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Abstract 

DEVELOPMENT OF CONDITION PREDICTION MODELS 

FOR SANITARY SEWER PIPES 

 

Mohammadreza Malek Mohammadi, PhD 

 

The University of Texas at Arlington, 2019 

 

Supervising Professor: Dr. Mohammad Najafi 

Utility managers and owners have challenges when addressing appropriate 

intervals for inspection of gravity sanitary sewer pipelines and other underground pipeline 

systems. Frequent inspection of sewer network is not cost-effective due to large inventory 

of pipes and high cost of inspections, such as using closed-circuit television (CCTV) 

surveys. Therefore, it would be more beneficial to first predict critical sewers most likely 

needing maintenance and then perform inspections to optimize use of their limited budgets 

and target pipelines most in need of repairs, rehabilitation or renewal. Development of 

sewer condition prediction models is extremely vital for utilities to evaluate the short-term 

and long-term behavior of their pipe network considering different uncertainties. However, 

providing a prediction model is difficult due to lack of adequate datasets. The primary 

objective of this dissertation is to develop prediction models that can forecast future 

conditions of sanitary sewer pipes. The outcomes of the models can be used to prioritize 

inspection and renewal needs of sanitary sewer pipes for polyvinyl chloride (PVC) and 

vitrified clay pipes (VCP). In addition, this dissertation identifies significant factors that 

affect deterioration of sanitary sewers. To achieve these objectives, three different 

statistical and artificial intelligence models, namely logistic regression, gradient boosting 

tree and K-nearest neighbors were developed in successive steps. Data collected from 
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City of Tampa (Florida) was used to demonstrate the applicability of the developed models. 

Thirteen independent variables including pipes age, material, diameter, flow rate, pipe 

segment length, depth, slope, soil type, pH, and sulfate content, and water table, soil 

hydraulic group and soil corrosivity were used to build these prediction models. The results 

of this dissertation show that performance of all three developed models were acceptable; 

however gradient boosting tree achieved a higher accuracy during validation process. 

Additionally, pipe age, length, diameter, material and water table are found to be significant 

variables influencing deterioration of sanitary sewers. This dissertation contributes to body 

of knowledge by developing condition prediction models that can be used as part of a 

comprehensive asset management system of sanitary sewers.  
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Chapter 1 Introduction and Background 

1.1 Introduction 

The U.S. underground pipeline systems includes thousands of miles and form a 

significant part of the total infrastructure (Najafi and Gokhale, 2005). Sanitary sewers as a 

part of the wastewater infrastructure systems, are designed to collect sewage from 

domestic, industrial, and commercial users and convey to treatment plants. Most sewer 

systems are gravity sewers, which transfer the flow based on a slope. There are over 

800,000 miles of public sewer pipes and 500,000 miles of private sewer laterals in the 

United States. Approximately 240 million Americans are connected to 14,748 treatment 

plants for wastewater treatment. By 2032, it is estimated that 56 million more people will 

use centralized treatment plants (ASCE, 2017). 

Majority of the U.S. wastewater infrastructure is more than 100 years old and the 

combination of aging, chemical and environmental factors cause at least 23,000 to 75,000 

sanitary sewer overflows per year (EPA, 2004). The latest infrastructure report card, 

published by American Society of Civil Engineering (ASCE) in 2017, states a “D plus” grade 

for the wastewater infrastructure. ASCE indicated that water and wastewater systems in 

the U.S. are clearly aging and to keep-up with needs, a capital funding gap of $150 billion 

is needed by 2025 (ASCE, 2017). Furthermore, the U.S. population is increasing and 

shifting geographically. This requires investment for new infrastructure and maintaining 

existing infrastructure in areas of decreasing population with limited budgets (EPA, 2007). 

According to AWWA (2012), some municipalities and agencies spend a relatively 

smaller investment for sewer rehabilitation rather than expanding sewer systems to meet 

growth and treatment plant upgrades. The risk of inflow and infiltration, sanitary sewer 

overflows, and sinkholes are increased by inadequate maintenance and deficient asset 

management practices. The consequence of not maintaining sanitary sewer systems may 
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threaten human health as well as causing property damage and expensive emergency 

repairs (Kumar et al., 2018). 

As stated earlier, sewer pipes constitute a major portion of wastewater systems, 

as they form the pathway between points of wastewater generation and treatment plants. 

As sewer system becomes older, the structural and operational performance may degrade.  

The aging of sewer pipes increases the failure rates and deteriorated pipes can result in 

social, environmental and economic impacts (Opila, 2011).  

Maintenance and rehabilitation strategies are important factors to keep the 

performance of the system at an acceptable level of service and to provide cost-effective 

solutions for avoiding unforeseen failures. In the past, repair or rehabilitation of sewer pipes 

were only done once a pipe collapsed or failed. However, the current trend is to maintain 

and manage pipe systems before failure time. To achieve this goal, municipalities and 

utilities have begun to implement asset management systems. Infrastructure asset 

management is a comprehensive and cost-effective tool to maintain pipeline system at 

desired conditions. An effective asset management plan can develop various strategies to 

help utility owners and municipalities to understand the timing and associated costs of 

maintenance, rehabilitation or replacement of deteriorated pipes. 

Deterioration of sewer pipes is very complex process and several factors affect the 

condition of pipes simultaneously. Sewer pipes are covered and buried in urban areas and 

it is very difficult to identify the pipes with high potential of failure. It is obvious that 

monitoring and inspection of all sewer pipes is almost impossible due to limited budget, 

time and assessment technologies. Therefore, more attention is needed to develop pipe 

deterioration models that can predict the current and future condition of sewer pipelines. 

This dissertation discusses the different statistical and artificial intelligence models used to 
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predict condition states of sanitary sewer pipes. Furthermore, the influence factors that 

affect the condition states of sanitary sewer pipes will be reviewed. 

1.2 Research Needs 

A wide variety of pipe deterioration and condition prediction models were 

developed to forecast long term behavior of sewer pipes, but according to following 

literatures, there is still a high demand to implement more advanced models with higher 

accuracy and details. One of the most important limitation of current sewer prediction 

models has been unavailability of enough data to train and validate reliable models. 

Several authors suggested that condition prediction models for sewer pipes are required 

to be improved from different perspectives as described below: 

• Kulandaivel (2004) suggested improving neural network model for deterioration of 

sewer pipes by considering more historical input variables, such as surface load, 

groundwater, bedding conditions, soil corrosion and stability and sewer location. 

• Tran (2007) recommended that different case studies should be used to develop 

sewer deterioration models to verify findings of previous studies. Also, more 

investigation can improve results of previous neural network models by 

considering extra input variables.  

• Chughtai (2008) suggested using more predictors, such as soil conditions, and 

seismic factors for developing condition deterioration models for sewer pipes. Also, 

application of other prediction models should be investigated in future studies. 

• Park (2009) indicated that not much works regarding the deterioration mechanism 

for the sewer pipes have been conducted and more research is needed to identify 

the parameters that affect the deterioration of sewer pipes. 
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• Syachrani (2010) once again suggested more comprehensive models can be 

developed by incorporating additional location related attributes such as soil type, 

water table, etc. 

• Salman (2010) recommended improving deterioration models by consideration of 

more variables, such as soil type, groundwater level, and initial quality of 

construction. 

• Mashford et al. (2011) recommended a detail comparison of support vector 

machine and artificial neural network models. 

• Opila (2011) indicated that additional development of the condition prediction 

models would result in more accurate failure predictions. Other prediction models 

may provide more accurate result. 

• Sousa et al. (2014) suggested to employ more advanced deterioration models and 

compare the results with machine learning and neural network models.   

• Atique (2016) stated that more studies can be done on different variables of soil 

data such as dry/wet condition of soil, chloride level, sulfate level of soil, and their 

effects on pipe deterioration. 

• Bakry et al. (2016) recommended gathering more data to investigate more 

influential factors that affect the deterioration of sewer pipes.  

• Kabir et al. (2018) suggested that the developed sewer structural condition 

prediction models can be further improved by analyzing the effects of other 

independent variables such as sewer function, groundwater level, soil type, road 

class, and initial quality of construction.  

• Laakso et al. (2018) indicated that future research is needed to show how pipe 

condition depends on predictor variables. 



5 

1.3 Research Objectives 

The primary objective of this study is to develop condition prediction models that 

can forecast condition of sanitary sewer pipes based on historical inspection database. The 

condition score of individual sanitary sewer pipes and the probability of pipe being in each 

condition level can be estimated through development of prediction models.   

The secondary objective of this dissertation is to identify significant factors that 

affect the deterioration of sewer pipes. As presented before, deterioration of pipelines is 

very complex process and several factors affect the deterioration of pipes simultaneously. 

Therefore, by identifying these factors the design and installation of sewer pipes can be 

improved by optimizing performance of sewer system. For example, if the slope of pipe is 

a significant factor, it is possible to consider an appropriate slope at design phase to 

decrease the rate of deterioration. Similarly, identifying influence factors helps agencies 

and municipalities to collect less data points during inspection. 

The third objective of this research is to compare the performance of different 

modeling techniques, such as statistical and artificial intelligence models for predicting the 

condition levels of sanitary sewers. In general, it is not possible to claim that one model is 

always better than the other for condition prediction of pipes, but the performance and 

accuracy of different models can be investigated based on the data and methodology used 

to develop the prediction models.  

1.4 Scope of Work 

The scope of this dissertation is limited to use of condition scoring of sanitary sewer 

pipes obtained from closed circuit television (CCTV) inspection for modeling the 

deterioration of pipe systems. Condition of individual sewer pipes can be categorized 

based on Pipeline Assessment and Certification Program (PACP) developed by the 
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National Association of Sewer Service Companies (NASSCO). Table 1-1 presents the 

scope of this dissertation. 

Table 1-1 Scope of Work 

Included Not Included 

Sanitary sewer pipes Stormwater pipes 

Gravity sewer pipes Force main sewer pipes 

Inspected pipes based on PACP 
guidelines 

Inspected pipes based on other 
guidelines 

Polyvinyl Chloride Pipes (PVC), 
Vitrified Clay Pipes (VCP) 

Cast Iron (CAS), Ductile Iron Pipe 
(DIP), Reinforced Concrete Pipes 
(RCP) and unknown pipes 

Sanitary sewer pipes without any 
repair or rehabilitation history 

Pipe segments that have history of 
lining and repairs 

 

1.5 Research Methodology 

The deterioration models developed in this study are used to predict the condition 

rating of individual sewer pipes by considering the physical attributes of the pipes and 

various environmental factors. These influential factors are possibly contributing to the 

deterioration of sewer pipes over time. The following steps are carried in this methodology 

to achieve the expected outcome of the research as shown in Figure 1-1 as well.  

• Step 1: Problem definition 

• Step 2: Comprehensive literature review 

• Step 3: Data collection 

• Step 4: Data analysis 

• Step 5: Development of deterioration models 

• Step 6: Model validation 
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• Step 7:  Identifying significant factors 

• Step 8: Comparing statistical and artificial intelligence models 

• Step 9: Select the best model 

 

 

Figure 1-1 Research Methodology 

1.6 Expected Outcome 

The outcomes of this study are outlined below: 

• Logistic regression model is used in this study to investigate the deterioration of 

sanitary sewer pipes statistically. The result of logistic regression reflects: 1) 

predicted condition rating of sewer pipes; 2) probability of pipes being in each 

condition scale; 3) significant factors influencing deterioration of sewer pipes; 4) 

sewer pipes deterioration curve. 
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• Artificial intelligence models, such as, gradient boosting trees and k-nearest 

neighbors (k-NN) are developed in this study to evaluate deterioration of sewer 

pipes. The outcomes of these models show the predicted condition rating and 

important variables that affect deterioration of sewer pipes. 

• The performance comparison of statistical and artificial intelligence models 

presents the best approach to predict deterioration of sewer pipes based on 

database used in this study. 

1.7 Hypothesis 

With enough data, it is expected that both statistical and artificial intelligence 

models can be utilized to predict condition levels of sewer pipes. It is expected that that 

pipe age and manhole to manhole length are significant parameters affecting deterioration 

of sewer pipes based on dataset used in this dissertation. 

1.8 Organization of Dissertation 

The research results are presented in this dissertation, divided into the following 

chapters: 

• Chapter one presents background information about condition of sanitary sewer 

pipes and the importance of sewer inspection and maintenance strategies. 

Research needs, objectives, scope of work, methodology, expected outcomes and 

contribution to the body of knowledge are also presented. 

• Chapter two provides a comprehensive review of literatures on history and types 

of sewer systems, asset management, condition assessment of sewer pipes, 

sewer inspection methods, factors affecting condition of sewer pipes and condition 

prediction models. 



9 

• Chapter three discusses the structure and detail of statistical and artificial 

intelligence models used in this dissertation. Additionally, various data analysis 

and validation techniques are presented in this chapter. 

• Chapter four presents detail information of case study used in this dissertation to 

develop condition prediction models. In this chapter, description of all dependent 

and independent variables is provided along with descriptive and correlation 

analysis. 

• Chapter five discusses the procedure of developing logistic regression, gradient 

boosting tree and K-nearest neighbors’ models. The validation results of the 

models and influence of significant variables are also provided in this chapter. 

• Chapter six describes the detail of model validation and identifying the influence 

variables affecting deterioration of sanitary sewer pipes. The results of this study 

will discuss in this chapter.  

• Chapter seven presents the summary and conclusions of the research. Limitations 

and recommendations for further research are also included. 

1.9 Chapter Summary 

This chapter discussed background information about condition of sanitary sewer 

pipes and the importance of sewer inspection and maintenance strategies. Research 

needs, objectives, scope of work, methodology, expected outcome and contribution to the 

body of knowledge also were presented in this chapter.  
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Chapter 2 Literature Review 

2.1 Background and Overview 

The large expected future funding gap and the aging sewer infrastructure systems 

lead into the need for efficient use of available funds (ASCE, 2017). Thus, asset 

management has payed considerable attention in recent years to provide an acceptable 

level of service at a minimum cost. Municipalities and utility districts use asset management 

program to determine the current states of assets, level of service, critical assets, minimum 

life cycle cost and long-term funding plan. 

The primary components of any asset management program include the 

identification, location, and condition of assets. Pipeline condition assessment provides the 

critical information about physical and operational condition of pipes to estimate remaining 

service life and long-term performance of infrastructure pipe systems. Pipe condition 

assessment can be determined through standard coding systems and collected 

information from inspection process (EPA, 2009). 

A variety of tools and techniques are available today to detect and predict the 

condition of sewer pipes. However, the average rate of pipeline rehabilitation and renewal 

is not adequate to control quality demands and frequently deteriorating systems (EPA, 

2010a). Developing a comprehensive asset management program can result a systematic 

decision-making approach to identify critical assets and rehabilitate or replace the pipes 

before failure time. 

Vast majority of agencies responsible for wastewater collection are public and 

administered under a municipal or regional government structure. The maintenance and 

replacement of wastewater collection system has historically been underfunded (EPA, 

2010a). Condition assessment is a time consuming and expensive part of asset 

management program and due to limited budget, water and wastewater agencies always 
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try to find an alternative solution to decrease the costs and time of condition assessment 

procedure.  

As pipes are inspected on multiple occasions over time, and as inspection 

techniques improve, condition prediction models will be able to incorporate recorded 

defects and predict how pipes with certain defects will behave. Additionally, condition 

prediction models can predict failures for various levels of available information. If a pipe 

network has both inspected and uninspected pipes, prediction models will be able to predict 

current and future condition of all pipes in the network (Opila, 2011). Therefore, developing 

a comprehensive condition prediction model is very helpful for utility agencies and 

municipalities to assess the current and future condition of sewer pipes.  

2.2 Sewer System in the United States 

2.2.1 History 

In the seventeenth century, there was no conveyance system to collect the raw 

sewage. Because of low density population, the lack of sewage system did not create 

sanitation problem at that time. Sewage system were more common in Europe, and Asia 

since they had more experience to construct it. During the 1800s, demand for more 

effective sanitary system increased with growing the population in the United States 

(Burian et al., 2000). After rapid urbanization between 1840 and 1880, municipalities began 

to build sewer systems to protect public health and preventing the flood (Melosi, 2000). 

Sewers constructed before the 1850s were not planned, designed, or constructed 

by skilled engineers and consequently, the goal of solving sanitation problem was not 

achieved by overall public or private sewers constructed in the early nineteenth century. 

The unplanned and uncontrolled drainage of wastewater from privy vaults and cesspools 

polluted soils and groundwater, and that occasionally led to contaminated drinking water 
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and disease epidemics (Burian et al., 2000). Therefore, the American municipalities 

decided to find an alternative solution for sewage system. 

In the late 1850s, the first comprehensive sewer system in the United States were 

constructed in Chicago and Brooklyn (Burian et al., 2000). Sanitary condition and disease 

epidemics extremely improved by construction of sewer system.  Extensive construction of 

urban sewer systems did not start until the 1880s. 

 In the United States, municipalities installed two types of sanitary sewer systems 

which are Combined Sewer Systems (CSS) and Separate Sanitary Sewer and Storm 

Sewer System (SSS) (EPA, 2004).  

2.2.2 Combined Sewer System (CSS) 

In combined sewer system, a single pipe is used to transport domestic, commercial 

and industrial wastewater, and storm water to a selected disposal location. The first 

comprehensively plan and designed combined sewer system was constructed in Hamburg, 

Germany. The development of the combined sanitary sewer in the United States with 

considering planned network and large diameter sewers began during the late nineteenth 

century (Burian et al., 2000). 

Municipalities that needed both sanitary and storm sewers tended to construct 

combined sewer system since it was less expensive for two conveying system. In general, 

combined sanitary sewers are constructed more in large cities to control unexpected flood 

(EPA, 2004). Figure 2-1 illustrates a typical combined sewer system flows during wet and 

dry weather conditions. 

. 
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Figure 2-1 Combined Sewer System 

(EPA, 2004) 

2.2.3 Separate Sanitary Sewer and Storm Sewer System (SSS) 

The concept of separate sanitary sewer and storm sewer system is to manage 

storm water and sanitary wastewater separately. In this method, two separate pipes are 

used to convey domestic, commercial, and industrial wastewater, and storm water to a 

selected disposal location. Separate sanitary sewer was less expensive for municipalities 

that desired only a wastewater collection system. Unlike combined sewer systems, the 

separate system was not constructed to collect the large amount of water from wet weather 

events (EPA, 2004). 

In the late nineteenth century, most of sewer system constructed in the United 

States were combined because: 1) there was no evidence to prove the success of separate 

sewer system in Europe; 2) municipalities believed that the combined sewer system is less 

expensive; and 3) the agriculture use of separate sewer system was unknown for 

engineers (Burian et al., 2000). Figure 2-2 illustrates a typical separate sanitary sewer 

system during wet and dry weather conditions. 
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Figure 2-2 Separate Sanitary Sewer System 

(EPA, 2004) 

2.2.4 Types of Sewer Pipes 

Several different pipe materials are available to construct sanitary sewer systems, 

and each pipe with a unique characteristic is used in different conditions. Until 1850, bricks 

were used to construct sewer systems and at the middle of nineteenth century vitrified clay 

pipes were used more. Concrete pipes were used at the beginning of the twentieth century 

and other pipes, such as, polyvinyl chloride, fiberglass, high-density polyethylene, ductile 

iron, steel and reinforced concrete were used gradually after that (Kulandaivel, 2004). 

Gravity lines, force mains, and service laterals are the most common types of pipe 

using in wastewater systems. A gravity line is a sewer pipe that is operating based on initial 

designed slope. In the force main sewers, a pump generates the pressure and convey the 

swage through the pipe. And, service laterals are the pipes that transfer wastewater from 

buildings to the sanitary lanes (EPA, 2010b). According to EPA (2010b) sanitary and 

wastewater sewer systems are generally constructed by ferrous pipes, concrete pipes, 

ceramic-based pipes and plastic pipes as presented in Table 2-1. 
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Table 2-1 Sanitary Sewer Pipe Material 

(EPA, 2010b) 

Pipe Types Pipe Material 

Ferrous Pipe ductile iron, cast iron, and steel 

Concrete Pipe 
reinforced concrete pipe (RCP) and prestressed 
concrete cylinder pipe (PCCP) 

Ceramic-based Pipe brick and vitrified clay pipe (VCP) 

Plastic Pipe 
polyvinyl chloride (PVC) and high-density 
polyethylene (HDPE) 

 

2.3 Asset Management 

Asset management in the water and wastewater industry is an adapted concept 

from many success implementations in other industries such as transportation and building 

infrastructure management. In the early 1990s in Australia and New Zealand asset 

management was introduced before developing in other countries involving Canada, 

England and the United States. In the United States, Federal Highway Admiration 

introduced the infrastructure asset management in the early 1990s and Asset Management 

Primer was published by FHWA in 1999. This was the first published asset management 

in the U.S. that entirely covers asset management procedures and after that many other 

agencies were convinced to implement it. In the early 2000s, asset management started 

to be developed in the water and wastewater industry and the Environment Protection 

Agency (EPA) played an important role to provide and support asset management 

practices (Syachrani, 2010). While, the asset management program is relatively new 

concept for the water and wastewater industry, it is rapidly developing to reach wide 

acceptance in the U.S. and elsewhere in the world (Schulting and Alegre, 2007). 

 According to EPA, asset management is a continuous procedure that leads the 

acquisition, use, and disposal of infrastructure assets to optimize service delivery and 

minimize costs over the asset’s entire life. For wastewater management utilities, asset 
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management can be defined as an inclusive plan to manage infrastructure capital assets 

to minimize the total cost of owning and operating them, while delivering a satisfactory level 

of service (EPA, 2002). Based on EPA report (2002), among public utility agencies in the 

U.S., the concept of infrastructure asset management is most widely used in the 

transportation area to protect and maximize investments in highway, rail, and airport 

infrastructure assets. Implementation of an infrastructure asset management are varying 

from one agency to the other depending on their available fund, needs and abilities (Vanier, 

2001; EPA, 2002; IIMM, 2006). 

An infrastructure management system mainly involves seven different 

components. The actual structure may vary in different methods, but the basic concepts 

are similar (Park, 2009). The main components of Infrastructure management system 

framework are presented in Figure 2-3. 

 

Figure 2-3 Infrastructure Management System Framework 

(Park, 2009) 
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As Figure 2-3 illustrates, step one of infrastructural asset management process 

begins with the development of an asset inventory which contains information of all 

inspected assets in the network. The International Infrastructure Management Manual 

(IIMM, 2006) recommended this step as a first approach to build an infrastructure asset 

management system. As part of inventory process, data collection can play and important 

role. An inclusive record of asset, such as age, location, material, depth, length and other 

important information must be collected by utilities or municipalities in water and 

wastewater industry.  

The second step is evaluating the physical, operational and economical condition 

of the asset. After collecting the data, the information must be analyzed and then rank 

based on condition coding systems. Usually a scale of 0-100 or 1-9 are applied to evaluate 

the condition of bridges and pavement, while, a 1-5 grading system is used for sewer 

system (Park, 2009). In wastewater industry, most of agencies and utilities use a scale of 

1 to 3 (WSAA, 2002) or 1 to 5 to assess the condition of sanitary sewer or storm water 

pipes. The condition assessment procedures and methods are presented more in further 

sections. The next step is building prediction models to forecast the future condition of 

asset. In this step historical data are used to predict the future performance of the asset, 

due to preventing any unexpected collapse or failure. Infrastructure systems are critical for 

daily activities and forecasting their future condition and their remaining useful life is 

essential for utilities and municipalities.  

Decision making process in step 4 is an infrastructure management system which 

provides long term plans to maintain the asset and optimize resource allocation. The 

results of condition assessment and prediction models lead the agencies to organize a 

decision-making plan for current and future condition of the asset. In decision-making 

process several aspects, such as available fund, regulations, method of rehabilitation or 
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replacement and other important factors must be reflected. The step 5 in an infrastructure 

management system is maintenance and rehabilitation of the asset, based on result of 

decision-making process. For example, in water and wastewater industry, agencies can 

make decisions to rehabilitate or replace the damaged pipe by using trenchless technology 

or conventional open-cut methods. And, finally all the previous procedures assist the 

government to prioritize the assets for future investments as shown in step 6. 

In the current practice of asset management, all the infrastructure management 

steps are merged together with a Geographic Information Systems (GIS) shown in step 7. 

By using the GIS system, huge amount of data in different layers can be managed and 

update easily. Application of the monitoring data in condition assessment of the new 

projects are highly important. Monitoring data can be utilized to verify the effectiveness of 

the new methods and projects (Sterpi et al. 2017, 2018).   

2.4 Condition Assessment of Sewers 

2.4.1 Introduction 

In the United States, millions of gallons of human and industrial waste are 

conveyed into wastewater treatment plan through underground sewer systems every day. 

This process takes place underground (out of sight) as maintaining wastewater collection 

systems is always one of the critical challenges of governments. As the most municipal 

sewer systems are at least 60 years old, many communities and utilities are paying more 

attention to assess the condition of their underground pipes and associated infrastructures 

(EPA, 2015). 

Condition assessment is one of the essential components of infrastructure asset 

management program. According to EPA (2007), condition assessment is analyzing the 

data and information collected from direct inspection, in-direct monitoring and reporting to 

determine the structural, operational and performance status of infrastructure assets. In 
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the other worlds, the term “condition assessment” relates to evaluating the existing physical 

condition, identifying the deterioration pattern, and determining the potential of collapse or 

failure of an asset (NRC, 2004). 

The main concept of sewer condition assessment is to compare the current 

structural and operational condition of a sewer pipeline to a new or like new pipe. The result 

of comparison is a numerical grade for asset which present the existing condition of 

underground sewer pipelines. The existing sewer pipelines are considered in sewer 

condition assessment program to set a milestone for giving maintenance priorities to 

different pipelines depending on the risks associated with their breakdown 

(Khazraeializadeh, 2012). Figure 2-4 presents the condition assessment algorithm 

suggested by McDonald and Zhao (2001). 

 

Figure 2-4 Condition Assessment Algorithm 

(McDonald and Zhao, 2001) 
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2.4.2 Condition Rating Methods of Sewer Pipes 

Sewer defect coding is essential for the worldwide sewer rehabilitation industry to 

discover the critical information about the underground infrastructure (Thornhill and 

Wildbore, 2005). The historical background of the sewer condition assessment protocols 

goes back to1977 when the Water Research Centre (WRc) in United Kingdom started a 

five year research project to implement a methodology to assess the condition of sewer 

pipes based on a general coding system. The world first Sewerage Rehabilitation Manual 

(SRM) was published in 1980 by WRc and this standard later became the main reference 

to develop more sewer condition assessment protocols (Chughtai and Zayed, 2001; 

Rahman and Vanier, 2004). The condition rating is used to objectively evaluate the current 

condition of sewer pipes. Structural condition and operational condition are two common 

pipe condition categories (Chughtai and Zayed, 2008). Structural condition evaluates the 

pipe defects, the physical strength of a pipe and the capability of the pipe to resist external 

loads, and operational condition indicates the ability of the pipe to meet its service 

requirements. The result of structural conditions can be used to determine the necessity of 

pipe rehabilitation or replacement while the operational condition of a pipe indicates the 

need for cleaning and maintenance (Opila, 2011). 

Numerous methodologies have been developed to score the condition of buried 

sewer pipes in different countries, such as, WRc in United Kingdom, PACP in the U.S., 

NRC in Canada, and WSAA in Australia (Moteleb, 2010). In general, condition prediction 

scales are classified by discrete or finite scale values of relatively limited ranges (Baur and 

Herz, 2002). For example, a 1 to 5 classification scale is used to assess the condition of 

sanitary sewer pipes in PACP and WSAA methods with 1 as an acceptable condition, and 

5 as a poor condition. The details of most common condition rating methods are presented 

in following sections. 
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2.4.2.1 PACP Condition Grading Method 

Pipeline Assessment and Certification Program (PACP) is the North American 

Standard for pipeline defect identification and assessment to identify the pipe condition and 

manage the sewer pipe networks. In 2001, National Association of Sewer Service 

Companies (NASSCO) developed the PACP in partnership with Water Research Center 

(WRc) to assess the condition of sewer pipes. The goal of PACP is to create a 

comprehensive database to correctly identify, plan, prioritize, manage and renovate the 

sewer pipe assets based on condition evaluation. 

Pipe defects and features can be classified into five categories by NASSCO coding 

system. The defect classification involves; (1) continuous defects, (2) structural defects, (3) 

operational and maintenance, (4) construction features, and (5) miscellaneous features 

coding (EPA, 2015). For each type of defect, the numeric codes are used to rank the 

severity of the pipe defect and capital letters define the type of defect as shown in Table 2-

2. For example, “FC” represents a circumferential fracture, “SCP” shows the surface 

chemical attack and “X” presents the pipe collapse. 

Grades are assigned based on several factors, such as, significance of the defect, 

extent of damage, and percent of restriction to flow capacity or the amount of wall loss due 

to deterioration. The final condition rating is defined from two major categories which are 

structural and operation and maintenance (O&M). The below list presents the grades and 

definitions of grades respectively (NASSCO, 2015): 

5 -  Most significant defect grades 

4 -  Significant defect grade 

3 -  Moderate defect grade 

2 -  Minor to moderate defect grade 

1 -  Minor defect grade 
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Table 2-2 PACP Structural and Operational Defects Codes Sample 

(NASSCO, 2015) 

Family Group Descriptor Code 
Structural 

Grade 
O&M Grade 

Structural 

Crack (C) 

Circumferential (C) CC 1  

Longitudinal (L) CL 2  

Multiple (M) CM 3  

Spiral (S) CS 2  

Fracture (F) 

Circumferential (C) FC 2  

Longitudinal (L) FL 3  

Multiple (M) FM 4  

Spiral (S) FS 3  

Collapse (X) 
Pipe (P)  XP 5  

Brick (B) XB 5  

Weld Failure (WF) 

Circumferential (C) WFC 2  

Longitudinal (L) WFL 2  

Multiple (M) WFM 3  

Spiral (S) WFS 2  

O&M 

Infiltration (I) 

Weeper (W) IW  2 

Dripper (D) ID  3 

Runner (R) IR  4 

Gusher (G) IG  5 

Deposits Attached 
(DA) 

Encrustation (E) DAE 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Grease (G) DAGS 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Ragging (R) DAR 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Other (Z) DAZ 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Obstacles/Obstruc
tions (OB) 

Brick or Masonry (B) OBB 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Pipe Material in 
Invert (M) 

OBM 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Object Protruding 
Thru Wall (I) 

OBI 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Rocks (R) OBR 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Built into Structure 
(S) 

OBS 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

Construction Debris 
(N) 

OBN 
 <=10% - 2, <=20% - 3, 

<=30% - 4, >30% - 5 

External Pipe or 
Cable in 
Sewer (P) 

OBP 
 

<=10% - 2, <=20% - 3, 
<=30% - 4, >30% - 5 
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PACP assess the condition of pipes on a scale of 1 to 5 based on the result 

obtained from CCTV inspections and operator judgments. Condition 1 determines the pipe 

is in excellent condition and condition 5 specifies the pipe has failed or is likely to fail. Pipe 

with condition rating of 5 needs immediate action for rehabilitation or replacement.  Table 

2-3 provides the PACP condition rating, from the PACP manual. 

Table 2-3 PACP Defect Grades 

(NASSCO, 2015) 

Condition Grade Description Time to Failure 

5 

Immediate Attention 
Defects requiring immediate attention 

Pipe has failed or is 
likely to fail within the 
next five years 

4 

Poor 
Severe defects that will become Grade 5 
defects within the foreseeable future 

Pipe will probably fail in 
5- 10 years 

3 

Fair 
Moderate defects that will continue to 
deteriorate 

Pipe may fail in 10-20 
years 

2 

Good 
Defects that have not begun to deteriorate 

Pipe unlikely to fail for 
at least 20 years 

1 

Excellent 
Minor defects 

Failure unlikely in the 
foreseeable future 

 

The outcome of PACP condition grading system is completely dependent on the 

quality of the defect coding and any error during detection of defects affects the result of 

final grades. The PACP condition grading system ranks the pipe segments based on 

severity of the observed defect and conditions. Quick rating, segment grade score, overall 

pipe rating and pipe rating index are three different ways to express the condition of sewer 

pipe segments. 
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The PACP quick rating is a four-character score which explains the number of 

occurrences for the two highest severity grades. The first and third digits of four-character 

index express the highest severity grades occurring along the pipe. The second and forth 

digits indicate the total number of these defects and alphabetic characters are used if the 

total number exceeds 9. For example, a quick rating of 5219 indicates 2 defects with grade 

of 5 and 9 defects with grade of 1 were observed along the pipe. In other example, a pipe 

with nineteen grade 4 and twenty grade 2 would receive the quick rating of 4B2C. Figure 

2-5, briefly shows the detail of quick rating index.  

 

Figure 2-5 PACP Quick Rating Index 

(NASSCO, 2015) 

Segment grade scores (SG) are calculated by multiplying each condition grade by 

its number of occurrences. Therefore, each pipe segment has individual grade score for 

each of the five condition grades. For example, if a pipe has 5 structural defects of grade 

5, 2 defects of grade 3 and 6 defect of grade 2, the segment grade scores are respectively 

SG5 = 25, SG3 = 6 and SG2 = 12. Segment grades scores are calculated for both structural 

and operational defects.  

Overall pipe rating (OR) is obtained from summation of the five individual segment 

grade scores. For instance, the overall pipe rating is 43 for structural defects in previous 
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example. Structural and O&M defect grades are used separately to calculate the overall 

pipe index for each pipe segment. Table 2-4 provides an example of overall pipe rating and 

segment grade score calculation. 

Table 2-4 Overall Pipe Rating and Segment Grade Score 

Condition 
Grade 

Defects Segment Grade 

Structural O&M Structural O&M 

5 5 0 25 0 

4 0 0 0 0 

3 2 2 6 6 

2 6 4 12 8 

1 0 0 0 0 

Total Defects= 13 6  

Overall Rating= 43 14 

 

And finally, the pipe rating index (RI) provides the overall defect severity along the 

pipe segment by dividing the overall pipe rating by the total number of defects. The pipe 

rating index are calculating separately for structural and O&M conditions. For example, in 

previous case the RIstructural is 3.3 and RIO&M is 2.3. Condition 1 determines the pipe is in 

excellent condition and condition 5 specifies the pipe has failed or is likely to fail and 

immediate action is needed to rehab or replace it. As explained before, In the United States 

most of municipalities and agencies use the PACP methodology to assess the condition of 

sewer pipes.  

2.4.2.2 WRc Condition Grading Method 

The historical background of the development of sewer condition assessment 

protocols goes back to1977 when the Water Research Centre (WRc) in United Kingdom 

started a five year research project to implement a methodology to assess the condition of 

sewer pipes based on a general coding system. The world first Sewerage Rating Manual 

(SRM) was published by WRc in 1983 to assess the condition of individual pipes using the 
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Closed-Circuit Television (CCTV). Since 1983, the WRc standard has been revised five 

time and the fifth edition was published on 2013 (WRc, 2004).  

According to WRc, two major structural and operational categories are used to 

determine the defects and evaluate pipe condition. In this protocol deduct structural or 

operational values are assigned for various defect categories ranging from 1 to 165 and an 

overall sewer condition grade is identified for the whole pipe segment using scale 1 to 5 

(WRc, 2004). Structural and operational deduct values are assigned from the defect 

codification. The impact of the defect on the service life and performance of the sewer pipe 

are determined by defect weights. Structural defects define the physical condition of a 

sewer pipe. The structural defect scores depend on severity of defects and type of pipe 

material (Chughtai, 2008). Table 2-5 show some common defect scores in concrete pipes. 

Table 2-5 Overall Pipe Rating and Segment Grade Score 

(Adapted from Chughtai 2008) 

Defect Detail Score Unit 

Joint Opening 

Slight 0.1 Per Joint 

Medium 0.5 Per Joint 

Large 2 Per Joint 

Crack 

Circumferential 1 Per Crack 

Longitudinal 2 Per Crack 

Multiple 5 Each 

Fracture 

Circumferential 8 Per Crack 

Longitudinal 15 Per Crack 

Multiple 40 Each 

Deformation 

5% 10 Each 

10% 30 Each 

15% 60 Each 

20% 90 Each 

25% 125 Each 

30% or more 165 Each 

Hole 
<1/4 Circumferential 80 Each 

>1/4 Circumferential 165 Each 

Broken Pipe  80 Each 

Collapsed Pipe  165 Each 
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The peak score shows the greatest worst defects in each pipeline and it is the 

maximum defect score for any one meter length of pipe. The defect scores are calculated 

and based on peak defect score or deduct value, a single condition grade for the structural 

or operational condition of pipe is considered. Table 2-6 provides severity condition grades 

for WRc protocol for both structural and operational condition (Chughtai, 2011). 

Table 2-6 Severity Condition Grades for WRc Protocol 

(Chughtai 2011) 

Condition 
Grade 

Description 
Peak structural 

defect score 
Peak operational 

defect score 

1 Acceptable condition < 10 < 1 

2 
Minimal collapse risk but potential for 
further deterioration 

10–39 1–1.9 

3 
Collapse unlikely but further 
deterioration likely 

40–79 2–4.9 

4 Collapse likely in near future 80–164 5–9.9 

5 Collapse imminent or collapsed 165 and higher > 10 

 

2.5 Sewer Inspection Methods 

2.5.1 Introduction 

Collecting pipe data and data analysis are two required processes to perform a 

condition rating score for pipe infrastructure. Inspection is the first step of condition 

assessment plan to collect pipe characteristic data, such as, physical attributes (pipe 

diameter, material, depth, length, age, etc.), environmental attributes (soil type, corrosivity, 

groundwater level, pipe bedding, temperature, etc.), and operational attributes (internal 

pressure, velocity, operational and maintenance procedures, etc.) (Opila, 2011). Different 

inspection and monitoring methods can be used to collect pipe information.  

The primary purpose of an inspection is to evaluate the current condition of an 

asset, and to detect structural and operational (hydraulic) problems along the pipe 

segment. A detailed work plan is needed to outline the assets that should be inspected, 
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time of inspection and the required technologies to perform inspection. Ideally, an 

inspection would occur at the end of pipe service life, but the condition of buried pipeline is 

unknown before performing any condition assessment (EPA, 2009).  In general, cracks, 

fractures, abrasions, joint problems, and corrosion are the most important factors cause 

the structural problems. Operational problems occur due to several factors, such as, 

obstacles, infiltration, inflow, sedimentation and root intrusion (Salman, 2010). Inspection 

and monitoring of asset performance plays a significant role in pipe condition assessment. 

It is very costly to inspect every linear foot of a sewer system, especially when a 

little prior inspection history is available for sewer network, so a comprehensive condition 

assessment plan is needed to focus on critical pipes to establish inspection methodology. 

Inspection timing and frequency is another important factor to minimize the inspection cost 

and the likelihood of sewer failure. The selected inspection technique depends on type of 

asset and the methodology to scale sewer pipe condition. CCTV is the most common 

method to inspect sewer pipes for structural and operational defects, however, a variety of 

technologies are available to inspect wastewater pipeline networks.  

2.5.2 Inspection Technologies 

The integration of inspection and condition grading systems helps forecast the 

future condition or remaining useful life of sewer pipes by developing pipe deterioration 

models. According to EPA (2009), inspection technologies for wastewater systems can be 

classified in following categories: 

• Camera 

• Acoustic 

• Electrical/electromagnetic 

• Laser 

• Innovative technologies 
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Some of the most common methodologies are briefly described in following 

sections. Table 2-7 provides a summary of typical applications for each technology. 

Table 2-7 Inspection Technology Overview 

(EPA 2009) 

Technology 

Sewer type 
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Defects detected 
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Digital cameras •   Any 6-in. to 60-in. • • •  

Zoom cameras •   Any > 6-in. • • •  

Push-camera   • Any 1-in. to 12-in. • • •  

A
c
o
u
s
ti
c
 In-line leak detectors • •  Any ≥ 4-in.   •  

Acoustic monitoring 
systems 

 •  PCCP ≥ 18-in.  •   

Sonar/ultrasonic • •  Any ≥ 2-in. • •   

E
le
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l/
 

e
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Electrical leak location • • • Nonferrous ≥ 3-in.   •  

Remote field eddy 
current 

• • • 
Ferrous, 
PCCP 

≥ 2-in.  • •  

Magnetic flux leakage • • • Ferrous 2-in. to 56-in.  •   

L
a
s
e
r 

Laser profiling • •  Any 
4-in. to 160-

in. 
• •   
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v
e
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e
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h
n
o
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g
ie

s
 Gamma-gamma 

logging 
• • • Concrete 

Not yet 
defined 

   • 

Ground penetrating 
radar 

• • • Any 
Not yet 
defined 

  • • 

Infrared thermograph • • • Any 
Not yet 
defined 

  • • 

Micro-deflection •   Brick 
Not yet 
defined 

 •  • 

Impact echo/SASW •   
Brick/ 

Concrete 
> 6-ft  •   
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2.5.2.1 Camera Inspection 

Closed Circuit Television (CCTV) is the most common inspection method in 

camera inspection category to evaluate condition of pipes by generating video records. 

CCTV inspection have been used by agencies and municipalities since 1950s (ISTT, 

1990). CCTV inspection is one of the most widely used inspection methods allow agencies 

to obtain and store more accurate and detailed information. In general, video cameras are 

used to perform a visual recording of inside condition of a pipeline. The visual inspection 

of sanitary sewer lines enables a CCTV operator to recognize specific defect along the 

pipeline and make it possible to inspect too small or hazardous pipelines. Different 

equipment, such, as pushrod cameras or remote-control robot crawlers are used to convey 

the camera through the pipeline. The primary disadvantages of CCTV inspection method 

are the limitation of detecting the pipe surface above the water line, the restriction to provide 

any structural data on the pipe wall integrity and surrounding soil around the pipe (EPA, 

2009). 

CCTV inspections can identify numerous types of defects involving cracks, 

infiltration, inflow, tree roots, collapse, obstacles, protruding laterals, offset joints and 

presence of grease (WEF/ASCE, 2009). According to EPA (2009), data obtained from 

CCTV inspection includes: 

• Evidence of sediment, debris, roots, etc. 

• Evidence of pipe sags and deflections 

• Off-set joints 

• Pipe cracks 

• Leaks 

• Location and condition of service connections 
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The quality of defect identification and accuracy of CCTV highly dependent on 

operator experience, picture quality and flow level (Salman, 2010; EPA, 2009; Allouche 

and Freure, 2002; Chae and Abraham, 2001). CCTV operator must have formal training 

and certification to be able to detect different problems and defects along the pipe. CCTV 

inspection is a cost-effective method providing required information to assess the pipe 

condition. Many existing inspection technologies just provide data on the structural 

condition of pipe or soil surrounding the pipe, while CCTV provides visual data on leak, 

location of service lateral, cracks, off-set joints and other important defects. It is the reason 

that CCTV is an important inspection tool for agencies or municipalities to evaluate 

condition of wastewater pipe systems (EPA, 2009). In general, cost of CCTV inspection 

increases with sewer depth, because of additional set-up time and cable length from the 

surface to the sewer. Figure 2-6 shows a CCTV camera inside a gravity pipe.  

 

Figure 2-6 CCTV Inspection Technology 

(EPA, 2010b) 
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2.5.2.2 Acoustic Technologies 

Acoustic technology is an inspection method by producing vibrations or sound 

waves to determine pipe condition. In general, acoustic technologies are used to inspect 

water mains, therefor, these type of technologies can be used to assess the condition of 

force mains in wastewater industry. According to EPA (2009), acoustic technologies can 

be classified into three categories: 

• Leak detectors 

• Acoustic monitoring systems 

• Sonar, or ultrasonic systems 

Leak detectors are used to assess the condition of water or sewer pipelines by 

detecting sounds or vibrations produced by leaks. Variety of tools including hand-held 

listening device, underwater microphones, geophones, leak noise correlators, and in-line 

devices are used in this method to assess the condition of the pipes. Acoustic monitoring 

systems are used to evaluate the condition of PCCP pipes which are generally subjected 

to failure due to internal or external corrosion. Identifying the acoustic signals produced by 

broken wire inside the pipes is the methodology of defect detection in acoustic monitoring 

system. Acoustic Emission Testing (AET) and Sound-Print® are two common technologies 

to provide continues acoustic monitoring of PCCP (EPA, 2009). 

