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Abstract 

 

Understanding scalp EEG in response to newsvendor decision-making and feedback  

 

Mobasshir Hossain Akash, MS 

 

The University of Texas at Arlington, 2019 

 

Supervising	Professor:	Dr.	Hanli	Liu		

Abstract:  

Neuroeconomics is an emerging field integrating economic theories with neuroscience to enhance 

the understanding on how humans make decisions under different cost-effective conditions. 

Understanding the brain network associated with different cognitive tasks, to investigate the basic 

neural processes that underlie complex higher-order cognitive operations, has become an important 

research topic in behavioral neuroscience. Newsvendor problem plays a vital role among all 

prevalent concepts. This study is designed based on Newsvendor problem incorporating 40 trials 

for each subject at a randomly chosen low-profit or high-profit margin treatments to investigate 

how electrophysiological signals in the human brain are differentiated under the two treatments 

using 64-channel electroencephalography. The electrophysiological data were collected from 13 

subjects while they were making decisions under randomly assigned two treatment levels with a 

MATLAB-based newsvendor game. Power density analysis of EEG signals was performed in 5 

frequency components of EEG, which were delta (1–4 Hz), theta (4 –8 Hz), alpha (8–13 Hz), beta 

(13–30 Hz), and gamma (30–70 Hz) for three experimental phases, namely: baseline, decision 
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making, and feedback. Root-Mean-Square (RMS) values of power calculation from each frequency 

band of each electrode was calculated using MATLAB; then 64-channel RMS magnitudes were 

averaged over all the participants to generate group-level topographical maps for all five frequency 

bands and throughout the three different phases.  

The group-level topographies across all five bands show significant activations in several 

major scalp regions during high- and low-margin task phases. Paired-sample t-tests with false-

discovery-rate correction (p<0.05) were conducted to identify significant electrodes across 

different treatments for multi-variable comparisons.  Five clusters were identified from the 64-

channel scalp region based on the common electrodes that shows statistical significance in one of 

the frequency bands. The cluster-based analysis indicated that significant activation by the 

newsvendor decision making occurred in the dorsolateral prefrontal cortex at four brain rhythm 

bands, excluding the gamma frequency. Also, power densities in alpha and theta bands shows 

opposite activation trends during the decision-making and feedback phase. Previous studies 

reported that the theta band plays a key role in memory retrieval and decision making. Our findings 

showed that the theta activation was significantly observed in all five clusters during the 

newsvendor decision-making phase. On the other hand, this specific decision making did not cause 

any change in beta band power. However, after splitting these data into low- and high-margin 

treatment conditions, it showed significant deactivation in the right dorsolateral prefrontal cortex 

during the decision-making phase under the low-margin treatment, reflecting mental stress or 

anxiety, as expected.  
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CHAPTER 1 
 INTRODUCTION 

 

1.1 Newsvendor Problem: 

Neuroeconomics is gaining momentum in the interdisciplinary studies involving economics and 

neuroscience. Behavioral studies of models for managing inventory in the face of demand 

uncertainty have received significant attention in the literature in the past decade (e.g., 

Schweitzer & Cachon, 2000;) [1]. Among all the prevalent concepts, Newsvendor Problem plays 

the most vital role.  

Newsvendor Problem (NP) is an attractive economic decision-making scenario which is 

associated with single-term estimation of determining the order quantity which maximizes the 

expected profit (or minimizes the expected loss) in a single period probabilistic demand 

framework [2]. Newsvendor problem or single-period problem (SPP) plays a key role at the 

conceptual foundations of stochastic inventory theory, which is related to decision-making under 

stochastic uncertainty or risk, where the demand is from a known probability distribution. The 

traditional concept of this problem is that the decision-maker (e.g. storekeeper or manager), who 

retails a merchandise facing uncertainty demand distribution, has to decide how many units to 

buy each day without storing excess inventory [3].  

The newsvendor problem was first presented by Whitin (1955), since then it has become one of 

the classic models in inventory management. This problem primarily focuses on the purchase of 

perishable products. The mathematical model maximizes the expected profit by determining the 

optimal order-size. For the sake of convenience, the order-size of the maximal expected profit is 
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abbreviated as ‘Optimal order’. Optimal order and expected profit are functions of: (1) the item 

cost and the marginal profit, and (2) the demand distribution 

In a decision contained risk, the likelihood of the consequence is known. However, the safe or 

risky outcome differs in terms of the reward[4]. Newspaper vendors, milk sellers are examples of 

real-life applications of this scenario to determine their daily order quantity. 

1.2 Economic Decision Making Using EEG: 

Carlson and O’keefe (1969) were the first to report an experiment with the newsvendor problem. 

In that context, NP was part of a much larger experiment in scheduling decision-making. No 

specific conclusions could have been made from that experiment other than an analogy. Other 

researchers used different context or phenomenon to indicate order-purchase decisions 

correspond to the optimal order, but not any of them are designed to disentangle biases in the 

newsvendor context. Cachon and Schweitzer (2000) used the newsvendor problem to conduct an 

important experimental test [5]. They analyzed 15 decision periods of ordering for each subject 

with known uniform distribution. Their experimental study showed that participants tend to order 

less than the optimal order, when the marginal profit is larger than the cost, indicating a deviation 

from the optimal order. Bolton (2004) used 100 decision rounds and found that enhanced 

experience improves newsvendor performance, even though this improvement is on average, 

pretty slow. 

Here, in our case, we conducted an experimental study using the newsvendor problem for 40 

decision making rounds to indicate the optimal decision making progress of a human subject. 

Using a brain imaging modality will help us to identify which part of the brain is simultaneously 

getting activated or deactivated during this complex decision making process. Also, profit/loss 
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has a huge impact in emotional behavior, which certainly can lead us to different behavioral 

response in the brain related to reward processing. To best of our knowledge, not many of the 

studies have been conducted from a behavioral perspective in the simple newsvendor setting.  

There are several brain imaging modalities such as functional magnetic resonance imaging 

(fMRI), functional near-infrared spectroscopy (f-NIRS), and electroencephalography (EEG). 

EEG is a widely used non-invasive optical imaging technique which has the ability to measure 

neural activity based on electrical signals in the brain directly. Moreover, EEG can detect 

neurophysiological activity during different tasks and conditions in millisecond precision. Even 

though EEG has a very high temporal resolution compared to fMRI and fNIRS, it is inexpensive, 

easy-to-use under simple conditions and portable neuroimaging modality. To examine the 

neuroeconomics behind the newsvendor problem, we incorporated a computer game-based 

platform with EEG modality to understand the neurophysiological functions. Many studies have 

been reported EEG as a noninvasive robust optical imaging tool for decision-making research 

[37] [38]. 

1.3 Motivation of this study: 

Understanding human thought and behavior can take many approaches, but to really understand 

how the brain works, one may need to look deep inside it. As many brain imaging methods today 

are entirely noninvasive, it shouldn’t be difficult to track the brain response corresponds to 

different neural activity. The purpose of the study is to examine how brain activates during 

complex decision-making task with multiple conditions. Previous literature reported that there 

are three foremost neural networks play roles in the process. They are namely, reward 

processing, cognitive control, and social cognition. These processes trigger mainly dorsolateral 
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prefrontal cortex (DLPFC), orbitofrontal cortex (OFC) and angular cingulate cortex (ACC) along 

with several other regions in the brain as a network as shown in the fMRI studies [6]. However, 

we hypothesized that dorsolateral prefrontal cortex (DLPFC) which represents cognitive control, 

and orbitofrontal cortex (OFC), which is a part of reward pathway, are the major brain areas 

were to activate during a decision-making task at the cortical level using our fNIRS study. This 

study focuses on making economic-decisions of weighing gains and losses under risk and 

uncertain demand distribution, and to detect the changes of electrophysiological activity in the 

brain during this decision-making process, we have incorporated a robust imaging modality 

called, Electroencephalography (EEG).   

