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Abstract 

Improving Post Processing of Ensemble Streamflow Forecast for Short-to-long Ranges: A 

Multiscale Approach 

 

Babak Alizadeh, Ph.D. 

The University of Texas at Arlington, 2019 

Supervising Professor: Dong-Jun Seo 

 

 A novel multi-scale post-processor for ensemble streamflow prediction, MS-EnsPost, and a 

multiscale probability matching (MS-PM) technique for bias correction in streamflow simulation 

are developed and evaluated. The MS-PM successively applies probability matching (PM) across 

multiple time scales of aggregation to reduce scale-dependent biases in streamflow simulation. 

For evaluation of MS-PM, 34 basins in four National Weather Service (NWS) River Forecast 

Centers (RFC) in the US were used. The results indicate that MS-PM improves over PM for 

streamflow prediction at a daily time step, and that averaging the empirical cumulative 

distribution functions to reduce sampling uncertainty marginally improves performance. The 

performance of MS-PM, however, quickly reaches a limit with the addition of larger temporal 

scales of aggregation due to the increasingly large sampling uncertainties. MS-EnsPost 

represents a departure from the PM-based approaches to avoid large sampling uncertainties 

associated  with distribution modeling, and to utilize fully the predictive skill in model-simulated 

and observed streamflow that may be present over a range of temporal scales. 

MS-EnsPost uses data-driven correction of magnitude-dependent bias in simulated flow, 

multiscale regression over a range of temporal aggregation scales, and ensemble generation 

using parsimonious error modeling. For evaluation of MS-EnsPost, 139 basins in eight RFCs 
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were used. Streamflow predictability in different hydroclimatological regions is assessed and 

characterized, and gains by MS-EnsPost over the existing streamflow ensemble post processor in 

the NWS Hydrologic Ensemble Forecast Service, EnsPost, are attributed. The ensemble mean 

prediction results show that MS-EnsPost reduces the root mean square error of Day-1 to -7 

predictions of mean daily flow from EnsPost by 5 to 68 percent, and for most basins, the 

improvement is due to both bias correction and multiscale regression. The ensemble prediction 

results show that MS-EnsPost reduces the mean Continuous Ranked Probability Score of Day-1 

to -7 predictions of mean daily flow from EnsPost by 2 to 62 percent, and that the improvement 

is due mostly to improved resolution than reliability.  

Examination of the mean Continuous Ranked Probability Skill Scores (CRPSS) indicates 

that, for most basins, the improvement by MS-EnsPost is due to both magnitude-dependent bias 

correction and full utilization of hydrologic memory through multiscale regression. Comparison 

of the mean CRPSS results with hydroclimatic indices indicates that the skill of ensemble 

streamflow prediction with post processing is modulated largely by the fraction of precipitation 

as snow and, for non-snow-driven basins, mean annual precipitation. 

The positive impact of MS-EnsPost is particularly significant for a number of basins 

impacted by flow regulations. Examination of the multiscale regression weights indicates that the 

multiscale regression procedure is able to capture and reflect the scale-dependent impact of flow 

regulations on predictive skills of observed and model-predicted flow. One of the motivations for 

MS-EnsPost is to reduce data requirement so that nonstationarity may be considered. 

Comparative evaluation of MS-EnsPost with EnsPost indicates that, under reduced data 

availability, MS-EnsPost generally outperforms EnsPost for those basins exhibiting significant 

changes in flow regime. 
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Introduction 

Accurate short- to long-range streamflow forecast is critical to effective water management. 

Due to multiple sources of uncertainty, however, streamflow forecast is subject to large errors. 

For quantifying and communicating uncertainty, ensemble forecasting has been fast gaining 

acceptance (Cloke and Pappenberger 2009). For risk-based decision making in water 

management, reliable and skillful ensemble streamflow forecasts are a prerequisite (Demargne et 

al. 2014). The major sources of uncertainty in hydrologic forecasting include forecasts of 

precipitation and temperature at weather and climate scales, hydrologic, hydraulic and reservoir 

modeling, unmodeled or unknown human control of movement and storage of water, and 

anthropogenic changes to hydrdoclimatology (McMillan et al. 2011; Marimo et al. 2015; Subbey 

et al. 2004; Groves et al. 2008) (see Fig 1).  

 
Figure 1: Major sources of hydrologic uncertainty. 
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This research focuses on advancing characterization, modeling, and reduction of hydrologic 

uncertainties in ensemble streamflow forecasting. The specific aim is to develop a post-

processing methodology that: 

· Reduces hydrologic uncertainty and improves streamflow prediction by fully utilizing skill 

in simulated and observed flow over a range of temporal scales of aggregation, 

· Handles intermittency of flow in ephemeral streams in arid and semi-arid regions, and 

· Reduces data requirement to allow nonstationarities arising from changing 

hydroclimatology. 

Streamflow simulations from hydrologic models contain errors propagated from uncertain 

forcings, model initial conditions (IC), parameters and structures, and human control of storage 

and movement of water  (Ajami et al. 2007; Doherty and Welter 2010; Gupta et al. 2012; 

Krzysztofowicz 1999; Montanari and Brath 2004; NRC 2006; Renard et al. 2010; Schaake et al. 

2007; Seo et al. 2006; Wood and Schaake 2008). For risk-based management of water resources 

and water-related hazards, it is necessary to quantify the uncertainties from these sources 

(Borgomeo et al. 2014; Butts et al. 2004; Georgakakos et al. 2004; Hall and Borgomeo 2013; 

Hall et al. 2019). Ensemble forecasting has emerged in recent years as the methodology of 

choice for modeling and communicating forecast uncertainty (Cloke and Pappenberger 2009; 

Demargne et al. 2014; Demeritt et al. 2010; NRC 2006; Schaake et al. 2007).  In the US, the 

National Weather Service (NWS) has recently implemented the Hydrologic Ensemble Forecast 

Service (HEFS; Demargne et al. 2014) at all River Forecast Centers (RFC) (Lee et al. 2018) 

following experimental operation at selected RFCs (Hartman et al. 2015; Kim et al. 2018; Wells 

2017). To reduce and quantify hydrologic uncertainty in streamflow prediction, the HEFS 

employs the ensemble post-processor, EnsPost (NWS 2015; Seo et al. 2006) (see Fig 2).  
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Figure 2: Schematic of HEFS's elements (Demargne et al. 2014). 

Originally developed for short-range forecasting of natural flows in headwater basins, 

EnsPost models predictive hydrologic uncertainty using a combination of probability matching 

(PM; Hashino et al. 2002; Madadgar et al. 2014) and autoregressive (AR)-1 model with an 

exogenous variable, or ARX (1,1) (Bennett et al. 2014; Damon and Guillas 2002), in bivariate 

normal space (Krzysztofowicz 1999; Seo et al. 2006). EnsPost applies PM and ARX(1,1) at a 

daily scale only. In reality, however, the characteristic time scales of error in model-simulated 

flow may span a range of scales depending on the residence time of the hydrologic processes 

involved and the error characteristics of the forcings and the hydrologic models used (Blöschl 

and Sivapalan 1995). In addition, if the flow is strongly regulated, the errors may be reducible 

only over a certain range of temporal scales of aggregation due to the altered residence time and 

storage-outflow relationships.  

This research develops and evaluates a multiscale probability matching (MS-PM) technique 

for improved bias correction in lieu of PM used in EnsPost, and a multiscale ensemble post 

processing methodology, MS-EnsPost, to improve skill in streamflow ensemble forecast from 
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short to long ranges. As part of the evaluation, the following research questions are also 

addressed.  

· How do errors in operational model-simulated streamflow vary according to the time scale 

of aggregation? 

· How do biases in model-simulated streamflow vary according to the magnitude of the 

simulated flow? 

· How does the predictive skill in observed and model-predicted streamflow vary according 

to the time scale of aggregation? 

· What is the relative importance between correcting biases and reducing uncertainty in the 

ICs among different basins in different hydroclimatological regions? 

· How does the prediction skill of MS-EnsPost vary among different RFCs, and among 

different basins within an RFC? How does the skill compare with that of EnsPost? 

· How does the above skill relate to hydroclimatology of the basin? 

· How do flow regulations impact the above? 

· How do the data availability and nonstationarity impact the above? 

The fundamental contributions of this work are: 

· Advances in understanding, statistical modeling, and assessment of errors and predictive 

skill in operational model-simulated flow at different time scales of aggregation and in 

different hydroclimatological regimes, 

· Development and evaluation of a statistical post-processor that combines flow magnitude-

dependent bias correction, multiscale regression utilizing hydrologic memory over a range 

of time scales, and parsimonious parametric modeling of the error,  
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· Advances in understanding of errors in model-simulated regulated flow, and in improving 

predictive skill via the multiscale approach, and 

· Advances in understanding and assessment of data requirements for post-processing of 

ensemble streamflow forecast under nonstationarity. 

This dissertation is organized as follows. Chapter 2 describes literature review for this research. 

Chapter 3 describes the developed  methods in this work. In Chapter 4, the study basins and data 

used are described. Chapter 5 provides the evaluation measures. In Chapter 6, results for the 

developed methods are discussed. And finally, in Chapter 7, the conclusions of this work are 

decribed and future research recommendations are provided.  
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Literature review 

The positive impact of post-processing raw model simulations of streamflow in ensemble 

streamflow forecasting has been widely reported (Kim et al. 2018; Kim et al. 2016; Madadgar et 

al. 2014). It has also been shown recently that EnsPost significantly increases skill in ensemble 

forecasts of outflow from a water supply reservoir in North Texas during significant releases, in 

addition to that in ensemble inflow forecasts (Limon 2019). With increasing acceptance and 

adoption of ensemble streamflow forecasting by the operational community, developing more 

effective post-processing methods has been a very active area of research. To that end, a number 

of comparison studies have been carried out. For post-processing of meteorological forecast, 

Wilks (2006) compared direct model output (Wilks 2006), rank histogram recalibration (Hamill 

and Colucci 1998), single-integration Model Output Statistics (MOS; Erickson 1996), ensemble 

dressing (Roulston and Smith 2003), logistic regression (Hamill et al. 2004), non-homogeneous 

Gaussian regression (Gneiting et al. 2005), forecast assimilation (Stephenson et al. 2005), and 

Bayesian model averaging (Raftery et al. 2005). He concluded that logistic regression (Duan et 

al. 2007; Hamill et al. 2004), ensemble MOS (Gneiting et al. 2005), and ensemble dressing 

outperform the others. Boucher et al. (2015) compared the regression and dressing methods 

using synthetic data (Li et al. 2017). They concluded that the techniques have similar overall 

performance, and that the regression and dressing methods perform better in terms of resolution 

and reliability, respectively. Mendoza et al. (2016) used medium-range ensemble streamflow 

forecasts from the System for Hydrometeorological Applications, Research and Prediction, and 

compared quantile mapping (Mendoza et al. 2016; Hashino et al. 2006; Piani et al. 2010; 

Regonda and Seo 2008; Wood and Schaake 2008; Zhu and Luo 2015), logistic regression, 
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quantile regression (Bjørnar Bremnes 2004; Bogner et al. 2016; Coccia and Todini 2011; 

Koenker and Bassett 1978) and the general linear model post-processor (Zhao et al. 2011). They 

found that no single method performed best in all situations, and that the post processors’ 

performance depended on factors such as soil type and land use, and hydroclimatic conditions of 

the basin.  

