation.

Figure 3.2 Compared Results with Three Method in 1-D Beam
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3.3 Other Example

The governing equation 1-D bar and beam are the 2nd and 4th order Ordinary

Differential Equations (ODEs). Because the value on each point calculated from the

collocation method and the Least Square Collocation method with the Radial Basis

Function are close to the exact solution in the 1-D bar and beam cases, the collocation

method will thus be of value in the application of higher order systems. Here is the

example of using the collocation method and the least square collocation method for a

general 4th order system. The question is to solve the equation with the boundary

conditions in the following:

5222234 2)12(2)12(2)12(4 xyxyxxyxxyxyx =−+′−+′′−+′′′−′′′′

0)11(,0)11(,0)0(,0)0( =′==′= xxxx ……………….. (84)

The original Matlab code including the classical collocation method, the least square

collocation method and exact solution for solving this problem is in Appendix C. Figure

3.3 shows the comparison of using the classical collocation method and the exact

solution. We found that the classical collocation method is close to the exact solution if

inputting many collocation points on this equation. This is the advantage of applying the

collocation method in the higher order system, and we conclude that the collocation

method also uses properly in the higher order system.
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CHAPTER 4

RADIAL BASIS FUNCTION FOR EIGENVALUE PROBLEM

4.1 Beam Buckling

Chapter 1 introduces the theories of beam buckling and vibration from the

original concepts of physics. We also provide general formulation for Rayleigh-Ritz

method to solve equations of beam buckling and vibration. This chapter discusses about

using the Radial Basis Function with Rayleigh-Ritz method in the beam buckling and

vibration problems.

Here we discuss how to apply the Radial Basis Function with Rayleigh-Ritz method in

this section. Because the beam buckling is axial load-dependent, we need to calculate

geometrical stiffness matrices for finding eigenvalues and eigenvectors. TO solve the

buckling problem, assume

[ ]{ }cfu = …………….... (85) 

Where [f] = [Radial Basis Function | Polynomial Term]

The following figures show the first mode shape and critical load computed by

the current method with different boundary conditions. The original Matlab code for

solving this problem is in Appendix D. Figure 4.1 shows the beam buckling with fixed-

fixed condition; Figure 4.2 shows the beam buckling with fixed-free condition; Figure
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4.3 shows the beam buckling with fixed-pin condition, and figure 4.4 shows the beam

buckling with pin-pin condition.
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Figure 4.1 Beam Buckling in Fixed-Fixed Condition
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Figure 4.2 Beam Buckling in Fixed-Free Condition
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Figure 4.3 Beam Buckling in Fixed-Pin Condition
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Figure 4.4 Beam Buckling in Pin-Pin Condition

The following tables present the comparison of error percentage of using the

Radial Basis Function, polynomial term and exact solution. Table 4.1 shows errors
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between the exact solution and RBF method in the fixed-fixed condition; Table 4.2

shows errors between the exact solution and RBF method in the fixed-free condition;

Table 4.3 shows errors between the exact solution and RBF method in the fixed-pin

condition, and Table 4.4 shows errors between the exact solution and RBF method in

the pin-pin condition We found the Radial Basis Function gets the closest solution

compared to the exact solution. However, the Radial Basis Function has the barrier. If

choosing more than twenty collocation points and more than 5 polynomial terms, the

solution will become unstable. Other than that, the Radial Basis Function performs the

great job in the 1-D beam buckling.

Table 4.1 Errors between the exact solution and RBF method in the fixed-free
condition

Mode EExxaacctt--RRBBFF

1 0.01%

Table 4.2 Errors between the exact solution and RBF method in the fixed-fixed
condition

Mode EExxaacctt--RRBBFF

1 0.018%

Table 4.3 Errors between the exact solution and RBF method in the fixed-pin
condition

Mode EExxaacctt--RRBBFF

1 0%
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Table 4.4 Errors between the exact solution and RBF method in the pin-pin
condition

Mode EExxaacctt--RRBBFF

1 0%

4.2 Beam Vibration

This section discusses about using the Radial Basis Function in the numerical analysis

of the beam vibration. Rayleigh method is used to calculate the natural frequencies and

the associated mode shapes. The general formulation for beam vibration analysis by

Rayleigh-Ritz method has been presented in Chapter1. Here we assume

[ ]{ }cfu =

Where [f] = [Radial basis function polynomial].

