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ABSTRACT

GASDYNAMIC PHENOMENA AND PROPULSIVE PERFORMANCE

OF PULSE DETONATION ENGINES

James T. Peace, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Frank K. Lu, Ph.D., P.E.

The pulsed detonation engine (PDE) is an advanced propulsion system that makes

use of intermittent detonations to provide thrust. In recent decades, the PDE has been

at the center of various propulsion research efforts focused on practical implementation of

a reliable detonation-based engine for aerospace propulsion applications. However, many

design challenges remain to be solved due to the PDEs unsteady operating characteristics.

In particular, the unsteady nature of the thrust chamber flow field inherent to the PDE

operation makes the design of nozzles aimed at adequately expanding the burned detonation

products especially difficult. In order to address this design challenge, a series of related

analytical, numerical, and experimental studies have been conducted, which are focused

on investigating the manner in which the PDE propulsive performance is governed by the

various gasdynamic processes occurring within the thrust chamber and nozzle flow fields.

In this study, three primary PDE configurations are considered. These configurations

include fully- and partially-filled PDEs, and PDEs equipped with diverging nozzles. For each

configuration, a comprehensive description of the PDE flow field is provided, whereby details

concerning the evolution and interaction of various gasdynamic waves and discontinuities

are discussed. Additionally, the dominant gasdynamic processes within the thrust chamber
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and nozzle flow fields are identified, as these processes must be appropriately modeled in

order to accurately evaluate the propulsive performance.

The collision of a detonation wave with a contact surface separating detonable and

non-combustible mixtures is a fundamental gasdynamic interaction process that takes place

every cycle in the cyclic operation of the PDE. This interaction can drastically influence the

evolving thrust chamber flow field and the subsequent propulsive performance metrics. To

improve its understanding, this gasdynamic interaction is investigated analytically in order

to predict the resulting transmitted shock wave properties, and the necessary conditions

for a shock, Mach, or rarefaction wave to reflect at the contact surface. Concurrently, this

interaction is investigated experimentally with the use of a detonation-driven shock tube.

The analytical and experimental results indicate that the transmitted shock can either be

amplified or attenuated depending on the reflection type at the contact surface, and the

ratio of the acoustic impedance across the interface.

A quasi-one-dimensional method of characteristics (MOC) model is developed to

evaluate the single-cycle gasdynamic flow field and associated propulsive performance of

general PDE configurations. The model incorporates the current detonation-contact surface

interaction results in order to accurately treat the one-dimensional collision of a detonation

wave with a contact discontinuity. Additionally, the MOC model is developed using a

simplified unit process approach with an explicit inverse time marching algorithm in order

to readily construct the complex thrust chamber flow field along a predefined grid. A

thorough validation of the model is presented over a broad range of operating conditions

with existing higher-fidelity numerical and experimental performance data for fully- and

partially-filled PDEs, and PDEs equipped with diverging nozzles. This includes PDEs

operating with a variety of detonable fuels, non-combustible inert mixtures, fill fractions,

blowdown pressure ratios, and nozzle expansion area ratios. Lastly, a detailed discussion

of the model limitations is provided, and particular operating conditions that lead to a

breakdown of the assumptions used in the development of the model are addressed.
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A simplified analytical model is developed based on control volume analysis for eval-

uating the primary performance metrics of a general fully-filled PDE. The MOC model is

used to justify and establish a simplified thrust relation based solely on the flow proper-

ties at the exit plane of a fully-filled PDE. A detailed analytical description of the thrust

chamber flow field is provided, from which an analytical piecewise expression for thrust is

derived based on the exit plane pressure history. This expression is then used to evaluate

the specific impulse, total impulse, and time-averaged thrust of a fully-filled PDE. This

simplified model is validated against the current MOC model and higher-fidelity numerical

and experimental performance data for a variety of detonable fuels, equivalence ratios, and

blowdown pressure ratios.

Using the current MOC model, the single-cycle propulsive performance of partially-

filled PDEs is investigated. The results of the detonation-contact surface interaction study

are used to tailor the acoustic impedance of the non-combustible mixture at a fixed fill

fraction in order to demonstrate the sensitivity of the thrust chamber flow field to the

non-combustible acoustic impedance. Subsequently, the detonable fill fraction and non-

combustible acoustic impedance are varied simultaneously in order to characterize the

general partially-filled PDE performance. The partial-filling performance benefit is also

investigated by varying the initial pressure and temperature of the non-combustible mix-

ture in order to highlight the advantage of using a cold purge gas during operation, and

disadvantage of operating in sub-atmospheric environments. It is demonstrated that the

partially-filled specific impulse performance results generated with the MOC model from

these various parametric investigations are successfully modeled using a previously devel-

oped scaling law, whereby this scaling law is extended in the current work to partially-filled

total impulse and time-averaged thrust.

Similarly, the single-cycle propulsive performance of PDEs with diverging nozzles is

examined. A parametric investigation is conducted to characterize the combined effects of

nozzle expansion area and blowdown pressure ratios on the resulting thrust chamber and
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nozzle flow fields. Detailed discussion of the transient nozzle flow field is provided in order

to emphasize the influence of non-combustible acoustic impedance on the partial-fill effect in

diverging nozzles. Moreover, a comparative study is used to demonstrate the performance

advantages of a diverging nozzle in sub-atmospheric environments compared to a straight-

extension nozzle. Lastly, a detailed parametric investigation is conducted by simultaneously

varying the nozzle length, expansion area ratio, and blowdown pressure ratio in order to

determine the optimum nozzle performance characteristics.

An analytical model is formulated to predict the strength and motion of a trans-

mitted shock wave through a general contour diverging nozzle for PDEs. The model is

derived on the basis of a two-equation approximation of the generalized CCW (Chester–

Chisnell–Whitham) theory for treating general shock dynamics in non-uniform channels. A

major feature of the two-equation model is the ability to incorporate non-uniformity in the

flow immediately following the shock wave, which turns out to be essential for describing

the transmitted shock dynamics in PDE nozzles. This model is then used to demonstrate

the effects of thrust chamber length on the magnitude of flow non-uniformity behind the

transmitted shock entering the nozzle, and how drastically this can influence the nature of

shock attenuation within the nozzle. Further, the shock dynamics model is used in conjunc-

tion with the MOC model to demonstrate how different nozzle wall curvature influences

the PDE propulsive performance, due to the changes in transmitted shock attenuation and

gasdynamic over-expansion in the nozzle flow field during the nozzle starting process.
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CHAPTER 1

INTRODUCTION

1.1 Fundamentals of Detonations

1.1.1 Qualitative Description

The topics discussed in this dissertation concern the application of detonation com-

bustion for aerospace propulsion systems. Accordingly, it is of importance to give a proper

description of what exactly is a detonation, and how it differs from deflagration, namely, the

combustion process used in existing chemical rocket and airbreathing engines. In general,

there are two types of self-propagating combustion waves, namely, deflagration (subsonic)

and detonation (supersonic). Following the ignition of a combustible mixture, a combustion

wave forms that propagates away from the ignition source. While propagating, the combus-

tion wave transforms the mixture reactants into burned products. For traditional fuel and

oxidizer mixtures used in propulsion systems, such as hydrogen or hydrocarbon fuels with

either air or pure oxygen, the combustion process through the wave is exothermic, such

that the potential energy stored in the chemical bonds of the reactant molecules is released

and converted into internal and kinetic energy of the combustion products. The propaga-

tion nature of the combustion wave can yield drastically different burnt product states in

regard to the pressure, temperature, and velocity, depending on whether a deflagration or

detonation manifests in the reactant mixture. Whether a deflagration or detonation occurs

in the combustible mixture is predominantly governed by the initial mixture composition,

ignition source, and boundary conditions, i.e., physical confinement. Hence, it is useful to

discuss the conditions upon which each combustion wave occurs in practice.

Glassman and Yetter [1] describe the mechanism by which deflagration and detonation

propagation occurs through a premixed reactant contained in a long tube with different

boundary conditions. If the tube is open at both ends, ignition of the reactants will manifest
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in a self-propagating deflagration wave, traveling with a relatively low subsonic velocity with

respect to the reactants ahead of the wave. As described by Lee [2], a deflagration is an

expansion wave where the pressure drops across the reaction front, and the combustion

products are accelerated away from the wave in a direction opposite to its propagation. In

general, a deflagration wave propagates into the reactants by means of transport processes,

such as heat conduction and diffusion of radicals as a result of the sharp gradients in

temperature and chemical species concentration. Consequently, the propagation velocity of

a deflagration wave is on the order of 0.2–2 m/s [1], and is proportional to the square root

of reactant thermal diffusivity and reaction rate [3–5].

If one of the open-end boundary conditions is instead closed, such that the com-

bustible reactants are now contained in a long tube with one end closed and the other open,

ignition at the closed-end will manifest in a self-propagating detonation wave that travels

away from the closed-end at a supersonic velocity. However, the onset of a detonation

wave is not immediately achieved following ignition. In fact, a deflagration wave is initiated

first; however, the addition of physical confinement at the rear boundary allows the defla-

gration to accelerate until eventually undergoing an abrupt transition into a detonation.