Since the launch of the HEFS (NWS 2007, Demargne et al. 2014), the NWS has 

implemented the application at a number of RFCs (Fresch 2015). The experience thus far with 

EnsPost (Seo et al. 2006) indicates the following. 

· Whereas the EnsPost ensembles are generally skillful for largely natural flows at short 

ranges (3 days or less), they provide little skill at longer ranges or for regulated flows. 

· EnsPost requires long periods of record due to heavily parameterized stochastic modeling. 

Its performance is hence susceptible to data availability and nonstationarities of 

hydroclimatolological and other origins. 

EnsPost is a statistical model of streamflow simulation error. It inputs raw ensemble 

streamflow forecast and corrects biases in the mean and higher-order moments, and outputs bias-

corrected ensemble streamflow forecast. Fig 3 schematically depicts what EnsPost does. 

Successful correction would render the post-processed ensemble forecast reliable, i.e., unbiased 

in the probabilistic sense, and improve the skill of the ensemble streamflow forecast.  

The resulting post-processed ensemble forecast reflects both the input uncertainty, i.e., 

uncertainty in the forcings, and the hydrologic uncertainty, i.e., uncertainty in converting 

forcings to streamflow using hydrologic, hydraulic and reservoir models. Generally speaking, the 

input uncertainty is larger than the hydrologic uncertainty. Because of the limits of predictability 

in weather and climate forecasting, reducing input uncertainty is a large challenge.
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Figure 3: Illustration of integration of input and hydrologic uncertainties in hydrologic ensemble forecasting (NWS 

2015). 

Hydrologic uncertainty, on the other hand, may be reduced comparatively easily via statistical 

means if the data required are available. 

PM, or cumulative distribution function (CDF) matching, was first introduced in ensemble 

streamflow post processing in NWS for Extended Streamflow Prediction (ESP, Day 1985, Perica 

et al. 1998, 1999) in support of water resources forecasting. Later, a regression model was 

combined with PM to form EnsPost in support of short-range ensemble forecasting (Seo et al. 

2006). Though the parameter estimation procedure for EnsPost was subsequently modified to 

improve longer-range performance (but at the expense of compromising performance at very 

short ranges), the algorithm is limited by the single-scale nature of bias correction in that PM is 

performed only at a daily scale. EnsPost is limited also by the autoregressive (with an exogenous 

variable) nature of statistical modeling in that a single ARX(1,1) (Seo et al. 2006) model is 

applied recursively at a daily scale over the entire forecast horizon. In reality, biases exist in 

model-simulated flow over a range of scales due to various sources of error. For example, in 
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semi-arid regions where larger uncertainties exist in antecedent soil moisture, spatiotemporal 

variability of rainfall, soil moisture dynamics, and surface water dynamics, the dominant biases 

may have time scales of a rainfall event, or a few days. In such cases, bias correction at a multi-

daily scale is likely to be more effective than that at a daily scale. Similarly, due to large 

uncertainties in flow regulations, model-simulated flow may have skill only at multi-daily, or 

even lager, time scales of aggregation. In such cases, one may not expect PM, which operates 

only at a daily scale, to be very effective. Furthermore, regulated flows are not, in general, 

autoregressive. The ),( ··ARX  class of models may hence be of limited effectiveness. For the 

above reasons, EnsPost is not likely to capture all available skill that may be present in the 

model-predicted flow and in the real-time streamflow observations over a wide range of time 

scales of aggregation.  

To illustrate the importance of the time scale of bias correction used in PM, in Fig 4 the 

reduction in percent root mean square error (RMSE) of model-simulated mean daily flow 

(SQME) is shown. The reduction in RMSE over raw SQME by bias-corrected flow using PM at 

times scales of a single day and multiple days are shown in blue and green, respectively. The six 

basins used are located in the Upper Trinity River Basin in North Central Texas (Kim et al. 

2018). The hydrologic models used are the Sacramento (SAC) and unit hydrograph (UH). Note 

that, for three of the basins, PM at daily scale increases RMSE over raw model simulations, 

whereas PM at multi-daily scale reduces RMSE for all six basins. 

Because PM requires accurate modeling particularly of the upper tails of observed and 

simulated flows, EnsPost requires a long period of record. Due to urbanization and climate 

change, streamflow responses have changed or are changing significantly in many parts of the 

US. In addition, with the transition from gauge-only precipitation analysis (MAP) to multisensor 
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Figure 4: Reduction in percent RMSE of SQME as bias-corrected using PM at a daily time scale (in blue) and 

at a time scale of multiple days (in green) over the raw model-simulated QME for 6 basins in the Upper Trinity 
River Basin. 

analysis (MAPX, Breidenbach 2001, 2002), there are significant changes in the statistical 

properties of model-simulated flow over different periods for many basins, even if there may be 

no changes in the actual hydroclimatology. Under changing conditions, the data requirement for 

EnsPost poses a rather difficult tradeoff between capturing possible nonstationarities vs. keeping 

sampling uncertainties smaller. To capture nonstationarity, one may divide the period of record 

or model trends. Such an operation, however, would significantly increase sampling uncertainties 

in statistical modeling. One may maximize sample size by keeping the entire period of record, 

but at the expense of introducing biases due to nonstationarities. To illustrate the above point, 

Fig 5 shows a 37-yr time series of the multiplicative bias for raw SQME to achieve unbiasedness 

against the observed for HUNP1 in the Juniata Basin of the MARFC’s service area (Seo et al. 

2006). A bias greater or less than unity indicates under- and oversimulation, respectively. 

The figure indicates that the simulated flow tends to be biased high (i.e., oversimulate) in the 

first half of the time series whereas it is biased slightly low (i.e., undersimulate) in the second
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Figure 5: A 37-yr time series of the multiplicative bias for simulated QME to achieve unbiasedness 

against the observed for HUNP1 in the Juniata Basin, PA. 

 half. Because such nonstationarities in model bias distort distribution modeling, PM is not likely 

to be very effective without nonstationarity modeling, a tall order given PM’s already large data 

requirements. In this work, MS-EnsPost is developed and evaluated which avoids data-intensive 

empirical variable transformation and thus minimizes distribution modeling. Owing to the 

parsimony, one may expect MS-EnsPost to reduce data requirements significantly while fully 

utilizing all available skill in model-simulated flow and real-time streamflow observations over a 

range of scales. 
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Methods developed 

This section describes MS-PM and MS-EnsPost. MS-PM was intended for EnsPost as an 

improved bias correction technique. MS-EnsPost is a new non-distributional approach for 

increased parsimony and reduced data requirement. MS-EnsPost is motivated by the findings 

from MS-PM that, whereas the multiscale approach improves bias correction, the gain is quickly 

lost as the temporal scale of aggregation increases by sampling uncertainty. MS-EnsPost hence 

departs from the distribution modeling-based approach of EnsPost and MS-PM in favor of 

parsimony and minimal variable transformation. 

3.1 Multiscale probability matching (MS-PM)  

MS-PM was first explored by NWS as a possible enhancement to EnsPost (Regonda and 

Seo 2008). In MS-PM, multiscale bias correction is applied to reduce biases in streamflow 

simulation. One may expect such correction to be effective when the characteristic time scales of 

the dominant model errors vary significantly from basin to basin or when there are multiple time 

scales at which the model errors may be dominant such as when the flow is regulated. MS-PM 

rests on the fact that reproducing marginal CDFs of the predictand at all scales encompassing the 

forecast horizon is a necessary condition for reproducing the multivariate CDF at the smallest 

scale over the entire forecast horizon under the stationarity assumption. The premise of MS-PM 

is that matching CDFs over a range of time scales of aggregation may render the resulting 

simulated flow at the smallest time scale statistically very similar in the multivariate sense to the 

observed flow at the smallest scale. If successful, the simulated flow at any time scale of 

aggregation would possess the same statistical properties of the observed flow at that scale, 
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Figure 6: Serial correlation of simulated flow (green), observed flow (black) and multiscale post-processed 

flow (red). 

thereby rendering streamflow ensembles reliable, i.e., probabilistically unbiased, regardless of 

the time scale of the user’s interest. To illustrate, Fig 6 shows the very positive impact of MS-

PM in which the serial correlation of model-simulated streamflow of rather poor quality (in 

green) is rendered very close (in red) to that of the observed streamflow (in black) via MS-PM.  

The experience thus far with MS-PM is that, perhaps not surprisingly, it suffers from large 

sampling errors at larger time scales due to the increasingly smaller sample size. In addition, 

whereas single-scale PM at a multi-daily scale often corrects biases in daily flow more 

effectively than PM at a daily scale, MS-PM over a range temporal scales of aggregation does 

not necessarily improve over PM at a single scale, due presumably to the sampling uncertainties 

that accrue over multiple PM operations. On the other hand, larger aggregation scales may still 

be necessary, even with larger sampling uncertainties, for ephemeral basins in semi-arid regions. 

Accordingly, systematic assessment is necessary using a large number of basins in diverse 

hydroclimatology to ascertain the range of scales over which MS-PM is consistently effective 
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and to assess the associated data requirements. In this rersearch, the tradeoffs between the 

number of temporal scales of aggregation and the effectiveness of bias correction is assessed. 

3.2 Multiscale ensemble post-processor (MS-EnsPost) 

In this subsection, MS-EnsPost for ensemble streamflow prediction for short-to-long ranges 

is described. By short and long ranges, it is meant up to several days and at least 1 month ahead, 

respectively. MS-EnsPost is designed to reduce magnitude-dependent biases in raw model-

simulated flow, and utilize all available skill that may exist over a range of temporal scales of 

aggregation in simulated and observed flows. MS-EnsPost consists of three elements: bias 

correction, multiscale regression, and ensemble generation. Fig 7 provides a schematic of the 

data flow and the associated processes.  

 
Figure 7: Schematic of MS-EnsPost elements and dataflow. 
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3.2.1 Magnitude-dependent bias correction 

It is defined within some time period of interest the multiplicative bias, ��, in the simulated 

flow valid at the i-th day, ���, as: �� = ������  (1) 

where ��� denotes the observed flow valid at the i-th day. Model-simulated high and low flows 

generally have smaller and larger multiplicative biases, respectively (see Appendix A for 

examples). Hydrologic models tend to simulate the physical processes that govern high flows 

relatively more accurately (Dunne and Black 1970; Engman and Rogowski 1974; Freeze 1972; 

Horton 1933; Loague and VanderKwaak 2004). In addition, most hydrologic models, 

Continuous API being a prime example, are calibrated to perform better for high flows than for 

low flows (Fowler et al. 2018; Freer et al. 1996; Gan et al. 1997; Kim et al. 2007; Krause et al. 