The following figures show the first two natural frequencies and their mode

shapes with different boundary conditions. The original Matlab code for solving this

problem is in Appendix E. Figure 4.5 and Figure 4.6 show the beam vibration with

fixed-fixed condition; Figure 4.7 and Figure 4.8 show the beam vibration with fixed-

free condition;
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Figure 4.5 First Mode Shape in Fixed-Fixed Condition

Figure 4.6 Second Mode Shape in Fixed-Fixed Condition
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Figure 4.7 First Mode Shape in Fixed-Free Condition

Figure 4.8 Second Mode Shape in Fixed-Free Condition
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The following tables present the comparison of error percentage of using the

Radial Basis Function, polynomial term and exact solution. Table 4.5 compares errors

among the exact solution, polynomial method and Radial Basis Function method in the

fixed-free condition, and Table 4.6 compares errors among the exact solution,

polynomial method and Radial Basis Function method in the fixed-fixed condition. We

found the Radial Basis Function gets the closest solution compared to the exact

solution. However, the Radial Basis Function has a problem in the weak formulation

like the beam buckling. If choosing more than twenty collocation points and more than

5 polynomial terms, the solution will become unstable. Also, the value of the parameter

h in the Radial Basis Function could not be higher than 5. Other than that, using

Rayleigh-Ritz method with the Radial Basis Function is the best choice in the beam

vibration analysis.

Table 4.5 Errors among Three Method in the Fixed-Free Condition
MMooddeess EExxaacctt--PPoollyynnoommiiaall EExxaacctt--RRBBFF

11 00..0011%% 00..0011%%
22 00..5566%% 00..000044%%

Table 4.6 Errors among Three Method in the Fixed-Fixed Condition
MMooddeess EExxaacctt--PPoollyynnoommiiaall EExxaacctt--RRBBFF

11 00..3344%% 00..000022%%
22 22..0044%% 00..0011%%
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CHAPTER 5

RADIAL BASIS FUNCTION FOR OPTIMIZATION DESIGN

5.1 Beam Buckling

Using the Radial Basis Function for the optimal design is another contribution

in this research. Traditionally, the optimization helps engineers find the optimized value

in the engineering design. This technology saves much time and development

procedures. This chapter introduces how to apply the Radial Basis Function for the

optimal design in the 1-D beam buckling and vibration applications.

In order to reduce the weight of the beam and avoid being occurred the buckling

or vibration, the following optimization problem is solved in this research.

Find ix to minimize weight= ∫
L

i dxA
0

ρ ………………………… (86)

Such that UPiUcr xxxP ≤≤≥ ,maxλ

where ix is the design variable, iA is the area of the cross-section, ρ is the density of the

material, crP and maxλ are eigenvalues. In this research, ix represents as a width of a

beam with cross-section. In the proposed foundation, the cross-section dimension at xN

selected points are selected as design variables. Then the variation of the dimension is

represented by the following RBF equation:
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∑
=

=
xN

i
ii cxxa

1

)()( φ ……………. (87)

The coefficients of ic are computed by imposing interpolation conditions. Once a(x) is

known, the cross-sectional area and the sectional moment of inertia are computed from

12

)(
)(

)()(
4

2

xa
xI

xaxA

=

=

As a design example, consider a beam with the following data:

• Density of the material: 0.1 lbf

• Length of the beam: 100 feet

• Young’s Modulus: 10000000 psi

• Maximum requirement of the first eigenvalue: 10000

• Design limit of the width: 2,1,101 =≤≤ iwidthi

• Initial gauss of the design width: 3 feet and 2 feet on both ends.

• Optimal design width: 6.04 feet and 6.07 feet in the uniform type beam

Figure 5.1 and Figure 5.2 show the optimal beam design in the regular square

and the first mode shape and eigenvalue in the fixed-fixed condition. Figure 5.3 and

Figure 5.4 presents the optimal design in the tapered-line square beam and the first

mode shape with the eigenvalue. The original program codes are listed in Appendix F. 
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Figure 5.2 Optimal beam design for buckling in fixed-fixed condition
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Figure 5.3 First mode shape and eigenvalue for buckling in fixed-free condition
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Figure 5.4 Optimal beam design for buckling in fixed-free condition



44

In order to avoid beam buckling, the critical load should be large, so that the

beam will not have the buckling problem in the first critical load on the beam. Also, we

set the boundary limit in the design variable because we will have infinite optimal

results without limiting the range.

5.2 Beam Vibration

This section discusses the application of using the Radial Basis Function in the

optimal design of the beam vibration problem. In the engineering design, the beam

should be light-weighted and no vibration at the first natural frequency within the

design range. The following is the minimum weight design in the beam vibration

problem:

Find ix to minimize weight= ∫
L

i dxA
0

ρ ………………………… (88)

Such that
UPiUB xxx ≤≤

≥ max1 λω

where 1ω is the first natural frequency. The procedures used to solve this problem are

the same as the buckling optimal design problem.. Figure 5.5 and figure 5.6 show the

first mode shape and eigenvalue in the uniform square cross-section and the optimal

beam design in the regular square. As a fixed-free example, consider a beam with the

following data:

• Density of the material: 0.1 lbf

• Length of the beam: 100 feet

• Young’s Modulus: 10000000 psi
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• Maximum requirement of the first eigenvalue: 10000

• Design limit of the width: 2,1,101 =≤≤ iwidthi

• Initial gauss of the design width: 3 feet and 2 feet on both ends.