1.4 What is EEG? 

EEG (electroencephalography) measures the electrical activity of the brain placing electrodes on 

our scalp level. It tells us how active the brain is, from the surface measurements. Measuring 

electrical activity reflects how the many different neurons in the brain network communicate 

with each other via electrical impulses. This can be useful for quickly determining how brain 

activity can change in response to stimuli, and can also be useful for measuring abnormal 

activity, such as with epilepsy. 

Several reasons why we are incorporating EEG as a functional imaging tool for our decision-

making research.  

ü EEG has very high time resolution and captures cognitive processes in the time frame in which 

cognition occurs. 

ü EEG directly measures neural activity. 

ü EEG is inexpensive, lightweight, and portable. 



 
5 

	

	

ü EEG monitors cognitive-affective processing in absence of behavioral responses. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: A schematic presentation of regular EEG experiment, using head-cap, electrodes, USB 

converter, recording device and computer to display the recordings. (Reference: 

https://electronics.stackexchange.com/questions/413727/what-device-can-convert-eeg-voltage-data-

to-real-voltage) 

 

1.4.1 EEG Rhythms and Oscillations:  

 

Understanding different brain oscillations recorded by EEG rhythms are the key features of 

studying the neurophysiological functions in response to the news-vendor based decision-making 

research. Primarily EEG has 5 main rhythms, namely- Delta, Theta, Alpha, Beta, Gamma. Each 

of these rhythms have different physiological functions corresponding to the brain stimuli. 
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Figure 1.2: Different EEG rhythms and oscillations (Reference: https://imotions.com/blog/eeg/) 

 

Delta Band (1-4 Hz): 

“Delta waves are characterized as the slowest and highest amplitude brainwaves, oscillations 

ranging in between 1 – 4 Hz (Niedermeyer & da Silva, 2012). These waves are only present 

during deep non-REM sleep (stage 3), also known as slow-wave sleep (SWS). In sleep labs, delta 

waves are examined to assess the depth of sleep. The stronger the delta rhythm, the deeper the 

sleep. Increased delta power (an increased quantity of delta wave recordings) has also been 

found to be associated with increased concentration on internal working memory tasks” [8] [9]. 

Theta Band (4-8 Hz): 

“Brain oscillations within the 4 – 8 Hz frequency range are referred to as theta band 

(Niedermeyer & da Silva, 2012). Studies consistently report frontal theta activity to correlate 
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with the difficulty of mental operations, for example during focused attention and information 

uptake, processing and learning or during memory recall. Theta frequencies become more 

prominent with increasing task difficulty. This is why theta is generally associated with brain 

processes underlying mental workload or working memory (Klimesch, 1996; O‘Keefe & 

Burgess, 1999; Schack, Klimesch, & Sauseng, 2005). Theta is associated with a wide range of 

cognitive processing such as memory encoding and retrieval as well as cognitive workload [10]. 

Whenever we’re confronted with difficult tasks (counting backwards from 100 in steps of 7, or 

when recalling the way home from work, for example), theta waves become more prominent. 

Theta is also associated with increased fatigue levels” [8] [11]. 

Alpha Band (8-13 Hz): 

“Alpha is generated in posterior cortical sites, including occipital, parietal and posterior temporal 

brain regions. Alpha waves have several functional correlates reflecting sensory, motor and 

memory functions. One can see increased levels of alpha band power during mental and physical 

relaxation with eyes closed. By contrast, alpha power is reduced, or suppressed, during mental or 

bodily activity with eyes open. Alpha suppression constitutes a valid signature of states of mental 

activity and engagement, for example during focused attention towards any type of stimulus 

(Pfurtscheller & Aranibar, 1977).	Whenever we close our eyes and bring ourselves into a calm 

state, alpha waves take over. Alpha levels are increased when in a state of relaxed wakefulness. 

Biofeedback training often uses alpha waves to monitor relaxation. They are also linked to 

inhibition and attention” [8] [12]. 
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Beta Band (13-30 Hz): 

“Oscillations within the 13 – 30 Hz range are commonly referred to as beta band activity 

(Niedermeyer & da Silva, 2012). This frequency is generated both in posterior and frontal 

regions. Active, busy or anxious thinking and active concentration are generally known to 

correlate with higher beta power. Over central cortex (along the motor strip), beta power 

becomes stronger as we plan or execute movements, particularly when reaching or grasping 

requires fine finger movements and focused attention. Interestingly, this increase in beta power is 

also noticeable as we observe others’ bodily movements. Our brain seemingly mimics the limb 

movements of others, indicating that there is an intricate “mirror neuron system” in our brain 

which is coordinated by beta frequencies (Zhang et al., 2008). Over motor regions, beta 

frequencies become stronger as we plan or execute movements of any body part [13]. 

Interestingly, this increase in beta is also noticeable as we observe bodily movements of other 

people [14]. Our brain seemingly mimics their limb movements, indicating that there is an 

intricate “mirror neuron system” in our brain which is potentially coordinated by beta 

frequencies” [8]. 

Gamma Band (above 30 Hz): 

“At the moment, gamma frequencies are the black holes of EEG research as it is still unclear 

where exactly in the brain gamma frequencies are generated and what these oscillations reflect. 

Some researchers argue that gamma, similar to theta, serves as a carrier frequency for binding 

various sensory impressions of an object together to a coherent form, therefore reflecting an 

attentional process. Others argue that gamma frequency is a by-product of other neural processes 

such as eye-movements and micro-saccades, and therefore do not reflect cognitive processing at 
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all. Future research will have to address the role of gamma in more detail. Some researchers 

argue that gamma reflects attentive focusing and serves as carrier frequency to facilitate data 

exchange between brain regions [15]. Others associate gamma with rapid eye movements, so-

called micro-saccades, which are considered integral parts for sensory processing and 

information uptake”[8] [16]. 

1.5 How EEG works in the Human Brain: 

“The brain is an electrical system – all of our thoughts (conscious or otherwise) are generated 

through a network of neurons, which send signals to each other with the help of electrical 

currents. The more electrical signals, the more neuronal communication, which corresponds to 

more brain activity. 

The electrodes of an EEG headset can’t detect changes in single neurons, but instead detect the 

electrical changes of thousands of neurons signaling at the same time. 

The signal from the electrodes is then sent to an amplifier, that (no surprises here) amplifies the 

signal. A computer then receives this signal, and can generate various maps of brain activity, 

with a rapid temporal resolution. 

A drawback for EEG is the spatial resolution – as the electrodes measure electrical activity at the 

surface of the brain, it is difficult to know whether the signal was produced near the surface (in 

the cortex) or from a deeper region”[17]. 



 
10 

	

	

 

Figure 1.3: EEG signal generation at the scalp level from the triggering of the pyramidal cell by the 

release of neurotransmitter. (Reference: https://imotions.com/blog/eeg/) 

“The brain consists of hundreds of thousands of cells, so-called neurons. In fact, there are about 

100 billion neurons in the human brain, which are all heavily interconnected. 

Neurons typically consist of a cell body and one or more dendrites which all end at synapses. 

Synapses act as gateways of inhibitory or excitatory activity between neurons. This means that 

synapses propagate information impulses across neurons (excitatory) or prevent the passage of 

information from one neuron to the next (inhibitory). 