2005; Legates and McCabe Jr 1999; Nash and Sutcliffe 1970; Smith et al. 2014). The bias 

correction procedure in MS-EnsPost is designed to address this dependence. Sample estimates of �� at a daily scale are very noisy due to very large variabilities in ��� and ���. To obtain stable 

estimates of the magnitude-dependent bias, this procedure first pairs ��� and ���, sorts them in the 

ascending order of ���, and aggregates the resulting daily flows over different time scales. The 

temporal aggregation and the attendant noise cancellation greatly reduce the sampling 

uncertainty in the estimated bias, compared to that without aggregation. The time-aggregated 

flows are expressed as: 

��,(�)� = � �(�)�    ������(����)����    (2) 

��,(�)� = � �(�)�    ������(����)����   (3) 



16 

In the above, the symbol, (�), signifies that the variable subscripted is sorted in the 

ascending order of ���, �� denotes the k-th time scale of aggregation, and �� denotes the j-th 

aggregation window of the k-th scale within the period of record, and ��,(�)�  and ��,(�)�  denote the 

sorted observed and simulated flows aggregated over the j-th time window of the k-th time scale, 

respectively, where the symbol, (�), signifies that the aggregation is based on the sorted daily 

flow. Eqs.(4) and (5) pool the simulated and observed flows such that, when averaged over the 

respective aggregation periods, the aggregated simulated flows are similar in magnitude to the 

conditioning flow, ���, in Eq.(1). The bias for ��� at the k-the aggregation scale, ��,�, is given by: 

��,� = ��,(�)���,(�)� , � ∈ [(�� − 1)�� + 1, ����]   (4) 

In the above, the range for the index i, which is associated with the simulated flow to be bias-

corrected, ���, identifies the time scale of aggregation associated with the bias being estimated. In 

this work, we used �� = 2�  (days), � = 1, … ,14, for the aggregation scales, but other choices are 

possible. In the above, the largest aggregation scale is almost 45 years long with which one 

would be applying a single multiplicative bias for all simulated daily flows regardless of their 

magnitude. Among the total of K different temporal scales of aggregation, the best-performing 

scale is identified via leave-one-year-out (or similar) cross validation using a period of record of 

N years as described below. First, the magnitude-dependent biases are estimated at the K 

different scales of aggregation using an (N-1)-year period of observed flow and matching model 

simulation. The resulting biases are applied to the simulated daily flow valid on each Julian day 

of the withheld year. The procedure then identifies the aggregation scale that produces the 

smallest RMSE in the bias-corrected simulated flow by comparing with the verifying observed 

flow. Once completed for all N years, the leave-one-year-out cross validation produces a total of 

N different sets of magnitude-dependent biases for simulated daily flow. For a given ���, the 
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procedure arithmetically averages the N different biases associated with the respective time 

windows that enclose ��� in the sorted series. The procedure repeats the above steps for all 

possible values of ���, from which the final single relationship between the simulated flow and 

the magnitude-dependent bias results. 

3.2.2 Multiscale regression 

Post-processing generally seeks predictions at the highest possible temporal resolution. High 

dimensional stochastic modeling necessary for such predictions, however, is a large challenge 

due to the complexity involved and large data requirements. In the multiscale regression 

approach used in this work, instead a large number of very low-dimensional statistical modeling 

problems are solved. Fig 8 illustrates the basic idea behind the approach in the context of 

predicting �� day-ahead observed daily flow using the model-simulated daily flow valid over 

the �� day-long prediction horizon, and the observed daily flow �� − 1 days into the past. In 

this approach, rather than predicting ��� , � = 1, … , ��, using ���, � = 1, … , ��, and ��� , � =1, … , �� − 1, we predict ��,�� = Σ����� ��� using ��,�� = Σ����� ��� and ��,�� = Σ���(����)� ��� for all 

time scales of aggregation, � = 1, … , �, where ��� denotes the bias-corrected model-simulated 

daily flow, ��,���� (see Eqs.(3) and (6)).  

The predicted multi-daily flow is then dissagregated to daily flow using the granular patterns 

of daily flow in the bias-corrected model-simulated daily flow. The above approach is motivated 

by the fact that, the larger the temporal scale of aggregation is, the more skillful ��,��  is likely to 

be (Kim et al. 2018; Limon 2019). Similar approaches have also been used in post-processing 

forecasts of precipitation (Kim et al. 2018; Schaake et al. 2007) and streamflow (Regonda and 

Seo 2008). In this work, the prediction horizon, ��, used is 32 days, and the aggregation scales
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Figure 8: Schematic of multiscale regression. 

used are 1, 2, 4, 8, 16, and 32 days (see Fig 8). Depending on the application and the pattern of 

time scale-dependent predictability, however, one may choose a different set of scales. To 

predict the observed flow at the k-th scale, the following linear model is used: ��,�� = ����,�� + (1 − ��)��,�� , � = 1, … , �  (5) 

In the above, ��,��  denotes the predicted, time-aggregated observed flow at the k-th time 

scale, where the subscript “1” signifies that the prediction is for a single time step ahead at the k-

th time scale, and �� denotes the optimal weight for the time-aggregated observed flow at the k-

th scale, ��,�� , where the subscript “0” signifies that ��,��  is valid at the current time step at the k-

th time scale. The optimal weight, ��, in Eq.(5) may be obtained via optimal linear (i.e., 

maximum likelihood) estimation (Schweppe 1973) as: [��  (1 − ��)] = [��R���]����R��  (6) 

In the above, U denotes the (2×1) unit vector, and R denotes the error covariance matrix: 
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� = � ������,�� − ��,�� � ���[��,�� − ��,�� , ��,�� − ��,�� ]���[��,�� − ��,�� , ��,�� − ��,�� ] ������,�� − ��,�� � �   (7) 

The predicted daily flow for the i-th day from the multiscale regression at the k-the time scale, ��,�� , may be obtained by disaggregating ��,�� , � = 1, … , �, according to:  

��,�� = ��� ��,�� ��,�� = ��,����,�� ���  (8) 

Eq.(8) amounts to adjusting the bias-corrected model-simulated daily flow, ���, based on how 

much larger or smaller the predicted time-aggregated flow is relative to the time-aggregated bias-

corrected flow, i.e., ��,�� /��,�� . Once the disaggregation process is complete for all time scales of 

aggregation, the final prediction of observed daily flow, ���, � = 1, … , ��, is constructed from ��,�� , � = 1, … , �, by choosing for each day, �, in the prediction horizon, � = 1, … , ��, the 

predicted daily flow ��,��  associated with the smallest �, i.e., the smallest time scale of 

aggregation. In this way, if there are multiple predictions with overlapping prediction horizons, 

the procedure selects the one associated with the shortest lead time. Fig 8 shows the resulting 

time scales of aggregation over the prediction horizon of 32 days. Albeit heuristic, the above 

selection rule is based on the extremely reasonable assumption that, the shorter the lead time is, 

the more skillful ��,��  is. If the period of record is too short relative to the largest time scale of 

aggregation, the estimation of the error covariance terms in Eq.(7) may not be possible due to 

small sample size. In such a case, the largest time scale may have to be reduced or dropped. The 

last element of MS-EnsPost models the error in the above prediction and its temporal structure 

for ensemble generation, which is described below. 
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3.2.3 Error modeling and ensemble generation 

This element of MS-EnsPost models the time-correlated errors in ��,�, � = 1, … , ��, from 

multiscale regression. the error, ��, is defined in the predicted daily flow, ��,�, valid for the i-th 

day in the prediction horizon as: �� = ��� − ���, �� ≥ −���  (9) 

where ��� denotes the verifying observed daily flow. In EnsPost, ��� and ��� are normal quantile-

transformed (NQT) empirically (Krzysztofowicz and Kelly 2000; Krzysztofowicz and Herr 

2001) which renders �� normal in the transformed space (Seo et al. 2006). In MS-EnsPost, ��� 

and ��� are Box-Cox-transformed (Box and Cox 1964) to avoid data-intensive empirical 

distribution modeling. We then have for the error in the transformed space, ���: 

��� = ���� − ���� = (���)� ��� − (���)���� = (���)��(���)��  , ��� ≥ −(���)�/�  (10) 

In the above, � denotes the Box-Cox parameter, and ���� and ���� denote the transformed 

observed and predicted daily flows, respectively. The parameter � is chosen such that ��� may be 

approximated with a truncated normal distribution (Robert 1995): ���������� ≥ ����� =  � ����� , ����� : �����  (11) 

where ���� and �����  denote the mean and variance, respectively, of ��� conditional on {��� ≥ ����}. 

The mean and variance of ��� in Eq.(11) may be equated with the sample mean and variance 

estimated from all available observed flow and the corresponding predicted flow as follows: ���� = ∫ ∫ ����������������������/��� ��(���)����  (12) 

����� = � � (���)�������������
�������/�

�
� ����������� − �����  (13) 
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where ���� and �����  denote the sample mean and variance of ���, respectively, ��( | ) denotes the 

conditional probability density function (PDF) of ���, and ��( ) denotes the PDF of ���. Using 

Eqs.(14) and (15) and the empirical distribution of ���, one may solve for ���� and �����  given the 

sample estimates of ���� and ����� . Once ���� and �����  are prescribed, an ensemble realization of ���, 

or ���(�), may be generated from: ���(�) = ���� + ����Φ��[Φ����� + �(�)�1 − Φ������]  (14) 

In the above, �(�) denotes the realization of the [0,1] uniform random variable, and Φ( ) 

denotes the standard normal cumulative distribution function (CDF). The normalized lower 

bound of ��,� in Eq.(14) is given by: 

��� = �(���)�/����������    (15) 

An ensemble trace of the post-processed daily flow, ���(�), may then be obtained from: ���(�) = ��� + ��(�) = {(���)� + ����(ω)}�/�, ���(ω) ≥ −(���)�/�  (16) 

where ���(�) and ��(�) denote the ensemble realizations of ��� and ��, respectively.  

The error modeling as described above requires estimation of �, ����, and �����  that render the 

distribution of ���, approximately truncated normal given ���� (see Eq.(10)). In addition, Eq.(11) 

assumes that ��� is approximately homoscedastic with respect to ���� except near the origin where 

the lower bound strongly suppresses variability. In reality, the above assumptions may not be 

met for all basins. In addition, there may not be enough data points over the tail ends of ���� to 

test the conditional truncated normality or homoscedasticity. In this work, the reasonableness of 

the above assumptions is checked by examining for each basin the sample moments, normal 

quantile plots, histograms, and scatter plots of ��� vs. ����. For those basin showing significant 



22 

departures from truncated normality or homoscedasticity, � and/or �����  are adjusted until the 

results passed the visual test. Figs 9 and 10 show examples of how � is adjusted based on the 

mean CRPS results. Note that, for HUNP1, it was necessary to adjust � significantly from the 

nominal optimum associated with zero skewness, but that, for MPLP1, no adjustment was 

necessary for � as the nominal optimum produced the minimum mean CRPS. 

Admittedly, the above error modeling procedure is less than fully objective for 

improvement of which additional research is necessary. In this study, only truncated normal is 

considered for ����������� for simplilcity. Other distributions, such as truncated gamma (Chapman 

1956), are also possible. 

 
Figure 9: Adjustement of � based on mean CRPS for HUNP1 basin in Juniata River Basin, PA. 
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Figure 10: Adjustement of λ based on mean CRPS for MPLP1 basin in Juniata River Basin, PA. 