• Optimal design width: 6.04 feet and 6.07 feet in the uniform type beam

The original Matlab codes are listed in Appendix G. Figure 5.5 and Figure 5.6 show the

first mode shape and eigenvalue in the uniform square cross-section and the optimal

beam design in the regular square. Figure 5.7 and Figure 5.8 present the first mode

shape and eigenvalue in the taper linear cross-section and the optimal beam design in

the taper linear type beam. The original Matlab codes are listed in Appendix G. 
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Figure 5.5 First mode shape and eigenvalue for vibration in fixed-fixed
condition
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Figure 5.7 First mode shape and eigenvalue for vibration in fixed-free condition
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Figure 5.8 Optimal beam design for vibration in fixed-free condition
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CHAPER 6

PARAMETRIC STUDY

6.1 Introduction

In previous chapters, it has been noted that the parameter h is the MQ basis

function has a great effect on the solution. Recall the 1-D MQ function with center at ix :

hxxx i +−= 2)()(φ ………………….. (89)

Note that at ixx =

hxi =)(φ ………………… (90)

0)( =′ ixφ ……………….... (91)

h
xi

1
)( =′′φ ……………….. (92)

Because of Equation (92), h is referred to as the shift parameter of the MQ

function, since h is the value (shift) of the function from zero. On the other hand,

Equation (92) says
h

1
is the rate of change of the slope at ix , hence large h yields

small change of slope. Thus, h is also called the smooth parameter of the MQ basis

function in the literature. In this research, we will call h the shift parameter.
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The effect of the shift parameter and its selection will be discussed in this

chapter. We will perform the study use the vibration analysis of a uniform simply

supported beam whose natural frequencies have the following well known solutions.

4
22 )(

L

EI
nn ρ
πω = ……….. (93)

Where n=mode number

E=Young’s modulus

I=cross-section area moment of inertia

ρ =mode density

L=beam length

For simplicity, unless otherwise specified, we use E=1, I=1, ρ =1, L=1 in our study.

Before we study the effect of shift parameter, we will first review the problem

associated with beam vibration using polynomial basis function.

6.2 Vibration Analysis by Polynomial Ritz Methods

6.2.1. Limitation: polynomial Order Problem

The beam vibration analysis using polynomial basis is a special care of our

generation function in chapter 4, that is, in Equation (85) we use polynomial and beam

only. In this case, it is well known that we can only get solutions for polynomial when

up to order 12 or so. The following Figure 6.1 shows that using polynomial order 11,

we can get about 6 accurate natural frequencies and the solution deteriates quickly. For

polynomial of order 12 or above, the solution fails to yield valid solutions.
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6.2.2. Reason: Condition Number and Basis Function Plots

The reason for numerical difficulty for polynomial basis function is that the

higher terms becomes similar to each other and consequently they lose their linear

independence, see Figure 6.2. Computationally, this loss of linear independence leads

to high conditioned number for the mass and stiffness matrices. Consequently, the

eigenvalues problem can not be solved accurately.
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6.3 Vibration Analysis by RBF Methods

To study the effect of shift parameter on the accuracy of the natural frequency of

a simple-support beam, the vibration problem is solved with basis consists of the
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constant term, x and 14 MQ basis with centers uniformly distributed between 0 and L

for various value of h. Note that the frequency ratio is defined as

n

nR
ω
ω

= ……………….. (94)

Where nω is the calculated natural frequency and nω is the exact nth natural frequency

given by Equation (94). The results are shown in Figure 6.4.

Note that R=1 indicated exact solution. Thus, it can be seen that for a wide range of

choice of h, there are 8 computed mode with less than 0.5% error. If larger value of h is

used, however, numerical difficulty will appear. This is evident by the complex solution

for the eigenvalue problem, which theoretically have only real solutions.

In Figure 6.9, we plot one MQ basis for various values of h. As h increases, the

basis function becomes flatter and the differences between various basis are getting

smaller. The consequence is that the condition number for the stiffness and mass

matrices becomes large see Figure 6.10. This leads to numerical difficulty in solving the

eigenvalue problem.
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6.3.1. MQ Basis Function: Effect of Shift Parameters

To study the effect of shift parameters, the 14 MQ basis functions for h=0.025,

0.05, 0.1, and 0.15 are plotted in Figures 6.5 to 6.8. Note that an h becomes larger, the

functions become flatter. This leads to large condition number for the mass and stiffness

matrices, see Figure 6.10.
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Figure 6.5 MQ Basis Function for h=0.025



54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

MQ basis functions for h=0.05

M
Q

b
as

is
fu

n
ct

io
n

s

x

Figure 6.6 MQ Basis Function for h=0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

MQ basis functions for h=0.1

M
Q

b
as

is
fu

n
ct

io
n

s

x

Figure 6.7 MQ Basis Function for h=0.1



55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

MQ basis functions for h=0.15

M
Q

b
as

is
fu

n
ct

io
n

s

x

Figure 6.8 MQ Basis Function for h=0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

