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ABSTRACT

NUMERICAL INVESTIGATION OF STABILITY CHARACTERISTICS OF A

JET IN COUNTERFLOW

SIDDARTH CHINTAMANI, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Brian H Dennis

A jet in counterflow is a configuration in which a jet is issued into an opposing

external stream of fluid. Some of the possible applications of this configuration include

study of pollutant discharge into body of water, aerodynamic flame holder in after

burner, reduction of drag and cooling of bluff body by ejecting a jet of coolant gas

into counterflowing stream, thrust vectoring of supersonic jets, sonic boom mitigation.

The instability associated with flow reversal which is observed in this configuration of

the jet leads to enhanced mixing. However, a detailed understanding of the dynamics

and control is needed to make these applications practical.

The goal of this thesis is to perform global stability analysis of a jet in counter-

flow and understand the characteristics of its stability. Above the critical values of

jet Reynolds number and the jet to counterflow velocity ratio, the flowfield becomes

unstable and the jet tip oscillates at a low frequency. One of the objectives of this

thesis is to find these critical values.

Hydrodynamic stability analysis involves the determination of eigenvalues of

the perturbation equations, linearized about steady base flow and the corresponding
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adjoint perturbation equations. When the flow is globally unstable, it is impossible

to time-march to steady state. In this research, a feedback control technique known

as selective frequency damping (SFD) is implemented. The parameters involved in

the SFD method are adapted based on the solution to an optimization problem.

However, the SFD method is not suitable for obtaining the base flows in the presence

of unstable low frequency and stationary modes. In such a case, base flow solution is

obtained using Newtons method.

The search for global modes is carried out using the block Krylov-Schur method.

The Navier-Stokes equations, the linearized perturbation equations and the adjoint

equations are numerically solved using the embedded boundary adaptive refinement

strategy.

The effect of non-normality of the Navier-Stokes operator on the trasnient en-

ergy amplification of perturbations is evaluated. The structural sensitivity of the jet is

obtained by computing the adjoint eigenmodes and the regions in the flowfield where

the growth rate and frequency of leading eigenmode are most sensitive to forcing are

identified.
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CHAPTER 1

INTRODUCTION

1.1 Jet in counterflow

A jet in counterflow is a configuration in which a jet interacts with an opposing

external stream of fluid. Figure (1.1) shows schematic of the time-averaged flowfield

associated with a jet in counterflow. A jet with velocity Uj is issued into an external

stream opposing the jet with velocity U0. The jet penetrates into the external stream

till it reaches stagnation point Xp. At the interface of the jet and external stream, a

region of flow reversal is observed. The parameters that define the evolution of the

jet are the Reynolds number of the jet Rej and the jet to counterflow velocity ratio

α = Uj/|U0|. Above critical values of these parameters, an instability associated with

the region of flow reversal develops, leading to low frequency oscillations near the

stagnation point and complex flow patterns of the jet. The instaneous snapshots of

an unstable jet at α = 3.4 are shown in figure (1.2).

Figure 1.1. Schematic of time-averaged flowfield around a jet in counterflow, taken
from Bernero [2].
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Figure 1.2. Instantaneous LIF images of an unstable jet in counterflow at α = 3.4,
taken from Bernero [2].

Understanding the behavior of the jet in counterflow is of significant interest

in many applications. The marked instability in the flowfield and the oscillations of

the jet introduce stirring scales and enhance jet mixing, making this configuration of

jet injection suitable for combustion and chemical mixing devices. A submerged jet

is often used to discharge wastewater into water bodies such as rivers and oceans.

The interaction of this jet with counterflowing stream affects the local concentration

of pollutants in water. Clearly, study on this configuration of jet is of environmental

interest. Counterflowing jets are also used for bluff body cooling.

Other interesting applications are V/STOL aircrafts, vertical landing rockets,

reverse rotating propellers and control jets used to maneuver air and under water

vehicles. In these cases, the jet oscillations may lead to unpredictable thrust vectoring,

making the control of the vehicle difficult. Description of the instability and the

resulting oscillations may assist in devising effective control strategies.

2



Early research on this configuration of jet focused primarily on determining

the extent to which a jet penetrates into the counterflow and investigations were

conducted on time-averaged flowfield. Arendt et al. [1] showed that there is linear

relationship (1.1) between the penatration length and the jet to counterflow velocity

ratio using dimensional analysis.

Xp

D
= κα (1.1)

Beltaos and Rajaratnam [3] emperically derived scaling laws using experimental

data from several researchers. They suggested that when the radial and axial coor-

dinates are non-dimensionalized with the jet’s axial penetration length, the radial

extent of the jet penetration becomes independent of the velocity ratio. They found

the value of κ to be 2.6 based on their experiments. But from their investigations, the

radial extent of the jet penetration did not show clear relationship with the velocity

ratio or the axial penetration length. The value of κ reported in literature varied from

2.4 − 2.9. A summary of conducted research and the value of κ obtained by several

researchers can be found in the works by Bernero [2] and Mahmoudi [7].

Sekundov [4] investigated the effects of confinement. He proposed that the

counterflow can be considered as unconfined if the ratio of the counterflow width, B

to the jet penetration, Xp is less than 2. Morgan et al. [5] identified the dependence

of jet bahavior on the jet to counterflow momentum flux ratio given by (1.2). They

observed that the linear relationship (1.1) holds only if Z < 0.25. They also showed

no dependence of the jet penetration on the Reynolds number as long as it is greater

than 3, 000 for the jet and 10, 000 for the counterflow.

Z =

(
α
D

B

)2

(1.2)
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A turbulent jet in confined counterflow was investigated by Sivapragasam et

al. [6]. They analyzed the mean flowfield obtained from RANS simulations. For

low momentum flux ratio cases, their results showed good agreement with previous

investigations. For high momentum flux ratio, they showed that the jet penetration

length reaches an asymptotic limit of about 3.57 times the confining counterflow

width. They also proposed an improved similarity solution for the jet to incorporate

the effects of confinement.

Several researchers attempted to study the radial extent of jet penetration.

Beltaos and Rajaratnam [3] proposed that the radial extent of the jet which is reversed

by the counterflow can be identified by stagnation stream surface which is the locus

of points in the flowfield where the combined momentum flux of the jet and the

opposing steam is zero. Based on their emperical model, they suggested that the

axial coordinate, Xr and the radial coordinate, Yr of the maximum radial extent of

the jet to be about 0.75 and 0.3 times the stagnation point, Xp respectively. An

accurate determination of the stagnation stream surface requires velocity data of the

flowfield. However, the visulation studies conducted by König and Fielder [8] and by

Lam and Chan [11] showed that the values of Xr and Yr are about 0.7Xp and 0.4Xp

respectively for α > 3.4.

Hopkins and Robertson [12] conducted kinematic analysis of a two-dimensional

planar jet penetration using the Helmholtz free-streamline theory. By assuming the

fluids involved to be inviscid, they could obtain the solution and predicted the stream-

line curvature and velocity field in the jet and the counterstream using complex vari-

ables and conformal mapping. The flow patterns were analyzed by varying the jet to

counterstream velocity ratio. From their experimental investigations, they observed

that the flow pattern becomes unstable when α > 1.74. And their predictions based

on simplified model did not agree well with experimental findings.

4



Robillard and Ramamurthy [13] conducted experimental investigation of the

wake generated by a planar jet issued into counterflow. They observed that the

inclines towards one side till a vortex has fully grown and carried away by the coun-

terflow. Sequentially, the jet swings to the other side and this periodic pattern is

repeated. They found that the alternating vortices in the wake resemble Von Kar-

man vortex street. The jet in their experiments was issued through a narrow slit and

they found that the blockage effects the frequency of vortex shedding. They found

the strouhal number of the jet to be 0.18 when the blockage is negligible.

Lam et al. [10] investigated the stability of a round jet in counterflow at high

velocity ratio using inviscid linearized stability theory. Their results showed that

counterflow increases amplification rate of the unstable modes while reducing the

associated frequencies.

König and Fielder [8] conducted experiments and studied the jet behavior using

flow visualization. They suggested that the flowfield is a combination of jet and wake,

and the wake is generated by the jet. They observed a stable jet flow for velocity ratio

less than 1.4. When the jet is stable, it is receptive to excitations. For the unstable

case, exciting the jet did not show any influence on the flowfield. They also found

that the frequency of jet oscillations has weak dependence on the velocity ratio.

Yoda and Fielder [9] studied the structure and concentration field of a round jet

in counterflow using planar laser induced fluorescence (PLIF). At low velocity ratios,

the flow pattern is stable, with regular vortex shedding at about 3 − 5Hz and the

corresponding jet-based Strouhal number was found to be 0.2 − 0.3. They observed

the onset of unstable case at a velocity ratio of 1.4 and above velocity ratio of 3.4,

the flow becomes unstable. The frequency of jet oscillations was found to be less

than 1Hz. The strong instability in the flowfield can be identified from the work by

5



Lam and Chan [14]. They found high standard deviation in the instantaneous jet

penetration from the time-averaged value.

Chan and Lam [15] presented analytical expression of the jet centerline velocity

decay in counterflow. Their analysis was based on langrangian formulation of the

flowfield. By treating the fluid elements issued from the jet the same way as they

are issued into a stagnant ambient and superimposing the advection effect from the

counterflow, they could develop a model to explain velocity gradients in the flow-

field. They suggested that the wavelengths of the amplified modes of instability are

contracted by counterflow and are shifted to lower frequencies and the higher order

azimuthal modes are contracted to approximate axisymmetric mode.

Jendoubi and Strykowski [16] investigated the stability of an inviscid axisym-

metric jet in presence of external flow using spatio-temporal analysis. In their analysis,

the jet mean flow was modeled by a hyperbolic tangent profile and the analysis was

restricted to axisymmetric disturbances. They observed the presence of two distinct

modes of instability. Mode I was found to be similar to the plane shear layer insta-

bility. Mode II is responsible for the self-excitation of the jet and is observed in the

presence of strong counterflow.

Bernero and Fielder [17,18] obtained instantaneous velocity fields using particle-

image-velocimetry (PIV) technique and applied proper orthogonal decomposition

(POD) analysis. They investigated the unstable (α > 3.4) and low velocity ratio

cases (α ≈ 1.3− 1.4). For both the cases, the dominant modes are the low frequency

modes and correspond to the radial jet flapping and a periodic variation of the jet

penetration. They made similar observation as Yoda and Fielder [9]. The most com-

plex dynamics are observed for the low velocity ratio case. A single vortex ring is

regularly shed and on reaching larger penetration length, the jet shows flapping and

breaks down.
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Tsunoda and Saruta [19] studied the velocity field and scalar mixing from a

turbulent jet in counterflow using PIV and PLIF. They observed two distinct peaks

in turbulence intensity along the jet centerline. They suggested that the first peak

is related to the jet instability. The second peak is observed near the stagnation

point at the maximum jet penetration location and its magnitude slightly increases

with increasing velocity ratio. This observation is consistent with the computational

analysis performed by Elghobashi et al. [20] who applied the k − ε RANS model.