To capture the distributional characteristics of multi-daily flow, it is necessary to model the 

temporal dependence of ���. Due to the large number, basin-specific modeling of error time series 

(Box and Jenkins 1976) was outside of the scope of this study. Instead, the error, ��� = ���� − ����, 

is modelled with AR(1) as a first-order approximation for all basins. The use of ���� rather than ���� in the above is motivated by the fact that ���� is not lead time-dependent, and hence greatly 

simplifies the modeling. The impact of this simplification is relatively small compared to the 

goodness of the time series modeling of ��� = ���� − ����. To assess the adequacy of AR(1), 

structure identification were carried out for a small number of basins in the MA-, NC-, NE-, and 

NWRFCs’ service areas. The results indicate that the error structures are generally more complex 
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than AR(1), and contain both autoregressive and moving-average components of higher order. 

Appendix B shows examples of the time series modeling results. The above is not very 

surprising given the very widely varying hydroclimatology of the basins and goodness of the 

hydrologic modeling. The simplifying choice of AR(1) in this work is additionally motivated by 

its use in EnsPost which facilitates direct comparison between MS-EnsPost and EnsPost. Though 

limited in sample size, the above findings suggest that additional improvement in ensemble 

prediction of multi-daily flow may be possible with improved modeling of temporal dependence 

of prediction error. 
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Study basins and data used 

For MS-PM, a  total of 34 basins, comprising 13, 8, 7 and 6 in the service areas of CB-, 

CN-, MA- and WGRFC, respectively, are used. They were also used in previous studies of 

EnsPost (Regonda and Seo 2008; Seo et al. 2006). For MS-EnsPost, a total of 139 basins, 

comprising 11, 13, 7, 19, 13, 28, 42, and 6 in the service areas of CB-, CN-, MA-, MB-, NC-, 

NE-, NW-, and WGRFC, respectively, are used (see Fig 11). The basin areas range from 91 to 

30,700 km2 with 48, 41 and 50 basins under 500, between 500 and 1,000, and over 1,000 km2, 

respectively. The basins cover a wide range of hydroclimatology as may be seen in mean annual 

precipitation (Fig 11), the aridity index (Fig 12) and the fraction of precipitation as snow (Fig 

13).  

 
Figure 11: Map of mean annual precipitation. 
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The aridity index, �, is defined as (Budyko et al. 1974): � = ����  (17) 

where �� and �� denote the mean potential evaporation and precipitation (in mm/day), 

respectively. Fig 12 shows the location and the corresponding aridity index for each basin in the 

study area. Most of the basins in the northeast and the Pacific northwest are humid and hence 

have small values of aridity index whereas basins in midsection of the continent and those in 

California are generally semi-arid to arid. 

The fraction of precipitation as snow, ��, is defined as:  �� = ��[���℃]��    (18) 

 
Figure 12: Map of aridity index. 
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where T denotes the surface air temperature in ℃ and ��[ ] denotes the mean of precipitation for 

which the event bracketed holds true. The fraction of precipitation as snow contributes to the 

accumulation of snow in winter, a delay in contribution to soil moisture and recharge to 

groundwater and melting during spring, contributing to a longer lag in streamflow generation 

(Berghuijs et al. 2014). Fig 13 shows the location and the �� value for the basins used in this 

research. Snow-driven basins along the Rocky Mountains in Colorado, Idaho and Montana have �� exceeding 50 percent. The majority of the basins in the Middle Atlantic and Northeast have �� of 0.1 to 0.3, and only a small fraction of precipitation occurs as snow for those in the 

Midwest and Texas. 

 

 
Figure 13: Map of fraction of precipitation as snow. 
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In general, an arid basin has smaller predictability of streamflow than a humid basin, and a 

snow-driven basin has larger predictability than a rainfall-driven basin. Appendix C shows mean 

monthly streamflow for all basins used in this research. 

 The data used for this study are mean daily observed and simulated streamflow. The 

historical observed mean daily streamflow, referred to as QME in the NWS, is obtained from the 

US Geological Survey. The focus of this work is on reducing and quantifying hydrologic 

uncertainty. As such, the model output of interest is the simulated streamflow, which reflects 

hydrologic uncertainty only, rather than the streamflow forecast, which reflects both input and 

hydrologic uncertainties (Krzysztofowicz 1999; Seo et al. 2006). The simulated mean daily flow, 

or SQME, is derived from the simulated instantaneous flow, or SQIN, generated at a 6-hr 

interval using the operational hydrologic models, and the observed forcings of mean areal 

precipitation, temperature, and potential evapotranspiration. For the remainder of this 

dissertation, by daily flow, it is meant mean daily flow. The hydrologic models used are the SAC 

(Burnash et al. 1973) for soil moisture accounting, UH (Chow et al. 1988) for surface runoff 

routing, and SNOW-17 (Anderson 1973) for snow ablation. The MARFC uses the continuous 

Antecedent Precipitation Index model (API-CONT; Fedora and Beschta 1989; Sittner et al. 

1969) instead of SAC. The SQIN time series were produced by the respective RFCs using the 

Community Hydrologic Prediction System (CHPS; Gijsbers et al. 2009) based on the RFCs’ 

historical forcings and calibrated model parameters. The CHPS is currently the main operational 

forecasting system at the RFCs, and uses the single (RES-SNGL) and joint (RES-J) reservoir 

regulation models, and the SSARR reservoir regulation (SSARRESV) model for simulation of 

reservoir operations (Adams III 2016; NWS 2008a, 2008b). RES-SNGL can model sophisticated 

operating rules, but only for reservoirs operating individually, whereas RES-J can model 
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multiple reservoirs with limited operating rules, but only from up- to downstream (Limon 2019). 

The SSARRESV is based on the Streamflow Synthesis and Reservoir Regulation System 

developed by the US Army Corps of Engineers and NWRFC (NWS 2015) with which flows may 

be routed as a function of multi-variable relationships involving backwater effects from a 

downstream reservoir. Reservoir models were included in the hydrologic modeling of 20 of the 

139 locations used for MS-EnsPost evaluation (Chapter 6). There are about 14 additional 

locations impacted by reservoir regulations which are not modeled. Limon (2019) has shown 

that, for a water supply reservoir in North Texas, the magnitude of reservoir modeling 

uncertainty may be comparable to that of all other hydrologic uncertainties combined, and may 

even approach that of the input uncertainty. As such, flow regulations present a large additional 

challenge to streamflow post-processing. Experience thus far indicates that at least 20 years’ 

worth of data is necessary for estimation of the EnsPost parameters (NWS 2015). The period of 

record used in this work common to both QME and SQME time series ranged from 30 to 54 

years for MS-PM evaluation (Subsection 5.1) and 12 to 66 years (which exceeded 30 years for 

over 90 percent of the basins) for MS-EnsPost evaluation (Subsection 5.2) 

  



30 

 

Evaluation 

This section describes how MS-PM and MS-EnsPost are evaluated. For MS-PM, the 

evaluation is limited to single-valued predictions only whereas for MS-EnsPost it is for both 

single-valued and ensemble predictions. 

5.1 MS-PM 

We assess MS-PM for 34 basins in the service areas of CB-, CN-, MA- and WGRFCs. The 

following three approaches are evaluated: 

A1) PM at a single multi-daily scale 

A2) A1 but with generation and averaging of multiple CDFs 

A3) A2 but at multiple multi-daily scales 

In A1, for a chosen time window of length K (days), PM is performed at that scale, and the 

CDF of the simulated flow is matched with that of observed flow in that scale. One may repeat 

the  above for time windows of different lengths (Regonda et al. 2008). Figure 14 illustrates the 

above operation at a K-daily scale. In A2, we apply A1 for different starting days of 1 through K 

within the first window and the resulting K adjusted daily streamflows are averaged.  In A3, we 

apply A2 for the largest window and replace the original simulation with the averaged daily 

simulation from A2. Then, we use the CDF of averaged time series of simulated flow for 

matching with that of observed flow in the second largest window. This process is repeated until 

the smallest time window is reached. Fig 15 shows examples of A1 (left panels) and A2 (right 

panels) for a range of multi-daily aggregation scales. The RMSE results for A1 (upper-left panel) 

indicate that multi-daily correction improves over daily correction for all multi-daily scales of 



31 

aggregation, but that the margin of improves varies significantly from one multi-daily scale to 

another. The RMSE results for A2 (upper-right panel) indicate that using the average CDFs 

reduce scale-to-scale variations from reduced sampling uncertainty, that, for this particular 

example, 5- and 13-daily scales of aggregation provide the largest improvement, and that all 

multi-daily scales significantly improve over daily scale. 

 

 
Figure 14: Schematic of multi daily CDF-matching (from Regonda and Seo 2008). 
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Figure 15: An example error statistics of PM at a single multi-daily scale without (left panel) and with (right panel) 
generation and averaging of multiple CDFs for SGET2 in Upper Trinity River Basin. 

5.2 MS-EnsPost 

For comparative evaluation of MS-EnsPost, both single-valued and ensemble verification of 

MS-EnsPost via leave-two-years-out cross validation were carried out. The leave-one-year-out 

cross validation results are similar. In single-valued verification, the raw and bias-corrected 

predictions, and ensemble mean predictions from post-processing with EnsPost and MS-EnsPost 

A1) RMSE 
for SGET2 

A2) RMSE 
for SGET2 

A1) ME for 
SGET2 

A2) ME for 
SGET2 
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are evaluated. In ensemble verification, the ensemble predictions from EnsPost and MS-EnsPost 

are evaluated, and their skill in reference to sample climatology of historical observed flow is 

assessed. In both, predictions of daily flow with lead times of 1 to 32 days, and of monthly flow 

with a lead time of one month are considered. For single-valued predictions, RMSE is used as 

the primary measure of performance: 

RMSE(k) = � ��(�) ∑ [���(k) − ���(k)]��(�)���   (19) 

where ���(�) denotes the i-th Day-� prediction of daily flow; ���(k) denotes the verifying 

observed daily flow; and �(�) denotes the total number of Day-� daily flow predictions. For 

ensemble predictions, the mean Continuous Ranked Probability Score (CRPS), its 

decomposition, and mean Continuous Ranked Probability Skill Score (CRPSS) are used as 

primary measures (Brown and Seo 2010; Kim et al. 2018). The CRPS represents the integral 

squared difference between the CDF of the predicted variable, FY(q), and that of the verifying 

observed variable, FX(q) (i.e., a step function): ���� = ∫{(��(�) − ��(�)}� ��      (20) 

The mean CRPS is the average of the CRPS values from the individual pairs of ensemble 

forecasts and observations and reflects the overall quality of an ensemble forecasting system (the 

smaller, the better). The CRPS is decomposed into reliability (REL), resolution (RES), and 

uncertainty (UNC), or into REL and potential CRPS (CRPSPOT) (Hersbach 2000): ���� = ��� − ��� + ��� = ��� + ������� (21) 

Smaller REL indicates more reliable ensembles (desirable) and larger RES means better 

resolution (desirable). The RES component (=UNC – CRPSPOT) is positive if the ensemble 

forecast is better than the climatological ensemble forecast (Hersbach 2000). The UNC 

component reflects climatological uncertainties in the observations and does not relate to forecast 
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attributes. The CRPSPOT (=CRPS – REL) represents the CRPS for a perfectly reliable forecast 

(Hersbach 2000). Similarly to the CRPS, smaller CRPSPOT indicates smaller error or greater 

forecast quality. The mean CRPSS measures this skill relative to climatology, i.e., historical 

traces of observed daily flow valid at the same time of the year as the subject forecast: �������������� =  ���������������� � ����������������������������   (22) 

Perfect and skill-less ensemble forecasts have mean CRPSS of unity and zero, respectively. 
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Results and discussion 

This section summarizes the evaluation results for MS-PM and MS-EnsPost. For MS-PM, 

the evaluation is limited to single-valued results only whereas for MS-EnsPost it is for both 

single-valued and ensemble results. 