Formally, this process is known as deflagration-to-detonation transition (DDT), and is an

active area of research in combustion dynamics of reactive systems [6, 7]. The mechanisms

by which DDT takes place are not well understood, which results in several competing ideas

in the literature [8]. As described by Lee [2], deflagrations are intrinsically unstable and

subject to numerous instability mechanisms that render the reaction front turbulent. This

includes flame instabilities such as Darrieus–Landau and thermal-diffusive instabilities, as

well as those associated with an accelerating density interface such as Rayleigh–Taylor and

Richtmyer–Meshkov instabilities. Further, because the confinement of a closed-end bound-

ary condition imposes a zero velocity condition behind the reaction front, compression waves

are able to travel into the reactants ahead of the reaction front. Although weak at first,

these compression waves disturb the reactants ahead of the reaction front, which simulta-
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neously causes an unstable amplification in the burning rate when the disturbed reactants

are inducted through the reaction front. Such a process provides a positive feedback mech-

anism that couples the heat release in the reaction front with disturbed reactants ahead

of the front, permitting the rapid acceleration of the deflagration to velocities as high as 1

km/s [8].

As the deflagration front accelerates, compression waves emanating from the reaction

front eventually coalesce into a traveling shock wave ahead of the deflagration. This shock

wave is commonly referred to as the precursor shock, and leads the accelerating deflagration

wave. It has been observed experimentally by Urtiew and Oppenheim [9] that the DDT

process requires both the positive feedback mechanism between the accelerating turbulent

deflagration reaction front and disturbed reactants, as well as the formation of the precursor

shock wave. However, it was shown in [9] and described by Kuo [10] that the physical

transition to detonation can take place at the precursor shock front, turbulent deflagration

front, or in between these respective fronts. In the event detonation transition occurs at

the precursor shock front, adiabatic compression from the shock is substantial enough to

dissociate the reactants into radicals in an induction zone immediately behind the shock.

These radicals then react in a series of chain branching reactions that rapidly release heat

in a reaction zone following the induction zone. The combined induction and reaction zones

are coupled to the shock front and typically range from 1–10 mm in length [1]. Additionally,

the expansion of burned products through the reaction zone provides the mechanism for a

self-propagating detonation.

Alternatively, if detonation initiation occurs at the turbulent deflagration front or

between the front and precursor shock, a rapidly expanding detonation bubble forms that

propagates and eventually coalesces with the precursor shock forming the detonation wave

structure previously mentioned. In either mode of DDT, a self-propagating detonation is

formed that travels through the reactants with a very high velocity on the order of 1–4 km/s

[1]. The DDT method of detonation initiation above is commonly referred to as self-ignition
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and usually requires a weak deposition of activation energy to achieve the initial deflagration

wave. Subsequently, the transition to detonation occurs over a distance on the order of a

meter for highly reactive fuels such as hydrogen and hydrocarbons [1]. Alternate methods

of detonation initiation exist that include shock transmission [11, 12], shock focusing [13],

and blast initiation by a strong igniter [14]. These methods generally result in the direct

ignition of a detonation wave without requiring the DDT process; however, these are not

considered practical for propulsion applications.

The qualitative difference between deflagration and detonation waves are provided in

Table 1. In this table, subscripts 1 and 2 correspond to the reactant and product states,

respectively. Note that the propagation Mach number of a deflagration relative to the un-

burned reactants is several orders of magnitude less than that of a detonation. Additionally,

because a deflagration wave is a chemically reacting expansion wave sustained by transport

processes, a slight pressure drop is observed through the wave. The same is not true for

detonations since the detonation wave is headed by a leading shock front sustained by a

coupled chemical reaction zone. Hence, the reactant pressure drastically rises from adia-

batic compression of the shock front, and subsequently relaxes through the reaction zone to

a product pressure that is more than an order-of-magnitude higher than the initial reactant

pressure. Similarly, the detonation product temperature is nearly double that achieved by

deflagration. These qualitative differences are some of the primary motivations for pursuing

detonation combustion in propulsion systems as opposed to deflagration. However, a more

thorough assessment of the potential benefits of using detonation in propulsion systems can

be addressed by considering the gasdynamic and thermodynamic properties of detonations

and deflagrations, which is the goal of the following subsections.

1.1.2 Chapman–Jouguet Theory

It is of interest to mention important works that directly influenced the development

of the Chapman–Jouguet (CJ) detonation theory to provide historical context regarding
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Table 1.1. Qualitative difference between deflagrations and detonations in gases [1].

Ratio Deflagration Detonation

u1/a1 0.0001–0.03 5–10

u2/u1 4–16 0.4–0.7

p2/p1 0.98–0.976 13–55

T2/T1 4–16 8–21

ρ2/ρ1 0.06–0.25 1.4–2.6

the state of knowledge during its development. Until the late 19th century, the existence of

detonation waves had not been conclusively demonstrated. The work of French scientists

Berthelot and Vieille [15–18] in the early 1880s provided the first experimental measure-

ments of detonation wave velocities by means of the Boulengé chronograph in a variety of

gaseous fuels. Shortly thereafter in 1883, French scientists Mallard and Le Chatelier [3]

observed the transition of a deflagration to detonation using a drum streak camera, which

definitively proved the existence of two distinct modes of combustion in a given gaseous

mixture, namely, deflagration and detonation. As noted by Lee [2], Berthelot and Vieille

recognized the supersonic nature of detonation waves and the role of adiabatic shock com-

pression in initiating the chemical reactions behind a detonation. However, at the time of

their detonation studies, a formal theory of shock waves had not been fully established.

In 1870, the Scottish engineer Rankine [19] made the first major contribution to a ther-

modynamic formulation of shock waves from the conservation of mass, momentum, and

energy. Subsequently, without knowledge of Rankine’s work, these equations were later

rediscovered in 1887 by the French scientist Hugoniot [20]. Together, these works provided

the necessary formulation for appropriately determining the change in thermodynamic state

across a shock wave, and have historically been referred to as the Rankine–Hugoniot (RH)

relations. It was not until the English chemist Chapman [21] in 1899, and later by the

French engineer Jouguet [22,23] in 1905, that the work of Rankine and Hugoniot on shock
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waves was extended to a steadily propagating one-dimensional combustion wave in a reac-

tive mixture. Collectively, these works marked the first rigorous thermodynamic treatment

of deflagration and detonation waves and has been historically referred to as the CJ theory.

The remainder of this subsection focuses on the complete formulation of the CJ theory and

the thermodynamic differences between detonations and deflagrations.

Chapman and Jouguet separately applied the RH relations to a steadily propagating

one-dimensional combustion wave in a reactive mixture. As noted by Chapman and Jouguet,

all steadily propagating detonation or deflagration waves must satisfy these fundamental

conservation equations. The approach taken by Chapman and Jouguet deviates from that of

Rankine and Hugoniot for non-reactive shock waves in that the upstream and downstream

conditions of the combustion wave were taken as the reactant and products, respectively.

Therefore, by assuming the products approach equilibrium at the downstream condition, one

is able to determine the chemical composition of the combustion products and corresponding

heat release across the combustion wave. Such a steadily propagating one-dimensional

combustion wave is depicted in Fig. 1.1 with the associated gaseous reactant and product

state nomenclature.

(2) (1)

Figure 1.1. Chapman–Jouguet combustion wave schematic and state nomenclature.

The conservation of mass, momentum, and energy for one-dimensional flow across

the combustion wave in Fig. 1.1 in the absence of mass addition, friction, and heat transfer,

are given by

ρ1u1 = ρ2u2 (1.1)

p1 + ρ1u
2
1 = p2 + ρ2u

2
2 (1.2)
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h1 +
1

2
u2

1 + q = h2 +
1

2
u2

2 (1.3)

where states 1 and 2 correspond to the reactants and products, respectively. Additionally,

thermodynamic equations of state for the reactants and products of the form

h1 = f(ρ1, p1) (1.4)

h2 = f(ρ2, p2) (1.5)

provide two additional equations. Note, h1 and h2 in Eqs. (1.3)–(1.5) represent the specific

sensible enthalpy of the products and reactants, respectively. Similarly, q accounts for

any heat added by means of chemical energy release per unit mass, which is equal to the

difference in chemical enthalpy, or enthalpy of formation h◦f , between the reactants and

products

q =
reactants∑

i

Yih
◦
f,i −

products∑
j

Yjh
◦
f,j (1.6)

Given a reactant mixture with a specified thermodynamic state, ρ1, p1, and h1, application

of Eqs. (1.1)–(1.3) with Eq. (1.5) yields a set of four equations with five unknowns, namely,

ρ2, p2, u2, h2, and u1. Hence, an additional condition or criterion is required for proper

closure of the equation set. Chapman and Jouguet provided a separate, yet physically

consistent, criterion for the solution of deflagration and detonation waves, which is detailed

in the following paragraphs.