Sonar or ultrasonic system was established in 1906 and for the first time, WRc 

used this technology to inspect pipelines in 1987 (EPA, 2009). In this method, very high 

frequency ultrasonic sound waves are sent through the surface of the pipeline and then 

reflected waves are analyzed to identify the defects along the pipe. Due to performing a 

comprehensive pipe inspection, ultrasonic system equipment can be combined with CCTV 

or other inspection tools (Najafi 2005). In this method it is possible to identify defects 

located below the flow line (Salman, 2010).  
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One benefit of sonar system is that it can be positioned in pressurized force mains 

without taking them out of service (EPA, 2010b). Figure 2-7 shows the results of a 

combined sonar and CCTV scan. Deviations in wall thickness are indicated by horizontal 

bars, red and orange areas show greater corrosion and the amount of sediments at the 

bottom of the pipe are shown in cross section view. 

Figure 2-7 Combined Sonar and CCTV Results of a 42-in. RCP Pipe 

(EPA 2010b) 

According to WEF/ASCE (2009), data obtained from ultrasonic inspection 

involves: 

• Existing condition of the pipeline 

• The amount of debris 

• The capacity of pipe after cleaning 

Table 2-8 summarize different classification of acoustic technologies: 
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Table 2-8 Acoustic Technologies Summary 

(EPA 2009) 

Summary Leak detectors 
Acoustic monitoring 

systems 
Sonar/ultrasonic 

systems 

Sewer type 
Force mains, gravity 
sewers 

Force mains 
Force mains, gravity 
sewers 

Material Any PCCP Any 

Pipe size ≥ 4-in. ≥ 18-in. ≥ 4-in. 

Defects detected Leaks 
Broken pre-stressed 
wires 

Pipe wall 
deflections, 
corrosion, pits, 
voids, and 
cracks, debris 

Original application 
Leak detection in 
pressurized water 
lines 

Monitoring PCCP 
water lines 

Maritime use 

Status 
Commercially 
available 
for sewer inspection 

Commercially 
available 
for sewer inspection 

Commercially 
available 
for sewer inspection 

Advantages 
Can detect very 
small 
leaks 

Useful as a screening 
technique prior to 
more 
detailed inspection 

Suitable for pipes of 
any 
material and a wide 
range of 
diameters 

Disadvantages 

Requires minimum 
flow to 
be carried through 
pipe 

Only detects general 
distress 

Only inspects pipe 
below 
the waterline 

 

2.5.2.3 Electrical and Electromagnetic Methods 

Several electrical and electromagnetic methods including electrical leak location, 

eddy current testing (ECT), remote field eddy current (RFEC), and magnetic flux leakage 

(MFL) are utilized to evaluate the condition of pipes. Electrical leak location was developed 

in 1981 and it is one of the most widely used techniques for detecting leaks in 

geomembrane liners (EPA, 2009). This method can be used to assess the condition of 

non-ferrous force mains, gravity and lateral swears greater than 3 in. in diameter. The 

advantage of electrical leak location is that this method is available for service lateral, 

however, as a disadvantage, the gravity pipes must be filled prior to inspection.  
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Eddy current testing and remote field eddy current technology are used to evaluate 

the condition of ferrous force mains, gravity and service lateral sewer systems. In these 

methods variety of defects, such as, metal loss, cracks, leaks, broken wire, graphitization, 

and wall thickness can be detected. As a disadvantage typically post processing of data 

by vendors is needed before inspecting the pipe. Magnetic flux leakage detection technique 

is widely used to assess the condition of oil and gas pipelines. The MFL technique for pipe 

inspection was developed in 1965 and it can be used to inspect ferrous force mains, gravity 

and service lateral sewer pipes.  Metal loss, circumferential and longitudinal cracks are 

some types of defects which can be detected by MFL technique. Magnetic flux leakage 

detection technique has not been widely used for assessment of sewer pipes (EPA, 2009). 

2.5.2.4 Laser-Based Inspection 

Laser based inspection creates a profile of the pipe wall by analyzing pipe shape 

and detect the defects on the pipe surface (Najafi, 2005). In this method a laser is used to 

generate a line of light around the pipe wall. The laser light assesses the shape of the 

sewer to detect any changes to the shape or pipe size, which may be caused by deflection, 

corrosion or siltation. This inspection method can only be performed when the pipe is out 

of service and in dry condition. Similar sonar system, this method can be combined with 

other inspection techniques, such as CCTV or sonar (EPA, 2009). 

According to Salman (2010) and WEF/ASCE (2009), laser-based inspection can 

be used to identify following defects: 

• Shape and cross-sectional area of the pipe  

• Defects on the pipe wall surface 

• Debris 

• Capacity before/after cleaning 

• Quality of the lining work 
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Table 2-9 provides a summary description of the laser profiling technology. 

Table 2-9 Laser Profiling Technologies Summary 

(EPA 2009) 

Summary 

Sewer type Force mains, gravity sewers 

Material Any 

Pipe size Product dependent 

Defects detected Deformations, siltation, corrosion 

Original application Earlier use in large diameter tunnels and caverns 

Status Commercially available for sewer inspection 

Advantages 
Provides better data quality then CCTV alone, can be used to 
create 3D models of pipelines 

Disadvantages Can only detect defects above the water line. 

 

2.6 Sewer Pipe Deterioration Mechanisms 

Like all infrastructure, the condition of pipelines deteriorates gradually over time. 

Combinations of corrosion, soil movements and traffic loads lead to deterioration of pipes 

(Jalalediny Korky et al., 2019). Deterioration of pipe has several economic and social 

impacts and development of annual replacement plans for critical pipes are essential for 

municipalities and pipe network owners. Pipe systems require continuous inspection and 

maintenance, and several factors increase risk of pipe deterioration. The mechanisms of 

sewer pipe deterioration can be classified into structural, hydraulic and operational failure 

which are briefly explained below (Najafi and Gokhale, 2005; EPA, 2009; Opila, 2011). 

• Structural failure: this type of failure is caused by any kind of defects on pipe wall 

that reduce the structural integrity of pipe segment. Similarly, the soil surrounding 

the pipe has essential role to failure time of pipelines. In general, cracks, internal 
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and external corrosion, pipe deflection, misaligned joints, and brakes are the most 

common type of defects associated with structural failure. The soil supports the 

pipe and transmit subjected live load and dead load to the bedding which acts as 

a foundation. Loss of bedding material can lead to pipe deflection, deformation, 

and defects on the pipe wall. Therefore, loss of soil in both bedding and cover 

portion, and increasing traffic load can be other causes of structural failure of pipes. 

According to EPA (2009), different pipe material has different degree of failure and 

table 2-10 shows typical failure modes in sewer systems. 

Table 2-10 Failure Modes for Various Types of Pipe Material 

(EPA ,2009) 

Pipe Material Failure Modes 

Ferrous Pipe (Ductile 
Iron, Cast Iron, Steel) 

• Internal or external corrosion are the primary failure 
mode for metal pipes 

Concrete Pipe (RCP, 
PCCP) 

• Corrosion is often a main factor in the structural failure 
of concrete pipes when the concrete break up at the 
result of corroded reinforcing steel inside the pipe 

Ceramic-based pipe 
(Brick, Vitrified Clay 
Pipe) 

• Collapse caused by weakened mortar is one of the main 
reasons of brick pipes failure 

• Loss of surrounding soil into the pipe is the other 
important mod of failure for ceramic based pipes 

Plastic Pipe (Polyvinyl 
Chloride (PVC), High-
density Polyethylene 
(HDPE)) 

• Environmental stress cracking is the primary mode of 
plastic pipe failure 

• Leaking joints can also be  

 

• Operational failure: it is the most common failure in wastewater collection systems 

and generally occurs by a physical cause. The operational failure can be resolved 

during a maintenance procedure and normally does not affect the structural 

integrity of the pipe. Several type of defects, such as, debris, infiltration, root 

intrusion, sediment accumulation, obstruction and grease build-up fall within 

operational failure category (Opila 2011, EPA 2009). 
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• Hydraulic capacity failure: in general, hydraulic capacity failure occurs when 

demand is higher than pipe capacity. In other words, the pipe segment does not 

have adequate capacity to convey wastewater, without having any structural or 

operational problem. Hydraulic capacity failure may be the result of 

infiltration/inflow (I/I), where the groundwater and storm water enter the sewer 

system through connections, cracks and defects. Other factors including pipe 

deformation and inadequate slope along the pipe increase the risk of hydrophilic 

capacity failure. Inadequate pipe slope can be due to loss of pipe bedding or 

insufficient construction and design. Hydrophilic capacity failure is often a sign of 

other type of structural defects such as cracks, broken pipe, leaks and other 

factors. 

Next section covers different physical, operational and environmental factors that 

affect condition of sewer pipes.  

2.7 Factors Affecting Condition of Sewer Pipes 

2.7.1 Introduction 

Deterioration of pipe is a very complex process and several factors influence the 

service life of pipe networks (Atique, 2016; Opila, 2011; Lindner 2008, Chughtai, 2008; Yan 

and Vairamoorthy, 2003). Davies et al. (2001) provided a comprehensive review of 

previous studies on the factors that influence structural deterioration of rigid pipes and 

categorized them into three groups of pipe construction, operational and environmental 

factors. According to Jalalediny Korky et al. (2017) selecting proper construction and 

equipment can affect performance of underground buried infrastructures. In other study, Al 

Barqawi and Zayed (2006) classified these factors into three categories; physical, 

environmental, and operational for water pipes, as shown in Table 2-11. 
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Table 2-11 Factors Affecting Water Pipes Deterioration 

(Al Barqawi and Zayed, 2006) 

Physical factors Environmental factors Operational factors 

Pipe age 

Pipe diameter 

Pipe installation 

Pipe lining and coating 

Pipe manufacture 

Pipe material 

Pipe wall Thickness 

Type of joints 

Climate 

Disturbances 

Groundwater 

Pipe bedding 

Pipe location 

Seismic activity 

Soil type 

Stray electrical currents 

Trench backfill 

Backflow potential 

Flow velocity 

Leakage 

 

 

Typically, agencies and municipalities have enough physical data, but 

environmental and operational factors are often unavailable (Salman, 2010). According to 

Kley and Caradot (2013), it is important to identify the factors that influence deterioration 

of sewer pipes due to following reasons: 

• Data collection is a very expensive process during condition assessment and 

gathering all the pipe information is not a cost-effective approach. Identification of 

significant factors decreases the number of required features and reduces data 

collection costs. 

• High prediction accuracy can be achieved when more significant factors are used 

in the model. 

Table 2-12 provides summary of variables used to develop condition prediction 

models in previous studies.  
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Table 2-12 Factors Affecting Sewer Pipes Deterioration 

Physical Factors Environmental Factors Operational Factors 

End invert elevation 

Installation method 

Joint type 

Pipe length 

Pipe shape 

Pipe slope 

Pipe age 

Pipe depth 

Pipe material 

Pipe size 

Start invert elevation 

Backfill type 

Bedding material 

Ground movement 

Groundwater level 

pH 

Road type 

Root interference 

Soil corrosivity 

Soil fracture potential 

Soil moisture 

Soil type 

Soil sulfate level 

Traffic characteristics 

Vehicle flow 

Blockages 

Burst history 

Debris 

Flow velocity 

Hydraulic condition 

Infiltration/exfiltration 

Previous maintenance 

Sediment level 

Sewer Type 

 

 

2.7.2 Physical Factors 

2.7.2.1 Pipe Age 

Pipe age is normally the difference between the pipe installation year and the date 

of inspection. The age of pipe begins to start after the minute the sewer pipe is installed 

(Kulandaivel, 2004). Aging is one of the most important factors during pipe deterioration. 

Bathtub curve is a plot that determines rate of pipe failure depending on the age of the 

pipe. As showed in Figure 2-8, bathtub curve involves three distinct phases. The first phase 

is the early life period with a high failure rates that shows the failures right after installation. 

In this phase, the failures can be occurred because of human factors, pipe damage during 

construction and installation, and inappropriate pipe material. The second phase shows 

useful life of the pipe and the frequency of failure rate is very low and almost constant in 

this phase. Several random phenomena such as extreme heavy loading, earth movement, 
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settlement or third-party interference can be the result of failures in second phase. And, in 

the third phase (wear-out life) the frequency of failure is high due to pipe deterioration and 

aging (Singh and Adachi, 2013).  

 

Figure 2-8 The Theoretical Bathtub Curve of Buried Pipe 

(Singh and Adachi, 2013) 

Most of the condition prediction models developed in previous studies proved that 

pipe age has strong relationship with deterioration of sewer pipes. Ariaratnam et al. (2001) 

stated that pipe age significantly affects deterioration of sewer pipes due to the 

consequence of pipe aging process. Jeong et al. (2005) and Ana et al. (2009) achieved 

similar result and indicated that the deterioration rate is lower during the early years of pipe 

service life and higher during the later years. Khan et al. (2010) specified that deterioration 

of sewer pipes does not start right after the installation process but arises after a certain 

period of time. Lubini and Fuamba (2011) demonstrated that with aging the sewer pipes 

root intrusion keeps growing and pipe roughness is increased gradually. Since, there is a 

direct relationship between pipe roughness and friction factor, hydraulic performance of the 

pipe will be dropped and the likelihood of pipe deterioration increases. Pipe age was found 
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significant in more prediction models developed by Salman and Salem (2012), Kabir et al. 

(2018) and Laakso et al. (2018). 

In contrast, Davies et al. (2001) found that the pipe age is not a significant variable 

in sewer pipe deterioration model, however their dataset did not include age of each 

individual sewer pipes and property age was the reference value of pipe age. Tran et al. 

(2006) found similar result and indicated that pipe age is not significant factor since 

structural deterioration of sewer pipes depends on combined effect of various factors. 

2.7.2.2 Pipe Material 

Sewer pipes constructed with different material have different reaction to the 

environmental factors, such as soil type, water table, etc. (Salman, 2010). For example, 

concrete pipes are highly resistant to abrasion and clay pipes act very well against acids. 

Plastic pipes, such as PVC or HDPE, resist to acidic and alkaline wastes, however they 

can suffer excessive deformations under loading (Singh and Adachi, 2013). Pipe material 

can be used as an independent variable during development of condition prediction models 

and it is possible to identify whether this variable is significant or insignificant through the 

results of the model. Davies et al. (2001) identified that pipe material is a significant variable 

and there is a direct relationship between deterioration of sewer pipes and pipe material. 

Micevski et al. (2002) described that concrete pipes are stronger and more durable than 

clay pipes based on the results of their Markov model. Ana et al. (2009) indicated that 

concrete pipes showed better behavior in the model than bricks and clay pipes. One 

probable reason for the difference in aging behaviors of pips is the production procedure 

of the pipes. Concrete pipes are typically constructed offsite, in a controlled environment 

condition and resulting high quality and integrity. While, the brick pipes usually are 

constructed in situ and different environmental condition and poor workmanship affect the 

quality of the pipes.  
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Pipe material was also significant in the model developed by Lubini and Fuamba 

(2011). They found that reinforced concrete pipes are the most resistant to deterioration 

than other pipes due to reinforcing steel that makes the conduit strong enough to prevent 

structural deterioration. Bakry et al. (2016) demonstrated that vitrified clay pipes behave 

better than asbestos cement and reinforced concrete pipes in their model. In prediction 

model developed by Laakso et al. (2018), concert and polyethylene high-density pipes 

were found significant. A possible explanation for the different behavior of pipe material in 

their study was that, the quality of certain batches of polyethylene high-density pipes were 

deficient. In contrast, Jeong et al. (2005) stated that pipe material was not a significant 

variable in their study. According to their report, one probable reason could be the class 

imbalance and low number of data that they used to develop the prediction model. In 

general, deterioration behavior of pipes could be predicted better if separate models 

generated for different pipe material.   

2.7.2.3 Pipe Diameter 

Numerous studies investigated the relationship between sewer size and 

deterioration of the pipes, and the result is contradictory. Some condition prediction models 

identified that sewer deterioration rate decreases with increasing the diameter and in 

contrast some other studies found that smaller diameter pipes have more failure. Pipe 

diameter was found a significant factor affecting deterioration of sewer pipes in several 

prediction models. Ariaratnam et al. (2001) indicated that when pipe diameter increases 

the likelihood of a pipe being in a deficient condition decrease. Davies et al. (2001) 

discussed that the risk of rigid sewer pipes being in poor condition decreases significantly 

with increasing diameter and larger sewers are at a lower risk than small ones. They 

mentioned this result may be to the fact that the structural design of rigid sewer pipes is 

restricted to the cross section of the pipes and the ring or crushing stress experienced. 
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Micevski et al. (2002) found that deterioration of smaller pipes was greater than the larger 

pipes. A probable explanation could be that the pipe designers underestimate the required 

depth of cover and loading traffics for the smaller pipes. Tran et al. (2009) indicated that 

larger pipes are often buried deeper and more appropriate design and construction crew 

are used to install them, therefore larger diameter pipes are more resistant to deterioration 

based on the result of developed prediction model. Lubini and Fuamba (2011) determined 

that with the occurrence of obstacles in the conduit, segments with larger diameter still 

enable to convey wastewater and small diameters are more likely to deteriorate due to lose 

of hydraulic flow. Salman and Salem (2012) and Bakry et al. (2016) found same result and 

in their prediction model, larger pipes behave better than smaller pipes.   

On the contrary, Jeong et al. (2005) stated that larger pipes are more likely to 

deteriorate, since they have more surface area exposed to sewage and surrounding soil 

areas. The larger pipes are more at risk of damage because they are heavy and bulk, and 

it is difficult to install them accurately. Khan et al. (2010) found a dual behavior in the 

variation of pipe diameter and condition levels of sewer pipes. According to the results of 

their prediction model, smaller diameter pipes are more stable as compared to the larger 

pipes. No adverse effect was found in condition of pipes for diameter up to 24 inches. 

While, sewer pipes larger than 24 inches had lower deterioration rate than smaller pipes. 

Laakso et al. (2018) determined that pipes with 12- and 60-inches diameter were in better 

condition due to more carefully supervision during design and installation phases.  

Tran et al. (2006) and Ana et al. (2009) found that pipe diameter is insignificant 

variable in their model, however they demonstrated that larger pipes are usually buried 

deeply and have lower deterioration rate than smaller one. 
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2.7.2.4 Pipe Length 

Practically in all sewer pipe inventories, length of pipes is stored as manhole to 

manhole length of pipe segments, since CCTV is the most common tool for inspecting the 

sewers. Typically, longer sewer pipes have higher deterioration rate because the 

probability of occurring defects is more in longer pipes. However, in previous studies a dual 

behavior was found in the effect of pipe length to deterioration rate. Davies et al. (2001) 

indicated that risk of pipe being in poor condition decreased when individual pipe sections 

had longer length (more than 5 feet). Pipe joints are the main source of infiltration in 

pipelines and it can result in the movement of soil into a sewer and lack of support leading 

to structural instability. Longer individual pipe section means that the number of joints per 

manhole to manhole length of sewer pipes is reduced and then the risk of infiltration and 

joint defects also reduced. Jeong et al. (2005) indicated that longer sewers pipes are less 

likely to deteriorate than shorter one. A probable explanation could be that longer pipes 

have fewer bends in which less debris and fewer blockages or damages occur along the 

pipe length.  

Ana et al. (2009) discussed that risk of pipe deterioration increases when sewer 

pipes are longer. This result could be attributed to the fact that longer pipes have more 

points and areas of possible failure specially in joints. Joint defect is one of the common 

defects in sewer systems and increases the probability of failure. Additionally, longer pipes 

are more vulnerable to have blockage and sediment deposition which facilitate the 

deterioration of sewer pipes. Khan et al. (2010) found a dual behavior in the condition of 

pipes with respect to changes in pipe length. Pipe segments smaller than 230 ft have no 

effect on the condition of sewer pipes. While pipes longer than 230 ft increase the rate of 

deterioration due to density of end joints which are source of break, infiltration and 

exfiltration. Salman and Salem (2012) determined that longer pipes behave better in sewer 
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network because as the length of the pipe increases, the level of exposure to deteriorating 

factors also increases. Laakso et al. (2018) identified that sewer pipes beyond 131 ft in 

length deteriorate faster than other pipes in network. This outcome can be explained by 

the higher potential of defects and bending stress in longer pipes. Additionally, lateral 

connections are a potential cause of structural damage and longer pipes have more lateral 

connections. 

2.7.2.5 Pipe Slope 

Sewer pipes with flat slopes have lower velocities and then wastewaters remain 

longer time inside the pipe. The longer the wastewater remains in the sewer pipes the more 

probable is generation of hydrogen sulfide gas inside the sewer. Hydrogen sulfide can be 

converted to sulfuric acid and attacks the cementitious pipes, such as, concrete and mortar, 

and increases the rate of corrosion inside the sewer pipes (Ana et al., 2009; Ayoub et al., 

2004). Similarly, Baur and Herz (2002) indicated that sediment deposition and clogging 

occur more into the pipes with flat slops and risk of deterioration is higher in these pipes. 

Jeong et al. (2005) indicated that when the pipe slope is steeper, the probability of 

deterioration is higher in sewer segments. Faster flow rate and lower stability are the 

probable cause of higher deterioration rate based on the results of this study. Tran et al. 

(2006) have similar finding and suggested that pipes with steeper slope are vulnerable to 

more defects due to void in the soil, soil movement and pipe joint defects.  

Prediction model developed by Salman and Salem (2012) revealed the 

significance of pipe slope and according to their result steeper pipes are more likely to 

deteriorate due to stability issues and high flow rate. Laakso et al. (2018) identified that 

negative and very low slope was the most harmful condition for sewer pipes based on the 

result of their prediction model. Negative slopes and extremely low slopes cause 

inadequate rinsing, which can lead to debris accumulation and blockages. Pipe slope was 
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found insignificant variable based on the results of Tran et al. (2006), Ana et al. (2009), 

Sousa et al. (2014) and Kabir et al. (2018). 

2.7.2.6 Pipe Depth 

Several factors such as soil type, water table, pipe material, pipe diameter and 

regulations must be considered to identify the appropriate depth of sewer pipes. The results 

of investigating the effect of depth on deterioration of sewer pipes is contradictory in 

different prediction models. Khan et al. (2010) indicated that pipe depth is a significant 

variable in their prediction model and any increase in depth has a negative effect on sewer 

pipe condition level. The rational reason for this behavior could be the greater dead load 

over the pipes and also higher probability of ground water table.  

In contrast, pipe depth was insignificant variable in prediction model developed by 

Davies et al. (2001). This is not to say that sewer depth does not affect deterioration of 

pipes when considered on its own, but in data analysis based on the features of pipe 

datasets, there may not be a direct relationship between pipe depth and condition level of 

sewer pipes. Tran et al. (2006) and Ana et al. (2009) reported that pipe depth was 

insignificant in their prediction models. Generally, shallowly buried pipes would be 

subjected to more defects and higher deterioration rate due to surface load, illegal 

connections and tree root intrusion. Additionally, more cover depth above the pipes 

decreases the effect of surface factors such as road traffic and road maintenance or 

construction activities. Salman and Salem (2012) found same result and among the eight 

independent variables used in their model, pipe depth was the only insignificant variable in 

the model. Laakso et al. (2018) demonstrated that installation depth between 6 and 10 ft 

had correlation with poor condition level in their study and they recommended a minimum 

depth of 5 ft due to the frost in the winter. 
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2.7.2.7 Pipe Shape 

The effect of pipe shape has been investigated only in few studies. Ana et al. 

(2009) demonstrated that the pipe shape is not a significant factor to examine deterioration 

of sewer pipes. However, Modica (2007) indicated the circular sewer pipes are stronger 

and show higher structural performance. Baur and Herz (2002) found deterioration rate of 

egg-shaped sewers are significantly slower in comparison to circular sewers. 

2.7.3 Environmental Factors 

2.7.3.1 Sewer Location 

A sewer pipe obviously can be affected by applied load from the surface. Land use 

and traffic above the sewer pipe affect the magnitude of surface loading carried to the pipe. 

It is very difficult to measure or estimate the magnitude or frequency of surface loads 

because they vary in time (Kley and Caradot, 2013). The sewer pipe can be subjected on 

large one-time loads, such as, surface construction, ground utility construction, landslide 

and earthquakes, or a small cyclic load with hourly, daily or seasonal frequency, such as, 

bus stop, traffic and maintenance activities (Ashoori et al., 2017; Marlow et al., 2009).  

The influence of road type on deterioration of sewer pipes just investigated in a 

few studies. Davies et al. (2001) determined that sewer located under rural main roads and 

sidewalks were at a significantly lower risk of being in poor condition than those pipes 

located under urban main roads. The main reason of this difference may be the more 

significant traffic loading in urban areas. Pipe location was also significant based on the 

result of prediction model generated by Tran et al. (2009). They stated that location of pipes 

determines depth of cover and when the cover is large the structural deterioration could be 

low due to the less amount of load on pipes. Salman and Salem (2012) demonstrated that 

pipe segments under local streets and alleys are less likely to deteriorate than pipe 

segments located under gardens or any type of roadways. One probable reason can be 
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application of better design and installation process for pipes under the roads. Bakry et al. 

(2016) indicated that deterioration of sewer pipes is higher when they are located under 

industrial zones, while they have better behavior when serve a residential zone. It is 

obvious that sewage carried by sewer pipes in industrial zones have different 

characteristics and cause faster deterioration mechanism.  

In contrast Tran et al. (2006) indicated that pipe location is not a significant variable 

in their prediction model. The effect of any critical environments such as coastline and 

industrial zones were not satisfactory to be considered as an influence variable. Ana at al. 

(2009) achieved similar results and the deterioration rates of sewer under light traffic and 

main roads were not significantly different in their model. 

2.7.3.2 Groundwater Level 

Groundwater is the water found underground in the cracks and spaces in the soil, 

sand and rock. The availability of ground water at or above sewer pipelines may cause 

water flowing through the pipe, increasing the structural defects, formation of void and loss 

of sewer support. In cohesive soil, raising the groundwater level may cause a reduction in 

the soil cohesive strength and growing the void around the pipe. Consequently, supporting 

soil can be washed (loosed) easily and the pipe is more likely to collapse in this condition. 

Typically, sewers located in areas subjected to high groundwater are more likely at a risk 

of failure than sewers located in an area where the groundwater level is below sewer level. 

Davies et al. (2001) described that the availability of groundwater around the pipe causes 

the loss of soil support and infiltration defect. Additionally, formation of void and lack of 

proper support around the pipe lead to sewer structural problems. Periodic water table in 

a cohesive soil may result in a reduction of soil strength and the possibility of soil being 

washed into the sewer. Malek Mohammadi et al. (2019) found groundwater level is a 

significant variable based on prediction model developed for City of Tampa. They indicated 
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that groundwater increases the amount of load on pipe and the risk of soil movement and 

infiltration. Typically, groundwater level is unavailable in pipeline inventories and it was 

used as a variable jus in few prediction models. More research is needed to evaluate the 

effect of groundwater level on condition of sanitary sewer pipes. 

2.7.3.3 Soil Type 

Type of soil is one of the important factors can affect the ground loos and stability 

of the sewer pipeline. For example, when soil is subjected to stress, it may behave different 

due to various swell or shrinkage factors (Davies et al., 2001). Different types of soil have 

different reactions with pipe material, groundwater, and other pipe attributes or 

environmental factors (Kaushal, and Guleria, 2015). The fracture of soil was investigated 

by Davies et al. (2001) and, the result showed that sewers buried in a soil with a very high 

fracture potential, has significantly higher resistance to deterioration and failure. Typically, 

fracture is very high in clay soils. Wirahadikusumah et al. (2001) stated that surrounding 

soil is a significant factor affecting the deterioration of sewer pipes. According to this study, 

sewer defect size, hydraulic conditions and soil properties are the main factors affecting 

the rate of ground loss. The sewer pipe can be moved when loss of soil support occurs 

around the pipe. The loss of ground or soil support causes void formation around the pipe 

and therefore the sewer pipe is more likely to collapse or deform in this condition. Soil type 

also was found a significant variable according to the result of Micevski et al. (2002) Markov 

model. They revealed that pipes in alluvial soils are deteriorated faster than those in 

podzolic soils. Alluvial soils are deposited from a saline environment and have much more 

corrosive properties. While, podzolic soils are formed through the weathering of rocks. The 

significance level of soil type might be the result of the different formation of these soil 

types. In contrast, soil type was insignificant in prediction model developed by Laakso et 
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al. (2018). They mentioned the quality of soil data was not sufficient enough in their dataset 

and more study is needed to evaluate the effect of soil type on deterioration of sewer pipes. 

2.7.3.4 Soil Corrosivity 

Soil corrosivity is a soil characteristic that increases the probability of external 

corrosion on pipe surface. The rate of corrosion is highly influenced by the characteristic 

of the pipe material and surrounding soil around the pipe (Kaushal et al., 2018; Yajima, 

2015). Davies et al. (2001) demonstrated that sewers buried into a high corrosive soil were 

at a significantly higher risk of deterioration. Mashford et al. (2011), showed that the soil 

corrosivity is a factor contributing to the deterioration of the pipe by increasing the 

corrosion. Just a few studies have evaluated the effect of soil corrosivity on deterioration 

of sewer pipelines.  

2.7.3.5 Soil Erosion 

According to Tan and Moore (2007), development of erosion void around the pipe 

causes pipe damage, due to water entrance through joints and fractures. Deterioration of 

soil support around the pipe is the most critical factor leading to structural damage and 

sewer pipe deterioration (Law and Moore, 2007). Spasojevic et al. (2007) studied the effect 

of soil erosion on condition of culverts and the result indicated that the voids can be filled 

by soils moving down from the springlines and the result is losing of ground support around 

the pipe. Moore (2008) stated that soil erosion decreases lateral ground support to the 

sewer, and bending moment increases eventually fracture the sewer. 

Soil erosion is very important factor of ground loss and the influence of this feature 

has not been evaluated yet in any condition prediction models.  

2.7.3.6 Soil pH 

The soil pH is considered as the most important factor affecting underground 

corrosion. Almost, all the studies in the field of underground corrosion indicated that the pH 
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of the soil increases the corrosion rate of buried pipes (Wasim et al., 2018). Hou et al. 

(2016) conducted a comprehensive research to evaluate the effect of soil pH on pipes 

made with different material. Based on the research outcome, cast iron pipes are more 

likely to be corroded in the same corrosive environments compared to steel pipes. The 

effect of soil pH was investigated more in water pipe systems. For instance, Rajani and 

Maker (2000) and Doyle et al. (2003) used soil pH as a feature to predict the remaining 

useful life of water pipeline. The outcome showed that the pH was not a significant factor 

to generate the model. Based on their results, pH alone is not a good indicator to predict 

the condition of pipes there is no positive relationship between pH and corrosion rate. In 

general, there is no direct relationship between pH and corrosion rate (Wasim et al., 2018). 

Range of pH can be described as alkaline (pH>7), natural (pH=7) and acidic (pH<7).  

2.7.4 Operational Factors 

2.7.4.1 Sewer Type 

Sewer pipes can be classified into separate sanitary and storm sewer systems and 

combined sewer systems. In combined sewer system, a single pipe is used to transport 

domestic, commercial and industrial wastewater, and storm water to a selected disposal 

location. The concept of separate sanitary sewer and storm sewer system is to manage 

storm water and sanitary wastewater separately. In this method, two separate pipes are 

used to convey domestic, commercial, and industrial wastewater, and storm water to a 

selected disposal location. O’Reilly et al. (1989) found that the rate of deterioration is higher 

in combined sewer systems than sanitary sewers. They argued that generally combined 

sewer systems are constructed shallower than separate systems and the flow fluctuation 

is higher in combined systems. Davies et al. (2001) and Baur and Herz (2002) showed a 

lower deterioration rate in combined sewers due to more planning and engineering effort 

during construction of combined sewers. Ariaratnam et al. (2001) demonstrated that waste 
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type is a significant variable and sanitary sewers are found to have the greatest effect on 

pipe deficiency, followed by storm and then combined sewers. Salman and Salem (2012) 

claimed that sanitary sewer pipes are more resistant to deterioration than combined 

sewers. This outcome can be explained by the higher potential of soil loss, infiltration and 

exfiltration in combined sewers due to the high flow velocity during rainfall events. 

2.7.4.2 Sewer Velocity 

A minimum velocity is required inside the sewer pipelines to prevent any settlement 

of solids and particles along the pipe and should at least occur once in a day. Otherwise, 

the settlement of material leads to obstruction of free flow and finally causing the complete 

blockage. The effect of velocity on deterioration of pipe was investigated by Koo and 

Ariaratnam (2006) and the outcome reflected that the velocity is not a significant factor to 

assess the performance of gravity sewer pipes. No more research was found with 

considering the velocity as an independent variable to build deterioration model. 

2.7.4.3 Sewer Hydraulic Condition 

Tran et al. (2006), built a deterioration model including sewer hydraulic condition 

as an input variable. The hydraulic condition was divided into three: good, fair and poor 

categories to predict the condition of sewer pipes. The result showed that the hydraulic 

condition is highly influence the deterioration of sewer pipelines. They achieved similar 

result by improving the model in 2008 and argued that there is a direct relationship between 

structural deterioration with hydraulic deterioration (Tran et al., 2008). However, Micevski 

et al. (2002) indicated that the hydraulic condition is not a significant factor to analyze 

deterioration of sewer pipes.  

2.7.4.4 Sewer Maintenance 

Davies et al. (2001) discussed that use of inappropriate maintenance method 

accelerates the deterioration rate of sewer pipelines. For example, high water pressure 



54 

during pipe cleaning is one of the concerns regards increasing the defects along the pipe. 

In other example, sewer flushing technic may cause damage to the pipe wall during 

cleaning process (Najafi, 2016; Najafi and Gokhale, 2005). 

2.8 Condition Prediction Models for Sewer Pipelines 

2.8.1 Introduction 

Condition prediction models can be used to forecast condition rating of sewer pipes 

by using information obtained from inspection databases. Prediction models can perform 

an essential role to generate a comprehensive prioritization plan as provide valuable 

information to forecast short-term and long-term behavior of sewer pipes.  In general, utility 

companies and municipalities can forecast the future condition of their assets by generating 

deterioration models to identify the pipes that require maintenance, rehabilitation and 

replacement. The primary objective of sewer condition prediction models is to apply an 

appropriate mathematical technique to estimate future condition states of sewer pipes. 

Additionally, condition prediction models are capable to identify significant factors affecting 

deterioration of the pipes.  

Current condition of sewer pipes is often assessed through inspection techniques, 

however, understanding the future condition of pipe systems needs a comprehensive 

deterioration model. Most of the sewer prediction models are developed by pipe data 

obtained from CCTV inspection to forecast the failure time of pipes based on condition 

rating standards. 

Deterioration models for sewer pipelines are classified into different categories. 

Deterministic, probabilistic, statistical, physical and artificial intelligence models are the 

most common techniques used in previous studies (Altarabsheh, 2016; Kley and Caradot, 

2013; Tran, 2007; Morcous and Lounis, 2004; Yang, 2004). Tran (2007) suggested 

deterministic and statistical models as a model-driven type and artificial intelligence-based 
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models as a data-driven type. Typically, the structures of data model-driven are defined by 

the expert, while, the sample data demonstrates the structure of models in data-driven 

type. 

A deterministic model is the inherent lack of randomness or stochastically and 

often used for phenomenon where relationships between components are certain (Tran, 

2007). A deterministic model assumes that the output can be exactly predicted by given 

input variables. The basic explanation of a statistical model is a random variable X, which 

represents a quantity whose outcome is uncertain. In statistical models, the probabilistic 

nature of historical data is used to describe the model output as a random variable. In any 

statistical analysis, estimates are "best guesses" based on the condition of given historical 

data (Coles, 2011). 

Artificial intelligence can be defined as “the study of mental faculties through the 

use of computational models” (Charniak and McDermott, 1985). In artificial intelligence 

models, the dependent variables are classified from a set of independent variables by 

learning from the available data. These models are appropriate to estimate ordinal 

condition ratings or nonlinear deterioration behaviors. 

With growth of Artificial intelligence and statistical models, physical models are not 

very common to predict deterioration of sewer pipes due to their complexity. Furthermore, 

deterministic, probabilistic and statistical models can be in a same group based on their 

statistical nature. Thus, existing sewer deterioration models can be classified into two 

groups of statistical and artificial intelligence models as shown in Figure 2-9. 
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Figure 2-9 Classification of Sewer Deterioration Models 

2.8.2 Statistical Models 

The basic explanation of a statistical model is a random variable X, which 

represents a quantity whose outcome is uncertain. In statistical models, the probabilistic 

nature of historical data is used to describe the model output as a random variable. In any 

statistical analysis, estimates are "best guesses" based on the condition of given historical 

data (Coles, 2011). Dasu and Johnson (2003) indicated that parametric density function is 

used in statistical models to measure the errors and identify probabilistic relationships 

between dependent and independent variables. The results and outcomes of statistical 

models can be presented in probability values and they are more applicable to predict the 
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current and future condition of sewer pipelines rather than deterministic models which 

provide quantitative results (Tran, 2007).   

According to Tran (2007), predicting the ordinal data type and considering the 

probabilistic nature of the underlying deterioration process can be the advantages of 

statistical models. While, the sensitivity of statistical models to noisy data and the 

methodologies to measure the errors are disadvantages of these models. The sensitivity 

analysis by employing a Monte Carlo simulation, a powerful statistical analysis tool that is 

commonly used in both engineering and non-engineering fields and can assess the 

sensitivity of the output of the analysis with respect to each input variable (Habibzadeh-

Bigdarvish et al., 2019). Numerous statistical models, such as, logistic regression, Markov 

chain, ordinal regression and cohort survival model were used to predict the condition of 

sewer pipelines in previous studies. 

2.8.2.1 Linear Regression Models 

The simplest linear regression model involves only one independent variable and 

the dependent variable can be predicted based on their relationship. The regression model 

states that true mean of the dependent variable changes at a constant rate as the value of 

independent variable increases or decreases. Therefore, the equation of a straight line 

shows the function relationship between the true mean of Yi and Xi as shown in Eq. 2.1 

(Rawlings, 1989). 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖                                                          Eq. 2.1 

Where: i = facility index; 

Yi = dependent variable for facility i; 

β0 and β1 = parameters to be estimated; 

Xi = independent variable; 

ϵi = random error term 
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Chughtai and Zayed (2007a, 2007b, and 2008) used the multiple regression 

technique to predict the deterioration mechanisms of sewer pipelines. Various factors, such 

as, pipe material, depth, length, age, diameter, bedding, road type and slope were 

considered as independent variables to build the model. Best subset analysis was used to 

select important variables in this paper. The significance of the variables was investigated 

by different statistical test including F-test, t-test, and residual analysis, lack of fit test and 

Durbin-Watson test. Four regression models were developed to predict the condition of 

concrete, asbestos, cement, and PVC pipes. The result showed 72 to 88% accuracy and 

they suggested inspection priority should be given to the pipes with extremely steep bed 

slopes. 

Gedam et al. (2016) presented a condition prediction model for sewer pipeline by 

developing a linear regression model. Various factors, such as, pipe age, diameter, 

material and depth were contributed to build the model. The analysis revealed that the 

developed model can be used to assess the condition of sewer pipelines.  

Bakry et al. (2016a, 2016b) used regression analysis technique to develop a 

condition prediction model for sewer pipes which rehabilitated before by CIPP method. The 

data was obtained from closed-circuit television (CCTV) inspection reports of Quebec CIPP 

rehabilitations. Various physical, operational and environmental factors were used to 

generate the models. The regression models were validated using coefficient of multiple 

determinations and the result revealed range between 80 to 97%. In addition, the accuracy 

of the models was determined by calculating mean absolute error and root mean square 

error. Linear deterioration curves were developed in this paper by examining the effect of 

increasing the age while changing the dependent variables. 

In general, linear regression model is too simplistic to display the probabilistic 

nature of pipe deterioration and it is not an appropriate model to predict the discrete 
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condition values (Madanat and Ibrahim 1995; Morcous et al., 2002; Tran, 2007, Moteleb, 

2010). In addition, pipe deterioration is a complex process and the linear regression may 

not be an effective model to find the relationship between the independent variables and 

condition rating (Salman, 2010).  

2.8.2.2 Exponential Regression Models 

Exponential regression is a nonlinear model that goes beyond the simple 

summarization of the relationships displayed in a set of data. In nonlinear models, at least 

one of the expectation functions depends on at least one of the parameters. Nonlinear 

models are more realistic because the response can be better fitted with fewer parameters 

(Rawlings, 1989). Nonlinear models are more flexible than linear models and can be more 

appropriate than the use of transformations (Chatterjee and Simonoff, 2013). Eq. 2.2 

presents the mathematical relationship between independent variables and the outcome.  

𝑌𝑖 = 𝑒
𝛽1+𝛽2+𝜖𝑖                                                         Eq. 2.2  

Mailhot et al. (2000) developed a predictive modelling strategy to determine the 

structural state of sewer networks. In this model only, age was considered to generate the 

prediction model. Wirahadikusumah et al. (2001), used a nonlinear optimization model to 

develop deterioration model for sewer pipeline. Pipe material, depth, groundwater level, 

and type of soil were used to generate the model.  The result indicated that municipalities 

and sanitary districts need to inspect their assets routinely. 

2.8.2.3 Markov Chains 

The Markov chain was developed by Andrei Markov in 1906 as a discrete-time 

stochastic process. A Markov chain is a mathematical model of a random phenomenon 

over a unit of time to predict the future based on the present values and regardless of the 

past effects. The time can be discrete, continuous or ordered set (Konstantopoulos, 2009). 

Instead of deterministic objects, Markov chain deals with random variables. The Markov 
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chain-based deterioration model assumes that conditional probability does not change 

over time and for all states i and j and all t, probability is independent of time as shown in 

Eq. 2.3 (Jeong et al., 2005). 

𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖) = 𝑝𝑖𝑗                                                     Eq. 2.3 

Where, Pij is the transition probability that given the system in state i at time t, it will 

be at state j at time (t+1). Generally, the transition probability matrix (m×m matrix) are used 

to calculate the transition probabilities. The transaction probability matrix is given in Eq. 2.4 

and 2.5. 

𝐏 =  [

𝑝11 𝑝12 … 𝑝1𝑚
𝑝21 𝑝22 … 𝑝2𝑚
⋮ ⋮ ⋮ ⋮
𝑝𝑚1 𝑝𝑚2 … 𝑝𝑚𝑚

]                                                      Eq. 2.4 

∑𝑃(𝑋𝑡+1 = 𝑗 |(𝑋𝑡 = 𝑖)) = 1

𝑚

𝑗=1

                                                 Eq. 2.5 

Then the probability of being in different states at time t+1, can be estimated by 

total probability theorem as shown in Eq. 2.6. 

𝑃𝑗
𝑡+1 =∑𝑃𝑖𝑗 × 𝑃𝑖

𝑡

𝑗

𝑗=1

                                                        Eq. 2.6 

where 𝑃𝑖
𝑡
  is the probability of being in state i in year t (Micevski et al., 2002). Once the 

probability matrix is identified, the future condition of pipes can be easily obtained by 

Markov model. 

For example, consider a set of pipe state condition, C = {C1, C2, C3, C4, C5}. 

When a sewer pipe is in condition 1 a series of probabilities P11, P12, P13, P14 and P15 

determine the condition state of pipe in the next period. The deterioration process starts in 

one of the states and moves from one to another. If the sewer pipe is currently in condition 

C3, it moves to condition C4 in the next step with a probability of P34. This probability is 
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called transition probability and only taking account the current condition of pipe without 

considering the historical data and previous conditions. Therefore, for sewer pipe with 5 

scales condition, a transition matrix P can be developed as shown below: 

𝐏 =  

[
 
 
 
 
𝑃11 𝑃12 𝑃13 𝑃14 𝑃15
0 𝑃22 𝑃23 𝑃24 𝑃25
0 0 𝑃33 𝑃34 𝑃35
0 0 0 𝑃44 𝑃45
0 0 0 0 1 ]

 
 
 
 

 

Extensive studies have been carried out to predict the deterioration of sewer 

pipelines by developing Markov chain models. Wirahadikusumah et al. (2001) used 

Markov-chains-based models in combination with nonlinear optimization for generating 

infrastructure management modeling for sewer pipes. In this study, a frequency analysis 

technique was used to develop transition probabilities of Markov deterioration model for 

large combined sewers in Indianapolis. The sewer database was divided into sixteen group 

and simple linear regression was developed to identify relationship between time and 

condition of pipes. The transition matrix was generated by assuming that the condition of 

sewer pipe moves to poorer condition or stays at current condition. It means pipe in 

condition 4 cannot improve and move to condition 2. And finally, a nonlinear optimization 

technique was used to minimize the sum of absolute difference between regression result 

and Markov chain estimations. The outcome of this study was deterioration curve for sewer 

pipes to illustrate the changes in condition states while the pipe is aging. 