The synaptic transmission is triggered by the release of neurotransmitters (dopamine, 

epinephrine, acetylcholine, etc.), which causes a voltage change across the cell membrane. In 

other words: Any synaptic activity generates a subtle electrical field, which is also called 

postsynaptic potential (post = behind). Postsynaptic potentials typically last tens to hundreds of 

milliseconds”[17]. 
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1.6 EEG compared to other brain imaging techniques:  

“Magnetencephalography (MEG) records the magnetic fields generated by neural activity. 

Like EEG, MEG has excellent time resolution and is often considered to capture deeper neural 

activity much better than EEG. MEG scanners are large, stationary and expensive. They require 

heavy technical maintenance and training resources. 

Functional Magnetic Resonance Imaging (fMRI) measures changes in blood flow associated 

with neural activity. Increased neural firing requires oxygen, which is delivered by blood, and 

the magnetic properties of oxygenated blood are different from those of non-oxygenated blood. 

This property is measured by fMRI as a distortion of the magnetic field generated by protons. 

fMRI has excellent spatial resolution while at the same time lacking the time resolution of EEG. 

Functional Near-Infrared Spectroscopy (fNIRS) is a widely used non-invasive optical 

imaging technique which has the ability to measure cortical level activity based on 

hemodynamics in the brain. Moreover, cerebral blood flow differences in oxygenated 

hemoglobin (HbO2) and/or deoxygenated hemoglobin (Hb) in different areas in the brain act as a 

biomarker of neuronal activation. 

Positron emission tomography (PET) is an invasive nuclear imaging technique based on 

gamma radiation of a decay which is inserted into the body of the respondent. With PET, you 

can monitor metabolic activity (for example, glucose metabolism) of neurons during cognitive 

activity. While PET scans are much more robust towards motion artifacts, they are lacking the 

high time resolution of EEG recordings”[17]. 
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CHAPTER 2 

ECONOMIC DECISION MAKING USING EEG 

 

2.1 Aim of the study:  

The aim of this study is to understand scalp level EEG response changes associated with 

different task conditions of complicated decision making process. The root mean square (RMS) 

of EEG amplitude is measured as an index of the power content of EEG recorded from the motor 

cortical area. This provides an estimation of magnitude changes in the brain associated with 

different cortical functions, while the subject is doing complicated decision making tasks. 

Understanding scalp EEG and how it differentiates in different task conditions are the key goal 

of this study. 

 

2.2 RMS (Root Mean Square) Power: 

For feature extraction of EEG data, RMS plays a great role by providing a measure of the 

strength of the sample signal. The strength can be calculated by applying Root Mean Square 

(RMS) in the EEG data [18]. In mathematics, RMS is known as the quadratic mean. It is a 

statistical measure of the magnitude of varying quantity. RMS is useful when there are positive 

and negative variations, for instance sinusoid. RMS is one of the most commonly used methods 

that measure the amplitude of a bio - signal, e.g. audiological signals and electromyographic 

signals. The amplitude of a bio-signal expresses the magnitude of the power (energy per time) of 

that particular signal. Many studies have reported to calculate RMS magnitude of EEG signal for 

extracting the features during sleep study, muscle fatigue based on the following 

formula[18][19]: 
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2.3 Methods: 

Figure 2.1 shows an overall flow of the study, consisting of four major parts, which will be 

described in several sub-sections below. This analysis flow was followed for 64-channel data 

processing. The first section discuss the study design, and protocol, while the analysis of the 64-

channel EEG is discussed in the followed by sections, of data recorded from 10-20 EEG 

electrodes. 

 

Figure 2.1: Overall flow of the study 
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2.3.1.Participants in the study: 

A total of 13 healthy human participants (7 males, 6 females, age = 23 (±5) years) were recruited 

from the local community of the University of Texas at Arlington. The inclusion criteria 

included: either sex, any ethnic background, and in an age range of 18-28 years old. The 

exclusion criteria included: diagnosed with a psychiatric disorder, history of a neurological 

condition, history of severe brain injury, history of violent behavior, have ever been 

institutionalized/ imprisoned, current intake of any medicine or drug, or currently pregnant. The 

experimental protocol was approved by the institutional review board of the University of Texas 

at Arlington for the good clinical practice for the human subjects. Informed consent was obtained 

from each participant prior to the experiments.  

2.3.2 Experimental Study Design & Procedures 

2.3.2.1 Study Design: 

The study is designed based on the Newsvendor Inventory Problem, where the news vendor must 

decide how many newspapers to buy each day at the wholesale price and to sell at the retail 

price. Moreover, this problem has some characteristics. The demand is uncertain but from a 

known distribution. The whole protocol consists 40 trials, where each person have a decision in 

every period of trials. There is a cost for ordering items ranging from 0 to 300. The number of 

items each time order is called order quantity. The subject must decide the order quantity for the 

inventory each trial. Each trial is independent of one another.   

According to the newsvendor problem, let q be the order quantity, D be the unknown demand, c 

be the cost, p be the selling price and l be the left-over quantity. If q > D, the profit (P) is 

calculated as a function of q and D by the following equation [5]: 
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𝑃 𝑞, 𝐷 = 𝑝 − 𝑐 (min 𝑞, 𝐷 ) − 𝑙 ∗ (𝑝 − 𝑐) 

The protocol contains two independent treatments. The further details of the treatment are 

provided in Table 2.1. The subject was asked to enter the order quantity in between 0 and 300 

depending on their previous trial experience even though it’s coming from an unknown random 

demand, which was generated from a uniform distribution between 0 and 300. Each experiment 

consists of 40 trials. The price and cost were kept constant and known for each treatment. 

Subjects were randomly assigned for either high-margin or low-margin.  

 

Treatment Type Low Margin High Margin 

Price(P) 32 32 

Cost(C) 24 8 

Demand Range  [0 300]  [0 300] 

	

Table 2.1: Summary of the different treatment conditions. 

 

2.3.2.2 Experimental Protocol: 

The study protocol was created on MATLAB software. The protocol was consisted of 4 main 

phases, namely- Baseline, Decision, Rest, and Feedback. After baseline, the whole process went 

for 40 trials. Baseline was 30 seconds. During this period, the subject didn’t do any mental tasks 

other than just looking into the screen. Then, the protocol was moved to the decision phase, the 

subject was shown the screen for a maximum of 20 seconds with price, cost and demand range 

with a text box to enter the order quantity. During this phase, the subject chose a demand ranging 
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from 0 to 300 within 20 sec of time for each trial. When the subject entered the order quantity, 

the screen shifted to a “Rest” phase of 5 seconds. As soon as the ‘Rest’ phase was gone, the 

feedback phase appeared for 10 seconds. During the feedback phase, the summary was displayed 

with the results of the decision phase in terms of a history table including the profit they made in 

each trial and cumulative net profit. Then, the protocol proceeded to the next trial followed by 5 

seconds of “Rest” phase. Figure 2.2 shows the schematic diagram of the study protocol. The 

treatment was randomly assigned to the subjects. All the profit/loss details were stored along 

with the corresponding time stamps in separate .mat files in MATLAB.  
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: A schematic diagram of the experiment protocol. 

 

2.3.2.3 MATLAB-based Game Theory Design: 

The MATLAB version of the protocol has 4 phases. Figure 2.3 illustrates the exact 4 phases of 

the protocol in sequence: Baseline (30 sec), Decision (20 sec at most), Rest (5 sec), and 

Feedback (10 sec) respectively below: 
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(a)                                                                                (b) 

  

 

 

 

 

 

 

                                  (d)                                                                                        (c) 

Figure 2.3: Screenshots of different phases for the MATLAB-based newsvendor game. (a) represents the 
baseline period to the participants for 30 seconds, and after this period decision-phase comes; (b) 
represents the decision-phase, where the subjects will enter their order quantity based on the cost and 
price of the product within 20 seconds, (c) represents the rest period of 5 seconds to the participants 
before they go to the (d) feedback phase, where the participants will see their profit/loss for the 
corresponding trial based on their chosen order quantity. 