Before discussing the criterion proposed by Chapman and Jouguet, it is convenient

to obtain the expression for the general reactive Hugoniot in order to assess the domain of

physically plausible deflagration and detonation wave solutions. Solving Eq. (1.1) for u2

and substituting into Eq. (1.2), after algebraic manipulation, yields

u2
1 =

1

ρ2
1

[
(p2 − p1)

(
1

ρ1
− 1

ρ2

)]
(1.7)

Note, Eq. (1.7) represents the Rayleigh line for a combustion wave, which defines the thermo-

dynamic path in which the reactants transition to the product state across the combustion

wave. This expression will be used in the subsequent analysis to identify plausible regions
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of detonation and deflagration solutions. In a similar manner, substituting into Eq. (1.1),

or simply solving Eq. (1.1) for u1 and substituting into Eq. (1.2), yields

u2
2 =

1

ρ2
2

[
(p2 − p1)

(
1

ρ1
− 1

ρ2

)]
(1.8)

Subtracting (1.7) from (1.8) yields

u2
1 − u2

2 = (p2 − p1)

(
1

ρ1
+

1

ρ2

)
(1.9)

Lastly, substituting back into Eq. (1.3) yields

h2 − h1 = q +
1

2

(
1

ρ1
+

1

ρ2

)
(p2 − p1) (1.10)

The above expression is the general reactive Hugoniot relation, and represents the locus of all

possible thermodynamic equilibrium states behind a combustion wave that is accompanied

by the addition of heat q from the release of chemical energy. Given a reactant mixture

with a specified thermodynamic state, ρ1, p1, and h1, Eq. (1.10) can be used to construct

the product Hugoniot curve in the p–ρ−1 plane for all cases of equilibrium heat release.

If it is assumed that the reactants are calorically perfect, i.e., constant specific heats,

then the general reactive Hugoniot can be simplified to

q =
γ

γ − 1

(
p2

ρ2
− p1

ρ1

)
− 1

2
(p2 − p1)

(
1

ρ1
+

1

ρ2

)
(1.11)

where the sensible enthalpy is taken as h = cpT , and the specific heat at constant pressure

as cp = R[γ/(γ − 1)]. Although not particularly useful for the analysis of detonation and

deflagration waves, the expression in Eq. (1.11) represents the simplified calorically perfect

Hugoniot relation, which is typically provided in the literature. Note, if no heat is released

across the wave, then q ≡ 0, and the Hugoniot relation in Eq. (1.11) represents the locus

of all possible solutions behind a non-reactive shock wave. Such an expression is identical

to the expressions developed by Rankine [19] and Hugoniot [20] for their thermodynamic

analysis of shock waves. Therefore, given an upstream gas with a specified thermodynamic

state, ρ1 and p1, Eq. (1.11) with q = 0 can be used to construct the non-reactive Hugoniot

curve in the p–ρ−1 plane.
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For the non-reactive shock, Eq. (1.11) is used with given values of ρ1 and p1 to

construct the appropriate curve. However, construction of the reactive Hugoniot relation

requires a numerical routine with Eq. (1.10) to properly compute the locus of equilibrium

solutions behind a combustion wave. Such a routine can be implemented for a given ρ2

and guessed equilibrium temperature, T2. At these conditions, the equilibrium pressure, p2,

sensible enthalpy, h2, and change in chemical enthalpy, q, can be determined with a conven-

tional Gibb’s free energy minimization solver. Further, with knowledge of the equilibrium

density, ρ2, pressure, p2, and heat release, q, application of Eq. (1.10) permits determination

of the equilibrium sensible enthalpy behind the combustion wave from mass, momentum,

and energy conservation across the wave. With such a calculation, the equilibrium sen-

sible enthalpy, h2, is predicted at a given ρ2 by a guessed equilibrium temperature, T2,

and a chemical equilibrium solver, and by mass, momentum, and energy conservation from

Eq. (1.10). Therefore, application of the iterative secant method with a new T2 permits

minimization of the difference in h2 predicted by the two methods, and the resulting con-

verged equilibrium solution. For the purpose of implementing this numerical routine and

constructing the reactive Hugoniot, the chemical equilibrium and kinetics program Cantera

is utilized within a Matlab environment [24].

For a stoichiometric H2–air mixture initially at 1 atm and 300 K, the non-reactive

and reactive Hugoniot curves are shown in Fig. 1.2. The initial gas state is denoted by the

square marker, which takes the value of ρ2/ρ1 = 1 and p2/p1 = 1 and represents the origin

of the Hugoniot curves. In effect, the addition of heat q from combustion pushes the reactive

Hugoniot (red line) to the right of the non-reactive Hugoniot (blue line). Further, not all

of the solutions to Eqs. (1.10) and (1.11) are physically plausible. For instance, in the case

of a non-reactive shock wave, only solutions where p2/p1 ≥ 1 and ρ2/ρ1 ≥ 1 are physically

possible. Solutions of the opposite nature corresponds to an expansive shock wave, which

is physically impossible on the basis of entropy considerations provided by Rayleigh [25]

and Taylor [26] in 1910. For this reason, the bottom branch of the non-reactive Hugoniot
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is denoted by a dashed line to indicate a non-physical solution. Moreover, in the case of a

reactive combustion wave, inspection of the Rayleigh line in Eq. (1.7) yields two possible

regions where a solution can physically exist. For instance, if ρ2/ρ1 < 1 while p2/p1 > 1,

then the mass flux through the combustion wave is complex, or non-physical, which is

indicated by the dashed region on the reactive Hugoniot. The limiting cases of physically

possible combustion waves correspond to the constant-volume combustion (CVC) solution,

i.e., ρ2/ρ1 = 1, and the constant-pressure combustion (CPC) solution, i.e., p2/p1 = 1. All

other physical solutions lie on two separate branches of the reactive Hugoniot, corresponding

to the deflagration and detonation regimes.

Figure 1.2. Non-reactive and reactive Hugoniot curves for shock and combustion wave in
stoichiometric H2–air mixture at 1 atm and 300 K.

All physically attainable deflagration and detonation wave solutions must satisfy both

the reactive Hugoniot relation in Eq. (1.10) and the expression for the Rayleigh line in Eq.

(1.7). Recognizing that the Rayleigh line is linear in the p–ρ−1 plane, it is convenient to

write the Rayleigh line in the form

u1 =
tan1/2(αR)

ρ1
(1.12)
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where

tan(αR) =
p2 − p1

1/ρ1 − 1/ρ2
(1.13)

In this form, it is clear that the Rayleigh line originates from the initial state at ρ2/ρ1 = 1

and p2/p1 = 1 with an inclination angle αR. Therefore only when the Rayleigh line intersects

the reactive Hugoniot curve is a detonation or deflagration solution possible. Because the

Hugoniot curve represents a hyperbola in the p–ρ−1 plane, there are characteristic angles

of αR for which a solution can exist. For instance, the minimum possible angle is when the

Rayleigh line is tangent to the upper branch of the reactive Hugoniot, which represents a

unique detonation (compression wave) solution. This Rayleigh line (black line) and tangency

point, labeled by the upper CJ point, are shown in Fig. 1.2. Any increase in αR above this

value results in two intersection locations with the upper branch of the reactive Hugoniot,

until αR approaches 90 degrees, in which case the CVC solution is obtained. The two

solution regimes on the upper branch of the reactive Hugoniot are labeled with the numerals

I and II, which represents the cases of strong and weak detonation solutions, respectively.

For αR between 90 and 180 degrees, the Rayleigh line falls on the non-physical branch of

the reactive Hugoniot with a complex mass flux, and is labeled with the numeral III. As αR

reaches 180 degrees, the CPC solution is obtained. Any increase in αR above 180 degrees

results in the intersection of the Rayleigh line and bottom branch of the reactive Hugoniot at

two distinct locations. These distinct regimes are labeled with the numerals IV and V, and

represent the weak and strong deflagration solutions, respectively. Lastly, the maximum

value of αR for which a solution is obtained is when the Rayleigh line becomes tangent

with the lower branch of the reactive Hugoniot curve, representing a unique deflagration

(expansion wave) solution. This Rayleigh line (black line) and tangency point, labeled by

the lower CJ point, are shown in Fig. 1.2.

A few comments can be made about the nature of the detonation solutions in regions

I and II, and the deflagration solutions in regions IV and V, before discussing the tangency

CJ points. In region I, or the the strong detonation regime, the detonation wave moves with
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a supersonic Mach number with respect to the reactants, whereas the Mach number behind

the detonation is subsonic. This permits disturbances originating from behind the wave to

propagate forward and overtake the wave from behind, rendering the wave unstable, and

attenuating the solution towards the upper CJ tangency point where the post-detonation

Mach number is sonic. In region II, or the weak detonation regime, the detonation wave also

moves with a supersonic Mach number with respect to the reactants; however, the Mach

number behind the detonation is supersonic. When considering the typical wave structure

of a detonation, namely, adiabatic shock compression followed by heat release, reaching

region II along the Rayleigh line is usually deemed a physically unrealizable process as more

energy would have to be expended beyond the equilibrium CJ point. For this reason, weak

detonation solutions are often disregarded as physically obtainable solutions. However, as

noted by Lee [2] and Kuo [10], it may be possible to obtain the weak detonation solution in

practice with reactant mixtures featuring rapid chemical kinetics. In this case, the solution

would proceed along the Rayleigh line to region II without the adiabatic compression of a

shock wave, although; they concede that such a unique wave would seldom be observed in

practice.