Following the work done by Bernero and Fielder [18], Duwig and Revstedt [21]

investigated the fluctuation dynamics and extracted the most energetic modes of a Re

2860 round jet in counterflow at α = 2.2 using POD. The instantaneous snapshots

were obtained from Large Eddy Simulation (LES). They found that the Strouhal

number corresponding to these modes is around 0.01 and they describe a slow rotation

of the jet around the centerline and low frequency axisymmetric pulsation.

Li et al. [22] simulated a turbulent round jet in counterflow using LES. They

observed that vortex rings appear in the region near thet jet exist and convect till the

stagnation point. They identified the jet oscillation in three dimensions along with

rotation about the jet axis. The power spectral density (PSD) of the axial velocity

fluctuations was also analyzed along the jet axis. They found that the frequency

content decreases along the jet axis and the PSD rapidly decays near the stagnation

point.

Jang and Mahesh [23] studied the flow around a reverse rotating propeller using

LES. They investigated the massively seperated flow at a very large Reynolds number

of 480, 000. They suggested that the interaction of the reverse flow with the free

stream may be idealized as a round jet in counterflow. They observed that the vortex

ring sheds at irregular intervals. This is due to the inherent hydrodynamic instability

at high Reynolds numbers.
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Gharib et al. [24] investigated formation and pinchoff of vortex rings. They pro-

posed that a vortex cannot grow indefinitely as a consequence of the Kelvin-Benjamin

variational principle and identified a non dimensional universal vortex formation time.

Dabiri and Gharib [25] studied the vortex ring pinchoff in presence of counterflow.

They showed that the vortex pinchoff can be significantly delayed in presence of

counterflow.

A survey of available literature shows that the mean flow characteristics of a

jet in counterflow are well understood. Most of the research effort focused on the be-

havior of turbulent jets. More recently, several researchers attempted to investigate

the fluctuation dynamics and the coherent structures in the flowfield using POD and

LES. The presence of strong instability near the stagnation point has been identi-

fied. However, several interesting aspects of the associated instability remain unclear.

What is the nature and the origin of instability? Is the instability self-sustained?

What are the effects of external perturbations? Why is the shedding of vortex rings

observed at some velocity ratios?

Shear layer instability has been widely studied. Shear flows can be of two

types: jets and wakes. Jet flows are known to behave as noise amplifiers, meaning

that they amplify external disturbances while wakes support self excited modes and

do not require external disturbances to sustain the instability. The presence of both

these types of shear flows in the flowfield of a jet in counterflow makes the study on

the associated instability interesting. A brief introduction to hydrodynamic stability

theory, recent advances and its applications are presented in the next section.

1.2 Hydrodynamic stability theory

Hydrodynamic stability theory determines the reaction of a steady motion of

fluid (base flow) to small disturbances. The stability of fluid flow is determined by the
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growth rate of disturbances. If the disturbances grow in time, the flow is considered

unstable. Conversely, the flow is considered stable if all the possible disturbances

that it can be subjected to, decay in time. Hydrodynamic instability can lead to

unsteadiness in the flow even when the boundary conditions are steady. The roots of

this theory date to Helmholtz, Kelvin, Rayleigh and Reynolds in nineteenth century.

Reynolds [26] demonstrated the instabilty in pipe flow that develops above a critical

velocity. Lord Rayleigh [27] studied the breakup of a liquid jet into droplets. He

found that surface tension amplifies the perturbations of certain wavelengths when

the jet is perturbed sinusoidally.

The mathematical treatment of hydrodynamic stability problems was intro-

duced by Rayleigh in 1880 [28]. He analyzed the disturbances in terms of normal

modes. By decomposing the disturbances into different wavelenghts, an equation

relating the wavenumber and the frequency of disturbances, known as dispersion re-

lation can be derived. The solution determines the modes that grow/decay in time.

The method of normal modes is equivalent to superimposing infinitesimal perturba-

tions on base flow. In doing so, the linearized equations that govern the perturbations

can be derived. The fluid system is considered unstable if at least one eigenvalue of

the resulting linear operator exists in the right half of the complex plane. And the

eigenvector associated with the most unstable eigenvalue (the most unstable mode of

disturbance) is expected to dominate the form of the instability. Finding the eigen-

values and the eigenvectors is very challenging due to the large dimensions of the

linear operator. The problem can be simplified if some assumptions about the base

flow and the nature of disturbances are made.

Early researchers worked on the stability of viscous parallel shear flows. Orr [29,

30] and Sommerfeld [31] derived the Orr-Sommerfeld equation while attempting to

investigate stability of channel flows. This equation has become essential basis of
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(a) (b)

Figure 1.3. Illustration of the response to a locally introduced disturbance. (a) Con-
vectively unstable flow, and (b) Absolutely unstable flow.

the hydrodynamic stability theory. By assuming that the disturbances grow/decay

in time and oscillate in space, they posed an initial value problem whose solution

determines the temporal growth of perturbations. The temporal growth analysis is

not appropriate for disturbances that are generated at a fixed position in space and

the spatial analog of the problem can be derived by assuming that the disturbances

grow/decay in space and oscillate in time.

Following the concepts presented by Briggs [32] and Bers [33] in the study of

plasma, Huerre and Monkewitz [34] introduced the notion of convective and absolute

instability in the context of spatio-temporal stability analysis of fluid flows. If an

initially localized impulse is amplified in at least one Galilean frame of reference but

is damped in laboratory reference frame, the flow is considered to be convectively

unstable. In a flow that is absolutely unstable, such impluse amplifies in laboratory

frame, changing the global behavior of the flow. The difference between convective

and absolute instabilities is illustrated in fig. 1.3. In convectively unstable flows, the
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impulse amplifies as it convects downstream. It eventually exits the fluid domain

and the flow relaxes to its unperturbed state in the absence of external forcing. In

this sense, these flows are considered to be globally stable but act as noise amplifiers.

An example of such a flow is a uniform density jet. In the case of an absolutely

unstable flow, the impulse propagates both upstream and downstream of its initial

location. A hydrodynamic feedback loop could arise if a sufficiently large region in

the flow is absoultely unstable, leading to self-sustained oscillations at a well defined

frequency [34–36]. These self-sustained oscillations are known as global modes of

instability and the flow is globally unstable. Examples of such flows are bluff body

wakes, variable density jets and jets in crossflow. Huerre and Monkewitz [37] reviewed

the application of these ideas to various shear flows.

In many shear flows, the streamwise variation of the base flow affects the growth

rate of disturbances. Under the WKBJ approximation [38], the absolute instability

of weakly nonparallel flows can be investigated. If the wavelength of the instability is

much smaller than the length scale over which the base flow changes in the stream-

wise direction, the local stability can be analyzed by assuming that the base flow is

locally parallel. Such an analysis is called local stability analysis. However, in many

absolutely unstable flows, the nonparallel effects are significant. The global stability

analysis accounts for such flows by relaxing the restriction on the base flow to vary in

a specific direction. It leads to a large scale eigenvalue problem. Such analyses are re-

ferred to as Bi-Global stability analysis in two-dimensions and Tri-Global stability in

three-dimensions. Early investigations were limited to Bi-Global analysis. With the

advances in high performance computing and numerical algorithms, researchers are

now able to perform Tri-Global stability analysis of complex flows. Bagheri et al. [39]

studied the stability of jets in crossflow and Massa [40] investigated compressible flow
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over ramp injectors. Both these works attributed the self-sustained oscillations to the

presence of a global instability mode.

Many researchers have identified that the eigenvalues are inadequate to com-

pletely describe the stability of fluid systems. For example, Romanov [41] showed

that no matter how large the Reynolds number is, plane Couette flow never admits

unstable eigenvalues. This contradicts the experimental observations which clearly

show the presence of an instability beyond a critical Reynolds number. It is impor-

tant to realize that the eigenvalue analysis is based on the Lypunov stability theory,

where infinite time horizon is allowed for a perturbed system to retrun to equilibrium.

Eigenvalues determine the asymptotic stability. However, in many fluid systems, the

dynamics occur on a finite time scale. Hence, the stability analysis based on Lypunov

theory is not appropriate [42].

In many shear flows, the linear operator representing the preturbation dynamics

is non-normal which means that its eigenmodes are not orthogonal (interested reader

should refer the book by Schmid and Henningson [43] for detailed presentation on

non-normal operators). Large transient growth of perturbations may result due to the

overlap of the eigenmodes [46]. Butler and Farrell [44] investigated plane channel flow

and identified that the non-normality leads to large transient growth of perturbations

due to streamwise advection. Cossu and Chomaz [45] showed the large amplification

of initial perturbation energy in a short time due to the streamwise non-normality.

This large amplification of the perturbations can take them to a regime where the

linearization approximation is not valid.

As a consequence of the non-normality, the spectrum of eigenvalues of the opera-

tor is highly sensitive to perturbations. The notion of pseudospectrum was introduced

by Trefethen et al. [47]. The pseudospectrum defines how the spectrum of eigenvalues

of an operator change when the operator is perturbed with arbitrarily small perturba-
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tions [48]. Non-normal systems may exibit large responses due to forcing even when

the forcing frequency is far from its eigenvalue frequency. Eigenvalues are clearly

inadequate in determining the stability of such systems.

Adjoint analysis of fluid systems can uncover precious information about the

origin of instability and the receptivity of fluid systems to perturbations. The non-

normality of a linear operator is closely related its adjoint. A non-normal operator

doesn’t commute with its adjoint. It can be showed that for each eigenmode of

the linear operator (direct mode), there is only one non-orthogonal eigenmode of its

adjoint (adjoint mode) and the corresponding eigenvalues are complex conjugate to

each other [49, 50]. Chomaz [51] stated that the main source of non-normality is the

change in the sign of the advection term in the adjoint equations. The base flow

advection corresponds to upstream transport for the adjoint perturbations. Non-

normality corresponds to the streamwise seperation of the direct and adjoint modes.

The sensitivity of the eigenvalues of the linear operator to perturbations can

be obtined from the adjoint eigenmodes (see [42]). Structural sensitivity analysis

involves identifying the region in the flowfield where the spectrum of eigenvalues of

the linear operator is most receptive to modifications of the base flow. Strykowski and

Sreenivasan [52] observed from their experiments that the vortex shedding behind a

cylinder can be controlled and even suppressed by a smaller control cylinder. They

idenfified the spatial regions where the placement of the control cylinder can suppress

the vortex shedding. Hill [53] used linear analysis and adjoint eigenfunctions to

determine the most receptive regions around the cylinder. His results are in good

agreement with the experimental observations. Giannetti and Luchini [54] performed

structural sensitivity analysis of flow over a cylinder. They used immersed boundary

technique and located the region of the flow that is most sensitive to momentum

forcing and mass injection by computing the direct and adjoint modes. Such a region
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is called the wavemaker. The conditions for self-excitation develop at this region [51].

