
STRUCTURE & DECISION IN MOBILE WIRELESS SENSOR NETWORKS

by

PRASANNA MOHAN BALLAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

ii

Copyright © Prasanna Ballal 2005

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to thank many people who have helped me make this thesis

possible. First of all, I sincerely thank my supervising professor, Dr. Frank Lewis for his

invaluable guidance and constant motivation. It is because of his deep involvement in

my thesis work, I could make this thesis possible.

I would like to thank my supervising committee consisting of Dr. Dan Popa and

Dr. Qilian Liang for their interest in my thesis work and for taking their time to be on

the thesis committee. I am grateful to all the ARRI-ACS members and especially Ms.

Sarah Densmore and Dr. Sajal Das for their support and help.

Above all, I thank my mother Kalanidhi Ballal and my father Mohan Ballal for

believing in my abilities, constantly providing the support I needed and being the

greatest teachers of my life.

Last but not the least; I also would like to thank Mr. Vincenzo Giordano for his

much needed suggestions during my work tenure at Mobile Wireless Sensor Networks

Lab at Automation and Robotics Research Institute (ARRI- UTA).

This work was sponsored by ARO grant DAAD 19-02-1-0366, NSF grants IIS-

0326505 and CNS-0421282, Singapore SERC TSRP grant 0421120028 and JC Penney,

Inc.

July 18, 2005

iv

ABSTRACT

STRUCTURE & DECISION IN MOBILE WIRELESS SENSOR NETWORKS

Publication No. ______

Prasanna Mohan Ballal, M.S

The University of Texas at Arlington, 2005

Supervising Professor: Dr. Frank Lewis

This work concerns the development of a novel structure of Discrete Event

Controller (DEC) for mobile wireless sensor networks consisting of mobile robots and

stationary wireless sensing nodes known as Unattended Ground Sensors (UGS). These

are the three contributions:

1. Decision-making systems such as Fuzzy Logic and Dempster Shafer

Theory for sensor fusion are implemented.

2. Decision-making is used for a special case of routing of resources for

multiple tasks performed by different resources.

3. The DEC was actually implemented in the Mobile Wireless Sensor

Networks lab at Automation & Robotics Research Institute.

v

This work was supported by ARO grant DAAD 19-02-1-0366, NSF grants IIS-

0326505 and CNS-0421282, Singapore SERC TSRP grant 0421120028 and JC Penney,

Inc. The theory involved in developing such systems is included and aptly supported by

relevant simulation and experimental results.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES... xi

Chapter

1. INTRODUCTION………. .. 1

1.1 Introduction………….. 1

1.2 Objective………………….. 2

2. DECISION SYSTEMS…….. ... 5

2.1 Introduction………….. 5

2.2 Bayesian Theory………………………………………………………... 5

2.3 Dempster Shafer Theory………………………………………………... 9

2.3.1 Definition of Terms…………………………………………… 11

2.3.2 Rule of Combination………………………………………….. 13

2.4 Fuzzy Logic Systems…………………………………………………… 16

2.4.1 Fuzzy Logic Architecture……………………………………...16

2.5 Petri Nets……………………………………………………………….. .21

vii

3. DISCRETE EVENT CONTROLLER (DEC).……………………………… 25

3.1 Introduction……………………………….……………………………….25

4. IMPLEMENTATION OF DEC ON WSN……………………....……………30

4.1 Introduction. ……….. 30

4.2 Implementation on Sentries & UGS...……………………………………..38

4.3 Simulation and experimental results……………………………………….45

4.4 Decision for routing of resources…………………………………………..48

5. SENSOR FUSION.………………. ..….50

5.1 Introduction…………………………………………………………….......50

5.2 Fuzzy Logic………………………………………………………………...52

5.3 Dempster Shafer……………………………………………………………55

5.4 Analysis of Dempster Shafer and Fuzzy Logic…………………………….58

6. CONCLUSION………………………………………………………………...63

6.1 Conclusion.. ……….. ..….63

6.2 Future Scope ……….. ...….64

Appendix

A. IMPORTANT LABVIEW BLOCKS……...………………………………......65

REFERENCES ……………………………………………………………………….69

BIOGRAPHICAL INFORMATION…………………………………………………..74

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 A Simple Bayesian Network ... 8

2.2 Probability, Belief and Plausibility of A and B... 13

2.3 Combination of evidence .. 14

2.4 Fuzzy Logic Architecture.. 17

2.5 Membership functions... 19

2.6 FL system with triangular and Gaussian membership functions 21

2.7 A simple Petri net.. 22

2.8 Tokens in Petri net... 22

2.9 Transitions in Petri net .. 23

2.10 Two transitions in a Petri net... 23

2.11 Conflict in a Petri net…………………………………………………………24

2.12 Timing in a Petri net.. 24

4.1 Complete System Architecture.. 31

4.2 Sequencing of missions... 32

4.3 Matrix formulation .. 33

4.4 Reallocation of resources through matrix operations...................................... 34

4.5 Initial priorities.. 35

4.6 Changed priorities ... 35

ix

4.7 Initial resource matrix ... 37

4.8 Changed resource matrix... 37

4.9 Mission1 job sequencing matrix 1

vF (a), resource
requirement matrix 1

rF (b)…………………………………………….……….43

4.10 Mission1 Task start matrix 1
vS (a) and resource release matrix 1

rS (b) ……….43

4.11 Mission2 Task sequencing matrix 2

vF (a), resource
requirement matrix 2

rF (b) and conflict
resolution matrix)1(2 RFud (c)……………………………………………….….44

4.12 Mission2 Task start matrix 2
vS (a) and resource release matrix 2

rS (b)............ .45

4.13 Overall monitoring operation- Matrix formulation matrices Fv, Fr, Sv, Sr.... .45

4.14 Simulation results Mission 1 (a) Mission 2 (b)46

4.15 Utilization time trace of the WSN- Experimental results47

5.1 Sensor Fusion Architecture51

5.2 FL Membership function editor in LabView .. .53

5.3 Rulebase editor in LabView.. .53

5.4 Testing FL system in LabView ... 54

x

5.5 FL system block diagram in LabView .. 55

5.6 FL controller system block diagram in LabView.. 58

5.7 When Light values go low .. 59

5.8 BPA of Intrusion increases.. 60

5.9 BPA of Earthquake increases.. 60

xi

LIST OF TABLES

Table Page

2.1 Sample Table for Bayesian Network .. 8

 2.2 Sample Table for Bayesian Network for different probability values 9

 4.1 Mission 1 Task sequence... 41

4.2 Mission 1 Rule-base .. 42

4.3 Mission 2 Task sequence... 42

4.4 Mission 2 Rule-base .. 42

5.1 Table for two sources of evidence... 57

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

There has been increased research interest in systems composed of multiple

autonomous mobile robots and stationary wireless sensors exhibiting cooperative

behavior. Emphasis has been put on developing wide area distributed wireless sensor

networks with self-organization capabilities to cope with sensor failures, changing

environmental conditions, and different environmental sensing applications [19]. In

particular, mobile sensor networks hold out the hope to support self-configuration

mechanisms, guaranteeing adaptability, scalability and optimal performance, since the

best network configuration is usually time-varying and context dependent.

Decision-making plays an important role in mobile wireless sensor networks.

There are three levels of decision-making in sensor fusion namely, low level,

intermediate level and high-level sensor data fusion. This thesis is mainly concerned

with the decision making which involves combining decisions coming from several

experts. By extension, one speaks of decision fusion even if the experts return a

confidence (score) and not a decision. To distinguish both cases, one speaks of hard and

soft fusion. Decision fusion can be achieved using voting methods, statistical

methods, Dempster Shafer, Fuzzy logic based methods, etc.

2

Decision-making systems are very important in sensor fusion since it involves

lot of uncertainty. Mobile wireless sensor networks present a range of challenges as

they are closely coupled to the physical world with all its unpredictable variation, noise,

and asynchrony; they involve many energy-constrained, resource-limited devices

operating in concert; they must be largely self-organizing, self-maintaining and robust

despite significant noise, loss, and failure.

1.2 Objective

The objective of this thesis is to study and implement decision-making systems

on Mobile Wireless Sensor Network test bed at Automation and Robotics Research

Institute which uses an efficient matrix-based Discrete Event Controller (DEC) [20]. In

this thesis a presentation of a DEC for the coordination of cooperating heterogeneous

wireless sensors, namely UGS and mobile robots is made. Contributions are also made

in sensor fusion and decisions for routing of resources.

Advancements in wireless communications, Microelectromechanical Systems

(MEMS), and digital electronics have enabled the development of low-cost, low-power,

multifunctional sensor nodes that are small in size and communicate undeterred in short

distances. These tiny sensor nodes, which consist of sensing, data processing, and

communicating components, can be used along with mobile robots to attain a common

goal. These sensor nodes are called Unattended Ground Sensors (UGS) and they along

with the mobile robots form a part of the Smart Environment [19]. Smart environments

represent the next evolutionary development step in building, utilities, industrial, home,

3

shipboard, and transportation systems automation. Like any sentient organism, the

smart environment relies first and foremost on sensory data from the real world.

Sensory data comes from multiple sensors of different modalities in distributed

locations. The smart environment needs information about its surroundings as well as

about its internal working which is similar to biological systems. An example of Smart

Environment would be a warehouse guarded by mobile robots constantly interacting

with strategically placed ground sensors to keep the risk of fire, trespass, robbery, etc to

a minimum.