 

2.3.2.4 EEG Data Acquisition: 

The whole setup was consisted of few key components employing an EEG recording system:  

• Bio semi 64 channel electrode cap with 64 AgCl electrodes 

• Amplifiers with filters 
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• A/D converter 

• Recording device 1: EEG data are stored 

• Recording device 2: Behavioral data are stored 

As shown in Figure 2.4, the electrodes extracted the signals from the EEG-cap used in the head 

surface, while the subject was playing the Game-theory based Newsvendor Problem, the 

amplifiers amplified the microvolt signals into the range to be digitalized accurately, the 

converter changed the signals from analog to digital forms, and the personal computer stored and 

displayed the recorded data.

 

Figure 2.4: Experimental setup and data acquisition 

In principle, as the voltage fluctuations measured at the electrodes are very small, the recorded 

data is digitized, and sent to an amplifier. The amplified data can then be displayed as a sequence 

of voltage values. The EEG recording electrodes and their proper functions are critical for 

acquiring appropriately high-quality data for interpretation. In my study, EEG signals were 

recorded with 64-channel Bio-Semi equipment according to the international 10–10 system with 

64 AgCl electrodes mounted on top of the subject’s head. Scalp electrodes consist of Ag-AgCl 
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disks, 1 to 3 mm in diameter, with long flexible leads that can be plugged into an amplifier. AgCl 

electrodes can accurately record very slow changes in potential. The multi-channel 

configurations can comprise up to 128 or 256 active electrodes.  

Using the silver-silver chloride electrodes, the space between the electrode and skin should be 

filled with conductive paste or gel that also helps the electrode to stick. With a cap system, there 

is a small hole to inject the conductive paste, which serves as a medium to ensure small contact 

impedance at electrode-skin interface. The impedance of each electrode had to be less than 5 kΩ. 

During the experiment, subjects were asked to sit in a comfortable chair (as shown in the figure 

2.4), and all of their devices, keys or anything that can cause electromagnetic artifacts were kept 

away from the setup. Also, they were instructed to minimize body movements during EEG data 

acquisition. Computer based protocol was made in such a way to optimize the body movements 

using two button system. The EEG recordings were monitored by the research assistants on duty. 

Phones, radios or other electromagnetic devices were not allowed in the laboratory or on the 

subject for the duration of the experiment. They performed the game in randomly assigned 

treatment levels whereas 7 of them played high margin treatment, and 6 of them played the low 

margin one. One computer was used for recording the electrophysiological data and a laptop was 

used to play the game and to store the behavioral data throughout all subjects. 

2.4 Data Analysis: 

2.4.1 EEG Data Preprocessing: 

After data acquisition, the 64-channel (Ne=64) EEG temporal profiles were exported to EEGLAB 

toolbox [20] for preprocessing.  The data were recorded at 512 Hz(Sampling Frequency).  First,  a 

band-pass filter of 0.3 – 70 Hz (with windowed sinc high and low pass filters) was applied to the 
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EEG data for the removal of different unwanted signals, such as DC offset, system slow drifts, and 

any higher frequencies[26]. Specifically, a Blackman window between the high-pass transition 

band at 0.5 Hz and the low-pass transition band at 5 Hz were used for band-pass filtering Channels 

that were considered noisy, had extremely large amplitudes, and they were corrected using 

spherical interpolation. Then, notch filter was used for 60-Hz line noise removal using an 

EEGLAB plugin with default values [27]. Then, the data were subsequently average-referenced 

[22]. Next, ICA was applied to each subject’s multi-channel EEG data to remove traditional 

artifacts of eye blinks, eye movements and muscle noise.[21] Finally, each subject’s artifact-free 

data were separated in five frequency components, namely – Delta, Theta, Alpha, Beta, and 

Gamma for further processing. Figure 2.5 presents the pre-processing flowchart given below: 

  
Figure 2.5: the entire data pre-processing steps/procedures from 64-channel EEG data acquisition to five 

frequency component separation. 
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2.4.2 EEG Data Post-Processing:  

After preprocessing, each subject’s individual band data were separated into three individual 

phases according to the recorded time-stamps from data acquisition. We call this step as 

‘Epoching’. For Baseline, last 15 seconds data were extracted for each subject, and it was then 

used for RMS power calculation for each EEG channel. Decision and feedback phases were 

consisted of 40 trials. Each subject’s decision and feedback data were extracted according to the 

time-stamps and RMS power was calculated for each channel for each of those individual 

phases. The above mentioned procedures were done for each band separately. Baseline was 

corrected by subtracting the baseline data from decision and feedback. Then, each of the 

subjects’ individual RMS data of baseline, decision, and feedback phases were averaged across 

13 subjects for TOPOPLOT generation. Finally, topoplot function was used in MATLAB to 

generate the topoplots of the averaged baseline, decision and feedback for comparative 

study[25]. Figure 2.6 shows the post-processing steps illustrated below: 

 

Figure 2.6: the flow-chart of EEG data post-processing in our study. 
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CHAPTER 3 

RESULTS, OBSERVATION AND SPECULATION 

3.1 Baseline Topoplots:  

3.1.1 Observation: 

From figure 3.1, it is explicit that average RMS power is varied throughout different components 

of EEG. Few observations can be concluded from the baseline topoplot. Usually in the baseline 

phase, subjects don’t do any cognitive tasks other than looking into the screen for 30 seconds. 

Delta has more activation compared to all other bands. They do share close symmetrfical pattern 

throughout all frequency components. Alpha and Beta frequecny component shows some 

activation characteristics, primarily in the occipital side of the brain, which can be due to visual 

detection and memory processing. 
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Figure 3.1: Average Topoplots of RMS magnitudes of Baseline(n=13) for five frequency 
components Delta(1-4 Hz), Theta(4-8 Hz), Alpha(8-13 Hz), Beta(13-30 Hz), and Gamma(30-70 
Hz). The right colorbar represents the average rms magnitudes for each channel illustrated by 
an average topographical map. In the colorbar, red defines activation in the particular brain 
region, and blue defines deactivation in the corresponding brain region. 

 

3.2 Decision Topoplots: 

3.2.1 Observation: 

From figure 3.2, it is explicit that average power is varied throughout different components of 

EEG during Decision Phase. All of the power topoplots are plotted based on baseline correction. 

Baseline correction means average power of all 64 channels of the Baseline are subtracted from 

the similar of Decision Phase, to investigate how much activation took place in Decision Phase 

compared to the baseline. Few observations can be concluded from the baseline-corrected 

Decision topoplot.  

Theta seems more activated during decision making process, primarily in the occipital side of the 

brain. From theta wave characteristic, it is prevalent that it has some working memory function 

which can be the relevant reason for activation during decision-making. Previous studies 

reported that Theta correlates of memory retrieval and decision-making. 

Delta shows significant activation in the broadmann areas, primarily in the agranular frontal side 

of the brain, which can be due to continuous attention-tasks, and working memory. Even few 

studies have reported that Delta oscillations reflect the linkage between parietal and frontal 

cortical circuits during decision-making, which is par with our findings [23]. It can be also 

observed that beta and alpha shows some decrease in the power value in decision-making 

process compared to the baseline. 