In region IV, or the weak deflagration solution regime, the deflagration wave moves

with a subsonic Mach number with respect to the reactants and the Mach number behind

the deflagration is subsonic. Reactants passing through a weak deflagration are acceler-

ated from a low to high subsonic velocity as they transition to burned products behind the

wave. Solutions in this regime are frequently encountered in practice and are often treated

using classical flame structure theories, such as those of Mallard and Le Chatelier [3] and

Zel’dovich and Frank-Kamenetskii [5]. Moving further down the weak deflagration regime

in region IV, the post-deflagration Mach number is increasing until finally reaching a sonic

condition at the lower CJ tangency point. In region V downstream of this lower tangency

point lies the strong deflagration regime, where the wave moves with a subsonic Mach num-

ber with respect to the reactants, and a supersonic Mach number behind. Reactants passing
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through a strong deflagration are accelerated from a low subsonic velocity to supersonic as

they transition to burned products behind the wave. Such waves are considered physically

impossible on the basis of Rayleigh heat addition and the wave structure, in that a gas

in a constant-area duct cannot be accelerated to a supersonic velocity by heat addition

alone. Additionally, the lower CJ tangency point is only observed during the acceleration

of a deflagration wave while undergoing DDT [2]. Therefore, of the possible detonation and

deflagration regimes, only the stable upper CJ solution and weak deflagration solutions are

commonly encountered in practice.

As previously mentioned, Eqs. (1.1)–(1.3) with Eq. (1.5) yield an indeterminate equa-

tion set requiring an additional expression or criterion. For detonations, Chapman and

Jouguet provided the required criterion; although, arrived at by different phenomenological

arguments. By analyzing the detonation wave velocity variation along the reactive Hugoniot

curve, Chapman discovered that when the Rayleigh line is tangent to the reactive Hugoniot,

the detonation wave velocity reaches a minimum [21]. Moreover, this condition provides

a unique solution for a detonation wave velocity in a reactive mixture, which agrees with

experimental observations, in that a unique detonation wave velocity is observed in a deton-

able mixture at given initial conditions. Therefore, Chapman postulated that the minimum

wave velocity at the tangency point must be the correct detonation solution [2]. In contrast,

Jouguet investigated the variation of post-detonation Mach number and entropy along the

reactive Hugoniot and discovered that the post-detonation Mach number reaches the sonic

condition, while the entropy reaches a minimum, as the Rayleigh line becomes tangent to

the reactive Hugoniot [22,23]. Jouguet then postulated that these conditions must yield the

correct detonation solution, given the unstable nature of the strong detonations, and the

physical impracticality of weak detonations [2]. The simultaneous occurrence of the min-

imum velocity, post-detonation sonic flow, and minimum entropy conditions at the upper

tangency point was later shown by Crussard in 1907 [27], and the resulting condition has
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since been referred to as the CJ criterion. For mathematical closure, Eqs. (1.1)–(1.3) with

Eq. (1.5) require the CJ criterion:

u2
2 = a2

2 =

(
∂p2

∂ρ2

)
s2

(1.14)

With this criterion, all the detonation wave properties, namely, ρ2, p2, u2, h2, and u1, can

be determined given the initial state of a detonable mixture, ρ1, p1, and h1, which completes

the CJ theory. A general solution requires the use of a sophisticated nonlinear equation

solver coupled with a chemical equilibrium solver. Such solvers exist, which include the

NASA chemical equilibrium applications (CEA) code [28], or the shock and detonation

toolbox developed at Caltech [29,30], which makes use of the previously mentioned Cantera

chemical equilibrium and kinetics solvers [24].

The results of the CJ theory can be used to demonstrate the fundamental motivation

for pursuing detonations as a means of combustion in an aerospace propulsion system.

Analysis of the entropy variation along the reactive Hugoniot curve highlights the amount

of entropy generated for the various combustion processes that can be used in a given engine

system. Fundamentally, a combustion process that generates less entropy is a more efficient

means of heat addition in a thermodynamic cycle, since the heat addition is closer to a

reversible process and less heat is wasted. Figure 1.3 shows the entropy variation along the

reactive Hugoniot for stoichiometric H2–air combustion that is initially at 1 atm and 300 K.

As first noted in the work of Jouguet [22, 23], the minimum and maximum entropy points

correspond to the CJ detonation and deflagration solutions, namely, the upper and lower CJ

points, respectively. As previously mentioned, the upper CJ point is the stable detonation

solution that is commonly encountered in practice. However, CJ deflagration is really only

observed near the DDT limit of an accelerating deflagration wave. In practice, deflagration

solutions commonly encountered lie on the weak deflagration regime, or region IV, towards

the idealized CPC solution. For the sake of a conservative estimate, the idealized CPC

solution can be used as a benchmark to evaluate the reduction in entropy generation by

means of detonation combustion as opposed to deflagration. For the conditions shown in
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Fig. 1.3, the reduction in entropy between a CJ detonation and idealized CPC deflagration

is 19.2 percent. This is a substantial difference that can be exploited in aerospace propulsion

applications by simply changing the method in which fuels are burned. For completeness,

the entropy variation along the reactive Hugoniot for stoichiometric H2–air combustion at

different initial pressures and temperatures is shown in Figs. 1.4(a) and 1.4(b), respectively.

Moreover, the reduction in entropy between the CJ detonation solution and the idealized

CPC deflagration for the respective initial conditions is tabulated in Table 1.2. Again, over

this initial pressure and temperature variation range, the reduction in entropy for detonation

as opposed to deflagration is roughly 19 percent.

Figure 1.3. Entropy variation along reactive Hugoniot for stoichiometric H2–air mixture at
1 atm and 300 K.

Before continuing, it is worth mentioning that the CJ criterion is a heuristic postulate

with no rigorous mathematical underpinnings based on analysis of the conservation laws.

Physical reasoning can be used to justify the disregard of strong and weak detonation

solutions, such as the stability of strong detonations, and the wave structure for weak

detonations, however; a formal rigorous analysis has yet to demonstrate the validity of

the CJ criterion. Despite this, the CJ detonation theory has excellent agreement with
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(a) (b)

Figure 1.4. Entropy variation along reactive Hugoniot for stoichiometric H2–air mixture at
(a) 300 K and (b) 1 atm.

Table 1.2. Detonation and deflagration entropy change at various initial conditions for
stoichiometric H2–air mixture.

p1 T1 (s2 − s1)/R1 (s2 − s1)/R1 %

(atm) (K) CPC CJ Det. Decrease

0.01 300 5.16 4.09 20.7

1 300 5.77 4.66 19.2

10 300 6.06 4.95 18.3

1 200 7.03 5.62 20.1

1 400 4.90 4.00 18.4

experimental observations, even near the limits of detonability. On the other hand, as

noted by Lee [2], the agreement with experimental observations is merely fortuitous, unless

a formal justification of the CJ criterion can be provided.

Lastly, it should be noted that the derivation of the above CJ theory bypasses details

of the wave structure, or mechanisms, by which a detonation or deflagration propagates. In

fact, only the RH relations are used to connect the initial and final equilibrium states of a

reactive mixture that has passed through a combustion wave. Consequently, CJ theory fails
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to explain the mechanism by which a detonation or deflagration self-propagates through a

reactive mixture. Such explanations require detailed analysis of the respective wave struc-

tures and dynamics of the reaction products. For deflagrations, the theories of of Mallard

and Le Chatelier [3] and Zel’dovich and Frank-Kamenetskii [5] bridge this gap for flame

propagation in premixed reactive mixtures. Notably, the theory of Zel’dovich and Frank-

Kamenetskii demonstrate that a deflagration wave propagates into the reactants by means

of transport processes, such as heat conduction and diffusion of radicals, as a result of sharp

gradients in temperature and chemical species concentration. In the case of detonations,

the Zel’dovich–von Neumann–Döring (ZND) theory describes the one-dimensional struc-

ture of detonations and the behavior of products across the reaction zone, which explains

the mechanism by which a one-dimensional detonation wave can self propagate. Since the

ZND theory is used in the subsequent analysis, the following subsection provides a brief

description of the theory and idealized one-dimensional detonation wave structure.

1.1.3 Zel’dovich–von Neumann–Döring Theory

Following the work of Mallard and Le Chatelier [3] and Berthelot and Vieille [15–18],

it was apparent that the supersonic nature of detonation waves must be accompanied by

adiabatic shock compression that aids the initiation of chemical reactions behind a detona-

tion. Subsequently, the Soviet physicist Zel’dovich [31] provided the first rigorous analysis

of the one-dimensional detonation wave structure in 1940. In Zel’dovich’s work, the detona-

tion wave was headed by a shock wave to provide the required adiabatic compression for the

reactant to subsequently undergo chemical reactions in a closely coupled exothermic reac-

tion zone behind the shock front. By including the effects of heat and momentum losses in

the detonation wave structure, Zel’dovich was able to demonstrate the existence of a unique

detonation wave velocity and detonation structure when the sonic and chemical equilibrium

conditions coincide at the same location within the detonation structure. This condition

results in a unique detonation wave velocity and is often referred to as regularity at the
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sonic singularity, which has since been regarded as an eigenvalue detonation solution [2].