Different techniques are available to coordinate the task assignment and

resource dispatching in mobile wireless sensor networks such as decentralized and

centralized techniques. In decentralized coordination, the robots and sensors only have

information about their local neighbors and do not have complete information of the

entire network. Whereas, in centralized technique, a supervisor controls the

coordination of the robots and sensors, in the decentralized approaches, robots possess

similar functionalities, perform similar tasks and just one mission at a time is usually

implemented. To overcome the inherent limitations of decentralized approaches,

supervisory (centralized) control techniques are preferred. In [10], a supervisory control

is proposed which reschedules the mission planning in response to uncontrollable

events (node failures) using computationally efficient algorithms. Also the use of a

coordinator can ensure that the group possesses certain desired properties and remains

within the bounds of pre-specified behavioral constraints. Some significant results in

supervisory control have also been obtained using Petri nets [16]. Nevertheless the

4

implementation of high-level mission specifications is not straightforward, the

dynamical description of the system is incomplete and a new design stage, almost from

scratch, is required if objectives or resources change. Thus, there is a lack of

supervisory control and decision-making techniques, which can sequence different

missions according to the scenario (adaptability) and reformulate the mission if some of

the robots fail (fault tolerance) in a predictable way and using a high-level interface.

DEC was first used in manufacturing systems [22] in order to sequence the most

suitable tasks for each agent according to the current perception of the environment. A

novel matrix formulation makes the assignment of the mission planning straightforward

and easily adaptable if agents or applications change. It represents a complete

dynamical description of the system that allows computer simulation analysis. The

matrices are direct to write down given the sequence rules for a given task. Priority

rules for efficiently dispatching shared resources and handling simultaneous missions

can also be easily taken into account.

This thesis includes the study of various decision-making techniques such as

Bayesian Theory, Dempster Shafer Theory, Fuzzy logic and Petri Nets. It also

introduces the theory of matrix Discrete Event Controller (DEC) and its simulation on

wireless sensor networks. Implementation of decision-making in Sensor Fusion is also

studied. Also, simulation and implementation of decision-making for routing of

resources in the DEC is studied.

5

CHAPTER 2

DECISION SYSTEMS

2.1 Introduction

There are different decision-making techniques, which can be used for sensor

data fusion. All these techniques can be organized into two categories, i.e. statistical

based and rule-based. The former class contains problem in which there is genuine

randomness in the world. Playing card games such as bridge and blackjack is a good

example of this class. Although in these problems it is not possible to predict the world

with certainty, some knowledge about latter second class contains problems in which

the relevant world is not random; it behaves “normally” unless there is some kind of

exception. An important goal for many decision-making systems is to collect evidence

as the system goes along and to modify its behavior on the basis of this evidence. To

model this behavior one needs a statistical theory of evidence.

2.2 Bayesian Theory

One needs a system that is adaptive as the system goes along collecting more

evidence. Bayesian statistics is one such theory. The fundamental notion of Bayesian

statistics is that of conditional probability. Suppose there is an expression about the

probability of a hypothesis H given that one has observed evidence E. To compute this

there is a need for prior probability of H and the extent to which E provides the

6

evidence of H. For this, one needs to define a universe that contains an exhaustive,

mutually exclusive set of Hi’s among which one can discriminate.

 P(Hi/E)= probability that Hi is true given E.

P(E/Hi)= probability that we observe E given Hi is true.

P(Hi)= the a priori probability that hypothesis i is true in the absence of any

specific evidence. These probabilities are called prior probabilities or priors.

 k= number of possible hypothesis.

Then the Bayes’ theorem states that,

∑

=

= k

n
nn

ii
i

HPHEP
HPHEPEHP

1
)()./(

)()./()/((2.1)

 The key to using Bayes’ theorem as a basis for uncertain reasoning is to

recognize exactly what it says. Specifically, P(A/B) describes the conditional probability

of A given that the only evidence available is B. If there is also other relevant evidence,

then it too must be considered. Suppose in sensor network event detection, there are

events such as fire, thermostat malfunction and explosion. If there are assertions such as

light sensor values, temperature sensor values and sound sensor values, all these values

have an impact on the probabilities of the given events. Thus, given a priori body of

evidence ‘e’ and some new observation ‘E’, one needs to compute:

)/(
),/()./(),/(EeP

HEePEHPeEHP i = (2.2)

7

But, in an arbitrarily complex world, the size of the set of joint probabilities required in

order to compute this function grows as 2n if there are n different propositions being

considered. This makes using Bayes’ theorem intractable for several reasons:

1. The knowledge acquisition problem is insurmountable, too many probabilities

to be provided.

 2. The space that would be required to store all the probabilities is too large.

 3. The time required to compute the probabilities is too large.

 Nevertheless, Bayesian statistics provide an attractive basis for an uncertain

reasoning system. As a result, several mechanisms for exploiting its power while at the

same time making it tractable have been developed. Some of them are attaching

certainty factors to rules, Bayesian networks and Dempster Shafer Theory.

 In case of Bayesian networks, if one can state some number of propositions and

clearly define the causal relationships between them (“A causes B”), one can arrange

those propositions and their interrelationships in a graph structure. Once the graph is

created, probabilistic reasoning can be used to perform inference on the graph.

 For example if an event such as a burglar’s alarm has been set off. It could be

that a particular sensor might have picked up an intruder, but the alarm might have also

been setoff by an earthquake (vibration sensor might have picked it up). Thus a belief

network based on those three propositions, demonstrating that “intruder (I)” and

“earthquake (E)” can both cause “Burglar Alarm (A)”.

8

Figure 2.1 A Simple Bayesian Network

 Firstly, begin by calculating the independent probabilities of intruder and

earthquake, other things being equal. Then determine the conditional probability of the

alarm going off in the event of all possible permutations of earthquakes and intruder

alerts i.e. Intruder alert only, earthquake only, both or neither. Assume that by testing

the alarm system in various ways or reviewing historical data. Now take the numbers

that one has arrived at for the prior probabilities for earthquake and intruder alert and

plug them into the table. For each row in the table, multiply the prior probability of each

of I and E by the resulting conditional probability of an alarm to determine the actual

probability of the alarm being set off in each case i.e. Calculate P(I)*P(E)*P(A.I,E).

Construct a sample table as given below:

Table 2.1 Sample Table for Bayesian Network

P(I) P(E) P(A/I,E) P(A) αP(A)
T=0.001 T=0.002 0.95 0.000002 0.000795
T=0.001 F=0.998 0.94 0.000938 0.372814
F=0.999 T=0.002 0.29 0.000579 0.230127
F=0.999 F=0.998 0.001 0.000997 0.396264

0.002516 1

Earthquake

Burglar

Intruder

9

The symbol ‘α’ is used for normalization i.e. P(A) is adjusted so that they add to

1. This tells that if the alarm was set off, 37% chance, it was caused by intruder, 23%

was caused by earthquake, 39% for no reason at all and 0.0795% by some combination

of intruder and earthquake. If it is known that there was an earthquake, one can

substitute P(E)=1 for true and P(E)=0 for false. The table would dramatically change.

Table 2.2 Sample Table for Bayesian Network for different probability values

P(I) P(E) P(A/I,E) P(A) αP(A)
T=0.001 T=1 0.95 0.00095 0.003269
T=0.001 F=0 0.94 0 0
F=0.999 T=1 0.29 0.28971 0.996731
F=0.999 F=0 0.001 0 0

0.29066 1

Now the table says that 99% chance that the alarm was set off by the earthquake

and only 0.33% by an intruder. This is the calculation principle employed in Bayesian

networks.

2.3 Dempster Shafer Theory

Recently, the scientific and engineering community has begun to recognize the

importance of defining multiple types of uncertainty. The dual nature of uncertainty is

described by the following concepts:

Aleatory Uncertainty: The type of uncertainty that results from the fact that a

system can behave in random ways (ex. Noise).

10

Epistemic Uncertainty: The type of uncertainty that results from the lack of

knowledge about a system and is a property of the analysts performing the

analysis (Subjective uncertainty).

 Probability theory has been traditionally used to characterize both types of

uncertainty. E.g. aleatory uncertainty can be best dealt with using the frequentist

approach associated with traditional probability theory. However, probability theory is

not capable of completely capturing epistemic uncertainty.

 The traditional method was called Bayesian Probability. In this method, it is

necessary to have information on the probability of all the events. When this is not

available, uniform distribution function is often used, which means that all simple

events for which a probability distribution is not known in a given sample space are

equally likely. An additional assumption in the classical probability is the axiom of

additivity where all probabilities that satisfy specific properties must add to 1

i.e. 1][][=+ APAP .

The 3 axioms of Bayesian Theory are:

P[Ф]=0;

P[θ]=1;

if 0=∩ BA then][][][BPAPBAP +=∪
Dempster Shafer Theory offers an alternative to traditional probabilistic theory

for the mathematical representation of uncertainty. The significant innovation of this

framework is that it allows for the allocation of probability mass to sets or intervals. It

does not require an assumption regarding the probability of the individual element of

11

the interval or set. An important aspect of this theory is the combination of evidence

obtained by multiple sources and the modeling of conflict between them. It provides

good results for evaluation of risk and reliability in engineering applications when it is

not possible to obtain a correct and precise measurement from experiments. Dempster

Shafer Theory ignores the 3rd Bayesian Axiom and states that,

].[][][][BAPBPAPorBAP ∩−+≤≥∪ (2.3)

2.3.1 Definition of Terms

 A set is represented by θ, which contains all the possible elements of interest in

each particular context, and its elements are exhaustive and mutually exclusive events.

This θ is called universal set or the frame of discernment. E.g. in tossing a fair die, the

frame of discernment is {1, 2, 3, 4, 5, 6}. This looks similar to the sample space in

probability theory, but the difference is that in DS theory, the number of possible

hypothesis is 2|θ| while in probability theory it is |θ| where |X| is the cardinality of the set

X. For simplicity we assume the number of elements of θ to be finite.

Definition 1: If θ is a frame of discernment then a function m: 2θ �[0, 1] is

called a basic probability assignment if

 m(Ф) =0

 and

 ∑
⊂

=
θA

Am 1)(

12

The term m(A) is called A’s basic probability number and m(A) is the measure of

the belief that is committed exactly to A. It is not required that m(θ)=1. It is not

required that m(A)≤m(B) when A⊂B. No relationship between)(Am and 2)(Am is

required. Also)()(AmAm + does not always have to be 1.