6.1 MS-PM 

MS-PM was applied for 34 basins in four different RFCs. Time windows of 1 to 5 days were 

used for the CN- and WGRFC basins, and 1 to 128 days for the MA- and CNRFC basins. The 

choice for the latter is to capture the temporal correlation structure at larger scales of 

aggregation. For evaluation of single-valued predictions, RMSE is used as the primary measure 

of performance: 

RMSE = ��� ∑ [��� − ���]�����       (23) 

where ��� denotes the i-th bias-corrected simulation of daily flow; ��� denotes the verifying 

observed daily flow; and � denotes the total number of daily flow predictions. Fig 16 shows the 

CBRFC basin results. They are based on leave-one-year-out cross validation. In the figure, the 

red bars indicate the reduction in RMSE by the CDF-matched simulation at a daily scale over the 

raw simulations. The blue, cyan and green bars indicate the RMSE reductions from A1, A2 and 

A3, respectively. Note that PM at daily scale is not able to reduce RMSE over raw simulation. 

The single multi-daily scale (i.e., A1) results show positive reduction in RMSE, an  indication 

that the multiscale approach provides improvement. Single and multiple multi-daily scales with 

CDF averaging (i.e., A2 and A3) reduce RMSE by 5% or more for the majority of the basins and 

outperform A1. Fig 17 shows the CNRFC results which indicate negative or little reduction
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Figure 16: Root mean square error results for CBRFC basins. 

in RMSE with PM at daily scale. HOPC1 shows very large reduction which is due to large biases 

present in model-simulated streamflow. All three MS-PM techniques are able to reduce RMSE 

for five  basins. Fig 18 shows results for the MARFC basin all of which are located in the Juniata 

River Basin. It is seen that PM at daily scale reduces biases effectively for three out of seven 



37 

basins. However, more improvement can be gained by PM at multi-daily scales for all seven 

basins. Fig 19 shows the results for the six headwater basins in the Upper Trinity River Basin in 

north Texas. For five of the basins, the three techniques are able to reduce biases by over 10%.

 
Figure 17: Root mean square error results for CNRFC basins. 
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Figure 18: Root mean square error results for MARFC basins. 

For four of the basins, PM at daily scale iscreases RMSE over raw model simulations whereas 

the three MS-PM techniques reduce RMSE for all five basins. BRPT2, however, shows slight 

increase in RMSE using MS-PM at multiple scales which is presumably due to large sampling 

uncertainties as well as additional degrees of freedom introduced at large scales.   

The MS-PM results above show that, perhaps not surprisingly, PM suffers from sampling 

uncertainties at larger time scales due to increasingly smaller sample size. 
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Figure 19: Root mean square error results for WGRFC basins. 

In addition, whereas single-scale PM at a multi-daily scale often corrects biases in daily flow 

more effectively than PM at a daily scale, MS-PM over a range of temporal aggregation scales 

does not necessarily improve over PM at a single scale due presumably to the sampling 

uncertainties that accrue over multiple PM operations. On the other hand, larger aggregation 

scales may be necessary, even with larger uncertainties for, e.g., ephemeral basins in semi-arid to 

arid regions.  
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6.2 MS-EnsPost 

This section presents the comparative evaluation results for single-valued and ensemble 

predictions, and assesses the predictability of streamflow as measured from the ensemble 

prediction results for different hydroclimatological regimes. 

6.2.1 Single-valued streamflow prediction 

Fig 20 through Fig 27 show the RMSE of the raw, bias-corrected, MS-EnsPost ensemble 

mean, and EnsPost ensemble mean streamflow predictions for lead times of 1 to 7 days, and 1 

month for the basins in eight River Forecast Centers’ service areas. In these figures, the RMSE 

values for each basin are connected to help assess the relative performance among the four 

different predictions for each basin. Reduction in RMSE by the bias-corrected prediction over 

the raw is an indication that significant magnitude-dependent biases exist in the raw model-

simulated flow due to parametric or structural errors in the hydrologic models, biases in the 

forcings, or flow regulations. A reduction in RMSE by the MS-EnsPost ensemble mean 

prediction over the bias-corrected is due to multiscale regression, and indicates that significant 

uncertainties exist in the initial conditions of the hydrologic models, or significant hydrologic 

memory exists in the surface and soil water storages of the basin. The monthly results (right-

most columns in Fig 20 through Fig 27) reflect bias correction, which impacts over the entire 

forecast horizon, more than multiscale regression, which impacts only over the range of 

hydrologic memory. Due to the temporal aggregation, the monthly results amplify the relative 

performance of the bias correction components of MS-EnsPost and EnsPost. The results for all 

139 basins indicate that, MS-EnsPost reduces the RMSE of the raw model predictions of daily 

flow by 5 to 74 percent and when compared to the EnsPost predictions, by 5 to 68 percent, and 
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that MS-EnsPost is superior to EnsPost for 1 month-ahead streamflow prediction for all basins 

examined in this work. Below the main RMSE results for each of the 8 RFCs are summarized. 

For CBRFC (Fig 20), the MS-EnsPost ensemble mean prediction improves over the raw 

and EnsPost ensemble mean predictions for all basins. The yellow circles in the figure indicate 

that the basin has flow regulations that are modeled with CHPS. In general, both bias correction 

and multiscale regression contributes to the improvement by MS-EnsPost. For a number of 

basins, the reduction in RMSE due to multiscale regression persists to Day 4 and beyond, a 

reflection of the longer hydrologic memory present in the Upper Colorado River Basin owing to 

the snowpack.  

 
Figure 20: RMSE of the raw, bias-corrected, MS-EnsPost ensemble mean, and EnsPost ensemble mean predictions 

for lead times of 1 to 7 days, and 1 month for the basins in the CBRFCs’ service area (yellow dots indicate basins 

with reservoir model included). 
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For CNRFC (Fig 21), MS-EnsPost improves over the raw model and EnsPost predictions 

for almost all basins. In Fig 21, the empty circles indicate that the basin has unmodeled regulated 

flow. Also, dots with green and blue outline indicate the basins in coastal range and Sierra 

Nevada mountain range, respectively. In general, both bias correction and multiscale regression 

contribute to the reduction in RMSE. The magnitude of reduction, however, is not as large as 

that for CBRFC. Also, the effect of multiscale regression is shorter-lived than that for CBRFC. 

For the coastal basins, the impact of multiscale regression is smaller due to the weaker 

hydrologic memory. 

 
Figure 21: Same as Fig 20 but for the CNRFC basins (empty circles indicate basins with unmodeled regulated flow, 

green and blue outline indicate basins in coastal and Sierra Nevada mountain range, respectively). 
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 For MARFC (Fig 22), bias correction generally contributes more to the RMSE reduction 

by MS-EnsPost than multiscale regression. The largest improvement by MS-EnsPost over 

EnsPost is in the Day-1 prediction for RTDP1 (third from the top) which is downstream of 

Raystown Dam on the Raystown Branch of the Juniata River. Overall, the impact of multiscale 

regression is rather modest and wears off within the first two days of lead time, an indication that 

the hydrologic memory in the Juniata River Basin in PA is relatively short. 

For MBRFC (Fig 23), bias correction has significantly larger impact than multiscale regression 

for most basins. Visual examination of the scatter plots of the raw model predictions vs. 

verifying observations confirm that relatively large errors exist in the raw model predictions. 

Additional research is needed for its attribution.  

 
Figure 22: Same as Fig 20 but for the MARFC basins. 
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Figure 23: Same as Fig 20 but for the MBRFC basins. 

For NCRFC (Fig 24), both bias correction and multiscale regression in MS-EnsPost 

significantly reduce the RMSE of raw model predictions for most basins. For a number of basins, 

the impact of multiscale regression is very large at short lead times due probably to the increased 

hydrologic uncertainty from ice jams, back water effects, frozen ground, agricultural diversions, 

and breakout flows that are common in this region. 

For NERFC (Fig 25), both bias correction and multiscale regression in MS-EnsPost 

contribute to RMSE reduction. The impact of multiscale regression, however, is relatively short-

lived. For a number of the NERFC basins, the impact of bias correction is relatively large. The 

scatter plots of raw model prediction vs. verifying observation indicate that significant 
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Figure 24: Same as Fig 20 but for the NCRFC basins. 

magnitude-dependent biases exists for the above basins which MS-EnsPost is able to address 

effectively. The longer-lead time results for the NERFC basins indicate that the magnitude-

dependent bias correction of MS-EnsPost outperforms the PM-based bias correction of EnsPost 

for most basins. 

For NWRFC (Fig 26), bias correction is particularly effective for a number of flow-

regulated basins that exhibit strong magnitude-dependent biases. In Fig 26, dots with green and 

blue and red outline indicate the basins in coastal and Cascade mountain and intermountain 

range, respectively. As with the CNRFC basins, the margin of improvement by MS-EnsPost is 

smaller for coastal basins. The longer-lead time results indicate that, as with the NERFC basins, 
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the magnitude-dependent bias correction of MS-EnsPost outperforms the PM-based bias 

correction of EnsPost for most of the NWRFC basins.  

For the WGRFC basins (Fig 27), the improvement by MS-EnsPost over EnsPost is 

particularly large. These basins are located in the semi-arid western part of the Upper Trinity 

River Basin (Kim et al. 2018). As such, they have short memory in surface and soil water 

storages, and their streams are ephemeral despite relatively large basin size (441~1,764 km2). 

Because EnsPost does not model intermittency of streamflow, its results are particularly poor for 

the WGRFC basins. MS-EnsPost, on the other hand, is able to address intermittency to a 

significant extent by aggregating flow which reduces or removes zero flows at sufficiently large 

 
Figure 25: Same as Fig 20 but for the NERFC basins. 
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Figure 26: Same as Fig 20 but for the NWRFC basins. 

temporal scales. Overall, the reduction in RMSE due to multiscale regression is rather short-

lived. The monthly results (right-most panel in Fig 27) for JAKT2 and DCJT2 (2nd and 4th from 

the top, respectively) are unexpected in that multiscale regression in MS-EnsPost slightly 

increased RMSE over magnitude-dependent bias correction alone. The above observation 

indicates that statistical assimilation of observed streamflow up to a month in aggregation scale 

does not add skill due to the weak hydrologic memory in streamflow in these basins. 
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Figure 27: Same as Fig 20 but for the WGRFC basins. 

6.2.2 Ensemble streamflow prediction 

In this subsection, the MS-EnsPost ensemble streamflow predictions with the EnsPost are 

comparatively evaluated. To facilitate comparison for a large number of basins, I use “worm” 

plots in which the mean CRPS of the MS-EnsPost predictions (y-axis) vs. the EnsPost 

predictions (x-axis) are dot-plotted and connected for lead times of 1 to 7 days to form a “worm” 

for each basin. Fig 28 shows the worm plots in log-log scale for all study basins for each RFC. 