MQ basis function centered at x=0.15385

M
Q

b
as

is
fu

n
ct

io
n

s

x

Figure 6.9 MQ Basis Function Centered at x=0.15385



56

0 0.02 0.04 0.06 0.08 0.1 0.12
10

2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

C
o

n
d

it
io

n
n

u
m

b
er

s

Shift parameter,h

Condition numbers for NMQ=14

Cond(K)
Cond(M)

Figure 6.10 Condition Numbers for NMQ=14

0 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

Mode Number

Frequency rations for shift parameter h=0.0005

F
re

q
u

en
cy

ra
ti

o

Figure 6.11 Frequency Rations for Shift Parameter h=0.0005



57

6.4 Recommendation of Choosing Shift Parameter for Vibration Analysis by

RBF Method

Based on the numerical experiments performed during this research, the

following value of shift parameters is recommended for beam vibration analysis using

MQ basis function. The shift parameter should be chosen in the following range:

UL hhh ≤≤ ……………… (95)

where

2)(

10

10

NMQ

L
h

hh

h
h

U

L

=

=

=

Where NMQ is the number of MQ basis used in the analysis, L is the beam length.

To illustrate the choice of shift parameter, the beam is modeled using 100 MQ

basis functions. For this model,

001.0

00001.0

0001.0
)100(

1
2

=
=

==

U

L

h

h

h

The result for using shift parameter h=0.0005 is shown in Figure 6.12. It should be

noted that all the 100 natural frequencies computed by this model has less than 13%

errors. This is a great achievement when compare with polynomial model that can only

provide about 8 orders with less than 13% even (see Figure 6.1).
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For static analysis using Least Square Collocation method, the shift parameter h

should be written the following range:

USLS hhh ≤≤ ………………. (96)

where

NMQ

L
h

hh

h
h

o

oUs

o
LS

=

=

=

10
10

The above criterion is formed by numerical experiences.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, MQ RBF have been used to solve beam static response,

buckling and vibration problems. The results show that accurate solution can be

obtained for both strong (differential equation) and weak (energy method) formulations.

The main contribution of this dissertation are:

1. Least Square Collocation (LSC) for beam static analysis using strong

formulation. The results show that LSC can provide better results than classical

collocation method using same number of collocation points.

2. Beam buckling and vibration analysis using Rayleigh-Ritz method based on

Radial Basis Function. A criterion for choosing the shift parameter for MQ

function is also presented.

3. Application of RBF for beam cross-sectional shape parameterization and design

optimization.

The advantages of using Radial Basis Function in structural analysis of beam is

the direct results of the ability of RBF function to represent an arbitrary function

accurately.

Other contributions of this dissertation include:
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1. The demonstration that in vibration analysis, RBF based Rayleigh-Ritz method

can be used to compute accurate natural frequencies for up to several hundred

modes while polynomial based method can only capture the first few orders.

2. A discussion of the limitation of polynomial-based Rayleigh-Ritz method for

beam vibration analysis.

7.2 Future Work

The following are suggested future work in using Radial Basis Function in the

structural analysis and design optimization:

1. Extend the RBF least square collocation method to 2-D plate static analysis

problem.

2. Extend the RBF Rayleigh-Ritz method for plate vibration analysis and develop a

similar producer for selecting the shift parameter in the RBF basis function.

3. Extend the Radial Basis Function applying Least Square Collocation method

and design optimization in the 2-D and 3-D structural components under static

loading.

4. Extend the RBF Rayleigh-Ritz method for optimal design of plates under

vibration and buckling constraints.

5. The future research should investigate the Radial Basis Function in the

sensitivity in the bar, beam, shell and plate components. The sensitivity analysis

is the new field that the Radial Basis Function can apply in the engineering

application. This method will help engineers develop efficient numerical method

for engineering analysis. Also, this can be applied with other numerical
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techniques, such as the design optimization and static analysis in the structural

components.
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APPENDIX A

MATLAB PROGRAM CODE FOR 1-D BAR EXAMPLE
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A1.OVREVIEW

This program presents the example of using the Radial Basis Function with the

Collocation method and the Least Square Collocation method, and compares numerical

results in the plot. This program solves the following problem:

0)1(,0)0(:..,15 =′=−=−′′ uuCBuu

The red line represents the classical collocation method, the green line represents the

least square collocation method, and the blue line shows the exact solution.