Definition 2: Belief function Bel: 2θ� [0, 1]

 Bel(A)= ∑
⊂AB

Bm)(

For any ⊂A θ. Bel(A) measures the total belief of all possible subsets of A.

Properties of Belief Functions:

 1. Bel(Ф)=0.

 2. Bel(θ)=1.

 3.)....()1(..)()()...(1
1

1 n
i ji

n
jiin AABelAABelABelAABel ∩∩−++∩−≥∪ ∑ ∑

<
+

Definition 3: Plausibility function Pl: 2θ� [0, 1]

 Pl(A)= ∑
≠∩ 0

)(
AB

Bm

Also,

 Pl(A)=1-Bel(A).

and,

 Bel(A)≤ Pl(A).

Properties of Plausibility Function:

 Pl(Ф)=0.

 Pl(θ)=1.

13

)....()1(..)()()...(1
1

1 n
i ji

n
jiin AAPlAAPlAPlAAPl ∪∪−++∪−≤∩ ∑ ∑

<
+

Definition 4: Doubt is defined as:

 Doubt(A) =).(ABel

Pl(A) measures the total belief mass that can move into A, whereas Bel(A)

measures the total belief mass that is confined to A. Belief is also called lower

probability and Plausibility is called upper probability. One can show a graphical

representation the definition as follows:

 If A, AB, ABC, CD and BC are events and their probabilities are known, then

one can represent probability, belief and plausibility of AB as:

Figure 2.2 Probability, Belief and Plausibility of A and B

2.3.2 Rule of Combination

 Suppose there are two distinct bodies of evidence and they are expressed by two

basic assignments m1 and m2 on some focal points from power sets of the frame of

14

discernment. The combined two belief functions can be represented by means of a joint

basic assignment m1, 2.

Figure 2.3 Combination of evidence

 From the figure 2.3, m1 is a basic assignment over θ and its focal points are

B1...Bn. The other basic assignment m2 has focal points on C1...Cn. Then the joint basic

assignment for A is given by:

 ∑
=∩

=
ACB

ji
ji

CmBmAm)()()(212,1 . (2.4)

But, there is a problem in this formula when 0=∩ ji CB for particular i and j(such as

(i, j)=(1,2), (2,n),…,(m,2) as shown in the figure). In this case, the total area of

rectangles which are now the focal elements for m1,2 is less than one, which violates

second condition of basic probability assignment. To make the sum of m’s to be equal

to 1 one has to multiply them by the factor:

.))()(1(1
21

−
=∩

∑− ji
BA

CmBm
ji φ

(2.5)

15

Thus the rule of combination is expressed by:

m1,2(A)= κ−
∑

1
)()(21 ji CmBm

where к =).()(21 ji
CB

CmBm∑
=∩ φ

(2.6)

 к is also called conflict. It indicates the degree of conflict between two distinct

bodies of evidence. Larger к indicates that there is more conflict in evidence. This rule

satisfies both associative and commutative rules; i.e. if m3(A) comes in, ,then use m12

and m3. (m13, m2, m23, m1: Order does not matter.). The main function of sensor fusion

techniques is to extract more reliable and accurate information from an object using two

or more sensors. Since there are not only operating limits of a sensor but also noise-

corrupted environment, no single sensor can guarantee to deliver acceptably accurate

information all the time. One can use Dempster Shafer Theory in sensor fusion.

According to this scheme, sensor classifier produces two parameters for each

hypothesis, supportability variable and plausibility variable. The difference is the

ignorance of the hypothesis. Dempster Shafer’s rule of combination provides a means

of computing composite supportability/plausibility intervals for each hypothesis. As a

result, a supportability/plausibility interval vector is obtained with a normalization

vector. If one hypothesis is strongly supported by a group of sensor classifiers, then the

credibility interval is reduced for that hypothesis. The normalization vector indicates the

consistency of each sensor.

 Potential advantage of using Dempster Shafer theory in Sensor Fusion:

 1. Different level of abstraction.

16

2. Representation of Ignorance.

 3. Conflict Resolution.

2.4 Fuzzy Logic Systems

Fuzzy logic (FL) is a branch of mathematics that deals with vague or gray

concepts that can be said to be true to matter of degree rather that being limited to

having a binary value of true or false. Fuzzy logic has been growing in use in the fields

of science and engineering over the past few decades since it was first introduced to

limited fanfare in 1965 by Lotfi Zadeh.

 FL is different from conventional control methods as it incorporates a simple,

rule based IF X AND Y THEN Z approach to solving a control problem rather than

attempting to model a system mathematically. For example, rather than dealing with

temperature control in terms such as "Temp =500F", "Temp <1000F", or "210C <Temp

<220C", terms like "IF (process is too cool) AND (process is getting colder) THEN

(add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly)

THEN (cool the process quickly)" are used.

2.4.1 Fuzzy Logic Architecture

The fuzzy controller is composed of the following four elements:

1) Rule-Base: It is a set of “If-Then” rules, which contains a fuzzy logic

quantification of the expert’s linguistic description of how to achieve good

control.

2) Inference Engine: It emulates the expert’s decision making in interpreting

and applying knowledge about how best to control the plant.

17

3) Fuzzification: This converts controller inputs into information that the

inference mechanism can easily use to activate and apply rules.

4) Defuzzification: This converts the conclusions of the inference mechanism

into actual inputs for the process.

 The block diagram is shown figure 2.4.

Figure 2.4 Fuzzy Logic Architecture

In 1973, Lotfi Zadeh proposed the concept of linguistic or "fuzzy" variables.

Think of them as linguistic objects or words, rather than numbers. The sensor input is a

noun, e.g. "temperature", "displacement", "velocity", "flow", "pressure", etc. Since error

is just the difference, it can be thought of the same way. The fuzzy variables themselves

are adjectives that modify the variable (e.g. "large positive" error, "small positive"

error,"zero" error, "small negative" error, and "large negative" error). As a minimum,

one could simply have "positive", "zero", and "negative" variables for each of the

18

parameters. Additional ranges such as "very large" and "very small" could also be added

to extend the responsiveness to exceptional or very nonlinear conditions, but aren't

necessary in a basic system. This linguistic quantification is used to specify a set of

rules (a rule-base) that captures the expert’s knowledge about how to control the plant.

The general form of the linguistic rules is:

If premise Then consequent

Premises are also called “antecedents” and are associated with the fuzzy

controller inputs and are on the left-hand side of the rules. The consequents are

associated with the controller outputs and are on the right-hand-side of the rules. The

number of fuzzy controller inputs and outputs places an upper limit on the number of

elements in the premises and consequents. It may be noted that there does not need to

be a premise (consequent) term for each input (output) in each rule, although often there

is.

Membership Functions:

As shown in the figure below, the set of values that is described by µA and µB is

called a “fuzzy set”. The membership function)(xAµ describes the membership of the

elements ‘x’ of the base set X in the fuzzy set A, whereby for)(xAµ a large class of

functions can be taken.

19

Figure 2.5 Membership functions

Reasonable functions are often piecewise linear functions, such as triangular or

trapezoidal functions. The grade of membership)(0xAµ of a membership function

)(xAµ describes for the special element x=x0, to which grade it belongs to the fuzzy set

A. This value is in the unit interval [0, 1]. Of course, x0 can simultaneously belong to

another fuzzy set B, such that)(0xAµ characterizes the grade of membership of x0 to B.

The membership function is not a probability density function, and there is no

underlying probability space. The membership function does not quantify random

behavior; it simply makes more accurate (less fuzzy) the meaning of linguistic

descriptions. In the figure 2.5, while the vertical axis represents certainty, the horizontal

axis is called the “Universe of Discourse” for the input X since it provides the range of

values of X that can be quantified with linguistics and fuzzy sets. In summary,

depending on the application and the designer (expert), many different choices of

membership functions are possible.

Fuzzification:

20

Fuzzification is the process of obtaining a value of an input variable and finding

the numeric values of the membership function(s) that are defined for that variable. For

example if x = x0, the fuzzification process amounts to finding the values of the input

membership functions for this. In this case µ(x) = 0.75.

Fuzzy Set Operations

Consider two fuzzy sets A and B with the membership functions µA and µB.

• Union of the two fuzzy sets is defined as the maximum of the two individual

membership functions. This is called the maximum criterion.

µ(AUB) = max (µA , µB) (2.7)
• Intersection of the two fuzzy is defined as the minimum of the two individual

membership functions. This is called the minimum criterion.

µ(A∩B) = min (µA , µB) (2.8)

Intersection of two fuzzy can also be defined as the product of the two

Individual membership functions. This is called the product criterion.

µ(A∩B) = µA × µB (2.9)

• Complement of a fuzzy set is defined as the negation of the specified

membership function. This is called the negation criterion.

µẬ = 1 - µA (2.10)

Inference:

The inference process is used for determining the extent to which each rule is

relevant to the current situation and drawing conclusions using the current inputs and

the information in the rule-base. The inference process includes the fuzzy set

21

operations. Graphical representation of the product implication rule with triangular and

Gaussian membership functions is shown in figure 2.6.

Figure 2.6 FL system with triangular and Gaussian membership functions

Defuzzification

A number of defuzzification methods exist where each method provides a means

to choose a single output based on the inference strategy employed. The most

commonly used defuzzification strategy used is the “Centroid Defuzzification” which is

given by the equation:

(2.11)

where the control representative values are zi and the 1-D membership functions are µij.
xj are the components of the n-vector x.

2.5 Petri Nets

A Petri net consists of places (represented as circles), transitions (represented as

bars) and place input/outputs (represented as directed arcs) as shown in the figure 2.7.

22

Figure 2.7 A simple Petri net

 It can be used to model asynchronous systems with concurrency. The transitions

represent events and the places represent states, or conditions. Inputs and outputs are

allowed only between places and transitions: you cannot go directly from one place to

another without a transition.