The wavemaker region can be identified by inspecting the spatial structure of the

product of the direct and adjoint modes [54]. A comprehensive review on the adjoint

modes and structural sensitivity analysis is presented by Luchini and Bottaro [55].

It should be noted that linear stability analyses are valid only at the onset

of instability growth. Once the instability sets in, the nonlinear effects can not be

neglected, especially when the non-normal effects are significant. A weakly nonlin-

ear approach using Landau equations can be used at the beginning of instability

growth [51]. Nevertheless, the linear analysis is extremely successful in predicting

critical conditions for the instability growth in laminar flows [56]. Combined with

structural sensitivity analysis, it sets a promising framework to investigate and con-

trol hydrodynamic instabilities [57].

1.3 Overview

The present study involves determination of the global stability of a jet in

counterflow using the linear hydrodynamic stability theory. The stability of two-

dimensional planar jet and a three-dimensional round jet is analyzed. Chapter 2

provides an overview of the mathematical formulation of the linear hydrodynamic

stability theory. The equations governing the base flow, the linarized equations that

govern the evolution of perturbations and the corresponding adjoint equations are

presented. The eigenvalue problem whose solution determines the asymptotic stability

is introduced. The non-normality of the Navier-Stokes operator and its effects on

transient growth of perturbations is described.

Chapter 3 describes the implementation of the numerical methods required

to analyze hydrodynamic stability. This includes the introduction to the embed-

ded boundary adaptive mesh refinement strategy used to solve the Navier-Stokes
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equations and the perturbation equations, the adaptive selective frequency damping

method and the Newtons method used to obtain the base flow, and the matrix-free

Krylov subspace method used to obtain the eigenvalues.

In chapter 4, the asymptotic stability of a planar jet and a round jet is analyzed.

The computed eigen-spectrum and the critical parameters that lead to jet instability

are presented.

In chapter 5, the transient energy amplification of the perturbations resulting

from the non-normality effects is investigated and the optimal initial perturbations

that lead to maximum energy growth are identified.

The structural sensitivity analysis of the flowfield associated with a jet in coun-

terflow is presented in chapter 6. The regions in the flowfield, where the growth rate

and the frequency of the leading eigenmode is most receptive to perturbations are

located.

Chapter 7 provides a summary of the work done and the results obtained in

this thesis. The future direction of this research is discussed.
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CHAPTER 2

MATHEMATICAL FORMULATION

As described in the previous chapter, hydrodynamic stability theory determines

the reaction of a stationary state of fluid flow to perturbations. Asymptotic stability

is determined from the eigenvalue analysis. However, when the non-normal effects

are significant, eigenvalue analysis is not sufficient to determine the stability of fluid

flow due to the short-time amplification of the perturbations. Analysis of the adjoint

equations uncovers important information about the transient growth of perturba-

tions and the origin of the instability. It is possible to determine the receptive regions

in the flowfield. The mathematical formulation of the eigenvalue analysis, transient

growth of perturbations and the structural sensitivity analysis is presented in the

following sections.

2.1 Base flow and the Linearized perturbation equations

The incompressible Navier-Stokes equations that govern the evolution of veloc-

ity field u(x,t) and pressure field p(x,t) in space x and time t are given by

∇.u = 0 (2.1a)

∂u

∂t
+ (u.∇)u = −∇p+

1

Re
∇2u (2.1b)

u(x, 0) = u0 (2.1c)
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The above equations are non-dimensionalized by characteristic velocity scale U ,

length scale L and kinematic viscosity ν. Re is the Reynolds number defined as Re

= UL/ν.

Hydrodynamic stability theory determines the reaction of a stationary state

(base flow) that satisfies the Navier-Stokes equations (2.1) to small disturbances.

The base flow is essentially the time independent solution to the equations (2.1).

Equations governing the evolution of the disturbances can be derived by per-

turbing the base flow velocity U and pressure P by disturbances u
′
and p

′
respectively

and substituting the perturbed state

u = U + εu
′

and p = P + εp
′

(2.2)

into equations (2.1). In this research, only the evolution of perturbations in the

linear regime is examined. This means that, the perturbations considered are small

enough such that their products (terms of order ε2) are neglected when compared to

other terms in the equations. Under such simplification, the linearized Navier-Stokes

equations that govern the evolution of the perturbations can be obtained as follows

∇.u′ = 0 (2.3a)

∂u′

∂t
+ (U.∇)u′ + (u′.∇)U = −∇p′ + 1

Re
∇2u′ (2.3b)

u′(x, 0) = u′0 (2.3c)

It is important to specify the appropriate boundary conditions. The flow is

considered to be linearly unstable if there exists at least one solution to the equa-

tions (2.3) that grows without bound as discussed in the next section.
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2.2 Asymptotic stability analysis

If the equations (2.3) are projected on a divergence-free subspace and discretized

in space, the following initial-value-problem (IVP) can be formulated

∂u
′

∂t
= Au

′
(2.4a)

u
′
(x, 0) = u

′
0 (2.4b)

where A is a linear operator representing the action of the equations on the per-

turbation vector u
′
. Note that the perturbation pressure, p

′
has been omitted in

equations (2.4) because, when the equations (2.3) are projected on a divergence-free

subspace, the pressure and velocity are related by the solution to a Poisson equation.

The solution to the above IVP is given by

u
′
(t) = eAtu

′
0 (2.5)

The linear asymptotic stability of the base flow U depends on the eigenvalues of

the operator A. As time approaches infinity, the perturbations take the form of the

eigenmodes, φi corresponding to the least stable eigenvalues, λi of A. We examine

the following eigenvalue problem

Aφi = λiφi (2.6)

The eigenvalues are generally complex. The real-part detrmines the growth rate

of the perturbations and the imaginary-part determines the frequency of oscillations.

If there is at least one eigenvalue with positive growth rate, the perturbations grow

exponentially as given by the equation (2.5) and the perturbed fluid departs from its

base flow state and never reverts to it. Such a case is considered to be asymptotically
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unstable. Conversely, if all the eigenvalues of A have negative growth rate, the

pertuebations decay in time and the base flow is considered to be asymptotically

stable.

When the base flow is in a state of neutral stability, the growth rate of the most

dominant eigenvalue of A is zero. Bifurcation analysis attempts to find the values of

the non-dimensional parametrs on which the fluid flow depends, that lead to neutral

stability of the flow.

2.3 Non-normality and the Adjoint equations

As discussed in section 1.2, the asymptotic stability analysis is not sufficient to

descibe stability of fluids that involve finite time dynamics. In many fluid flows, the

operator A is non-normal. This means that A doesn’t commute with it’s adjoint, A*

(AA* 6= A*A).

The adjoint operator A* represents the action of the adjoint perturbation equa-

tions on a state vector. In obtaining the adjoint perturbation equations, it is conve-

nient to define the inner product as

<m,n >=

∫
Ω

mHn dν (2.7)

where Ω is the domain over which the equations are being solved, m and n are any

vectors on Ω and mH is the Hermitian (i.e. complex conjugate transpose) of m.

The adjoint operator A* satisfies the identity

< Am,n > − <m,A*n >= b (2.8)

where b arises from the boundary conditions and can be set to zero by selecting

appropriate boundary conditions.
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Using the definition of the inner product given by (2.7) and the identity (2.8),

the equations governing the adjoint perturbation velocity field, u∗ and pressure field,

p∗ can be obtained by integrating the equations (2.3) over the domain of investigation.

The adjoint equations are given by

∇.u∗ = 0 (2.9a)

− ∂u∗

∂t
+ (U.∇)u∗ − (∇U)Tu∗ = −∇p∗ +

1

Re
∇2u∗ (2.9b)

u∗(x, τ) = u∗τ (2.9c)

Notice the negative sign before the time derivative in equation (2.9b). This

negative sign means that the adjoint equations represent the backward evolution of

the perturbations. The initial condition, u∗τ for the adjoint equations is specified

at an arbitrary final time of integration, τ . As observed by Chomaz [51], the base

flow advection corresponds to upstream transport for the adjoint perturbations and

non-normality corresponds to the streamwise seperation of the direct and adjoint

modes.

The boundary conditions required to solve the adjoint equations (2.9) depend on

the boundary conditions used to solve the perturbation equations (2.3). The adjoint

boundary conditions are obtained by integrating the boundary conditions used for

the equations (2.3). For homogeneous Dirichlet boundary conditions, the adjoint

boundary conditions remain as homogeneous Dirichlet as follows

u∗(∂Ω, t) = 0 (2.10)
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The Neumann outflow boundary condition (2.11) enforced on equations (2.3)

requires Robin boundary condition (2.12) to be specified on the adjoint equations at

the outflow boundary.

p
′
n− 1

Re
∇u′

.n = 0 (2.11)

p∗n +
1

Re
∇u∗.n = (U.n)u∗ (2.12)

However, in order to avoid the complexity involved in implementing the Robin

boundary conditions, homogeneous Dirichlet boundary conditions are typically spec-

ified at the outflow boundary. The rationale is that when the outflow boundary is

placed sufficiently far away, specifying Dirichlet boundary condition doesn’t have a

noticable effect on the evolution of perturbations. For a detailed discussion, see [58].

Similar to the problem (2.4), the following IVP can be formulated from the

adjoint equations

− ∂u∗

∂t
= A*u∗ (2.13a)

u∗(x, τ) = u∗τ (2.13b)

In order to find the adjoint eigenmodes, φ∗i , the following eigenvalue problem

needs to be examined

A*φ∗i = λ∗iφ
∗
i (2.14)

The direct modes, φi and the adjoint modes, φ∗i are related by

< Aφi, φ
∗
i >=< φi, A

*φ∗i > (2.15)
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As a consequence of the non-normality of A, φi and φ∗i are non-orthogonal.

Biorthogonality condition states that for each direct mode, φi, there is only one

non-orthogonal adjoint mode, φ∗i and the corresponding eigenvalues, λi and λ∗i re-

spectively, are complex conjugate to each other [49,50].

2.4 Transient growth analysis

For a fluid system to be considered stable, not only should the eigenvalues of

the operator A have negative growth rate, but also the transient growth (i.e. the

finite-time amplification) of the perturbations should be limited such that the fluid

can revert to the base flow state. In transient growth analysis, we consider the energy

norm of the perturbations at a given time, t as

E(t) =
1

2
< u

′
(t),u

′
(t) > (2.16)

where, < . , . > denotes the inner product operator and is defined by equation (2.7).