A2. MATLAB PROGRAM CODE

%Bar Problem with Collocation Method and Least Square Method
k=5; p=1;n=1;N=5; Le=1; Segment=200;
xp=linspace(0.00001,Le,Segment)';
%Set boundary conditions
%u=[f]{c}
%u(0)=[f(0)]{c}, u'(1)=0
x11=0;
xc=(1:N-1)*(Le/N);
[f,df]=RBF1D(x11,xc,n,1);
ABC(1,:)=f;
x2=Le;
[f1,df1]=RBF1D(x2,xc,n,1);
ABC(2,:)=df1;
bBC=[0;0];
%For EQ with Collocation Method
xcp1=xc;
np1=length(xcp1);
for i=1:np1

x121=xcp1(i);
%F=u''+ku
for j=1:length(x121)
[f2(j,:),df2(j,:),df22(j,:),df23(j,:),df24(j,:)]=RBF1D(x121,xc,n,1);

end
F1=df22+k*f2;

AEQ1(i,:)=F1;
bEQ1(i,1)=p;

end
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A1=[ABC;AEQ1];
b1=[bBC;bEQ1];
c2=A1\b1;
%For EQ with Least Square Method
xcp=xp;
np=length(xcp);
for i=1:np

x12=xcp(i);
%F=u''+ku
for j=1:length(x12)
[f(j,:),df(j,:),df2(j,:),df3(j,:),df4(j,:)]=RBF1D(x12,xc,n,1);

end
F=df2+k*f;

AEQ(i,:)=F;
bEQ(i,1)=p;

end
ZZ=zeros(n+1,n+1);
A=[AEQ'*AEQ ABC';ABC ZZ];
b=[AEQ'*bEQ;bBC];
c=A\b;
c1=c(1:(N+n));
%Plotting
x13=xp;
for i=1:length(xp)

xx=xp(i,:);
[f(i,:)]=RBF1D(xx,xc,n,1);
end
usolccm=f*c2;
usollsm=f*c1;
x=xp;
uexact=1/5-1/5.*tan(5.^(1/2)).*sin(5^(1/2).*x)-1/5.*cos(5^(1/2).*x);
plot(x,uexact, ’LineWidth’,3)
hold on
plot(x,usolccm,’LineWidth’,3,’r’)
hold on
plot(x13,usollsm, ’LineWidth’,3,’g’)
title('\bf Compared Results With Exact and Numerical Solutions @ h=1.0')
xlabel('\bf X value')
ylabel('\bf Y value')
legend('uexact','usolccm','usollsm')
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APPENDIX B

MATLAB PROGRAM CODE FOR 1-D BEAM EXAMPLE
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B1.OVREVIEW

This program presents the example of using the Radial Basis Function with the

Collocation method and the Least Square Collocation method, and compares numerical

results in the plot. This program solves the following problem:

0)20(,0)20(,0)0(,0)0(:..,125.2 =′′′=′′=′==+′′′′ uuuuCBuu

The red line represents the least square collocation method, the green line represents the

classical collocation method, and the blue line shows the exact solution.

B2. MATLAB PROGRAM CODE

%Generalize Program
EI=2.5; w0=1; k=2; Le=20; N=25;
xp=linspace(0,20,200)';
%Set boundary conditions
%u=[f]{c}
%u(0)=[f(0)]{c}, u'(1)=0
x11=0;
xc=(1:N-1)*(Le/N);
[f1,df1,df12,df13,df14]=RBF1D(x11,xc,1);
ABC(1,:)=f1;
ABC(2,:)=df1;
x2=Le;
[f,df,df2,df3,df4]=RBF1D(x2,xc,1);
ABC(3,:)=df2;
ABC(4,:)=df3;
bBC=[0;0;0;0];
%For EQ
%Define collocation points (Collocation Method)
xcp=xc;
np=length(xcp);
for i=1:np

x12=xcp(i);
%F=EI*df2+k*f
for j=1:length(x12)
[f(j,:),df(j,:),df2(j,:),df3(j,:),df4(j,:)]=RBF1D(x12,xc,1);

end
F=EI*df4+k*f;
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AEQ(i,:)=F;
bEQ(i,1)=w0;

end
A=[ABC;AEQ];
b=[bBC;bEQ];
c=A\b;
%Least Square method
xcp1=xp;
np=length(xcp1);
for i=1:np

x3=xcp1(i);
%F=EI*df2+k*f
for j=1:length(x3)
[f2(j,:),df2(j,:),df22(j,:),df23(j,:),df24(j,:)]=RBF1D(x3,xc,1);

end
F1=EI*df24+k*f2;
AEQ1(i,:)=F1;
bEQ1(i,1)=w0;

end
ZZ=zeros(4,4);
AA=[AEQ1'*AEQ1 ABC';ABC ZZ];
bb=[AEQ1'*bEQ1;bBC];
cc=AA\bb;
c1=cc(1:N+3);
%Plotting
x13=xp;
for i=1:length(xp)

xx=xp(i,:);
[f(i,:)]=RBF1D(xx,xc,1);
end
usolccm=f*c;
usollsm=f*c1;
u=dsolve('2.5*D4u+2*u=1','u(0)=0','Du(0)=0','D2u(20)=0','D3u(20)=0','x');
t=linspace(0,20,200)';
un=subs(u,'x',t);
uexact=real(un);
x=linspace(0,20,200)';
plot(x,uexact,'LineWidth',3)
hold on
plot(x13,usollsm,'LineWidth',3,'Color','r')
hold on
plot(x,usolccm,'LineWidth',3,'Color','g')
title('\bf Compared Results With Exact and Numerical Solutions @ h=1.0')
xlabel('\bf X value')
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ylabel('\bf Y value')
legend('uexact','usollsm','usolccm')
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APPENDIX C

MATLAB PROGRAM CODE FOR 1-D HIGHER ORDER SYSTEM
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C1.OVREVIEW

This program presents the example of using the Radial Basis Function with the

Collocation method, and compares numerical result with the exact solution in the plot.