Not only can you model a system’s architecture with a Petri net, you can also

simulate execution of the system. This is done by "marking" the Petri net with "tokens"

represented as dots in the places, as shown in the figure 2.9 .

Figure 2.8 Tokens in Petri net

The rules for executing the system are:

• a transition is "active" when each of its input places contains a token

23

• each active transition in the diagram is "fired" by removing one token from each

input place and generating one in each output place

The figure below shows the next stage in the execution of the net in the previous

figure.

Figure 2.9 Transitions in Petri net

Systems modeled with Petri nets are inherently asynchronous, as a transition

will fire as soon as it is active. Realistic simulations can build delays into the passing of

tokens, but this still does not avoid conflicts. When two transitions are active, as in the

figure below, they can both fire together.

Figure 2.10 Two transitions in a Petri net

However, it may happen that the two transitions require the same token, as in

figure 2.11. This is called a "conflict"

24

Figure 2.11 Conflict in a Petri net

This could be resolved by making the choice of which transition fires arbitrary,

or by designating this "decision" point, controlled by an external source. Timing can be

added to a Petri net by naming all the places and transitions, and drawing up a table

with minimum and maximum times for each transition to occur based on the time of

arrival of the tokens at its input places.

Figure 2.12 Timing in a Petri net

Thus, timing would help in decision-making in a Petri net. There is also another

concept of probabilistic Petri nets, which is also useful for decision-making. Petri nets

are further explained in the following chapters.

25

CHAPTER 3

DISCRETE EVENT CONTROLLER (DEC)

3.1 Introduction

An efficient Discrete event controller (DEC) based on matrices was first

introduced in [20] and it has been in constant development [12, 35]. The DEC is

completely based on matrices and it has important advantages in design, flexibility,

computer simulation and online supervisory control of DE systems. The DEC has also

been implemented on a practical robotic cell in [22]. This section presents a novel

matrix-based discrete event controller for modeling and analysis of complex

interconnected DE systems with shared resources, routing decisions, and dynamic

resource management in a mobile wireless sensor network. This approach provides a

rigorous, yet intuitive mathematical framework to represent the dynamic evaluation of

DE systems according to linguistic if-then rules such as “If <conditions hold> then

<consequences>”.

Multi-agent systems such as one composed of mobile robots and wireless sensor

network face problems of coordination. One can write down a set of if-then rules to

define the mission planning of the sensor agents, such as:

Rule i: If <sensor 1 has completed task1 (data acquisition), robot 1 is available and a

fire hazard is detected > then <robot 1 starts task2 and sensor 1 is released>

26

These linguistic rules can be easily represented in mathematical form using

matrices. Following the same notation used in [20], let r be the vector of resources used

in the system (i.e. mobile robots and UGSs), v the vector of tasks that the resources can

perform (i.e. go to a given target, perform data acquisition, and deploy UGS), u the

vector of input events (i.e. occurrence of sensor detection events) and y the vector of

completed missions (outputs). Finally, let x be the state logical vector of the rules of the

DE controller, whose entry of ‘1’ in position i denotes that rule i of the supervisory

control policy is currently activated. Then we can define two different sets of logical

equations, one for checking the conditions for the activation of rule i (matrix controller

state equation), and one for defining the consequences of the activation of rule i (matrix

controller output equation). In the following, all matrix operations are defined to be in

the or/and algebra, where + denotes logical or and ‘times’ denotes logical and.

The controller state equation is

duudFuuFrrFvvFx +++= (3.1)

where x is the task or state logical vector, Fv is the task sequencing matrix, Fr is

the resource requirements matrix, Fu is the input matrix. Fud is the conflict resolution

matrix and ud is the conflict resolution vector. They are used to avoid simultaneous

activation of conflicting rules, as will be shown later. The current status of the DE

system includes task vector v, whose entries of `1' represent `completed tasks', resource

vector r, whose entries of `1' represent `resources currently available’, and the input

vector u, whose entry of 1 represent occurrence of a certain predefined event (fire

27

alarm, intrusion etc.). The over bar in equation (1) denotes logical negation so that tasks

complete or resources released are represented by ‘0’ entries.

Fv is the task sequencing matrix [33], and has element (i,j) set to '1' if the

completion of task vj is an immediate prerequisite for the activation of logic state xi.

Fr is the resource requirements matrix [17] and has element (i,j) set to '1' if the

availability of resource j (robot or UGS) is an immediate prerequisite for the activation

of logic state xi.

On the ground of the current status of the DE system, equation (3.1) calculates

the logical vector x, i.e. which rules are currently activated. The activated rules

determine the commands that the DEC has to sequence in the next iteration, according

to the following equations

xSv vs = (3.2)

xSr rs = (3.3)

xSy y= (3.4)

Sv is the task start matrix and has element (i,j) set to '1' if logic state xj

determines the activation of task i.

Sr is the resource release matrix and has element (i,j) set to '1' if the activation of

logic state xj determines the release of resource i.

Sy is the output matrix and has element (i,j) set to '1' if the activation of logic

state xj determines the completion of mission i.

28

The task start equation (3.2) computes which tasks are activated and may be

started, the resource release equation (3.3) computes which resources should be released

(due to completed tasks) and the mission completion equation (3.4) computes which

missions have been successfully completed.

Vector vs, whose `1' entries denote which tasks are to be started, and vector rs,

whose `1' entries denote which resources are to be released, represent the commands

sent to the DE system by the controller. ‘1’ entries in vector y denote which missions

have been successfully completed.

Equations 3.1-3.4 represent the rule-base of the supervisory control of the DE

system. All the coefficient matrices are composed of Boolean elements and are sparse,

so that real time computations are easy even for large interconnected DE systems.

The task sequencing matrices (Fv and Sv) are direct to write down from the

required operational task sequencing. On the other hand, the resource requirements

matrices (Fr, Sr) are written down based on the resources needed to perform the tasks

and are assigned independently of the task sequencing matrices. Matrix Fud in equation

(3.1) is used to resolve conflicts of shared resources, i.e. conflicts deriving by the

simultaneous activation of rules, which start different tasks requiring the same resource.

Matrix Fud has as many columns as the number of tasks performed by shared resources.

Element (i,j) is set to '1' if completion of shared task j is an immediate prerequisite for

the activation of logic state xi. Then an entry of ‘1’ in position j in the conflict resolution

vector ud, determines the inhibition of logic state xi (rule i cannot be fired). It results

that, depending on the way one selects the conflict-resolution strategy to generate vector

29

ud, different dispatching strategies can be selected, in order to avoid resource conflicts

or deadlocks. In the conversion of linguistic rules into matrix form using DEC, the

following assumptions must be considered:

1. A resource cannot be removed from a task until it is complete.

2. A single resource can be used for only one task at a time.

3. A process holds the resource allocated to it until it has all the resources

required to perform a task.

4. Resource is released immediately after it has executed its task.

30

CHAPTER 4

IMPLEMENTATION OF DEC ON WSN

4.1 Introduction

To use the DEC as a Supervisory Controller for task assignment and resource

dispatching in mobile wireless sensor networks, one needs to have an architecture that is

modular, flexible and adaptable. One such architecture consists of three layers, namely

agent control layer, network control layer and organization control layer. The important

aspect of this architecture is that improvements and updates on one layer results in

minor changes in other layers, making the system intelligent and adaptable.

The first layer (agent control level) deals with the control of each agent (being either a

UGS or a mobile robot), keeping into account its peculiar functionalities. At this level

one defines the processing capabilities of the UGSs (e.g. signal processing) and the

control algorithms for the behavior of each robot (e.g. reach the target, follow another

robot etc.). The second layer (network control level) deals with the implementation of

communication protocols for energy efficient data transmission between the UGS,

robots and the supervisor. The third layer (organization control level) consists of

matrix-based DE supervisory controller whose matrix formulation allows one to employ

a high-level human interface to define the mission planning, the resource allocation and

the dispatching rules. The supervisor is in charge of sequencing the tasks each agent has

to perform according to the perception of the environment; assuming that the agent

31

level controllers correctly perform the assigned tasks and that the communication

protocol for each agent perfectly works.

The complete architecture is shown in the figure 4.1.

Figure 4.1 Complete System Architecture

Thus, using this architecture, a complex system can be decomposed into

missions, tasks and rules for task sequencing, resource dispatching and conflict

resolution (figure 4.2).

32

Environment monitoring operation

Mission 1 Mission i Mission n

…

… …

Task sequencing rules
Fv

Priority rules
Fud

Task11(r1..m) Task1q1(r1..m) Tasknqm(r1..m)Taskn1(r1..m).. ..

Resource assignment rules
Fr

Fv1

Fr1

Fvn

Frn

Figure 4.2 Sequencing of missions

 This block diagram can be represented using matrices using the technique of

DEC. Suppose that there are m resources rj j=1…m (mobile robots and stationary

sensors) each one capable of performing pj tasks, and define n different missions, each

one composed of qi tasks. For each mission, there are corresponding set of

matrices i
vF , i

rF , i
vS , i

rS which represent the coordination rules of the agents in the

execution of the tasks. In order to take into account the priority among missions, there is

a global conflict resolution matrix Fud.. After assigning a priority order k to each

mission, calculate for every resource j and every mission i, a matrix (()j
i

ud rF), creating

a new column for every ‘1’ appearing in the jth column of i
rF . Then one constructs the

global conflict resolution matrix of resource rj (()jud rF) inserting each ()j
i

ud rF matrix in

position (i,k).

As shown in figure 4.3 the matrix formulation of the overall environment

monitoring operation is then obtained by stacking the set of matrices together. The

correspondence between figure 4.2 and the matrices is very obvious.

33

[])()...()...(1 mudjududud rFrFrFF =

ni qqq1 m

















=

n
v

i
v

v

F

F

F

F
V

...

...
1

















=

n
r

i
r

r

r

F

F

F

F
...