The transient growth of perturbations over a time interval τ can be quantified by

the growth of the energy norm of perturbations during that interval. The transient

growth is given by

Q(τ) =
E(τ)

E(0)
=
< u

′
(τ),u

′
(τ) >

< u′(0),u′(0) >
(2.17)

If homogeneous spatial boundary conditions are used, the boundary term, b

in equation (2.8) becomes zero. The transient growth can then be related to the

operator A and its adjoint, A* as follows

Q(τ) =
< Au

′
(0),Au

′
(0) >

< u′(0),u′(0) >

=
< u

′
(0),A*Au

′
(0) >

< u′(0),u′(0) >

(2.18)
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It follows from the above equation that

< u
′
(0),A*Au

′
(0) >=< u

′
(0), Q(τ)u

′
(0) > (2.19)

The non-trivial solution to the above equation leads to the following eigenvalue

problem

A*Au
′
(0) = Q(τ)u

′
(0) (2.20)

The operator A*A is symmetric with real eigenvalues and eigenmodes. The

action of the operator A*A is equivalent to integrating the equations (2.4) over time

interval, τ with u
′
(0) as the initial condition to obtain u

′
(τ) and using this as the

initial condition to integrate the equations (2.13) backwards in time over the same

time interval. It can be seen that u
′
(0) is the eigenmode and its transient energy

growth over the time interval, τ , Q(τ) is the eigenvalue of A*A.

The maximum possible transient energy growth of perturbations over the in-

terval τ is given by

G(τ) = max(Q(τ)) = max
u′ (0)

< u
′
(τ),u

′
(τ) >

< u′(0),u′(0) >
(2.21)

The initial perturbation that leads to the maximum energy amplification over the

interval τ (i.e. the eigenmode corresponding to G(τ)) is called the optimal perturba-

tion.

It should be noted that the optimal perturbation and its transient energy am-

plification are dependent on the the time interval, τ . Gmax represents the global

maximum of G(τ) over all time intervals.

The optimal perturbations and G(τ) can also be obtained from the singular

value decomposition of A. The optimal perturbation and the state to which it evolves
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to are given by the right and left singular vectors of A respectively. And G(τ) is given

by the leading singular value.

2.5 Structural sensitivity

Structural sensitivity analysis involves identifying the region in the flowfield

where small perturbations will have largest impact on the instability. Such a region in

the flowfield can be thought of as the origin of instability and is termed as wavemaker.

The conditions for self-excitation of the disturbances develop through a feedback

mechanism at the wavemaker region.

The direct modes determine the response of the flow to the pertrubations and

the adjoint modes determine the sensitivity. The overlap of direct and adjoint modes

determines the region where the response is most sensitive. In determining the wave-

maker, both the direct and the adjoint modes need to be considered.

As determined by Giannetti and Luchini [54], the structural sensitivity map of

the flowfield can be obtained by considering the dyadic product of the adjoint and

the global modes. The structutal sensitivity tensor is given by ζij = φiφ
∗
j . The

wavemaker region is determined by the Forbenius norm of the sensitivity tensor and

is given by

δλ =
‖φ‖‖φ∗‖
| < φ,φ∗ > |

(2.22)

2.6 Chapter summary

The mathematical formulation of the linear hydrodynamic stability analysis is

discussed in this chapter. The stability of a fluid flow is determined by its ability

to revert to its stationary state when it is subjected to disturbances. The equations
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governing the stationary state and the evolution of small perturbations are presented.

The discretized equations can be represented by a linear operator. The disturbances

may undergo finite-time amplification as a consequence of the non-normality of the

linear operator. While the asymptotic growth of the disturbances is determined by

the eigenvalues of the linear operator, their transient growth is given by the singular

value decomposition of the operator. The eigenmodes of the adjoint operator can

reveal the origin of instability (i.e. the wavemaker region). The overlap of the direct

and adjoint modes determine the structural sensitivity of the flowfield.
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CHAPTER 3

NUMERICAL IMPLEMENTATION

Performing linear stability analysis of fluid flows involves determining the base

flow and its reaction to small disturbances. Base flow is the steady state solution

to the Navier-Stokes equations and its reaction to disturbances is determined by the

solution to eigenvalue problem as discussed in the previous chapter. This presents

two major challenges. When the fluid is absolutely unstable, techniques like Newton

iterations or selective frequency damping (SFD) need to be implemented. And, the

dimensions of the operators whose eigenvalues determine the stability are prohibitively

large to store in memory. Matrix-free iterative methods are required to determine the

eigenvalues. The numerical methods used to obtain the solutions to the equations

presented in chapter 2 and the algorithms used to obtain the base flow and to solve

the large-scale eigenvalue problem are described in this chapter.

3.1 Flow solver

The incompressible Navier-Stokes equations (2.1) are numerically solved using

a second-order finite volume scheme. The solver is developed in C++ based on the

CHOMBO library [59]. The cartesian mesh used to spatially discretize the equa-

tions is dynamically refined based on the computed solution. Such a technique is

called adaptive mesh refinement (AMR). The patch-based refinement strategy is im-

plemented. The surfaces of the solid bodies are embedded in the computational mesh

using the cut-cell approach. The solid boundaries are represented by a set of implicit

geometric functions and the geometric information (volume fractions, area fractions,

26



cell centers, etc.) is stored as a graph. The fluxes at the solid boundaries are evaluated

using the immersed boundary method.

The flow solver used in this research follows the algorithm described by Tre-

botich and Graves [60]. The equations (2.1) are solved using predictor-corrector

formulation. The divergence-free constraint is enforced by the solution to Poisson

equation based on Hodge decomposition. The algorithm uses the marker and cell

(MAC) formulation to compute the cell-centered projection and the face-centered

gradients. At the intersection of the coarse and fine patches of mesh, the solution is

smoothed by the averaging operators. A semi-implicit scheme is implemented. The

convective fluxes are calculated using second-order upwinding scheme and are treated

explicitly. And, the velocity is updated by solving the Helmholtz equation resulting

from the viscous terms implicitly. The pressure field is obtained by solving the Pois-

son equation that is obtained from Hodge decomposition. The laplacian operator is

discretized using second-order central differencing. The overall scheme is second-order

accurate in space.

The explicit treatment of the convective fluxes imposes restriction on the time

step size due to the CFL condition. In cut-cell approaches, this restriction can be

particularly severe. This issue is avoided using volume-weighted scheme during the

explicit advance of the solution. The convergence of the linear solvers used for the

Helmholtz and Poisson solves is accelerated using multigrid method coupled with

Gauss-Seidel relaxations. Grid coarsening is performed both within each level of

refined mesh and accross levels. Bi-conjugate gradient method is used as the bottom

solver.

The algorithm can be modified to solve the linear perturbation equations (2.3)

and the adjoint equations (2.9) as described by Liu et al. [61] and by Barkley et

al. [58]. The terms (u′.∇)U and (∇U)Tu∗ in eq. (2.3) and eq. (2.9) respectively,
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effect the solution procedure used to solve the Navier-Stokes equations in two ways:

(i) they need to be considered during the extrapolation of cell-centerd solution to

faces to maintain stable second order flux computation (see [62, 63]), and (ii) the

source term in the Helmholtz equation is modified.

The temporal discretization is done using either the first order backward Euler

scheme to obtain time-independent base flow or a modified second order Runge-Kutta

scheme [64] for the linearized perturbation and the adjoint equations.

3.2 Steady state solution (Base flow)

Performing stability analysis requires the steady state solution to the Navier-

Stokes equations. When the flow is globally unstable, it is impossible to time-march

to steady state. Finding the base flow in such a case is challenging. This research

implements the Newton’s iteration method and a feedback control-based selective fre-

quency damping (SFD) method to obtain the base flow. These methods are described

in the following sections.

3.2.1 Newton’s method

The incompressible Navier-Stokes equations (2.1) can be schematically repre-

sented as

∂u

∂t
= N(u) + L(u) (3.1)

where L represents the viscous term and N represents the effect of non-linear con-

vective term and the divergence-free constraint enforced through the solution to the

pressure-Poisson equation based on Hodge decomposition.
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The roots of the operator on the right hand side of the equation (3.1) are found

by Newton iteration:

(Nu + L)δu = (N + L)u

u := u− δu
(3.2)

where Nu represents the Jacobian of N evaluated at u.

It is very challenging to find the inverse of the Jacobian using direct methods.

Also, the equation (3.2) is ill-conditioned. This research implements the matrix-free

time-stepper approach introduced by Tuckerman and Barkley [65].

By using the operator (I − ∆tL)−1 as a preconditioner on the equation (3.2),

the following equation can be obtained

(I−∆tL)−1(Nu + L)δu = (I−∆tL)−1(N + L)u

(I−∆tL)−1[I + ∆tNu − (I−∆tL)]δu = (I−∆tL)−1[I + ∆tN− (I−∆tL)]u

[(I−∆tL)−1(I + ∆tNu)− I ]δu = [(I−∆tL)−1(I + ∆tN)− I ]u

(3.3)

where I represents the indentity operator.

The solution obtained from the flow solver implementing the first order semi-

implicit time marching scheme can be represented as

u(t+ ∆t) = (I−∆tL)−1(I + ∆tN)u(t) (3.4)

By comparing the equation (3.3) with (3.4), we notice that the right hand

side of (3.3) is the difference between two time steps and the left hand side is the

difference obtained from the linearized Navier-Stokes solver. Equation (3.3) is solved

using Bi-conjugate gradient method provided by the CHOMBO software package [66].

However, quadratic convergence of this method is achieved only when the iterations

are started with an initial guess that is close enough to the base flow.
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3.2.2 Selective frequency damping (SFD)

The Selective frequency damping method was introduced by Åkervik et al. [67]

as an alternative to the Newton’s method. This method is derived from feedback

control technique. The original system of equations, given by

∂u

∂t
= F(u) (3.5)

are modified in two ways.

The fluid state is augmented by adding a linear forcing term that is proportional

to the instantaneous state and the time-filtered state. And the second modification

involves adding the differential form of the low-pass time filter to the original system.

The modified system of equations is

∂u

∂t
= F(u)− χ(u− ū) (3.6a)

∂ū

∂t
=

u− ū

∆
(3.6b)

In equation (3.6), χ is called as control coefficient and ∆ is called as damping

coefficient. At the steady state, u = ū and hence, the steady state solution of the

equations (3.6) is also solution of the original system of equations (3.5). The flow

solver can be easily modified to solve the augmented system of equations (3.6) by

following the encapsulated algorithm formulated by Jordi et al. [68]. The system

of equations (3.6) can be formulated as two subproblems using first order operator

splitting method as follows

u̇ = F(u),

˙̄u = 0

(3.7a)
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and

u̇ = −χ(u− ū),

˙̄u =
u− ū

∆

(3.7b)

The first subproblem (3.7a) is the originial system of equations, whose solution,

u∗ at the time step (n+1)is obtained from the flow solver without any modifications.

The solution to (3.7a) is used as the initial condition to solve the second subprob-

lem (3.7b), whose solution is given by

 un+1

ūn+1

 = S

 u∗

ūn

 (3.8)

where S is given by

S =
1

1 + χ∆

I + χ∆I e−(χ+ 1
∆

)∆t χ∆I [1− e−(χ+ 1
∆

)]

I− I e−(χ+ 1
∆

)∆t χ∆I + I e−(χ+ 1
∆

)∆t

 (3.9)

The advantage of SFD method over Newton’s method is that the convergence

is independent of the initial guess. However, the convergence is strongly affected by χ

and ∆. They should be chosen such that all the unstable modes are be damped. When

the system has both high and low unstable frequencies, a multi-damper approach [40]

can be used to stabilize the system.