Micevski et al. (2002) developed a Markov model for the structural deterioration of 

storm water pipes. The pipe dataset was randomly categorized into two separate dataset 

and Bayesian techniques was used to identify the parameters of Markov model. The 

Metropolis-Hastings which is a member of the family of Markov chain Monte Carlo (MCMC) 

was used to calibrate the model. The validation of the model was performed through 

hypothesis testing to determine if the Markov model is appropriate for storm water pipe 
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deterioration. The result indicated that the Markov model is consistent (at the 5% significant 

level) and can be used for storm water pipe deterioration. In addition, pipe diameter, 

construction material, soil type and exposure classification were found as significant 

variables that influence deterioration of pipes. 

Kleiner et al. (2004) used a fuzzy rule-based, non-homogeneous Markov process 

to model the deterioration of buried pipes. The Markov procedures applied at each time 

step in two stages and a non-linear regression was used to train the model. The model 

could not be validated due to the lack of appropriate data for validation. 

Jeong et al. (2005) used probit model-based approach to develop Markov chain 

deterioration model for wastewater infrastructure system. The model was generated by 

inspection database obtained from city of San Diego. Various factors, such as, pipe age, 

length, size, material and slope were considered as input variables. The result of study 

indicated that ordered probit model is an appropriate method to generate Markov chain 

model. They suggested using more input variables, such as, pipe depth, soil condition, 

groundwater level and sewage overflows, could be more effective to generate the 

deterioration models. 

An ordered probit model was generated by Baik et al. (2006) to estimate the 

transition probabilities for a Markov chain-based deterioration for wastewater systems. The 

outcome reflected that the ordered probit model provides better result comparing with 

nonlinear optimization-based approach, however, it is necessary to have multiple time 

periods data for developing more accurate model. Sinha and McKim (2007) modeled 

deterioration of sewer pipes by Markov chain and a polynomial regression was used to 

determine the probability values of transition matrix.  

Le Gat (2008) developed a mixed multi-state deterioration process by non-

homogeneous Markov chains process to model the deterioration of urban drainage 



63 

infrastructures. GompitZ analysis method was used to estimate the parameters of the time 

dependent transition probabilities through maximum marginal likelihood estimation. The 

GompertZ model considered a set of pipelines as a set of generic objects that are different 

based on their covariate values. The dataset was divided into different categories based 

on pipe diameter, sewer type and installation period. Cross validation method was used to 

split the data randomly for test and validation process. The result of this study indicated 

that a statistical model like GopmpitZ cannot predict the exact condition of a given pipe and 

only condition probabilities can be estimated. Another problem in applying GopmpitZ 

methodology is that calibration of this method is very difficult, and risk of misclassification 

is very high if population of pipes is not sufficient in database.  

Scheidegger et al. (2011) developed a network condition simulator (NetCoS) to 

provide a synthetic population of sewer pipes based on historical inspection database. This 

model can be used to benchmark deterioration models and select an appropriate data 

management strategy. A semi-Markov chain technique was used to model deterioration of 

sewer pipes and transition probabilities. The deterioration of sewer pipes was defined by a 

set of survival function in this study. A survival function described condition states of sewer 

pipe based on age-dependent probabilities. Then semi-Markov chain computed the 

probabilities of changing the condition of pipes. The strength of NetCoS is that it is not 

limited to certain type of distributions and it is very flexible to generate more complex data. 

However, the main problem of this model is that it is not possible to validate the model by 

real-life data. 

2.8.2.4 Logistic Regression 

Logistic regressions are used to analyze the relationship between multiple 

independent variables and a categorical dependent variable. In logistic regression the 

probability of occurrence of an event is estimated by fitting data to a logistic curve. Logistic 
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regression models can be classified in three groups of binary logistic regression, 

multinomial logistic regression and ordinal logistic regression (Park, 2013). Binary logistic 

regression is typically used when the response variable involves two categories (success 

or failure) and in the case of more than two response variable, multinomial logistic 

regression is applicable. For example, a binary logistic regression for deterioration of 

pipeline has two response variables of 0 and 1. If the outcome is equal to 0, pipe is in poor 

condition and in contrast response variable of 1 indicates that the pipe is in good condition. 

For a binary response variable Y and a single explanatory variable X, let π(X) =

P(Y = 1 | X = x) = 1 − P(Y = 0 | X = x), the logistic regression model has linear form for the 

logit of this probability as shown in Eq. 2.7 (Agresti, 2007). 

logit [𝜋(𝑋)] = log (
𝜋(𝑋)

1 − 𝜋(𝑋)
) =  𝛼 + 𝛽𝑥                                Eq. 2.7 

Eq. 2.8 presents the formula for the probability π(X), using the exponential function 

(exp(𝛼 + 𝛽𝑥) = 𝑒𝛼+𝛽𝑥). 

𝜋(𝑋) =  
exp (𝛼 + 𝛽𝑥)

1 + exp (𝛼 + 𝛽𝑥)
                                                Eq. 2.8 

And the Eq. 2.9 presents the multiple logistic regression formula when multiple 

explanatory variables are used in the model (Agresti, 2007). 

log [
𝜋

1 − 𝜋
] = log [

𝑃(𝑌 = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝)

1 − 𝑃(𝑌 = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝)
] =  α + β1𝑋1 + β2𝑋2 +⋯+ β𝑝X𝑝

= α +∑β𝑗X𝑗

𝑝

𝑗=1

                                                                                                        Eq. 2.9 

 where: 

X1, X2, …, Xp are independent variables 

 α is the intercept parameter for category i 

 𝛽 is the regression coefficients 



65 

And the probability than Y=1 can be measured using an exponential transformation 

as shown in Eq. 2.10. 

P(Y = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝) =  
𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

1 + 𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

                              Eq. 2.10 

An important parameter in logistic regression is odds ratio that measures the 

relationship between explanatory and response variables as shown in Eq. 2.11. 

𝜋(𝑋)

1 − 𝜋(𝑋)
= exp(𝛼 + 𝛽𝑥) =  𝑒𝛼(𝑒𝛽)𝑥                                    Eq. 2.11 

Multinomial logistic regression is used when multiple levels of categorical response 

variables are in the model. Eq. 2.12 shows the multinomial logistic regression formula. 

log [
𝜋

1 − 𝜋
] = log [

𝑃(𝑌 = 𝑖 | 𝑋1, 𝑋2,… ,𝑋𝑝)

1 − 𝑃(𝑌 = 𝑘 | 𝑋1, 𝑋2,… ,𝑋𝑝)
] =  α + β𝑖1𝑋1 + β𝑖2𝑋2 +⋯+ β𝑖𝑝X𝑝

= ∑β𝑖𝑗X𝑗

𝑝

𝑗=1

                                                                                                             Eq. 2.12 

where: 

i = 1, 2, …, K-1 correspond to categories of the dependent variable 

X1, X2, …, Xp are independent variables 

 α is the intercept parameter for category i 

 𝛽 is the regression coefficients associated with dependent category i  

Logistic regression is widely used to model the deterioration of sewer pipelines. 

Davies et al. (2001) developed a logistic regression model to predict the structural condition 

of rigid sewer pipes. The main objective of this study was to identify influenced factors 

affecting deterioration of sewer pipes. Numerous factors, such as, Pipe length, debris, pipe 

size, sewer type, soil fracture potential, soil corrosivity, sewer location, groundwater level, 

pipe material and bus flow were used to develop the model. The condition of sewer pipes 

was divided into two categories of good and poor condition and the logistic transformation 
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was used to estimate the probabilities. Stepwise forward and backward methods and 

binary logistic regression were employed in this study to select appropriate dependent 

variables. The result indicated that, pipe material, diameter, length, sewer type, location, 

groundwater and soil corrosivity are the influence factors that affect deterioration of sewer 

pipes. The main weakness of this study was that there is no information regarding 

validation and accuracy of the model. Additionally, only p-test was used to determine the 

significance of the dependent variables. 

Ariaratnam et al. (2001) used logistic regression to predict condition states of 

sewer pipes by considering pipe age, depth, material, diameter and service types as 

independent variables. A linear regression variable selection method was used to specify 

the suitable independent variables in the model. Significance of the variables in this study 

was examined by Wald Test and likelihood-ratio test. The likelihood-ratio test revealed that 

pipe age, diameter and sewer types are the significant variables in the model. A sensitivity 

analysis was performed to validate the logistic regression model. However, sensitivity 

analysis is not enough to determine the performance of logistic regression model. 

Koo and Ariaratnam (2006) generated a logistic regression model to predict the 

deterioration of sewer infrastructure systems. The data obtained from city of Phoenix, 

Arizona, was used to develop binary logistic regression and pipe age, maximum velocity 

and cumulative flow were considered as input variables to generate the model. Expert 

judgment was used to select pipe age, maximum velocity and cumulative flow as 

dependent variables in the model. They divided the dependent variables into three 

separate groups with combination of 27 sub-classes. P-test, Wald Test and likelihood-ratio 

test were used to assess the significance of the variables in the model. The result reflected 

that maximum velocity is not a significant factor in the model. The performance of logistic 

regression was not validated in this study. 
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Ana et al. (2009) investigated the influence of sewer physical properties on the 

structural deterioration of the sewer pipelines using logistic regression. Pipe age, size, 

depth, length, slope, shape, material, sewer type, construction period, and location were 

the factors considered in this study. They used the backward stepwise regression method 

for selection the predictor variables. The significance of the dependent variables was 

assessed by carrying out Wald Test and likelihood-ratio test. They also investigated the 

interaction effects of independent variables. For example, length of sewer pipes may be 

found insignificant in deterioration model but may become significant when combined with 

another independent variable. Sewer age, material and length were found significant in this 

study and no validation method was used to validate the result of logistic regression. 

Tran et al. (2009) used multiple logistic regression to develop a model for 

predicting the structural condition of individual pipes. The predictive performances of model 

was compared using CCTV data collected for a local government authority in Melbourne, 

Australia. The independent variable used in this model were pipe size, age, depth, slope, 

trees, hydraulic condition, road type, and soil type. Maximum likelihood calibration model 

was used to calibrate the logistic regression model. The result indicated that other models 

such as neural network are more suitable for modeling the structural deterioration of sewer 

pipelines. 

Lubini and Fuamba (2011) developed a logistic regression model for deterioration 

timeline of sewer systems. This model was applied to a case study in Quebec City, Canada 

and pipe age, diameter, material, length and slope were the contributing factors to generate 

the model. Several statistical tests such as overall model test, strength of association, 

likelihood-ratio test and Wald Test were used to assess the significance of independent 

variables. A deterioration curve was developed in this study for maintenance and 
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operational planning. However, the performance and accuracy of the logistic regression 

model was not validated.  

Salman and Salem (2012), employed three statistical models including ordinal 

regression, multinomial logistic regression and binary logistic regression to model the 

deterioration of wastewater collection lines. Several factors, such as, pipe size, length, 

slope, age, depth, material, sewer function and road class were used to calibrate the 

models. Five different ordinal regression were generated, and likelihood-ratio test was used 

to determine the relation of dependent and independent variables. The result indicated that 

none of the ordinal regression models satisfied the odds assumptions. Also, developed 

multinomial logistic regression obtained just 52% accuracy. Binary logistic regression was 

the only model that could predict condition of sewer pipes with 66% accuracy. This study 

provided different deterioration curves and equations which are useful to understand 

behavior of individual pipes in network. Moreover, logistic regression models were 

validated by confusion matrix and real data. The result of binary logistic regression 

revealed that pipe size, length, slope, age, material and sewer type are the significant 

factors in the model. 

Logistic regression model was used by Sousa et al. (2014), to assess structural 

deterioration of sewer pipelines. Pipe material, diameter, length, age, depth and slop were 

the independent variables for generating the model. Moreover, in this study other 

techniques, such as, support vector machine and artificial neural networks were used to 

build the deterioration model. Based on research outcomes, the logistic regression 

provided the lowest correlation during the modeling. Furthermore, the authors indicated 

that due to overlapping among the models, it is not possible to select the best model in this 

study. 
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Kabir et al. (2018) developed a Bayesian logistic regression model to predict the 

structural condition of sewer pipelines. 12,728 sewer mains of the wastewater network of 

the city of Calgary, Canada, were selected to generate the model. Pipe age, material, 

diameter, length, slope, depth, rim elevation, up invert, and down invert were used to build 

the model. In this study Bayesian model averaging technique was used to identify 

significant variables and the condition of sewer pipes were predicted by logistic regression. 

P-test, Wald Test, likelihood-ratio test and Durbin-Watson test were employed to determine 

the significance of the independent variables. The condition states of sewer pipes were 

divided into two categories including good and poor conditions. The performance of the 

model was validated through confusion matrix. The main weakness of this model is that 

the pipe data was grouped base on pipe material and the model could not predict condition 

of pipe by considering all pipe material. 

2.8.3 Artificial Intelligence Models 

2.8.3.1 Introduction 

The first artificial intelligence (AI) work was implemented by Warren McCulloch and 

Walter Pitts in 1943. knowledge of the basic physiology and function of neurons in the 

brain, propositional logic, and Turing’s theory of computation, were three sources of 

introducing first artificial intelligence work (Russell and Norvig2010). Artificial intelligence 

can be defined as “the study of mental faculties through the use of computational models” 

(Charniak and McDermott, 1985). In other definition, AI is “The art of creating machines 

that perform functions that require intelligence when performed by people” (Kurzweil, 

1990). 

According to Luger (2009), the artificial intelligence can be decomposed into 

several categories as describes in below items: 

• Game playing 
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• Automated reasoning and theorem proving 

• Expert systems 

• Natural language understanding and semantics 

• Modeling human performance 

• Planning and robotics 

• Languages and environments for AI 

• Machine learning 

• Alternative representations: neural nets and genetic algorithms 

• AI and philosophy 

In artificial intelligence models, the dependent variables are classified from a set 

of independent variables by learning from the available data. These models are appropriate 

to estimate ordinal condition ratings or nonlinear deterioration behavior, however, as a 

disadvantage, the large amount of data is needed to generate artificial intelligence models 

(Scheidegger et al., 2011). Artificial intelligence models are capable to handle complex 

problems and in recent years extensive studies have been done to model deterioration of 

infrastructures using neural nets and machine learning methodologies. 

2.8.3.2 Neural Nets and Genetic Algorithms 

The objective of developing neural nets and genetic algorithms is to provide a 

model which works parallel the structure of neurons in the human brain (Luger,2009). A 

biological metaphor (human brain) was the reason of inspiration to invent both neural nets 

and genetic algorithms. These computing models include several interconnected unites or 

nodes that work similar the brain and the power of the model is highly dependent on the 

structure of nodes connections (Koehn, 1994).  

The brain consists of 1011 neurons and the structure of brain is more complex than 

simple computer models. There are several neural net models that can be used for different 
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functions and applications (Hagan et al., 2016). Among the neural net and genetic 

algorithm techniques, fuzzy set theory and neural networks (NNs) were used for modelling 

the deterioration of infrastructure facilities, (Flintsch and Chen 2004; Kleiner et al. 2004, 

Tran, 2007). 

Artificial Neural Networks is one of the models used to predict the deterioration of 

sewer pipelines. Najafi and Kulandaivel (2005) employed artificial neural network to 

develop a prediction model.  Pipe length, size, material, age, depth, slope and type of 

sewer were the variables used in this model. Backpropagation algorithm was used to train 

the data. The research concluded that application of neural network is feasible to develop 

condition prediction model for pipelines, however, the model accuracy is highly dependent 

on larger and more inclusive sample size. 

The probabilistic neural network was used by Tran et al. (2006) to model structural 

deterioration of stormwater pipes. This study used a data set provided by the City of 

Greater Dandenong in Victoria, Australia, and approximately 650 data points was used to 

build the model. Pipe diameter, age, depth, slope, location, number of trees, hydraulic 

condition, soil type and soil moisture were the input variables considering in this model. 

The result showed that the probabilistic neural network works better than the discriminant 

models to predict deterioration of pipelines. 

Tran et al. (2007) developed neural network deterioration model to predict 

serviceability condition of buried stormwater pipes. Markov Chain Monte Carlo simulation 

was used in this study to calibrate the model. Also, the ranking performance of neural 

network compared to multiple discrimination analysis model. Various independent 

variables, such as, pipe age, size, depth, slope, number of trees, road type, soil type, and 

moisture were used in this model. The research outcome reflected that the performance of 
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neural network calibrated with Markov chain is better than neural network calibrated with 

backpropagation method. 

In 2009, Tran et al. (2009) compared the performance of probabilistic neural 

network and multiple logistic regression models to develop prediction model for individual 

stormwater pipes. The predictive performances of model was compared using CCTV data 

collected for a local government authority in Melbourne, Australia. The independent 

variable used in this model were pipe size, age, depth, slope, trees, hydraulic condition, 

road type, and soil type. The maximum likelihood method was used to calibrate logistic 

regression model and neural network was calibrated using a Genetic Algorithm (GA). The 

result stated that neural network model is more suitable for modeling the structural 

deterioration of individual wastewater pipes. 

Khan et al. (2010) developed a structural condition prediction model to investigate 

the importance and influence of certain characteristics of sewer pipes. Back propagation 

and probabilistic neural networks were used in this study to express condition rating of the 

pipes. The municipality of Pierrefonds, Quebec, provided the data used to develop this 

model. Pipe material, diameter, depth, bedding material, length and age were used to build 

the model. The developed models indicated that neural network is capable to prioritize 

inspection and rehabilitation plans for existing sewer mains. 

Sousa et al. (2014), investigated the efficiency of artificial intelligence tools, such 

as, neural network, support vector machine and logistic regression for predicting sewer 

structural performance. Pipe material, diameter, length, age, depth and slope were the 

independent variables for generating the model. The research outcomes reflected that the 

different methods provided similar overall result, while the logistic regression providing the 

lowest correlations and the artificial neural networks the highest. Furthermore, due to 

overlapping among the models, it was not possible to select the best model in this study. 
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Hawari et al. (2016) developed a simulation-based condition assessment model 

for sewer pipeline using integrated fuzzy analytical network process (FANP). A weighted 

scoring system was used to determine the condition rating of sewer pipes and FANP 

determined weight of the factors affecting assessment of the pipelines. The result proved 

that the developed model is suited to assess the condition of sewer pipelines and it can be 

a useful tool for decision makers and municipalities.  

Gheytaspour at al. (2018) developed a neural network model to forecast oxygen 

demand in wastewater treatment plants. Due to the increasing concerns over 

environmental effects of treatment plants considering the poor operation, fluctuations in 

process variables and problems of linear analyses, algorithms developed using artificial 

intelligence methods such as artificial neural networks have attracted a great deal of 

attention. In this research, first using regression analysis, the parameters of biological 

oxygen demand, chemical oxygen demand, and pH of the input wastewater were chosen 

as input parameter among other different parameters. Next, using error analysis, the best 

topology of neural networks was chosen for prediction. The results revealed that multilayer 

perception network with the sigmoid tangent training function, with one hidden layer in the 

input and output as well as 10 training nodes with regression coefficient of 0.92 is the best 

choice. The regression coefficients obtained from the predictions indicate that neural 

networked are well able to predict the performance of the wastewater treatment plant. 

2.8.3.3 Machine Learning 

In 1959, Arthur Samuel defined machine learning as a “Field of study that gives 

computers the ability to learn without being explicitly programmed” (Simon, 2015). Machine 

learning can learn directly from examples and experiences in the form of data, by exploring 

different prediction constructions and algorithms (Bishop, 2016). Typically, the predictive 
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strength of machine learning models is used in industrial situations, especially when there 

is need to have a vision of future data (prediction) based on historical data. 

Machine learning can be classified in three broad categories based on the nature 

of learning as described below (Bishop, 2016): 

• Supervised learning: in supervised learning models, the training data includes 

examples of input variables with their corresponding output variables. 

• Unsupervised learning: application in which the training data comprises a set of 

input variables without any corresponding output variables. 

• Reinforcement learning: same as unsupervised learning, the output variables are 

not given in the model and the targets should be predicted by trial and error. 

Another classification of machine learning can be based on the desired output of 

the modeling systems. Below items define these categories: 

• Classification: the outputs are divided into two or more classes and typically 

supervised learning are used to model this class. 

• Regression: in this category the outputs are continuous rather than discrete and a 

supervised problem. 

• Clustering: in clustering category, a set of inputs are classified into different groups. 

Unlike classification and regression, this is an unsupervised task. 

• Density estimation: the distribution of inputs is found in some space in this 

category. 

• Dimensionality reduction: simplifying the inputs by mapping them into a lower-

dimensional space. 

The trend of using machine learning is growing very fast in different industries. 

various machine learning models, such as, support vector machine (SVM), decision trees, 
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random forest and Bayesian regressions have been used in wastewater industry, to predict 

deterioration of sewer pipelines. 

Mashford et al. (2011) employed support vector machine to predict condition grade 

of sewer pipelines. The predictive performances of model was developed using CCTV data 

collected from wastewater collection network in Adelaide, South Australia. The condition 

rating of 1 (good condition) to 5 (very poor condition) was used to assess the condition of 

sewer pipes. Pipe diameter, age, road type, slope, start invert, end invert, material, soil 

type, soil corrosivity, grade, angle, sulfate soil and groundwater level were used as input 

variables. The result of study showed that the support vector machine has very good 

predictive performance with 91% accuracy and can be used as a new approach to model 

deterioration of sewer pipes. The authors stated that the limitation of this study was lack of 

available condition data. 

Syachrani et al. (2013) provided a decision tree-based model to study deterioration 

of buried wastewater pipeline. The combination of visual representation and sound 

statistical background was used to build the model. Same data set was used to compare 

the decision tree with conventional regression and neural network models. The databased 

used in this study were collected from Johnson County Wastewater (JCW) in Kansas. Pipe 

age, diameter, length, slope, number of trees and pipe defects were used as input variables 

in this model. The outcome reflected that; decision tree achieved more accuracy to predict 

the real age of sewer pipes. 

Support vector machine was employed by Sousa et al. (2014) to investigate the 

efficiency of artificial intelligence tools, such as, neural network, support vector machine 

and logistic regression for predicting sewer structural performance. Pipe material, 

diameter, length, age, depth and slope were the independent variables for generating the 

model. The research outcomes reflected that the different methods provided similar overall 
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result, with the logistic regression providing the lowest correlations and the artificial neural 

networks the highest. Furthermore, due to overlapping among the models, it is not possible 

to select the best model in this study. 

Harvey and Mcbean (2014a) used random forests model to predict the structural 

condition of individual sanitary sewer pipes. The sewer database was collected from city 

of Guelph, Ontario, Canada. Several factors, such as, pipe age, material, length, diameter, 

service type, slope, up elevation, down elevation, depth, land use and road type were 

employed to develop the model. The research outcomes indicated that the random forest 

models are capable to predict the condition of individual sewer pipes by an excellent area 

under the ROC curve of 0.81. Using random forest prediction models has the potential to 

reduce the cost and time of projects and this strategy can be used to estimate the condition 

of uninspected sewer pipelines.  

Harvey and Mcbean (2014b) published another paper about application of support 

vector machine and decision tree models for planning inspections of sewer pipelines. 

Similar to the previous research, data collected from city of Guelph, Ontario, Canada, was 

used to prepare the model. Pipe material, age, type of sewer, diameter, length, slope, down 

elevation, depth and road coverage were the input features of this model. The results 

stated that the support vector machine achieved 76% accuracy to predict the condition 

rating of sewer pipes. Although, decision trees were found to be a useful tool for planning 

prioritization and planning future inspection of sewer pipes.  

Laakso et al. (2018) employed random forest and binary logistic regression to 

predict condition rating of sewer pipeline. Although, the factors that affecting the 

deterioration of pipes were investigated in this study. The databased used in this research 

were collected from southern Finland. European standards (EN- 13508-2) was used to 

assess the condition of sewer pipes. Score 0 indicated “no defect” and score 4 “serious 
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defect.” Various predictors, such as, pipe age, diameter, material, slope, depth, length, soil 

type, road class, distance to tree, intersection with stormwater or water supply pipes and 

annual sewage flow were used to generate the model. The accuracy of the models was 

62% and 67% for binary logistic regression and random forest respectively. The result of 

the study indicated that both logistic regression and random forest models can be used to 

predict future condition of sewer pipelines.  

In recent years, several sewer condition prediction models were developed and 

Table 2.13 shows detail of selected studies. Furthermore, Table 2.14 presents different 

variables included in prediction models. 
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Table 2-13 Sewer Condition Prediction Models 

Authors Year Model 
Number 
of Data 

Condition 
Assessment 

Standard 

Condition 
Rating 
Output 

Davies et al. 2001 • Logistic regression 12,000 WRc 
0: 1, 2, 3,4 
1: 5 

Ariaratnam et al. 2001 • Logistic regression 748 WRc 
0: 1, 2, 3 
1: 4,5 

Wirahadikusumah et al. 2001 • Markov chain - Other 1,2,3,4,5 

Micevski et al. 2002 • Markov chain 497 SEWRAT 1,2,3,4,5 

Najafi and Kulandaivel 2005 • Neural network - PACP 1,2,3,4,5 

Tran et al. 2006 • Neural network 583 WSAA 1,2,3 

Koo and Ariaratnam 2006 • Logistic regression 579 PACP 
0: 1, 2, 3 
1: 4,5 

Tran et al. 2007 
• Neural network 

• Multiple discrimination 
analysis 

150 WSAA 1,2,3 

Chughtai and Zayed 2008 • Linear regression - WRc 1,2,3,4,5 

Gat 2008 • Markov chain 5,262 DWA 1,2,3,4,5 

Ana et al. 2009 • Logistic regression 1,316 NEN3399 
0: 1, 2, 3 
1: 4,5 

Tran et al.  2009 
• Neural network 

• Ordered probit model 
417 WSAA 1,2,3 

Khan et al. 2010 • Neural network 200 WRc 1,2,3,4,5 

Mashford et al. 2011 • Support vector machine 1,441 Other 1,2,3,4,5 

Lubini and Fuamba 2011 • Logistic regression 459 PACP 1,2,3 

Salman and Salem 2012 

• Ordinal regression 

• Logistic regression 

• Binary regression 

11,373 PACP 
0: 1, 2, 3 
1: 4,5 

Sousa et al. 2014 

• Neural network 

• Support vector machine 

• Logistic regression 

745 PACP 
0: 1, 2, 3 
1: 4,5 

Harvey and McBean 2014 

• Random forest 

• Decision Tree 

• Support vector machine 

1,825 WRc 
0: 1, 2, 3 
1: 4,5 

Bakry et al. 2016 • Multiple regression 84 PACP 1,2,3,4,5 

Gedam et al. 2016 • Linear regression 155 PACP 1,2,3,4,5 

Kabir et al. 2018 
• Bayesian logistic 

regression 
12,728 PACP 

0: 1, 2, 3 
1: 4,5 

Laakso et al.  2018 
• Random forest 

• Binary logistic 
regression 

6,700 EN-13508-2 
0: 0, 1, 2 
1: 3,4 
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Table 2-14 Variables Included in Sewer Condition Prediction Models 

( : significant factors, : insignificant factors, : not indicated) 

Authors Year 

Independent Variables 
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Davies et al. 2001                     
Ariaratnam et al. 2001                     

Wirahadikusumah et al. 2001                     

Micevski et al. 2002                     

Najafi and Kulandaivel 2005                     

Jeong et al. 2005                     

Tran et al. 2006                     
Koo and Ariaratnam 2006                     
Tran et al. 2007                     
Chughtai and Zayed 2008                     

Gat 2008                     

Ana et al. 2009                     

Tran et al.  2009                     
Khan et al. 2010                     

Mashford et al. 2011                     
Lubini and Fuamba 2011                     

Salman and Salem 2012                     

Syachrani et al. 2013                     
Sousa et al. 2014                     

Harvey and McBean 2014                     
Bakry et al. 2016                     
Gedam et al. 2016                     

Bakry et al. 2016                     

Hawari et al. 2016                     
Kabir et al. 2018                     
Laakso et al.  2018                     
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2.9 Chapter Summary 

As described in previous sections, the deterioration of pipe is very complex 

process and only one factor cannot be the cause of pipe deterioration. Moreover, the 

wastewater agencies and municipalities are typically under budget to assess the condition 

of all pipes in the network periodically. Thus, an alternative solution must be used to reduce 

the inspection cost and to provide a comprehensive plan regarding prioritization and 

appropriate scheduling for inspection. Numerous deterioration models and several factors 

that affect deterioration of sewer pipes were presented in this chapter. However, condition 

prediction models for individual sewer pipes have not been fully examined yet and the 

result of most studies reflected that it is possible to assess future condition and behavior 

of sewer pipeline through new data analysis approaches. To this end, the objective of this 

dissertation is to model deterioration of individual sewer pipelines and investigate the 

factors that influence structural and operational condition of sewer pipes. 
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Chapter 3 Model Selection and Justification 

3.1 Introduction 

Deterioration models can be used to predict condition rating of sewer pipes by 

using information obtained from inspection databases. Prediction models can perform an 

essential role to generate a comprehensive prioritization plan as provide valuable 

information to forecast short-term and long-term behavior of sewer pipes.  In general, utility 

companies and municipalities can forecast the future condition of their assets by generating 

deterioration models to identify the pipes that require maintenance, rehabilitation and 

replacement. The primary objective of sewer condition prediction models is to apply an 

appropriate mathematical technique to estimate future condition states of sewer pipes. 

Additionally, condition prediction models are capable to identify significant factors affecting 

deterioration of the pipes. 

The existing sewer deterioration models can be classified into two groups of 

statistical and artificial intelligence models. The basic explanation of a statistical model is 

a random variable X, which represents a quantity whose outcome is uncertain. In statistical 

models, the probabilistic nature of historical data is used to describe the model output as 

a random variable. In any statistical analysis, estimates are "best guesses" based on the 

condition of given historical data (Coles, 2011). 

Artificial intelligence can be defined as “the study of mental faculties through the 

use of computational models” (Charniak and McDermott, 1985). In artificial intelligence 

models, the dependent variables are classified from a set of independent variables by 

learning from the available data. These models are appropriate to estimate ordinal 

condition ratings or nonlinear deterioration behaviors. 
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The objective of this dissertation is to develop statistical and artificial intelligence 

models to predict future condition of sanitary sewer pipes. In this chapter detail and 

important properties of the selected models are presented. 

3.2 Model Selection 

One of the most important processes of any statistical analysis is model selection; 

because many factors can influence the result of regression models. Selection of 

deterioration models for sewer pipes depends on various factors, such as, the available 

information data, type and number of independent variables, and type of dependent 

variables. As explained before, the condition prediction scales are classified by discrete 

values for sewer pipes. Therefore, it is essential to select a predictive model with the 

capability to forecast categorical dependent variables. 

Statistical models and artificial intelligence models were investigated 

comprehensively in literature review chapter. Some models such as, Markov chains, 

survival functions and simulation methods are appropriate to forecast condition of pipe 

networks or groups of pipes (Salman, 2010). Since, the objective of this study is to predict 

condition states of individual sewer pipes, group-based models were excluded from further 

investigation. Additionally, the condition states of sewer pipes are typically described as 

discrete or categorical values; therefore, linear and exponential regressions are not 

suitable to predict categorical variables since they minimize the sum of squared distances 

between predicted and actual condition ratings. 

In this dissertation, the most appropriate models were selected based on the 

following reasons: 

• Performance of the model to predict categorical dependent variables  

• The capability of the model to be trained by nominal variables such as pipe material 

and soil type 
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• And, the results generated by the model 

Logistic regression is the statistical model developed in this dissertation. The 

logistic regression model is the most frequently used regression model for the analysis 

dataset with two or more discrete outcome variables (Hosmer et al., 2013). Logistic 

regressions are used to analyze the relationship between multiple independent variables 

and a categorical dependent variable. Both numerical and nominal independent variables 

can be used to build a logistic regression model. And, significant factors that affect 

deterioration of sewer pipes can be identified by development of this model. 

Gradient boosting is the second model developed in this study as artificial 

intelligence model. Boosting is one of the most powerful learning techniques presented in 

past twenty years and it is originally designed for classification problems. Gradient boosting 

is a machine learning technique for prediction and simulation with combining weak learners 

into a single strong learner (Hastie, 2017). This model can predict future condition of 

individual sewer pipes and determine the important independent variables. In this section, 

detail of logistic regression and gradient boosting models will be presented. 

The third model developed in this dissertation is K-Nearest Neighbors (KNN) to 

predict the condition of sewer pipes. Nearest neighbors method works based on identifying 

the labels of K-nearest patterns in data space and predict the dependent variable based 

on the distance of the data points. K-Nearest Neighbors is developed in this study to satisfy 

the second objective of this dissertation about the diversity of the different statistical and 

artificial intelligence models and validating the result of logistic regression and gradient 

boosting tree models. Additionally, KNN is used for regression and classification and the 

application of this method is not well studied in this area.  



84 

3.3 Logistic Regression 

3.3.1 Introduction 

Logistic regressions are used to analyze the relationship between multiple 

independent variables and a categorical dependent variable. In logistic regression the 

probability of occurrence of an event is estimated by fitting data to a logistic curve. Logistic 

regression models can be classified in three groups of binary logistic regression, 

multinomial logistic regression and ordinal logistic regression (Park, 2013). In this 

dissertation binary and multinomial logistic regressions were used to develop condition 

prediction models. The detail of these models is explained in following sections.  

3.3.2 Binary Logistic Regression 

Binary logistic regression is used to develop prediction models when the output 

(dependent or response) variable is binary or dichotomous. A binary or dichotomous are 

variables which only take two values. For example, the output of the model can be true or 

false, success or failure and zero or one. In sewer condition prediction modeling, the 

dependent variable can be classified in good or poor conditions (Hosmer et al., 2013; 

Salman, 2010). A binary logistic regression for deterioration of pipeline has two response 

variables of 0 and 1. If the outcome is equal to 0, pipe is in poor condition and in contrast 

response variable of 1 indicates that the pipe is in good condition. 

For a binary response variable Y and a single explanatory variable X, let π(X) =

P(Y = 1 | X = x) = 1 − P(Y = 0 | X = x), the logistic regression model has linear form for the 

logit of this probability as shown in Eq. 3.1 (Agresti, 2007). 

logit [𝜋(𝑋)] = log (
𝜋(𝑋)

1 − 𝜋(𝑋)
) =  𝛼 + 𝛽𝑥                                    Eq. 3.1 

And Eq. 3.2 presents the formula for the probability π(X), using the exponential 

function (exp(𝛼 + 𝛽𝑥) = 𝑒𝛼+𝛽𝑥). 
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𝜋(𝑋) =  
exp (𝛼 + 𝛽𝑥)

1 + exp (𝛼 + 𝛽𝑥)
                                                   Eq. 3.2 

Figure 3-1 illustrates logistic curve or logistic function which are used to estimate 

coefficient of the parameters in the model. In this example x varying from -4 to +4 while the 

y axes show the probability from 0 to 1. 

 

Figure 3-1 Logistic Function 

(Harrell, 2016) 

When there are more than one independent variables in database, multiple logistic 

regression is used to develop the model. The Eq. 3.3 presents the multiple logistic 

regression formula when the dependent variable is zero or one (Agresti, 2007). 

log [
𝜋

1 − 𝜋
] = log [

𝑃(𝑌 = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝)

1 − 𝑃(𝑌 = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝)
] =  α + β1𝑋1 + β2𝑋2 +⋯+ β𝑝X𝑝

= α +∑β𝑗X𝑗

𝑝

𝑗=1

                                                                                                         Eq. 3.3 
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where: 

X1, X2, …, Xp are independent variables 

 α is the intercept parameter for category i 

 𝛽 is the regression coefficients 

And finally, the probability of Y=1 can be measured using an exponential 

transformation as shown in Eq. 3.4. 

P(Y = 1 | 𝑋1, 𝑋2,… ,𝑋𝑝) =  
𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

1 + 𝑒
α+∑ β𝑗X𝑗

𝑝
𝑗=1

                                    Eq. 3.4 

The logistic model is easily understood by transforming the probability to a linear 

model, since the logistic regression is a direct probability model (Harrell, 2016). 

3.3.3 Multinomial Logistic Regression 

The multinomial logistic regression is used where the dependent variable is 

nominal with more than two levels. For example, consider a series of pipes which were 

assessed based on PACP method. The dependent variable has five levels indicating the 

condition of sewer pipes (condition 1 through 5). The objective of multinomial logistic 

regression in this case is to estimate the probability of having each of the five conditions 

and to convey the result in terms of odd ratio for choice of different conditions. 

It would be possible to develop a multinomial logistic regression where the 

dependent variable has several levels, however, the details are more easily to understand 

for variables with three levels. When, a logistic regression is generated for a discrete 

dependent variable with more than two levels, the measurement scales should be 

investigated in more detail (Hosmer et al., 2013). 

Equations 3.5 and 3.6 reveal how multinomial logistic regression works for a pipe 

system with three condition levels. Assume, levels 0, 1 and 2 indicate pipes in good, 

moderate and poor condition states respectively. Since, one of the categories is used as 
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the reference value, two logit functions are required to develop the model. To develop the 

model, p covariate and a constant term denoted by the vector x (Hosmer et al., 2013). 

g1(X) = log [
𝑃(𝑌 = 1 | 𝑋)

𝑃(𝑌 = 0 |𝑋)
] =  β10 + β11𝑋1 + β12𝑋2 +⋯+ β1𝑝X𝑝                 Eq. 3.5 

and  

g2(X) = log [
𝑃(𝑌 = 2 | 𝑋)

𝑃(𝑌 = 0 | 𝑋)
] =  β20 + β21𝑋1 + β22𝑋2 +⋯+ β2𝑝X𝑝                 Eq. 3.6 

Probability of each condition levels can be calculated by Eq.3.7 through 3.9. 

P(Y = 0 | 𝑋) =  
1

1 + 𝑒𝑔1(𝑋) + 𝑒𝑔2(𝑋)
                                                Eq. 3.7 

P(Y = 1 | 𝑋) =  
𝑒𝑔1(𝑋)

1 + 𝑒𝑔1(𝑋) + 𝑒𝑔2(𝑋)
                                                Eq. 3.8 

and  

P(Y = 2 | 𝑋) =  
𝑒𝑔2(𝑋)

1 + 𝑒𝑔1(𝑋) + 𝑒𝑔2(𝑋)
                                                Eq. 3.9 

Multinomial logistic regression is known by other names such as polychotomous, 

or polytomous logistic regression in the health and life science (Hosmer et al., 2013). In 

the next sections more information will be given regarding significance of the models and 

variables. 

3.3.4 Logistic Regression Assumptions 

Binary logistic regression and multinomial logistic regression share the same 

assumptions (Salman, 2010). The assumptions of logistic regression are as follows 

(McDonald, 2009): 

• The observations are independent and there is no relation between the outcome 

variables. In other word, the observations should not come from repeated 

measurements. 

• The odds ratio and independent variables have a linear relationship.  
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• Logistic regression does not assume that the independent variables are normally 

distributed. 

• There is no multicollinearity between independent variables. In other word, the 

correlation between independent variables should not be too high. 

3.3.5 Forward and Backward Stepwise Selection 

Forward and backward stepwise selection are statistical techniques to screen the 

independent variables. In these methods, the variables which have enough predictive 

power are remained in the model and idle variables are removed stepwise. For example, 

if a dataset has hundred independent variables it would be beneficial to keep the 

appropriate variables on the model and remove the rest. 

 Forward stepwise selection starts with the intercept and then the variables that 

improve the performance of the model are added sequentially. In contrast, backward 

stepwise selection starts with full model and then the variables that have least influence 

are deleted. The variables with the smallest Z-score are the candidate for removing from 

the model. Backward stepwise selection can only be used when total number of 

observations are greater than independent variables, while forward stepwise can always 

be used (Hastie et al., 2017). 

3.3.6 Fitting the Logistic Regression Model 

In logistic regression model, the intercept and the coefficient of each independent 

variables are estimated by Maximum Likelihood Estimation (MLE) method. In general, the 

method of maximum likelihood estimation assigns values for the unknown parameters that 

maximize the probability of obtaining the observed values. The maximum likelihood 

estimators of the parameters are the value that maximize likelihood function which 

expresses the probability of the observed data as a function of the unknow parameters 

(Hosmer et al., 2013). Equation 3.10 defines the detail of maximum likelihood estimation. 
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𝑙(β) =∏𝜋(𝑋𝑖)
𝑦𝑖

𝑛

𝑖=1

[1 −  𝜋(𝑋𝑖)] 
𝑛𝑖−𝑦𝑖                                             Eq. 3.10 

where, ni is total number of observations, 𝛽 is coefficient parameters, yi is number 

of success and N is total number of observations. 

3.3.7 Odds Ratio 

The odds ratio (OR) is a nonnegative function, used to compare the relative odds 

of the occurrence of the outcomes.  For a probability of success 𝜋, the odds of success are 

given in Equation 3.11. For example, if the probability of success is 0.8, then the odds of 

success equal 0.8/0.2 = 4 (Agresti, 2007).  

𝑜𝑑𝑑𝑠 =
𝜋

1 − 𝜋
                                                              Eq. 3.11 

The odds ratio is a measure of association between an event occurring in one 

group, to the odds of it occurring in another group (Ana et al., 2009). Assume, the possible 

values of the logistic probabilities from a prediction model of sewer pipes including discrete 

dependent variable with condition states of 0 and 1.  The odds ratio is the ratio of the odds 

for x = 1 to the odds for x = 0 as given by the Equation 3.12. 

𝑂𝑅 =
𝑜𝑑𝑑𝑠1
𝑜𝑑𝑑𝑠0

=
[
𝜋(1)

1 − 𝜋(1)
]

[
𝜋(0)

1 − 𝜋(0)
]
= 𝑒𝛽1                                       Eq. 3.12 

The odds ratio is widely used to approximate how much more likely or unlikely is 

the outcome to be present in groups where x = 1 or x = 0. When, OR = 1 the outcome is 

equally likely in both groups of x =1 and x = 0. Odds ratio greater than one reveals that the 

outcome is most likely to happen when x = 1 and odds ratio less than one indicates that 

the event is less likely when x = 1 (Hosmer et al., 2013). For example, if the outcome (y), 

expresses the presence or absence of pipe failure and the independent variable (x) 
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presents whether the groundwater is above or below the pipe, then an OR = 3 means that 

the odds of pipe failure is three time greater where the groundwater is above the pipes. 

This simple relationship between the coefficient and odds ratio is one of the main 

reasons that logistic regression is widely accepted as a powerful analytical tool (Hosmer et 

al., 2013).  

3.3.8 Significance of the Coefficients 

Identifying the significant variables in the model is formulation and testing of a 

statistical hypothesis to determine if the independent variables are significantly related to 

the dependent variables. Typically, significance of the variables can be identified by 

comparing the observed dependent variables and predicted values after development of 

the model with and without independent variables. If the predicted values are more 

accurate by utilizing an independent variable in the model, then the variable is significant. 

Log-likelihood test and Wald test are the most common tests used in logistic regression to 

identify the significance of the variables (Hosmer et al., 2013). 

3.3.8.1 Log-likelihood Test 

In logistic regression, the log-likelihood function is used to compare the observed 

and predicted values. Equations 3.13 and 3.14 show the mathematical concept of log-

likelihood function. 

𝐺 = −2 ln [
(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
]                             Eq. 3.13 

𝐺 = 2 {∑[𝑦𝑖 ln 𝜋(𝑋𝑖) + (1 − 𝑦𝑖) ln(1 − 𝜋(𝑋𝑖)] − [𝑛1 ln(𝑛1) + 𝑛0 ln(𝑛0) − 𝑛 ln(𝑛)]

𝑛

𝑖=1

}    Eq. 3.14 

where n1 = ∑𝑦𝑖 and n0 = ∑(1 − 𝑦𝑖). This statistic is similar partial F-test in linear regression. 

For large samples, the statistic G follows a chi-square distribution with degree of freedom 

equal to the number of parameters estimated (Harrell, 2016). 
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3.3.8.2 Wald Test 

Wald test is a method to identify significance of the individual variables in logistic 

regression models. The Wald test is equal to the ratio of the maximum likelihood estimate 

and its standard error as shown in Equation 3.15. This ratio follows a standard normal 

distribution (Hosmer et al., 2013).  

𝑊𝑗 = (
𝛽𝑗

𝑆𝐸(𝛽𝑗)
)                                                             Eq. 3.15 

where 𝛽𝑗 is the coefficient of the predictor variable, and SE is the standard error of the 

coefficient. If the result of Wald test for an independent variable is zero, this variable is not 

significant, and it can be removed from model. In contrast, if Wald is not zero, the variables 

should be included in the model. 