...
1

Figure 4.3 Matrix formulation

In WSN, two issues have to be tackled i.e. adaptability and scalability.

Adaptability and scalability are crucial requirements to guarantee optimal performances

for agent team operations. These issues can be tackled by using the principle of DEC.

Adaptability: Adaptability is the ability of an agent team to change its behavior

according to the dynamical evolution of the environment. Following methods make the

system adaptable using DEC.

1. Implementation of distributed algorithms:

Adaptability can be resolved both at the agent control level and at the supervisor

control level. In the agent control level, individual agents are autonomous and perform

tasks using their perception of the environment. In the framework of the DEC, these

operations can be considered as a generic (fully decentralized) mission i (or part of it)

composed of simultaneous tasks. Therefore there is enhanced adaptability decision, at

the supervisor level (on the grounds of the present situation), which decentralized

mission has the priority (changing i
udF) and which resources should be used (changing

i
rF and i

rS).

34

2. Dynamic reallocation of resources:

A dynamic reallocation of the agents to missions can be performed by

rearranging the ‘1’ relative to similar resources in the matrices rF and rS when new

missions (or new agents) are added. Due to the matrix representation of the mission

plans, these objectives can be pursued using computationally efficient algorithms.

 R1 R2 R3 R1 R2 R3



























=

...101

...110

...001

...101

...100

...001

...100

...001

...100

...100

)(tFr



























=+

...101

...110

...001

...011

...010

...001

...010

...001

...100

...100

)1(tFr

Figure 4.4 Reallocation of resources through matrix operations

Figure 4.4 shows an example of reallocation of tokens among three similar

resources (R1, R2 and R3) in the case of two missions. After the reallocation, the

workload of the resources is more balanced since each resource performs a similar

number of tasks (equal to the number of ‘1’ in the corresponding column).

3. Combining multiple plans for the same mission:

In certain circumstances, different sequences of tasks can be used to implement

the same mission. A computationally efficient algorithm can be used to combine the

plans together and derive one single compact matrix representation for the DEC. In this

Mission

Mission

35

way, the DEC automatically sequences the most suitable succession of tasks depending

on the current available resources.

4. Priority among missions:

Another way to adapt to the WSN control scenario is to make the set of mission

priority rules adaptable. For example, suppose that resource r1 is shared among three

different missions whose priority rank is 3, 1, 2. After defining the conflict resolution

matrix of r1 for each mission ()(1
1 rFud ,)(1

2 rFud ,)(1
3 rFud), the overall conflict resolution

matrix of r1 ()(1rFud) is built as:

 priority1 priority2 priority3












=

00)1(
)1(00

0)1(0
)(

3

2

1

3

2

1

1
rF

rF
rF

mission
mission
mission

rF
ud

ud

ud

ud

Figure 4.5 Initial priorities

If the priority of the missions changes in 2, 3, 1 then one can have the following

configuration as shown in figure 4.6.

 priority1 priority2 priority3












=

0)(0
00)(

)(00
)(

1
3

1
2

1
1

3

2

1

1
rF

rF
rF

mission
mission
mission

rF
ud

ud

ud

ud

Figure 4.6 Changed priorities

Thus, a change of priority results in a simple permutation of the block

matrices iudF for each resource.

36

Scalability: Scalability defines the possibility to add and remove agents. One can use

the DEC to tackle scalability at the supervisor level, updating the matrix based

representation of the missions to take into account the failure of agents as well as the

adding of new ones.

If a new agent is added to the system, a new column is added in the matrices Fr

and '
rS (Sr transpose). Then, dispatching algorithms (based on matrix operations) can

be applied to rearrange the tasks among resources. In a similar fashion, an agent

failure can be tackled rearranging the tasks among the resources so that the column

vectors relative to the failed resources in Fr and Sr’ are null. In the following example,

a simple algorithm is used for reallocating (off-line, i.e. when no missions are in

progress) resources after agent failure. The mission planning is revised in such a way

that predefined back-up agents execute the tasks of the failed agents. In the matrix

formulation this is equivalent to move the elements equal to one in the matrices i
rF

and i
rS from the column of the failed resource to the column of the back-up resource.

This can be achieved through a simple linear combination of the columns of i
rF and

i
rS respectively. Thus,

ioldi
r

newi
r BFF ⋅= ,, (4.1)

ioldi
r

newi
r BSS ⋅= ,, (4.2)

where Bi is a square matrix of dimension equal to the number of the resources of the

system. The diagonal elements of Bi (aj) are parameters which are equal to 1 if

resource rj is working properly and 0 otherwise. On row j the element (j,j) is equal to

37

aj and the element (j,k) is equal to 1- aj, where k is the column of matrix i
rF

corresponding to the back-up resource of agent j for mission i. If aj =0, the jth column

of newi
rF , will be null (meaning that agent j is not supposed to perform any task) and

the kth column will have ‘1’s in correspondence of the tasks for which resource j was

required. If no failure occurs, Bi is the identity matrix and mission plans are not

changed. Clearly, in the definition of the matrix Bi one has to make sure that each

back-up agent does not perform any simultaneous task with the resource they are

supposed to substitute. For example, suppose there are three agents, and that, for a

certain mission i, the resource requirement matrix and the back-up matrix Bi are














=

100
110
001

,oldi
rF















−

−
=

33

2

11

01
00
01

aa
a

aa
Bi

Figure 4.7 Initial resource matrix

The Bi matrix corresponds to the case where, in mission i, agent 2 is the backup

of agent 1, agent 2 has no back-up and agent 1 is the back up of agent 3. If agent 1

fails (a1=0) whereas agent 2 and 3 work properly (a2=a3=1),














=

100
010
010

iB and













=

100
110
010

,newi
rF

Figure 4.8 Changed resource matrix

i.e., in mission i, agent 1 has been replaced by agent 2.

38

Another method to cope up with agent failure is by routing resources, which

means that one has to define a set of multiple resource choices initially for certain

critical tasks. The routing resources automatically assign to the task the first available

resource of the corresponding set providing redundancy and robustness against agent

failures. This novel matrix formulation supports task routing efficiently, since there is

no need to distinguish between physical and logical resources. Routing of resources

will be explained later in the chapter.

4.2 Implementation on Sentries & UGS

It is well known that a matrix approach can be used to describe the marking

transitions of a Petri Net using the PN transition equation

)()'()()1(txFStmtm ⋅−+=+ (4.3)

where S and F are the output and input incidence matrix respectively. This equation

gives a useful insight on the dynamics of discrete event systems but does not provide

a complete dynamical description of DE systems.

Observe that the vector x in equation (4.3) is the same as in equation (3.1), then one

may identify x as the vector associated with the PN transitions and u, v, r, ud as

associated with the places. Then it follows that,

[]')'(,)'(,)'(,)'()(tutrtvtutm d= (4.4)

[]'',',',',' yurvu SSSSSS
d

= (4.5)

[]'',',',',' yurvu FFFFFF
d

= , (4.6)

39

Therefore, we can use equation (3.1) to generate the allowable firing vector to

trigger transitions in equation (4.3). The combination of the DEC and the PN marking

transition equation, therefore, provides a complete dynamical description of the

system.

In order to take into account the time durations of the tasks and the time required for

resource releases, one can split m(t) into two vectors, one representing available

resources and current finished tasks ()(tma) and the other representing the tasks in

progress and idle resources ()(tmp)

)()()(tmtmtm pa += (4.7)

This is equivalent to introducing timed places in a Petri net and to dividing each

place into two parts, one relative to the pending states (task in progress, resource idle)

and the other relative to the steady states (task completed and resource available). As

a consequence, we can also split equation (4.3) into two equations

)()()1(txFtmtm aa ⋅−=+ (4.8)

)(')()1(txStmtm pp ⋅+=+ (4.9)

When a transition fires a token is moved from)(tmp to)(tma where it may be

used to fire subsequent transitions. Therefore equations (4.3), (4.8) and (4.9) represent

a complete description of the dynamical behavior of the discrete event system and can

be implemented for the purposes of computer simulations using any programming

language (e.g. Matlab® or C). In the case of a mobile wireless sensor network, where

experiments on wide and hostile areas can be really complex and challenging, it

40

allows one to perform extensive simulations of the control strategies and then test

experimentally only those that guarantee the most promising results.

Consider an experimental scenario; A network consisting of two mobile robots and

two wireless sensors. Two different missions have been implemented to show the

potentialities of the proposed DEC. In the first mission, after one of the sensors

launches an intruder alert, the network automatically reconfigures its topology to

further investigate the phenomenon. In the second mission, one of the sensors detects

a huge vibration indicating that there is an earthquake. The procedure for

implementing the supervisory control policy consists of three different steps. First of

all one defines the vector of resources r present in the system and the tasks they can

perform. In ARRI WSN test-bed there are two robots (R1 and R2), each one able of

performing certain number of tasks (say 4 or 5), and two stationary sensors (UGS1,

UGS2), each one able of performing one task (i.e. taking measurement). The resource

vector is r = [R1, R2, UGS1, UGS2].

Then for each mission i, define the vector of inputs ui, of outputs yi and of tasks

vi, and the task sequence of each mission (refer table 4.1 and 4.2 for mission 1 and

mission 2), and write down the if-then rules representing the supervisory coordination

strategy to sequence the programmed missions (table 4.3 and table 4.4). In the

definition of the rule bases particular attention has to be devoted to the definition of

consecutive tasks performed by the same resources. If the consecutive tasks are

interdependent (e.g. go to sensor 2 and retrieve sensor 2), the corresponding resource

should be released just at the end of the last of the consecutive tasks. Instead, if the

41

tasks are not interdependent, before starting the new consecutive task, the DEC

releases the corresponding resource and makes sure that no other missions are waiting

for it. If after a predetermined period of time no other missions request that resource,

the previous mission can continue. Finally translate the linguistic description of the

coordination rules into a more convenient matrix representation, suitable for

mathematical analysis and computer implementation. As an example, the following

shows a derivation of the matrix formulation from the rule-base of mission 1 (table

4.3).