This research implements the adaptive SFD scheme introduced by Jordi et

al. [69]. This method involves obtaining an approximate base flow by choosing initial

values for χ and ∆. These parameters are then adapted based on a one-dimensional

model problem considered as follows

un+1 = λDu
n (3.10)
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where λD is the estimated eigenvalue that needs to be damped by SFD.

The application of SFD scheme to the model problem (3.10) can be written as

 un+1

ūn+1

 = S

λD 0

0 1


 un

ūn


= M

 un

ūn


(3.11)

The convergence of the problem depends on eigenvalues of M which in turn

depend on λD, χ and ∆. Fastest convergence is achieved when the dominant eigen-

value of M is smallest. An optimization problem can be formulated to find χ and

∆ for a given λD that minimize the leading eigenvalue of M. This research uses the

differential evolution method provided by the SciPy package [70] to find the optimal

values.

However, from the conducted numerical experiments, it is found that no set of

χ and ∆ is able to damp very low frequency modes and the stationary modes. This

finding is consistent with the work done by Cunha et al. [71] who used dynamic mode

decomposition (DMD) to find the optimal SFD parameters. In such a case, base flow

is obtained using Newton’s method.

3.3 Eigenvalue solver

Due to the large memeory requirements to store the linearized Navier-Stokes op-

erator, A, the direct methods to solve the eigenvalue problems (2.6), (2.14) and (2.20).

The search for global modes is carried out using the block Krylov-Schur (BKS) method

implemented in Anasazi package [72] which is part of the Trilinos library. When the

block size is set to one, this method is mathematically equivalent to the widely used

implicitly restarted Arnoldi method (IRAM) [73] but it offers two advantages [74]:
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(i) it is easier to deflate the converged Ritz vectors and (ii) the potential forward

instability of the QR algorithm is avoided. Better convergence of the Krylov-Schur

method is observed when compared to IRAM [75].

This method is based on the Krylov subspace projection technique. The basic

principle is to find the best approximations to the eigenvectors of the operator in a

subspace of much smaller dimension. The Krylov subspace of dimension m associated

with an operator B and initial vector u0 is of the form

Km ≡ span
{
u0, Bu0, B

2u0, . . .B
m−1u0

}
(3.12)

If B represents the exponential of the linear Navier-Stokes operator, A (B ≡

eA∆t), then the Krylov subspace (3.12) is spanned by solution snapshots that are

seperated by time interval ∆t. The subspace is formed by starting with an initial non-

zero vector u0 and repeatedly advancing the linear Navier-Stokes solver by ∆t till the

dimension m is reached. The time interval ∆t should be chosen such that Nyquist

criterion is satisfied. The snapshots are orthonormalized using the classic Gram-

Schmidt procedure and the eigen-decomposition of the subspace projected operator

is obtained using QR-algorithm.

The eigenmodes of the operator B and A are the same. The eigenvalues λi of

A can be recovered from the eigenvalues σi of B using the transformation

λi =
ln(σi)

∆t
(3.13)

The procedure for finding the adjoint modes and the optimal initial pertur-

bations is identical. In the case of adjoint analysis, B ≡ eA
*∆t. i.e. the subspace

is spanned by the snapshots obtained from the adjoint solver. In transient growth

analysis, B ≡ A*A. This is equivalent to integrating the equations (2.4) over time
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interval, τ with u
′
(0) as the initial condition to obtain u

′
(τ) and using this as the

initial condition to integrate the equations (2.13) backwards in time over the same

time interval.

3.4 Validation

3.4.1 Analysis of two-dimensional flow over cylinder

Bi-Global stability analysis of flow over cylinder is conducted to test the imple-

mentation of the numerical methods described in the previous sections. The domain

of investigation is shown in figure (3.1). The simulations are performed on the domain

[−50,−25] x [50, 25]. A cylinder with diameter 1 unit is placed at (0, 0).

The left, top and bottom boundaries of the domain are modeled as farfield

boundaries, where Dirichlet boundary conditions on velocity are enforced. During

the base flow computation, the velocity is set to (1, 0) and the right boundary of the

domain is modeled as outflow boundary. At the cylinder surface, no-slip boundary

Figure 3.1. Schematic description of the domain.
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conditions are used. The velocity of perturbations on all the boundaries during both

direct and adjoint solves are set to (0, 0).

The domain is discretized with a base mesh of resolution 512 x 512. One level of

finer mesh with a refinement ratio of 2 is added at the regions with vorticity greater

(a) One level of refinement adapted to base flow vorticity for Re = 100

(b) Embedded boundary representation of cylinder

Figure 3.2. Discretized computational domain.
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than 1 unit. The refined mesh and the embedded boundary representation of the

cylinder is shown in figure (3.2).

Stability analysis is performed at Re = 50 and at Re = 100. Base flow is

computed using the adaptive SFD method. The initial values of the parameters

(χinit, ∆init) are chosen to be (1, 2). The optimal parameters, (χopt, ∆opt) are found

to be (0.382, 2.6904) for the Re = 50 case and (0.4416, 3.2173) for Re = 100 case.

The SFD iterations are stopped when ||u − ū||inf < 10−4. The vorticity contours of

the base flow for Re = 50 and Re = 100 are shown in figure (3.3).

(a) Re = 50

(b) Re = 100

Figure 3.3. Base flow vorticity.
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(a) Re = 50 (b) Re = 100

Figure 3.4. Spectrum of eigenvalues. X-axis shows the imaginary part and Y-axis
shows the real part. Eigenvalues corresponding to the stable modes are shown in
black while the ones corresponding to unstable modes are shown in red.

The base flows shown in fig. (3.3) are used to compute the direct and adjoint

modes. 1 block with a size of 41 resulting in a subspace dimension of 42 is used to

search for the global modes. The integration time between the snapshots is set to

be equal to 1. The residual corresponding to the leading 16 modes reached < 10−4

within 120 iterations. The most dominant eigenvalue of the linear operator is found

to be 0.0131 ± i 0.7403 for Re = 50 and 0.1253 ± i 0.732 for Re = 100. This is in

good agreement with the value reported in literature [54, 76]. Figure 3.4 shows the

computed spectrum of eigenvalues. The vorticity contours of the real and imaginary

part of the most unstable direct mode is shown is figures 3.5 and 3.6.

The eigenvalue corresponding to the leading adjoint mode is found to be 0.0131±

i 0.7381 for Re = 50 and 0.1246± i 0.722 for Re = 100. The figures 3.7 and 3.8 show

the vorticity contours of the real and imaginary part of the most unstable adjoint

mode. The discontinuous features in the figures is due to the coarse mesh and the

lack of interpolation to cell centers from faces by the visualization software.
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(a) Real part

(b) Imaginary part

Figure 3.5. Vorticity contour of the dominant direct mode for Re = 50.
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(a) Real part

(b) Imaginary part

Figure 3.6. Vorticity contour of the dominant direct mode for Re = 100.
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(a) Real part

(b) Imaginary part

Figure 3.7. Vorticity contour of the dominant adjoint mode for Re = 50.
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(a) Real part

(b) Imaginary part

Figure 3.8. Vorticity contour of the dominant adjoint mode for Re = 100.

41



3.5 Chapter summary

The numerical methods used in this research are described in this chapter. The

incompressible Navier-stokes equations, the linearized perturbation equations and the

adjoint equations are numerically solved using the Embedded boundary finite volume

method. The accuracy of the solution is locally improved using the adaptive mesh

refinement strategy.

When the flow is globally unstable, it is impossible to find the base flow by

marching in time. This research implements adaptive selective frequency technique

to find the base flow state. However, from the conducted numerical experiments it is

found that the SFD technique is unable to damp very low frequency and stationary

unstable modes. In such a case, base flow is found using Newton’s method. This

method is implemented using matrix-free time-stepper approach.

The search for global modes of instability is carried out using block Krylov-Schur

method. By forming a subspace that is spanned by the solution snapshots, substantial

information about the dominant modes of the operator is obtained. The eigenmodes

of the subspace are equal to the eigenmodes of the operator that is projected onto

the subspace.

Bi-Global stability of flow over a cylinder is computed at Re = 50 and Re = 100

to validate the implementation of the described methods. The computed eigenvalues

are in close agreement with published literature. The spectrum of eigenvalues and

the dominant direct and adjoint modes are visualized.
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CHAPTER 4

ASYMPTOTIC STABILITY ANALYSIS

The numerical methods described in the previous chapter are applied to study

the stability of a jet in counterflow. The asymptotic stability of a two-dimensional

planar jet and a round jet is calculated. The stability of the jet depends on its

Reynolds number,

Rejet ≡
UjetD

ν
(4.1)

and the jet to counteflow velocity ratio,

α ≡ Ujet
U0

(4.2)

where Ujet is the jet centerline velocity and U0 is the counterflow velocity.

The base flow states for different values of jet based Reynolds number and jet

to counterflow velocity ratio are obtained. The eigenvalues are computed using the

block Krylov-Schur method and the most dominant direct modes are visualized. The

computational setup, base flow sates and the results from the eigenvalue analysis are

presented in the following sections.

4.1 Bi-Global stability analysis of a planar jet in counterflow

4.1.1 Problem setup

The computational setup used for the Bi-Global stability analysis of planar jet in

counterflow is schematically described in figure (4.1). The simulations are performed

on the domain [−32,−32] x [32, 32]. The jet inlet is placed on the left boundary and

is issued through a channel with width 1 unit and length 32 units. The thickness of
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the channel walls is taken to be 0.2 times the channel width, D (not represented in

figure (4.1)). The counterflow enters the domain from the right boundary.

During the base flow computation, the right, top and the bottom boundaries of

the domain are modeled as farfield boundaries, where Dirichlet boundary conditions

on velocity are enforced. The velocity is set to (−U0, 0), where U0 represents the

counterflow velocity. At the jet inlet on the left boundary, fully-developed parabolic

profile with centerline velocity 1.5 is enforced on the x-velocity and the y-velocity is

set to 0. At the left boundary outside the jet inlet, outflow boundary conditions are

enforced. The channel walls are treated as no-slip boundaries. During the eigenvalue

computation, the velocity of perturbations on all the boundaries is set to (0, 0).

The domain is discretized with a base mesh of resolution 256 x 256 as shown in

figure (4.2). The channel walls are embedded into the cartesian mesh. Finer levels of

mesh with a refinement ratio of 2 are added at the regions where base flow vorticity,

ω is greater than 0.5U0/D. A buffer region of two cells is added around each tagged

Figure 4.1. Schematic description of the computational setup used for stability anal-
ysis of planar jet in counterflow.
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cell for all levels of refinement. Grid convergence study is preformed by computing

the eignvalues on meshes different levels of refinement. Based on the grid convergence

study, three levels of refinement are found to be sufficient. Figure (4.3) shows mesh

adapted to the base flow vorticity for the case of a Re = 50 jet at velocity ratio of

1.7.