3.3.9 Classification Table 

Classification tables are used to show the percentage of correct predictions by the 

logistic regression models. This table summarize the result of fitted logistic regression 

models. To obtain the discrete result of classification table, a cut-point (c) is defined (0.5 is 

the most common value) and it is compared to each estimated probability. If the estimated 

probability exceeds the cut-point, they are assigned to class one. In contrast, if the 

estimated probability does not exceed the cut-point, they are assigned to the other groups 

(Hosmer et al., 2013). The concept of classification table is matched with confusion matrix, 

but typically in logistic regression the term of classification table was used in different 

references (Harrell, 2016; Hosmer et al., 2013; Agresti, 2007). 

3.4 Tree-Based Models 

3.4.1 Introduction 

In tree-based models, the feature space is divided into a set of rectangles and then 

a simple model is developed for each partition. Tree-based models are conceptually simple 



92 

and powerful method for both regression and classification aim. For example, consider a 

regression problem with continuous dependent variable Y, and two independent variables 

X1 and X2. As shown in Figure 3-2, the space is split into several regions and then model 

is developed based on mean of dependent variable in each region. The regions are split 

into more regions until achieving the best fit for the model or applying some stopping rules 

(Hastie et al., 2017). 

 
Figure 3-2 Tree-based Partitions 

(Hastie et al., 2017) 

In previous example, X1 is split into t1 and t3 and X2 is divided into t2 and t4. And 

the result is five regions R1, R2, …, R5 shown in the figure. 

3.4.2 Classification Trees 

Classification trees are used as predictive models when the outcome taking 

discrete values 1, 2, …, K (Hastie et al., 2017). In other word, classification trees are used 

to classify an object into separate classes based on characteristics of input variables 

(Rokach and Maimon, 2015). Comparable with logistic regression, this method can be used 

to predict different condition levels of sewer pipes. 
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Regression trees utilize squared-error node to split the space into separate 

regions, while the classification trees use different criteria such as impurity-based criteria, 

information gain, and Gini index (Rokach and Maimon, 2015). For impurity-based criteria 

assume a random variable x with k discrete values. The variable is defined as pure if the 

probability vector x gets only one value. Information gain is an impurity-based criterion with 

utilizing the entropy measure to determine the split regions. This method works based on 

maximum likelihood estimation to make inferences about parameters of the underlying 

probability distribution. And Gini index is one of the most common techniques that 

measures the differences between the probability distributions of the dependent variables. 

Gini index measures how often a random event would be identified incorrectly. Therefore, 

a variable with lower Gini index should be preferred (Hastie et al., 2017). 

The employment of decision tree is very common for classification due to its 

simplicity and transparency. Decision trees are self-explanatory and there is no need for 

data mining expert to follow a certain decision rule. Decision trees can present the 

graphically results which are easier to interpret than other modeling techniques, especially 

when the outcome result is complicated (Rokach and Maimon, 2015). 

3.4.3 Gradient Boosting Tree 

Gradient boosting is a machine learning technique for regression and 

classification, which provide a prediction model by improving the performance of a weak 

learner. In this method, a weak learner is run repeatedly on various training data to develop 

classifiers. Then, the classifiers are combined into a single strong classifier to achieve a 

higher accuracy (Rokach and Maimon, 2015). 

In fact, gradient boosting tree is an ensemble model which employs the strengths 

of a collection of simpler base models to develop a prediction model (Friedman, J. 2001). 

Many recent machine learning approaches determined that prediction of an ensemble of 
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models works better than only a single prediction model. The most frequent approaches to 

generate ensemble classifiers are bagging, boosting and random forest (Kozak, 2019).  

AdaBoost is the most popular boosting algorithm. Consider a two-class dependent 

variable 𝑌 ∈ {−1, 1}. The error rate of training sample can be determined by Eq.3.16, where 

X is independent variable and G(X) is a classifier produces a prediction. A weak classifier 

has slightly better error rate than random guessing (Hastie et al., 2017).  

𝑒𝑟𝑟 =
1

𝑁
∑𝐼(𝑦𝑖 ≠ 𝐺(𝑥𝑖))                                                    Eq. 3.16

𝑁

𝑖=1

 

Based on the objective of boosting, a series of weak classification algorithm are 

generated to provide a sequence of weak classifiers. Then the final prediction is developed 

from combination of weighted classifiers as shown in Figure 3-3 and estimated from 

Eq.3.17. 

 

 Figure 3-3 Schematic of AdaBoost 

(Hastie et al., 2017) 
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 𝐺(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝐺𝑚(𝑥)

𝑚

𝑚=1

)                                               Eq. 3.17 

where 𝛼1, 𝛼2, … , 𝛼𝑀 are computed by boosting algorithm and weight the contribution of 

classifiers. 

The weights are assigned to each training observation sequentially and the 

classification algorithm is replied to the weighted observations. At the final step, the weights 

of misclassified observations are increased, while the weights are decreased for those 

which were predicted correctly.  

3.4.4 Fitting Gradient Boosting 

Boosting models employs a set of basic functions to fit an additive expansion. 

Equation 3.18 presents the form of basic function expansions (Hastie et al., 2017).  

𝑓(𝑥) = ∑ 𝛽𝑚  𝑏(𝑥; 𝛾𝑚)

𝑀

𝑚=1

                                                     Eq. 3.18 

 where 𝛽𝑚 are the expansion coefficients and 𝑏(𝑥; 𝛾𝑚) are simple functions characterized 

by a set of parameters 𝛾. In tree models, 𝛾 determines the split variables and points at the 

internal nodes and the predictions at the terminal nodes. 

Typically, minimizing a loss function such as the squared-error or a likelihood-

based loss function is used to fit the gradient boosting trees. Loss function is a machine 

learning technique to evaluate the prediction performance of the model. When the loss 

function is a high value, the model is not appropriate for prediction. While, the lower value 

of loss function determines the capability of the model to achieve better accuracy. 

Therefore, minimizing the loss function is a technique to increase the performance of the 

models. Equation 3.19 shows the detail of minimizing loss function in boosting trees. 

min
{𝛽𝑚,𝛾𝑚}1

𝑀
∑ 𝐿(𝑦𝑖 , ∑ 𝛽𝑚 𝑏(𝑥; 𝛾𝑚)

𝑀

𝑚=1

)

𝑁

𝑚=1

                                          Eq. 3.19 
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3.4.5 Importance of Independent Variables 

Decision trees models are capable to rank the importance of the independent 

variables in both regression and classification aims. Typically, two measure of significance 

are used to determine the magnitude of the variables. The first technique is Mean Decrease 

Impurity (MDI) and the second one is Mean Decrease Accuracy (MDA) (Biau and Scornet, 

2016). 

Mean decrease impurity method measures the weighted decrease of impurity from 

splitting on the variable, averaged over all trees. In simple word, MDI counts the times that 

an independent variable is used to split a node as given in Eq.3.20. This method is used 

more to develop forest decision trees and gradient boosting (Biau and Scornet, 2016). 

𝑀𝐷�̂�(𝑋(𝑗)) =
1

𝑀
∑ ∑ 𝑝𝑛,𝑡𝐿𝑐𝑙𝑎𝑠𝑠,𝑛(𝑗𝑛,𝑡

∗

.
𝑗𝑛,𝑡
∗ =𝑗

𝑡∈𝒯ℓ

,

𝑀

𝑙=1

 𝑧𝑛,𝑡
∗ )                              Eq. 3.20 

where 𝑝𝑛,𝑡 is the fraction of observations falling in the node t, 𝒯ℓ is the collection of trees in 

the forest and ( 𝑗𝑛,𝑡
∗ , 𝑧𝑛,𝑡

∗ ) the split that maximizes the empirical criterion in node t. 

Mean decrease accuracy is one of the most interesting measures in tree based 

models, because it is based on averaging the difference in out-of-bag error estimation 

before and after the permutation over all trees. Equation 3.21 present the mathematical 

concept of MDA (Biau and Scornet, 2016). 

𝑀𝐷�̂�(𝑋(𝑗)) =
1

𝑀
∑[𝑅𝑛[𝑚𝑛(. ; 𝜃𝑙), 𝐷𝑙,𝑛

𝑗
] − 𝑅𝑛[𝑚𝑛(. ; 𝜃𝑙), 𝐷𝑙,𝑛]]

𝑀

𝑙=1

                Eq. 3.21 

 where 𝑋(𝑗) is variable, 𝐷𝑙,𝑛 is out-of-bag dataset, 𝐷𝑙,𝑛
𝑗

 is the same dataset when the variable 

has been randomly selected. 
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3.4.6 Evaluation of Gradient Boosting Tree 

Typically, the supervised learning techniques are trained by a set of data and the 

objective is to perform a model which can make prediction. The performance of the 

prediction models always must be evaluated to understand the quality of the model and to 

identify the important parameters in the model. There are several techniques to evaluate 

performance of machine learning models. In this dissertation, confusion matrix, Receiver 

Operating Characteristic (ROC) curve and Area Under Curve (AUC) are used to evaluate 

machine learning models.  

3.4.6.1 Alternatives to the Accuracy Measure 

In this technique, sensitivity and specificity measures are used to evaluate the 

accuracy of the model. Sensitivity expresses how well the classifier can predict the positive 

samples and specificity determines how well the negative samples are recognized by 

classifiers. Equations 3.22 and 3.23 show the detail of measurements (Biau and Scornet, 

2016). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                     Eq. 3.22 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                   Eq. 3.23 

where true positive and true negative are number of true positive and true negative 

samples respectively, positive is number of positive and negative is number of negative 

samples. And then, the accuracy of the model can be specified as a function of sensitivity 

and specificity as given in Eq.3.24. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦.
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦.

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    Eq. 3.24 
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3.4.6.2 Confusion Matrix 

The confusion matrix is used to identify the number of elements that have been 

correctly or incorrectly predicted for each class. In confusion matrix, for every test samples 

the actual class is compared to the class that was assigned by the trained classifier. True 

positive or true negative (TP/TN) determine the examples that are classified correctly in 

the model. In contrast, false positive or false negative (FP/FN) identify the positive or 

negative examples that are classified incorrectly as shown in Table 3-1 (Biau and Scornet, 

2016).  

Table 3-1 Confusion Matrix 

 Predicted positive Predicted negative 

Positive Examples (P) True positive (TP) False negative (FN) 

Negative Examples (N) False positive (FP) True negative (TN) 

 

Based on the values on Table 3-3 below measurements can be calculated in 

confusion matrix method (Biau and Scornet, 2016): 

• Accuracy: (TN+TP) / (TP+FN+FP+TN) 

• Misclassification rate: (FP+FN) / (TP+FN+FP+TN) 

• Precision: (TP) / (FP+TP) 

• True positive rate (recall or sensitivity): (TP) / (FN+TP) 

• False positive rate: (FP) / (TN+FP) 

• True negative rate (specificity): (TN) / (TN+FP) 

• False negative rate: (FN) / (FN+TP) 
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3.4.6.3 ROC Curve 

Receiver Operating Characteristic (ROC) curve illustrates the exchange between 

true positive to false positive rates. In ROC curve, the X-axis illustrates a false positive rate 

(specificity) and the Y-axis presents a true positive rate (sensitivity). When all positive 

examples are predicted correctly in the model, the best point on the ROC curve is (0,100) 

(Hastie et al., 2017). Therefore, when the ROC curve is closer to upper left corner, the 

overall accuracy of the model is higher. Figure 3-4 illustrates a typical ROC curve. 

 

Figure 3-4 A Typical ROC Curve 

(Biau and Scornet, 2016) 

3.4.6.4 Area under Curve (AUC) 

Area under ROC Curve (AUC) is a useful method to evaluate the performance of 

classification models since it is independent from prior probabilities and decision criterion. 

When the total area under curve is higher, the prediction performance of the model is 

better. The imbalance of the training set does not affect the area under ROC curve, 

therefore the comparison of AUC of two or more classification model is more suitable than 
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comparing their misclassification rates (Biau and Scornet, 2016). Figure 3-5 illustrates an 

example of AUC. 

 

Figure 3-5 Area Under Curve (AUC) 

(Biau and Scornet, 2016) 

3.5 K-Nearest Neighbors 

3.5.1 Introduction 

This section provides information about developing classification models by K-

nearest neighbors method. K-nearest neighbors are applicable to develop both regression 

and classification models. Nearest neighbors method works based on identifying the labels 

of K-nearest patterns in data space. Nearest neighbor techniques have better performance 

when the datasets are large with low dimensions (Kramer, 2016). This model can be used 

for prediction in both supervised and unsupervised learning approaches. 

3.5.2 KNN Classifier 

K-nearest neighbors (KNN), also known as nearest neighbor classification, works 

based on recognizing the nearest patterns to a target pattern x′, to deliver label information 

of different classes in the dataset. For an unknown pattern xj the class labels are assigned 

based on the majority of the K-nearest patterns in data space. Equation 3.25 defines a 
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similarity measure in data space based on Minkowski metric (Kramer, 2016). In Minkowski 

metric the distance between two vectors is the norm of their different.   

‖x′ − xj‖
𝑝
=   (∑|(𝑥𝑖)

′ − (𝑥𝑖)𝑗|
𝑝

𝑞

𝑖=1

)

1/𝑝

                                   Eq. 3.25 

Additionally, the adequate distance function can be measured by Hamming 

distance which measures the minimum number of errors that could have transformed data 

points. For example, in the case of binary classification with set of dependent variables 𝑦 =

(1, −1), KNN is defined in Equation 3.26.  

𝑓𝐾𝑁𝑁(x
′) =

{
 

 1        𝑖𝑓 ∑ 𝑦𝑖 ≥ 0
𝑖∈𝑁𝑘(x

′)

−1     𝑖𝑓 ∑ 𝑦𝑖 < 0
𝑖∈𝑁𝑘(x

′)

                                  Eq. 3.26 

where K is size of neighborhood with a set of 𝑁𝑘(x
′) of K-nearest patterns. The size of 

neighborhood describes the locality of KNN. When size of neighborhoods are small, little 

and scattered neighborhoods appear in regions and the model tends to overfit. In contrast, 

a model with higher neighborhood size ignore the patterns which are in minority. Figure 3-

6 illustrates a classification model with K = 1 and K = 20 on a two-dimensional data.  

 

Figure 3-6 Comparison of KNN Classification ((a) K=1 and (b) K=20)) 

(Kramer, 2016) 
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For K = 1, several neighborhoods raised around the blue outliers located at the 

center of the red data points. For K = 20, the classifier ignored small patterns and the KNN 

search for the K-nearest patterns in the whole space. In larger neighborhood size, the risk 

of overfitting is lower, and the model yield a good approximation. Selecting an appropriate 

size of neighborhood is an important part of developing K-nearest Neighbors models. 

Various techniques such as, cross-validation can be used to select the best model and 

parameters in KNN models (Kramer, 2016). 

3.5.3 Cross-Validation 

Cross-validation is a strategy to avoid overfitting during training and testing the 

artificial intelligence models. In this method, the N observations {(xi, yi)}𝑖=1
𝑁  split up into 

training, validation and test set. The training set is used to learn the algorithm in the model. 

The validation set is utilized to evaluate the model and the test set are used to evaluate 

the final independent test set (Biau and Scornet, 2016). 

K-fold cross-validation is one the most common and advanced strategies to avoid 

overfitting. In this method, the learning process is repeated k times with different training 

and validation sets. To generate K-fold cross-validation, the dataset is split up into k 

separate groups and in each step 𝑘 − 1 sets are employed for training and the remaining 

validation set is used to evaluate the model. For example, to split the data into 80% training 

and 20% testing, 5-fold cross-validation should be used during model development.  

In this method, all the observation is used to train and test of the model. All the 

developed models in this dissertation were trained and tested by employment of k-fold 

cross-validation strategy. 
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3.5.4 Evaluation of KNN Model 

In this dissertation, the validation and performance evaluation of KNN model were 

performed by several techniques such as, confusion matrix, ROC curve and Area Under 

Curve (AUC). These methods were presented in section 3.4.6.2 through 3.4.6.4. 

3.6 Chapter Summary 

In this chapter the detail of logistic regression, gradient boosting tree and KNN 

models was comprehensively reviewed. The discussions in this chapter reinforced the 

suitability of statistical and artificial intelligence models to work as a classifier for predicting 

condition of sanitary sewer pipes. Furthermore, model selection process and various 

techniques for training and evaluation of the models were widely investigated. The source 

of sanitary sewer pipe database and different steps of data preparation will be presented 

in next chapter. 
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Chapter 4 Data Preparation and Analysis 

4.1 Background Information of Sanitary Sewer Dataset 

The framework of this study is based on collected data from the City of Tampa, 

Florida. The City of Tampa's Wastewater Department receives and treats wastewater 

collected from the Tampa area and surrounding suburbs. On average, more than 50 million 

gallons of raw sewage is treated per day to an advanced level that meets or exceeds 

federal regulations. In addition to treating the City's wastewater, the maintenance of gravity 

and force main sewer lines and over 30,000 manholes are performed regularly. Overall, 

sewer inventory networks included a total number of 70,172 manhole to manhole gravity 

and force main pipe segments approximately 1,800 miles in length. Table 4-1 shows a 

summary of the sewer networks proportions in the City of Tampa.  

Table 4-1 Sewer Network Proportion in Tampa City 

Feature Description 

Miles of sanitary system 1,800 miles 

Number of gravity pipes 31,364 

Number of force mains 38,808 

Range of pipe diameter 2 – 96 in. 

Majority pipe size 8 in. 

Burial depth range 0.50 – 29.64 ft 

Pipe Material 

Asbestos-cement (AC) 
Cast iron (CAS) 
Corrugated metal pipe (CMP) 
Ductile iron pipe (DIP) 
Fiberglass pipe (FRP) 
Prestressed concrete cylinder pipe (PCCP) 
Plastic pipe (PE) 
Polypropylene pipe (PP) 
Polyvinyl chloride (PVC) 
Reinforced concrete pipes (RCP) 
Vitrified clay pipe (VCP) 

Majority of Older Pipes 
VCP, ~60% constructed prior to 1970, ~20% 
constructed prior to 1950 

Majority of Newer Pipes PVC 

Start of CCTV inspection ~2005 
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The inspection of sewer pipes began in 2005 by the City of Tampa and Pipeline 

Assessment and Certification Program (PACP) guidelines were used to assess the 

condition of pipes on a scale from 1 to 5, with 1 indicating a pipe with no or very few defects 

and 5 representing failing conditions. In this dissertation, sanitary sewer pipes that were 

assessed according to PACP guideline were used to develop the prediction models due to 

avoiding any inconsistencies and imbalance during data preparation and building the 

models. 

The geographic information system (ArcGIS) is the primary source of information 

to manage and maintain wastewater systems for the City of Tampa. A list of data layers, 

that are compatible with GIS software were collected to develop the deterioration models 

as shown below: 

• Sewer inventory data for sanitary pipes 

• Closed Circuit Television (CCTV) inspection data 

• Soil data 

Sewer inventory dataset contained a total number of 30,739 individual manhole to 

manhole pipe segments. A unique number was assigned to each pipe segment with the 

intention of making it easier to identify and track individual pipes. Total length of pipe 

segments in the inventory was approximately 1,250 miles. Several pipe attributes such as, 

installation year, material, diameter, length, depth, shape, slope, down elevation, up 

elevation and location of pipes were in the inventory. Furthermore, the pipes that have any 

repair or replacement were all specified by date and type of repair in the dataset. The 

newest pipe in the dataset had an installation date of 2018 and the oldest pipe was installed 

in 1947. This inventory involved essential information regarding condition of each pipe 

segment, such as, PACP condition level, total score, and quick rating structural and 

operational defects. Figure 4-1 illustrates location of sanitary sewer pipes in Tampa city. 
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Figure 4-1 Location of Sanitary Sewer Pipes in Tampa City 

CCTV inspection data involved detail of main inspection and scoring for all 

individual pipe segments based on PACP condition rating method. For each pipe segment 

some information such as, pipe rating, quick rating and pipe rating index were available for 

both structural and operational conditions. Additionally, the overall condition of pipes was 

existed in this database. The detail of calculating condition of sewer pipes based on PACP 

guideline was comprehensively presented in chapter two. As shown in Figure 4-2, type and 

total number of pipe defects were accessible in observations section. CCTV inspection 

database was used in this dissertation to fix any incorrect or missing information of sewer 

inventory dataset. For example, if condition of a pipe was missed in the inventory, the 

correct information was obtained from CCTV inspection data. 

 Sanitary Sewer Pipes 
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Figure 4-2 CCTV Inspection Database 

Soil database was another important part of this study which was collected from 

web soil survey (2018). Some important environmental variables such as, soil type, soil 

sulfate, soil pH, soil hydraulic group and soil corrosivity were collected based on depth of 

each individual pipe segments. Several appropriate information was available in this 

dataset and the variables were selected based on the possibility of their impact on condition 

states of sanitary sewer pipes.  

Soil data was a polygon type GIS and spatial join feature was used to combine 

pipe and soil datasets. Spatial join is a GIS operation to combine data from one attribute 
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table to another from a spatial perspective. In other word, spatial join is used to add data 

from one feature class to another class. Figure 4-3 illustrates the combination of sanitary 

sewer pipes location and soil datasets.   

 

(  Sanitary Sewer Pipes;  Soil Areas) 

Figure 4-3 Combination of Sewer and Soil Dataset 

To generate this operation, latitude and longitude of each pipe segment were 

utilized to provide combination of soil area and sanitary sewer pipe datasets. 

4.2 Dataset Preparation 

Combination of sanitary sewer pipes and soil datasets provided a huge amount of 

geographical information. Before developing statistical or artificial intelligence models, data 

needs to be prepared. Data preparation is combination of strategies to work with dataset 

for feeding pure data as input to model algorithms due to achieving higher accuracy. Data 

preparation is not a completely automated process and several techniques should be 
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applied to prepare the dataset (Pyle, 2007).  Typically, combination of rules and techniques 

are used to clean the dataset based on type of data and output of the model. Prior to start 

statistical analysis of sewer dataset, data were filtered and several evaluations have been 

done to find inappropriate and missing information. A unique “Facility ID” was assigned to 

each pipe segment with the intention of making it easier to identify and track individual 

pipes. Additionally, this facility IDs were used to identify any duplicate record in the pipe 

dataset. 

As a first step, missing information was identified and analyzed based on the 

variables included in the sewer dataset. For example, approximately 4,000 pipe segments 

were available in the dataset without any information regarding installation year. Pipes with 

missing information on pipe age, depth, material, slope, length and condition scales were 

excluded from the dataset.  

Secondly, Inspection results of pipes which previously underwent a lining, repair 

or replacement were excluded from the study. Approximately, 1,972 pipe segments were 

observed with historical repair and rehabilitation information. Typically, pipe segments with 

repair or lining history have higher age, while their condition states are excellent. Therefore, 

considering this groups of pipes in the dataset highly affect the result of the condition 

prediction models. 

Thirdly, pipe segments with negative age, depth and length values were removed 

from the dataset. Some inspection results were outdated, and the pipe attributes included 

several negative and constant values. After communication with engineers in City of 

Tampa, any infrequent datapoint was excluded from the dataset. Fourthly, pipe material 

such as cast iron, concrete, ductile iron, reinforced concrete and plastic pipes which had 

low population in the dataset were removed. The total number of all these pipes were 

approximately 3,000. 
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As a final step, different techniques, such as, boxplot and Mahalanobis Distance 

were used to remove the outliers from the dataset. Observed datasets often contain outliers 

which have numerically distant from the rest of the data. Outliers are typically larger or 

smaller than observed values in the dataset. Boxplot is a well-known simple graphical tool 

to display the variation of continuous data. The median, lower quartile, upper quartile, lower 

extreme, and upper extreme are the thresholds identified by boxplot (Seo, 2006). 

Mahalanobis Distance is a measure of the distance between a point and its distribution and 

it is widely used for regression and classification problems (Hastie et al., 2017). It was 

observed that after removing outliers the correlation between dependent and independent 

variables was improved. The final dataset contains 19,766 individual pipe segments with 

different physical and environmental variables as shown in table 4-2.  

Table 4-2 Variables Included in Sewer Pipe Dataset 

Category Variables Description 

Physical 

Age 
Time difference between the installation date of the pipe 
segment and date of inspection in years 

Material Type of sewer pipes material 

Diameter Diameter of the sewer pipe segment in inches 

Depth Depth of overburden above the sewer pipe segment in feet 

Slope 
Vertical displacement of the pipe section per horizontal 
displacement in percentage 

Length 
Length of the sewer pipe segment between two manholes 
in feet 

Environmental 

Soil Type Type of soil surrounding the pipe 

Soil Sulfate 
The weight percentage of hydrated calcium sulfate in the 
soil 

Soil pH 
A numerical expression of the relative acidity or alkalinity of 
a soil sample 

Water Table The average depth of water table during the year in inches 

Soil Hydraulic 
Group 

Soil hydraulic groups indicate soil runoff potential and the 
rate of water transmission through the soil layers 

Soil Corrosivity 
Corrosivity of soil based on soil texture, pH, and amounts 
of magnesium and sodium sulfate or sodium chloride in the 
saturated soil paste 

Operational Pipe Flow The amount of sewage transmission in gallon per minutes 
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Some features, such as, pipe age, size, depth, water table, soil pH and soil sulfate 

are numeric variables and some features, such as, pipe material, soil type, soil hydraulic 

groups and soil corrosivity are categorical variables to develop sewer deterioration model. 

Table 4-3 illustrates more information about variables used in this study. 

Table 4-3 Type of variables in Sewer Pipe Dataset 

Variables Variable Type 

Age 

Continuous quantitative  

Diameter 

Depth 

Slope 

Length 

Soil Sulfate 

Soil pH 

Water Table 

Pipe Flow 

Material 

Nominal categorical 

• PVC  

• VCP 

Soil Type 

Nominal categorical 

• Clayey soil 

• Fine sand 

• Silty gravel and sand 

• Silty soil 

Soil Hydraulic Group 

Ordinal categorical 

• Group A  

• Group B  

• Group C 

• Group D 

Soil Corrosivity 

Ordinal categorical 

• Low 

• Moderate 

• High 

 

4.3 Description of Variables in Final Dataset 

4.3.1 Pipe Age 

Pipe age is time difference between the installation date of the pipe segment and 

date of inspection in year. The age of pipes in sanitary sewer dataset ranges from 1 to 69 
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years. As shown in Figure 4-4, most of the pipes (13.07%) are between 50 to 55 years old 

and only 0.57% of them are below 5 years.  

 
Figure 4-4 Frequency of Pipe Age 

4.3.2 Pipe Material 

The sanitary sewer pipe dataset involved different type of pipe material such as 

asbestos-cement (AC), cast iron (CAS), ductile iron pipe (DIP), prestressed concrete 

cylinder pipe (PCCP), polyvinyl chloride (PVC) and vitrified clay pipe (VCP). In this 

dissertation only polyvinyl chloride and vitrified clay pipes were used to develop the 

prediction models due to their frequency in sewer dataset. Rest of pipe material was 

excluded to avoid any misclassification or error during model development. As shown in 

Figure 4-5, vitrified clay pipes are dominant material type with 65.21% frequency rather 

than 34.79% polyvinyl chloride pipes. 
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Figure 4-5 Frequency of Pipe Material 

4.3.3 Pipe Diameter 

Pipe diameter indicates size of sanitary sewer pipes in inch. As shown in Figure 

4-6 majority of the pipes had a diameter less than 15 inches. Pipes with diameter 5 to 10 

inches form 86% of the pipes in the dataset. 

 
Figure 4-6 Frequency of Pipe Diameter 
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4.3.4 Pipe Flow 

Pipe flow is an operational factor that indicates the amount of sewage transmission 

in gallon per minutes. Pipe slope, size, viscosity and population in urban areas govern the 

behavior of sanitary sewer pipes flow. Dataset used in dissertation had different values of 

pipe flow for each pipe segment. 

4.3.5 Pipe Depth 

Depth of sanitary sewer pipe is the depth of backfill over the top of the pipe in feet. 

According to the Figure 4-7 most of the pipes were buried within the depth of less than 10 

feet and 36.73% of the pipes were covered by 4 to 6 feet backfill material. Just few pipe 

segments buried under a depth of less than 2 feet and more than 20 feet. The average age 

of pipes buried below 2 feet is 41 years and it indicates that more restrictions have been 

placed to install newer pipes. 

 

Figure 4-7 Frequency of Pipe Depth 
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4.3.6 Pipe Slope 

Pipe slope is vertical displacement of the pipe section per horizontal displacement 

in percentage. As Tampa city is placed in a flat geographical location, most of the sewer 

pipes had very low slope. As illustrated in Figure 4-8 the minimum slope was -1.76% and 

the maximum was 21%.  

 
Figure 4-8 Frequency of Pipe Slope 

4.3.7 Pipe Length 

Pipe length is manhole to manhole length of sewer pipe segments in feet. most of 

sewer pipe inventories storage manhole to manhole length of sewer pipes due to difficulty 

of data collection. The length of pipes in sanitary sewer dataset ranges from 3 to 680 feet. 

As shown in Figure 4-9 the highest frequency percentage belongs to the pipes with length 

of 250 to 300 feet. Only few percentages of the sewer pipes had the length of more than 

400 ft. 
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Figure 4-9 Frequency of Pipe Length 

4.3.8 Soil Type 

Soil type indicates the type of backfill material surrounding the sewer pipes. Type 

of soil is one of the important factors can affect the ground loos and stability of the sewer 

pipes. As shown in Figure 4-10 silty gravel and sand is the most common soil type 

surrounding the sewer pipes with 71.72%.  

 
Figure 4-10 Distribution of Soil Type 
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4.3.9 Soil Sulfate 

Soil sulfate in sewer dataset is the weight percentage of hydrated calcium sulfate 

in the soil. The amount of gypsum or hydrous calcium sulfate (CaSO4 • 2H2O) in the soil 

can affect the condition of pipes gradually over time. Sulfur components inside the soil can 

react with oxygen and release sulfuric acid which is harmful for environment and 

infrastructures. The combination of sulfates and chlorides is argued to be the leading cause 

of corrosion of steel reinforcements inside the concrete pipes (Bhattarai, 2013). High level 

of soil sulfate is the primary cause of corrosion in buried stainless steels (Sjogren et al., 

2011). As illustrated in Figure 4-11, approximately 60% of the pipes were buried in soil 

areas within 0.02 to 0.05% sulfate content.  

 

Figure 4-11 Frequency of Soil Sulfate 
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4.3.10 Soil pH 

The soil pH is considered as the most important factor affecting underground 

corrosion. Typically, most of the studies in the field of underground corrosion indicated that 

the pH of the soil increases the corrosion rate of buried pipes (Wasim et al., 2018). In 

sanitary sewer dataset used in this study, pH is a numerical expression of the relative 

acidity or alkalinity of a soil sample. Buried metallic structures are vulnerable to corrosion 

at any pH value (Oguzie et al., 2004). The soil sample collected from Tampa area showing 

the pH values in the range of 4 to 8.2. Range of pH can be described as alkaline (pH>7), 

natural (pH=7) and acidic (pH<7). Figure 4-12 illustrates the distribution of pH in sanitary 

sewer dataset. The histogram shows that 73% of soil areas have pH between 5 to 6 which 

indicates the risk of acidity and high rate corrosion. 

 

Figure 4-12 Frequency of Soil pH 
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4.3.11 Water Table 

Water table or groundwater level indicates the average depth of water during the 

year in inches. Tampa city is located to the west coast of Florida on Tampa Bay, near the 

Gulf of Mexico and the highest point in the city is only 48 feet above sea level. Therefore, 

the groundwater level is always high during all seasons. The availability of groundwater at 

or above sewer pipelines may cause water flowing through the pipe, increasing the 

structural defects, formation of void and loss of sewer support. As shown in Figure 4-13 

the average water table between 20 to 40 inches has the highest frequency in Tampa city 

with approximately 47%.  

 

Figure 4-13 Frequency of Water Table 

4.3.12 Soil Hydraulic Group 

Soil hydraulic group indicates soil runoff potential and the rate of water 

transmission through the soil layers. According to National Engineering Handbook (2007), 

hydrologic soil groups can be classified in four general groups of A, B, C and D. This 
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classification is based on several parameters such as water table, transmission rate of 

water, texture, structure and degree of swelling when soil is saturated. Soil hydraulic group 

was used as an input variable in this dissertation based on the level of groundwater in 

Tampa city (presented in previous section). The four hydrologic soil groups are described 

as below: 

Group A: Soils in this group have low runoff potential and the water is freely transmitted 

through the soil layers. Typically, group A soils have less than 10 percent clay and more 

than 90 percent sand or gravel. Loamy sand, sandy loam, loam or silt loam textures may 

be placed in this group. 

Group B: Soils in this group have moderately low runoff potential and the water 

transmission through the soil layers is unimpeded. Typically, group B soils have between 

10 to 20 percent clay and 50 to 90 percent sand. Some soils having loam, silt loam, silt, or 

sandy clay loam textures may be placed in this group.  

Group C: Soils in this group have moderately high runoff potential and the water movement 

through the soil layers is somewhat restricted. Typically, group C soils have between 20 to 

40 percent clay and less than 50 percent sand. Some soils having clay, silty clay, or sandy 

clay textures may be placed in this group. 

Group D: Soils in this group have high runoff potential and the water movement through 

the soil layers is restricted or very restricted. Typically, group D soils have greater than 40 

percent clay and less than 50 percent sand and have clayey textures.  

Figure 4-14 illustrates the distribution of soil hydraulic groups in sanitary sewer 

pipe dataset. Hydraulic group A is the most common type of soil hydraulic in dataset with 

approximately 79%. 



121 

 
Figure 4-14 Frequency of Soil Hydraulic 

4.3.13 Soil Corrosivity 

This factor indicates the corrosivity level of soil based on soil texture, pH, and 

amounts of magnesium and sodium sulfate or sodium chloride in the saturated soil. The 

rate of corrosion is highly influenced by the characteristic of the pipe material and 

surrounding soil around the pipe. In sewer dataset, the level of corrosivity is classified into 

three groups of low, moderate and high as shown in Figure 4-15. 

 
Figure 4-15 Frequency of Soil Corrosivity 
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4.3.14 Pipe Condition Rating 

The condition states of sewer pipes are the output or dependent variable used in 

this study. As explained before, City of Tampa used Pipeline Assessment and Certification 

Program (PACP) guidelines to assess the condition of pipes on a scale from 1 to 5, with 1 

indicating a pipe with no or very few defects and 5 representing failing conditions. 

Therefore, 13 different physical and environmental independent variables were used in this 

study to predict condition rating of sewer pipes. Table 4-4 and Figure 4-16 illustrates the 

descriptive analysis and distribution of pipe conditions in dataset.  

Table 4-4 Descriptive Statistics of Sewer Pipes Condition 

Pipe Condition Frequency Percent 

1 10,338 52.3 

2 2,957 15 

3 978 4.9 

4 1,589 8 

5 3,904 19.8 

Total 19,766 100 

 

Figure 4-16 Distribution of Pipe Conditions 
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The highest percentage of condition rating observed in dataset corresponds to 

condition rating 1 (52.3%), which is followed by condition rating of 5 (19.8%). Condition 

ratings 2, 3 and 4 involved 27.9% of pipes in the dataset. The lowest percentage of 

condition state corresponds to condition rating 3 with only 4.9 percent. Figure 4-17 is the 

area graph which illustrates the percentage of each condition rating for age groups (bin 

size = 5 years). 

 

Figure 4-17 Percentage of Pipes in each Condition Rating 

It is obvious that condition rating 3 and 4 nave the lowest frequency percentage in 

the dataset. Additionally, some sanitary sewer pipes reached condition rating 5 before age 

20 and in contrast some pipes are in condition rating 1 after passing 50 years old. In this 

dissertation PVC and VCP pipes are used in same dataset to evaluate the effect of pipe 

material on condition of sanitary sewer pipes. Thus, the area diagram shows all the pipe 

material in sewer dataset.  
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 4.4 Descriptive Statistics 

Descriptive statistics describes a summary of quantitative analysis for the 

numerical variables in the dataset. The objective of development descriptive statistics in 

this study is to display a simple summary about the data sample and characteristics of 

variables in the sewer dataset. Table 4-5 presents the descriptive statistics of numerical 

variables in this study. 

Table 4-5 Descriptive Statistics of Numerical Variables 

Variables Minimum Maximum Mean 
Standard 
Deviation 

Age (year) 1 69 39.24 17.1 

Diameter (in.) 2 48 8.87 3.1 

Flow (gallons/min) 0 28,100 656 1499 

Depth (feet) 0.59 28.63 7.2 3.5 

Slope (%) -1.76 21 0.6 1.4 

Length (feet) 3 680 214.92 102.65 

Sulfate (%) 0.02 0.24 0.047 0.04 

pH 4.0 8.2 5.63 0.82 

Water Table (in.) 8 145 52.6 45.1 

 
4.5 Correlation Analysis 

Correlation analysis is a statistical method to determine the degree of relationship 

between two different variables. This relationship can vary from strong to weak and 

sometimes there is no relationship between two variables. The strong relationship means 

the value of one variable can be predicted based on the value of the other variable. 

Contrary, the variables cannot be predicted well when their relationship is weak. The 
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correlation coefficient between variables can be positive or negative and it can only range 

from -1.00 to +1.00 (Lewis, 2016). 

Correlation coefficient is presented by the value “r”. When the correlation is close 

to one (-1 or +1), there is a strong relationship between two variables. For example, 

assume diameter and depth of sewer pipes as two variables. Overall, the pipes with larger 

diameter are installed in greater depth. Therefore, there can be a positive correlation 

between depth and size of the pipes. A coefficient correlation close to zero means, there 

is no relationship between variables in the model. For example, there is no relationship 

between length of the pipe and type of soil in a database and their correlation is close to 

zero. Incorporating highly correlated independent variables in a model may cause 

multicollinearity problem which affects the outcomes of the model (Salman, 2010). In 

general, development of model with highly correlated independent variables are not 

recommended. The three common types of correlation analysis are (Lewis, 2016): 

• Pearson: A measure of the strength of a relationship between two continuous 

variables. 

• Spearman: A measure of the similarity between two ordinal rankings of a single 

set of data. 

• Point-Biserial: A measure of the strength of a relationship between one continuous 

variable and one dichotomous variable (a two-level-only variable like gender). 

Pearson correlation is the most commonly used correlation analysis. Pearson 

correlation assumes that the distribution between two variables are normal and only linear 

relationship between two variables can be described by this method. Development of 

condition prediction models in this study is not based on linear relationship between 

variables. Additionally, as described in section 4.3, most of the variables were not normally 

distributed in the model. Therefore, spearman's rank correlation was to examine the 
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correlation between the variables and to avoid any multicollinearity problem. Spearman’s 

rank correlation can be used to describe the association between nonlinearly related 

variables (Meyers et al. 2017). This method does not assume any assumption regarding 

the distribution of the variables in the model. Equation 4-1 is used to calculate the 

Spearman rank correlation coefficient. 

𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
                                                            Eq. 4.1 

where 𝜌 is Spearman rank correlation coefficient, di is the difference between the ranks of 

corresponding values Xi and Yi and n is number of values in each data set. Table 4-6 

presents the Spearman rank correlation analysis of sanitary sewer dataset. 

Table 4-6 Spearman Rank Correlation Analysis 

Variables Age Diameter Flow Depth Slope Length Sulfate pH 
Water 
Table 

Age 
1.000 -.016* -.011* -.294** .023** .347** -.298** .215** .085** 

Diameter 
 1.000 .529** .404** -.306** .066** -.048** .040** -0.007* 

Flow 
  1.000 .167** .397** -0.004* .071** -.056** -.030** 

Depth 
   1.000 -.212** -.113** .163** -.097** -.096** 

Slope 
    1.000 -.027** .102** -.090** -0.004* 

Length 
     1.000 -.088** .033** .021** 

Sulfate 
      1.000 -.375** -.262** 

pH 
       1.000 -.131** 

Water 
Table 

        1.000 

*Correlation is significant at the 0.05 level 
**Correlation is significant at the 0.01 level 

According to the result of Spearman rank analysis, all the variables were 

significantly correlated at the level of 0.01 and 0.05. The highest correlation coefficient is 

between diameter and flow (+0.529) which indicates that the larger diameter provides more 
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flow. Additionally, there is no strong correlation between independent variables which 

means none of them needs to be removed from the model to avoid overfitting and 

multicollinearity. 

4.6 Chapter Summary 

In this chapter the source of sanitary sewer dataset was comprehensively 

reviewed. Additionally, the detail of variables included in the model and data preparation 

techniques were discussed. The raw database was transformed into a standardized format 

ready for development of the models. The available parameters for the model development 

were identified and their relevance examined through statistical analysis. The detail of 

developing logistic regression, gradient boosting tree and KNN models will be presented 

in next chapter. 
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Chapter 5 Development of Prediction Models 

5.1 Introduction 

The previous chapter described the sanitary sewer dataset, data preparation 

processes and statistical analysis of acquired data. This chapter deals with the detailed 

account of developing multinomial and binary logistic regressions, gradient boosting tree 

and k-nearest neighbors models. The model development in this chapter includes the detail 

of training and testing of the models. Moreover, the influence of independent variables on 

deterioration of sanitary sewer pipes is presented comprehensively.  

Prior development of the models, five-fold cross validation method was used to 

randomly divide the dataset into two groups for train and validation purposes. This 

technique was used to reduce the risk of uncertainty and overfitting during generating the 

models. 80% of the data from sanitary sewer inventory was used to develop training 

dataset and the remaining 20% was utilized for validation of the models. Total number of 

records was approximately 15,800 pipe segments for training and 3,966 pipes for validation 

(based on the k-fold cross validation rules, the numbers were varying in different models). 

The cross validation was conducted manually for multinomial and binary logistic 

regressions, but python libraries were used during the development of gradient boosting 

trees and KNN models. 

IBM SPSS Statistics packages (SPSS 25) was the primary software to develop the 

statistical models (multinomial and logistic regressions) and python was selected to 

perform gradient boosting trees and KNN models. Numerical variables, namely age, 

diameter, flow, depth, slope, length, sulfate, pH and water table; and categorical variables, 

namely material, soil type, soil hydraulic group, and soil corrosivity were entered as 

independent variables to develop the condition prediction models. Table 5-1 demonstrates 

a portion of sanitary sewer dataset used to train the models. 
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Table 5-1 Sample Portion of Sanitary Sewer Dataset 

Facility ID Age Material Diameter Flow Depth Slope Length Soil Sulfate pH 
Water 
Table 

Hydraulic Corrosivity Condition 

276914 63 VCP 8 366 3.29 0.45 679.99 Fine Sand 0.02 5.3 145 A High 4 

271516 50 VCP 24 2523 8.08 0.10 657.95 
Silty Gravel 
and Sand 

0.05 5.5 84 A High 2 

290774 19 PVC 10 524 5.88 0.28 349.40 Clayey Soil 0.10 5.1 31 A High 1 

2895105 29 PVC 8 347 5.6 0.41 349.39 Fine Sand 0.02 5.6 31 B High 1 

295715 69 VCP 8 343 4.2 0.40 349.30 Fine Sand 0.02 5.3 145 A High 4 

294314 43 VCP 8 509 4.24 0.88 349.24 Fine Sand 0.02 5.3 145 A High 2 

273546 38 VCP 18 2107 4.65 0.20 349.20 Clayey Soil 0.02 5.3 145 A High 1 

274321 50 VCP 30 5091 8.32 0.08 471.46 Fine Sand 0.10 8.2 59 A High 1 

275920 34 VCP 8 296 11.42 0.30 349.00 Fine Sand 0.02 4.8 31 B High 1 

1984206 13 PVC 8 351 4.75 0.42 90.97 Clayey Soil 0.02 5.3 145 A High 1 

290076 29 VCP 8 344 4.92 0.40 349.00 Fine Sand 0.10 4.8 31 B High 5 

288675 46 VCP 8 314 5.58 0.34 349.00 Clayey Soil 0.05 5.5 15 A Moderate 2 

293769 69 VCP 8 344 10.22 0.40 349.00 Fine Sand 0.02 4.8 31 B High 5 

272205 47 VCP 8 349 9.25 0.41 343.17 
Silty Gravel 
and Sand 

0.05 5.5 84 A High 5 

292932 17 PVC 8 342 8.68 0.40 343.11 Fine Sand 0.05 5.5 15 A Moderate 1 

286752 41 VCP 8 360 6.58 0.44 343.07 
Silty Gravel 
and Sand 

0.02 5.5 31 A Moderate 4 

296805 41 VCP 8 464 5.83 0.73 343.07 
Silty Gravel 
and Sand 

0.02 5.5 31 A Moderate 2 

277405 49 VCP 8 194 4.57 0.13 343.00 Fine Sand 0.02 5.3 145 A High 3 

278194 54 VCP 8 638 4.33 1.38 343.00 
Silty Gravel 
and Sand 

0.10 5.3 8 A High 1 

284399 64 VCP 8 309 6.1 0.32 343.00 Fine Sand 0.02 4.8 31 B High 5 

297087 24 PVC 8 567 4.99 1.09 343.00 Fine Sand 0.02 5.3 145 A High 1 
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5.2 Multinomial Logistic Regression 

5.2.1 Description of the Model 

As described in chapter three, the multinomial logistic regression is used where 

the dependent variable is nominal with more than two levels. Since there are five possible 

pipe condition levels, multinomial logistic regression was used as a first model to predict 

all the probable conditions of sanitary sewer pipes. Therefore, four different multinomial 

logistic regression equations were developed according to the result of the model. Equation 

5-1 presents the general form of the multinomial logistic regression when all the 

independent variables are significant in the model. 