For example, considering the rule-base of mission1 (table 4.3), one can easily

write down the 1
vF and 1

rF matrices considering that),(1 jiFv is ‘1’ if task j is

required as an immediate precursor to rule i and),(1 jiFr is ‘1’ if resource j is required

as an immediate precursor to rule i.

Table 4.1 Mission 1 Task sequence

mission1

Notation Description

Input 1 U1 UGS1 launches
earthquake alert

Task 1 T1a UGS2 takes
measurement

Task 2 T2a R1 goes to UGS1 and
takes measurement

Task 3 T3a UGS1 takes
measurements again

Task 4 T4a R2 goes to UGS2 and
takes a measurement.

output Y1 False Alarm, Mission 1
completed

42

Table 4.2 Mission 1 Rule-base

Mission1-operation sequence

Rule1 11x If input then T1a
Rule2 1

2x If T1a then T2a
Rule3 1

3x If T2a then T3a
Rule4 14x If T3a then T4a
Rule5 15x If T4a then y

Table 4.3 Mission 2 Task sequence

Mission2 Notation Description

input U2 UGS2 detects intruder

Task 1 T1b UGS2 takes measurement again

Task 2 T2b UGS1 takes measurement

Task 3 T3b R1 goes to UGS2

Task 4 T4b R2 goes to UGS1

Task 5 T5b R1 goes to the door

output Y2 Intruder detected, Mission 2
completed

Table 4.4 Mission 2 Rule-base

Mission2- operation sequence

Rule1 21x If input then T1b
Rule2 22x If T1b then T2b
Rule3 23x If T2b then T3b
Rule4 24x If T3b then T4b
Rule5 25x If T4b then T5b
Rule6 26x If T5b then y2

43

If one sees Mission 2, Robot 1 is shared resource. Hence one needs to construct

the Fud matrix.
 T1a T2a T3a T4a R1 R2 UGS1UGS2

















=

1000
0100
0010
0001
0000

1
5

1
4

1
3

1
2

1
1

1

x
x
x
x
x

Fv

















=

0000
0010
0100
0001
1000

1
5

1
4

1
3

1
2

1
1

1

x
x
x
x
x

Fr

(a) (b)

Figure 4.9 Mission1 job sequencing matrix 1
vF (a), resource requirement matrix 1

rF
(b)

The 1
vS matrix is built considering which tasks should be executed after a rule

fires. The 1
rS matrix is built considering that 1

rS (i,j) is 1 if resource i has to be

released after rule j has been fired. In the same way, the set of matrices relative to

mission 2 can be built.

 1
1x 1

2x 1
3x 1

4x 1
5x 1

1x 1
2x 1

3x 1
4x 1

5x
















=

01000
00100
00010
00001

4
3
2
1

1

aT
aT
aT
aT

Sv
















=

00010
01000
10000
00100

2
1

2
1

1

UGS
UGS

R
R

Sr

(a) (b)

Figure 4.10 Mission1 Task start matrix 1vS (a) and resource release matrix 1rS (b)

44

T1b T2b T3b T4b T5b R1 R2 UGS1 UGS2



















=

10000
01000
00100
00010
00001
00000

x
x
x
x
x
x

2
6

2
5

2
4

2
3

2
2

2
1

2
vF



















=

0000
0001
0010
0001
0100
1000

2
6

2
5

2
4

2
3

2
2

2
1

2

x
x
x
x
x
x

Fr

(a) (b)



















=

00
10
00
01
00
00

)1(

2
6

2
5

2
4

2
3

2
2

2
1

2

x
x
x
x
x
x

RFud

(c)

Figure 4.11 Mission2 Task sequencing matrix 2vF (a), resource requirement matrix 2rF
(b) and conflict resolution matrix)1(2 RFud (c)

45

21x 22x 23x 24x 25x 26x 21x 22x 23x 24x 25x 26x

















=

010000
001000
000100
000010
000001

5
4
3
2
1

2

bT
bT
bT
bT
bT

Sv
















=

000010
000100
010000
101000

2
1

2
1

2

UGS
UGS

R
R

Sr

(a) (b)

Figure 4.12 Mission2 Task start matrix 2
vS (a) and resource release matrix 2

rS (b)





= 2

1

2

1

0
0
v

v
v F

F
x
xF 



= 2

1

2

1

r

r
r F

F
x
xF





= 2

1

2

1

0
0
v

v
v S

S
v
vS ()21

rrr SSrS =

Figure 4.13 Overall monitoring operation- Matrix formulation matrices Fv, Fr, Sv, Sr

4.3 Simulation and experimental results

Simulation: Simulation of this system for the given missions using equations

4.3, 4.8 and 4.9 can be done using Matlab. Figure 4.14, shows the utilization time

trace of the resources and the execution time trace of the tasks for mission 1 and

mission 2.

46

(a)

(b)

Figure 4.14 Simulation results Mission 1 (a) Mission 2 (b)

47

Experiment: After performing extensive simulations, one can implement the

control system directly on the WSN test-bed. Figure 4.15 shows the actual

experimental utilization time trace of the agents, assigning higher priority to mission

1. Notice that the time duration of the real WSN runs in terms of discrete-event

intervals, whereas the simulation results shown in figure 4.14 is in terms of time. It is

interesting to note the similarity and fidelity of the dispatching sequences in both the

simulation and experimental cases. This is a key result since it shows that the DEC

allows one to perform a “simulate and experiment” approach for a WSN, with

noticeable benefits in terms of cost, time and performance.

Figure 4.15 Utilization time trace of the WSN- Experimental results

48

4.4 Decision for routing of resources

“Reentrant flow lines” are of great importance in manufacturing systems [34]

where the resources needed for each job are pre-defined. Resource assignment and

dispatching for such systems is well understood [35, 36]. But in the case of mobile

WSN there are many resources such as distributed sensors and it is not known

beforehand which sensor is most useful for resolution of certain events. Dynamic

sensor selection is a special sort of routing problem [17], or free-choice Petri net, which

requires highly complex decision-making. Therefore, one can use a new method for

dealing with dynamic sensor selection using a novel Dynamic Priority Assignment

Weighting Matrix.

 Greedy activity/ resource selector algorithm [8] can be used for dynamic

selection of resources most appropriate for a task in the DEC format. This can be done

in the following method:

 For each task that has a choice of resources to use, define a Dynamic Priority

Assignment Matrix (DPAM) according to the example:

 Dc=












1
4.0
6.0

0
0
1

1.0
1
0

3
2
1

3.2.1.

task
task
task

resresres

which indicates that task 1 may be efficiently performed by resource 2, or less

efficiently by resource 3. The numerical entry in position (i,j) is between 0 and 1, and

indicates the efficiency with which resource j performs task i, with 0 indicating that

resource j cannot perform task i, and 1 indicating that resource j performs task i with

49

maximum efficiency. Note that this matrix indicates that task 1 may be performed with

either resource 2 or resource 3, in contrast to the matrix Fr, where multiple entries of 1

in a row indicate that all those resources are required for that task.

 According to greedy dispatching policies [8], one selects the resource to perform

a given task according to the immediate 1-step look ahead maximum payoff. Thus,

depending on the DPAM, at each step, for the free-choice tasks modify the resource

matrix Fr to have 1’s in the entries corresponding to the maximum values of the DPAM

in each row. This effectively selects the current most efficient resource to perform each

task. Then, compute the DEC equations (3.1)-(3.4) to determine which tasks to start

and which resources to reset.

 The DPAM dynamically updates based on the evaluation information from the

task on how well the assigned resource performed, after the tasks are over. Thus,

resources that perform well will be assigned next time to that task. In this way, the

DPAM ensures that an optimal resource is always assigned to a particular task to

improve the overall efficiency of the system.

50

CHAPTER 5

SENSOR FUSION

5.1 Introduction

Sensor fusion plays an important role in wireless sensor networks. Sensor fusion

is an overarching term used to describe the process of collecting, distilling and

displaying information from a number of homogeneous or heterogeneous information

sources (sensors) to produce an integrated output that is more accurate and complete

than that achievable using the same sensors independently of one another. In this way,

the fused output is more than the sum of it parts. It is also known as data fusion. The

ultimate goal of context-aware computing is to have computers understand the real

world. It is an example of ‘Smart Environment’ where human-computer interactions

feel natural, as if people are communicating with human personnel or assistants. This

seems to be an impossible task as it presents a range of problems such as (1) how to

represent this world with all its abstract concepts and unpredictable human feelings and

(2) how to design and deploy sensors that can sense all the clues and content and map

them into the context representation. Many methods are used for sensor fusion. In this

thesis, Dempster Shafer and Fuzzy Logic methods [34] are used for sensor fusion to

convert raw sensor data into usable events for the DEC to use. Also, in this thesis, a

study of a simplified situation where these methods of sensor fusion are used is made.

Here, we assume that context data can be represented by numbers and the mapping

51

from sensor output data to the context representation data structure is well defined.

General sensor fusion architecture is shown below.

Figure 5.1 Sensor Fusion Architecture

This system generally has one central computer for context data repository for

each major entity i.e. user to collect all the relevant context information about that

entity. The sensor fusion mediator is responsible for collecting and monitoring the

status of its corresponding sensors. The interaction between the sensors and the system

is through an interface such as wireless or from RS-232 cable. The sensor fusion

mediator converts the raw data into context aware events, which can be used by

different applications and algorithms as shown in the figure. Further in this section,

comparison of Fuzzy logic method and Dempster Shafer methods for sensor fusion is

done.