4.1.2 Stability of the jet at Re = 50

The stability of the jet at Re = 50 is analyzed with an increasing velocity ratio

in this section. The jet is issued through the channels with a parabolic profile and

Figure 4.2. Base mesh used to discretize the domain. Channel walls (shown in red)
are modeled as embedded boundaries.
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Figure 4.3. Three levels of mesh refinement added to the base flow. The mesh is
adapted to the regions in the flowfield with ω > 0.5U0/D. The case of jet at Re = 50
and α = 1.7 is shown here.

the centerline velocity is fixed at 1.5 units. The jet to counterflow velocity ratio is

increased by reducing the counterflow velocity.

The base flow solution is obtained using the adaptive selective frequency damp-

ing method. The SFD iterations are stopped when ||u− ū||inf < 10−4. However, for

the case of α = 2.0, the adaptive SFD method failed to provide the parameters that

could damp the unstable mode. For this case, the SFD method is run till ||u− ū||inf

reaches ≈ 3x10−2. This partially converged solution is provided as initial guess to

the Newton’s method. The base flow solution is obtained when the L2 norm of the

step size is reduced to < 10−6. Figure (4.4) shows the computed base flow solution.

The base flow is specularly symmetric as expected. The jet penetration length into

the counterflow increases with α. At α = 1.3, the penetration length is around 0.7D

and at α = 2.0, it is around 4.3D.
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(a) α = 1.3

(b) α = 1.7

(c) α = 2.0

Figure 4.4. The base flow states at different jet to counterflow velocity ratios. The
vorticity contours are shown here. The dotted black surface represents the region
where x-velocity = 0.
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Stability of the jet is analyzed by computing the eigenvalues using the obtained

base flow states. The search for global modes is performed using the block Krylov-

Schur method. 2 blocks, each with a size of 30 resulting in a subspace dimension of

62 is used. The integration time between the snapshots is set to be equal to 1.2. The

subspace method is interated till the residual reaches < 10−4.

Numerical convergence is assessed by comparing the growth rate and frequency

of the computed dominant eigenvalue. Table (4.1) shows the grid convergence for

the case of Re = 50 jet at α = 1.7. At three levels of refinement, the error in the

computed growth rate is less than 2% and the error in frequency is less than 1%.

All the simulations are performed on three levels of refinement. The simulations are

run on 64 cores at the lonestar 5 and stampede supercomputers at Texas advances

computing center (TACC). The simulations take around 6 hours including the base

flow and the eigenvalue computations.

The computed spectrum of eigenvalues for different values of α is shown in

figure (4.5). The spectrum shows that the low frequency modes are dominant. The

shear modes are typically associated with high frequency. The centrifugal modes

that are at the low frequency end of the spectrum are found to be dominant. The

instability arises from the streamline curvature and we expect the loss of stability of

Levels of refinement λr λi Error in λr Error in λi

0 0.034 0.1743 – –

1 0.0427 0.1692 20.3% 6.56%

2 0.04497 0.1664 5.1% 1.68%

3 0.0456 0.1655 1.38% 0.5%

Table 4.1. Convergence of eigenvalues for the case of Re = 50 and α = 1.7. λr
represents real part of eigenvalue (growth rate) and λi is imaginary part (frequency)
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(a) α = 1.3 (b) α = 1.5

(c) α = 1.7 (d) α = 2.0

Figure 4.5. Spectrum of eigenvalues. X-axis shows the imaginary part and Y-axis
shows the real part. Eigenvalues corresponding to the stable modes are shown in
black while the ones corresponding to unstable modes are shown in red.

the two-dimensional base flow to three-dimensional instabilities as found by Barkley

et al. [77] and by Brès and Colonius [78] in the case of recirculating flows. Tri-

Global stability analysis of a planar jet in counterflow is being performed as the time

of writing this thesis and the results will be published elsewhere. We also expect

the growth rates associated with the shear modes to increase with Reynolds number

leading to competetion between shear layer and centrifugal instability mechanisms.

Stability analysis at such high Reynolds numbers is not performed in this thesis.
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There is also the possibility of unstable wake modes leading to vortex shedding as

seen in bluff body flows. However, the structural sensitivity analysis shows that the

centrifugal instability is the dominant mechanism.

In an attempt to find the critical velocity ratio, the dominant eigenvalues are

computed at different values of α. Figure (4.6) shows the variation of growth rate and

frequency of the dominant eigenvalues at different velocity ratios. The growth rate of

the leading eigenmode increases with the velocity ratio while its frequency decreases.

The critical velocity ratio for the Re = 50 jet in counterflow at velocity ratio is found

to be ≈ 1.60. Variation of the Strouhal number (St ≡ λi D/2πUjet) with α is shown

in figure (4.2). The dominant eigenmodes are shown in figures (4.7) and (4.8).

Figure 4.6. Dominant eigenvalues at different velocity ratios. X-axis shows the imag-
inary part and Y-axis shows the real part.
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(a) α = 1.3 (stable mode)

(b) α = 1.5 (stable mode)

(c) α = 1.7 (unstable mode)

Figure 4.7. Vorticity contour corresponding to the real part of the dominant direct
mode computed at different values of α for Re = 50 jet.
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(a) α = 1.3 (stable mode)

(b) α = 1.5 (stable mode)

(c) α = 1.7 (unstable mode)

Figure 4.8. Vorticity contour corresponding to the imaginary part of the dominant
direct mode computed at different values of α for Re = 50 jet.
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α St

1.3 0.04439

1.5 0.03807

1.6 0.03051

1.7 0.026503

2.0 0.006316

Table 4.2. Variation of St with α
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4.1.3 Stability of the jet at Re = 75

In this section, the stability analysis of the jet at Re = 75 is presented. Base

flow state and the eigenvalues are obtained using the same procedure described in the

previous section. The Reynolds number is changed by changing the viscosity and the

effects of velocity ratio are analyzed. Figure (4.9) shows the computed base flow.

Figure (4.10) shows the specturm of eigenvalues and the variation of the growth

rate and frequency of the most dominant eigenmode with velocity ratio is shown in

(a) α = 1.1

(b) α = 1.5

Figure 4.9. The base flow states for Re = 75 at different jet to counterflow velocity
ratios. The vorticity contours are shown here. The dotted black surface represents
the region where x-velocity = 0.
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(a) α = 1.1 (b) α = 1.3

(c) α = 1.5

Figure 4.10. Spectrum of eigenvalues for Re = 75. X-axis shows the imaginary part
and Y-axis shows the real part. Eigenvalues corresponding to the stable modes are
shown in black while the ones corresponding to unstable modes are shown in red.

figure( 4.11). It can be seen that the jet becomes unstable at a velocity ratio between

1.1 − 1.3, although the exact value is not determined. Multiple unstable modes are

found at α = 1.5. The Strouhal number reduces with velocity ratio and the variation

is given in table (4.3). The St is similar to the values obtained for Re = 50 jet. The

dominant eigenmodes are visualized in figures (4.12) and (4.13).
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Figure 4.11. Dominant eigenvalues at different velocity ratios for Re = 75. X-axis
shows the imaginary part and Y-axis shows the real part.

α St

1.1 0.0485

1.3 0.0411

1.5 0.0372

Table 4.3. Variation of St with α for Re = 75
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(a) α = 1.1 (stable mode)

(b) α = 1.3 (unstable mode)

(c) α = 1.5 (unstable mode)

Figure 4.12. Vorticity contour corresponding to the real part of the dominant direct
mode computed at different values of α for Re = 75 jet.
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(a) α = 1.1 (stable mode)

(b) α = 1.3 (unstable mode)

(c) α = 1.5 (unstable mode)

Figure 4.13. Vorticity contour corresponding to the imaginary part of the dominant
direct mode computed at different values of α for Re = 75 jet.
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4.1.4 Stability of the jet at Re = 100

The stability of a jet at Re = 100 in counterflow is studied at a velocity ratio

of 1.1 using the procedure described in previous sections. Figure (4.14) shows the

computed base flow state and the spectrum of eigenvalues is shown in fig. (4.15).

Figure 4.14. The vorticity contour of the base flow obtained for Re = 100 at α = 1.1.
The dotted black surface represents the region where x-velocity = 0.

Figure 4.15. Eigen-specturm obtained for Re = 100 at α = 1.1. X-axis shows the
imaginary part and Y-axis shows the real part. Eigenvalues corresponding to the
stable modes are shown in black while the ones corresponding to unstable modes are
shown in red.
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Multiple modes are unstable as seen in figure (4.15). The Strouhal number

corresponding to the most dominant eigenmode is found to be 0.04712 which is very

close to the value obtained for the jet at Re = 75. The dominant eigenmodes are

shown in figure (4.16).

(a) Real part

(b) Imaginary part

Figure 4.16. Vorticity contour of the dominant eigenmode obtained for Re = 100 at
α = 1.1.

60



4.1.5 Stability at velocity ratio = 1.5

Stability of the jet is analyzed at different Reynolds numbers, holding the ve-

locity ratio constant at 1.5. The variation of the growth rate and frequency of the jet

with Reynolds number is obtained and is shown in figure (4.17). It can be seen that

the Reynolds number does not effect the frequency of the dominant mode. Bifurcation

to unsteady state occurs at Re ≈ 62.5.

Figure 4.17. Dominant eigenvalues at different Reynolds numbers. X-axis shows the
imaginary part and Y-axis shows the real part.
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4.2 Tri-Global stability analysis of a round jet in counterflow

4.2.1 Problem setup

The schematic representation of the computational domain used to study the

three-dimensional stability of a round jet in counterflow is provided in figure (4.18).

The analysis is performed on the domain [−32,−32,−32] x [32, 32, 32]. The jet enters

the domain through a circular pipe of diameter, D = 1 unit and length, L = 32 units.

The jet inlet is placed at the center of the x = −32 boundary. The thickness of the

pipe considered is 0.25D. The counterflow inlet in placed on the x = 32 boundary.

Figure 4.18. Schematic description of the computational setup used for stability
analysis of round jet in counterflow.
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At the jet inlet, a fully-developed parabolic profile with centerline velocity of

(2, 0, 0) is enforced during the base flow computation. At the counterflow inlet, the

velocity is set to (−U0, 0, 0) and U0 is changed to maintain the specified velocity

ratio, α. The boundaries at y = −32, y = 32, z = −32 and z = 32 are modeled as

farfield boundaries, where the velocity is set to be equal to the counterflow velocity,

(−U0, 0, 0). The region outside the jet inlet at the x = −32 boundary is modeled

as outflow. The pipe walls are treated as no-slip boundaries. During the eigenvalue

computation, the velocity of perturbations is se to (0, 0, 0) on all the boundaries.

The domain is discretized with a base mesh of resolution 256 x 256 x 256. The

pipe walls are embedded into the cartesian mesh as shown in figure (4.19). Two levels

of finer mesh with a refinement ratio of 2 are added at the regions where base flow

vorticity, ω is greater than 0.5U0/D. A buffer region of two cells in added around

each tagged cell for all levels of refinement.