Shortly thereafter in 1942 and 1943, unaware of Zel’dovich’s work, the Hungarian-American

mathematician and physicist von Neumann [32] and the German physicist Döring [33] in-

dependently provided similar treatments of the one-dimensional detonation wave structure.

Their work described a detonation wave that was headed by a shock wave and followed by

a closely coupled chemical reaction zone. In von Neumann’s work, attention was focused

on the existence of weak detonation and the associated wave structure that must exist for

such a wave to be physically realizable. A reaction progress variable was used to connect

intermediate Hugoniot curves from the immediate post-shock state to the equilibrium det-

onation state. Further, Döring also made use of reaction progress variables, and directly

integrated the resulting detonation wave structure with the associated chemical kinetics,

which revealed the path of thermodynamic states through the detonation wave. Collec-

tively, these three independent works marked the first formal analysis of a one-dimensional

detonation wave structure and has since been referred to as the ZND detonation theory

after the contributing researchers.

The general ZND detonation wave structure is shown schematically in Fig. 1.5, which

details the temperature, pressure, and density profiles across the wave. Formally, the ZND

theory states that the detonation wave structure consists of a leading shock front and

coupled induction and chemical reaction zones, which together steadily moves through the

reactants at the CJ detonation velocity for a given reactive mixture. As the reactants pass

through the leading shock front, the reactants are adiabatically compressed to the post-shock

state referred to as the von Neumann (vN) peak, which can readily be calculated with the

RH shock jump relations. Immediately behind the shock, the adiabatic shock compression

brings the reactants to a temperature where thermal dissociation of the reactants into radical

species begins to take place. This dissociation region is referred to as the induction zone,

and is almost thermally neutral with a thermodynamic state that is relatively constant [2].

Once sufficient concentration of active radical species are produced, rapid chain-branching

18



chemical reactions convert the reactants to products. This region is referred to as the

reaction zone, which is accompanied by rapid exothermic chemical energy release. As shown

in Fig. 1.5, within the reaction zone the temperature rapidly increases while the pressure and

density simultaneously decrease. Across the reaction zone, the chemical reactions progress

until eventually reaching chemical equilibrium, which is equal to the thermodynamic state

predicted by the CJ detonation theory. As noted by Zel’dovich, von Neumann, and Döring,

the adiabatic compression of the leading shock and the rapid expansion of products across

the reaction zone provide the mechanisms by which a detonation wave ignites and self-

propagates through a reactive mixture.

Shock
Front

Induction
Zone

Reaction
Zone

Figure 1.5. Zel’dovich–von Neumann–Döring detonation wave structure.
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Figure 1.6. Zel’dovich–von Neumann–Döring detonation wave schematic and state nomen-
clature.

For a calorically perfect gas, the conservation of mass, momentum, and energy for as

steady one-dimensional planar flow across the detonation wave in Fig. 1.6 in the absence of

mass addition and friction are given by

d

dx
(ρu) = 0 (1.15)

d

dx

(
p+ ρu2

)
= 0 (1.16)

d

dx

(
h+

u2

2

)
= 0 (1.17)

where the specific enthalpy, h, in Eq. (1.17) is expressed as

h =
γ

γ − 1

p

ρ
− λq (1.18)

In this form, 0 ≤ λ ≤ 1 represents the reaction progress variable across the induction and

reaction zones and q accounts for the heat added by means of chemical energy release per

unit mass. At the von Neumann peak, the reaction progress variable is exactly equal to 0,

and proceeds to unity at the equilibrium CJ plane in Fig. 1.6. Differentiating Eqs. (1.17)

and (1.18) and combining yields

γ

γ − 1

(
1

ρ

dp

dx
− p

ρ2

dρ

dx

)
− q dλ

dx
+ u

du

dx
= 0 (1.19)

where dp/dx and dρ/dx can be replaced with Eqs. (1.15) and (1.16) to yield

1

u

du

dx
=

(γ − 1) q

a2 − u2

dλ

dx
(1.20)
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Lastly, noting that dx/dt = u, the governing coupled ordinary differential equations across

the induction and reaction zones of the ZND detonation wave structure are

du

dx
=

(γ − 1) q

a2 − u2

dλ

dt
(1.21)

dλ

dt
= k (1− λ) eEa/RT (1.22)

where Eq. (1.22) is simply a single-step Arrhenius expression connecting the chemical ki-

netics to the dynamics of the detonation products.

Therefore, given a reactant mixture with a specified thermodynamic state, ρ1, p1, and

h1, pre-exponential factor, k, and activation energy, Ea, application of Eqs. (1.21)–(1.22)

with the results of the CJ theory permits determination of the ZND wave structure. A typ-

ical solution method requires first determining the equilibrium CJ detonation wave solution

using the CJ detonation theory discussed in the previous subsection. With knowledge of

the detonation wave velocity, WCJ , application of the RH shock jump conditions permits

determination of the von Neumann peak, or λ = 0 state, which act as the initial conditions

for the two coupled ordinary differential equations in Eqs. (1.21) and (1.22). Henceforth,

starting from the von Neumann peak and numerically integrating these equations across

the induction and reaction zones until the sonic solution is obtained yields the resulting

detonation wave structure.

Although the above derivation is for a calorically perfect gas with constant γ, realistic

reactive systems will feature numerous reaction progress variables representing the various

chemical species that are present at the equilibrium CJ state. A detailed derivation of

the governing ordinary differential equations across the detonation structure for a general

reactive mixture can be found in Lee [2]. Moreover, CJ and ZND detonation solutions to

general reactive mixtures can be obtained using a shock and detonation toolbox [29, 30] in

conjunction with the computer program Cantera [24] in a Matlab environment. Together,

these packages are very useful for rapidly computing the CJ and ZND detonation properties

of general reactive mixtures.
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For stoichiometric H2–air initially at 1 atm and 300 K, the path of thermodynamic

states for the ZND detonation is shown in Fig. 1.7. As explained above, the initial state

proceeds along the shock adiabat until reaching the von Neumann peak. From this point,

the subsequent thermodynamic states proceed along the Rayleigh line towards the equilib-

rium CJ tangency point on the reactive Hugoniot. With the ZND theory, it is now evident

that this Rayleigh line path represents the progression of thermodynamic states across the

induction and reaction zones of the ZND detonation wave. Hence, the fundamental result of

the ZND theory is connecting the chemical kinetics of the reactive mixture with the dynam-

ics of the detonation products along the Rayleigh line to reveal the structure of a steadily

propagating one-dimensional detonation wave and associated length and timescales of the

reaction zone. Figures 1.8(a)–1.8(c) show the corresponding ZND pressure, temperature,

and species mole fraction profiles across the detonation wave structure, respectively. Note,

x1/2 represents the half-reaction zone length, which is equal to 0.27 mm for the current

stoichiometric H2–air mixture.

Figure 1.7. ZND detonation wave path along non-reactive Hugoniot, Rayleigh line, and
reactive Hugoniot for stoichiometric H2–air mixture at 1 atm and 300 K.
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(a) (b)

(c)

Figure 1.8. (a) Pressure, (b) temperature, and (c) species mole fraction across ZND deto-
nation wave structure for stoichiometric H2–air mixture at 1 atm and 300 K.

It can be noted that the ZND wave structure is seldom observed in practice because

detonation waves are inherently unstable. Additionally, as will be discussed in the next

subsection, a detonation wave is composed of an unsteady three-dimensional cellular struc-

ture for which a one-dimensional detonation theory is simply unable to capture. However,

the ZND theory bridges the gap between the CJ theory and the mechanism by which a det-

onation wave can ignite and self-propagate through a reactive mixture. Additionally, ZND

theory explains the transition path of thermodynamic states from the reactants to products
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via adiabatic shock compression followed by heat release in an induction and reaction zone.

Lastly, ZND theory provides a method to obtain characteristic length and timescales of the

detonation wave structure which are paramount in fundamental detonation wave physics

studies [2].

1.1.4 Experimental Observation

Despite the success of the CJ and ZND detonation wave theories, overwhelming ex-

perimental evidence has demonstrated that detonation waves are neither one-dimensional

nor steady, but three-dimensional and transient [2]. This was demonstrated in the exper-

iments of Soviet researchers Denisov and Troshin [34] in 1960, where the carbon soot-foil

technique was used to reveal the multidimensional structure and propagation behavior of a

detonation wave. Additionally, in the experiments of the American researcher White [35]

in 1961, an interferometer with short-duration electric sparks as the light source was used

to visualize a self-sustained detonation wave, revealing the multi-headed shock front struc-

ture. From these experiments, it was clear that the detonation front was composed of

curved intersecting shocks, where soot-foil traces revealed the transient trajectory of the

shock intersection points and pulsating nature of the detonation front. Following these

discoveries, an abundance of research has revealed the physical nature of detonation wave

using piezoelectric transducers and high-speed schlieren photography and interferometry

techniques [2]. Accordingly, the detonation front and the accompanying transient phenom-

ena inherent to its sustained propagation have been strenuously analyzed. The remainder

of this section is intended to provide a brief description of the experimentally observed

multi-dimensional and transient structure of detonation waves, and the corresponding im-

plications for detonation-based engine design.