52

5.2 Fuzzy Logic

Fuzzy Logic techniques have become very popular to address various processes

for multi-sensor data fusion. As discussed earlier, important issues in building a fuzzy

logic system for sensor fusion depends on the type of the membership functions used

for the antecedents and consequents, the appropriate rule-base, and the method of

defuzzification used. It also depends on the fuzzy logic operators used. Consider, if we

have two sensors, each consisting of one light and one vibration sensor. We can get the

raw sensor data and convert them into events such as if the light values are too low,

there might be a lighting system malfunction, if light values are low and vibration

values are high, there might be an intruder walking past the door where the sensors are

fitted, if only vibration values are high, there might be an earthquake. This is done by

defining triangular membership functions for input variables i.e. light and vibration.

One can define ranges for these inputs such as ‘very high’, ‘medium’ and ‘very low’.

These input ranges are mapped together to form fuzzy membership sets. Note that some

of them overlap each other. These membership sets serve to ‘fuzzify’ the inputs so that

one can deal with concepts that vary by degree. One also needs to define the number of

outputs and their membership functions. In this thesis, implementation of the fuzzy

decision making is done using both Matlab and LabView fuzzy logic toolkits. Matlab

supports multiple input and multiple output systems whereas LabView only supports

multiple inputs and single output fuzzy systems. An example of fuzzy membership

functions in LabView is shown in figure 5.2.

53

Figure 5.2 FL Membership function editor in LabView

See that the sensor values are normalized to be in the range of 0-1. Then a rule

base is made to describe the scenarios of the system. An example of this can be “if light

is very low and vibration values are very high then event of intrusion is very high”. An

example of fuzzy toolkit rule base in LabView is shown in the figure 5.3.

Figure 5.3 Rulebase editor in LabView

54

The fuzzy toolkits in both softwares provide different methods of defuzzification

such as height, centroid, etc. In this thesis centroid defuzzification is chosen because of

its inherent usefulness compared to other methods. One can also test this fuzzy system

using both toolkits as shown in the figure 5.4.

Figure 5.4 Testing FL system in LabView

 This system provides good results only if the rule base is properly defined. In

case of LabView one can use outputs from two fuzzy engines as inputs to another fuzzy

engine for combination of event detection as shown in the figure 5.5.

55

Figure 5.5 FL system block diagram in LabView

One can easily use fuzzy toolkit to test and implement sensor fusion.

5.3 Dempster Shafer

The Bayesian theory is the canonical method for statistical inference problems.

The Dempster Shafer decision theory is considered a generalized Bayesian theory. It

allows distributing support for preposition not only to a preposition itself but also to the

union of prepositions that include it. In a Dempster Shafer reasoning system all possible

mutually exclusive context facts or events of the same kind are enumerated in the frame

of discernment θ. Each sensor for example will contribute its observation by assigning

its beliefs over θ. This assignment is called as the basic probability assignment (BPA).

In this thesis, Dempster Shafer rule of combination of evidence is used. Also, a rule-

based method is used for updating the basic probability assignment dynamically [34].

56

The method is to collect evidence from different sensors and accordingly update the

probability assignments. Suppose we have two sensors as discussed in the earlier

section, with each of them having light and vibration sensors. If events are defined such

as “Intrusion”, “Earthquake” or “Lighting malfunction”, we can use a rule base to

update the basic probability assignments of each of these events. Thus each source i.e.

sensor would use this rule base to update these probability assignments. An example

would be:

Sensor 1:

If light values are very low and vibration values are very high then add 0.01 to

the BPA of the event ‘Intrusion’.

If light values are very high then add 0.01 to the BPA of the event ‘Lighting

malfunction.

If vibration values are very high then add 0.01 to the BPA of the event

‘Earthquake’.

 Similarly one can define the rule base for sensor 2 but in this case if it is

assumed that the sensor 2 is not as reliable as sensor 1 then one can express an event

such as ‘either intrusion or earthquake’.

Since Dempster Shafer rule is associative and commutative, one can combine

the sources in any order. Suppose one has these two sources of evidence to take care of:

57

Table 5.1 Table for two sources of evidence

Sensor 1 Sensor 2

‘Intrusion’ with mass 0.5 ‘Intrusion or Earthquake’ with mass 0.6

‘Lighting Malfunction’ with mass 0.3 ‘Lighting Malfunction’ with mass 0.4

‘Earthquake’ with mass 0.2 ‘Earthquake’ with mass 0.1

The numerator of Dempster Shafer rule computes a matrix of intersections and

the belief masses contributed by each. For example in this case:

 ‘Intrusion’ with combined mass of: 0.3 i.e. 0.5*0.6

‘Lighting Malfunction’ combined mass of: 0.12

‘Earthquake’ with combined mass of: 0.02+0.12 = 0.14

The masses for all the non-null events must be then divided by the denominator

of Dempster Shafer’s rule, equal to 1 minus the mass of all the null events, to yield a

final body of evidence.

Null set mass = 0.5*0.4+0.5*0.1+0.3*0.6+0.3*0.1+0.2*0.4=0.54

Denominator = 1-0.54=0.46

‘Intrusion’ with combined mass of: 0.3/0.46 = 0.65

‘Lighting Malfunction’ combined mass of: 0.12/0.46 = 0.26

‘Earthquake’ with combined mass of: 0.02/0.46 = 0.04

Here one can see that the possibility of the event ‘Intrusion’ is very high and

hence we can assign a particular mission for that event in the discrete event controller.

Credibility of the event X is equal to the sum of the belief masses of all the events that

58

are subsets of X. Plausibility of the event set X is equal to the sum of all the belief

masses of all events whose intersection with X is non-null. In this example, credibility

of the event ‘Earthquake’ is equal to the sum of the belief masses for ‘Earthquake’ and

‘Intrusion or Earthquake’.

5.4 Analysis of Dempster Shafer and Fuzzy Logic

In case of the fuzzy logic controller, the block diagram in LabView for the above

example is shown in the diagram 5.6.

Figure 5.6 FL controller system block diagram in LabView

When simulated, one can see that as soon as the light values go down and

vibration values go up, the event of intrusion shows an increased degree, predicting that

the event of intrusion has occurred. This output form the fuzzy system triggers a

mission in the Discrete Event Controller. The simulation waveform in LabView is

shown in figure 5.7.

59

Figure 5.7 When Light values go low

In case of Dempster Shafer Theory, in the example discussed earlier, if the light

values go low and vibration values go high, the combined BPA of ‘Intruder’ goes high

as shown in the LabView simulation results in figure 5.8.

60

Figure 5.8 BPA of Intrusion increases

If the light values are high and the vibration values are high, the combined BPA

of ‘Earthquake’ goes high as indicated in the LabView simulation results in figure 5.9.

Figure 5.9 BPA of Earthquake increases

61

One can easily observe that both methods provide similar results. But there are

problems in both methods. In case of Dempster Shafer theory, if the conflict is very

high, the outputs can be sometimes contradictory. But there are methods to rectify it

such as applying Yager’s rule, etc. But in general, Dempster Shafer theory for sensor

fusion has many advantages. Note that in Dempster Shafer Theory, the probability

masses from propositions that contradict each other can also be used to obtain a

measure of how much conflict there is in a system. This measure has been used before

as a criterion for clustering multiple pieces of seemingly conflicting evidence around

competing hypotheses. In addition, one of the advantages of the Dempster-Shafer

framework is that priors and conditionals need not be specified, unlike Bayesian

methods which often map unknown priors to random variables (i.e. assigning 0.5 to

binary values).

In case of Fuzzy Logic method of sensor fusion, implementation seems simple

in case of a basic example. But as the number of inputs and outputs increase, the

number of rules in a system grows exponentially. For real time systems, this type of

brute force is out of the question. But there are methods to improve this system.One can

restrict the decision system to a single non fuzzy behavior. If one can cut down on the

number of behaviors that is needed to be considered for the current decision cycle, one

can avoid all of the rule evaluations associated with each behavior. One can also break

down the behaviors into parallel layers that can fire and operate independent of each

other to prune down unnecessary rule evaluations. This system can also be made

62

adaptive so that the behaviors can change the rules or membership functions. But for a

basic system, both methods provide excellent results.

63

CHAPTER 6

CONCLUSION

6.1 Conclusion

In this thesis a discrete-event coordination scheme for sensor networks

composed of both mobile and stationary nodes was introduced. This architecture

supports high-level planning for multiple heterogeneous agents with multiple

concurrent goals in dynamic environment. The proposed formulation of the DEC

represents a complete dynamical description that allows efficient computer simulation

of the WSN prior to implementing a given DE coordination scheme on the actual

system. The similarity between simulation and experimental results shows the

effectiveness of the DEC for simulation analysis. The obtained results also prove the

striking potentialities of the matrix formulation of the DEC, namely: straightforward

implementation of missions on the ground of intuitive linguistic descriptions; possibility

to tackle adaptability and scalability issues at a centralized level using simple matrix

operations; guaranteed performances, since the DEC is a mathematical framework

which constraints the behaviour of the single agents in a predictable way. DEC was

actually implemented on an actual mobile WSN test-bed to prove the simplicity and

effectiveness of the employed method.

A study and implementation of fuzzy logic and Dempster Shafer theory for

sensor fusion was also done. The implementation results justify the theoretical premise.

64

Also, the use of fuzzy logic and Dempster Shafer theory for sensor fusion is very

effective.

6.2 Future Scope

There are some issues that still need to be answered in DEC architecture such as

decision-making for the dynamic change of input matrices and the inherent problem of

deadlock. Also there is the problem of decision for routing of tasks and resources when

multiple inputs come in and cause a deadlock. Rigorous work has been done on systems

having pre-deterministic routing paths. However, very little work has been done for

systems having free-choice routing paths such as wireless sensor networks. Serious

problems would appear in the performance of these systems if the assignments of

resources for specific tasks are not correctly sequenced. Some of the problems are of

blocking and system deadlock. In order to analyze the internal deadlock structures for

these systems, we need to investigate the routing paths which contain circular wait

relationships among resources, while increasing the possibilities for blocking and

deadlock. Thus, the future work would involve matrix analysis of mobile WSN systems

with routing, deadlock avoidance and adaptive resource failure management.