(a) Mesh on Z = 0 plane (b) Mesh on X = −2 plane

Figure 4.19. Mesh used to discretize the computational domain. The embedded
boundary representation of the pipe is shown in red.
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4.2.2 Stability of round jet

Base flow is obtained using SFD technique. Adaptive scheme is not used and

the parameters, (χ,∆) are set to (2, 1). Figure (4.20) shows the base flow computed

for jet to counterflow velocity ratio of 3. The base flow is axisymmetric as expected.

(a) Isosurface of x-velocity = 0, colored by vorticity magni-
tude

(b) Spanwise plane at Z = 0 (c) Streamwise plane at X = 2

Figure 4.20. Contour of base flow vorticity obtained for Re = 50 round jet at velocity
ratio of 3. Black surface in (b) and (c) represents contour of x-velocity = 0.
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The axial penetration length is found to be ≈ 4 and the radial extent of penetration

is ≈ 2. At higher velocity ratios and Reynolds numbers, the base flow could not be

obtained using SFD and the Newtons method is computationally expensive due to

slow convergence. In this thesis, only the analysis of Re = 50 round jet at α = 3.0 is

presented.

The obtained baseflow is used to compute the eigenvalues. The block Krylov-

Schur method with 1 block of 63 vectors, resulting in a subspace dimension of 64

is used to obtain the eigenvalues. Integration time between the snapshots is set to

2.4. The method is iterated till the residual reaches < 10−4. Numerical convergence

is assessed by comparing the computed dominant eigenvalue on different levels of

refinement as shown in table (4.4). The error in the growth rate between 3 and 2

levels is found to be 5.4%. The accuracy is comprimised to save computational time

and the analysis is performed on the mesh with 2 levels of refinement. The simulations

take around 20 hours on 1200 cores at the lonestar 5 supercomputer at TACC.

Figure (4.21) shows the computed eigen-spectrum. All the obtained modes

are stable. The presence of two stationary modes in the spectrum can be observed.

At higher Reynolds numbers and velocity ratios, we expect the stationary modes to

be dominant with positive growth rates. This explains why SFD method failed to

Levels of refinement λr λi Error in λr Error in λi

0 -0.03581 0.3874 – –

1 -0.02906 0.3576 23.2% 8.4%

2 -0.0259 0.3448 12.2% 3.7%

3 -0.02457 0.3378 5.4% 2.1%

Table 4.4. Convergence of eigenvalues for the case of Re = 50 round jet at α = 3.0. λr
represents real part of eigenvalue (growth rate) and λi is imaginary part (frequency)
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Figure 4.21. Spectrum of eigenvalues obtained for a round jet at Re = 50 and α = 3.0.
X-axis shows the imaginary part and Y-axis shows the real part.

converge to base flow. Unsteady simulation performed at Re = 100 showed shedding

of vortex rings as shown in figure (4.22). Compared to the two-dimensional planar

jet at Re = 50 which becomes unstable at α = 1.6, a round jet is found to be

stable even at α = 3.0. This could be due to the different velocity profile in a round

Figure 4.22. Snapshot from unsteady run for the case of a round jet at Re = 100 and
α = 3.0. Isosurface of vorticity magnitude = 1, colored by x-velocity is shown here.
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pipe when compared to planar channel. The Strouhal number corresponding to the

most dominant mode is found to be 0.055 which is slightly higher than that of two-

dimensional planar jet. The dominant eigenmodes are visualized in figure (4.23).

(a) Real part

(b) Imaginary part

Figure 4.23. Isosurface of vorticity = 0.001 corresponding to the dominant eigen-
mode obtained for Re = 50 round jet at α = 3.0. The isosurface is colored by the
perturbation velocity magnitude.
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4.3 Chapter summary

The asymptotic stability analysis of jet in counterflow is presented in this chap-

ter. The effect of Reynolds number and jet to counterflow velocity ratio on the

stability of a two-dimensional planar jet is investigated. The low frequency modes

are observed to be dominant. The Strouhal number correspnding to the most dom-

inant modes is found to be around 0.04 − 0.006 for the range of Reynolds numbers

and velocity ratios considered. The instability arises from the streamline curvature

similar to the centrifugal instability mechanism found in the case of recirculating

flows. Approximate critical velocity ratio values for a two-dimenisonal planar jet are

obtained as shown in table (4.5).

Re αcritical

50 1.6

62.5 1.5

75 1.1 – 1.3

100 < 1.1

Table 4.5. Critical velocity ratio at different jet Reynolds number

The stability analysis of a round jet at Re = 50 showed that the jet is stable

at velocity ratio of 3. The presence of standing modes in the computed spectrum is

observed. At higher Reynolds numbers, the standing modes become dominant and

shedding of axisymmetric vortex rings is observed.
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CHAPTER 5

TRANSIENT GROWTH ANALYSIS

In the previous chapter, the aymptotic stability of a jet in counterflow is ana-

lyzed by computing the eigenvalues. However, the eigenvalue analysis is not sufficient

to describe the stability when the non-normal effects are important. In this chapter,

the transient growth of perturbations is analyzed by computing the eigenvalues of the

symmetric operator resulting from the product of linear Navier-Stokes operator and

its adjoint, as described in chapter 2. The optimal initial perturbations that lead to

maximum transient growth are obtained.

5.1 Analysis of two-dimensional planar jet in counterflow

This section presents the transient growth of perturbations in the case for a

two-dimenisonal planar jet in counterflow. The computational domain used for the

analysis is described in section (4.1.1). As described in chapter 2, transient growth

analysis requires solution to the linear perturbation equations and the adjoint equa-

tions. The Neumann outflow boundary condition enforced on forward evolution of

perturbations requires implementation of Robin boundary conditions on the adjoint

perturbations. In this thesis, homogeneous Dirichlet boundary conditions on pertur-

bation velocity is enforced at all boundaries. It is assumed that the outflow boundary

is sufficiently far away so that the boundary conditions do not effect the evolution of

perturbations.

The transient growth of perturbations and the optimal initial perturbations

are evaluated at different time horizons, τ . The eigenvalues are obtained using the
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block Krylov-Schur method. The snapshots that span the subspace are obtained

by integrating the linear perturbation solver by τ and using this solution as initial

condition to integrate the adjoint solver by τ . The subspace dimension is set to 12

and the most dominant eigenmode is obtained within 12 iterations. The transient

growth of perturbations for the case of Re = 50 and Re = 75 jet is presented in the

following sections.

5.1.1 Analysis of jet at Re = 50

In this section, the transient growth is analyzed at different velocity ratios by

fixing the jet Reynolds number at 50. The base flow states are obtained using the

adaptive SFD method as described in the section (4.1.2). The transient energy growth

of perturbations at different time horizons is shown in figure (5.1). The optimal mode

Figure 5.1. Transient energy growth of perturbations for Re = 50 two-dimensional
planar jet.
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at α = 1.3 amplifies by a factor of ≈ 25 at τ ≈ 30 after which the energy mode starts

decaying. The maximum amplification at α = 1.5 occurs at τ ≈ 40. In this time

horizon, the optimal mode amplifies by a factor of ≈ 37. At α = 1.7, the energy

amplification is rapid during the short time horizon and it asymptotically reaches the

rate determined by the eigenvalue.

(a) x-velocity (b) y-velocity

Figure 5.2. Velocity contour of the optimal initial perturbation that leads to maximum
energy growth at τ = 24 for the case of planar jet at Re = 50 and α = 1.7.

The optimal initial perturbation at α = 1.7 for τ = 24 is shown in figure (5.2).

The optimal mode is located at the jet exit and its spatial position does not appear

to change with τ . This shows that the transient growth mechanism is related to the

compression of the jet column. There is also a convective subdominant mode with

energy amplification at α = 1.7. The energy of the identified subdominant mode

amplifies by a factor of ≈ 58 at τ = 24. However, this mode is expected to decay at

a longer time horizon as the eigenvalue analysis predicts only one unstable mode at

α = 1.7. The subdominant mode is shown in figure (5.3).
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(a) x-velocity (b) y-velocity

(c) x-velocity (d) y-velocity

Figure 5.3. Velocity contour of the subdominant convective mode with energy am-
plification for the case of planar jet at Re = 50 and α = 1.7. (a), (b) correspond to
τ = 12 and (c), (d) correspond to τ = 24.
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5.1.2 Analysis of jet at Re = 75

The transient growth of perturbations is analyzed for the case of planar two-

dimensional jet at Re = 75 in this section. The base flow used for the analysis is

shown in figure (4.9). The energy amplification over τ = 24 is analyzed at velocity

ratios of 1.1 and 1.3. Figure (5.4) shows the energy amplification at different time

horizons. The energy amplification at α = 1.3 is more than the amplification at

α = 1.3. The optimal initial mode at α = 1.1 amplifies by a factor of 560 while the

optimal mode amplifies by 410 at α = 1.3 over a time horizon of 24. However, the

amplification for the case of α = 1.1 is expected to reach a maximum value before

starting to decay at a longer time horizon, as all the eigenvalues for this configuration

are found to be stable. The optimal modes at α = 1.3 are shown in figure (5.5).

The modes are located close to the jet exit and the spatial position does not appear

Figure 5.4. Transient energy growth of perturbations for Re = 75 two-dimensional
planar jet.
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(a) x-velocity (b) y-velocity

Figure 5.5. Velocity contour of the optimal initial perturbation that leads to maximum
energy growth at τ = 24 for the case of planar jet at Re = 75 and α = 1.3.

to change with τ as observed in the case of Re = 50 jet. These findings further

suggest that the transient growth mechanism is related to the compression of the jet

column. It is not clear from this analysis if the jet compression can support feedback

mechanism and change the global behavior of the jet.

5.2 Analysis of round jet at Re = 50 and α = 3

The transient growth of three dimensional perturbations is analyzed for the

case of a round jet at Re = 50 and α = 3. The computational domain used for the

analysis is described in section (4.2.1). Homogeneous Dirichlet boundary conditions

are enforced on perturbations at all boundaries of the domain. The analysis is per-

formed on the mesh with two levels of refinement as shown in figure (4.19). Transient

growth of perturbations is obtained using the Krylov-Schur method with a subspace

dimension of 12 obtained by setting 1 block with 11 vectors.

The amplification of optimal initial perturbations at different time horizons is

shown in figure (5.6). The maximum energy amplification factor is found to be around
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Figure 5.6. Transient energy growth of perturbations for the case of a round jet at
Re = 50 and α = 3.