This program solves the following problem:

0)11(

0)11(,0)0(,0)0(,2)12(2)12(2)12(4 5222234

=′
==′==−+′−+′′−+′′′−′′′′

x

xxxxyxyxxyxxyxyx

The red line represents exact solution, and the blue line represents the classical

collocation method.

C2. MATLAB PROGRAM CODE

%Example Problem 1 @ N. Mai-Duy's Paper
Le=11; N=55; Segment=200; h=1.0;
xp=linspace(0,Le,Segment)';
%Set boundary conditions
%u=[f]{c}
%u(0)=[f(0)]{c}, u'(1)=0
x11=0;
xc=(1:N-1)*(Le/N);
% h=Le/9;
[f1,df1,df12,df13,df14]=RBF1D(x11,xc,h);
ABC(1,:)=f1;
ABC(2,:)=df1;
x2=Le;
[f,df,df2,df3,df4]=RBF1D(x2,xc,h);
ABC(3,:)=f;
ABC(4,:)=df;
bBC=[0;0;0;0];
%For EQ
%Define collocation points (Collocation Method)
xcp=xc;
np=length(xcp);
for i=1:np

x12=xcp(i);
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%F=x^4y''''-4x^3y'''+x^2(12-x^2)y''+2x(x^2-12)y'+2(12-x^2)y
for j=1:length(x12)
[f(j,:),df(j,:),df2(j,:),df3(j,:),df4(j,:)]=RBF1D(x12,xc,h);
end
F=x12.^4*df4-4.*x12.^3*df3+x12.^2.*(12-x12.^2)*df2+2.*x12.*(x12.^2-

12)*df+2.*(12-x12.^2)*f;
AEQ(i,:)=F;
bEQ(i,1)=2.*x12.^5;

end
A=[ABC;AEQ];
b=[bBC;bEQ];
c=A\b;
%Plotting
x13=xp;
for i=1:length(xp)

xx=xp(i,:);
[f(i,:)]=RBF1D(xx,xc,h);
end
usolccm=f*c;
usollsm=f*c1;
x=linspace(0,Le,Segment)';
uexact=-x.^3-Le.^2./(1-exp(Le)+Le.*exp(Le)).*x+(2.*Le.*exp(Le)-
2.*Le.*exp(Le).^2+Le.^2.*exp(Le).^2)./(1-
exp(Le)+Le.*exp(Le))./exp(Le).*x.^2+Le.^2./(1-exp(Le)+Le.*exp(Le)).*x.*exp(x);
plot(x,uexact,'r','LineWidth',3)
hold on
plot(x,usolccm,'b','linewidth',3)
title('\bf Compared Results With Exact and Numerical Solutions @ h=1.0')
xlabel('\bf X value')
ylabel('\bf Y value')
legend('uexact','usolccm')
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APPENDIX D

MATLAB PROGRAM CODE FOR 1-D BEAM BUCKLING
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D1.OVREVIEW

This program presents the example of using the Radial Basis Function to solve

beam buckling problems with different conditions, and plot first two mode shapes and

critical loads. The requirements of the beam are: A=10, E=1,000,000, ρ=0.5, L=1,

h=0.1.

D2. MATLAB PROGRAM CODE

1. Fixed-Fixed Condition

syms x
E=1; I=1; P=1; nn=100; xc=[1:10]/11; N=4; L=1; h=0.2; L=1; NM=2;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
dF3=diff(dF2,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
Kg=real(double(int(P*dF.'*dF,x,0,L)));
%Apply BC: Fixed-fixed beam
BC=[subs(F,x,0);subs(dF,x,0);subs(F,x,L);subs(dF,x,L)];
T=double(null(BC));
Kgs=T.'*Kg*T;
Ks=T.'*K*T;
%Compute enginvalues
[PP,EE]=eig(Ks,Kgs);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM

Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
Psix=Psix/a1;
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figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\bfeigenvalue=',num2str(Eg(i))])

end

2. Fixed-Free Condition

syms x
E=1e6; I=1e-8;
E=1;I=1;
P=1; nn=100;
xc=[1:8]/9;
N=3; L=1; h=.2; L=1; NM=2;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
dF3=diff(dF2,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
Kg=real(double(int(P*dF.'*dF,x,0,L)));
%Apply BC: Fixed-free beam
BC=[subs(F,x,0);subs(dF,x,0);subs(dF2,x,L);subs(dF3,x,L)];
T=double(null(BC));
Kgs=T.'*Kg*T;
Ks=T.'*K*T;
Kgs=(Kgs+Kgs')/2; % enforced symmetry
Ks=(Ks+Ks')/2;