𝑙𝑛 (
𝑃(𝐶 = 𝑖)

𝑃(𝐶 = 5)
) =  

                                 𝛼𝑖 + 𝛽𝑖1 × 𝐴𝑔𝑒 + 𝛽𝑖2 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝛽𝑖3 × 𝐹𝑙𝑜𝑤 + 𝛽𝑖4 × 𝐷𝑒𝑝𝑡ℎ + 𝛽𝑖5 × 𝑆𝑙𝑜𝑝𝑒

+ 𝛽𝑖6 × 𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽𝑖7 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 + 𝛽𝑖8 × 𝑝𝐻 + 𝛽𝑖9 ×𝑊𝑎𝑡𝑒𝑟 𝑇𝑎𝑏𝑙𝑒

+ 𝛽𝑖10 × 𝐷𝑃𝑉𝐶 + 𝛽𝑖11 × 𝐷𝑉𝐶𝑃 + 𝛽𝑖12 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆 + 𝛽𝑖13 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺

+ 𝛽𝑖14 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆 + 𝛽𝑖15 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝑆 + 𝛽𝑖16 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴

+ 𝛽𝑖17 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵 + 𝛽𝑖18 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶 + 𝛽𝑖19 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐷

+ 𝛽𝑖20 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤 + 𝛽𝑖21 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝑀𝑒𝑑𝑖𝑢𝑚

+ 𝛽𝑖22 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                                                                                     Eq. 5.1 

where 𝑖 = 1, 2, 3 and 4 determines the condition level of sewer pipes, 𝛼𝑖 is intercept, 

𝛽𝑖1,  𝛽𝑖2, . . . ,  𝛽𝑖22 are regression coefficients, and Di is dummy variable to assign different 

values to categorical independent variables. Dummy variable is a numerical variable to 

take the value 0 or 1 to specify the absence or presence of a categorical variable. For 

example, assume the condition of a PVC pipe is predicted through above equation. In this 

condition, dummy variable assigns value 1 to PVC pipe and 0 to VCP pipe. Table 5-2 
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demonstrates the categories of dummy variables used in this study to develop multinomial 

and logistic regressions. 

Table 5-2 Description of Dummy Variables 

Independent Variable Dummy Variable Category 

Pipe material 
DPVC PVC pipes 

DVCP VCP pipes 

Soil type 

DSoil=FS Fine sand 

DSoil=SG Silty gravel and sand 

DSoil=CS Clayey soil 

DSoil=SS Silty soil 

Hydraulic group 

DHydraulic=A Hydraulic group A 

DHydraulic=B Hydraulic group B 

DHydraulic=C Hydraulic group C 

DHydraulic=D Hydraulic group D 

Soil Corrosivity 

DCorrosivity=Low Low corrosivity 

DCorrosivity=Medium Medium corrosivity 

DCorrosivity=High High corrosivity 

 

5.2.2 Parameters Estimation 

As described before, 80% of data was used to train the multinomial logistic 

regression by SPSS software. In logistic regression, if the dependent variable includes N 

categories, one of these categories is selected as the reference category. The remaining 

𝑁 − 1 categories are used to generate logistic regression equations. For development of 

multinomial logistic regression in this dissertation, condition level 5 was selected as 

reference category. Pipe age, diameter, flow, depth, slope, length, sulfate, pH and water 

table were entered as covariate, and pipe material, soil type, hydraulic group and soil 

corrosivity were the factors to generate multinomial logistic regression. 

Maximum Likelihood Estimation (MLE) was used to estimate the parameters in the 

model. Significance of the variables was identified by Wald test and P-test with the 

confidence interval of 95%. Parameter estimates for different condition of sanitary sewer 

pipes are provided in Tables 5-3 through 5-6. 
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Table 5-3 Parameter Estimates for Condition Level 1 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Intercept -0.838 0.984 0.725 0.000  

Age 0.026 0.002 107.140 0.000 1.026 

Diameter -0.015 0.008 3.139 0.006 0.985 

Flow 0.000 0.000 31.760 0.000 1.000 

Depth 0.008 0.008 0.927 0.336 1.008 

Slope -0.020 0.017 1.458 0.227 0.980 

Length 0.000 0.000 2.590 0.108 1.000 

Sulfate -1.921 0.997 3.712 0.054 0.147 

pH 0.086 0.038 5.204 0.023 1.090 

Water Table 0.000 0.001 0.120 0.729 1.000 

Material = PVC -2.211 0.091 586.270 0.000 0.110 

Material = VCP 
(Reference) 

0 . . . . 

Soil Type = Clayey Soil -0.965 1.181 0.667 0.414 0.381 

Soil Type = Fine Sand -1.019 0.936 1.186 0.276 0.361 

Soil Type = Silty Gravel 
and Sand 

-1.166 0.933 1.559 0.212 0.312 

Soil Type=Silty Soil 
(Reference) 

0 . . . . 

Hydraulic =A 0.188 0.112 2.825 0.093 1.207 

Hydraulic =B -0.136 0.171 0.636 0.425 0.873 

Hydraulic =C 0.413 0.135 9.334 0.122 1.511 

Hydraulic =D 
(Reference) 

0 . . . . 

Corrosivity = High -0.283 0.080 12.666 0.060 0.753 

Corrosivity = Low 0.404 0.325 1.544 0.214 1.498 

Corrosivity = Moderate 
(Reference) 

0 . . . . 
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Table 5-4 Parameter Estimates for Condition Level 2 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Intercept -15.58 0.515 917.230 0.000  

Age 0.054 0.004 194.311 0.000 1.055 

Diameter -0.110 0.019 32.616 0.000 0.896 

Flow 0.000 0.000 5.099 0.024 1.000 

Depth -0.24 0.014 3.064 0.080 0.976 

Slope 0.002 0.026 0.008 0.928 1.002 

Length 0.004 0.000 89.140 0.000 1.004 

Sulfate -3.269 1.570 4.334 0.037 0.038 

pH 0.106 0.058 3.395 0.065 1.112 

Water Table 0.001 0.001 0.374 0.541 1.001 

Material = PVC -1.432 0.152 88.735 0.000 0.239 

Material = VCP 
(Reference) 

0 . . . . 

Soil Type = Clayey Soil 1.627 1.161 1.578 0.265 0.301 

Soil Type = Fine Sand 1.590 0.103 1.512 0.248 0.321 

Soil Type = Silty Gravel 
and Sand 

1.477 0.000 1.568 0.212 0.316 

Soil Type=Silty Soil 
(Reference) 

0 . . . . 

Hydraulic =A -0.057 0.166 0.120 0.729 0.944 

Hydraulic =B 0.250 0.256 0.956 0.328 1.284 

Hydraulic =C -0.194 0.219 0.786 0.375 0.823 

Hydraulic =D 
(Reference) 

0b . . . . 

Corrosivity = High -0.094 0.124 0.581 0.446 0.910 

Corrosivity = Low 1.007 0.457 4.854 0.028 2.736 

Corrosivity = Moderate 
(Reference) 

0 . . . . 
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Table 5-5 Parameter Estimates for Condition Level 3 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Intercept -7.308 1.266 33.306 0.000  

Age 0.167 0.004 1600.086 0.000 1.182 

Diameter -0.081 0.016 25.483 0.000 0.922 

Flow 0.000 0.000 .884 0.347 1.000 

Depth -0.028 0.014 4.077 0.043 0.972 

Slope -0.145 0.047 9.306 0.002 0.865 

Length 0.004 0.000 142.327 0.000 1.004 

Sulfate -2.114 1.419 2.221 0.136 0.121 

pH 0.109 0.061 3.242 0.072 1.115 

Water Table 0.000 0.001 .006 0.939 1.000 

Material = PVC -0.520 0.228 5.218 0.022 0.595 

Material = VCP 
(Reference) 

0 . . . . 

Soil Type = Clayey Soil -2.015 1.168 3.003 0.090 0.185 

Soil Type = Fine Sand -2.005 1.148 3.051 0.081 0.135 

Soil Type = Silty Gravel 
and Sand 

-2.266 1.144 3.920 0.048 0.104 

Soil Type=Silty Soil 
(Reference) 

0 . . . . 

Hydraulic =A -0.400 0.151 7.052 0.008 0.670 

Hydraulic =B 0.210 0.249 0.707 0.400 1.233 

Hydraulic =C -0.549 0.181 9.144 0.002 0.578 

Hydraulic =D 
(Reference) 

0 . . . . 

Corrosivity = High -0.250 0.114 4.802 0.028 0.779 

Corrosivity = Low 0.610 0.543 1.265 0.261 1.841 

Corrosivity = Moderate 
(Reference) 

0 . . . . 
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Table 5-6 Parameter Estimates for Condition Level 4 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Intercept -6.428 1.431 20.182 0.000  

Age 0.158 0.003 2327.545 0.000 1.171 

Diameter -0.158 0.015 110.906 0.000 0.853 

Flow 0.000 0.000 1.185 0.276 1.000 

Depth -0.002 0.011 0.035 0.851 0.998 

Slope -0.012 0.024 0.254 0.614 0.988 

Length 0.009 0.000 727.361 0.000 1.009 

Sulfate -0.453 1.112 0.166 0.683 0.635 

pH -0.093 0.053 3.104 0.078 0.911 

Water Table 0.000 0.001 0.258 0.611 1.000 

Material = PVC -0.435 0.146 8.829 0.003 0.647 

Material = VCP 
(Reference) 

0 . . . . 

Soil Type = Clayey Soil -1.156 0.833 1.759 0.312 0.412 

Soil Type = Fine Sand -0.673 1.360 0.245 0.621 0.510 

Soil Type = Silty Gravel 
and Sand 

-0.897 1.358 0.436 0.509 0.408 

Soil Type=Silty Soil 
(Reference) 

0 . . . . 

Hydraulic =A -0.703 0.130 29.344 0.000 0.495 

Hydraulic =B -0.046 0.203 0.051 0.821 0.955 

Hydraulic =C -0.881 0.158 31.245 0.000 0.414 

Hydraulic =D 
(Reference) 

0 . . . . 

Corrosivity = High -0.400 0.091 19.244 0.000 0.670 

Corrosivity = Low -0.477 0.588 0.660 0.417 0.620 

Corrosivity = Moderate 
(Reference) 

0 . . . . 

 
The result of parameter estimates shows the significant level of variables are 

varying in different condition levels of sanitary sewer pipes. For example, pipe length is 

significant in condition levels 3, 4 and 5, but in condition level 2 the p-value is 0.108 which 

indicates it is an insignificant variable.   
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5.2.3 Significance of the Model 

Significance of multinomial logistic regression model was evaluated based on a 

likelihood ratio test. This test indicates the likelihood ratio of the model with all independent 

variables (final model) to the model which all the parameter coefficients are 0 (null). The 

chi-square indicates the difference between – 2 log-likelihoods of the null and saturated 

models. As shown in Table 5-7, the significance level of final model is less than 0.05 and 

the model with all independent variables outperforms the null model. 

Table 5-7 Significance Test of Multinomial Logistic Regression 

Model – 2 Log-likelihood Chi Square Degree of Freedom Significance 

Null 51,191.933    

Full 35,764.902 15,427.032 76 0.000 

 

5.2.4 Validation of the Model 

The result of multinomial logistic regression provided four equations for pipes in 

condition levels of 1, 2, 3, and 4. These equations are used to predict the probability of the 

pipes to be in a certain condition level. Logistic regression equations were developed 

based on the parameters estimated in section 5.2.2. In the first step, the coefficient of 

variables (β) in each condition level were used to build the logistic regression equations. 

Multinomial logistic regression equations are presented from Eq. 5.2 through 5.5. 

𝑔1(𝑥) = 𝑙𝑛 (
𝑃(𝐶 = 1)

𝑃(𝐶 = 5)
)

=  −0.838 + 0.026 × 𝐴𝑔𝑒 − 0.015 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 0.008 × 𝐷𝑒𝑝𝑡ℎ

− 0.020 × 𝑆𝑙𝑜𝑝𝑒 − 1.921 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 + 0.086 × 𝑝𝐻 − 2.211 × 𝐷𝑃𝑉𝐶

− 1.019 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆 − 1.166 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺 − 0.965 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆

+ 0.188 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴 − 0.136 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵 + 0.413 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶

+ 0.404 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤 − 0.283 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                              𝐸𝑞. 5.2 
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𝑔2(𝑥) = 𝑙𝑛 (
𝑃(𝐶 = 2)

𝑃(𝐶 = 5)
)

=  −15.58 + 0.054 × 𝐴𝑔𝑒 − 0.110 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 0.024 × 𝐷𝑒𝑝𝑡ℎ

+ 0.002 × 𝑆𝑙𝑜𝑝𝑒 + 0.004 × 𝐿𝑒𝑛𝑔𝑡ℎ − 3.269 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 + 0.106 × 𝑝𝐻

+ 0.001 ×𝑊𝑎𝑡𝑒𝑟 𝑇𝑎𝑏𝑙𝑒 − 1.432 × 𝐷𝑃𝑉𝐶 + 1.590 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆

+ 1.477 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺 + 1.627 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆 − 0.057 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴

+ 0.250 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵 − 0.194 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶 + 1.007 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤

− 0.094 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                                                                                   𝐸𝑞. 5.3 

 

𝑔3(𝑥) = 𝑙𝑛 (
𝑃(𝐶 = 3)

𝑃(𝐶 = 5)
)

=  −7.380 + 0.167 × 𝐴𝑔𝑒 − 0.081 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 0.028 × 𝐷𝑒𝑝𝑡ℎ

− 0.145 × 𝑆𝑙𝑜𝑝𝑒 + 0.004 × 𝐿𝑒𝑛𝑔𝑡ℎ − 2.114 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 + 0.109 × 𝑝𝐻

− 0.520 × 𝐷𝑃𝑉𝐶 − 2.005 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆 + 2.266 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺 − 2.015 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆

− 0.400 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴 + 0.210 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵 − 0.549 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶

+ 0.610 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤 − 0.250 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                               𝐸𝑞. 5.4 

and 

𝑔4(𝑥) = 𝑙𝑛 (
𝑃(𝐶 = 4)

𝑃(𝐶 = 5)
)

=  −6.428 + 0.158 × 𝐴𝑔𝑒 − 0.158 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 0.002 × 𝐷𝑒𝑝𝑡ℎ

− 0.012 × 𝑆𝑙𝑜𝑝𝑒 + 0.009 × 𝐿𝑒𝑛𝑔𝑡ℎ − 0.453 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 − 0.093 × 𝑝𝐻

− 0.435 × 𝐷𝑃𝑉𝐶 − 0.673 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆 − 0.897 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺 − 1.156 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆

− 0.703 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴 − 0.046 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵 − 0.881 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶

− 0.477 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤 − 0.400 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                               𝐸𝑞. 5.5 
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Once the odds ratios were calculated, the probability of pipes being in each 

condition levels can be estimated. Equations 5.6 to 5.10 demonstrate the details of 

calculation probabilities associated with each condition level.  

𝑃(𝐶 = 1) =
𝑒𝑔1(𝑥)

1 + 𝑒𝑔1(𝑥) + 𝑒𝑔2(𝑥) + 𝑒𝑔3(𝑥) + 𝑒𝑔4(𝑥)
                                  Eq. 5.6 

𝑃(𝐶 = 2) =
𝑒𝑔2(𝑥)

1 + 𝑒𝑔1(𝑥) + 𝑒𝑔2(𝑥) + 𝑒𝑔3(𝑥) + 𝑒𝑔4(𝑥)
                                  Eq. 5.7 

𝑃(𝐶 = 3) =
𝑒𝑔3(𝑥)

1 + 𝑒𝑔1(𝑥) + 𝑒𝑔2(𝑥) + 𝑒𝑔3(𝑥) + 𝑒𝑔4(𝑥)
                                  Eq. 5.8 

𝑃(𝐶 = 4) =
𝑒𝑔4(𝑥)

1 + 𝑒𝑔1(𝑥) + 𝑒𝑔2(𝑥) + 𝑒𝑔3(𝑥) + 𝑒𝑔4(𝑥)
                                  Eq. 5.9 

and 

𝑃(𝐶 = 5) =
1

1 + 𝑒𝑔1(𝑥) + 𝑒𝑔2(𝑥) + 𝑒𝑔3(𝑥) + 𝑒𝑔4(𝑥)
                                Eq. 5.10 

Remained 20% of data was used to test the model by presented equations. The 

probability of all condition levels was calculated for each pipe segment and the higher 

probability was considered as predicted value for condition state of sanitary sewer pipe. 

Classification table was selected to evaluate the result of multinomial logistic regression as 

shown in Table 5-8. 

Table 5-8 Multinomial Logistic Regression Classification Table 

Observed 
Predicted Percent 

Correct 
Predicted 1 2 3 4 5 

1 1,873 17 0 0 134 92.5% 

2 391 25 0 0 157 4.4% 

3 89 2 1 1 76 0.6% 

4 57 2 0 21 240 6.6% 

5 130 8 0 10 610 80.5% 

Overall 
Percentage 

 65.8% 
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According to the result of classification table, in overall 65.8% of the pipe conditions 

were predicted correctly by multinomial logistic regression. 92.5% of the pipes in condition 

states 1 and 80.5% in condition state 5 were estimated correctly which indicates a high 

accuracy. In contrast, overall percentage of correct prediction for condition rating 2, 3 and 

4 is only 10% which is not acceptable. 

5.2.5 Results of Multinomial Logistic Regression 

Multinomial logistic regression was used in this dissertation to predict all five 

condition levels of sanitary sewer pipes. According to the result of model, the condition of 

65.8% of sanitary sewer pipes was predicted correctly, however pipes in condition levels 

2, 3 and 4 were not estimated properly by multinomial logistic regression. The result of 

classification table indicated that most of the pipes which had condition states of 2, 3 and 

4 were predicted in condition 1 or 5. Low number of appropriate pipe data in condition 

levels of 2, 3 and 4 caused low prediction rate for these three categories. 

As shown in table 5-9, several researchers indicated that understanding the 

condition rating 4 and 5 (pipes in poor conditions) is more critical for utility companies and 

municipalities for prioritizing the pipes. Therefore, they just used two condition levels of 0 

(pipe in good condition) and 1 (pipe in poor condition) to predict the future condition of 

sewer pipes. 

Table 5-9 Prediction Models Developed by Binary Dependent Variables 

Authors Year Condition Level 0 Condition Level 1 

Davies et al. 2001 1, 2, 3, 4 5 

Ariaratnam et al. 2001 1, 2, 3 4, 5 

Koo and Ariaratnam 2006 1, 2, 3 4, 5 

Ana et al. 2009 1, 2, 3 4, 5 

Salman and Salem 2012 1, 2, 3 4, 5 

Sousa et al. 2014 1, 2, 3 4, 5 

Harvey and McBean 2014 1, 2, 3 4, 5 

Kabir et al. 2018 1, 2, 3 4, 5 

Laakso et al. 2018 0, 1, 2 3, 4 
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Since the prediction rate of multinomial logistic regression was not satisfactory in 

this dissertation, the condition of sanitary sewer pipes was classified into two groups of 0 

as good and 1 as poor condition. Table 5-10 and Figure 5-1 illustrate the new category of 

pipe condition levels and frequency of them in sanitary sewer dataset. 

Table 5-10 Category of Pipe Condition Levels 

Datasets Pipe Condition Levels 

Original Dataset 1, 2, 3 4, 5 

Binary Dataset 0 (good) 1 (poor) 

 

Figure 5-1 Percentage of Pipe Conditions 

As shown in figure 5-1, the recoded dataset includes 72.21% and 27.79% pipes 

with condition levels 0 and 1 respectively. Sanitary sewer pipes in conditions 1, 2 and 3 

were transformed into condition 0 and pipes in condition levels 4 and 5 were converted to 

condition 1. Next section will cover the detail of binary logistic regression developed in this 

study. 
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5.3 Binary Logistic Regression 

5.3.1 Description of the Model 

Binary logistic regression is used to develop prediction models when the output 

(dependent or response) variable is binary or dichotomous. A binary or dichotomous are 

variables which only take two values. For example, the output of the model can be true or 

false, success or failure and zero or one. In sewer condition prediction modeling, the 

dependent variable can be classified in good or poor conditions (Hosmer et al., 2013; 

Salman, 2010). 

As described in multinomial logistic regression results, the dependent variable was 

transformed into a binary condition rating. Condition ratings 1, 2 and 3 were assigned to 

the pipes which are in good and stable condition (condition rating 0). And, the remaining 

pipes with condition ratings 4 and 5 were considered as pipes which are in poor condition 

and need immediate attention (condition rating 1). Therefore, binary logistic regression was 

developed to predict whether the pip is in good or poor condition states.  

Based on the characteristics of dependent variable which has only two values, one 

regression equation is generated to estimate the condition of each pipe segments as 

shown in Equation 5.11.  

𝑙𝑛 (
𝑃(𝐶 = 1)

1 − 𝑃(𝐶 = 1)
) =  

                                 𝛼 + 𝛽1 × 𝐴𝑔𝑒 + 𝛽2 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝛽3 × 𝐹𝑙𝑜𝑤 + 𝛽4 × 𝐷𝑒𝑝𝑡ℎ + 𝛽5 × 𝑆𝑙𝑜𝑝𝑒

+ 𝛽6 × 𝐿𝑒𝑛𝑔𝑡ℎ + 𝛽7 × 𝑆𝑢𝑙𝑓𝑎𝑡𝑒 + 𝛽8 × 𝑝𝐻 + 𝛽9 ×𝑊𝑎𝑡𝑒𝑟 𝑇𝑎𝑏𝑙𝑒

+ 𝛽10 × 𝐷𝑃𝑉𝐶 + 𝛽11 × 𝐷𝑉𝐶𝑃 + 𝛽12 × 𝐷𝑆𝑜𝑖𝑙=𝐹𝑆 + 𝛽13 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝐺 + 𝛽14 × 𝐷𝑆𝑜𝑖𝑙=𝐶𝑆

+ 𝛽15 × 𝐷𝑆𝑜𝑖𝑙=𝑆𝑆 + 𝛽16 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐴 + 𝛽17 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐵

+ 𝛽18 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐶 + 𝛽19 × 𝐷𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐=𝐷 + 𝛽20 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐿𝑜𝑤

+ 𝛽21 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝑀𝑒𝑑𝑖𝑢𝑚 + 𝛽22 × 𝐷𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑣𝑖𝑡𝑦=𝐻𝑖𝑔ℎ                                Eq. 5.11 
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where 𝛼 is intercept, 𝛽1,  𝛽2, . . . ,  𝛽22 are regression coefficients, and Di is dummy variable 

to assign different values to categorical independent variables. 

5.3.2 Parameters Estimation 

Similar to development of multinomial logistic regression, 80% of data was used 

to train the binary logistic regression by SPSS software. In logistic regression, if the 

dependent variable includes N categories, one of these categories is selected as the 

reference category. For development of binary logistic regression in this dissertation, 

condition level 0 was selected as reference category. Pipe age, diameter, flow, depth, 

slope, length, sulfate, pH, material, soil type, hydraulic group, soil corrosivity and water 

table were entered as covariate to generate binary logistic regression. 

Maximum Likelihood Estimation (MLE) was used to estimate the parameters in the 

model. Significance of the variables was identified by Wald test and P-test with the 

confidence interval of 95%. A backward stepwise variable selection was used to identify 

the variables that have more predictive power to forecast condition of sanitary sewer pipes. 

Forward and backward stepwise selection are statistical techniques to screen the 

independent variables. In these methods, the variables which have enough predictive 

power are remained in the model and idle variables are removed stepwise. For example, 

if a dataset has hundred independent variables it would be beneficial to keep the 

appropriate variables on the model and remove the rest. 

backward stepwise selection started with full model and considering all 13 

independent variables and then the variables that have least influence were excluded from 

the model. The variables with the highest p-score were the candidate for removing from 

the model. Parameter estimates for different condition of sanitary sewer pipes are provided 

in Table 5-11. 
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Table 5-11 Parameter Estimates in Binary Logistic Regression for Condition Level 1 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Intercept -6.114 0.963 40.290 .000  

Age 0.143 0.003 2638.310 .000 1.154 

Diameter -0.109 0.012 88.831 0.000 0.897 

Flow 0.000 0.000 0.219 0.640 1.000 

Depth -0.009 0.009 1.005 0.316 0.991 

Slope -0.030 0.022 1.910 0.167 0.970 

Length 0.007 0.000 641.608 0.000 1.007 

Sulfate 0.114 0.947 0.014 0.904 1.120 

pH -0.066 0.043 2.388 0.122 0.936 

Water Table -0.001 0.002 18.64 0.006 1.001 

Material = PVC -.317 0.307 1.065 0.002 0.728 

Material = VCP 
(Reference) 

0 . . . . 

Soil Type = Clayey Soil -10.873 190.997 0.003 0.955 0.524 

Soil Type = Fine Sand -0.884 0.890 0.986 0.321 0.413 

Soil Type = Silty Gravel 
and Sand 

-1.052 0.888 1.402 0.236 0.349 

Soil Type=Silty Soil 
(Reference) 

0 . . . . 

Hydraulic =A -0.645 0.106 2.234 0.064 0.525 

Hydraulic =B 0.037 0.171 0.047 0.828 1.038 

Hydraulic =C -0.904 0.125 1.398 0.075 0.405 

Hydraulic =D 
(Reference) 

0 . . . . 

Corrosivity = High -0.215 0.076 8.049 0.085 0.807 

Corrosivity = Low -0.282 0.410 0.474 0.491 0.754 

Corrosivity = Moderate 
(Reference) 

0 . . . . 
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As shown in Table 5-11, pipe age, material, length, diameter and water table are 

the significant variables in binary logistic regression. Table 5-12 illustrates the result of 

backward stepwise method after elimination of 8 insignificant variables from the saturated 

model. 

Table 5-12 Parameter Estimates in Binary Logistic Regression (Backward Stepwise) 

Variable 
Coefficient 

(β) 
Standard Error Wald P Value 

Intercept -8.060 0.171 2227.929 0.000 

Age 0.142 0.003 2865.361 0.000 

Diameter -0.114 0.009 175.763 0.000 

Length 0.006 0.000 653.456 0.000 

Water Table -0.002 0.000 14.070 0.000 

Material = PVC -0.189 0.126 8.418 0.015 

Material = VCP 
(Reference) 

0 . . . 

 

5.3.3 Significance of the Model 

Similar to multinomial logistic regression, significance of binary regression was 

evaluated based on a likelihood ratio test. This test indicates the likelihood ratio of the 

model with all independent variables (final model) to the model which all the parameter 

coefficients are 0 (null). The chi-square indicates the difference between – 2 log-likelihoods 

of the null and saturated models. As shown in Table 5-13, the significance level of final 

model is less than 0.05 and the model with all independent variables outperforms the null 

model. 

Table 5-13 Significance Test of Multinomial Logistic Regression 

Model – 2 Log-likelihood Chi Square Degree of Freedom Significance 

Null 23,360.459    

Full 12,742.063 10,618.396 19 0.000 
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5.4 Gradient Boosting Tree 

5.4.1 Description of the Model 

The third objective of this dissertation was to compare the performance of different 

statistical and artificial intelligence models for predicting the condition levels of sanitary 

sewer pipes. Gradient boosting tree is the first AI model developed in this study. This model 

is a machine learning technique for regression and classification, which provides a 

prediction model by improving the performance of a weak learner. In this method, a weak 

learner is run repeatedly on various training data to develop classifiers. Then, the classifiers 

are combined into a single strong classifier to achieve a higher accuracy (Rokach and 

Maimon, 2015). 

Similar to previous models, the objective of machine learning approach is to find a 

relationship between dependent and independent variables. In this study, the relationship 

between thirteen independent variables and condition level of sanitary sewer pipes 

(dependent variable) was investigated to predict whether pipe is in good or poor condition. 

Gradient boosting tree model was developed by Python 3.7.3 with application of different 

computing libraries, such as Numpy, Pandas and Sklearn. XGBoost algorithm was the 

primary source to develop the gradient boosting tree in this dissertation.  

XGBoost is a machine learning technique for tree boosting that designed by Chen 

and Guestrin in 2014. According to Zhang et al. (2018), XGBoost was one of the most 

popular machine learning methods in 2015 for developing prediction models. This 

technique implements machine learning algorithms under the gradient boosting 

frameworks by combining weak base learning models into a stronger learner. 
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5.4.2 Development of the Model 

5.4.2.1 Five-Fold Cross Validation 

Cross-validation is a strategy to avoid overfitting and uncertainty during training 

and testing the models. The basic idea is that the dataset is partitioned into K equal size 

folders. For example, if there are 200 datapoints and 10 folds, there will be 20 datapoints 

in each folder. In order to develop gradient boosting tree in this dissertation, five-fold cross 

validation method was used to randomly select 80% of data for train and 20% for testing 

the model.  Sklearn library was employed to split sanitary sewer dataset into 5 folders (each 

folder consists 20% of data). 

In 5-Fold cross validation, five separate learning experiments were run. In each 

iteration one folder was selected as testing set and the remaining four folders were 

combined to build training set. This procedure was repeated in five different iterations and 

then the average value was showed as result of the model. The key element of cross 

validation method is that all the datapoints are used for testing and training the model. 

Figure 5-2 illustrates the detail of 5-Fold cross validation method in different iteration of the 

model development.  

 

Figure 5-2 Five-Fold Cross Validation 
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5.4.2.2 Training the Model 

As explained before, XGBoost algorithm was used to develop gradient boosting 

tree model in this study. Three main parameters of XGBoost algorithm are; 1) General 

parameters, 2) booster parameters, and 3) learning tasks. General parameters specify the 

overall functionality of the algorithm. Booster parameters involve tree booster, linear 

booster or dart, and determine how the algorithm boosts the performance of the model. 

And, learning task parameters define the optimization objectives at each iteration. The 

description of XGBoost parameters in Python are presented in Table 5-14. 

Table 5-14 Description of XGBoost Parameters in Scikit-learn API 

Main Parameters Parameters Description 

General Parameters 

booster 
Specify type of model to be run at each iteration: gbtree, gblinear 
or dart 

silent Whether to print messages while running boosting 

nthread Used for parallel processing and set number of parallel threads  

Booster Parameters 

max_depth Maximum depth of tree for base learners 

learning_rate Boosting learning rate 

n_estimators Number of trees to fit 

n_jobs Number of parallel threads 

gamma Minimum loss reduction required to make a split 

min_child_weight 
Define the minimum sum of weights of all observations required in 
a child 

max_delta_step Maximum delta step which allows each tree’s weight estimation 

subsample Subsample ratio of the training instance 

colsample_bytree Subsample ratio of columns when constructing each tree 

colsample_bylevel Subsample ratio of columns for each level 

reg_alpha L1 regularization term on weight (analogous to Lasso regression) 

reg_lambda L2 regularization term on weights (analogous to Ridge regression) 

scale_pos_weight Balancing of positive and negative weights 

base_score The initial prediction score of all instances, global bias 

missing Value in the data which needs to be present as a missing value 

Learning Task 
Parameters 

objective 
Defines the loss function to be minimized: binary: logistic, 
multi:softmax, multi:softprob 

seed Random number seed 
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XGBoost classification was implemented using the Scikit-learn API libraries. 

Firstly, tree booster was selected to specify type of model to be run at each iteration. Tree 

booster was preferred to linear booster and dart as it is a tree-based model and can detect 

non-linear relationships between variables. The maximum depth of tree was set 4 to reduce 

the complexity of the model and overfitting. This feature presents depth of each tree and 

is used to control overfitting. The value of maximum depth is usually between 3 and 10, 

and the higher depth can determine very specific relationship between variables and 

increase the risk of overfitting. The performance of the model was evaluated with higher 

depth values such as 5 and 6, but the results showed very complex outcome. 

The learning rate shrinks the weights in each step to develop stronger model and 

typically it is between 0.01 to 0.2. The average value of 0.1 was selected to implement the 

model in this dissertation. The higher values close to 0.2 and lower values close to 0.01 

showed weaker training results. The number of estimators determines the number of 

required trees to fit the model. This value is usually between some hundreds to thousands 

and changes based on parameters used in the model. The number of estimators was set 

500 for developing the model.  As dependent variable has two classes (good and poor), 

binary logistic was selected for objective part. Other values were set as default and gradient 

boosting tree was implemented. 

5.5 K-Nearest Neighbors 

5.5.1 Description of the Model 

K-Nearest Neighbors is the second AI model developed in this study to predict 

condition of sanitary sewer pipes. K-nearest neighbors are applicable to develop both 

regression and classification models. Nearest neighbors method works based on 

identifying the labels of K-nearest patterns in data space. Nearest neighbor techniques 

have better performance when the datasets are large with low dimensions (Kramer, 2016). 
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Similar logistic regression and gradient boosting tree models, thirteen independent 

variables were used to predict whether pipe is in good or poor condition. 

KNN model was developed by Python 3.7.3 with application of different computing 

libraries, such as Numpy, Pandas, Sklearn and seaborn. Sklearn library provides both 

supervised and unsupervised learning methods. K neighbors classifier and radius 

neighbors classifier are two main classifier algorithms that Sklearn provides. K neighbors 

classifier implements learning based on the nearest neighbors of each query point, while 

radius neighbors classifier implements learning based on the number of neighbors within 

a fixed radius of each training point. 

K neighbors classifier (sklearn.neighbors.KNeighborsClassifier) algorithm was the 

primary source to develop the KNN model in this dissertation. This algorithm is the most 

commonly used technique to develop KNN model. Fast computation of KNN is one of the 

most important advantages of this machine learning approach (Pedregosa et al., 2011).  

5.5.2 Development of the Model 

5.5.2.1 Five-Fold Cross Validation 

Similar to the gradient boosting tree model, five-fold cross validation method was 

used to randomly select 80% of data for train and 20% for testing the model.  Sklearn library 

was employed to split sanitary sewer dataset into 5 folders and each folder including 20% 

of data. The detail of cross validation was presented in previous section. 

5.5.2.2 Training the Model 

As explained before, K neighbors classifier algorithm was used to develop KNN 

model for predicting whether sanitary sewer pipes are in good or poor condition levels. This 

model has much less complexity than gradient boosting tree and less parameters are 

required to be set during training the model. Table 5-15 presents the K neighbors classifier 

parameters in Scikit-learn. 
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Table 5-15 Description of KNN Parameters in Scikit-learn 

Parameters Description 

n_neighbors Specify number of neighbors:  default = 5 

weights weight function used in prediction: uniform, distance 

algorithm 
Algorithm used to compute the nearest neighbors: auto, ball_tree, 
kd_tree, brute 

leaf_size This parameter is related to BallTree or KDTree 

p 
Power parameter for the Minkowski metric: 1 for Manhattan 
distance, 2 for Minkowski distance 

metric The distance metric to use for the tree 

metric_params Additional keyword arguments for the metric function 

n_jobs The number of parallel jobs to run for neighbors search 

 

In order to generate KNN model, some parameters such as, number of jobs, 

metrics, p, and leaf size were set as a default. Auto algorithm was selected to compute the 

nearest neighbors as this function attempts to find the most appropriate algorithm. The 

weight parameter was set uniform to keep the consistency of the model.  

Identifying the number of neighbors is the most important activity during 

implementation of KNN model. In general, risk of overfitting is high when lower values are 

selected for number of neighbors. This parameter can be set manually or be determined 

through automatic methods. Therefore, two techniques were used to identify right number 

of neighbors and decrease the risk of overfitting. Firstly, the KNN model was run using 

different neighbor values from 1 to 15 and then the accuracy of the test and train dataset 

were compared to identify the most appropriate number of neighbors. Figure 5-3 illustrates 

the varying number of neighbors in KNN model.   
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Figure 5-3 Varying Number of Neighbors in KNN Model 

The KNN plot showed that the highest accuracy achieved when the number of 

neighbors is 7. The second method identified the number of neighbors based on 

misclassification error in different number of neighbors as shown in Figure 5-4. The optimal 

number of neighbors is 7 with lowest error in KNN model.  

 

Figure 5-4 Misclassification Error in Different Neighbor Numbers 
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Both techniques identified that number 7 is the best value for selecting the quantity 

of neighbors in KNN model. Therefore, the model was implemented with 7 neighbors and 

the results of validation is presented in next chapter. 

5.6 Chapter Summary 

This chapter presented the detailed overview of developing sanitary sewer pipes 

condition prediction models, through multinomial logistic regression, binary logistic 

regression, gradient boosting tree and KNN models. Numerous structures were tested and 

the best architecture among them was chosen for further explanation and development. 

Different steps of training and generating the statistical and artificial intelligence models 

were presented. The validation of the models and the significance of the variables will be 

presented in next chapter.  
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Chapter 6 Results and Discussions 

6.1 Introduction 

The previous chapter information about the development of the models was 

provided. This chapter presents the results and validation of binary logistic regression, 

gradient boosting tree and KNN models. Additionally, the effect of influence variables will 

be comprehensively investigated in this chapter.  

6.2 Binary Logistic Regression 

6.2.1 Validation of the Model 

The result of binary logistic regression provided one equation to predict the 

condition levels of sanitary sewer pipes. The independent variables and parameter 

estimate in section 5.3.2 are used to develop the odds ratio. These equations are used to 

predict the probability of the pipes being in poor condition level. As significant variables 

were identified, the binary logistic regression equation was generated using only significant 

variables in the model. Equation 6.1 present the result of binary logistic regression. 

𝑔(𝑥) =  𝑙𝑛 (
𝑃(𝐶 = 1)

1 − 𝑃(𝐶 = 1)
) =  

                                −8.06 + 0.142 × 𝐴𝑔𝑒 − 0.114 × 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 0.006 × 𝐿𝑒𝑛𝑔𝑡ℎ

− 0.002 ×𝑊𝑎𝑡𝑒𝑟 𝑇𝑎𝑏𝑙𝑒 − 0.189 × 𝐷𝑃𝑉𝐶                                                       Eq. 6.1 

Once the odds ratio was calculated, the probability of pipes being in poor or good 

condition can be estimated by using Equation 6.2 and 6.3. 

𝑃(𝐶 = 1) =
1

1 + 𝑒−𝑔(𝑥)
                                                 Eq. 6.2 

and 

𝑃(𝐶 = 0) = 1 − 𝑃(𝐶 = 1)                                          Eq. 6.3 

Remained 20% of data was used to test the model by presented equations. The 

probability of pipe being in poor condition was calculated for each pipe segment and the 
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higher probability was considered as predicted value for condition state of sanitary sewer 

pipe. Classification table was selected to evaluate the result of multinomial logistic 

regression as shown in Table 6-1. 

Table 6-1 Binary Logistic Regression Classification Table 

Observed 
Predicted 

Percent Correct 
Predicted 

0 1 

0 2,542 315 89.0% 

1 300 824 73.3% 

Overall Percentage  84.6% 

 

According to the result of classification table, in overall 84.6% of the pipe conditions 

were predicted correctly by binary logistic regression. 89% of the pipes in condition level 0 

and 73.3% in condition level 1 were estimated correctly which indicates a high accuracy.  

The detail of confusion matrix was presented in chapter 3. When pipes in good condition 

are considered the positive class of interest, TP (true positive) and TN (true negative) 

represent correctly classified pipes. TP demonstrates number of pipes which are actually 

in good condition and correctly predicted to be in good condition, and TN determine number 

of pipes which are actually in poor condition and correctly predicted to be in poor condition 

state.  

Incorrect classifications are presented by FP (false positive) and FN (false 

negative) values. FP reveals the pipes which are predicted in good condition, when in fact 

they are pipes in poor condition, and FN determined the pipes predicted to be in poor 

condition, while they are actually good pipes. Equations 6.4 through 6.7 determine how to 

calculate true and false positive and negative rates based on the results of confusion 

matrix.  
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𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                    Eq. 6.4 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑇𝑁𝑅 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                    Eq. 6.5 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                           Eq. 6.6 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝐹𝑁𝑅 = 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦                          Eq. 6.7 

Table 6-2 presents the result of calculating true positive, true negative, false 

positive and false negative rates. The prediction performance of binary logistic regression 

was also evaluated by Receiver Operating Characteristic (ROC) curve. ROC curve is a 

useful visual tool which is a plot of true positive rate (TPR) and false positive rate (FPR). 

The area under the ROC curve illustrates the model performance, where perfect models 

have an area close to 1 and random models have an area close to 0.5. An area under the 

ROC curve greater than 0.7 demonstrates the model is acceptable (Hosmer et al., 2013). 

Figure 6-1 illustrates the ROC curve for binary logistic regression.  

Table 6-2 Binary Logistic Regression Model Performance 

Rates Values 

True positive rate (TPR) 89% 

True negative rate (TNR) 73.3% 

False positive rate (FPR) 26.7% 

False negative rate (FNR) 11% 

 

The area under ROC curve is 0.903 which shows binary logistic regression has 

acceptable result. Therefore, logistic regression equation can be used to predict the 

condition of pipes which have not been inspected yet. 
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Figure 6-1 Binary Logistic Regression ROC Curve 

 
6.2.2 Deterioration Curve 

The outcomes of binary logistic regression can be used to develop a visual 

presentation of the probability of pipes being in poor or good conditions. A deterioration 

curve was developed in this dissertation to show how the condition of sewer pipes degrade 

over time and the age of the asset while considering the effect of all significant variables. 

The deterioration curve was developed by using the mean values of the numerical 

dependent variables and changing the age by one-year increments in the binary logistic 

regression equation. Figure 6-2 illustrates the deterioration curve of sanitary sewer pipes 

in the network for two different pipe materials: PVC and VCP. 
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Figure 6-2 Sanitary Sewer Pipes Deterioration Curve 

According to the result of deterioration curve, PVC and VCP pipes have almost 

similar behavior over time. PVC pipes seems to degrade slower resulting in a delayed poor 

condition score. In general, VCP pipes would have a shorter life than PVC pipes since they 

have more brittle qualities than PVC. The primary benefit of a deterioration curve is the 

possibility of predicting future pipe conditions within the network. Furthermore, the short-

term and long-term behavior of sewer pipes can be monitored over time. Deterioration 

curves can be generated for each individual pipe and they can be a valuable tool for 

prioritizing the pipes and providing a logical inspection schedule (Malek Mohammadi et al., 

2019). 

6.2.3 Influence Variables 

As presented in previous sections, of the 13 independent variables considered only 

five variables were retained in the final model. The significant variables were pipe age, 

diameter, length, material and water table as listed in Table 6-3. 
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Table 6-3 Significant Variables in Binary Logistic Regression Model 

Variable 
Coefficient 

(β) 
Standard 

Error 
Wald P Value 

Expected 
Value 

Age 0.142 0.003 2865.361 0.000 1.053 

Diameter -0.114 0.009 175.763 0.000 0.892 

Length 0.006 0.000 653.456 0.000 1.006 

Water Table -0.002 0.000 14.070 0.000 0.998 

Material = PVC -0.189 0.126 8.418 0.015 0.828 

Material = VCP 
(Reference) 

0 . . . . 

 

In this part the influence of each significant variable is presented in detail to 

understand in what way and how much they affect condition of sewer pipes gradually. 

6.2.3.1 Significant Variables 

Pipe Age. The binary logistic regression results identified that pipe age affects condition 

of sanitary sewer pipes strongly with Wald = 2865.361 (Sig. = 0.000). As could be expected, 

when the sanitary sewer pipes aged, the probability of pipes being in poor condition 

increased. According to the binary logistic regression equation, the coefficient of pipe age 

is positive, and a unit increase in age results in an increase in the probability that the pipe 

is in poor condition level.  