The simplest structure of a detonation wave front is depicted in Fig. 1.9, which rep-

resents a two-dimensional propagating detonation wave, although the following description

can be extended to three-dimensions. The detonation wave features a leading shock front

24



that is composed of two distinct shock waves, namely, the incident shock and Mach stem,

which are convex towards the upstream flow. The incident shock and Mach stem join at

triple-shock Mach intersections, or triple points, from which weaker transverse shock waves

extend into the burned products downstream of the detonation front. These transverse

waves propagate unsteadily across the detonation front and normal to the detonation wave

motion. This detonation wave structure is shown in the schlieren images from Lee and

Radulescu in Figs. 1.10(a) and 1.10(b) for H2–O2–40% Ar detonations at different pres-

sures [36]. Moreover, behind the Mach stems, the pressure and temperature are higher

than that behind the incident shock. Consequently, the induction and reaction zones are

shorter and more closely coupled to the shock front at the Mach stem locations than those

behind the incident shocks. The higher pressure and temperature, and subsequently faster

heat release, behind the Mach stems is the mechanism that drives the weaker transverse

waves across the incident shock fronts. Moreover, when two transverse waves collide after

sweeping across a given incident shock front, the transverse waves reflect, leaving behind an-

other high pressure and temperature region and a newly formed Mach stem. As such, while

the detonation wave propagates, the sweeping motion of the transverse waves and triple

points trace out the trajectories shown in Fig. 1.9. Behind a triple point, the reactants pass

trough either the Mach stem or incident shock, which causes the gases to have a discontinu-

ity in velocity and density giving rise to the formation of a shear layer immediately behind

the triple point. It is believed that this region of high shear accompanying the shear layer

is the mechanism that traces the triple point trajectories onto carbon soot-foils [37]. The

triple point trajectories trace out what is often referred to as detonation cells, which have a

characteristic height denoted by λ (not to be confused with the reaction progress variable),

and is depicted in Fig. 1.9.

The beginning of a cell marks the collision of two transverse waves and the subsequent

formation of a strong Mach stem. The maximum height is associated with the collision and

reflection of transverse waves at the outer edge of neighboring cells. At this point, the
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Figure 1.9. Schematic of multi-headed detonation front commonly observed in practice with
triple point trajectories and definition of detonation cell (modified from [38]).

(a) (b)

Figure 1.10. Schlieren photographs in H2–O2–40% Ar at initial pressures of (a) 13 and (b)
8 kPa from Lee and Radulescu [36].

Mach stem of the detonation cell becomes an incident shock, until the transverse wave

collide again at the end of the cell. This alternating wave pattern across the axial length

of detonation cells causes a rapid change in the detonation front propagation velocity. For

instance, because the reaction rates behind a Mach stem are much faster due to the elevated
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pressure and temperature, the Mach stems travel with a faster velocity then the incident

shocks. In fact, the maximum shock front velocity occurs at the beginning of the detonation

cell, or collision point of transverse waves. Alternatively, the minimum velocity occurs just

at the end of detonation cells, namely immediately before the re-collision of transverse

wave and formation of a new Mach stem, which causes the various sections making up the

detonation front to propagate in a pulsating manner. Experiments conducted by Strehlow

and Crooker [39] using a laser streak schlieren photography method showed that along the

axial distance of a detonation cell, the leading shock velocity can vary from roughly 1.6 to

0.7 times that predicted by the CJ theory. In effect, the overall mean propagation velocity

of the detonation front is governed by the number density of collisions between triple points,

which is a very different viewpoint regarding the nature of detonation propagation than that

provided by the ZND theory.

The detonation cell height, or size, λ, has been shown to be a regularity in experimen-

tal observations and a fundamental length scale for detonation waves [2]. Fundamentally,

the detonation cell size is the maximum distance traced by the triple points, or simply the

maximum spacing between the transverse waves behind the detonation. Therefore, the det-

onation cell size is directly related to the properties of the induction and chemical reaction

zones coupled to the Mach stem and incident shock. In fact, Lee [40] showed that the det-

onation cell size is linearly proportional to the induction zone length predicted by the ZND

theory. As such, the detonation cell size is dependent on the initial state of the reactive

mixture. Knystautas et al. [41] studied the pressure dependence on the detonation cell size

in hydrogen–air and various hydrocarbon–air mixtures and showed that, in general, the cell

size decreases with increasing pressure. Note, this is also shown in the schlieren photographs

of Figs. 1.10(a) and 1.10(b), in that the transverse wave spacing decreases with increasing

initial pressure. Similarly, the temperature dependence on the detonation cell size was

investigated in the hydrogen–air experiments of Ciccarelli et al. [42] and hydrocarbon–air

experiments of Tieszen et al. [43] and, in general, it was shown that detonation cell size de-
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creases with increasing temperature. Therefore, it can be stated that, in general, increasing

either the pressure or temperature increases the detonability of a given reactive mixture.

For common hydrogen and hydrocarbon reactive mixtures, the detonation cell size

is listed in Table 1.3 for stoichiometric conditions at 1 atm and and 298 K. Note that

changing the oxidizer from pure oxygen to air drastically increases the cell size of reactive

mixtures. This is primarily attributed to the increased length of the induction zone and

longer amount of time to thermally dissociate the reactants into sufficient concentrations of

radicals for chemical reactions to take place. Similarly, Fig. 1.11 shows how the detonation

cell size varies with equivalence ratio for hydrogen–air and hydrocarbon–air mixtures. In

general, the minimum detonation cell size takes place at or near the stoichiometric condition;

however, the cell size can vary drastically for reactive mixtures that are either fuel-lean or

fuel-rich.

Table 1.3. Detonation cell size in various detonable mixtures at 1 atm and 298 K.

Mixture (φ = 1) Cell Size (mm) Ref.

H2+1
2O2 2.08 Denisov and Troshin [34]

CH4+2O2 2.96 Manzhalei et al. [44]

C2H2+5
2O2 0.17 Manzhalei et al. [44]

C2H4+3O2 0.60 Bauer et al. [45]

H2+1
2(O2+3.76N2) 15.10 Guirao et al. [46]

CH4+2(O2+3.76N2) 349.53 Beeson et al. [47]

C2H2+5
2(O2+3.76N2) 5.80 Knystautas et al. [48]

C2H4+3(O2+3.76N2) 25.70 Knystautas et al. [48]

From the discussion above, it is evident that the detonation cell size is a fundamental

length scale of detonations, which is also directly related to the detonability of a given

reactive mixture. In fact, when the dimensions of the geometry containing the detonation,

such as the diameter of a tube, approach the size of a single detonation cell, the detonation
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Figure 1.11. Detonation cell size for various fuel–air mixtures at different equivalence ratios
at 1 atm and 298 K from [46,48,49].

propagation becomes unstable and usually results in the excitation of spinning, gallop-

ing, and stuttering instabilities [2]. Therefore, there is a minimum scalability limit for a

detonation-based engine in which proper detonation can be adequately achieved. In general,

it is preferred to have sufficient spacing in a combustion chamber for the stable propagation

of several transverse waves along the detonation front. This ensures the stability of the

front and proper detonation of the mixture. Consequently, this is a design consideration

that must be addressed for detonation-based engines. For instance, when operating with

hydrocarbon detonable mixtures such as methane, the detonation cell size can vary on the

order of a meter at standard conditions when moving from a stoichiometric to fuel-lean

mixture. As such, a properly designed thrust chamber must be capable of comfortably

accommodating the fundamental length scale of a detonation wave.

1.2 Pulse Detonation Engines

1.2.1 Background

The pulse detonation engine (PDE) is a propulsion concept that makes use of intermit-

tent detonations to supply thrust. Unlike existing chemical rocket and airbreathing engines
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which operate using constant-pressure deflagrative combustion, the PDE makes use of the

pressure-gain mode of combustion, namely, detonation. As discussed earlier in this chap-

ter, detonations are capable of compressing the working fluid to pressures that are roughly

an order-of-magnitude higher than that achieved through deflagration. An attractive fea-

ture of such pressure-gain combustion in an airbreathing engine design is the potential to

reduce, or eliminate altogether, the need for mechanical compression and the associated

complexities of intricate turbomachinery [50]. Further, in a pulse detonation rocket engine

(PDRE), where the oxidizer is carried onboard, the propellant injection pressures are ex-

pected to be much lower than conventional rocket engines, which has the added advantage

of eliminating the need for heavy and bulky turbopump machinery that drive propellant

feed systems. Moreover, the use of detonation minimizes the entropy gain during the heat

addition process of the engine cycle, which enables ideal thermal efficiency advantages over

conventional rocket and airbreathing engines [51]. This aspect will be discussed in the fol-

lowing subsection, where a comparison of the thermodynamic cycle for a PDE-based system

using the ZND detonation wave for heat addition is compared with the classical Brayton

cycle, namely, the cycle used to model the thermal efficiency of conventional airbreathing

engines employing isobaric heat addition. Direct consequences of higher thermal efficiency

are superior specific impulse and better overall propulsive performance metrics, which are

the primary motivation for pursuing PDEs as potentially viable propulsion systems.