%Compute enginvalues
[PP,EE]=eig(Ks,Kgs);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
Eg

%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM
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Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
Psix=Psix/a1;
figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\bfeigenvalue=',num2str(Eg(i))])

end

3. Fixed-Pin Condition

syms x
E=1; I=1; P=1; nn=100; xc=[1:10]/11; N=4; L=1; h=0.2; L=1; NM=2;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
dF3=diff(dF2,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
Kg=real(double(int(P*dF.'*dF,x,0,L)));
%Apply BC: Fixed-Pin beam
BC=[subs(F,x,0);subs(dF,x,0);subs(F,x,L);subs(dF2,x,L)];
T=double(null(BC));
Kgs=T.'*Kg*T;
Ks=T.'*K*T;
%Compute enginvalues
[PP,EE]=eig(Ks,Kgs);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM

Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
Psix=Psix/a1;
figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
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ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\bfeigenvalue=',num2str(Eg(i))])

end

4. Pin-Pin Condition

syms x
E=1; I=1; P=1; nn=100; xc=[1:10]/11; N=4; L=1; h=0.2; L=1; NM=2;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
dF3=diff(dF2,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
Kg=real(double(int(P*dF.'*dF,x,0,L)));
%Apply BC: Fixed-Pin beam
BC=[subs(F,x,0);subs(dF2,x,0);subs(F,x,L);subs(dF2,x,L)];
T=double(null(BC));
Kgs=T.'*Kg*T;
Ks=T.'*K*T;
%Compute enginvalues
[PP,EE]=eig(Ks,Kgs);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM

Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
Psix=Psix/a1;
figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\bfeigenvalue=',num2str(Eg(i))])

end
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APPENDIX E

MATLAB PROGRAM CODE FOR 1-D BEAM VIBRATION
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E1.OVREVIEW

This program presents the example of using the Radial Basis Function to solve

beam vibration problems with different conditions, and plot first two mode shapes and

critical loads. The requirements of the beam are: A=10, E=1,000,000, ρ=0.5, L=1,

h=0.1.

.

E2. MATLAB PROGRAM CODE

1. Fixed-Free Condition

syms x
A=10; E=1e6; Rho=0.5; h=0.1; L=1; nn=100; xc=[1/5 2/5 3/5 4/5]; N=5; NM=2; I=10;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
M=real(double(int(Rho*A*F.'*F,x,0,L)));
%Apply BC: Fixed-fixed beam
BC=[subs(F,x,0);subs(dF,x,0);subs(F,x,L);subs(dF,x,L)];
T=double(null(BC));
Ks=T.'*K*T;
Ms=T.'*M*T;
%Compute enginvalues
[PP,EE]=eig(Ks,Ms);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM

Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
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Psix=Psix/a1;
figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\omega_n=',num2str(sqrt(Eg(i)))])

end

2. Fixed-Fixed Condition

syms x
A=10; E=1e6; Rho=0.5; h=0.1; L=1; nn=100; xc=[1/5 2/5 3/5 4/5]; N=5; NM=2; I=10;
F=[sqrt((x-xc).^2+h) x.^(0:N)];
dF=diff(F,x);
dF2=diff(dF,x);
K=real(double(int(E*I*dF2.'*dF2,x,0,L)));
M=real(double(int(Rho*A*F.'*F,x,0,L)));
%Apply BC: Fixed-free beam
BC=[subs(F,x,0);subs(dF,x,0)];
T=double(null(BC));
Ks=T.'*K*T;
Ms=T.'*M*T;
%Compute enginvalues
[PP,EE]=eig(Ks,Ms);
[Eg,ii]=sort(diag(EE));
PP=PP(:,ii);
%Compute eigenfunctions
Psic=T*PP;
%Plot modes
xn=linspace(0,L,nn)';
for i=1:length(xn)

xx=xn(i,:);
[Fn(i,:)]=RBF1DTESTN(N,xx,xc,h);

end
for i=1:NM

Psix=Fn*Psic(:,i);
a1=max(abs(Psix));
Psix=Psix/a1;
figure
plot(xn,Psix,'linewidth',2)
xlabel(['\bfx, N=',int2str(N)])
ylabel('\bfEigenfunction')
title(['\bfEigenfunction No.',int2str(i),',\omega_n=',num2str(sqrt(Eg(i)))])

end
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APPENDIX F

MATLAB PROGRAM CODE FOR 1-D DESIDN OPTIMIZATION FOR UNIFORM
CROSS-SECTION TYPE
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F1.OVREVIEW

This program presents the example of using the Radial Basis Function for beam

design optimization in the beam buckling and vibration problems with the fixed-fixed

condition, and plot first mode shape, critical load and optimal design shape. The

requirements of the beam design are:

• Density of the material: 0.1 lbf

• Length of the beam: 100 feet

• Young’s Modulus: 10000000 psi

• Maximum requirement of the first eigenvalue: 10000

• Design limit of the width: 2,1,101 =≤≤ iwidthi

• Initial gauss of the design width: 3 feet and 2 feet on both ends.