 
24 

	

	

 

Figure 3.2: Average Topoplots of RMS magnitudes of Decision(n=13) for five frequency components 
Delta(1-4 Hz), Theta(4-8 Hz), Alpha(8-13 Hz), Beta(13-30 Hz), and Gamma(30-70 Hz). The right 
colorbar represents the average rms magnitudes for each channel illustrated by an average 
topographical map. In the colorbar, red defines activation in the particular brain region, and blue defines 
deactivation in the corresponding brain region. 

3.3 Feedback Topoplots: 

3.3.1 Observation: 

From figure 3.3, it is explicit that average RMS power is varied throughout different components 

of EEG during Feedback Phase of the study. All of the power topoplots are plotted based on 

baseline correction. Few observations can be concluded from the baseline-corrected Feedback 

topoplot.  

Delta seems less activated, which is quite relevant to the characteristic of the delta. Delta is 

primarily more activated in the continuous-attention based tasks. During feedback phase, 
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subjects are usually relaxed, not doing any tasks other than looking into the screen to check their 

corresponding profit/loss per trials. Alpha holds the similar characteristic, usually it reflects the 

relaxing nature of the brain. Interestingly, Alpha turns out to be more significant in our study. 

During feedback, alpha shows quite activation, which means the subjects are more relaxed in 

feedback phase. Considering other bands, Beta has a little activation. Little activation in Beta 

indicates stress, anxiety, and poor cognition, which can be due to low margin treatment in our 

study.  

 

 

Figure 3.3: Average Topoplots of RMS magnitudes of Feedback(n=13) for five frequency components 
Delta(1-4 Hz), Theta(4-8 Hz), Alpha(8-13 Hz), Beta(13-30 Hz), and Gamma(30-70 Hz). The right 
colorbar represents the average rms magnitudes for each channel illustrated by an average 
topographical map. In the colorbar, red defines activation in the particular brain region, and blue defines 
deactivation in the corresponding brain region. 
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3.4 Statistical Analysis:  

 

Figure 3.4: T-test bell curve 

Each of the T-matrices is spread across the bell curve. Since we are only interested in finding the 

T-values that cause significant changes in brain connectivity at a certain state, a paired-sample T-

test is performed between each of task conditions for all the subjects and the values are 

considered significant that were lying in the rejection region. 

So, the test hypotheses can be formed as follows- 

Null hypothesis: H0:   µ1  = µ2;  i.e. there is no significant differences in brain state  in between 

two comparisons. 

Alternate hypothesis: Ha: µ1  ≠ µ2 ; there are significant differences in brain state  in between 

two comparisons.   

Paired-sample or student t-test has been conducted between each of the phase to identify the 

significant electrodes found in each case. The highest number of significant electrodes are found 

in Delta band between Decision and Feedback phase (n = 45, p<0.05). [34] 
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Table 3.1: represents the no. of significant electrodes generated from a paired-student-t-test between 
decision & baseline, feedback & baseline and for decision vs. feedback for each frequency bands. 

 

3.4.1 FWER(Family-wise Error Rate):  

To optimize the error ratio in the statistical analysis, FWER(Bonferroni-Corrected) paired t-test 

has been conducted[35]. However, Bonferroni-corrected result doesn’t work best in our case, 

which can be due to the low number of sample size. Delta band shows 9 significant electrodes 

between Decision and Feedback phase only, whereas only 2 significant electrodes are found in 

Beta band between Decision and Baseline. 

 

Table 3.2: represents the no. of significant electrodes generated from a Bonferrnoi-corrected paired- t-
test between decision & baseline, feedback & baseline, and for decision vs. feedback, for each frequency 
bands. 
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3.4.2 FDR (False Discovery Rate):  

To acquire more precise and correct results, by eliminating all possible false positives, FDR 

provides a useful measure in statistics. More documentation related to FWER and FDR are 

provided in Chapter-5(appendix section). 

Benjamini-Hochberg False Discovery Rate Procedures: 

 

 

 

 

 

                                     (a)                                                                         (b) 

 

 

 

 

 

 

                                                                                (c) 

Figure 3.5 illustrates an example of FDR correction procedure for Delta band. x-axis represents the 
ranking order of the p-values generated from paired-t-test between each phase condition, and y-axis 
represents the p-values. The slope of the threshold (e.g 0.05 for our case) is indicated by the straight line 
(orange color). Any p-values below the threshold curve are the FDR-significant p-values, corresponding 
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to the significant electrodes. All the figures for FDR correction of other bands are included in the 
appendix section.	(a) showing no significant p-values (corresponding electrodes) between Decision and 
Baseline, (b) showing no significant p-values (corresponding electrodes) between Feedback and Baseline, 
and (c) showing 37 significant active electrodes only during decision and feedback task. 

Based on the electrodes found significant under FDR condition for each of the task-phase, the 

following table is formed.  

 

Table 3.3: represents the no. of significant electrodes generated from a paired-student-t-test (FDR-
corrected) between decision & baseline, feedback & baseline and for decision vs. feedback for each 
frequency bands. 

 

Interestingly, only Delta shows a significant number of electrodes between Decision and 

Feedback phase (p<0.05, FDR-corrected). And, Beta band shows significance almost everywhere 

(n=58 electrodes) in Decision phase (compared to the baseline). So, beta band might have some 

statistically significance in decision-making. It is observed that not any significant electrodes are 

found for any of the bands other than Delta between Decision and Feedback phase for FDR- 

threshold(p<0.05). However, the highest number of electrodes (n=40 electrodes) are found in 

Alpha Band, for corrected FDR-threshold (p<0.08). 30 electrodes are found statistically 

significant under FDR-corrected threshold (p<0.08) for Beta band between Decision and 

Feedback phase. 
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3.5 Clustering:  

FDR provides quite a few significant electrodes for Delta, Alpha and Beta bands, which are true 

positive. [36] Among all the significant electrodes found by FDR-correction in Delta, Alpha, and 

Beta Bands, the most common electrodes are used for clustering. The neighboring electrodes are 

taken into account, for sectioning them into 5 clusters manually.  

 

 

 

 

 

 

 

 

 

 

Figure 3.6: A Biosemi layout of 64 electrodes representing five clusters. This figure illustrates the layout 
of the five clusters, which are made based on the neighboring electrodes found in paired-t-test(FDR-
corrected), in Biosemi layout(64+2). 
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3.5.1 Paired-Student t-test: 

To verify the significance of the clusters under FDR, paired-student t-test has been conducted 

between Decision and Feedback phase. We are more interested into the power comparison of 

these two task conditions among these 5 clusters for 3 significant bands. Since, all the clusters 

are made based on the significant electrodes found in three bands, we will be only focusing on 

these three bands here. The total power of each cluster for decision and feedback phase are 

considered as two input vectors for conducting paired-t-test. All the p-values are plotted in the 

table for each cluster and for each frequency band.  

 

Table 3.4: P-values generation for each cluster and for each frequency bin. This table illustrates the p-

values generated from a paired-student-t-test between decision and feedback phase for five clusters, and 

for each frequency band. 

 

 

p-values 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Delta 0.0134 0.0186 0.00062 0.0238 0.0264 

Alpha 0.0648 0.0204 0.038 0.0101 0.1226 

Beta 0.02318 0.0108 0.038 0.0272 0.0178 
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3.5.2 FDR Plots: To verify the significance of the clusters, all the p-values are plotted under 

FDR condition to check which clusters are significantly showing difference among Decision and 

Feedback task.  