The simplest PDE or PDRE configuration consists of a straight, constant-area thrust

chamber that is closed at the head end, and open at the other. The head end usually

features a number of fuel and oxidizer injection ports and an ignition source capable of pro-

viding the required activation energy to achieve a weak deflagration. The PDE operation

usually consists of several phases during a single cycle, which typically include propellant

fill, ignition, gasdynamic blowdown, and purge. Figure 1.12 shows a schematic of a typical

PDE system and the corresponding general operating cycle. Phase 1 of the cycle consists of

filling the thrust chamber with a gaseous fuel and oxidizer combination until the chamber

30



is fully filled with a detonable mixture at the desired mixture equivalence ratio. In phase

2, a weak spark from an ignition source is provided to initiate a deflagration wave at the

head end of the chamber. As discussed previously, the deflagration wave will accelerate

away from the closed end and abruptly transition into a self-propagating detonation wave,

which accounts for the DDT process of phase 3. In phase 4, the detonation wave prop-

agates through the remaining length of the PDE thrust chamber while converting all of

the reactants into burned products. Once the detonation wave exits the chamber, a fairly

complex gasdynamic blowdown process ensues, which features the interaction of multiple

unsteady rarefaction waves that eventually reduces the pressure in the thrust chamber to

the ambient condition. This exhausting gasdynamic blowdown phase is taken as phase 5

of the PDE cycle. Lastly, phase 6 consists of purging any remaining burned products at

elevated temperatures from the thrust chamber with a colder inert purge gas so that re-

filling with fresh propellants can begin. Purging with the cold inert gas also ensures that

the fresh propellants will not autoignite. Consequently, the PDE is an unsteady thrust

producing propulsion system for which practical implementation for aerospace propulsion

applications would necessitate that the system operate with a frequency of O(102) Hz [52].

Due to the gasdynamic nature of the PDE flow field, the maximum operating frequency is

directly dependent on the length scale of the PDE system, such that scaling up the engine

would inversely reduce the maximum operating frequency. In these cases, it is likely that

a multi-tube PDE system would be required, such as the concept proposed by Bussing and

Pappas [50]. However, even in multi-tube PDE systems, the operating characteristics of

any single tube in a multi-tube arrangement would still follow the typical operation cycle

shown in Figure 1.12. Before proceeding, it should be noted that the PDE is in fact one

of multiple detonation-based engine concepts, and a comprehensive review of other systems

such as the rotating detonation engine (RDE) and oblique detonation wave engine (ODWE)

can be found in the 2000 review by Kailasanath [53], and the more recent 2013 and 2014

reviews by Wolański [54] and Lu and Braun [55], respectively.
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Figure 1.12. General pulse detonation engine operation cycle (modified from [56]).

The remainder of this section is intended to provide a summary of major research

efforts directly influencing the development of PDEs. The summary is kept brief as many

detailed and comprehensive reviews exist within the literature. For example, a compre-

hensive review of experimental and theoretical research efforts up to 1992 can be found in

the review by Eidelman and Grossmann [57]. Additionally, the developments in PDE re-

search up to 2003 on atomization and mixing, detonation initiation, experimental diagnostic

techniques, and system-level and overall performance estimates can be found in the review

by Kailasanath [58]. Finally, more recent developments in experimental, numerical, and

analytical PDE research efforts can be found in the more recent review by Kailasanath [59].

The earliest experimental investigations of intermittent detonation devices for propul-

sion applications was carried out in Germany by Hoffman [60] in the late 1930s. In these

early efforts, a laboratory-scale demonstrator was developed to investigate the feasibility

of detonating various hydrocarbon mixtures in a combustor for potential use in a reaction

propulsion system. Both gaseous acetylene and liquid benzene hydrocarbon fuels with oxy-
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gen were investigated. The system, although valveless, operated much like that depicted in

Fig. 1.12, in that a detonation tube was filled with a detonable mixture, ignited to achieve

detonation, and exhausted into the ambient; however, a purge gas was not used. As noted

by Bussing and Pappus [50], although performance characteristics were not reported, im-

portant operating characteristics such as fuel atomization, evaporation, and mixing were

determined to be critical to the success of an intermittent detonation propulsion system.

Nearly two decades later in 1957, the feasibility of reaction devices operating on

intermittent detonations was studied by Nicholls et al. [61] in the United States. A simplified

analytical model was developed based on the stagnation properties behind the detonation

wave to predict the average thrust and impulse of a detonation tube. Further, single-shot

experiments using acetylene–oxygen were performed and the impulse was directly measured

by suspending the setup in a ballistic pendulum arrangement. The setup consisted of a

detonation tube that was open at one end, with fuel and oxidizer injection at the head

end. Specific impulses above 1,200 seconds were reported for different acetylene–oxygen

mixture ratios, although it is believed that proper detonation was not achieved and the

combustion was a combination of deflagration and detonation [50]. Multi-cycle experiments

were also performed with hydrogen–air mixtures, although dynamic thrust and impulse

measurements were not recorded.

In the early 1960s, Krzycki [62] continued research efforts in the U.S. by conducting

significant analytical and experimental investigations of an intermittent detonation device

for propulsion applications. The analytical approach was based on the method of character-

istics, in which wave diagrams were used to describe the spatial and temporal gasdynamic

properties of the PDE flow field during the blowdown phase, and the transient nature of

pressure loading on the thrust wall of the tube. Further, a vast experimental study was con-

ducted with an intermittent detonation device similar to that of Nicholls et al. [61], which

featured an air manifold, fuel injector, detonation tube, and spark igniter. The system was

operated at frequencies from 0–60 Hz with propane–air mixtures, and it was concluded by
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Krzycki that such an intermittent detonation system was not promising as a thrust pro-

ducing mechanism because of the low operating frequency. However, according to Bussing

and Pappus [50], the spark igniter did not feature the energy capacity required to directly

initiate a detonation wave in propane–air mixtures, and the geometrical constraints of the

detonation tube did not likely permit DDT to take place. For instance, the detonation tube

used by Krzycki [62] featured a diameter of 25.4 mm, which is smaller than the detonation

cell size of roughly 100 mm [63] for propane–air, making proper detonation very unlikely

when considering the role detonation cells have on the stability of self-sustaining detonation

waves. Hence, the system was in fact operating in a deflagrative pulse jet mode, and many

researchers have since disregarded those conclusions.

The conclusions of Krzycki, however, impeded the progress of PDE development,

and it was not until the mid 1980s that researchers began to re-examine the potential use

of intermittent detonations as a viable propulsion system. In 1986, Helman et al. [64]

experimentally investigated a pulsed detonation-based airbreathing engine design at 25 Hz

using ethylene–oxygen mixtures. Ethylene and oxygen were injected intermittently and a

synchronized spark plug was used to ignite the incoming mixture. Specific impulses were

calculated based on the measured pressure history on the thrust wall from piezoelectric

pressure transducers and reported to vary between 1,000–1,400 seconds. Although this

system was very similar to the previous experimental devices of Hoffman [60], Nicholls et

al. [61], and Krzycki [62], this work was the first to help initiate recent interest in PDEs.

Since the work of Helman [64], the PDE has been at the center of modern research ef-

forts focused on practical implementation of a reliable detonation-based engine for aerospace

propulsion applications [52]. The simple straight-tube thrust chamber configuration in

both the airbreathing and rocket mode has received significant analytical [65–67], one-

dimensional [68–76] and two-dimensional numerical [77–86], and single-cycle [87–92] and

multi-cycle experimental [93–97] treatment in the literature. Extensive testing and analysis

of the fully-filled, straight tube thrust chamber configuration, operating in a single-cycle or
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multi-cycle pulsed manner with both hydrogen- and hydrocarbon-based fuels have shown

promising results. Notably, the two-dimensional numerical studies of Harris et al. [84] and

Ma et al. [85] demonstrated that a hydrogen-fueled airbreathing PDE operating over a

Mach number range of 1.2–5 can provide a specific impulse of roughly 4,000–5,000 seconds

when operated at frequencies ranging from 60–250 Hz, which is superior to conventional

steady-flow ramjets at the same operating conditions. Further, in the two-dimensional nu-

merical study of Ivanov and Frolov [86], a propane-fueled airbreathing PDE operating at

Mach 3 and altitudes ranging from 9.3–16 km while operating with a frequency of 48 Hz

provides specific impulse of approximately 1,700 seconds, which is superior to a ramjet un-

der the same operating conditions. Unfortunately, experiments have yet to be conducted in

direct-connect facilities for airbreathing PDEs operating under similar conditions. However,

it is noteworthy to mention the performance results reported in the experimental work of

Schauer et al. [95], where a hydrogen–air PDE was operated at frequencies of 12–16 Hz at

static sea-level conditions. In those experiments, it was demonstrated that the PDE could

achieve specific impulses of roughly 4,000 seconds with a fully-filled thrust chamber. These

experimental results were also shown to validate the empirical single-cycle performance

model of Wintenberger et al. [66, 67], and the theoretical performance model of Endo et

al. [65].