The lower and upper ends of each worm are associated with Day-1 and -7 predictions for that 

basin, respectively. If MS-EnsPost improves over EnsPost for 7 day-ahead prediction, the worms 

would stretch downward from the diagonal. The longer the downward stretch, the larger the 
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improvement by MS-EnsPost over EnsPost. If MS-EnsPost does not improve over EnsPost, the 

worms would lie along the diagonal. Fig 29 shows the mean CRPS scatter plots of 1 month-

ahead MS-EnsPost predictions of monthly flow vs. the EnsPost.  

Fig 28 shows that, for most basins, MS-EnsPost significantly improves over EnsPost. For 

most MARFC basins, however, little improvement is seen. For some MBRFC basin, MS-

EnsPost performed worse than EnsPost for Day-1 and -2 predictions. For RTDP1 of MARFC 

(the 3rd worm from the top), MS-EnsPost clearly improves over EnsPost. Recall in the single-

valued prediction results that MS-EnsPost generally showed significant improvement over 

EnsPost for regulated flows. The MBRFC basins results were unexpected in that MS-EnsPost 

was clearly superior to EnsPost in ensemble mean prediction. A closer examination indicates 

that, for the four MBRFC basins in question, the EnsPost ensemble predictions are superior to 

the MS-EnsPost only for the first one or two days of lead time, and that, for longer lead times, 

the MS-EnsPost predictions are superior. The effect of the above comparative performance may 

be seen in Fig 29 where the 1 month-ahead MS-EnsPost predictions of monthly flow is clearly 

superior to the EnsPost for all MBRFC basins. Note also in Fig 29 that the improvement by MS-

EnsPost over EnsPost is larger for the smaller MBRFC basins. This is due to the fact that bias 

correction, rather than multiscale regression, is largely responsible for the improvement by MS-

EnsPost which produces a large positive cumulative impact for prediction of monthly flow.  

Overall, the CB-, NC- and NWRFC basins show particularly large improvement by MS-

EnsPost over EnsPost. It was summarized in the single-valued prediction results that, for CB- 

and NWRFC basins, the reduction in RMSE was due more to multiscale regression than bias 

correction. For many basins in these two RFCs, streamflow is fed by snowmelt which increases 

hydrologic memory. The CB- and NWRFC results indicate that multiscale regression
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Figure 28: Worm plots (see text for explanation) of mean CRPS of ensemble predictions of daily flow from MS-

EnsPost and EnsPost for lead times of 1 to 7 days. 

in MS-EnsPost is able to utilize effectively the predictability present in the model-simulated and 

observed flows over a range of temporal scales of aggregation. For the NCRFC basins, on the 

other hand, the significant improvement by MS-EnsPost is due more to bias correction than
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Figure 29: Same as Fig 28 but for 1 month-ahead predictions of monthly flow. 

multiscale regression as explained in the single-valued prediction results. For the NERFC basins, 

MS-EnsPost shows significantly larger improvement over EnsPost for larger basins. For the 

CNRFC basins, MS-EnsPost significantly improves over EnsPost for some basins, while for the 
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others, MS-EnsPost and EnsPost perform similarly. As seen in the single-valued prediction 

results, the improvement is generally smaller for the coastal basins. For the WGRFC basins, MS-

EnsPost significantly improves over EnsPost. It indicates that bias correction and multiscale 

regression are effective in addressing the flow magnitude-dependent biases in raw model-

predicted flow and intermittency of streamflow in the semi-arid region.  

 Decomposition of the mean CRPS (see Eq.(21)) indicates that, for most basins, the 

reduction in mean CRPS by MS-EnsPost over EnsPost is due mostly to improved resolution, 

rather than improved reliability (See Appendix D for examples). This is not very surprising 

because the EnsPost uses empirical probability-matching based on NQT whereas MS-EnsPost 

relies on approximate distribution modeling via the Box-Cox transformation. If the historical 

record is long enough to model the tails of the distributions with accuracy, one may expect the 

ensemble traces sampled from the empirically-modeled distributions to be more reliable. To 

scrutinize reliability of MS-EnsPost ensemble predictions, also the reliability diagrams (Brown 

and Seo 2010; Jolliffe and Stephenson 2012; Wilks 2006) and Brier scores (1950) are examined 

for a wide range of thresholds.  Figs 30 through 33 show comparative examples of Brier scores 

and reliability diagrams for EnsPost’s and MS-EnsPost’s daily predictions. 

They indicate that the MS-EnsPost ensembles are generally as reliable as the EnsPost 

ensembles for the 90th percentile or larger thresholds, but significantly less so for the 50th 

percentiles or smaller thresholds. For flood and water supply forecasting, performance for larger 

flows is much more important than that for smaller flows. As such, deterioration in reliability at 

lower thresholds is not a large concern in most applications. The mean CRPS results for MS-

EnsPost above indicate that, overall, the gain in resolution outweighs some loss in reliability in 

the low flow regime. 
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Figure 30: Comparison of CRPS vs. lead time (top) and Brier score (higher 50% of observed flow) vs. lead time 

(bottom) for SXTP1 in MARFC. 

 
Figure 31: Comparison of CRPS vs. lead time (top) and Brier score (higher 50% of observed flow) vs. lead time 

(bottom) for AESI4 in NCRFC. 
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Figure 32: Reliability diagram from EnsPost (higher 2.5% of observed flow) for DIRC2 in Upper Colorado River 

Basin. 

 
Figure 33: Reliability diagram from MS-EnsPost (higher 2.5% of observed flow) for DIRC2 in Upper Colorado 

River Basin. 
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6.2.3 Streamflow predictability 

The skill in post-processed ensemble predictions is bounded by the predictability of 

streamflow explainable by the forcings (Baldwin et al. 2003; Bengtsso and Hodges 2006; 

Gebregiorgis and Hossain 2011; Li and Ding 2011; Simmons et al. 1995), hydrologic and 

reservoir models (Hou et al. 2009; Mahanama et al. 2012; Maurer and Lettenmaier 2004; 

Schlosser and Milly 2002), and statistical assimilation of streamflow via multiscale regression 

(Bogner et al. 2016; Sharma et al. 2018) used. In this subsection, the predictability of streamflow 

in different hydroclimatological regions is assessed and characterized based on the ensemble 

prediction results presented above, and the gains by MS-EnsPost over EnsPost are attributed by 

assessing the predictability through a skill score (Hou et al. 2009; Westra and Sharma 2010). Fig 

34 shows the mean CRPSS of the MS-EnsPost ensemble predictions for all seasons for lead 

times of 1 to 32 days. The reference forecast is the sample climatology of historical observed 

flow. To assess seasonal variations, the wet-vs.-dry seasonal results were also examined. They 

showed that, except for the CBRFC basins, the mean CRPSS does not differ much between the 

two seasons. As such, only the combined results are presented which are necessarily more 

reflective of the wet season. For the CBRFC basins, the mean CRPSS is significantly lower for 

the dry season due to the fact that highly persistent low-flow conditions may be predicted very 

well with climatology. In Fig 34, the vertical spread in the mean CRPSS curves represents the 

variations in predictability of streamflow among the different basins within each RFC’s service 

area. It is readily seen that the CBRFC basins, all of which are in the Upper Colorado River 

Basin, exhibit the smallest variations. The largest variations are observed with the NWRFC 

basins which encompass the coastal, mountain and intermountain regions of the Pacific 

Northwest.  



56 

For each RFC, there are a small number of basins with conspicuously lower mean CRPSS. 

They are generally associated with regulated flows which inflate hydrologic uncertainty. Because 

these basins do not represent natural flows, they are treated separately in the analysis below. 

 
Figure 34: CRPSS of ensemble predictions of daily flow from MS-EnsPost vs. lead time. The reference is sample 

climatology of historical observed flow. 
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MS-EnsPost seeks two effects in the mean CRPSS results: an increase in the limiting mean 

CRPSS from bias correction at very large lead times, ��������������(|∞|), and an increase in mean 

CRPSS from multiscale regression at shorter lead times above ��������������(|∞|). The first and 

second attributes above are referred to herein as the limiting mean CRPSS and the hydrologic 

memory scale (Schlosser and Milly 2002), respectively. The larger the limiting CRPSS, the more 

skillful the bias-corrected ensemble prediction relative to climatology. The larger the hydrologic 

memory scale, the larger the increase in mean CRPSS due to multiscale regression. The 

hydrologic memory scale, ��� (days), which represents the predictability of streamflow due to 

the surface and soil water storages in the basin (Kumar 2011), is defined as: ��� = ∫ ����������������� (|�|)��  (24) 

where ���������������(|�|) denotes the normalized mean CRPSS at lead time � (days). The normalization 

renders mean CRPSS to approach zero at large lead times. One may hence consider ���������������(|�|) 

as correlogram with nugget effect (Norouzi et al. 2018). To illustrate, Fig 35 shows the two 

attributes in CRPSS. 

 
Figure 35: Attribution of changes in CRPSS. 
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 Fig 36 shows the resulting pairs of ��� and ��������������(|∞|) for all basins in each RFC as 

obtained from the MS-EnsPost and EnsPost predictions. For each basin, an arrow connects the 

EnsPost result to the matching MS-EnsPost result. If MS-EnsPost increases the limiting mean 

CRPSS, the arrow would point upward. If MS-EnsPost increases the hydrologic memory scale, 

the arrow would point to the right. The longer the arrow is, the larger the improvement or 

deterioration is. Accordingly, lengthy arrows pointing in the upper-right direction would indicate 

MS-EnsPost clearly improving over EnsPost. It is seen that, for a number of basins, MS-EnsPost 

improves limiting mean CRPSS but reduces the hydrologic memory scale, resulting in arrows 

pointing in the upper-left direction. Examination of the mean CRPS results indicates that, for 

these basins, the mean CRPS approaches the limiting values very slowly due to very highly 

correlated errors, thereby artificially inflating the hydrologic memory scale. Accordingly, one 

may consider MS-EnsPost inferior to EnsPost only if the arrow is pointing in the lower-left 

direction.  

Fig 36 shows that MS-EnsPost outperforms or comparable to EnsPost for all basins, 

increases limiting CRPSS for almost all basins, and provides significant additional skill via 

multiscale regression particularly for the CB-, CN-, NC-, and NWRFC basins. From Fig 36, a 

number of postulations may also be made. The significant increase in ��� by MS-EnsPost for 

the CB-, CN-, NC-, and NWRFC basins suggests that there exists significant multiscale 

hydrologic memory to be exploited for operational hydrologic forecasting via data assimilation. 

The significant increase in ��������������(|∞|) by MS-EnsPost for the MB- and NERFC basins 

suggests that there may exist significant room for improving calibration, hydrologic modeling, 

and input forcings to reduce hydrologic uncertainties. The WGRFC basin results, on the other 

hand, suggest limited room for improving predictive skill within the existing modeling and
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Figure 36: Changes in limiting CRPSS and hydrologic memory scale from those of EnsPost to those of MS-EnsPost 

(see text for explanation). 

forecasting process, and point to improving model physics as well as soil moisture sensing and 

its assimilation.  