 

 

 

 

 

                                         (a)                                                                             (b) 

 

 

 

 

 

                                                                               (c) 

Figure 3.7:  illustrates five FDR-corrected plots for each band. x-axis represents the ranking 
order(smallest to largest) of the p-values generated from paired-t-test between decision and feedback for 
5 clusters, and y-axis represents the p-values for each cluster. The slope of the FDR-threshold (e.g 0.05-
for our case) is indicated by the straight-line(orange color). Any p-values below the threshold curve are 
the FDR-significant p-values, corresponding to the significant clusters. (a)  
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Based on the significant clusters found under FDR, the following table is formed and the p-

values are marked to identify the significant clusters.  

 

Table 3.5: Significant clusters-marked from FDR-correction. The green box (rectangular and circle) 

represents the significant p-values of corresponding clusters for each bands. The red rectangular box 

represents the p-values for Cluster 2 and Cluster 4, which are showing significance for all three bands. 

In table 3.5, it is observed that Cluster 2 and Cluster 4 is almost significant for all 3bands. 

Cluster 1, 3, 4 are showing significantly difference between decision and feedback for 2 bands. 

Delta and Beta have observed significance for all five clusters, whereas Alpha band is showing 

significance for two clusters, specifically cluster 2 and cluster 4. 

3.5.3 Clustering: Power Comparison: 

3.5.3.1 Delta Band: 

3.5.3.1.1 Observation: 

From the bar-plot in figure 3.8, it is easily observable that all clusters are showing significant 

difference, even though most of them have significant decrease in power compared to baseline 

for decision and feedback phases. All the error bars are based on the standard error of the mean 
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in all comparisons. Cluster 1 is showing some positive activation in decision phase, whereas 

Cluster 5 is showing significant deactivation in feedback phase compared to baseline.  

 

 

Figure 3.8: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Delta band. The error bar is based on the standard error of the mean, and the ‘*’ represents the 

significance under FDR correction between decision-making and feedback phase for all clusters. 

3.5.3.2 Alpha Band:  

3.5.3.2.1 Observation: 

From the figure 3.9, it is observed that Alpha band is showing significant activation for all five 

clusters for feedback phase. On the other hand, decision-making is showing significant 

deactivation for all five clusters. Alpha is showing quite the opposite nature compared to Theta. 

From the characteristic of Alpha wave, we know that Alpha reflects the relaxation nature or 

resting state of the brain. Our findings suggest that Alpha become more prominent in activation 
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during the Feedback phase, which is quite relevant to the nature of feedback phase. Feedback 

phase is considered as the recovery/relaxation phase, where the subjects didn’t do anything other 

than checking their profit/loss corresponds to each trial. 

 

 

Figure 3.9: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Alpha band. The error bar is based on the standard error of the mean, and the ‘*’ represents the 

significance under FDR correction between decision-making and feedback phase for two clusters. 

 

3.5.3.3 Beta Band: 

3.5.3.3.1 Observation: 

From the figure 3.10, the power comparison plot of Beta band, it can be stated that Beta band has 

significant deactivation in both of the decision-making phase and feedback phase. Even though, 
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all five clusters are turned out to be statistically significant (p<0.05, FDR-corrected), power 

difference can’t be observed explicitly for Beta rhythm. The RMS magnitudes of Decision and 

Feedback phase are showing significant decrease compared to the Baseline. However, splitting 

Beta data into low-margin and high-margin treatment conditions, it is showing some interesting 

result.  

 

 

Figure 3.10: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Beta band. The error bar is based on the standard error of the mean, and the ‘*’ represents the 

significance under FDR correction between decision-making and feedback phase for all clusters. 

 

The average topographical maps of Beta-low margin and Beta-high margin conditions are 

illustrated below for comparative study. 
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Figure 3.11: Average topographical maps of Beta band for decision and feedback phase under low-

margin and high-margin treatment condition. 

3.5.3.3.2 Power comparison: 

3.5.3.3.3 Observation: 

From the topographical maps in figure 3.11 and power comparison plots of Beta in figure 3.12, it 

is significantly observed that Beta band has significant deactivation for decision and feedback 

phase compared to the baseline for both treatment conditions. We have observed that Beta 

doesn’t show much significance in power comparison in general. However, it shows some 

activation in feedback phase in cluster 5, and very little activation in cluster 3 for low-margin 

treatment condition. From the topographical point of view, some activation is observed in 
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feedback phase in cluster 5 for the low-margin treatment, which is primarily located around right 

dorsolateral prefrontal cortex.  

 

  

Figure 3.12: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Beta band under low-margin and high-margin treatment. 

3.5.3.3.4 Discussion:  

From the characteristic of Beta band, activation in right dorsolateral prefrontal cortex can be due 

to mental stress or anxiety in the feedback phase under low-margin treatment. Moreover, 

previous studies reported that increased power of feedback-induced beta oscillation reflects the 

omission of rewards relative to the reception of rewards [24]. During low-margin treatment 

condition, subjects were encountered with reward processing in feedback phase, and gaining 

reward in low-margin treatment is much difficult comparing to the high margin treatment. Our 

findings indicate that Beta has some activation in feedback phase for low-margin condition, 

which can be due to omission of rewards or can be due to mental stress of arithmetic processing. 
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CHAPTER-4 

DISCUSSION & FUTURE WORK 

4.1 Summary: 

My goal of this study was to investigate the changes in electrophysiological signals in response 

to the newsvendor decision-making and feedback. This study has shown that EEG topoplot 

analysis can be adapted to investigate power across different regions of the brain during 

decision-making and feedback task conditions [25]. 

The 64-channel EEG data was preprocessed using EEGLAB platform in MATLAB, where all 

the datasets went through various types of filtering, ICA analysis to have artifacts-free 

electrophysiological data. Each datasets were separated into five individual frequency bands, and 

epoched into three separated events for further processing. Among these events, we were 

primarily interested into decision-making phase and feedback phase to investigate changes of the 

magnitudes or power of the signals across different subjects for these task conditions. 

Identification of significant electrodes observed in this study was an important step to locate the 

activation of brain-regions for different task conditions. Cluster-based analysis helped us to 

observe more significant activation occurred in the dorsolateral prefrontal cortex at four different 

brain rhythms. Topoplot analysis helped us to indicate the strengths of different brain-regions 

during this complicated decision-making process.  

Several interesting observations have been observed for each of these task conditions through 

RMS topoplot and statistical analysis. 
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RMS Magnitude/Topographical point of view: 

In short, Theta band shows significant activation in decision-making. Theta correlated in 

memory retrieval and decision-making. Alpha is more activated in Feedback, which corresponds 

to the most relaxing behavior. And, during decision-making, it shows the quite opposite nature. 

Beta doesn’t show much activation. However, breaking Beta into low-margin and high-margin 

treatment, it shows some difference. Right Dorsolateral Prefrontal is activated in the feedback 

phase for Beta, which might be due to stress or anxiety in the feedback phase of low-margin 

treatment. 

Statistical Point of View: 

The highest no. of significant electrodes are found in Delta band from paired t-test. However, 

FDR results shows that Alpha has the most number of significant electrodes, (n=40). Delta has 

37, and Beta shows 30 significant electrodes after FDR correction. Among the Clusters, Cluster 

2 and Cluster 4 are showing most significant difference (significant for all 3 bands) between 

Decision and Feedback. Cluster 2 is located in Broadmann Areas 46, called as Dorsolateral 

Prefrontal Cortex (DL-PFC). Previous Studies reported that Dorsolateral-Prefrontal is mainly 

responsible for decision-making [6]. Some other associated functions relevant to our decision-

making study[30]: 

§ Working memory  

§ Internal mental calculation 

§ Processing emotions and self-reflections in decision making. 
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Figure 4.1: Area under Cluster 2 and its corresponding brain region in Broadmann areas. Dorsolateral 

Prefrontal Cortex is primarily located at Broadmann area 46, and it is prominent for its executive 

functions. 
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Cluster 4 is located at Somatosensory Association Cortex. This particular area includes superior 

parietal lobe (area 5 and area 7), and inferior parietal lobe (area 39 and area 40). Some associated 

function of this cluster: Processing emotions and self-reflections during decision-making (area 

7), conscious recollection of previously experienced event, and working memory [30]. 