65

APPENDIX A

IMPORTANT LABVIEW BLOCKS

66

Table A Important LabView Blocks

LabView Block Description

VISA read. Vi

Reads the specified number of bytes from

the device or interface specified by VISA

resource name and returns the data in read

buffer. Whether the data is read

synchronously or asynchronously is

platform-dependent. Right-click the node

and select Do I/O Synchronously from the

shortcut menu to read data synchronously.

The operation returns only when the

transfer terminates.

VISA Write. vi

Writes the data from write buffer to the

device or interface specified by VISA

resource name. Whether the data is

transferred synchronously or

asynchronously is platform-dependent.

67

Table A - continued

Build Array. vi

Concatenates multiple arrays or appends

elements to an n-dimensional array. You

also can use the Replace Array Subset

function to modify an existing array.

The connector pane displays the default

data types for this polymorphic function.

Test Fuzzy Control. Vi

This VI is used to build and test a fuzzy

control application. This can be used as a

general purpose VI with up to 4 inputs and

1 output.

Fuzzy Controller. vi

This is a fuzzy controller VI which is run

from Fuzzy toolkit. A controller data file

is needed for this VI to work.

68

Table A - continued

Load Fuzzy Controller. vi

Load Fuzzy Controller VI is used to load

all the controller parameters and

components. This VI is used with Fuzzy

controller VI to implement fuzzy

controller designed with fuzzy logic

controller design project manager.

While loop

Repeats the subdiagram inside it until the

conditional terminal, an input terminal,

receives a particular Boolean value. The

Boolean value depends on the continuation

behavior of the While Loop. Right-click

the conditional terminal and select Stop if

True or Continue if True from the shortcut

menu. You also can wire an error cluster

to the conditional terminal, right-click the

terminal, and select Stop on Error or

Continue while Error from the shortcut

menu. The While Loop always executes at

least once. The iteration (i) terminal

provides the current loop iteration count,

which is zero for the first iteration.

69

REFERENCES

[1] Akyldiz I., Su W., Sankarasubramaniam Y, Cayirci E., “A survey on sensor

networks”, IEEE Communications magazine, August 2002

[2] Balch T., Hybinette M., “Social potentials for scalable multi-robot formations”,

Proceedings of the International Conference of Robotics and Automation, April

2000

[3] Balch T., Arkin R., “Behavior-based formation control for multirobot teams”, IEEE

Transactions on Robotics and Automation, vol. 14, no.6, December 1998

[4] Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; Thrun, S.; “Collaborative multi-

robot exploration”, Proceedings of the IEEE International Conference on Robotics

and Automation, 2000, vol. 1 , 24-28 April 2000 Pages:476 – 481

[5] Bronson, R., and Naadimuthu, G., Operations Research, 2 ed., Schaum’s Outline,

McGraw-Hill, New York, 1997.

[6] Butler Z., Rus D., “Event-based motion control for mobile-sensor network”, IEEE

Transactions. on Pervasive Computing, vol.2 issue 4, October-December 2003

[7] Christensen T., Noergaard M., Madsen C., Hoover A., “Sensor networked mobile

robotics”, Proceedings of the IEEE International Conference on Computer Vision

and Pattern Recognition, June 2000

[8] Corman, T., Leisenson, C., and Rivest R., Introduction to Algorithms, Prentice Hall

of India, 2001.

70

[9] Cortes J., Martinez S., Karatas T., Bullo F., “Coverage control for mobile

sensing network”, IEEE Trans. on Robotics and Automation, vol.20, no.2, April

2004

[10] Gordon-Spears A., Kiriakidis K., “Reconfigurable robot teams: modeling and

supervisory control”, IEEE Transactions on control system technology, vol. 12, no.

5, September 2004

[11] Gerkey B., Mataric M., "A formal analysis and taxonomy of task allocation in

multi-robot systems", The International Journal of Robotics Research, vol. 23, no. 9,

pp. 939-954, Sept. 2004.

[12] Harris B., Lewis F., Cook D., “Machine planning for manufacturing: dynamic

resource allocation and on-line supervisory control”, Journal of Intelligent

Manufacturing, pp. 413-430, vol. 9, 1998

[13] Harris, B., Cook, D., and Lewis, F.L., “Automatically generating plans for

manufacturing,” J. Intelligent Systems, vol. 10, no. 3, pp. 279-319, 2000.

[14] Howard, A.; Mataric, M.J.; Sukhatme, G.S.; “An incremental deployment

algorithm for mobile robot teams”, Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and System, vol.30, Pages:2849 – 2854, October

2002

[15] J. Ezpeleta, J.M. Colom, and J. Martinez, “A Petri net based deadlock

prevention policy for flexible manufacturing systems,” IEEE Trans. Robotics and

Automation, vol. 11, no. 2, pp. 173-184, 1995.

71

[16] King J., Pretty R., Gosine R., “Coordinated execution of tasks in multiagent

environment”, IEEE transactions on Systems, man and cybernetics- Part A: Systems

and Humans, vol. 33, no.5, September 2003

[17] Kusiak A. “Intelligent scheduling of automated machining systems.” In

Intelligent design and Manufacturing. A. Kusiak (ed.) Wiley, New York (1992)

[18] Lee J., Hashimoto H, “Controlling mobile robots in distributed intelligent sensor

network”, IEEE Transactions on Industrial Electronics, vol.50, no.5, October 2003

[19] Lewis F., “Wireless sensor networks”, Smart environments: technologies,

protocols, and applications, ed. D. J. Cook and S. K. Das, John Wiley, New York,

2004.

[20] Lewis F., A. Gurel, S. Bogdan, A. Doganalp, O. Pastravanu, “Analysis of

deadlock and circular waits using a matrix model for flexible manufacturing

systems,” Automatica, vol. 34, no. 9, pp. 1083-1100, 1998.

[21] McMickell M., Goodwine B., Montestruque L., “MICAbot: a robotic platform

for large-scale distributed robotics”, Proceedings of the International conference of

robotics and automation, September 2003

[22] Mireles J., Lewis F., “Intelligent material handling: development and

implementation of a matrix-based discrete event controller IEEE Transactions on

Industrial Electronics, , vol. 48 , Issue: 6 , Dec. 2001 Pages:1087 – 1097

[23] Mireles J., Lewis F., “Deadlock analysis and routing on free-choice multipart

reentrant flow lines using a matrix-based discrete event controller” Proceedings of

the IEEE International conference on Decision and Control, December 2002

72

[24] Murata, T. “Petri nets: properties, analysis and applications.” Proceedings of the

IEEE, vol.77, no.4, April 1989, pp.541-80

[25] Parker L., “ALLIANCE: An Architecture for Fault Tolerant Multirobot

Cooperation”, IEEE Transactions on Robotics and Automation, vol. 14, no. 2, April

1998

[26] Petriu E., Whalen T.,Abielmona R., Stewart A., “Robotic sensor agents: a new

generation of intelligent agents for complex environment monitoring”, IEEE

Magazine on Instrumentation and Measurement, vol.7 issue 3, September 2004

[27] Paruchuri, P., Tambe, M., Ordonez, F., Kraus, S., “Towards a formalization of

teamwork with resource constraints,” Proc. Third Int. Joint Conf. on Autonomous

Agents and Multiagent Systems, pp. 596-603. AAMAS 2004.

[28] P.J. Gmytrasiewicz, H.-H. Huang, and F.L. Lewis, “Combining operations

research and agent-oriented techniques for agile manufacturing system design,”

Proc. IASTED Int. Conf. Robotics and Manufacturing, pp. 396-402, Cancun,

Mexico, June 1995.

[29] P.R. Kumar and S.P. Meyn, “Stability of queueing networks and scheduling

policies,” IEEE Trans. Automat. Control, vol. 40, no. 2, pp. 251-260, 1995.

[30] Saridis G., “Intelligent robotic control”, IEEE Transactions on Robotics &

Automation, vol. 28, no.5, May 1983

[31] Sibley G., Rahimi M., Sukhatme G., “Robomote: a tiny mobile platform for

large-scale ad-hoc sensor networks”, Proceedings of the International conference of

robotics and automation, May 2002

73

[32] S.S. Panwalker and W. Iskander, “A survey of scheduling rules,” Operations

Research, vol. 26, no. 1, pp. 45-61, 1977.

[33] Steward D. V., “The design structure system: a method for managing the design

of complex systems”, IEEE Transactions on Engineering Management, pp. 45-54,

Aug. 1981

[34] S. Rabin, AI Game Programming Wisdom, Charles River Media, Inc, 2002.

[35] Tacconi D., Lewis F., “A new matrix model for discrete event systems:

application to simulation”, IEEE Control System Magazine

[36] Tilak S., Abu-Ghazaleh N., Heinzelman W., "A taxonomy of wireless micro-

sensor network models," ACM Mobile Computing and Communications Review,

Vol. 6, No. 2,pp. 28-36, 2002

[37] Wu H., Siegel M., Stiefelhagen R., Yang J., “Sensor fusion using Dempster-

Shafer theory”, Proceedings of IEEE Instrumentation and Measurement Technology

Conference, May 2002

74

BIOGRAPHICAL INFORMATION

Prasanna Ballal received his Bachelor of Engineering degree in Electronics and

Telecommunication Engineering from Mumbai University in 2002. He then worked for

IndiaGames Ltd, India as a software programmer. He started his masters in Electrical

Engineering at The University of Texas at Arlington in 2003. Due to his interests in

Signal Processing and Wireless systems, he started working on research projects

involving Mobile Wireless Sensor Networks in Automation and Robotics Research

Institute (ARRI-UTA) under Dr. Frank Lewis. He has been working as a Graduate

Research Assistant at Automation and Robotics Research Institute. He has also been a

Graduate Teaching Assistant for both undergraduate and graduate courses in UTA.