The relative importance of ��������������(|∞|) vs. ��� in assessing predictability necessarily 

varies with the application at hand. For long-range predictions, ��������������(|∞|) would be more 



60 

important whereas ��� may be just as important for short-range predictions. Hence, it is not 

readily possible to translate uniquely the two summary attributes into a single measure. One may 

consider, however, the relative positions of the (���, ��������������(|∞|)) pairs for MS-EnsPost (i.e., 

the tips of the arrows) within the xy-plot in Fig 36, and approximately rank the groups of basins 

in different RFCs in terms of the collective strength of predictability as measured through MS-

EnsPost. The figure indicates that the CB-, CN-, NWRFC basins are the most predictable, 

followed by the NE-, MA-, and NCRFC basins, and that the MB- and WGRFC basins are the 

least predictable. The above order reflects what may be garnered visually from Fig 34, and 

generally follows the decreasing order of the fraction of precipitation as snow, ��, and mean 

annual precipitation (see Fig 11 through Fig 13). To illustrate, Fig 37 shows ��������������(|∞|) vs.

 
Figure 37: Limiting CRPSS vs. mean annual precipitation for non-snow-driven basins. 
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Figure 38: hydrologic memory scale vs. fraction of precipitation as snow. 

annual mean precipitation for basins with �� < 0.3 and Fig 38 shows ��� vs. �� for all basins 

(Please see Appendix E for more comparison plots). 

Though the scatters are large, ��������������(|∞|) for non-snow-dominated basins relates well 

with mean annual precipitation except for the few very wet coastal basins, and ��� relate 

positively with �� for all basins. 

6.2.4 Analysis of multiscale regression weights 

MS-EnsPost uses multiscale regression to assimilate statistically streamflow observations 

aggregated at different time scales. Because the weight calculated for the observed flow reflects 
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the strength of memory of the basins for one timestep-ahead prediction of streamflow, the 

weights succinctly characterize the scale-dependent memory. For interpretation of the weights, it 

is useful to consider the method-of-moment estimate for the weight associated with the observed 

flow,  ��, as described in Seo et al. (2006) even though Fisher estimation is used in MS-EnsPost 

as described in Subsection 3.2.2: �� = ����,�(|�|)���,�(|�|)���,�(|�|)������,�(|�|)�    (25) 

In the above, ��,�(|�|) and ��,�(|�|) denote the serial correlation at lag � of observed flow 

aggregated at the k-th time scale, ��,�� , and the cross correlation at lag � between ��,��  and the 

bias-corrected model-simulated flow aggregated at the k-th time scale, ��,�� , respectively. Eq.(25) 

indicates that, the stronger the persistence in the observed flow is, the larger the weight for ��,��  

is, and that, the more skillful the model-simulated flow is, the smaller the weight is. Figs 39 

through 45 and Fig 48 show the scale-dependent weight for all basins as grouped by RFCs. 

Though the weights are connected across different temporal scales of aggregation for basin 

identification purposes, they are not to be seen as a form of serial correlation. The main 

observations may be summarized as follows for each RFC. 

CBRFC - The weight curves are very similar for most basins. Those for BSWC2, GBYC2 

and WCRC2 show the largest differences. The BSWC2 weights indicate that the observed flow 

is the most persistent and the simulated flow is the most skillful in this group. GBYC2 is 

influenced by Granby Dam which has a large maximum storage of 539,800 acre feet. The 

weights for GBYC2 indicate that flow regulation reduces persistence in observed flow at all 

scales of aggregation at this location. WCRC2 is influenced by Willow Creek Dam which has a 

significantly smaller maximum storage of 11,177 acre feet. Note that the weight decreases the 

fastest for this basin as the temporal scale of aggregation increases, an indication  that the model- 
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Figure 39: Regression weights vs. aggregation scale for basins in CBRFC. 

simulated flow loses skill rather quickly as the aggregation scale increases. DIRC2 and WFDC2 

are regulated by Dillon Reservoir and Williams Fork Reservoir which have maximum stroages 

of 250,000 and 97,000 acre feet, respectively. The weights for these two basins, however, 

decrease at a slower rate than that for WCRC2. 

CNRFC – Unlike the  CBRFC basins, the weight curves vary significantly among the 

basins. Of the 13 basins, only 4 basins show significant memory. SHEC1, LAMC1 and LAMC0 
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indicate not only very weak memory but also little dependence on aggregation scale. LAMC1 

and CEGC1 are impacted by Lake Mendocino and Trinity Lake, respectively, both of which 

show generally smaller weights at all temporal scales aggregation. It is not clear what the source 

or sources of reduced memory and skill in model simulation may be for SHEC1. The weight 

curve suggests that significant unmodeled movement and control of water may exist in this 

basin. Additional research is needed to ascertain the above. 

 
Figure 40: Regression weights vs. aggregation scale for basins in CNRFC. 
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MARFC – The weight curves show that RTDP1, which is influenced by Raytown Dam, 

has by far the largest memory in this group. Recall that MS-EnsPost produced the largest 

improvement over EnsPost for RTDP1 in this group. The weight curves stongly support that MS-

EnsPost was able to utilize the strong memory present in this basin. Though all basins in this 

group are located in the Juniata River Basin, their weight curves exhibit significant variations. 

The magnitude of hydrologic memory, however, is too small for statistical assimilation to be 

very effective except for RTDP1. 

 
Figure 41: Regression weights vs. aggregation scale for basins in MARFC. 
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 MBRFC – The basins in this group show relative weak hydrologic memory except 

HMBI4 and SSTM4 the latter of which is influenced by Smithville Reservoir. Additional 

research is needed to identity the source or sources of strong memory for HMBI4. It is worth 

noting that several basins in this group indicate little to no memory. They hence present a 

challenge for statistical post processing as seen in the EnsPost and MS-EnsPost results. HBLN1, 

in particular, shows negative weights for the smallest aggregation scales, an indication that 

observed flow at the basin outlet provides little information about the state of the basin. It is

 
Figure 42: Regression weights vs. aggregation scale for basins in MBRFC. 
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suspected that multiple sources of hydrologic uncertainty contribute to the apparently lack of 

hydrologic memory, including ice jams, back water effects, frozen ground, agricultural 

diversions, and breakout flows which are common in this region. 

NCRFC – A number of basins in this group show relatively strong hydrologic memory 

with  OOIA4 and SIGI4 representing the strongest. These two locations are on the South and 

 
Figure 43: Regression weights vs. aggregation scale for basins in NCRFC. 
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North Skunk River in IA and drain relatively large areas of 1460.2 and 964.4 km2,  respectively. 

These rivers are regulated only midly via low-head dams which helps preserve the natural 

hydrologic memory and allow more skillful hydrologic modeling. 

NERFC – The weight curves for the NERFC basins show large variations. A number of 

them show relatively strong memory with DICM1, FTEN6 and NSTN3 representing the 

strongest. DICM1 drains a very large area of 3017.4 km2 in ME which contributes to strong 

memory due to large storage of water. FTEN6 drains a rather small area of 247.9 km2 but is 

impacted appreciably by Great Sacandaga Lake and Indian Lake in NY. NSTN3 drains a large 

area of 2063.7 km2 in NH and is impacted by power plants and by First Connecticut and Second 

Connecticut Lakes and Lake Francis upstream. 

NWRFC – A large number of basins in this group show wide-ranging weight curves.  

Some of them exhibit effects of regulation but in different ways. CAMI1 drains a 1535.3 km2 

area in ID and is impacted by Lost Valley Reservoir upstream. LERI1 drains a 2400.4 km2 area 

in ID and is greatly impacted by diversions above the station for irrigation of about 25,500 acres. 

The water of the Lemhi River and its tributaries is used for irrigation agriculture. Of the river's 

mainstem tributaries, only 7% are not totally disconnected year round due to diversion for 

irrigation. RILW1 drains a 489.3 km2 area in WA and is impacted by Rimrock Lake. WCHW1 

drains headwater flows over a 395.5 km2 area from a glacier on the northwest side of Columbia 

Peak into the South Fork Sauk River in WA. At this location, the weight curve decreases very 

slowly as the  time scale of aggregation increases due to the long memory in the glacier- and 

snowmelt processes. The weight curves for the above 4 basins and their varaiations serve to 

illustrate how MS-EnsPost utilizes scale-dependent hydrologic memory through multiscale 

regression. 
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Figure 44: Regression weights vs. aggregation scale for basins in NERFC. 

WGRFC – Of the WGRFC basins,  RCET2 stands out as having the largest hydrologic 

memory at all scales of aggregation due to Bardwell Dam upstream. Though the largest in 

catchment area in this group, DCJT2 has the fastest decreasing memory vs. increasing temporal
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Figure 45: Regression weights vs. aggregation scale for basins in NWRFC. 

scale of aggregation due probably to urbanization which quickens drainage of surface runoff. 

BRPT2 and JAKT2 show smaller memory than GLLT2 or SGET2 at time scales of aggregation 

of about 4 days or larger. The difference is probably due to the hydroclimatology;
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Figure 46: Scatter plot of observed vs. raw simulated (in red) and 1-day-ahead MS-EnsPost predicted flow (in blue) 
for LERI1 in NWRFC. 

 
Figure 47: CRPSS from MS-EnsPost (in green) and EnsPost (in red) vs. lead time for LERI1 in NWRFC. 
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BRPT2 and JAKT2 are drier basins (see Fig 49) and do not hold as much surface and subsurface 

storages of water as GLLT2 and SGET2 do. The relatively large weights for SGET2 at large 

temporal scales of aggregation are somewhat puzzling. In this area, there exists a number of 

small agricultural reservoirs whose storage effects are not modeled (Mike Schultz, personal 

communication). It is suspected that the resulting detention storages contribute to the increased 

memory. 

 
Figure 48: Regression weights vs. aggregation scale for basins in WGRFC. 
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The above observations indicate that human control of movement and storage of water 

affects the aggregation scale-dependent memory of a basin in a number of  different ways. 

Whereas flow regulations significantly increase hydrologic memory for some basins, the 

opposite is also observed for others. They suggest that statistical modeling of regulated flows is 

likely to require significant complexity that varies greatly from location to location. The results 

presented in this work demonstate the utility and effectiveness of the multiscale regression 

approach in characterizing the scale-dependent hydrologic memory and fully utilizing it toward 

improving streamflow prediction parsimoniously. 

 

 
Figure 49: Headwater basins in WGRFC. 
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6.2.5 Sensitivity to period of record 

One of the motivations for MS-EnsPost is to reduce the length requirement for the period of 

record so that nonstationarity may be considered. Streamflow responses have changed or are 

changing significantly in many parts of the world due to urbanization and climate change (Milly 

et al. 2008). Changing conditions force statistical post processors a difficult tradeoff between 

accounting for nonstationarities by dividing the period of record or modeling trends, which 

would significantly increase sampling uncertainties, vs. keeping sampling uncertainties smaller 

but at the expense of introducing biases due to nonstationarities. Owing to the parsimony, one 

may expect MS-EnsPost to require significantly less data than EnsPost. In this subsection, the 

relative performance of MS-EnsPost and EnsPost is evaluated under a reduced period of record. 

For this, the following experiments were carried out for each basin selected. It is important to 

note that the primary purpose of the experiments was not to identify and test nonstationarity, but 

to assess relative performance under reduced data availability. As such, the periods of record are 

devided in equal lengths whether the midpoints represent change points or not. The process 

comprise the following steps: 

1) Divide the the entire period of record into two subperiods of equal length, 

2) For each subperiod, carry out leave-two-year-out cross validation for EnsPost and MS-

EnsPost, and 

3) Comparatively evaluate the EnsPost and MS-EnsPost results for each subperiod. 