 

Figure 4.2: Area under Cluster 4 and its corresponding brain region in Broadmann areas. 

Somatosensory Association Cortex is primarily located at Broadmann areas 5,7,39 and 40. These 

particular areas are prominent for attention and visuals related functions. 
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Cluster 1, 3, and 5 have the second most significance, exactly in 2 bands. Cluster 1 is Broadmann 

areas 9L and 10L, which is roughly equivalent to Dorsolateral/Anterior Prefrontal Cortex. This 

area has a significant participation in memory- primarily memory encoding, memory retrieval, 

and working memory. It also shows other associate functions like-mental calculation, processing 

emotions, and self-reflections in decision-making (left) [30]. 
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Figure 4.3: Area under Cluster 1 and its corresponding brain region in Broadmann areas. 

Dorsolateral/Anterior Prefrontal is located at Broadmann area 9 and 10, and this area has some 

executive functions in the brain. 

Cluster 3 is primarily located in Broadmann areas 37, 39, and 40. All of these areas have 

common functionality in the brain, such as- single letter processing, calculation (integer 

computation), arithmetic learning, and performing creative tasks [30]. 
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Figure 4.4: Area under Cluster 3 and its corresponding brain region in Broadmann areas. This 

particular cluster has some attention and memory related functions. Fusiform, Angular, Supra-marginal 

Gyrus areas are corresponding to this cluster, primarily located at Broadmann area 37, 39, and 40.  

 

Figure 4.5: Area under Cluster 5 and its corresponding brain region in Broadmann areas. Right 

Dorsolateral Prefrontal and some part of Broca’s areas are corresponding to this cluster, and 

they have some prominent executive functions in the brain. 
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Cluster 5 is located at right Dorsolateral Prefrontal (area 46), part of Broca’s area (area 44), and 

some part of anterior to premotor cortex. This cluster is particularly showing significance for 

Delta and Beta Bands. Some common associated function of this cluster related to our study: 

memory retrieval (right brain), pain anticipation, expression of emotional information (right 

brain), and internal mental calculation [30].  

In summary, this particular decision-making task involves high-level cognitive capacity along 

with other networks to proceed with a proper decision. Therefore, according to the 

electrophysiology in the brain, it is observed that there are multiple regions activated and 

deactivated as a response to the task. Other than these major contributions, there are multiple 

other areas working together to produce a well-processed response. According to our findings, 

dorsolateral prefrontal cortex plays the key role in decision-making process. Previous literature 

suggested that lateral prefrontal cortex is primarily responsible for cognitive control in terms of 

planning and working memory, which is similar to our findings. In a fMRI-based study, it is 

observed that during the goal hierarchical state the left DLPFC was significantly activated where 

the subjects were given the task of “Tower of London”[31]. Left Dorsolateral prefrontal(Cluster 

2) is prominently activated for all three bands in our case(FDR-corrected). Moreover, the subject 

must execute a movement to enter the order quantity based on his/her decision in the computer 

keyboard, which proves of a task of the dorsolateral prefrontal cortex[32]. It is also observed that 

the right Dorsolateral Prefrontal and some part of Broca’s area(Cluster 5) are activated for Beta 

band during the task which is usually tend to activate during decision making under risky 

conditions. These areas are suggested to be one of the significant components in the reward 

pathway[33]. Theta correlates memory retrieval and decision-making [28]. However, due to the 
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sample size, we don’t see significance after statistical analysis for this band, even though theta 

activation was significantly observed among all clusters for decision-making.  

From the physiological perspective, it is important to study decision-making phase and feedback 

phase with respect to the resting phase. As baseline and resting-state topoplots weren’t showing 

much difference, each of these phases were studied compared to the baseline. Each of the task 

phases, Decision and Feedback, weren’t showing much significance when compared to the 

baseline using statistical paired-t-test, even with the FDR-correction. Most number of significant 

electrodes are found only between two different task conditions. However, it is critical to study 

each of the decision-making phase compared to the immediate resting state data.  

Clustering gives us an overall idea of what brain region gets involved in this complicated 

decision-making study and its significance. Clustering was done based on the significant 

electrodes found by FDR-corrected paired-t-test. However, another possible way of this 

clustering could be based on the regions showing significant activation/deactivation from the 

topoplots, and then a simple paired-t-test can be done to identify the significant clusters. 

Moreover, this study consisted of 13 subjects, where the sample size is statistically low. 

Therefore, it is appropriate to have a large sample size to generate statistically more significant 

results. Further, an extended study can be useful to see if there are more interesting findings 

related to the performance level of the subjects.  
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4.2 Future Scope:  

The scope of my study was to observe how brain activation take place while taking economic 

decisions. More subjects can be studied for improved statistical performance. Certain robust 

EEG algorithms can be developed based on group-level study. EEG usually suffers with 

localization problem due to its low spatial resolution. Group ICA and source reconstruction can 

be helpful to overcome this problem. Further investigations can be performed based on subject’s 

performance level and behavioral level analysis. Moreover, different functional connectivity 

approaches (e.g-Dynamic Functional Connectivity) can be applied to evaluate the connectivity 

strengths during task performance studies [29]. 
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CHAPTER 5 

APPENDIX 

5.1 Family-wise Error Rate (FWER):  

In statistics, family-wise error rate (FWER) is the probability of making one or more false 

discoveries, or type I errors when performing multiple hypotheses tests.  

The following table defines the possible outcomes when testing multiple null hypotheses. 

Suppose we have a number m of null hypotheses, denoted by: H1, H2,..., Hm. Using a statistical 

test, we reject the null hypothesis if the test is declared significant. We do not reject the null 

hypothesis if the test is non-significant. Summing each type of outcome over all Hi yields the 

following random variables: 

 

From the table, the parameters are defined as below: 

• m is the total number hypotheses tested. 

• mo is the number of true null hypotheses, an unknown parameter 

• m-mo is the number of true alternative hypotheses 

• V is the number of false positives (Type I error) (also called "false discoveries") 
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• S is the number of true positives (also called "true discoveries") 

• T is the number of false negatives (Type II error) 

• U is the number of true negatives 

• R = V+S is the number of rejected null hypotheses (also called "discoveries", either true or false) 

In m hypothesis tests of which mo are true null hypotheses, R is an observable random variable, 

and S, T, U, and V are unobservable random variables. 

5.1.1 Definition: 

The FWER is the probability of making at least one type I error in the family, 

 

Thus, by assuring, , the probability of making one or more type I errors in the 

family is controlled at level alpha. 

5.1.2 Bonferroni Correction:  

The Bonferroni correction is one of several methods used to counteract the problem of multiple 

comparisons in FWER.  

If a particular test yields correct results 99% of the time, running 100 tests could lead to a false 

result somewhere in the mix. The Bonferroni test attempts to prevent data from incorrectly 

appearing to be statistically significant by lowering the alpha value. 

The Bonferroni test, also known as the "Bonferroni correction" or "Bonferroni adjustment" 

suggests that the "p" value for each test must be equal to alpha divided by the number of tests. 
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For example, if a trial is testing for 20 hypothesis at desired alpha level = 0.05, then the 

Bonferroni correction would test each individual hypothesis at alpha =0.05/20=0.0025.  