As shown in Table 6-3, the odds ratio (expected value) of pipe age is 1.053 which 

reveals that for a unit increase in age, the odds of sewer being in poor condition are 
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multiplied by 1.053. This result shows a 5.3% raise (relative to the odds of sanitary sewer 

with age 1 year less) when all other conditions are constant. This means, when a sanitary 

sewer pipe ages by 20 years, the odds of being in poor condition increase to (1.053)20=2.81 

which is 28.1% over the 20-year period. Each pipe material has a specific useful life and 

the physical properties of pipe material are changed during aging process. Thus, it is 

obvious that with aging the sewer pipes the deterioration rate increases and other factors 

such as external load, corrosion and groundwater level can provide higher risk of collapse 

or failure. The above results support the finding of several studies presented in section 

2.7.2.1. 

Pipe Diameter. Pipe diameter was also found to affect deterioration of sanitary sewer 

pipes largely with Wald = 175.763 (Sig. = 0.000). According to the binary logistic regression 

equation, the coefficient of pipe diameter is negative, and a unit increase in size results in 

a decrease in probability of pipe being in poor condition. Therefore, larger pipes are more 

resistant to pipe deterioration.  

The odds ratio of pipe diameter is 0.892 which reveals that for a unit increase in 

diameter, the odds of sewer being in poor condition are multiplied by 0.892. This result 

shows a 10.8% reduction (relative to the odds of sanitary sewer with 1 in. smaller diameter) 

when all other conditions are constant. Thus, increasing the diameter of a sanitary sewer 

pipe from 8 in. to 18 in., would reduce the odds of being in poor condition to (0.892)10=0.319 

which is 68.1% over the 10 in. increase. Figure 6-3 and 6-4 illustrates the deterioration of 

PVC and VCP pipes with different diameters of 8, 16, 25, 32 and 40 inches. The effect of 

pipe diameter on condition of sanitary sewer pipes is more evident in Figure 6-5 which 

shows the variance of pipe diameter from 2 to 80 inches for a PVC and VCP pipe with 

constant age of 50 years. 
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Figure 6-3 Deterioration Curve for PVC Pipes with Different Diameter Ranges 

 

Figure 6-4 Deterioration Curve for VCP Pipes with Different Diameter Ranges 
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Figure 6-5 Effect of Pipe Diameter on Condition of a 50-year Old Pipe 

Previous studies stated contradictory results regarding the effect of pipe diameter 

on condition of sewer pipes as presented in section 2.7.2.3. The result of this dissertation 

indicated that when pipe diameter increases the likelihood of a pipe being in a poor 

condition decrease and larger sewers are at a lower risk than small ones. A probable 

explanation could be that the pipe designers underestimate the required depth of cover 

and loading traffics for the smaller pipes. Additionally, larger pipes are often buried deeper 

and more appropriate design and construction crew are used to install them. With the 

occurrence of obstacles in the conduit, segments with larger diameter still enable to convey 

wastewater and small diameters are more likely to deteriorate due to lose of hydraulic flow. 

The above results support the finding of several studies presented in section 2.7.2.3.   

Pipe Length. Sewer manhole to manhole length was also found to be a significant variable 

with Wald = 653.456 (Sig. = 0.000). The results of binary logistic regression revealed that 

as sewer reach increased in length, the probability of pipe being in poor condition 
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increased. The coefficient of pipe length is positive in binary logistic regression equation, 

therefore longer pipe is deteriorated faster than shorter one.  

The odds ratio of pipe length is 1.006 which reveals that for a unit increase in 

length, the odds of sewer being in poor condition are multiplied by 1.006. This result shows 

a 0.6% increase (relative to the odds of sanitary sewer with length 1 ft less) when all other 

conditions are constant. Thus, increasing the length of a sanitary sewer pipe from 50 ft to 

100 ft, would reduce the odds of being in poor condition to (1.006)50 = 1.348 which is 34.8% 

over the 50 ft increase. The effects of pipe length on condition of PVC and VCP pipes is 

shown in Figures 6-6 and 6-7. 

 

Figure 6-6 Deterioration Curve for PVC Pipes with Different Length 
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Figure 6-7 Deterioration Curve for VCP Pipes with Different Length 

The effect of pipe length on condition of sanitary sewer pipes is more evident in 

Figure 6-8 which shows the pipe length from 10 to 500 feet for a PVC and VCP pipe with 

constant age of 50 years. 

 

Figure 6-8 Effect of Pipe Length on Condition of a 50-year Old Pipe 
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The results of previous literatures showed a dual behavior regarding the effect of 

pipe length on deterioration of sewer pipes. Practically in all sewer pipe inventories, length 

of pipes is stored as manhole to manhole length of pipe segments, since CCTV is the most 

common tool for inspecting the sewers. Typically, longer sewer pipes have higher 

deterioration rate because the probability of occurring defects is more in longer pipes.  

When individual longer sewer pipes (pipe section) are used in sewer networks, the number 

of joints per unit length of sewer is reduced, therefore, the risk of infiltration, exfiltration and 

other important defects are decreased. However, most of available sewer inspection 

inventory are based on the manhole to manhole length of sewer pipes. Lack of appropriate 

data regarding number of joints or length of pipe section is one of the reasons that the 

effect of pipe length on deterioration of sewer pipes is contradictory in different studies. 

Pipe joints are the main source of infiltration and longer pipes have more points 

and areas of possible failure specially in joints. Joint defect is one of the common defects 

in sewer systems and increases the probability of failure. Additionally, longer pipes are 

more vulnerable to have blockage and sediment deposition which facilitate the 

deterioration of sewer pipes.   

Water Table. Water table is the next significant variable found in binary logistic regression 

model with Wald = 14.070 (Sig. = 0.000). The results indicated that sanitary sewer pipes 

are deteriorated faster when the water table is higher around the pipe. The unit of water 

table is inches in this study and a lower value shows a higher water table. The coefficient 

of this variable is negative in binary logistic regression equation, therefore larger numbers 

(lower water table) decrease the risk of sewer pipes being in poor condition.  

The odds ratio of water table is 0.998 which demonstrates that for a unit increase 

in depth of groundwater, the odds of sewer being in poor condition are multiplied by 0.998. 

This result shows a 0.2% increase (relative to the odds of sanitary sewer surrounding 
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around 1 in. less water table) when all other conditions are constant. Therefore, increasing 

the depth of water table from 10 in. to 50 in., would reduce the odds of being in poor 

condition to (0.998)40 = 0.923 which is 7.7% over the 40 in. increase. The effects of water 

table on condition of PVC and VCP pipes is shown in Figures 6-9 and 6-10. 

 

Figure 6-9 Deterioration Curve for PVC Pipes with Different Water Table Depth 

 

Figure 6-10 Deterioration Curve for VCP Pipes with Different Water Table Depth 
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The effect of water table on condition of sanitary sewer pipes is more evident in 

Figure 6-11 which illustrates the water table height from 0 to 500 inches for a PVC and 

VCP pipe with constant age of 50 years.  

 

Figure 6-11 Effect of Water Table on Condition of a 50-year Old Pipe 

(Zero means water table is at the ground surface) 

The availability of water table at or above sewer pipelines may cause water flowing 

through the pipe due to possible joints and cracks, increasing the structural defects, 

formation of void and loss of sewer support. Raising the water table level may cause a 

reduction in the soil cohesive strength and growing the void around the pipe. Consequently, 

supporting soil can be washed (loosed) easily and the pipe is more likely to collapse in this 

condition. The above results support the finding of few studies investigated the effect of 

water table on deterioration of sewer pipes presented in section 2.7.3.2. 

Pipe Material. Sanitary sewer pipe material was also found significant variable affecting 

condition of pipes with Wald = 8.418 (Sig. = 0.015). The result of binary logistic regression 

showed a moderate difference in deterioration of PVC and VCP pipes. As illustrated in 
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deterioration curves VCP pipes are most likely to deteriorate than PVC pipes. The odds of 

PVC pipes being in poor condition are only -0.189 in comparison to the odds of VCP pipes. 

Sewer pipes constructed with different material have different reaction to the 

environmental factors, such as soil type and water table. For example, concrete pipes are 

highly resistant to abrasion and clay pipes act very well against acids. Plastic pipes, such 

as PVC or HDPE, resist to acidic and alkaline wastes, however they can suffer excessive 

deformations under loading (Singh and Adachi, 2013). Pipe material can be used as an 

independent variable during development of condition prediction models and it is possible 

to identify whether this variable is significant or insignificant through the results of the 

model. The above results support the finding of studies presented in section 2.7.2.2. 

6.2.3.2 Insignificant Variables 

Sulfate. The results of binary logistic regression showed that soil sulfate is an insignificant 

variable in the model with Wald = 0.014 (Sig.=0.904). Based on the backward stepwise 

analysis, soil sulfate was the first variable to be dropped from the model (second step). 

One probable reason for this low significant value might be the frequency of sulfate ranges 

in Tampa area. Approximately 60% of the pipes were buried in soil areas within 0.02 to 

0.05% sulfate content. Additionally, the amount of sulfate in the soil can cause corrosion 

which is an important reason of failure in steel and reinforced concrete pipes, while in this 

study only VCP and PVC pipes were used to develop prediction models which are strongly 

resistant to corrosion. 

Flow. Sewage flow was another variable found to be insignificant in binary logistic 

regression model. This variable was removed from the model on third step with Wald = 

0.219 (Sig. = 0.640). The City of Tampa has regular plan for cleaning and maintenance of 

the sewer pipes and usually they do not have overflow and operational problems. Regular 

maintenance could be one probable reason that flow is an insignificant variable in this 
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dissertation. Only few studies have investigated the effect of sewage flow on condition of 

sewer pipes during development of condition prediction models as presented in section 

2.7.4.2. Most of the sewers in Tampa dataset have 8 in. diameter and similarity of their flow 

rate could be one probable reason of insignificancy of this variable.  

Pipe Depth. Sanitary sewer depth was also found to be an insignificant variable in binary 

logistic regression with Wald = 1.005 (Sig. = 0.316). Several factors such as soil type, water 

table, pipe material, pipe diameter and regulations must be considered to identify the 

appropriate depth of sewer pipes. The results of investigating the effect of depth on 

deterioration of sewer pipes is contradictory in different prediction models.  

Several factors such as soil type, water table, pipe material, pipe diameter and 

regulations must be considered to identify the appropriate depth of sewer pipes. The results 

of investigating the effect of depth on deterioration of sewer pipes is contradictory in 

different prediction models and the above results support the finding of studies described 

in section 2.7.2.6. insignificancy of pipe depth is not to say that sewer depth does not affect 

deterioration of pipes when considered on its own, but in data analysis based on the 

features of pipe datasets, there may not be a direct relationship between pipe depth and 

condition level of sewer pipes.  

Soil pH. The next insignificant variable in this study is soil pH with Wald = 2.388 

(Sig.=0.122). The effect of soil pH was investigated more in water pipe systems. For 

example, Rajani and Maker (2000) and Doyle et al. (2003) used soil pH as a variable to 

predict the remaining useful life of water pipeline. The outcome showed that the pH was 

not a significant factor to generate the model. Based on their results, the pH alone is not a 

good indicator to predict the condition of pipes and there is no positive relationship between 

pH and deterioration of pipes in prediction models. The effect of soil pH was presented in 

section 2.7.3.6. 
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Pipe Slope. Pipe slope was also found to have no significant effect on the condition of 

sanitary sewer pipes in Tampa city with Wald = 1.910 (Sig. = 0.167). Based on the 

geographical information of Tampa, this city is located in a flat area and 88% of sanitary 

sewer pipes have the slope ranged 0 to 1% (standard deviation = 1.39). It could be one 

probable reason that pipe slope is not a significant factor in Tampa network. This result is 

supported by the finding of several studies presented in section 2.7.2.5. 

Soil Corrosivity. The results of binary logistic regression showed that soil corrosivity is 

also insignificant variable in the model. Soil corrosivity is a soil characteristic that increases 

the probability of external corrosion on pipe surface. The rate of corrosion is highly 

influenced by the characteristic of the pipe material and surrounding soil around the pipe. 

Only few studies have investigated the effect of soil corrosivity on deterioration of sewer 

pipelines as described in section 2.7.3.4. Population of PVC and VCP pipes in this 

dissertation could be the probable reason that soil corrosivity is an insignificant variable in 

this model since they are highly resistant to the corrosion.  

Soil Type. Soil type was also found to be an insignificant variable in binary logistic 

regression model. One probable reason might be the frequency of silty gravel and sand in 

Tampa dataset.  As explained in chapter 4, approximately 72% of sanitary sewer pipes 

were covered by silty gravel and sand soil in Tampa city.  

Soil Hydraulic. Soil hydraulic was the last insignificant variable in binary logistic regression 

model. Soil hydraulic group indicates soil runoff potential and the rate of water transmission 

through the soil layers. It seems that soil hydraulic is more related to the soil surface and it 

does not affect the layers closer to pipe. Additionally, during pipe installation the backfill 

soil is compacted, and soil hydraulic properties might be changed after this process. The 

effect of soil hydraulic on deterioration of sewer pipes was not investigated in previous 

studies. 
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6.3 Gradient Boosting Tree 

6.3.1 Validation of the Model 

The performance of gradient boosting tree model was evaluated using confusion 

matrix and ROC curve. The confusion matrix was used to identify the number of pipes that 

have been correctly or incorrectly predicted in good or poor condition levels. In confusion 

matrix, for every test samples the actual class is compared to the class that was assigned 

by the trained classifier. 20% of the data was used to evaluate the performance of the 

model. Table 6-4 presents the result of confusion matrix for gradient boosting tree.  

Table 6-4 Gradient Boosting Tree Confusion Matrix 

Observed 
Predicted 

Percent Correct 
Predicted 

0 1 

0 2,688 194 93.3% 

1 305 766 71.5% 

Overall Percentage  87.4% 

 

According to the result of confusion matrix, in overall 87.4% of the pipe conditions 

were predicted correctly by gradient boosting tree. 93.3% of the pipes in condition states 0 

and 71.5% in condition state 1 were estimated correctly which indicates a high accuracy. 

Table 6-5 presents the result of calculating true positive, true negative, false positive and 

false negative rates. Table 6-5 Gradient Boosting Tree Model Performance 

Rates Values 

True positive rate (TPR) 93.3% 

True negative rate (TNR) 71.5% 

False positive rate (FPR) 28.5% 

False negative rate (FNR) 6.7% 
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The prediction performance of gradient boosting tree was also evaluated by 

Receiver Operating Characteristic (ROC) curve. ROC curve is a useful visual tool which is 

a plot of true positive rate (TPR) and false positive rate (FPR). The area under the ROC 

curve illustrates the model performance, where perfect models have an area close to 1 and 

random models have an area close to 0.5. An area under the ROC curve greater than 0.7 

demonstrates the model is acceptable (Hosmer et al., 2013). Figure 6-12 illustrates the 

ROC curve for gradient boosting tree model. 

 
Figure 6-12 Gradient Boosting Tree ROC Curve 

The area under ROC curve is 0.93 which shows gradient boosting tree has 

acceptable result. Therefore, gradient boosting tree model can be used to predict the 

condition of pipes which have not been inspected yet. 

6.3.2 Feature Importance 

One benefits of gradient boosting tree models is that they are capable to rank the 

importance of the independent variables in both regression and classification aims. In 
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general, feature importance provides a score that indicates how useful a variable is in 

implementation of the model. The importance of variables in sanitary sewer dataset was 

evaluated based on weight method. This is a metric that presents the number of times a 

dependent variable is split in the trees of the model. Importance is calculated for each 

developed tree by the amount that independent variable split points improve the prediction 

performance of the gradient boosting tree model. For example, if pipe age is split 5, 1 and 

4 times in each of tree 1, tree 2 and tree 3 respectively, then the weight for pipe age will be 

5+1+4=10. Figure 6-13 illustrates the feature importance in gradient boosting tree model. 

 

Figure 6-13 Feature Importance in Gradient Boosting Tree Model 

According to the results of feature importance, pipe age, length, diameter, water 

table and material are the most important variables for predicting condition of sanitary 

sewer pipes in Tampa dataset. Other variables such as, soil type, soil corrosivity, soil 

hydraulic group, sulfate, and pH have lower prediction power in gradient boosting tree 

model. 
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6.3.3 Gradient Boosting Tree Plot 

XGBoost algorithm provides a function to plot decision tree based on the 

importance of independent variables in dataset. This plot shows different layers of decision 

tree and split decisions of independent variables in the model. The branches and leaves of 

decision tree provides insight into the role of independent variables on predicting condition 

of sanitary sewer pipes. As explained before, several trees are created in gradient boosting 

tree models to find the relationship between variables and predict the target. Figure 6-14 

illustrates the role of various independent variables in gradient boosting tree model. This 

figure shows the first tree that was created in the model. 

 

Figure 6-14 Gradient Boosting Tree Plot 

The first split of the tree shows the effect of age on condition of pipes. Sanitary 

sewer pipes are divided into two groups of pipes with age less or more than 52.5 years. 

The second layer of the tree consists again the age of pipe as an influence variable. In the 

left node the split point is 33.5, while the right node filters the pipes more or less than 59.5 
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years old. In the third layer, pipe length is appeared as the second influence variable in the 

model. In this layer, there is also leaf node in the right side of the plot.  

In general, for a binary classification tree with two classes of 0 and 1, the leaf value 

presents the raw score for class one. This score can be converted to probability using the 

logistic function (sigmoid function). Therefore, the P value indicates the probability of being 

in condition 1 or poor condition in plotted tree. The first leaf node shows that sanitary sewer 

pipes more than 59.5 years have a 58% chance of being in poor condition.  

In addition to pipe age and length, forth layer involves water table and pipe 

diameter. The full tree is easier to interpret than single layers. For example, in the left side, 

pipes less than 26.5 years old have only 32% chance of being in poor condition. If they are 

older than 26.5 years, the water table determines the probability. When water table is 

higher (less than 107 in.), the probability of being in poor condition is 52%, while the lower 

water table decreases the likelihood to 46%.  

In the right side, the condition of pipes depends on diameter when they are less 

than 59.5 years old with length of more than 169 ft. In this situation, larger pipes (diameter 

greater than 9 in.) are less probable to be in poor condition with 47% probability than 

smaller size pipes with 51%. The gradient boosting tree plot can be generated for all the 

trees created in the model.  

The results of gradient boosting tree supported the outcomes of binary logistic 

regression model. In general, the older pipes had more chance of being in poor condition 

in both logistic and tree models. Additionally, the probability of being in poor condition is 

higher in longer pipes like logistic regression results. Water table was also an influence 

variable in gradient boosting tree model and sanitary sewer pipes are deteriorated faster 

when the water table is higher around the pipe. Moreover, influence of pipe diameter on 
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pipe condition demonstrated that smaller diameter pipes had more probability of being in 

poor condition rather than the larger pipes. 

6.4 K-Nearest Neighbors 

6.4.1 Validation of the Model 

The performance of KNN model was evaluated using confusion matrix and ROC 

curve. In confusion matrix, for every test samples the actual class is compared to the class 

that was assigned by the trained classifier. 20% of the data was used to evaluate the 

performance of the model. Table 6-6 presents the result of confusion matrix for KNN.  

Table 6-6 Gradient Boosting Tree Confusion Matrix 

Observed 
Predicted 

Percent Correct 
Predicted 

0 1 

0 2,661 195 93.2% 

1 462 635 57.9% 

Overall Percentage  83.4% 

 

According to the result of confusion matrix, in overall 83.4% of the pipe conditions 

were predicted correctly by KNN model. 93.2% of the pipes in condition states 0 and 57.9% 

in condition state 1 were estimated correctly which indicates a high accuracy. Table 6-7 

presents the result of calculating true positive, true negative, false positive and false 

negative rates for KNN model.  

Table 6-7 K-Nearest Neighbors Model Performance 

Rates Values 

True positive rate (TPR) 93.2% 

True negative rate (TNR) 57.9% 

False positive rate (FPR) 42.1% 

False negative rate (FNR) 6.8% 
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The prediction performance of KNN model was also evaluated by Receiver 

Operating Characteristic (ROC) curve. Figure 6-15 illustrates the ROC curve for K-Nearest 

Neighbors model. 

 

 Figure 6-15 K-Nearest Neighbors ROC Curve 

The area under ROC curve is 0.89 which shows KNN has acceptable result. 

Therefore, K-Nearest Neighbors model can be used to predict the condition of pipes which 

have not been inspected yet. 

6.4.2 Feature Importance 

Linear models and tree-based models have specific libraries in Python to identify 

importance of variables, however KNN model does not support this feature. Therefore, 

Sequential Feature Algorithms (SFAs) were used to automatically select a subset of 

variables that are most relevant to predict condition of sanitary sewer pipes. The objective 

of feature selection is to improve the performance of the models by removing the 

inappropriate variables. In general, sequential feature algorithms are classified into four 

groups of Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), 
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Sequential Forward Floating Selection (SFFS) and Sequential Backward Floating 

Selection (SBFS).  

Sequential forward selection was used in this dissertation to identify the important 

variables in KNN model. This algorithm starts from the empty set and sequentially adds 

the variables to investigate the performance of the model. Equation 6.8 presents the detail 

of SFS method. 

𝐼𝑛𝑝𝑢𝑡: 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑑} 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑋𝑘 = {𝑥𝑖| 𝑗 = 1, 2, … , 𝑘; 𝑥𝑖 ∈ 𝑌}, 𝑤ℎ𝑒𝑟𝑒 𝑘 = (0, 1, 2, … , 𝑑) 

𝑥+ = arg 𝑚𝑎𝑥 𝐽(𝑥𝑘 + 𝑥),  𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑌 − 𝑋𝑘                                                                                 𝐸𝑞. 6.8 

𝑋𝑘 + 1 = 𝑋𝑘 + 𝑥
+ 

𝐾 = 𝐾 + 1 

where x+ is additional feature that maximizes the criterion function, d is dimension of the 

input variable, and k is the number of selected variables. Figure 6-16 illustrates the result 

of sequential forward selection in KNN model.  

 

Figure 6-16 KNN Sequential Forward Selection 
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According to the result of SFS, pipe age, length, material, diameter and depth 

improved the performance of the model, while other variables were not powerful enough 

to increase the accuracy. Some variables such as, soil type and corrosivity reduced the 

performance of the model. Table 6-8 presents the performance of KNN model when 

variables are added to the model sequentially. 

Table 6-8 Effect of Variables on Performance of KNN Model 

Variable Model Performance 

Age 0.776966861 

Length 0.782743138 

Material 0.826573921 

Diameter 0.833845959 

Depth 0.836035664 

Water table 0.834162134 

Slope 0.833972429 

Sulfate 0.833213608 

pH 0.833593018 

Flow 0.832960667 

Hydraulic 0.832707727 

Corrosivity 0.829293031 

Soil type 0.801334260 

 

In addition to SFS evaluation, best feature combination algorithm was generated 

to determine the performance of KNN model when different combination of variables is 

used to develop the model. Figure 6-17 illustrates the result of best feature combination for 

KNN model.  
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Figure 6-17 KNN Best Feature Combination 

The results showed that combination of 5 variables provide the best performance 

for KNN model. Pipe age, length, material, diameter and depth are variables which provide 

more powerful prediction results. This finding supports the outcome of sequential forward 

selection method. 

6.5 Discussions 

Sanitary sewers as a part of wastewater infrastructure systems, are designed to 

collect sewage from domestic, industrial, and commercial users and convey to treatment 

plants. Sewer pipes constitute a major portion of wastewater systems, as they form the 

pathway between points of wastewater generation and treatment plants. As sewer system 

become older, the structural and operational performance degrade. The aging of sewer 

pipes increases the rate of pipe deterioration and failure of sewer pipes can result serious 

social and environmental impacts. 
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Maintenance and rehabilitation strategies are important factors to keep the 

performance of the sewer systems at an acceptable level of service and to provide cost-

effective solutions for avoiding unforeseen failures. In the past, repair or rehabilitation of 

sewer pipes were only done once a pipe collapsed or failed. However, the current trend is 

to maintain and manage pipe systems before failure time. It is obvious that monitoring and 

inspection of all sewer pipes is almost impossible due to limited budget, time and 

assessment technologies. Therefore, more attention is needed to develop pipe 

deterioration models that can predict the current and future condition of sewer pipelines. 

Over the past few years, several statistical and artificial intelligence models were 

developed to predict condition of sewer pipes, however there is still a high demand to 

implement more advanced models with more critical input variables. This study developed 

three different statistical and artificial intelligence models to predict condition level of 

sanitary sewer pipes based on historical inspection dataset obtained from City of Tampa. 

The dataset consisted of 19,766 individual pipe segments with different physical and 

environmental variables. Thirteen independent variables including piped age, material, 

diameter, flow, length, depth, slope, soil type, soil sulfate, soil pH, water table, soil hydraulic 

group and soil corrosivity were used to build prediction models. The target variable was 

condition levels of sanitary sewer pipes which were assessed based on PACP method. 

The first model was developed to predict all five condition levels of sanitary sewer 

pipes, but the result was not enough acceptable. Therefore, the condition levels of pipes 

were transformed into binary class to investigate whether the pipes are in good or poor 

conditions. Three different models involving binary logistic regression, gradient boosting 

tree and KNN were developed to predict condition of sanitary sewer pipes.  

Development of statistical models was performed using SPSS software and 

artificial intelligence models were implemented by Python. Numerous advance techniques 
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such as cross validation and feature importance were used during model development to 

reduce risk of overfitting and uncertainty. All the models were validated using two or three 

different validation techniques, such as confusion matrix and ROC curve. Figure 6-18 

illustrates the performance of the models used in this study. The multinomial logistic 

regression obtained the lowest accuracy (65.8%) and gradient boosting tree model showed 

the best result with 87.4% accuracy. 

 

Figure 6-18 Comparison of Models Accuracy 

The prediction performance of the models for predicting each condition level (pipes 

in good condition or poor condition) is shown in Figure 6-19. The results revealed that pipes 

in condition 0 (good condition) could be predicted better in all three models, while the 

condition level 1 (poor condition) had different percent correct values. In overall, number 

of pipes in condition level zero was approximately four times more than pipes in condition 

level one and that is one probable reason of better prediction results in condition zero. 
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Figure 6-19 Comparison of Models Performance 

The influence variables that affect deterioration of sanitary sewer pipes were 

identified in each model and comprehensively evaluated in logistic regression model. 

Identifying the influence variables is one important part of condition prediction models. 

Table 6-9 shows the results of selecting important variables in all developed models in this 

study. These variables have strong relationship with condition of sanitary sewer pipes and 

excluding them from the model could decrease the final accuracy. All the models identified 

five influence variables. Binary logistic regression and gradient boosting tree reflected 

same results, while KNN identified that pipe depth has more critical role than water table 

during training and validation of the model.   
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Table 6-9 Influence Variables Affecting Deterioration of Sewer Pipes 

Variables 
Binary 

Logistic Regression 
Gradient 

Boosting Tree 
KNN 

Age 
   

Material 
   

Diameter 
   

Length 
   

Water table 
  X 

Depth X X  

Flow X X X 

Slope X X X 

Soil Type X X X 

Soil Sulfate X X X 

Soil pH X X X 

Soil Hydraulic Group X X X 

Soil Corrosivity X X X 

 

6.6 Contribution to the Sewer Pipeline Industry 

The results of this dissertation can help utility companies and municipalities to 

manage and optimize their sewer and stormwater systems. The developed models showed 

that condition prediction models for sewer pipes can be a part of pipeline asset 

management. Both statistical and artificial intelligence models are capable to predict future 
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condition of sewer pipes and provide a guideline to monitor the short-term and long-term 

behavior of pipe network. Additionally, identifying the influence variables in the models can 

be an important outcome to optimize the useful life of sewer pipes during planning and 

installation procedures.  

6.7 Chapter Summary 

This chapter presented the detailed overview of validating sanitary sewer pipes 

condition prediction models, and the effect of input variables on deterioration of pipes. It 

was observed that the model displayed a good learning trend towards the facts presented. 

Both statistical and artificial intelligence models could predict condition of sanitary sewer 

pipes with more than 80% accuracy. Several advance techniques such as cross validation 

and feature importance were used during model development to reduce risk of overfitting 

and uncertainty. Influence variables that affect deterioration of sewer pipes were identified 

in this chapter to be used for optimizing the useful life of sewer pipes.  
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Chapter 7 Conclusions and Recommendations for Future Research 

7.1 Conclusions 

The following conclusions were drawn from the development of logistic regression, 

gradient boosting and KNN models. The conclusions of each model were provided 

separately for better understanding the performance of the models. 

• Logistic Regression: 

o Application of multinomial logistic regression resulted 65.8% overall 

accuracy for predicting condition of sanitary sewer pipes, however pipes 

in condition levels 2, 3 and 4 were not estimated properly in this model. 

Only 4.4% of pipes in condition 2, 0.6% in condition 3 and 6.6% in 

condition 4 were predicted correctly. Low number of appropriate pipe 

datapoints in condition levels 2, 3 and 4 might be the probable reason of 

low prediction rate. The results of multinomial logistic regression were not 

enough appropriate to be accepted as a reliable prediction model. 

o Binary logistic regression resulted an overall correct prediction percentage 

of 84.6% for test dataset. 89% of the pipes in condition level 0 and 73.3% 

in condition level 1 were estimated correctly which indicates a high 

accuracy. Therefore, binary logistic regression equation can be used to 

predict the condition of pipes which have not been inspected yet. 

Additionally, the area under ROC curve was 0.903 which showed high 

reliability of the model.  

o Results of binary logistic regression indicated that pipe age, material, 

diameter, length and water table are significant variables affecting 

deterioration of sanitary sewer pipes.  
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o The binary logistic regression results identified that pipe age affects 

condition of sanitary sewer pipes strongly. The coefficient of pipe age in 

binary logistic regression equation is positive, and a unit increase in age 

results in an increase in the probability that the pipe is in poor condition 

level. 

o Pipe diameter was also found to affect deterioration of sanitary sewer 

pipes largely. According to the binary logistic regression equation, the 

coefficient of pipe diameter is negative, and a unit increase in pipe size 

results in a decrease in probability of pipe being in poor condition. 

Therefore, larger pipes are more resistant to pipe deterioration. 

o Sewer manhole to manhole length was also found to be a significant 

variable in the model. The results of binary logistic regression revealed 

that as sewer reach increased in length, the probability of pipe being in 

poor condition increased. The coefficient of pipe length is positive in binary 

logistic regression equation, therefore longer pipe is deteriorated faster 

than shorter one. 

o The results of binary logistic regression indicated that sanitary sewer pipes 

are deteriorated faster when the water table is higher around the pipe. The 

coefficient of this variable is negative in binary logistic regression equation, 

therefore larger numbers (lower water table) decrease the risk of sewer 

pipes being in poor condition. 

o Logistic regression deterioration curve showed a moderate difference in 

deterioration of PVC and VCP pipes. PVC pipes seems to degrade slower 

resulting in a delayed poor condition score. In general, VCP pipes would 
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have a shorter life than PVC pipes since they have more brittle qualities 

than PVC. 

o Pipe flow, depth, slope, soil type, soil sulfate, soil pH, soil hydraulic group 

and soil corrosivity were identified insignificant variable in binary logistic 

regression model. 

• Gradient Boosting Tree: 

o Gradient boosting tree model achieved 87.4% overall accuracy for 

predicting condition of sanitary sewer pipes. 93.3% of the pipes in 

condition level 0 and 71.5% in condition level 1 were estimated correctly 

which indicates a high accuracy. Additionally, the area under ROC curve 

was 0.93 which showed high reliability of the model. Based on the result 

of gradient boosting tree, it is an acceptable model developed in this study. 

o One benefits of gradient boosting tree models is that they are capable to 

rank the importance of the independent variables. According to the results 

of gradient boosting tree model, pipe age, length, diameter, water table 

and material were the most important variables in this model for predicting 

condition of sanitary sewer pipes in Tampa dataset. 

o The results of gradient boosting tree revealed that soil type, soil corrosivity, 

soil hydraulic group, sulfate, and pH have lower prediction power in 

gradient boosting tree model. 

o The results of gradient boosting tree supported the outcomes of binary 

logistic regression model. In general, the older pipes had more chance of 

being in poor condition in both logistic and tree models. Additionally, the 

probability of being in poor condition is higher in longer pipes like logistic 

regression results. Water table was also an influence variable in gradient 
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boosting tree model and sanitary sewer pipes are deteriorated faster when 

the water table is higher around the pipe. Moreover, influence of pipe 

diameter on pipe condition demonstrated that smaller diameter pipes had 

more probability of being in poor condition rather than the larger pipes. 

• K-Nearest Neighbors 

o K-Nearest Neighbors resulted an overall correct prediction percentage of 

83.4% for test dataset. 93.2% of the pipes in condition states 0 and 57.9% 

in condition state 1 were estimated correctly which indicates a good 

accuracy. The area under ROC curve was 0.89 which shows KNN has 

acceptable result. Therefore, K-Nearest Neighbors model can be used to 

predict the condition of pipes which have not been inspected yet. 

o KNN model does not support feature importance and sequential forward 

selection was used to identify the important variables in this model. 

According to the result of SFS, pipe age, length, material, diameter and 

depth improved the performance of the model, while other variables were 

not powerful enough to increase the accuracy. 

o Best feature combination algorithm was generated to determine the 

performance of KNN model when different combination of variables is 

used to develop the model. The results showed that combination of 5 

variables provide the best performance for KNN model. Pipe age, length, 

material, diameter and depth are variables which provide more powerful 

prediction results. This finding supports the outcome of sequential forward 

selection method. 

7.2 Contribution to the Body of Knowledge 

The major contributions of this study are: 
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• Several statistical models have been developed in previous studies to predict the 

future condition of sewer pipelines. This study was added the diversity of models 

for used of artificial intelligence models, such as, gradient boosting trees and k-

nearest neighbors (k-NN) to investigate deterioration behavior of sewer pipes.  

• In this study some independent variables, such as soil hydraulic groups and soil 

pH were used to develop the prediction models and investigate the significant 

factors. These important environmental factors have not been used in previous 

studies to assess the deterioration of sewer pipes. 

7.3 Limitations of this Research 

As indicated previously, this research is undertaken mainly to demonstrate the 

possibility of using statistical and artificial intelligence models to predict future condition of 

sanitary sewer pipes. The main limitation of condition prediction models is availability of 

appropriate dataset to generate the models. Environmental parameters affecting condition 

of sanitary sewer pipes, such as bedding material, overburden pressure, soil water content, 

traffic flow and other factors identified in the literature were omitted due to lack of proper 

dataset. Additionally, pipe length was manhole to manhole length of sewer pipe segments 

in Tampa dataset. Lack of information regarding number of joints or length of pipe section 

was the other important limitation of this study. In other hand, population of sanitary sewer 

pipes in condition levels 2, 3 and 4 caused transforming the target variable to binary 

classes. Development of the models with all five condition levels could provide more 

effective results during development of the models. 

7.4 Recommendations for Future Research 

Additional research can build upon the work presented in this dissertation. Areas 

of potential future development include: 
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• The deterioration models developed in this dissertation can be improved by 

utilization of other independent variables, such as backfill type, bedding material, 

soil moisture, overburden pressure, installation method, pipe shape, previous 

maintenance, overflow and blockage history. 

• Only PVC and VCP pipes were used to develop prediction models in this 

dissertation. An important component of future research is investigating the 

behavior of more pipe material such as steel and concrete pipes in sewer network 

and compare the results.  

• Most of the prediction models developed in previous studies employed manhole to 

manhole length of sewer pipes to implement the models. Considering number of 

joints or length of pipe sections as an independent variable can provide better 

understanding about the effect of pipe length on deterioration of sewer pipes. 

• Logistic regression developed in this study provided the probability of pipes being 

in poor condition level. One important potential research is considering 

consequence of pipe failure to develop risk assessment tools for sanitary sewer 

pipes.  

• Prediction models developed in this dissertation can be used to make inspection 

timeline for sanitary sewer pipes. A cost-benefit analysis can be implemented to 

investigate the potential cost saving of condition prediction models toward regular 

yearly inspection plans. 

• A particularly important component of future work is further investigation of deep 

learning algorithms to develop condition prediction models. 

• Condition prediction models can be used to forecast the condition of lined or 

repaired pipeline to investigate the performance of lining material. 
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• If enough inspection dataset is available, an important component of future work 

can be comparing the results of prediction models developed for different cities.  
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3D – Three Dimensional 

AC – Asbestos-cement 

AET – Acoustic Emission Testing 

AI – Artificial Intelligence 

ASCE – American Society of Civil Engineering 

AUC – Area Under Curve 

AWWA – American Water Works Association 

CAS – Cast Iron 

CCTV – Closed-Circuit Television 

CIPP – Cured-in-place Pipe 

CMP – Corrugated Metal Pipe 

CSS – Combined Sewer Systems 

DIP – Ductile Iron Pipe 

ECT – Eddy Current Testing 

EPA – Environmental Protection Agency 

FANP – Fuzzy Analytical Network Process 

FHWA – Federal Highway Administration 

FN – False Negative 

FP – False Positive  

FPR – False Positive Rate 

FRP – Fiberglass Pipe 

GA – Genetic Algorithm 

GIS – Geographic Information Systems 

HDPE – High-density Polyethylene 

I/I – Infiltration/Inflow  
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IIMM – International Infrastructure Management Manual 

JCW – Johnson County Wastewater 

KNN – K-Nearest Neighbors 

Log – Logarithm  

MCMC – Markov Chain Monte Carlo 

MDA – Mean Decrease Accuracy 

MDI – Mean Decrease Impurity 

MFL – Magnetic Flux Leakage 

MLE – Maximum Likelihood Estimation 

NASSCO – National Association of Sewer Service Companies 

NetCoS – Network Condition Simulator 

NNs – Neural Networks 

NRC – National Research Council Canada 

O&M – Operation and Maintenance 

OR – Odds Ratio 

OR – Overall Pipe Rating 

PACP – Pipeline Assessment and Certification Program 

PCCP – Prestressed Concrete Cylinder Pipe 

PE – Plastic Pipe 

PVC – Polyvinyl Chloride Pipes  

RCP – Reinforced Concrete Pipes 

RFEC – Remote Field Eddy Current 

RI – Pipe Rating Index 

ROC – Receiver Operating Characteristic 

SBFS – Sequential Backward Floating Selection 
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SBS – Sequential Backward Selection  

SE – Standard Error 

SFAs – Sequential Feature Algorithms 

SFFS – Sequential Forward Floating Selection 

SFS – Sequential Forward Selection 

SG – Segment Grade Score 

SPSS – IBM SPSS Statistics Packages 

SRM – Sewerage Rating Manual 

SSS – Separate Sanitary Sewer and Storm Sewer System 

SVM – Support Vector Machine 

TN – True Negative  

TP – True Positive 

TPR – True Positive Rate 

U.S. – United States 

VCP – Vitrified Clay Pipes 

WEF – Water Environment Federation 

WRc – Water Research Centre 

WSAA – Water Services Association of Australia 

  



209 

 

 

 

 

 

 

 

 

 

 

Appendix B 

Data Sample (1,000 pipe segments)
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If you need more data please contact Mohammadreza.malekmohammadi@mavs.uta.edu 

N Age Material Diameter Flow Depth Slope Length Sulfate pH Soil Water Table Hydraulic  Corrosivity 

1 63 1 8 366 3.29 0.45 679.99 0.02 5.3 Silty Gravel and Sand 145 0 2 

2 50 1 24 2523 8.08 0.10 657.95 0.05 5.5 Fine Sand 84 0 2 

3 12 1 10 4559 8.17 -0.50 611.32 0.02 5.3 Fine Sand 145 0 2 

4 44 1 8 328 2.95 0.37 594.50 0.02 5.5 Silty Gravel and Sand 31 0 1 

5 44 1 8 284 3.12 0.27 569.50 0.02 7.0 Silty Gravel and Sand 8 2 1 

6 46 1 8 489 4.53 0.81 563.70 0.02 5.3 Fine Sand 145 0 2 

7 66 1 8 817 3.59 2.27 547.63 0.17 5.3 Fine Sand 145 0 2 

8 54 1 8 343 5.71 0.40 545.32 0.02 4.8 Silty Gravel and Sand 31 1 2 

9 57 1 18 1664 10.8 0.12 544.61 0.02 5.3 Silty Gravel and Sand 145 0 2 

10 42 1 8 201 6.16 0.14 531.98 0.02 5.3 Fine Sand 145 0 2 

11 50 1 30 5204 6.64 0.08 525.61 0.10 7.5 Silty Gravel and Sand 8 0 2 

12 50 1 30 5480 9.59 0.09 520.00 0.02 7.9 Silty Gravel and Sand 31 1 2 

13 44 1 10 384 3.85 0.16 518.79 0.02 5.5 Silty Gravel and Sand 31 0 1 

14 43 1 8 429 4.45 0.63 518.00 0.10 5.3 Fine Sand 8 0 2 

15 44 1 8 182 3.53 0.11 505.00 0.02 5.3 Fine Sand 145 0 2 

16 57 1 24 7631 8.68 0.56 500.00 0.02 5.3 Fine Sand 145 0 2 

17 50 1 30 28100 10.06 -0.50 500.00 0.05 5.5 Fine Sand 15 0 1 

18 57 1 24 7084 13.29 0.49 500.00 0.02 5.3 Fine Sand 145 0 2 

19 51 1 10 467 4.26 0.23 495.42 0.02 5.3 Fine Sand 145 0 2 

20 50 1 30 6221 12.45 0.11 494.68 0.02 5.5 Fine Sand 31 0 1 

21 57 1 24 7711 10.17 0.58 482.70 0.10 5.3 Fine Sand 8 0 2 

22 50 1 30 4390 12.37 0.06 478.73 0.02 5.5 Fine Sand 31 0 1 

23 14 2 18 2601 10.09 0.30 476.96 0.02 5.3 Fine Sand 145 0 2 

24 50 1 30 5091 8.32 0.08 471.46 0.02 7.9 Fine Sand 31 1 2 

25 49 1 8 296 13.31 0.30 465.84 0.10 5.4 Fine Sand 8 0 2 

26 9 2 42 0 16.52 0.00 464.78 0.02 7.0 Fine Sand 69 0 1 

27 42 1 8 192 3.94 0.13 455.00 0.02 5.3 Fine Sand 145 0 2 

28 46 1 24 3819 10.56 0.14 453.00 0.02 5.5 Fine Sand 31 0 1 

29 56 1 30 3775 11.58 0.04 452.69 0.02 5.5 Fine Sand 31 0 1 

30 20 2 8 0 5.96 0.00 451.81 0.02 5.5 Fine Sand 31 0 1 

31 50 1 30 4669 6 0.06 451.65 0.02 5.8 Silty Gravel and Sand 15 3 1 

mailto:Mohammadreza.malekmohammadi@mavs.uta.edu
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32 48 1 8 250 10.65 0.21 450.98 0.02 7.0 Silty Gravel and Sand 8 2 1 

33 64 1 8 297 4.53 0.30 450.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

34 53 1 15 1664 16.32 0.00 449.98 0.05 5.5 Silty Gravel and Sand 84 0 2 

35 43 1 12 434 7.47 0.07 449.39 0.02 5.3 Silty Gravel and Sand 145 0 2 

36 50 1 30 0 9.25 0.00 448.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

37 44 1 8 344 5.87 0.40 447.14 0.10 5.5 Silty Gravel and Sand 31 0 1 

38 44 1 8 311 4.4 0.33 447.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

39 56 1 30 4773 12.5 0.07 446.98 0.02 5.5 Silty Gravel and Sand 31 0 1 

40 59 1 8 293 4.43 0.29 444.64 0.02 7.0 Silty Gravel and Sand 8 2 1 

41 51 1 8 280 8.71 0.27 442.26 0.02 7.0 Silty Gravel and Sand 69 0 1 

42 56 1 30 6139 12.7 0.11 441.30 0.02 5.5 Silty Gravel and Sand 31 0 1 

43 49 1 8 627 4.65 1.33 440.03 0.02 7.3 Silty Gravel and Sand 31 3 1 

44 55 1 15 1424 10.82 0.24 439.70 0.02 7.0 Silty Gravel and Sand 8 2 1 

45 50 1 18 1135 12.84 0.12 437.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

46 56 1 30 3737 15.62 0.04 437.50 0.02 5.5 Silty Gravel and Sand 31 0 1 

47 56 1 30 5359 12.5 0.08 437.37 0.02 5.5 Silty Gravel and Sand 31 0 1 

48 56 1 24 2836 15.11 0.08 436.55 0.02 5.3 Silty Gravel and Sand 145 0 2 

49 55 1 8 360 3.21 0.44 435.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