• Optimal design width: 6.04 feet and 6.07 feet

F2. MATLAB PROGRAM CODE

%Set Up Initial Data
NPoly=1;
NMQ= 5; % number of of RBF;
h =200; % MQ shift parameter
E = 1e7; % Young's modulus
Rho=.1/386.4; % mass density
L = 100; % beam length
Xt= [0]; %location with translational dof fixed
Xr= [0]; % location with rotational dof fixed
Xt= [0 L], Xr= [];
NPlot= 501; % number of points for plotting;
%SecProp=@Sec1;
SecProp=@Sec1MQ;
LB= [1 1]';
UB=[10 10 ]';
EigD=1e5;
% Part A. Analysis runs of beams
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DES= [3 2];
% Fixed-Fixed beam
NInt=100;
NInt=60
XC=linspace (0, L, length (LB));
DES=UB;
%Buckling optimal design
SENOPT=1; X0=UB;
OUTb=BeamBucklingMQ('Optimal
design',NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,NPlot,EigD,LB,UB,SENOPT,NInt,X0)
DES=OUTb.X
OUTbP=BeamBucklingMQ('PlotModes',DES,NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,N
Plot,NInt,1,XC)
%Plot solution
OUTbP=BeamBucklingMQ('Section Plot',OUTb.X,L)
title('\bfOptiumal design for buckling: by a2BeamMQ\_Test.m')
xlabel('\bf(use BeamBucklingMQ)')
%Vibration optimal design
OUTv=BeamVibrationMQ('Optimal
design',NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,NPlot,EigD,LB,UB,SENOPT,NInt,X0)
DES=OUTv.X
OUTbV=BeamVibrationMQ('PlotModes',DES,NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,
NPlot,NInt,1,XC)
%Plot solution
OUTbP=BeamVibrationMQ('Section Plot',OUTv.X,L)
title('\bfOptiumal design for vibration: by a2BeamMQ\_Test.m')
xlabel('\bf(use BeamVibrationMQ.m)')
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APPENDIX G

MATLAB PROGRAM CODE FOR 1-D DESIDN OPTIMIZATION FOR TAPER
CROSS-SECTION TYPE
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G1.OVREVIEW

This program presents the example of using the Radial Basis Function for beam

design optimization in the beam buckling and vibration problems with the fixed-free

condition, and plot first mode shape, critical load and optimal design shape. The

requirements of the beam design are:

• Density of the material: 0.1 lbf

• Length of the beam: 100 feet

• Young’s Modulus: 10000000 psi

• Maximum requirement of the first eigenvalue: 10000

• Design limit of the width: 2,1,101 =≤≤ iwidthi

• Initial gauss of the design width: 3 feet and 2 feet on both ends.

• Optimal design width: 6.04 feet and 6.07 feet

G2. MATLAB PROGRAM CODE

% Set up the data
NPoly=1;
NMQ= 5; % number of RBF;
h =200; % MQ shift parameter
E = 1e7; % Young's modulus
Rho=.1/386.4; % mass density
L = 100; % beam length
Xt=[ 0 ]; %location with translational dof fixed
Xr= [0]; % location with rotational dof fixed
NPlot= 501; % number of points for plotting;
SecProp=@Sec1;
LB=[1 1];
UB=[10 10];
EigD=1e5;
% Part A. Analysis runs of uniform beams
DES=[3 2];
% Case A-1-CF : clamped-free beam
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NInt=100;
NInt=60
X0=UB;
SENOPT=1;
MODES=1;
%Vibration optimal design
OUTv=BeamVibrationTaper('Optimal
design',NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,NPlot,EigD,LB,UB,SENOPT,NInt,X0)
DES=OUTv.X;
XC=L;
OUTvV=BeamVibrationTaper('PlotModes',DES,NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecPro
p,NPlot,NInt,1,XC)
%Plot solution
OUTvP=BeamVibrationTaper('Section Plot',OUTv.X,L)
title('\bfOptiumal design for vibration: by BeamTaper\_Test.m')
title('\bf(Use BeamVibrationTaper)')
%Buckling analysis optimal design
OUTb=BeamBucklingTaper('Optimal
design',NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp,NPlot,EigD,LB,UB,SENOPT,NInt,X0)
DES=OUTv.X;
XC=L;
OUTbV=BeamBucklingTaper('PlotModes',DES,NPoly,NMQ,h,E,Rho,L,Xt,Xr,SecProp
,NPlot,NInt,1,XC)
%Plot solution
OUTbP=BeamBucklingTaper('Section Plot',OUTv.X,L)
title('\bfOptiumal design for buckling: by a1BeamTaper\_Test.m')
xlabel('\bf(use BeamBucklingTaper.m)')
% %------------ end of BeamTaper_Test.m
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