35 at τ ≈ 10. At τ > 10, the perturbation energy decays which is consistent with

the finding that all the eigenvalues for this configuration are found to be stable. At

higher Reynolds numbers, we expect the amplification to significantly increase. The

effect of velocity ratio is not clear as the transient growth mechanism arising from

the compressed jet column has complex dependence on both Re and α. Figure (5.7)

presents the initial optimal perturbation in terms of the perturbation vorticity mag-

nitude colored by the velocity magnitude. As the jet column gets compressed by

the counterflow, there seems to be a rotation of the optimal perturbations about the

x-axis.
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(a) τ = 2.4 (b) τ = 4.8

(c) τ = 9.6 (d) τ = 19.2

Figure 5.7. Initial optimal perturbation at different time horizons for a round jet at
Re = 50 and α = 3. Isosurface of vorticity = 0.01, colored by the velocity magnitude
is shown here.

5.3 Chapter summary

The transient growth analysis of the flowfield of a jet in counterflow is presented

in this chapter. The analysis has been applied to two-dimensional planar jet at Re =

50 and Re = 75 and round jet at Re = 50. The analysis shows the presence of non-

normal effects of the Navier-Stokes operator, leading to transient energy amplification

of perturbations even for the cases that are predicted to be stable by the eigenvalue

analysis. The energy amplification factor for the case of planar jet at Re = 50 is

found to be ≈ 40 at α = 1.5. At α = 1.7, the rapid initial energy amplification
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asymptotically reaches the growth rate determined by the dominant eigenvalue. The

presence of a subdominant mode with energy amplification is identified at α = 1.7.

At Re = 75, the energy amplification factor is more than 500 at time horizon

of 24 for α = 1.1. It can be seen that the amplification for the case of α = 1.1 in the

investigated time horizon is greater than that of α = 1.3. For the case of a round jet,

the maximum energy amplification is found to be ≈ 30 at α = 3.

The optimal initial perturbations are visualized. The optimal mode is located

at a fixed spatial region in the investigated time horizons. It is hypothesized that the

transient growth mechanism arises from the compression of the jet column.
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CHAPTER 6

STRUCTURAL SENSITIVITY ANALYSIS

This chapter presents the structural sensitivity of a jet in counterflow. The

sensitivity of two-dimensional flowfield associated with planar jet at Re = 50 and

Re = 100 and the three-dimensional flowfield associated with round jet at Re = 50 is

analyzed. The adjoint eigenmodes are computed. The wavemaker region is revealed

by overlapping the adjoint eigenmodes with the direct eigenmodes. The region in the

flowfield where the growth rate and the frequency of the leading eigenmode are most

reciptive to structural modifications in the base flow is identified.

6.1 Structural sensitivity of two-dimensional planar jet in counterflow

This section presents the structural sensitivity of a two-dimensional planar jet

in counterflow. The computational domain used for the analysis is described in sec-

tion (4.1.1). Homogeneous Dirichlet boundary conditions are enforced on the adjoint

perturbations at all boundaries of the domain. The analysis is preformed on three

levels of refined mesh as shown in figure (4.3). The adjoint modes are computed using

the same procedure used to obtain the direct modes as described in section (4.1.2).

The span of the subspace is obtained from the adjoint equations solver.

The most dominant adjoint eigenmode obtained for the case of Re = 50 jet

at α = 1.7 is shown in figure (6.1). The corresponding eigenvalue is found to be

0.041 ± 0.1572i. The most dominant direct mode for this configuration is shown in

figure (4.7(c)) and the corresponding eigenvalue is 0.042± 0.161i.
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(a) Real part

(b) Imaginary part

Figure 6.1. Vorticity contour of the adjoint mode obtained for the case of planar jet
at Re = 50 and α = 1.7.

The region in the flowfield where the growth rate of the leading eigenmode is

most recip tive to modifications in the structure of the base flow is obtained from the

overlap of the real part of direct and adjoint modes. Similarly, the region where the

frequency is most receptive is found from the imaginary part of the direct and adjoint

modes. The overlap region is obtained using the norm given by (2.22). This overlap

region is known as wavemaker. The computed wavemaker region for Re = 50 planar

jet at α = 1.7 is shown in figure (6.2).
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(a)

(b)

Figure 6.2. Wavemaker region obtained for planar jet at Re = 50 and α = 1.7. (a)
shows region where growth rate is most sensitive and (b) shows region where fre-
quency is most sensitive.

Similar analysis is performed for the case of the planar jet at Re = 100 and

α = 1.1. The eigenvalue corresponding to the leading adjoint mode is found to be

0.0519±0.291i. The leading adjoint mode is shown in figure (6.3). The most dominant

direct mode for this configuration is shown in figure (4.16) and the corresponding
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eigenvalue is 0.053 ± 0.296i. The computed wavemaker region for this configuration

is shown in figure (6.4).

(a) Real part

(b) Imaginary part

Figure 6.3. Vorticity contour of the adjoint mode obtained for the case of planar jet
at Re = 100 and α = 1.1.

81



(a)

(b)

Figure 6.4. Wavemaker region obtained for planar jet at Re = 100 and α = 1.1. (a)
shows region where growth rate is most sensitive and (b) shows region where fre-
quency is most sensitive.

It can be seen from figures (6.2) and (6.4) that the growth rate of the instability

is sensitive to regions at the jet exit, while the frequency is sensitive to the regions

around the pipe through which the jet is issued. The instability can be controlled by

modifying the region around the jet exit.
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6.2 Structural sensitivity of Re = 50 round jet at α = 3

The three-dimensional structural sensitivity of the flowfield associated with a

round jet at Re = 50 and α = 3 is evaluated. The computational domain used

for the analysis is described in section (4.2.1). Homogeneous Dirichlet boundary

conditions are enforced on adjoint perturbations at all boundaries. The mesh used

for the analysis is shown in figure (4.19).

All the computed modes for this configuration of the jet are found to be stable

as shown in the figure (4.21). The leading adjoint mode is visualized in figure (6.5).

The corresponding eigenvalue is found to be −0.0281 ± 0.346i. The leading direct

mode for this configuration is shown in figure (4.23) and the corresponding eigenvalue

is −0.0263± 0.3448i. The wavemaker region is visualized in figure (6.6). Forcing this

region can enhance the instability and may even make this configuration unstable.

This is especially important for mixing applications. However, the optimal forcing

required to enhance the instability is not obtained in this research.
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(a) Real part

(b) Imaginary part

Figure 6.5. Isosurface of vorticity = 0.005 corresponding to the dominant eigen-
mode obtained for Re = 50 round jet at α = 3.0. The isosurface is colored by the
perturbation velocity magnitude.
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(a)

(b)

Figure 6.6. The wavemaker region for Re = 50 round jet at α = 3.0 identified by the
isosurface of δλ = 0.25.. (a) shows region where growth rate is most sensitive and (b)
shows region where frequency is most sensitive.
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6.3 Chapter summary

The sensitivity of the growth rate and the frequency of the eigenvalue corre-

sponding to the dominant eigenmode to structural modifications in the base flow is

obtained by computing the adjoint eigenmodes. The wavemaker region is obtained by

overlapping the direct and adjoint modes and it is found to be specularly symmetric.

In the case of two-dimensional planar jet at Re = 50 and Re = 100 at velocity ratio

of 1.7 and 1.1 respectively, the growth rate is found to be sensitive to perturbations

introduced at the jet exit. The frequency of the dominant eigenmode is most recep-

tive to forcing introduced near the jet exit, around the pipe walls. The instability

can be controlled by modifying the region around the jet exit. The wavemaker re-

gion in the case of round jet at Re = 50 at α = 3 is found at region away from the

jet exit, towards the base flow stagnation surface. By introducing optimal forcing

at this location, the flowfield can be made unstable. This is beneficial for mixing

applications.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Summary

In this thesis, stability analysis of the flowfield associated with a jet in coun-

terflow was performed using linear hydrodynamic stability theory. The objective of

this analysis was to understand the stability characteristics of the jet in presence of

counterflow. The stability of two-dimensional planar jet and round jet was analyzed

using numerical methods.

The mathematical formulation of the hydrodynamic stability theory was pre-

sented. The nonlinear Navier-Stokes equations, the linearized perturbation equations

and the adjoint equations were solved using embedded boundary method. The com-

putational meshes were dynamically adapted to the solution. Base flow solution was

obtained using adaptive selective frequency damping (SFD) technique. However, it

was found that SFD cannot be used to obtain base flows in the presence of unstable

low frequency and stationary modes. In these cases, base flow was obtained using

Newtons method. The search for global modes of instability was conducted using the

block Krylov-Schur method.

The critical values of the jet Reynolds number, Re and the jet to counterflow

velocity ratio, α that lead to instability were obtained from the eigenvalue analysis

for the case of two-dimensional planar jet. At Re = 50, the critical α was found to be

1.6 while at Re = 100, the critical α is less than 1.1. The round jet was found to be

stable at Re = 50 and α = 3. At higher Reynolds numbers, shedding of axisymmetric
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vortex rings was observed. For all the cases analyzed, the centrifugal modes that are

at the low frequency end of the spectrum were found to be dominant.

The transient energy amplification of the perturbations was analyzed and the

optimal initial conditions were analyzed. It was found that the non-normal effects of

the Navier-Stokes operator are moderate at Re = 50 for both planar jet and round jet.

The maximum energy growth obtained was less than two orders of magnitude. The

non-normality effects become more prominent at Re = 75. The energy amplification

factor at time horizon of 24 was found to be more than 500 at α = 1.1 and it was

found that the amplification for α = 1.1 is greater than that for α = 1.3. The optimal

modes were found to be located near the jet exit and were found to be at the same

spatial location at different time horizons. It was hypothesized that the transient

growth mechanism arises from the compression of the jet column.

The regions in the flowfield where the growth rate and the frequency of the

leading eigenvalue are most sensitive to structural modifications in the baseflow were

identified from structural sensitivity analysis. For two-dimensional planar jet, it was

found that the growth rate is sensitive to perturbations introduced at the jet exit

while the frequency is most receptive to disturbances introduced near the jet exit,

around the pipe walls. This shows the possibility of controlling the instability by

modifying the region around the jet exit. For the round jet case, the wavemaker was

located away from the jet exit, towards the base flow stagnation surface.

7.2 Future work

The analysis presented in this thesis can be extended to study the stability at

higher jet Reynolds numbers and it is possible to find the critical parameters for the

case of round jet. However, it was found that SFD technique is not applicable at
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higher Reynolds numbers due to the presence of stationary modes. The base flow

computation requires Newtons method.

In this research, it was found that the instability arises from streamline cur-

vature. We expect the loss of stability of the two-dimensional base flow to three-

dimensional perturbations as observed in the case of recirculating flows. This can

be addressed by considering the effect of the spanwise periodic modes on the two-

dimensional base flow stability.

The wavemaker region has been identified in this research. Passive flow control

strategies such as placing a control cylinder, etc. can be evaluated by modifying the

base flow structure at the wavemaker region. Finding the optimal forcing that has

the most effect of the leading eigenvalue can provide even more valuable insights and

can be beneficial for mixing applications.

The mechanism of instability was identified as centrifugal type. This can be

confirmed by analyzing the streamline curvature as done in the case of other recircu-

lating flows.

The effect of instability and the perturbations on scalar mixing from the jet can

be quantified.
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