50 54 1 18 1631 4.89 0.12 435.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

51 37 1 8 567 14.57 0.00 434.83 0.02 7.3 Silty Gravel and Sand 31 3 1 

52 68 1 8 286 3.64 0.28 433.34 0.02 7.3 Silty Gravel and Sand 31 3 1 

53 49 1 18 2084 13.09 0.12 431.58 0.05 5.5 Silty Gravel and Sand 84 0 2 

54 25 2 8 382 5.16 0.50 431.29 0.02 5.3 Silty Gravel and Sand 145 0 2 

55 43 1 12 550 7.66 0.12 431.19 0.02 5.3 Silty Gravel and Sand 145 0 2 

56 11 2 8 0 2.95 0.00 430.68 0.02 5.3 Silty Gravel and Sand 145 0 2 

57 57 1 8 420 3.76 0.60 430.00 0.05 5.5 Silty Gravel and Sand 31 0 1 

58 54 1 8 342 6.75 0.40 429.56 0.02 7.0 Silty Gravel and Sand 69 0 1 

59 51 1 18 1658 7.47 0.12 429.13 0.02 4.8 Silty Gravel and Sand 31 1 2 

60 50 1 30 6596 7.95 0.13 429.10 0.02 5.5 Silty Gravel and Sand 31 0 1 

61 55 1 8 2203 5.05 -0.50 427.01 0.02 5.3 Silty Gravel and Sand 145 0 2 

62 57 1 24 7795 7.48 0.59 426.48 0.10 5.3 Silty Gravel and Sand 8 0 2 

63 41 1 8 248 18.41 0.21 426.42 0.02 7.0 Silty Gravel and Sand 8 2 1 

64 44 1 8 285 4.85 0.28 426.22 0.02 7.0 Silty Gravel and Sand 8 2 1 

65 56 1 48 19281 13.64 0.09 425.70 0.02 5.8 Silty Gravel and Sand 15 3 1 
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66 57 1 24 7971 10.45 0.62 425.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

67 55 1 8 451 4.59 0.69 425.40 0.02 5.5 Silty Gravel and Sand 8 0 2 

68 54 1 18 1596 5.38 0.11 425.03 0.02 7.3 Silty Gravel and Sand 31 3 1 

69 43 1 8 464 4.32 0.73 424.83 0.10 5.3 Silty Gravel and Sand 8 0 2 

70 49 1 18 1651 10.93 0.12 424.73 0.05 5.5 Silty Gravel and Sand 84 0 2 

71 50 1 30 4734 2.92 0.07 424.14 0.02 5.5 Silty Gravel and Sand 31 0 1 

72 39 1 8 556 3.5 0.00 423.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

73 49 1 8 307 9.06 0.32 420.74 0.02 7.0 Silty Gravel and Sand 69 0 1 

74 50 1 30 3113 6.9 0.03 420.27 0.10 7.5 Silty Gravel and Sand 8 0 2 

75 57 1 24 10137 11.57 1.00 420.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

76 46 1 8 343 4.5 0.40 420.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

77 50 1 30 5279 8.76 0.08 419.66 0.02 5.5 Silty Gravel and Sand 31 0 1 

78 50 1 8 343 8.55 0.40 419.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

79 37 1 8 621 4.26 0.00 419.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

80 28 2 21 5902 6.81 0.69 419.00 0.02 5.4 Silty Gravel and Sand 8 0 2 

81 55 1 8 357 4.11 0.43 419.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

82 49 1 8 344 6.7 0.40 416.80 0.02 4.8 Silty Gravel and Sand 31 1 2 

83 53 1 8 848 4.59 2.44 416.78 0.10 5.3 Silty Gravel and Sand 8 0 2 

84 53 1 8 569 3.95 1.10 416.20 0.10 5.5 Silty Gravel and Sand 31 0 1 

85 54 1 8 276 5.41 0.26 415.75 0.02 7.0 Silty Gravel and Sand 8 2 1 

86 46 1 8 353 7.02 0.42 415.64 0.10 5.1 Silty Gravel and Sand 31 0 2 

87 13 2 8 286 11.5 -0.28 415.28 0.02 7.0 Silty Gravel and Sand 8 2 1 

88 54 1 18 1637 5.43 0.12 415.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

89 50 1 8 805 4.5 2.20 415.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

90 55 1 8 308 3.99 0.32 414.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

91 54 1 8 461 4.12 0.00 414.69 0.02 5.3 Silty Gravel and Sand 145 0 2 

92 54 1 8 537 5.32 0.98 414.33 0.02 5.3 Silty Gravel and Sand 145 0 2 

93 46 1 24 3803 12.2 0.14 414.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

94 46 1 8 594 4.86 1.20 413.25 0.02 5.3 Silty Gravel and Sand 145 0 2 

95 48 1 8 355 4.42 0.43 413.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

96 49 1 8 305 4.98 0.32 412.40 0.05 5.5 Silty Gravel and Sand 31 0 1 

97 47 1 8 543 4.28 1.00 412.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

98 56 1 24 28100 14.08 -0.50 411.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

99 54 1 8 459 6.55 0.71 411.40 0.02 5.3 Silty Gravel and Sand 145 0 2 
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100 51 1 8 343 4.4 0.40 411.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

101 51 1 8 343 4.04 0.40 411.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

102 31 1 8 193 4.38 0.00 410.68 0.02 7.3 Silty Gravel and Sand 31 3 1 

103 54 1 8 351 6.53 0.42 410.25 0.02 5.3 Silty Gravel and Sand 145 0 2 

104 42 1 8 343 4.68 0.40 410.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

105 51 1 8 343 4.18 0.40 409.82 0.05 5.5 Silty Gravel and Sand 84 0 2 

106 56 1 24 4225 12.98 0.17 409.33 0.02 5.3 Silty Gravel and Sand 145 0 2 

107 38 1 8 489 5.86 0.81 409.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

108 61 1 8 326 5.34 0.36 408.85 0.02 7.3 Silty Gravel and Sand 31 3 1 

109 40 1 8 208 7.4 0.15 408.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

110 47 1 8 343 6.76 0.40 407.35 0.02 5.3 Silty Gravel and Sand 145 0 2 

111 55 1 15 1007 16.93 0.12 406.89 0.02 7.0 Silty Gravel and Sand 8 2 1 

112 54 1 8 331 11.72 0.37 406.32 0.10 5.3 Silty Gravel and Sand 8 0 2 

113 20 2 8 364 5.85 0.45 406.16 0.10 5.1 Silty Gravel and Sand 31 0 2 

114 55 1 8 370 4.67 0.47 406.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

115 66 1 8 257 9.78 0.22 405.90 0.05 5.5 Silty Gravel and Sand 15 0 1 

116 54 1 8 342 4.32 0.40 405.50 0.02 7.0 Silty Gravel and Sand 8 2 1 

117 51 1 8 326 6.84 0.36 405.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

118 52 1 8 343 3.91 0.40 405.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

119 43 1 8 680 6.81 1.57 405.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

120 41 1 8 0 3.84 0.00 405.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

121 28 2 21 6442 4.94 0.82 405.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

122 51 1 8 343 5.11 0.40 404.67 0.05 5.5 Silty Gravel and Sand 15 0 1 

123 54 1 8 374 4.69 0.48 404.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

124 8 1 8 262 5.46 0.23 404.06 0.02 5.3 Silty Gravel and Sand 145 0 2 

125 31 1 8 348 4.52 0.41 404.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

126 14 2 15 1768 4.35 0.37 404.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

127 54 1 8 498 4.8 0.84 404.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

128 54 1 8 310 6.68 0.33 403.98 0.02 7.0 Silty Gravel and Sand 8 2 1 

129 43 1 8 297 4.55 0.30 403.96 0.10 5.3 Silty Gravel and Sand 8 0 2 

130 47 1 8 324 7.38 0.36 403.12 0.02 7.0 Silty Gravel and Sand 69 0 1 

131 50 1 8 343 3 0.40 403.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

132 31 1 8 342 6.38 0.40 403.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

133 54 1 8 468 5.36 0.74 402.60 0.02 7.0 Silty Gravel and Sand 8 2 1 
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134 50 1 24 3164 15.9 0.10 402.20 0.10 5.3 Silty Gravel and Sand 8 0 2 

135 6 2 8 339 7.41 0.39 402.16 0.10 5.1 Silty Gravel and Sand 31 0 2 

136 46 1 8 306 5.12 0.32 402.07 0.02 7.0 Silty Gravel and Sand 8 2 1 

137 19 2 15 2661 4.6 0.84 402.07 0.05 5.5 Silty Gravel and Sand 84 0 2 

138 35 2 8 341 5.18 0.40 402.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

139 43 1 8 531 4.42 0.96 402.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

140 43 1 8 636 5.18 1.38 402.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

141 44 1 8 298 4.68 0.30 402.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

142 54 1 8 340 6.44 0.39 401.90 0.10 5.3 Silty Gravel and Sand 8 0 2 

143 54 1 8 870 4.71 2.57 401.80 0.10 5.3 Silty Gravel and Sand 130 0 2 

144 36 2 8 337 4.21 0.39 401.76 0.05 5.3 Silty Gravel and Sand 8 0 2 

145 54 1 8 382 4.52 0.50 401.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

146 54 1 8 347 8.69 0.41 401.60 0.05 5.5 Silty Gravel and Sand 15 0 1 

147 54 1 8 339 5.08 0.39 401.60 0.10 5.3 Silty Gravel and Sand 8 0 2 

148 54 1 8 413 5.05 0.58 401.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

149 39 1 8 285 4.16 0.28 401.50 0.02 7.0 Silty Gravel and Sand 8 2 1 

150 46 1 8 432 1.88 0.63 401.50 0.10 5.1 Silty Gravel and Sand 31 0 2 

151 54 1 8 313 9.61 0.33 401.47 0.02 5.3 Silty Gravel and Sand 145 0 2 

152 67 1 8 486 4.47 0.80 401.40 0.02 5.3 Silty Gravel and Sand 145 0 2 

153 54 1 8 349 5.54 0.41 401.40 0.02 7.3 Silty Gravel and Sand 31 3 1 

154 54 1 8 429 4.18 0.63 401.30 0.10 5.3 Silty Gravel and Sand 8 0 2 

155 21 1 8 318 7.9 0.34 401.30 0.02 4.6 Silty Gravel and Sand 84 0 2 

156 53 1 8 302 9.98 0.31 401.21 0.02 5.3 Silty Gravel and Sand 145 0 2 

157 9 2 8 0 4.93 0.00 401.21 0.02 5.3 Silty Gravel and Sand 84 0 2 

158 54 1 8 576 5.08 1.13 401.20 0.02 5.3 Silty Gravel and Sand 145 0 2 

159 57 1 24 7743 3.83 0.58 401.20 0.10 5.3 Silty Gravel and Sand 8 0 2 

160 54 1 8 308 3.52 0.32 401.20 0.02 5.3 Silty Gravel and Sand 145 0 2 

161 54 1 8 348 4.67 0.41 401.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

162 54 1 8 352 5.39 0.42 401.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

163 44 1 8 310 4.44 0.33 401.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

164 55 1 8 555 5.48 1.05 401.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

165 54 1 8 366 8.96 0.45 401.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

166 51 1 8 497 4.55 0.84 401.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

167 43 1 8 530 4.2 0.95 401.00 0.10 5.3 Silty Gravel and Sand 8 0 2 
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168 54 1 8 349 4.95 0.41 401.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

169 43 1 8 317 6.63 0.34 401.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

170 33 2 8 365 13.83 0.45 401.00 0.02 8.2 Silty Gravel and Sand 59 0 2 

171 54 1 8 342 5.34 0.40 401.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

172 44 1 8 292 2.44 0.29 401.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

173 51 1 8 343 8.35 0.40 400.97 0.10 5.3 Silty Gravel and Sand 8 0 2 

174 54 1 8 353 5.49 0.42 400.80 0.10 5.3 Silty Gravel and Sand 8 0 2 

175 54 1 8 336 5.25 0.38 400.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

176 55 1 8 307 5.67 0.32 400.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

177 55 1 10 932 6.81 0.00 400.73 0.02 5.8 Silty Gravel and Sand 15 3 1 

178 54 1 8 350 4.31 0.42 400.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

179 55 1 10 554 12.62 0.32 400.60 0.02 5.5 Silty Gravel and Sand 8 0 2 

180 54 1 8 966 5.44 3.17 400.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

181 43 1 8 320 5.31 0.35 400.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

182 54 1 8 473 6.2 0.76 400.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

183 55 1 8 307 3.86 0.32 400.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

184 55 1 10 477 11.43 0.23 400.50 0.02 5.5 Silty Gravel and Sand 8 0 2 

185 49 1 8 320 3.59 0.35 400.45 0.02 7.3 Silty Gravel and Sand 31 3 1 

186 54 1 8 559 6.05 1.06 400.40 0.05 5.5 Silty Gravel and Sand 84 0 2 

187 54 1 8 303 5.56 0.31 400.40 0.02 5.3 Silty Gravel and Sand 145 0 2 

188 57 1 8 342 3.88 0.40 400.40 0.10 5.3 Silty Gravel and Sand 8 0 2 

189 21 1 8 331 5.89 0.37 400.40 0.02 5.5 Silty Gravel and Sand 31 0 1 

190 55 1 10 777 6.1 0.62 400.30 0.02 7.0 Silty Gravel and Sand 8 2 1 

191 54 1 8 844 5.11 2.42 400.30 0.10 5.3 Silty Gravel and Sand 8 0 2 

192 53 1 8 310 4.06 0.33 400.24 0.05 5.5 Silty Gravel and Sand 15 0 1 

193 55 1 8 339 4.96 0.39 400.16 0.02 4.8 Silty Gravel and Sand 130 0 2 

194 22 2 8 297 2.68 0.30 400.07 0.02 5.5 Silty Gravel and Sand 31 0 1 

195 46 1 8 343 4.92 0.40 400.06 0.10 5.1 Silty Gravel and Sand 31 0 2 

196 54 1 8 343 5.37 0.40 400.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

197 53 1 8 307 3.66 0.32 400.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

198 55 1 8 664 5 0.00 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

199 45 1 8 316 4.22 0.34 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

200 48 1 8 368 8.15 0.46 400.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

201 44 1 8 308 5.1 0.32 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 
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202 43 1 8 629 4.82 1.34 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

203 25 2 8 514 7.06 0.90 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

204 54 1 8 352 5.86 0.42 400.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

205 34 1 8 336 8.36 0.38 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

206 42 1 8 312 12.93 0.33 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

207 47 1 8 712 3.84 1.72 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

208 55 1 8 345 4.2 0.40 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

209 55 1 8 636 5 0.00 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

210 43 1 8 312 10.72 0.33 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

211 54 1 8 816 4.78 2.26 400.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

212 55 1 8 395 6.88 0.00 400.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

213 49 1 8 420 5.4 0.00 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

214 56 1 8 399 4.57 0.54 400.00 0.02 5.4 Silty Gravel and Sand 8 0 2 

215 54 1 12 905 6.12 0.32 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

216 42 1 8 483 4.58 0.79 400.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

217 46 1 8 343 6.16 0.40 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

218 55 1 8 940 5 0.00 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

219 50 1 8 343 4.79 0.40 400.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

220 47 1 8 309 3.61 0.33 400.00 0.05 5.5 Silty Gravel and Sand 84 0 1 

221 68 1 8 238 6.41 0.19 400.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

222 25 2 8 748 5.48 1.90 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

223 42 1 8 244 3.75 0.20 400.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

224 54 1 8 575 4.82 1.12 400.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

225 51 1 8 356 10.46 0.43 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

226 44 1 8 326 4.49 0.36 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

227 42 1 8 312 15.45 0.33 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

228 38 1 8 273 5.86 0.25 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

229 54 1 8 416 5.43 0.59 400.00 0.10 5.4 Silty Gravel and Sand 8 0 2 

230 43 1 8 318 7.57 0.34 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

231 46 1 18 3336 7.9 0.50 400.00 0.02 4.6 Silty Gravel and Sand 15 1 2 

232 46 1 8 343 4.71 0.40 400.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

233 53 1 8 307 8.02 0.32 400.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

234 55 1 8 900 5.5 0.00 400.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

235 71 1 8 246 8.8 0.21 400.00 0.02 7.0 Silty Gravel and Sand 8 2 1 
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236 44 1 8 343 4.4 0.40 400.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

237 55 1 10 622 11.45 0.40 400.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

238 35 1 8 318 15.82 0.34 400.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

239 50 1 8 307 7.26 0.32 400.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

240 55 1 8 491 4.03 0.82 399.99 0.05 5.5 Silty Gravel and Sand 84 0 2 

241 54 1 8 402 5.53 0.55 399.90 0.10 5.3 Silty Gravel and Sand 8 0 2 

242 57 1 8 838 11.82 2.39 399.90 0.02 5.3 Silty Gravel and Sand 145 0 2 

243 21 1 8 358 5.61 0.44 399.80 0.02 4.6 Silty Gravel and Sand 84 0 2 

244 54 1 10 514 6.12 0.27 399.80 0.10 5.3 Silty Gravel and Sand 8 0 2 

245 54 1 8 355 5.61 0.43 399.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

246 56 1 8 468 2.97 0.00 399.70 0.05 5.5 Silty Gravel and Sand 84 0 2 

247 44 1 10 348 7.32 0.13 399.69 0.05 5.5 Silty Gravel and Sand 84 0 2 

248 54 1 8 341 4.2 0.40 399.60 0.02 5.3 Fine Sand 145 0 2 

249 54 1 8 339 5.92 0.39 399.60 0.02 7.0 Fine Sand 69 0 1 

250 49 1 8 391 6.17 0.52 399.50 0.02 7.0 Fine Sand 8 2 1 

251 53 1 8 659 5.85 1.47 399.50 0.02 5.3 Fine Sand 145 0 2 

252 54 1 8 353 5.88 0.42 399.50 0.02 5.3 Fine Sand 145 0 2 

253 54 1 10 504 10.75 0.26 399.50 0.10 5.3 Fine Sand 8 0 2 

254 57 1 8 349 6.67 0.41 399.50 0.02 5.3 Fine Sand 145 0 2 

255 42 1 8 215 5.5 0.16 399.50 0.02 7.3 Fine Sand 31 3 1 

256 47 1 8 365 4.17 0.45 399.50 0.02 4.8 Fine Sand 31 1 2 

257 21 1 8 353 5.61 0.42 399.50 0.02 4.6 Fine Sand 84 0 2 

258 46 1 12 870 9.08 0.30 399.46 0.02 8.2 Fine Sand 59 0 2 

259 53 1 8 349 5.58 0.41 399.45 0.02 5.6 Fine Sand 31 1 2 

260 54 1 8 745 4.94 1.89 399.40 0.02 5.3 Fine Sand 145 0 2 

261 54 1 8 544 4.56 1.00 399.40 0.10 5.4 Fine Sand 8 0 2 

262 54 1 8 475 5.06 0.77 399.40 0.02 7.3 Fine Sand 31 3 1 

263 14 2 8 673 5 1.54 399.38 0.02 7.0 Fine Sand 8 2 1 

264 51 1 8 387 4.8 0.51 399.30 0.02 8.2 Fine Sand 59 0 2 

265 57 1 8 613 5.13 1.28 399.30 0.10 5.3 Fine Sand 8 0 2 

266 54 1 8 343 7.02 0.40 399.30 0.05 5.4 Fine Sand 8 0 2 

267 55 1 8 357 3.18 0.43 399.30 0.02 5.5 Silty Gravel and Sand 31 0 1 

268 57 1 8 313 5.08 0.33 399.30 0.10 5.3 Fine Sand 8 0 2 

269 54 1 8 340 5.12 0.39 399.20 0.10 5.3 Fine Sand 8 0 2 
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270 54 1 8 339 3.99 0.39 399.20 0.02 5.3 Fine Sand 145 0 2 

271 57 1 24 8074 10.66 0.63 399.10 0.10 5.3 Fine Sand 8 0 2 

272 54 1 10 495 8.23 0.25 399.10 0.05 5.4 Silty Gravel and Sand 8 0 2 

273 44 1 8 343 5.62 0.40 399.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

274 55 1 10 524 12.39 0.28 399.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

275 46 1 8 340 8.26 0.39 399.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

276 54 1 8 307 4.22 0.32 399.00 0.02 5.3 Fine Sand 145 0 2 

277 43 1 8 365 4.06 0.45 399.00 0.10 5.3 Fine Sand 8 0 2 

278 42 1 8 440 3.82 0.66 399.00 0.02 7.3 Fine Sand 31 3 1 

279 49 1 8 337 5.15 0.39 399.00 0.02 7.0 Fine Sand 8 2 1 

280 35 1 8 543 8.1 1.00 399.00 0.05 5.5 Fine Sand 15 0 1 

281 50 1 8 470 5.24 0.75 399.00 0.02 5.3 Fine Sand 145 0 2 

282 51 1 8 375 7.33 0.48 399.00 0.02 8.2 Fine Sand 59 0 2 

283 43 1 8 311 13.58 0.33 399.00 0.10 5.3 Fine Sand 8 0 2 

284 44 1 8 307 5.75 0.32 399.00 0.02 5.5 Fine Sand 31 0 1 

285 54 1 8 656 4.7 1.46 399.00 0.10 5.3 Fine Sand 8 0 2 

286 44 1 8 448 7.42 0.68 398.96 0.02 5.3 Fine Sand 145 0 2 

287 20 2 8 384 11.33 0.50 398.95 0.10 5.1 Fine Sand 31 0 2 

288 54 1 8 344 5.86 0.40 398.80 0.02 5.3 Fine Sand 145 0 2 

289 43 1 8 595 6.6 1.20 398.70 0.10 5.3 Fine Sand 8 0 2 

290 54 1 8 1006 5.19 3.44 398.70 0.17 5.3 Fine Sand 145 0 2 

291 54 1 8 339 4.41 0.39 398.70 0.10 5.3 Fine Sand 8 0 2 

292 51 1 8 335 4.84 0.38 398.60 0.10 5.3 Fine Sand 8 0 2 

293 54 1 8 339 10.22 0.39 398.50 0.05 5.5 Fine Sand 84 0 2 

294 54 1 8 363 7.17 0.45 398.41 0.02 5.3 Fine Sand 145 0 2 

295 54 1 8 494 4.88 0.83 398.40 0.02 5.3 Silty Gravel and Sand 145 0 2 

296 64 1 8 337 3.7 0.39 398.20 0.02 5.5 Silty Gravel and Sand 31 0 1 

297 54 1 8 357 4.32 0.43 398.14 0.02 5.3 Silty Gravel and Sand 145 0 2 

298 54 1 8 899 6.11 2.75 398.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

299 39 1 8 261 5.95 0.23 398.10 0.02 7.0 Silty Gravel and Sand 8 2 1 

300 21 1 8 345 8.05 0.40 398.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

301 19 2 8 342 6.49 0.40 398.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

302 53 1 8 660 5.06 1.48 398.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

303 38 1 8 342 4 0.40 398.00 0.02 5.3 Silty Gravel and Sand 145 0 2 
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304 21 1 8 348 7.05 0.41 398.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

305 43 1 8 380 4.32 0.49 398.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

306 44 1 8 312 2.43 0.33 398.00 0.02 5.5 Fine Sand 31 0 1 

307 44 1 8 309 6.64 0.32 398.00 0.10 5.3 Fine Sand 8 0 2 

308 44 1 8 321 3.96 0.35 398.00 0.02 5.5 Fine Sand 31 0 1 

309 35 1 8 350 7.22 0.42 398.00 0.10 5.3 Fine Sand 8 0 2 

310 54 1 8 379 4.34 0.49 398.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

311 55 1 15 1199 15.52 0.17 397.75 0.10 5.1 Silty Gravel and Sand 31 0 2 

312 41 1 8 505 6.28 0.87 397.69 0.02 5.5 Silty Gravel and Sand 31 0 1 

313 53 1 8 307 7.62 0.32 397.68 0.02 5.3 Silty Gravel and Sand 145 0 2 

314 46 1 8 344 8.93 0.40 397.68 0.10 5.1 Silty Gravel and Sand 31 0 2 

315 43 1 8 95 4.63 0.03 397.65 0.02 4.8 Silty Gravel and Sand 31 1 2 

316 54 1 8 425 4.25 0.61 397.60 0.10 5.3 Silty Gravel and Sand 130 0 2 

317 42 1 8 313 4.37 0.33 397.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

318 42 1 8 313 7.03 0.33 397.57 0.10 5.3 Silty Gravel and Sand 8 0 2 

319 55 1 8 303 4.93 0.31 397.57 0.02 5.3 Silty Gravel and Sand 145 0 2 

320 41 1 8 325 5.6 0.36 397.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

321 45 1 8 342 8.25 0.40 397.12 0.05 5.5 Silty Gravel and Sand 84 0 2 

322 44 1 8 354 3.96 0.43 397.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

323 55 1 10 820 8.29 0.70 397.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

324 54 1 8 350 5.78 0.42 397.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

325 15 2 10 536 7.33 0.30 397.00 0.05 5.1 Silty Gravel and Sand 31 0 2 

326 43 1 8 307 7.18 0.32 397.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

327 43 1 8 321 9.82 0.35 397.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

328 53 1 8 495 5.15 0.83 396.86 0.10 5.3 Silty Gravel and Sand 8 0 2 

329 54 1 8 347 5.54 0.41 396.71 0.05 5.5 Silty Gravel and Sand 84 0 2 

330 54 1 8 351 4.86 0.42 396.70 0.05 5.5 Silty Gravel and Sand 84 0 2 

331 53 1 8 353 8.53 0.42 396.40 0.05 5.5 Silty Gravel and Sand 84 0 2 

332 54 1 8 352 8.72 0.42 396.30 0.10 5.3 Silty Gravel and Sand 8 0 2 

333 52 1 8 294 5.21 0.00 396.30 0.02 5.3 Silty Gravel and Sand 145 0 2 

334 54 1 8 336 7.74 0.38 396.20 0.02 7.0 Silty Gravel and Sand 69 0 1 

335 44 1 8 228 5.65 0.18 396.18 0.02 4.8 Silty Gravel and Sand 31 1 2 

336 53 1 8 342 6.34 0.40 396.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

337 54 1 8 334 6.11 0.38 396.00 0.05 5.5 Silty Gravel and Sand 84 0 2 
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338 23 2 8 386 4.8 0.51 396.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

339 55 1 8 302 6.14 0.31 395.97 0.02 5.5 Silty Gravel and Sand 31 0 1 

340 37 1 24 4363 14.3 0.18 395.92 0.05 5.5 Silty Gravel and Sand 84 0 2 

341 55 1 8 578 5.03 1.13 395.80 0.10 4.6 Silty Gravel and Sand 15 1 2 

342 43 1 8 431 5.8 0.63 395.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

343 56 1 8 307 7.23 0.32 395.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

344 45 1 8 286 3.7 0.28 395.41 0.02 5.5 Silty Gravel and Sand 31 0 1 

345 25 2 8 348 6.08 0.41 395.22 0.05 5.5 Silty Gravel and Sand 84 0 2 

346 55 1 10 417 8.86 0.18 395.20 0.02 5.5 Silty Gravel and Sand 31 0 1 

347 58 1 8 320 0.59 0.35 395.10 0.02 5.5 Silty Gravel and Sand 31 0 1 

348 55 1 8 347 4.07 0.41 395.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

349 42 1 8 288 3.73 0.28 395.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

350 46 1 8 343 3.81 0.40 395.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

351 55 1 8 359 5.58 0.44 395.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

352 37 1 8 343 5.63 0.40 395.00 0.02 5.4 Silty Gravel and Sand 8 0 2 

353 53 1 8 308 6.35 0.32 394.90 0.05 5.5 Silty Gravel and Sand 31 0 1 

354 54 1 10 781 7.89 0.63 394.84 0.02 5.3 Silty Gravel and Sand 145 0 2 

355 53 1 15 1032 9.69 0.00 394.80 0.05 5.5 Silty Gravel and Sand 84 0 2 

356 55 1 8 348 3.45 0.41 394.64 0.02 5.5 Silty Gravel and Sand 31 0 1 

357 42 1 15 1043 6.65 0.13 394.61 0.02 7.0 Silty Gravel and Sand 8 2 1 

358 54 1 8 384 3.81 0.50 394.36 0.02 5.3 Silty Gravel and Sand 145 0 2 

359 29 1 24 5925 10.07 0.30 394.32 0.05 5.5 Silty Gravel and Sand 84 0 2 

360 55 1 8 352 5.34 0.42 394.20 0.02 5.5 Silty Gravel and Sand 31 0 1 

361 43 1 8 632 4.69 1.35 394.13 0.10 5.3 Silty Gravel and Sand 8 0 2 

362 53 1 8 342 3.77 0.40 394.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

363 44 1 8 309 4.74 0.32 394.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

364 51 1 8 423 4.62 0.61 394.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

365 54 1 8 351 6.64 0.42 393.80 0.10 5.3 Silty Gravel and Sand 8 0 2 

366 53 1 8 539 4.6 0.99 393.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

367 54 1 8 313 4.76 0.33 393.56 0.02 5.5 Silty Gravel and Sand 31 0 1 

368 55 1 8 543 5.06 1.00 393.22 0.02 7.3 Silty Gravel and Sand 31 3 1 

369 54 1 8 359 4.9 0.44 393.20 0.02 5.3 Silty Gravel and Sand 145 0 2 

370 47 1 8 343 3.93 0.40 393.20 0.02 5.5 Silty Gravel and Sand 31 0 1 

371 68 1 8 368 3.5 0.46 393.15 0.02 5.3 Silty Gravel and Sand 145 0 2 
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372 56 1 21 28100 7.39 20.00 393.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

373 45 1 8 325 6.6 0.33 393.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

374 44 1 8 160 4.4 0.09 393.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

375 53 1 8 465 4.73 0.73 392.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

376 55 1 8 342 5.02 0.40 392.50 0.02 5.5 Silty Gravel and Sand 8 0 2 

377 53 1 8 318 12.13 0.34 392.21 0.10 5.3 Silty Gravel and Sand 8 0 2 

378 43 1 8 347 6.14 0.41 392.18 0.02 5.5 Silty Gravel and Sand 31 0 1 

379 55 1 8 340 4 0.39 392.06 0.02 7.3 Silty Gravel and Sand 31 3 1 

380 12 2 8 355 7.74 0.43 392.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

381 12 2 8 330 4.34 0.37 392.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

382 43 1 8 491 4.32 0.00 392.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

383 12 2 8 333 4.08 0.38 392.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

384 54 1 8 394 5.31 0.53 392.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

385 43 1 8 253 5.5 0.22 392.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

386 54 1 8 367 4.69 0.46 391.88 0.02 5.3 Silty Gravel and Sand 145 0 2 

387 24 2 8 293 3.7 0.29 391.72 0.02 4.8 Silty Gravel and Sand 31 1 2 

388 54 1 8 321 4.9 0.35 391.59 0.02 5.3 Silty Gravel and Sand 145 0 2 

389 45 1 18 1713 8.99 0.15 391.53 0.05 5.5 Silty Gravel and Sand 84 0 2 

390 53 1 8 553 4.83 0.00 391.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

391 55 1 8 339 4.33 0.39 391.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

392 54 1 8 360 4.13 0.44 391.45 0.02 5.5 Silty Gravel and Sand 31 0 1 

393 57 1 8 343 6.93 0.40 391.30 0.02 5.3 Silty Gravel and Sand 145 0 2 

394 53 1 8 639 6.8 1.39 391.30 0.02 4.8 Silty Gravel and Sand 130 0 2 

395 54 1 8 344 5.13 0.40 391.20 0.10 5.3 Silty Gravel and Sand 8 0 2 

396 29 2 8 332 6.81 0.37 391.00 0.02 5.1 Silty Gravel and Sand 31 0 2 

397 43 1 8 310 6 0.33 391.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

398 55 1 8 537 5.98 0.98 391.00 0.02 5.3 Silty Gravel and Sand 84 0 2 

399 54 1 8 372 4.25 0.47 390.92 0.02 5.5 Silty Gravel and Sand 31 0 1 

400 54 1 15 1127 13.25 0.15 390.56 0.10 5.3 Silty Gravel and Sand 8 0 2 

401 46 1 8 417 5.36 0.59 390.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

402 55 1 8 595 7.3 1.20 390.50 0.02 4.8 Silty Gravel and Sand 15 0 2 

403 54 1 8 577 8.02 1.13 390.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

404 48 1 8 337 3.96 0.39 390.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

405 54 1 8 314 3.12 0.34 390.50 0.02 5.5 Silty Gravel and Sand 31 0 1 
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406 55 1 8 341 5.34 0.39 390.40 0.02 4.8 Silty Gravel and Sand 130 0 2 

407 67 1 10 877 6 0.79 390.30 0.02 7.0 Silty Gravel and Sand 8 2 1 

408 54 1 8 443 4.84 0.67 390.30 0.10 5.4 Silty Gravel and Sand 8 0 2 

409 53 1 8 291 9.51 0.29 390.20 0.10 5.3 Silty Gravel and Sand 8 0 2 

410 53 1 8 500 5.84 0.85 390.19 0.10 5.3 Silty Gravel and Sand 8 0 2 

411 46 1 8 339 4.25 0.39 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

412 50 1 8 343 4.8 0.40 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

413 42 1 8 343 4.92 0.40 390.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

414 51 1 8 420 4.3 0.60 390.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

415 34 1 8 352 4.79 0.42 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

416 54 1 10 475 10.87 0.23 390.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

417 43 1 8 491 5.61 0.82 390.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

418 34 1 8 352 4.85 0.42 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

419 34 1 8 377 4.73 0.48 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

420 30 2 8 521 5 0.92 390.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

421 55 1 15 1128 12.58 0.15 390.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

422 43 1 8 371 10.3 0.47 390.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

423 42 1 8 456 3.81 0.71 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

424 51 1 8 420 4.4 0.60 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

425 34 1 8 353 4.86 0.42 390.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

426 54 1 8 543 6.17 1.00 390.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

427 46 1 8 211 3.09 0.15 390.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

428 55 1 8 398 3.72 0.54 390.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

429 50 1 8 228 4.04 0.18 389.90 0.02 7.3 Silty Gravel and Sand 31 3 1 

430 54 1 8 342 5.6 0.40 389.90 0.02 7.3 Silty Gravel and Sand 31 3 1 

431 57 1 8 329 8.68 0.37 389.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

432 63 1 8 292 8.13 0.29 389.70 0.02 5.5 Silty Gravel and Sand 31 0 1 

433 51 1 18 1751 7.58 0.14 389.62 0.02 4.8 Silty Gravel and Sand 31 1 2 

434 50 1 8 307 3.39 0.32 389.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

435 42 1 8 345 6.47 0.41 389.28 0.05 5.5 Silty Gravel and Sand 84 0 2 

436 55 1 8 412 4.17 0.58 389.00 0.10 5.5 Silty Gravel and Sand 31 0 1 

437 55 1 8 331 4.82 0.37 389.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

438 43 1 8 303 4.48 0.31 389.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

439 54 1 8 327 11.81 0.36 388.96 0.02 7.3 Silty Gravel and Sand 31 3 1 
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440 47 1 10 462 10.4 0.22 388.87 0.05 5.5 Silty Gravel and Sand 84 0 2 

441 41 1 8 342 3.36 0.40 388.77 0.05 5.5 Silty Gravel and Sand 84 0 2 

442 56 1 8 358 5.12 0.43 388.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

443 55 1 8 485 5.23 0.80 388.60 0.02 4.8 Silty Gravel and Sand 130 0 2 

444 41 1 8 0 4.23 0.00 388.55 0.10 5.3 Silty Gravel and Sand 8 0 2 

445 51 1 8 420 4.6 0.60 388.23 0.02 5.5 Silty Gravel and Sand 31 0 1 

446 39 1 18 1333 11.22 0.08 388.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

447 43 1 8 334 6.52 0.38 388.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

448 54 1 8 355 3.24 0.43 387.90 0.02 7.3 Silty Gravel and Sand 31 3 1 

449 40 2 8 808 4.5 2.22 387.78 0.02 5.5 Silty Gravel and Sand 31 0 1 

450 56 1 30 5127 12.75 0.08 387.40 0.02 5.3 Silty Gravel and Sand 145 0 2 

451 43 1 8 313 4.33 0.33 387.24 0.02 4.8 Silty Gravel and Sand 31 1 2 

452 29 2 8 281 7.95 0.27 387.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

453 55 1 8 250 4.58 0.21 387.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

454 56 1 30 4776 14.99 0.07 387.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

455 43 1 10 378 15.03 0.15 387.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

456 44 1 8 316 3.31 0.34 387.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

457 43 1 8 498 5 0.84 387.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

458 58 1 12 1094 8.57 0.47 386.95 0.05 5.5 Silty Gravel and Sand 84 0 2 

459 12 2 8 334 4.51 0.38 386.78 0.05 5.5 Silty Gravel and Sand 15 0 1 

460 55 1 8 346 4.93 0.41 386.77 0.02 7.3 Silty Gravel and Sand 31 3 1 

461 46 1 8 347 4.69 0.41 386.66 0.10 5.1 Silty Gravel and Sand 31 0 2 

462 53 1 15 1094 4.6 0.14 386.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

463 55 1 10 456 9.43 0.21 386.50 0.02 5.3 Silty Gravel and Sand 84 0 2 

464 21 1 8 259 8.21 0.23 386.50 0.20 6.8 Silty Gravel and Sand 8 3 0 

465 55 1 8 340 10.92 0.39 386.49 0.02 5.3 Silty Gravel and Sand 84 0 2 

466 41 1 8 343 6.62 0.40 386.36 0.02 7.0 Silty Gravel and Sand 8 2 1 

467 30 2 8 314 5.5 0.33 386.29 0.10 5.1 Silty Gravel and Sand 31 0 2 

468 29 2 8 320 3.16 0.35 386.27 0.02 4.8 Silty Gravel and Sand 31 1 2 

469 21 2 8 304 5.9 0.31 386.09 0.05 5.5 Silty Gravel and Sand 15 0 1 

470 43 1 8 452 6.76 0.69 386.04 0.10 5.3 Silty Gravel and Sand 8 0 2 

471 54 1 8 690 4.49 1.62 386.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

472 55 1 8 351 4.82 0.42 386.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

473 54 1 10 623 7.81 0.40 386.00 0.02 5.3 Silty Gravel and Sand 145 0 2 
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474 45 1 8 496 4.48 0.83 386.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

475 55 1 8 345 5.15 0.40 386.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

476 55 1 8 371 4.51 0.47 386.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

477 53 1 15 1304 11.22 0.00 385.80 0.05 5.5 Silty Gravel and Sand 84 0 2 

478 55 1 8 279 3.75 0.26 385.73 0.02 5.5 Silty Gravel and Sand 31 0 1 

479 53 1 8 465 5.74 0.74 385.72 0.02 4.8 Silty Gravel and Sand 130 0 2 

480 53 1 8 515 4.02 0.90 385.70 0.02 5.5 Silty Gravel and Sand 31 0 1 

481 57 1 8 343 4.13 0.40 385.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

482 55 1 8 387 4.32 0.51 385.70 0.02 7.3 Silty Gravel and Sand 31 3 1 

483 55 1 8 394 4.15 0.53 385.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

484 54 1 8 311 3.3 0.33 385.50 0.02 5.5 Silty Gravel and Sand 31 0 1 

485 57 1 8 342 6.08 0.40 385.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

486 55 1 8 347 12.34 0.41 385.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

487 54 1 8 334 5.72 0.38 385.45 0.02 7.0 Silty Gravel and Sand 8 2 1 

488 41 1 15 1066 3.83 0.13 385.35 0.02 7.0 Silty Gravel and Sand 8 2 1 

489 54 1 8 341 4.55 0.39 385.30 0.02 5.3 Silty Gravel and Sand 145 0 2 

490 63 1 8 347 4.4 0.41 385.30 0.02 7.3 Silty Gravel and Sand 31 3 1 

491 49 1 10 558 8.9 0.32 385.24 0.05 5.5 Silty Gravel and Sand 15 0 1 

492 68 1 15 1263 12.07 0.19 385.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

493 46 1 8 441 4.33 0.66 385.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

494 31 1 8 2544 8.83 0.29 385.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

495 33 1 8 393 4.67 0.52 385.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

496 25 2 8 358 5.22 0.00 385.00 0.10 5.7 Silty Gravel and Sand 30 0 1 

497 54 1 8 343 7.22 0.40 385.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

498 44 1 8 303 3.29 0.31 385.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

499 42 1 8 250 4.63 0.21 385.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

500 50 1 8 485 3.66 0.80 385.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

501 55 1 8 410 7.09 0.57 385.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

502 55 1 8 299 4.32 0.30 385.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

503 43 1 8 910 6.59 2.81 384.99 0.10 5.3 Silty Gravel and Sand 8 0 2 

504 42 1 8 114 4.16 0.04 384.93 0.02 5.5 Silty Gravel and Sand 31 0 1 

505 57 1 8 512 5.07 0.89 384.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

506 55 1 8 348 3.98 0.41 384.67 0.02 7.3 Silty Gravel and Sand 31 3 1 

507 60 1 8 639 3.68 1.39 384.64 0.02 7.0 Silty Gravel and Sand 69 0 1 
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508 22 2 8 422 4.55 0.61 384.63 0.10 5.1 Silty Gravel and Sand 31 0 2 

509 42 1 8 343 6.06 0.40 384.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

510 55 1 8 339 4.12 0.39 384.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

511 53 1 8 341 6.2 0.40 384.46 0.02 5.3 Silty Gravel and Sand 145 0 2 

512 43 1 15 4278 5.91 2.17 384.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

513 43 1 8 407 5.75 0.56 384.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

514 63 1 8 356 5.02 0.43 383.90 0.02 7.3 Silty Gravel and Sand 31 3 1 

515 54 1 8 356 5.59 0.43 383.80 0.10 5.3 Silty Gravel and Sand 8 0 2 

516 55 1 8 327 2.57 0.36 383.50 0.02 5.5 Silty Gravel and Sand 31 0 1 

517 55 1 8 368 4.47 0.46 383.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

518 51 1 10 492 11.41 0.25 383.41 0.02 5.5 Silty Gravel and Sand 31 0 1 

519 55 1 8 398 5.17 0.54 383.20 0.02 7.3 Silty Gravel and Sand 31 3 1 

520 50 1 18 1913 10.59 0.12 383.20 0.05 5.5 Silty Gravel and Sand 84 0 2 

521 54 1 8 348 10 0.41 383.10 0.02 7.3 Silty Gravel and Sand 31 3 1 

522 55 1 8 333 8.67 0.38 383.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

523 55 1 8 370 3.71 0.46 382.80 0.02 7.3 Silty Gravel and Sand 31 3 1 

524 54 1 8 315 6.52 0.34 382.70 0.02 5.3 Silty Gravel and Sand 145 0 2 

525 53 1 8 929 4.23 2.93 382.63 0.10 4.8 Silty Gravel and Sand 130 0 2 

526 43 1 8 295 7.51 0.30 382.60 0.02 5.3 Silty Gravel and Sand 84 0 2 

527 54 1 8 372 5.28 0.47 382.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

528 43 1 8 311 6.89 0.33 382.50 0.02 4.8 Silty Gravel and Sand 31 1 2 

529 55 1 8 502 5.57 0.86 382.47 0.05 5.5 Silty Gravel and Sand 84 0 2 

530 57 1 8 551 5.7 0.00 382.43 0.10 5.3 Silty Gravel and Sand 8 0 2 

531 40 1 8 543 4.2 1.00 382.04 0.02 5.3 Silty Gravel and Sand 145 0 2 

532 43 2 8 486 6.01 0.80 382.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

533 29 2 8 318 5.71 0.34 382.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

534 20 2 8 502 6.12 0.86 382.00 0.02 5.8 Silty Gravel and Sand 15 3 1 

535 20 2 24 3329 12.6 0.11 382.00 0.10 4.8 Silty Gravel and Sand 31 1 2 

536 41 1 12 714 8.65 0.20 381.73 0.02 5.5 Silty Gravel and Sand 31 0 1 

537 6 2 8 0 4.6 0.00 381.71 0.02 7.0 Silty Gravel and Sand 8 0 1 

538 42 1 8 350 5.2 0.00 381.67 0.02 5.5 Silty Gravel and Sand 31 0 1 

539 51 1 18 1758 7.65 0.14 381.50 0.02 4.8 Silty Gravel and Sand 31 1 2 

540 55 1 10 483 11.51 0.24 381.40 0.02 5.3 Silty Gravel and Sand 84 0 2 

541 52 1 8 298 6.99 0.00 381.35 0.10 5.3 Silty Gravel and Sand 8 0 2 
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542 16 1 8 1314 5.27 -0.50 381.30 0.02 5.5 Silty Gravel and Sand 31 0 1 