If one procedure is superior to the other under the increased  sampling uncertainty, one may 

expect the superior procedure to improve over the other for each of the two subperiods. In 

making the above comparison, one may place more confidence if the streamflow time series are 

significantly different between the two subperiods. To that end, 19 basins were selected from the 
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7 RFCs that exhihit the largest differences in the empirical CDFs (ECDF) of observed daily flow 

between the two periods. Figs 50 through 54 show selected examples. In each figure, the ECDF 

of observed daily flow for the entire period of record is shown in black, and the ECDFs for the 

1st and 2nd  subperiods are shown in puple and blue, respectively. In the inset, the right tails of the 

ECDFs above  the 95th percentile are shown to assess the difference in ECDF for high flows. The 

Kolmogorov-Smirnov test (Kolmogorov 1933; Smirnov 1948) for these basins indicates that one
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Figure 50: Empirical CDF of observed flow in the entire period of record (in black), first half (in purple) and second 

half (in blue) for GYRC1 in CNRFC. 

may very safely reject the null hypothesis that two ECDFs for the two subperiods come from the 

same population. 
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Though not the focus of this subsection, it is worth noting the findings from the visual 

examination of the ECDFs from the halved time series for all basins. They indicate rather strong 

 
Figure 51: Empirical CDF of observed flow in the entire period of record (in black), first half (in purple) and second 

half (in blue) for BRLM7 in MBRFC. 
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trends for a number of groups of basins; most of the MA-, MB- and NCRFC basins have become 

wetter in the 2nd subperiod, many of the CB- and NWRFC basins have become drier in the 2nd 

period, and many of the CNRFC basins have become wetter in the 2nd period. 

 
Figure 52: Empirical CDF of observed flow in the entire period of record (in black), first half (in purple) and second 

half (in blue) for OOAI4 in NCRFC. 



79 

 

 
Figure 53: Empirical CDF of observed flow in the entire period of record (in black), first half (in purple) and second 

half (in blue) for LERI1 in NWRFC. 
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Figure 54: Empirical CDF of observed flow in the entire period of record (in black), first half (in purple) and second 

half (in blue) for GLLT2 in WGRFC. 

Figs 55 and 56 show the worm plots for the selected basins for the two subperiods. As 

explained in Subsection 6.2.2, the lower and upper ends of each worm are associated with Day-1 

and -7 predictions for that basin, respectively. If MS-EnsPost improves over EnsPost for 7 day-
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ahead prediction, the worms would stretch downward from the diagonal. The longer the 

downward stretch, the larger the improvement by MS-EnsPost over EnsPost. If MS-EnsPost does 

not improve over EnsPost, the worms would lie along the diagonal. Fig 55 shows that, in the first 

subperiod, MS-EnsPost improves over EnsPost for Day-1 to Day-7 predictions for 13 out of the 

19 basins,  and performs comparably for the other 6 basins. Fig 56 also shows that, in the second 

subperiod, MS-EnsPost outperforms EnsPost for 11 out of the 19 basins, and performs 

comparably for the other 6 basins. For BRPT2 and GLLT2 in WGRFC, EnsPost outperformed 

MS-EnsPost.  As explained above, the performance of MS-EnsnPost is not as good in drier 

conditions as it is in wetter conditions. This is because the Box-Cox transform is not able to 

satisfy truncated normality of the error across all ranges in the transformed space when the 

hydroclimatological conditions became drier in the above two basins.  

As noted in Subsection 3.2.3, the Box-Cox parameter, � (see Eq.(10)), is chosen such that 

the MS-EnsPost results are better for high flows than for low flows. EnsPost, on the other hand, 

uses NQT so that, its results are of similar quality for both  high and low flows. For forecasting 

of floods and water supply, however, performance for high flows is much more important than 

that for low flows. For this reason, we also compare the performance of EnsPost and MS-

EnsPost for the two subperiods for the verifying observed flows exceeding the 95th percentile of 

observed flow. Figs 57 and 58 are the same as Figs  55 and 56, respectively, but for the verifying 

observed daily flow exceeding the 95th  percentile. Fig 57 shows that, in the first subperiod, MS-

EnsPost improved over EnsPost for 10 out of the 19 basins for high flows. Similarly, Fig 58 

indicates modest to significant improvement by MS-EnsPost over EnsPost for 15 out of the 19 

basins. MS-EnsnPost performed comparably to EnsPost for 3 basins. Note that, while the margin 

of improvement is not very large, MS-EnsPost outperforms EnsPost for BRPT2 and GLLT2 in 
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WGRFC in Fig 58. This is because the Box-Cox transformation provides better approximation of 

truncated normality for larger amounts of verifying observed flow. 

 

 

Figure 55: Worm plots (see text for explanation) of mean CRPS of ensemble predictions of daily flow from MS-
EnsPost and EnsPost for lead times of 1 to 7 days in the first half of period of record for 19 basins with large 

differences in empirical CDFs. 
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Figure 56:Worm plots (see text for explanation) of mean CRPS of ensemble predictions of daily flow from MS-
EnsPost and EnsPost for lead times of 1 to 7 days in the second half of period of record for 19 basins with large 

differences in empirical CDFs. 
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Figure 57: Worm plots (see text for explanation) of mean CRPS (exceeding 95th percentile of observef flow) of 
ensemble predictions of daily flow from MS-EnsPost and EnsPost for lead times of 1 to 7 days in the first half of 

period of record for 19 basins with large differences in empirical CDFs. 
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Figure 58: Worm plots (see text for explanation) of mean CRPS (exceeding 95th percentile of observef flow) of 

ensemble predictions of daily flow from MS-EnsPost and EnsPost for lead times of 1 to 7 days in the second half of 
period of record for 19 basins with large differences in empirical CDFs. 
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Conclusions and future research recommendations 

A novel multi-scale post-processor, MS-EnsPost, for ensemble streamflow prediction and a 

multiscale probability matching (MS-PM) technique for bias correction in streamflow simulation 

are developed and evaluated. The MS-PM was developed originally to improve the bias 

correction component of the existing ensemble post-processor, EnsPost, in the NWS’s 

Hydrologic Ensemble Forecast Service. The MS-PM successively applies probability matching 

(PM) across multiple time scales of aggregation to reduce scale-dependent biases in streamflow 

simulation. The evaluation results for 34 basins in the service areas of the Colorado Basin (CB-), 

California-Nevada (CN-), Middle-Atlantic (MA-), and West Gulf (WG-) River Forecast Centers 

(RFC) show  that MS-PM improves over PM for streamflow prediction at a daily time step, that 

averaging the empirical cumulative distribution functions to reduce sampling uncertainty 

marginally improves performance, but that the performance of MS-PM quickly reaches a limit 

with the addition of larger temporal scales of aggregation due to the increasingly large sampling 

uncertainties. 

MS-EnsPost represents a departure from the PM-based approaches so that large sampling 

uncertainties associated with empirical distribution modeling may be avoided, and that the 

predictive skill in model-simulated and observed streamflow that may exist over a range of 

temporal scales may be fully utilized. MS-EnsPost uses data-driven correction of magnitude-

dependent biases in model-simulated flow, multiscale regression to utilize observed and 

simulated flows over a range of temporal scales of aggregation, and ensemble generation based 

on parsimonious error modeling. MS-EnsPost is evaluated using 139 basins in the service areas 
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of CB-, CN-, MA-, Missouri Basin (MB-), North Central (NC-), Northeast (NE-), Northwest 

(NW-), and WGRFC. The main findings are as follows.  

MS-EnsPost outperformed EnsPost at all lead times in the root mean square error (RMSE) 

sense for 137 out of 139 basins. The reduction in RMSE ranged from 5 to 68% for Day-1 to -7 

predictions of daily flow. For most basins, the improvement is due to both bias correction and 

multiscale regression in MS-EnsPost. MS-EnsPost outperformed EnsPost at all lead times in the 

mean continuous ranked probability score (CRPS) sense for 136 out of 139 basins. The reduction 

in mean CRPS ranged from 2 to 62% for Day-1 to -7 predictions of daily flow. The improvement 

is due mostly to improved resolution than reliability in the MS-EnsPost ensembles. The 

improvement is particularly significant for the Upper Trinity River basins in the WGRFC’s 

service area, an indication that the bias correction and multiscale regression procedures are 

effective in addressing flow magnitude-dependent biases in raw model-predicted flow, and 

intermittency of streamflow in the semi-arid region.  

Assessment of predictability measured by the continuous ranked probability skill score 

(CRPSS) of the MS-EnsPost predictions indicate that, among the basins considered in this work, 

the CB-, CN-, NWRFC basins are the most predictable, followed by the NE-, MA-, and NCRFC 

basins, and that the MB- and WGRFC basins are the least predictable. Comparison of the skill 

scores with hydroclimatic indices indicates that, with the current operational hydrologic 

modeling process, predictability of streamflow and its limits are strongly modulated by the 

fraction of mean annual precipitation as snow and, in non-snow-driven basins, mean annual 

precipitation. The positive impact of MS-EnsPost is particularly significant for a number of 

basins impacted by flow regulations. Examination of the multiscale regression weights indicates 

that MS-EnsPost is able to capture and reflect the scale-dependent alterations by flow regulations 
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to the predictive skills of observed and model-predicted flow, resulting in improved performance 

over EnsPost. One of the motivations for MS-EnsPost is to reduce data requirement so that 

nonstationarity may be considered under changing hydroclimatology. Comparative evaluation of 

MS-EnsPost with EnsPost indicates that, under reduced data availability, MS-EnsPost generally 

outperforms EnsPost for those basins exhibiting significant changes in flow regime. 

MS-EnsPost uses the Box-Cox transformation rather than the empirical normal quantile 

transform as in EnsPost. Whereas the former greatly improves parsimony and reduces 

complexity, the resulting errors may not meet truncated-normality and homoscedasticity as 

assumed in this work. While the above approximation is able to produce reliable ensembles for 

moderate to high flows, it tends to reduce reliability of streamflow ensembles in low flow 

conditions. In this work, the first-order autoregressive process was assumed for time series 

modeling of the error for simplicity and for direct comparison with EnsPost. The limited results 

suggest that the use of a general time series model is likely to improve ensemble prediction of 

time-aggregated flows. In this work, the data reduction experiment under possible 

nonstationarity was carried out by splitting the period of record into two halves and repeating the 

comparative evaluation experiments for both halved periods. Additional efforts are needed to 

render the errors closer to truncated normal and homoscedastic through an improved and more 

objective process, to improve the temporal dependence modeling of the error for improved 

prediction of time-integrated flow, and to assess performance under reduced data following 

rigorous identification of nonstationarity. Whereas the above efforts are not likely to change 

significantly the overall performance of MS-EnsPost reported herein, they are likely to improve 

significantly its potential operational worthiness, and yield specific guidance on parameter 

settings and their refinement. 
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Appendix A  

Magnitude-dependent biases for selected basins estimated in MS-EnsPost 
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Appendix B   

Time series modeling of error for selected basins 
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Appendix C  

Monthly Mean Flow 
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Appendix D  

Mean CRPS and its decomposition into reliability  and resolution vs. lead time for selected 

basins 
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Appendix E  

CRPSS attributes vs. hydroclimatic indices 
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