For our study, the trial is being tested for 64 hypothesis (channels), then the Bonferroni 

correction would test each individual hypothesis at alpha =0.05/64=0.00078. 

5.2 False Discovery Rate (FDR):  

The false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null 

hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are 

designed to control the expected proportion of "discoveries" (rejected null hypotheses) that are 

false (incorrect rejections). FDR-controlling procedures provide less stringent control of Type I 

errors compared to familywise error rate (FWER) controlling procedures (such as the Bonferroni 

correction), which control the probability of at least one Type I error. Thus, FDR-controlling 

procedures have greater power, at the cost of increased numbers of Type I errors. 

Benjamini-Hochberg procedure is very popular for compensating type I error by controlling 

the FDR at level alpha.  

From the notation, 𝐹𝐷𝑅 = 𝐸(3
4
), The FDR is defined to be 0 if only R =0. 

Suppose, we perform test on m voxels in this case. Considering the table from FWER, it will 

give us an overview of the voxels which are declared active, but actually inactive. So, if we 

didn’t declare any voxel active, we can’t have any false positives. The whole procedure work as 

follows:  

o Set the desired limit at alpha on FDR(e.g., α = 0.05) 

o Compute the p-value of m hypotheses 



 
52 

	

	

o Order them or sort them out in increasing order of p-value (e.g ranking parameter, 

i=1,2,3,…) 

o Let r be the largest i(ranking order) such that , 𝑝(𝑖) ≤ 7
8
∗ α 

o Reject all hypothesis corresponding to 𝑝 1 ,… , 𝑝 𝑟 . 

 

Figure 5.1: illustrates the Benjamini-Hochberg procedure for controlling the FDR at level alpha = 0.05. 

The black straight-line is the threshold slope, and any p-values below the threshold curve are considered 

as significant voxels or active voxels. Anything above the threshold are considered as inactive voxels. 

 

If all null hypothesis are true, the FDR is equivalent to the FWER. Any procedure that controls 

the FWER, also controls the FDR. A procedure that controls the FDR, only can be less stringent, 

and lead to a gain in power. Since, FDR controlling procedures work only on the p-values, and 

not on the actual test statistics, it can be applied to any valid statistical tests. 
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In the last couple of years, FDR-controlling procedure is becoming pretty popular as they are less 

conservative comparing to family-wise error rate (FWER). So, they are being used a lot in neuro-

imaging and big-data context recently. 

In our study, we performed the Bonferroni correction between multiple hypotheses and couldn’t 

find much significant results. However, implementing FDR-correction give us significant active 

electrodes for three of the bands, namely- Delta, Alpha, and Beta. All of the FDR-controlling 

plots are given below:  

Delta: 

 

 

 

 

 

 

                                  (a)                                                                                (b) 

 

 

 

 

 

                                                                            (c) 
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Figure 5.2: FDR-controlling plot for Delta band; (a) showing no significant p-values (corresponding 

electrodes) between Decision and Baseline, (b) showing no significant p-values (corresponding 

electrodes) between Feedback and Baseline, and (c) showing 37 significant active electrodes only during 

decision and feedback task.  

Theta: 

 

 

 

 

 

                                  (a)                                                                                 (b) 

 

 

 

 

                                                                            (c) 

Figure 5.3: FDR-controlling plot for Theta band; showing no significant active electrodes during any of 

the testing conditions. (a) showing no significant p-values (corresponding electrodes) between Decision 

and Baseline, (b) showing no significant p-values (corresponding electrodes) between Feedback and 

Baseline, and (c) showing no significant active electrodes during decision and feedback task.  
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Alpha:  

 

 

 

 

 

                                   (a)                                                                              (b) 

 

 

 

 

 

                                 (c)                                                                                (d) 

Figure 5.4: FDR-controlling plot for Alpha band, showing no significant active electrodes only during 

any of the testing conditions. However, increasing the threshold slope from 0.05 to 0.08, around 40 

electrodes are observed as significant or true positive. (a) showing no significant p-values 

(corresponding electrodes) between Decision and Baseline, (b) showing no significant p-values 

(corresponding electrodes) between Feedback and Baseline, (c) showing no significant active electrodes 

during decision and feedback task, and (d) showing 40 significant electrodes after increasing the 

threshold slope from 0.05 to 0.08, between decision and feedback. 
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Beta:  

 

 

 

 

 

                                  (a)                                                                               (b) 

 

 

 

 

 

                                  (c)                                                                                 (d) 

Figure 5.5: FDR-controlling plot for Beta band, showing no significant active electrodes during any of 

the testing conditions. However, increasing the threshold slope from 0.05 to 0.08, around 30 electrodes 

are observed as significant or true positive. (a) showing 58 significant p-values (corresponding 

electrodes) between Decision and Baseline, (b) showing no significant p-values (corresponding 

electrodes) between Feedback and Baseline, (c) showing no significant active electrodes during decision 

and feedback task, and (d) showing 30 significant electrodes after increasing the threshold slope from 

0.05 to 0.08 between decision and feedback task conditions. 
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Gamma:  

 

 

 

 

 

                                 (a)                                                                             (b) 

 

 

 

 

 

                                                                         (c) 

Figure 5.6: FDR-controlling plot for Gamma band; showing no significant active electrodes during any 

of the testing conditions. (a) showing no significant p-values (corresponding electrodes) between 

Decision and Baseline, (b) showing no significant p-values (corresponding electrodes) between Feedback 

and Baseline, and (c) showing no significant active electrodes during decision and feedback task.  
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Power Comparison: Theta Band 

Observation: 

From the figure 5.7, it is observed that Theta band is showing significant activation for all five 

clusters for decision-making phase. On the other hand, feedback is showing quite the opposite 

nature, significant deactivation for four clusters, other than cluster 1. Previous studies reported 

that Theta plays a key role in memory retrieval and decision-making.[28] Our findings suggest 

that Theta has significant activation for all five clusters during decision-making phase. All the 

error bars are based on the standard error of the mean in all comparisons. Cluster 2 and 3 are 

showing statistically significance among decision and feedback phase. Each of these clusters 

have meaningful working functions in the brain.  
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Figure 5.7: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Theta band. The error bar is based on the standard error of the mean, and the ‘*’ represents the 

significance under FDR correction for decision-making and feedback phase for two clusters. 

Discussion: 

Studies consistently report frontal theta activity to correlate with the difficulty of mental 

operations, for example during focused attention and information uptake, processing and 

learning or during memory recall. Theta frequencies become more prominent with increasing 

task difficulty. This is why theta is generally associated with brain processes underlying mental 

workload or working memory [10]. (Klimesch, 1996; O‘Keefe & Burgess, 1999; Schack, 

Klimesch, & Sauseng, 2005). 

Power Comparison: Gamma Band 

Observation: 

From the figure 5.8, it can be stated that gamma band is usually showing deactivation during 

decision-making phase. On the other hand, this high-frequency component is showing some 

activation during feedback phase for cluster 4 and cluster 5. Only one of the clusters are 

significantly showing difference between decision-making and feedback task conditions.  
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Figure 5.8: Mean RMS power comparison of Decision-making and Feedback Phase for five clusters for 

Gamma band. The error bar is based on the standard error of the mean, and the ‘*’ represents the 

significance under FDR correction for decision-making and feedback phase for one cluster. 

Discussion: 

From the characteristic of Gamma, Gamma is usually more prominent in stress, anxiety or high 

arousal condition. Gamma band shows some significant activation in right dorsolateral prefrontal 

cortex, which is primarily responsible for internal mental calculation and working memory. 

Thus, activation in feedback phase for this high frequency component can be due to high stress 

in low-margin treatment condition. 
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