543 55 1 10 456 12.93 0.22 381.10 0.02 4.5 Silty Gravel and Sand 145 0 2 

544 53 1 8 420 5.1 0.60 381.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

545 55 1 8 358 4.49 0.40 381.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

546 55 1 8 397 4.08 0.54 381.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

547 33 2 8 347 15.64 0.41 380.99 0.02 8.2 Silty Gravel and Sand 59 0 2 

548 29 1 24 5448 8.15 0.30 380.85 0.05 5.5 Silty Gravel and Sand 84 0 2 

549 54 1 24 4357 20.1 0.18 380.71 0.10 5.3 Silty Gravel and Sand 8 0 2 

550 68 1 15 1132 6.59 0.15 380.70 0.02 5.3 Silty Gravel and Sand 145 0 2 

551 53 1 8 395 5.73 0.53 380.60 0.02 5.5 Silty Gravel and Sand 31 0 1 

552 54 1 8 364 8.41 0.45 380.60 0.10 5.3 Silty Gravel and Sand 8 0 2 

553 33 1 12 562 8.51 0.12 380.58 0.02 7.3 Silty Gravel and Sand 31 3 1 

554 53 1 8 557 4.88 1.05 380.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

555 55 1 8 307 5.36 0.32 380.37 0.05 5.5 Silty Gravel and Sand 84 0 2 

556 46 1 8 345 4.63 0.40 380.27 0.02 5.3 Silty Gravel and Sand 145 0 2 

557 55 1 10 465 11.03 0.22 380.24 0.02 5.3 Silty Gravel and Sand 84 0 2 

558 51 1 8 479 7.36 0.78 380.20 0.02 7.0 Silty Gravel and Sand 69 0 1 

559 55 1 8 512 5.7 0.89 380.07 0.05 5.5 Silty Gravel and Sand 15 0 1 

560 53 1 8 343 4.61 0.40 380.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

561 53 1 8 543 5.19 1.00 380.00 0.02 5.4 Silty Gravel and Sand 8 0 2 

562 53 1 8 488 4.41 0.81 380.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

563 45 1 8 312 6.72 0.33 380.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

564 50 1 8 332 6.88 0.37 380.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

565 34 1 8 273 14.45 0.25 380.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

566 45 1 18 2082 18.39 0.18 380.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

567 53 1 8 374 5.48 0.48 380.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

568 46 1 8 352 5.69 0.42 380.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

569 47 1 8 343 8.73 0.40 380.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

570 43 1 8 273 4.37 0.25 380.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

571 53 1 8 365 5.38 0.45 380.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

572 32 1 30 9309 14.09 0.26 380.00 0.02 4.0 Silty Gravel and Sand 30 0 2 

573 50 1 24 2211 8.49 0.10 379.78 0.05 5.5 Silty Gravel and Sand 84 0 2 

574 54 1 8 925 5.3 2.91 379.71 0.10 5.3 Silty Gravel and Sand 8 0 2 

575 54 1 8 347 6.29 0.41 379.70 0.02 5.3 Silty Gravel and Sand 145 0 2 



227 

576 47 1 8 353 7.34 0.42 379.67 0.05 5.5 Silty Gravel and Sand 15 0 1 

577 21 2 8 295 8.75 0.40 379.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

578 53 1 8 343 4.96 0.40 379.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

579 53 1 8 195 5.09 0.13 379.47 0.02 5.3 Silty Gravel and Sand 145 0 2 

580 53 1 8 0 7.13 0.00 379.28 0.02 7.0 Silty Gravel and Sand 8 2 1 

581 54 1 8 360 7.17 0.44 379.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

582 33 1 8 254 6.2 0.22 379.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

583 54 1 8 354 5.84 0.42 379.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

584 53 1 8 378 4.38 0.49 379.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

585 48 1 8 283 8.16 0.27 378.93 0.02 7.0 Silty Gravel and Sand 8 2 1 

586 43 1 8 312 3.92 0.33 378.74 0.10 5.3 Silty Gravel and Sand 8 0 2 

587 51 1 8 0 5.39 0.00 378.36 0.10 5.3 Silty Gravel and Sand 8 0 2 

588 51 1 8 301 6.52 0.31 378.34 0.05 5.5 Silty Gravel and Sand 15 0 1 

589 39 1 8 231 8.36 0.18 378.04 0.02 7.0 Silty Gravel and Sand 8 2 1 

590 33 2 10 304 11.07 0.10 378.03 0.02 8.2 Silty Gravel and Sand 59 0 2 

591 43 1 8 383 10.52 0.50 378.00 0.24 4.8 Silty Gravel and Sand 31 1 2 

592 50 1 8 487 4.25 0.80 378.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

593 34 1 8 344 4.6 0.40 378.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

594 43 1 8 600 4.16 1.22 378.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

595 50 1 8 343 6.68 0.40 378.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

596 53 1 8 336 4.61 0.38 377.63 0.02 5.3 Silty Gravel and Sand 145 0 2 

597 31 1 8 438 5.54 0.00 377.56 0.02 5.3 Silty Gravel and Sand 145 0 2 

598 60 1 8 335 4.41 0.38 377.35 0.02 5.8 Silty Gravel and Sand 8 3 1 

599 43 1 8 312 4.25 0.33 377.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

600 43 1 8 444 6.4 0.67 377.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

601 43 1 8 311 4.17 0.33 377.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

602 15 2 10 555 5.11 0.32 376.94 0.02 7.0 Silty Gravel and Sand 8 2 1 

603 46 1 8 376 4.97 0.48 376.81 0.02 5.3 Silty Gravel and Sand 145 0 2 

604 57 1 8 847 13.92 2.44 376.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

605 53 1 8 550 4.63 0.00 376.80 0.05 5.5 Silty Gravel and Sand 84 0 2 

606 53 1 8 638 4.82 0.00 376.69 0.05 5.5 Silty Gravel and Sand 84 0 2 

607 25 2 10 515 13.99 0.27 376.52 0.10 5.3 Silty Gravel and Sand 8 0 2 

608 43 1 8 313 5.64 0.33 376.50 0.02 4.8 Silty Gravel and Sand 31 1 2 

609 53 1 8 306 4.65 0.32 376.08 0.02 5.5 Silty Gravel and Sand 31 0 1 
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610 43 1 8 249 5.4 0.21 376.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

611 39 1 10 340 8.21 0.00 376.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

612 43 1 8 312 3.61 0.33 376.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

613 55 1 8 249 12.53 0.00 376.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

614 41 1 8 278 7.89 0.26 375.99 0.02 5.3 Silty Gravel and Sand 145 0 2 

615 55 1 8 461 4.19 0.72 375.80 0.02 7.3 Silty Gravel and Sand 31 3 1 

616 54 1 8 614 4.87 1.28 375.80 0.02 7.0 Silty Gravel and Sand 8 2 1 

617 54 1 8 358 4.58 0.44 375.70 0.10 5.3 Silty Gravel and Sand 8 0 2 

618 43 1 8 311 3.56 0.33 375.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

619 55 1 8 462 4.87 0.72 375.49 0.05 5.5 Silty Gravel and Sand 84 0 2 

620 68 1 8 299 4.02 0.30 375.43 0.02 7.3 Silty Gravel and Sand 31 3 1 

621 51 1 8 318 8.16 0.34 375.30 0.02 5.5 Silty Gravel and Sand 31 0 1 

622 21 2 8 303 12.1 0.31 375.12 0.05 5.5 Silty Gravel and Sand 15 0 1 

623 57 1 8 342 5.01 0.40 375.07 0.10 5.3 Silty Gravel and Sand 8 0 2 

624 56 1 8 384 3.96 0.50 375.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

625 41 1 8 312 7.32 0.33 375.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

626 55 1 8 295 12.67 0.30 375.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

627 55 1 8 343 3.24 0.40 375.00 0.17 5.3 Silty Gravel and Sand 145 0 2 

628 44 1 8 309 4.67 0.33 375.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

629 54 1 8 340 4.9 0.39 375.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

630 50 1 8 343 8.79 0.40 375.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

631 55 1 10 521 4.53 0.28 375.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

632 55 1 8 371 5.83 0.47 375.00 0.10 5.1 Silty Gravel and Sand 31 0 2 

633 53 1 8 343 4.7 0.40 375.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

634 55 1 10 313 4.15 0.10 375.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

635 54 1 8 343 3.96 0.40 375.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

636 44 1 8 407 2.56 0.56 375.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

637 47 1 8 337 5.55 0.39 375.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

638 55 1 8 497 5.5 0.84 375.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

639 40 1 8 351 5.8 0.42 375.00 0.24 4.8 Silty Gravel and Sand 31 1 2 

640 47 1 8 343 10.2 0.40 375.00 0.10 5.4 Silty Gravel and Sand 8 0 2 

641 56 1 8 515 3.92 0.90 375.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

642 53 1 8 398 4.39 0.54 375.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

643 25 2 8 343 3.74 0.40 375.00 0.02 4.8 Silty Gravel and Sand 31 1 2 
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644 41 1 8 626 5 1.33 375.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

645 69 1 8 343 4.83 0.40 374.50 0.02 7.0 Silty Gravel and Sand 8 2 1 

646 51 2 8 543 5.45 1.00 374.40 0.10 5.1 Silty Gravel and Sand 31 0 2 

647 36 1 8 449 4.44 0.00 374.38 0.05 5.5 Silty Gravel and Sand 84 0 2 

648 55 1 8 473 5.5 0.00 374.35 0.02 7.3 Silty Gravel and Sand 31 3 1 

649 13 2 8 423 6.36 0.61 374.33 0.10 5.1 Silty Gravel and Sand 31 0 2 

650 37 1 24 4267 11.64 0.18 374.31 0.05 5.5 Silty Gravel and Sand 84 0 2 

651 68 1 8 307 4.05 0.32 374.05 0.02 7.3 Silty Gravel and Sand 31 3 1 

652 33 1 8 716 4.95 1.74 374.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

653 43 1 10 817 11.02 0.69 374.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

654 43 1 8 297 4.7 0.30 374.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

655 57 1 8 344 3.92 0.40 374.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

656 43 1 8 363 9.01 0.45 374.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

657 53 1 8 373 5.19 0.47 374.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

658 35 1 8 344 5.09 0.40 373.94 0.02 5.3 Silty Gravel and Sand 145 0 2 

659 56 1 8 455 4.35 0.70 373.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

660 54 1 8 659 4.19 1.48 373.80 0.02 7.3 Silty Gravel and Sand 31 3 1 

661 61 1 8 343 8.18 0.40 373.59 0.02 5.5 Silty Gravel and Sand 8 0 1 

662 54 1 8 411 7.43 0.57 373.50 0.10 5.4 Silty Gravel and Sand 8 0 2 

663 55 1 8 301 3.75 0.31 373.39 0.02 5.5 Silty Gravel and Sand 31 0 1 

664 68 1 8 447 3.9 0.68 373.19 0.02 5.3 Silty Gravel and Sand 145 0 2 

665 51 1 8 341 6.26 0.39 373.05 0.02 7.0 Silty Gravel and Sand 69 0 1 

666 55 1 8 359 4.31 0.44 373.00 0.02 4.5 Silty Gravel and Sand 145 0 2 

667 34 1 8 312 5.34 0.33 373.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

668 42 1 8 312 5.33 0.33 373.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

669 43 1 8 221 7.4 0.17 373.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

670 36 1 8 274 9.26 0.32 373.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

671 34 1 8 477 5.3 0.77 373.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

672 57 1 8 359 4.63 0.44 373.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

673 43 1 8 331 7.22 0.37 373.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

674 55 1 8 301 6.52 0.31 372.76 0.02 5.3 Silty Gravel and Sand 84 0 2 

675 19 2 8 338 15.5 0.39 372.62 0.05 5.1 Silty Gravel and Sand 31 0 2 

676 54 1 8 408 4.81 0.57 372.50 0.05 5.4 Silty Gravel and Sand 8 0 2 

677 54 1 8 343 11.18 0.40 372.50 0.02 5.3 Silty Gravel and Sand 145 0 2 
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678 53 1 8 370 8.68 0.46 372.40 0.05 5.5 Silty Gravel and Sand 84 0 2 

679 53 1 8 307 5.13 0.32 372.10 0.02 5.3 Silty Gravel and Sand 145 0 2 

680 41 1 8 307 5.14 0.32 372.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

681 50 1 8 407 7.29 0.56 372.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

682 66 1 8 343 4.76 0.40 371.80 0.02 5.3 Silty Gravel and Sand 84 0 2 

683 43 1 15 1115 5.92 0.15 371.78 0.02 8.2 Silty Gravel and Sand 59 0 2 

684 54 1 8 354 6.47 0.43 371.73 0.02 5.3 Silty Gravel and Sand 145 0 2 

685 53 1 8 341 9.6 0.40 371.62 0.05 5.5 Silty Gravel and Sand 15 0 1 

686 57 1 8 342 5.67 0.40 371.60 0.10 5.3 Silty Gravel and Sand 8 0 2 

687 51 1 8 342 7.88 0.40 371.50 0.02 7.0 Silty Gravel and Sand 69 0 1 

688 17 2 8 328 16.01 0.37 371.41 0.10 5.1 Silty Gravel and Sand 31 0 2 

689 24 2 8 338 6.58 0.39 371.36 0.02 5.8 Silty Gravel and Sand 15 3 1 

690 51 1 8 340 8.9 0.39 371.30 0.02 5.5 Silty Gravel and Sand 31 0 1 

691 54 1 8 339 7.62 0.39 371.21 0.02 7.3 Silty Gravel and Sand 31 3 1 

692 55 1 8 539 5.43 0.99 371.20 0.05 5.5 Silty Gravel and Sand 84 0 2 

693 51 1 8 383 6.05 0.50 371.19 0.02 7.0 Silty Gravel and Sand 69 0 1 

694 15 2 8 0 5 0.00 371.13 0.02 5.5 Silty Gravel and Sand 8 0 2 

695 55 1 8 559 5.75 0.00 370.93 0.02 5.3 Silty Gravel and Sand 84 0 2 

696 40 1 8 565 4.2 1.08 370.93 0.02 5.5 Silty Gravel and Sand 31 0 1 

697 37 1 8 0 4.28 0.00 370.63 0.17 5.3 Silty Gravel and Sand 145 0 2 

698 55 1 8 283 4.03 0.27 370.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

699 46 1 8 355 7.73 0.43 370.48 0.02 5.3 Silty Gravel and Sand 145 0 2 

700 45 1 8 343 6.49 0.40 370.42 0.05 5.5 Silty Gravel and Sand 84 0 2 

701 67 1 8 792 3.7 2.13 370.40 0.02 5.3 Silty Gravel and Sand 145 0 2 

702 33 1 8 322 3.68 0.35 370.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

703 25 2 8 330 7.37 0.37 370.00 0.02 5.4 Silty Gravel and Sand 8 0 2 

704 55 1 8 345 5.6 0.00 370.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

705 53 2 8 275 7.34 0.00 370.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

706 55 1 8 365 4.92 0.45 370.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

707 42 1 8 441 4.77 0.66 370.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

708 60 1 8 505 3.75 0.87 370.00 0.02 7.0 Silty Gravel and Sand 69 0 1 

709 34 1 8 349 4.58 0.41 370.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

710 35 1 8 586 4.28 1.17 370.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

711 48 1 8 420 7.31 0.60 370.00 0.10 5.3 Silty Gravel and Sand 8 0 2 
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712 55 1 8 558 5.5 0.00 370.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

713 55 1 8 359 6.52 0.44 369.96 0.10 4.6 Silty Gravel and Sand 15 1 2 

714 54 1 8 183 16.77 0.11 369.80 0.02 7.3 Silty Gravel and Sand 31 3 1 

715 54 1 8 335 11.11 0.38 369.64 0.02 5.3 Silty Gravel and Sand 145 0 2 

716 40 1 8 318 14.68 0.34 369.60 0.02 4.8 Silty Gravel and Sand 31 1 2 

717 54 1 15 990 15.1 0.00 369.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

718 46 1 8 898 2.51 2.74 369.10 0.02 5.3 Silty Gravel and Sand 145 0 2 

719 43 1 10 478 7.37 0.24 369.00 0.10 5.5 Silty Gravel and Sand 31 0 1 

720 55 1 8 368 5.28 0.46 369.00 0.02 5.5 Silty Gravel and Sand 8 0 2 

721 53 1 8 307 3.18 0.32 369.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

722 54 1 8 312 3.51 0.33 368.93 0.02 5.5 Silty Gravel and Sand 31 0 1 

723 43 2 8 0 12.22 0.00 368.92 0.10 5.3 Silty Gravel and Sand 8 0 2 

724 54 1 12 736 14.81 0.21 368.73 0.02 5.3 Silty Gravel and Sand 145 0 2 

725 41 1 8 344 7.94 0.40 368.65 0.05 5.5 Silty Gravel and Sand 84 0 2 

726 21 2 8 353 7.31 0.42 368.52 0.05 5.5 Silty Gravel and Sand 84 0 2 

727 14 1 15 1479 8.97 0.26 368.27 0.02 5.3 Silty Gravel and Sand 145 0 2 

728 51 1 8 314 6.48 0.33 368.25 0.02 7.0 Silty Gravel and Sand 69 0 1 

729 57 1 8 307 8.47 0.32 368.17 0.02 4.5 Silty Gravel and Sand 145 0 2 

730 18 2 8 343 7.7 0.40 368.04 0.02 7.3 Silty Gravel and Sand 31 3 1 

731 55 1 8 352 5.59 0.42 368.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

732 47 1 8 279 7.63 0.40 368.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

733 35 1 8 371 5.8 0.47 368.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

734 34 1 10 495 14.7 0.25 368.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

735 27 2 8 343 3.63 0.40 368.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

736 45 1 8 321 7.49 0.35 368.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

737 32 1 8 343 5.62 0.40 368.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

738 43 1 8 325 4.88 0.36 368.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

739 44 1 10 518 12.1 0.28 368.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

740 43 1 8 324 10.9 0.36 367.80 0.05 5.5 Silty Gravel and Sand 84 0 2 

741 23 2 8 233 5.8 0.00 367.78 0.02 4.8 Silty Gravel and Sand 31 1 2 

742 38 1 8 342 4.28 0.40 367.50 0.02 7.3 Silty Gravel and Sand 31 3 1 

743 55 1 8 463 5.65 0.73 367.12 0.05 5.5 Silty Gravel and Sand 84 0 2 

744 40 1 15 1081 7.81 0.14 367.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

745 55 1 8 375 6.54 0.48 367.00 0.10 5.1 Silty Gravel and Sand 31 0 2 
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746 35 1 8 525 6.35 0.93 367.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

747 35 1 8 609 6.19 1.26 366.76 0.10 5.3 Silty Gravel and Sand 8 0 2 

748 51 1 8 342 8.14 0.40 366.70 0.10 5.1 Silty Gravel and Sand 31 0 2 

749 41 1 8 342 4.13 0.40 366.69 0.05 5.5 Silty Gravel and Sand 84 0 2 

750 40 1 8 512 5.8 0.89 366.47 0.10 5.3 Silty Gravel and Sand 8 0 2 

751 14 2 8 340 8.32 0.39 366.43 0.02 4.8 Silty Gravel and Sand 130 0 2 

752 39 1 8 266 6.77 0.24 366.32 0.02 5.3 Silty Gravel and Sand 84 0 2 

753 17 2 8 0 15.35 0.00 366.04 0.05 5.5 Silty Gravel and Sand 15 0 1 

754 58 1 12 796 5.4 0.25 366.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

755 34 1 8 321 4.05 0.35 366.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

756 43 1 8 311 4.22 0.33 366.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

757 36 1 8 320 5.74 0.35 366.00 0.02 6.5 Silty Gravel and Sand 15 3 1 

758 38 1 8 343 6.19 0.00 366.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

759 43 1 8 309 6.17 0.33 365.80 0.05 5.5 Silty Gravel and Sand 84 0 2 

760 55 1 8 307 6.94 0.32 365.60 0.02 7.0 Silty Gravel and Sand 69 0 1 

761 43 2 12 1129 11.48 0.50 365.50 0.10 5.3 Silty Gravel and Sand 8 0 2 

762 54 1 8 343 4.84 0.40 365.50 0.02 7.0 Silty Gravel and Sand 8 2 1 

763 55 2 8 422 4.82 0.60 365.40 0.02 5.5 Silty Gravel and Sand 8 0 2 

764 31 2 8 325 8.57 0.00 365.15 0.10 5.1 Silty Gravel and Sand 31 0 2 

765 34 1 18 2208 14.62 0.22 365.07 0.05 5.5 Silty Gravel and Sand 84 0 2 

766 31 1 8 308 2.98 0.32 365.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

767 23 2 10 605 5.67 0.00 365.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

768 54 1 8 306 5.24 0.32 365.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

769 55 1 8 348 5.65 0.41 365.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

770 43 1 8 532 7.23 0.96 365.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

771 59 1 8 321 4.24 0.35 365.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

772 57 1 8 808 7.68 2.22 365.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

773 53 1 8 492 5.79 0.82 365.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

774 53 1 8 343 4.37 0.40 365.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

775 43 1 8 343 4.24 0.40 365.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

776 34 1 12 763 15.82 0.23 365.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

777 40 1 8 343 8.48 0.40 364.94 0.02 5.5 Silty Gravel and Sand 31 0 1 

778 50 1 24 3406 7.77 0.10 364.90 0.05 5.5 Silty Gravel and Sand 84 0 2 

779 59 1 8 536 3.97 0.97 364.71 0.02 7.3 Silty Gravel and Sand 31 3 1 
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780 37 1 12 829 12.98 0.27 364.70 0.02 4.8 Silty Gravel and Sand 31 1 2 

781 54 1 8 348 9.21 0.41 364.60 0.10 5.3 Silty Gravel and Sand 8 0 2 

782 49 1 10 554 9.8 0.32 364.50 0.05 5.5 Silty Gravel and Sand 15 0 1 

783 30 1 36 10492 6.42 0.12 364.27 0.05 5.5 Silty Gravel and Sand 84 0 2 

784 23 2 8 392 6.49 0.52 364.22 0.10 5.1 Silty Gravel and Sand 31 0 2 

785 54 1 8 361 11.67 0.44 364.21 0.02 5.3 Fine Sand 145 0 2 

786 46 1 8 363 7.3 0.45 364.11 0.02 5.6 Fine Sand 31 1 2 

787 46 2 8 276 4.71 0.26 364.10 0.02 5.3 Fine Sand 145 0 2 

788 15 2 18 1492 8.33 0.10 364.06 0.02 5.3 Fine Sand 145 0 2 

789 34 1 8 306 6.41 0.32 364.00 0.02 4.8 Fine Sand 31 1 2 

790 43 1 8 325 6.12 0.36 364.00 0.02 5.3 Fine Sand 84 0 2 

791 39 1 8 305 4.2 0.32 364.00 0.02 5.5 Fine Sand 31 0 1 

792 47 1 10 461 11.87 0.22 363.98 0.02 5.3 Fine Sand 8 0 2 

793 55 1 15 988 15.1 0.11 363.83 0.10 5.1 Fine Sand 31 0 2 

794 55 1 8 347 4.32 0.41 363.75 0.02 5.5 Fine Sand 31 0 1 

795 41 1 8 628 5.84 1.34 363.67 0.02 5.5 Fine Sand 31 0 1 

796 46 1 8 351 5.24 0.42 363.65 0.02 7.0 Fine Sand 69 0 1 

797 46 1 8 490 5.27 0.81 363.59 0.02 7.0 Fine Sand 8 2 1 

798 45 1 8 300 6.49 0.31 363.54 0.10 5.3 Fine Sand 8 0 2 

799 60 1 8 321 5.5 0.35 363.52 0.05 5.5 Fine Sand 84 0 2 

800 55 1 8 287 7.24 0.28 363.50 0.02 7.3 Fine Sand 31 3 1 

801 47 1 8 343 3.93 0.40 363.48 0.02 4.8 Fine Sand 130 0 2 

802 45 1 8 307 4.64 0.32 363.30 0.05 5.5 Fine Sand 84 0 2 

803 57 1 8 391 4.61 0.52 363.30 0.02 7.3 Fine Sand 31 3 1 

804 54 1 8 545 4.85 1.01 363.14 0.10 5.3 Fine Sand 8 0 2 

805 14 2 8 346 2.86 0.41 363.08 0.02 5.3 Fine Sand 145 0 2 

806 45 1 8 309 10.08 0.33 363.07 0.10 5.3 Fine Sand 8 0 2 

807 43 1 8 292 6.08 0.29 363.00 0.05 5.5 Fine Sand 15 0 1 

808 48 1 8 307 6.7 0.32 363.00 0.10 5.3 Fine Sand 8 0 2 

809 43 1 10 462 7.83 0.22 363.00 0.02 7.3 Fine Sand 31 3 1 

810 39 1 8 337 4.2 0.39 363.00 0.02 4.8 Fine Sand 31 1 2 

811 55 1 8 355 8.94 0.43 363.00 0.05 5.5 Fine Sand 84 0 2 

812 43 1 8 305 6.81 0.32 363.00 0.02 4.8 Fine Sand 31 1 2 

813 54 1 10 757 4.88 0.59 362.86 0.10 5.3 Fine Sand 8 0 2 
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814 54 1 8 326 5.04 0.36 362.80 0.10 5.3 Fine Sand 8 0 2 

815 54 1 8 295 7.14 0.29 362.74 0.02 7.0 Fine Sand 8 2 1 

816 57 1 8 332 9.35 0.37 362.63 0.02 5.3 Fine Sand 145 0 2 

817 44 1 8 314 5.02 0.33 362.62 0.02 4.8 Fine Sand 31 1 2 

818 54 1 8 1025 5.98 3.57 362.60 0.02 7.0 Fine Sand 8 2 1 

819 64 1 8 745 4.65 1.89 362.58 0.05 4.8 Fine Sand 8 0 2 

820 43 1 8 322 5.8 0.35 362.50 0.10 5.3 Fine Sand 8 0 2 

821 40 1 8 525 5.28 0.94 362.50 0.10 5.3 Fine Sand 8 0 2 

822 29 2 8 329 4.02 0.37 362.43 0.02 6.6 Fine Sand 31 0 2 

823 44 1 24 5120 8.47 0.25 362.40 0.02 5.3 Fine Sand 145 0 2 

824 38 1 8 316 4.87 0.34 362.11 0.02 7.3 Fine Sand 31 3 1 

825 30 2 8 330 6.35 0.37 362.07 0.10 5.1 Fine Sand 31 0 2 

826 33 1 8 153 6.66 0.08 362.04 0.10 5.6 Fine Sand 31 1 2 

827 14 2 8 387 6.74 -0.51 362.01 0.02 5.5 Fine Sand 69 0 1 

828 43 1 8 306 4.73 0.32 362.00 0.02 4.8 Fine Sand 31 1 2 

829 38 1 8 771 4 2.02 362.00 0.02 6.5 Fine Sand 8 3 1 

830 43 1 8 547 4.82 1.02 362.00 0.10 5.3 Fine Sand 8 0 2 

831 45 1 8 296 11.44 0.33 362.00 0.05 5.5 Fine Sand 84 0 2 

832 43 1 8 520 4.7 0.92 362.00 0.10 5.3 Fine Sand 8 0 2 

833 46 1 8 296 5.03 0.30 361.90 0.02 5.5 Fine Sand 31 0 1 

834 17 2 8 392 13.96 0.52 361.87 0.10 5.1 Fine Sand 31 0 2 

835 57 1 8 823 4.84 2.30 361.80 0.02 5.3 Fine Sand 145 0 2 

836 56 1 24 3250 13.55 0.10 361.73 0.02 5.3 Fine Sand 145 0 2 

837 27 2 8 295 13.03 0.00 361.70 0.10 5.3 Fine Sand 8 0 2 

838 54 1 8 354 6.06 0.43 361.60 0.02 4.8 Fine Sand 130 0 2 

839 38 1 8 244 5.55 0.20 361.50 0.02 7.0 Silty Gravel and Sand 69 0 1 

840 54 1 8 396 4.51 0.53 361.40 0.10 5.3 Silty Gravel and Sand 8 0 2 

841 63 1 8 318 6.97 0.34 361.40 0.02 4.8 Silty Gravel and Sand 31 1 2 

842 54 1 8 419 5.62 0.60 361.30 0.05 5.5 Silty Gravel and Sand 84 0 2 

843 64 1 8 299 3.74 0.30 361.30 0.02 5.3 Silty Gravel and Sand 145 0 2 

844 6 2 8 0 6.26 0.00 361.24 0.02 7.3 Silty Gravel and Sand 31 3 1 

845 38 1 8 306 3.83 0.32 361.23 0.10 5.3 Silty Gravel and Sand 8 0 2 

846 34 1 8 332 4.24 0.37 361.21 0.05 5.5 Silty Gravel and Sand 84 0 2 

847 64 1 8 161 5.95 0.09 361.19 0.02 7.3 Silty Gravel and Sand 31 3 1 
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848 31 2 8 344 7.03 0.40 361.17 0.02 7.3 Silty Gravel and Sand 31 3 1 

849 54 1 10 494 7.97 0.25 361.12 0.02 7.3 Silty Gravel and Sand 31 3 1 

850 55 1 8 340 4.77 0.39 361.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

851 43 2 8 873 3.8 2.59 361.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

852 57 1 8 356 7.9 0.43 361.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

853 42 1 8 332 6.83 0.37 361.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

854 59 1 8 343 3.91 0.40 361.00 0.02 5.3 Silty Gravel and Sand 84 0 2 

855 40 1 8 674 4.86 1.54 361.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

856 50 1 8 343 4.74 0.40 361.00 0.10 5.3 Silty Gravel and Sand 59 0 2 

857 53 1 8 352 4.73 0.42 361.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

858 43 1 8 326 4.12 0.36 361.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

859 58 1 8 397 2.72 0.53 360.99 0.02 5.5 Silty Gravel and Sand 31 0 1 

860 54 1 24 4441 11.73 0.19 360.99 0.10 5.3 Silty Gravel and Sand 8 0 2 

861 64 1 8 291 7.48 0.29 360.91 0.02 7.0 Silty Gravel and Sand 69 0 1 

862 15 2 8 174 6.29 0.10 360.90 0.02 5.4 Silty Gravel and Sand 8 0 2 

863 20 2 24 3253 14.68 0.10 360.89 0.10 4.8 Silty Gravel and Sand 31 1 2 

864 40 1 8 353 13.06 0.42 360.85 0.02 4.8 Silty Gravel and Sand 130 0 2 

865 54 1 12 669 16.95 0.17 360.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

866 23 2 8 287 6.42 0.28 360.68 0.02 5.3 Silty Gravel and Sand 145 0 2 

867 55 1 10 439 8.62 0.20 360.64 0.02 7.3 Silty Gravel and Sand 31 3 1 

868 29 1 36 10489 8.2 0.12 360.60 0.02 5.4 Silty Gravel and Sand 8 0 2 

869 54 1 8 355 5.25 0.43 360.60 0.02 7.3 Silty Gravel and Sand 31 3 1 

870 21 2 10 545 10.15 0.31 360.58 0.05 5.5 Silty Gravel and Sand 84 0 2 

871 9 2 8 319 4.03 0.35 360.52 0.02 5.3 Silty Gravel and Sand 84 0 2 

872 54 1 8 339 10.75 0.39 360.50 0.02 5.3 Silty Gravel and Sand 145 0 2 

873 45 1 24 5251 16.21 0.26 360.46 0.05 5.5 Silty Gravel and Sand 84 0 2 

874 31 2 8 0 4.26 0.00 360.38 0.02 7.3 Silty Gravel and Sand 31 3 1 

875 21 2 8 374 9.03 0.47 360.23 0.10 5.1 Silty Gravel and Sand 31 0 2 

876 59 1 8 767 3.98 2.00 360.20 0.02 5.3 Silty Gravel and Sand 145 0 2 

877 52 1 18 1980 12.85 0.18 360.18 0.02 7.0 Silty Gravel and Sand 8 2 1 

878 42 1 8 944 5.33 3.03 360.14 0.10 5.3 Silty Gravel and Sand 8 0 2 

879 46 1 18 3498 7.8 0.00 360.12 0.02 5.5 Silty Gravel and Sand 31 0 1 

880 54 1 8 636 7.57 1.38 360.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

881 55 1 10 461 6.52 0.22 360.10 0.02 5.8 Silty Gravel and Sand 15 3 1 
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882 4 2 8 0 14.05 0.00 360.06 0.10 5.1 Silty Gravel and Sand 31 0 2 

883 59 1 8 343 4 0.40 360.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

884 43 1 8 304 4.3 0.31 360.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

885 68 1 8 297 3.29 0.30 360.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

886 31 2 8 348 4.62 0.41 360.00 0.10 5.1 Silty Gravel and Sand 31 0 2 

887 34 1 8 441 7.7 0.66 360.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

888 33 1 18 1827 9.5 0.15 360.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

889 33 1 8 459 10.2 0.00 360.00 0.02 4.8 Silty Gravel and Sand 130 0 2 

890 54 1 6 279 4.71 0.26 360.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

891 42 1 8 343 9.24 0.40 360.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

892 42 1 8 343 10.25 0.40 360.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

893 32 1 8 325 5.91 0.36 360.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

894 58 1 8 342 4.09 0.40 360.00 0.10 5.3 Silty Gravel and Sand 8 0 2 

895 48 1 8 429 5.21 0.63 360.00 0.02 7.0 Silty Gravel and Sand 8 2 1 

896 55 1 8 307 3.45 0.32 360.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

897 57 1 8 341 6.88 0.39 360.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

898 55 1 8 346 6.88 0.41 360.00 0.10 5.1 Silty Gravel and Sand 31 0 2 

899 42 1 8 343 5.12 0.40 360.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

900 36 1 8 307 4 0.32 360.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

901 54 1 8 858 5.26 0.00 360.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

902 54 1 8 343 5.93 0.40 360.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

903 45 1 15 1174 14.42 0.16 360.00 0.02 5.5 Silty Gravel and Sand 8 0 1 

904 53 1 8 3030 4.74 0.00 359.90 0.02 5.3 Silty Gravel and Sand 145 0 2 

905 60 1 8 755 3.46 1.93 359.89 0.10 5.3 Silty Gravel and Sand 8 0 2 

906 43 1 8 385 4.25 0.50 359.68 0.10 5.3 Silty Gravel and Sand 8 0 2 

907 35 1 10 709 7.53 0.52 359.67 0.10 5.3 Silty Gravel and Sand 8 0 2 

908 22 2 8 394 5.59 0.53 359.65 0.10 5.1 Silty Gravel and Sand 31 0 2 

909 30 2 8 336 12 0.38 359.60 0.10 5.1 Silty Gravel and Sand 31 0 2 

910 68 1 15 1316 12.45 0.21 359.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

911 48 1 8 301 7.56 0.31 359.60 0.02 5.5 Silty Gravel and Sand 8 0 1 

912 18 2 8 227 7.41 0.18 359.47 0.02 5.8 Silty Gravel and Sand 15 3 1 

913 3 2 8 0 4.87 0.00 359.45 0.02 5.3 Silty Gravel and Sand 145 0 2 

914 53 1 8 340 7.19 0.39 359.38 0.02 5.5 Silty Gravel and Sand 31 0 1 

915 22 2 8 488 4.15 0.81 359.34 0.10 5.1 Silty Gravel and Sand 31 0 2 
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916 53 1 8 307 4.03 0.32 359.30 0.02 7.3 Silty Gravel and Sand 31 3 1 

917 55 1 12 706 7.2 0.00 359.26 0.02 7.3 Silty Gravel and Sand 31 3 1 

918 47 1 8 0 5.86 0.00 359.23 0.02 4.8 Silty Gravel and Sand 130 0 2 

919 32 1 10 519 7.8 0.28 359.11 0.10 5.6 Silty Gravel and Sand 31 1 2 

920 63 1 8 396 3.84 0.53 359.06 0.02 7.3 Silty Gravel and Sand 31 3 1 

921 35 1 10 498 6.03 0.26 359.00 0.02 8.2 Silty Gravel and Sand 59 0 2 

922 20 2 24 3173 15.97 0.10 359.00 0.10 4.8 Silty Gravel and Sand 31 1 2 

923 27 2 27 4814 10.09 0.12 359.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

924 55 1 8 509 4.6 0.88 359.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

925 50 1 8 543 5.7 1.00 359.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

926 39 1 8 438 4.12 0.65 359.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

927 35 1 10 786 8.44 0.64 358.97 0.10 5.3 Silty Gravel and Sand 8 0 2 

928 59 1 8 454 4.05 0.70 358.90 0.10 5.1 Silty Gravel and Sand 31 0 2 

929 51 1 8 348 7.4 0.41 358.84 0.02 7.0 Silty Gravel and Sand 69 0 1 

930 41 1 8 373 8.54 0.47 358.80 0.02 4.8 Silty Gravel and Sand 31 1 2 

931 49 1 8 307 3.16 0.32 358.67 0.02 7.3 Silty Gravel and Sand 31 3 1 

932 39 1 8 415 4.03 0.59 358.65 0.05 5.5 Silty Gravel and Sand 15 0 1 

933 44 1 8 226 6.22 0.17 358.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

934 59 1 8 387 3.68 0.51 358.50 0.02 7.0 Silty Gravel and Sand 69 0 1 

935 67 1 15 1592 6.62 0.30 358.46 0.02 7.0 Silty Gravel and Sand 8 2 1 

936 13 2 8 352 6.05 0.42 358.35 0.02 7.0 Silty Gravel and Sand 8 2 1 

937 50 1 8 338 5.75 0.39 358.30 0.02 5.3 Silty Gravel and Sand 84 0 2 

938 53 1 15 1396 18.83 0.23 358.25 0.10 5.6 Silty Gravel and Sand 31 1 2 

939 60 1 8 575 4.2 1.12 358.20 0.10 5.3 Silty Gravel and Sand 8 0 2 

940 54 1 8 698 6.04 1.65 358.19 0.02 5.3 Silty Gravel and Sand 145 0 2 

941 35 1 8 337 9.7 0.39 358.03 0.02 5.5 Silty Gravel and Sand 31 0 1 

942 42 1 8 492 4.12 0.82 358.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

943 31 1 8 339 5.63 0.39 358.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

944 64 1 8 298 7.42 0.30 358.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

945 18 2 8 249 5.64 0.00 358.00 0.02 4.0 Silty Gravel and Sand 30 0 2 

946 34 1 8 264 6.9 0.24 358.00 0.02 4.8 Silty Gravel and Sand 31 1 2 

947 53 1 8 355 5.01 0.43 358.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

948 33 1 21 3079 9.06 0.19 358.00 0.05 5.5 Silty Gravel and Sand 15 0 1 

949 64 1 8 297 9.3 0.30 358.00 0.02 5.5 Silty Gravel and Sand 31 0 1 
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950 36 1 10 435 8.39 0.20 358.00 0.02 8.2 Silty Gravel and Sand 59 0 2 

951 18 2 8 294 9.69 0.29 357.98 0.02 7.0 Silty Gravel and Sand 8 2 1 

952 31 1 15 1085 12.67 0.14 357.56 0.05 5.6 Silty Gravel and Sand 31 1 2 

953 61 1 8 406 6 0.56 357.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

954 61 1 8 463 4 0.73 357.50 0.05 5.5 Silty Gravel and Sand 84 0 2 

955 31 2 8 322 7.28 0.35 357.48 0.02 5.5 Silty Gravel and Sand 31 0 1 

956 66 1 8 597 3.13 1.21 357.20 0.17 5.3 Silty Gravel and Sand 145 0 2 

957 18 2 8 300 6.71 0.31 357.19 0.02 7.3 Silty Gravel and Sand 31 3 1 

958 31 2 8 0 5.9 0.00 357.14 0.02 7.3 Silty Gravel and Sand 31 3 1 

959 40 1 15 307 9.87 0.01 357.11 0.02 4.8 Silty Gravel and Sand 31 1 2 

960 33 1 8 341 5.58 0.39 357.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

961 54 1 8 351 6.26 0.42 357.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

962 22 2 12 753 11.65 0.22 357.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

963 55 1 12 708 6 0.00 357.00 0.02 4.6 Silty Gravel and Sand 15 1 2 

964 55 1 8 342 5.37 0.40 357.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

965 55 1 8 674 5.8 1.54 357.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

966 55 1 8 952 5 3.08 357.00 0.02 7.3 Silty Gravel and Sand 31 3 1 

967 55 1 8 420 4.22 0.60 357.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

968 35 1 8 926 6.67 2.91 357.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

969 60 1 8 296 2.08 0.30 356.95 0.02 7.3 Silty Gravel and Sand 31 3 1 

970 18 2 8 351 10.16 0.42 356.94 0.02 7.0 Silty Gravel and Sand 8 2 1 

971 43 1 8 343 4.5 0.40 356.81 0.02 5.5 Silty Gravel and Sand 31 0 1 

972 43 1 8 454 13.92 0.70 356.66 0.05 5.5 Silty Gravel and Sand 84 0 2 

973 66 1 12 3488 8.59 4.75 356.60 0.24 5.0 Silty Gravel and Sand 61 2 1 

974 40 1 8 355 3.8 0.43 356.60 0.02 5.3 Silty Gravel and Sand 145 0 2 

975 54 1 8 342 6.58 0.40 356.60 0.05 5.5 Silty Gravel and Sand 84 0 2 

976 38 1 8 308 4.28 0.32 356.57 0.05 5.5 Silty Gravel and Sand 84 0 2 

977 54 1 8 423 4.72 0.61 356.54 0.02 5.3 Silty Gravel and Sand 145 0 2 

978 54 1 8 314 6.41 0.33 356.40 0.02 7.3 Silty Gravel and Sand 31 3 1 

979 33 1 8 299 8.29 0.00 356.37 0.02 4.8 Silty Gravel and Sand 31 1 2 

980 13 2 8 388 6.74 0.51 356.34 0.02 7.3 Silty Gravel and Sand 31 3 1 

981 55 1 8 307 5.15 0.32 356.30 0.02 7.0 Silty Gravel and Sand 69 0 1 

982 16 2 8 442 3.26 0.66 356.25 0.10 5.1 Silty Gravel and Sand 31 0 2 

983 55 1 8 312 5 0.33 356.12 0.02 5.5 Silty Gravel and Sand 31 0 1 
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984 57 1 8 400 8.56 0.54 356.10 0.10 5.3 Silty Gravel and Sand 8 0 2 

985 53 1 8 633 5.12 1.36 356.09 0.10 5.3 Silty Gravel and Sand 8 0 2 

986 43 1 8 516 6.6 0.00 356.07 0.02 4.8 Silty Gravel and Sand 130 0 2 

987 53 1 8 345 6.78 0.40 356.01 0.02 5.5 Silty Gravel and Sand 31 0 1 

988 68 1 8 748 5.22 1.90 356.00 0.02 5.3 Silty Gravel and Sand 145 0 2 

989 42 1 8 343 8.23 0.40 356.00 0.05 5.5 Silty Gravel and Sand 84 0 2 

990 23 2 8 302 10.93 0.31 356.00 0.02 5.8 Silty Gravel and Sand 15 3 1 

991 34 1 8 310 7.07 0.33 356.00 0.02 5.5 Silty Gravel and Sand 31 0 1 

992 30 2 8 404 6.18 0.55 355.96 0.02 6.6 Silty Gravel and Sand 31 0 2 

993 56 1 8 540 5.49 0.99 355.90 0.02 5.3 Silty Gravel and Sand 145 0 2 

994 54 1 8 519 4.4 0.92 355.80 0.02 5.3 Silty Gravel and Sand 145 0 2 

995 7 2 8 335 3.84 0.38 355.80 0.02 4.8 Silty Gravel and Sand 31 1 2 

996 45 1 10 516 13.42 0.28 355.79 0.05 5.5 Silty Gravel and Sand 84 0 2 

997 54 1 12 700 11.26 0.19 355.70 0.05 5.5 Silty Gravel and Sand 84 0 2 

998 61 1 8 419 7.18 0.60 355.69 0.02 5.5 Silty Gravel and Sand 31 0 1 

999 46 1 24 5441 18.49 0.29 355.68 0.02 5.5 Silty Gravel and Sand 31 0 1 

1000 53 1 8 306 5.6 0.32 355.60 0.02 5.5 Silty Gravel and Sand 31 0 1 

 