In regard to rocket applications, the quasi-one-dimensional numerical study by Mor-

ris [76] showed that constant-area thrust chamber PDREs operating with a gaseous oxy-

hydrogen propellant at 1 atm are capable of achieving single-cycle propulsive performance

metrics superior to optimized steady-state rocket engines for blowdown pressure ratios of

ψ . 7. Further, Kasahara et al. [96] successfully demonstrated a compact multi-cycle PDRE

demonstrator, which featured a propellant and purge feed system comprised of three pres-

surized cylinders for ethylene, oxygen, and helium with solenoid injection valves. This

PDRE demonstrator was shown to validate combined analytical thrust models from Endo

et al. [65] and Sato et al. [98], and demonstrated that PDREs operating with propellant
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injection pressures comparable to ambient pressure are realizable propulsion systems for

aerospace applications. Collectively, the research and development efforts mentioned above

yield promising results for the eventual implementation of PDEs and PDREs into special-

ized aerospace propulsion systems. Nonetheless, a number of design issues still remain to

be solved, with the most important being efficient expansion of the detonation products

during the transient blowdown phase of the cycle. This aspect will be elaborated on in the

following subsections from the context of the PDE thermodynamic cycle and the impor-

tance of a high expansion efficiency, and the implementation of the partial filling technique

and the use of a diverging nozzle to enhance performance metrics.

1.2.2 Thermodynamic Cycle

An idealized thermodynamic cycle analysis can be used to demonstrate the poten-

tial efficiency and performance advantages of detonation-based engines compared to their

deflagration-based counterparts. In general, alongside providing adequate propulsive per-

formance, the objective of a given propulsion system is to minimize the entropy rise of the

working fluid. This ensures the system’s actual thermodynamic cycle is closer to that of a

reversible process, in which no heat is wasted and the maximum work output is achieved.

Therefore, it is of interest to highlight the ideal thermodynamic advantages enabled by sim-

ply utilizing the pressure-gain detonative mode of combustion. Note, this brief analysis will

also serve as a fundamental motivation for pursuing detonation-based engines in aerospace

propulsion applications. For this comparison, an idealized thermodynamic cycle for an air-

breathing PDE is compared with the ideal Brayton cycle. Such a comparison was made in

the analysis by Heiser and Pratt [51] for a single-γ model, which was later extended to a

two-γ model by Wu et al. [75]. The subsequent analysis closely follows that developed by

Wu et al. [75], in which real thermophysical properties were used to compare the thermal

efficiency of an airbreathing PDE with a conventional airbreathing engine operating on the

Brayton cycle.
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For the purposes of establishing state nomenclature, the schematics in Figs. 1.13(a)

and 1.13(b) for an airbreathing ramjet and a PDE are used. Moreover, the forthcoming dis-

cussion regarding the ideal Brayton and PDE cycles are not constrained to these respective

engine types. These are used merely as an aid to associate a given thermodynamic state to

a location within a deflagration- or detonation-based airbreathing engine. In both the ideal

Brayton and PDE cycles, the working fluid is subjected to four primary thermodynamic

processes, namely, compression, heat addition, expansion, and heat rejection. In the case

of the ideal Brayton cycle, the free stream, state 0, is assumed to be isentropically com-

pressed to state 3, namely, the combustor entry state. In general, this compression can be

achieved in numerous ways, such as ram compression, or a combination of ram and mechan-

ical compression, much like that achieved in a turbojet. Once the free stream air enters the

combustor, fuel is injected and the mixture passes through flame holders, effectively defla-

grating the reactants which thereby releases heat. This deflagrative heat addition process

is assumed to take place at constant pressure, which significantly raises the temperature

and entropy of the working fluid to state 4 at the combustor exit. Subsequently, the burned

products are assumed to expand isentropically to state 10 at the exit plane of the nozzle.

In the ideal case, it is assumed that the gas pressure on the nozzle exit plane matches the

free stream pressure, namely, p10 = p0, whereby a fictitious constant-pressure heat rejection

to the ambient is assumed to take place in order to close the cycle.

In the case of the ideal PDE cycle, the free stream, state 0, is assumed to be isen-

tropically compressed to state 3, namely, the combustor entry state. This compression can

be achieved in numerous ways, such as ram compression, or a combination of ram and

mechanical compression. Within the combustor, the heat addition process is modeled by

that described in the ZND detonation theory. As in Fig. 1.5, the detonation wave structure

consists of a leading shock front, and coupled induction and chemical reaction zones, which

together steadily moves through the reactants at the CJ detonation wave velocity for a

given reactive mixture. Consequently, the reactants are adiabatically compressed further
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Figure 1.13. (a) Ramjet schematic and (b) airbreathing PDE schematic with state nomen-
clature.

through the shock front to the von Neumann peak, which will be denoted by state 3′. Addi-

tionally, the heat addition takes place within the reaction zone following the induction zone

immediately behind the shock front, raising the temperature and entropy of the working

fluid to state 4 within the combustor. Unlike the constant-pressure heat addition of the

Brayton cycle, heat addition progresses with decreasing pressure along the Rayleigh line

as shown in Fig. 1.7. Additionally, the heat addition increases the Mach number of the

reaction products to a choking condition, which coincides with the equilibrium CJ state

at the upper CJ point on the reactive Hugoniot. Following the heat addition, the burned

products are assumed to expand isentropically to state 10 at the exit plane of the nozzle. In

the ideal case, it is assumed that the gas pressure on the nozzle exit plane matches the free

stream pressure, namely, p10 = p0, and a fictitious constant-pressure heat rejection to the

ambient takes place that closes the cycle. Note, the ideal expansion in this case assumes

that each element of fluid within the PDE combustor is able to expand to the free stream
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pressure, which does not actually take place in real PDE systems with a fixed geometry

nozzle. This aspect will be elaborated on in the following discussion.

Figure 1.14(a) shows a comparison of the T–s diagrams for the respective cycles for

a stoichiometric H2–air fuel mixture initially at 1 atm and 300 K. In this diagram, the heat

addition processes where computed using the chemical kinetics and equilibrium program

Cantera [24]. Additionally, the ZND detonation heat addition was obtained by using a

shock and detonation toolbox [29, 30] in conjunction with Cantera. Note that both cycles

have a compression static temperature ratio of ψ = 3 in this comparison. Additionally,

the solid black line is the previously discussed reactive Hugoniot curve, now shown in T–s

space. As such, the heat addition for the PDE cycle terminates at the upper CJ point, which

coincides with the minimum entropy point on the reactive Hugoniot. On the other hand, the

heat addition for the Brayton cycle terminates at the CPC point, which coincides with the

weakest possible deflagration solution. Consequently, the entropy gained during the heat

addition process for both cycles is drastically different. In the case of the Brayton cycle, all

of the entropy generated from states 3–4 is the result of constant-pressure heat addition.

Alternatively, only the entropy generated through the reaction zone along the Rayleigh line

from 3′–4 constitutes heat addition in the PDE cycle. In fact, all of the entropy generated

from 3–3′ is generated irreversibly as a result of the adiabatic shock compression through

the detonation wave. Subsequently, to close the cycle, all of the entropy generated during

the cycle from states 0–10, whether it be by reversible or irreversible processes, must be

rejected to the ambient. Hence, it becomes desirable to minimize the amount of irreversible

entropy generated during a cycle since this component of entropy generation eventually

becomes rejected waste heat, and reduces the amount of work one can output from the

cycle.

Given the T–s diagram for the idealized PDE and Brayton cycles, it is of interest

to evaluate and compare their respective thermal efficiencies. The thermal efficiency for a

general heat engine is simply the ratio of work output to heat addition. Further, for a closed
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Figure 1.14. (a) T–s diagram of Brayton and PDE cycles for stoichiometric H2–air mixture
at p0 = 1 atm and T0 = 300 K with ψ = T3/T0 = 3, and (b) comparison of thermal efficiency
for various ψ = T3/T0.

cycle, the change in energy for the system becomes zero and the net work can be expressed

as the difference in heat added and heat rejected. Consequently, for a heat engine with a

closed cycle, the thermal efficiency becomes

ηth =
wnet
qadd

=
qadd − qrej

qadd
= 1− qrej

qadd
(1.23)

The heat added in both cases is simply qadd = fhpr, where f is the fuel–air ratio and hpr

is the heat of reaction, respectively. Moreover, since the heat rejection is assumed to be a

quasi-static process at constant pressure, the heat rejection to the ambient can be expressed

as

qrej =

∫ 0

10
T ds (1.24)

Moreover, substitution of the combined first and second laws reduces Eq. (1.24) to

qrej =

∫ 0

10
dh = h10 − h0 = cp,2T10 − cp,1T0 (1.25)

since the process is isobaric. In this expression, the subscripts 1 and 2 correspond to the

reactant and product states following the heat addition. As such, the goal of the cycle
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analysis becomes expressing the heat rejection in terms of the isentropic compression from

0–3, heat addition from 3–4, and isentropic compression from 4–10. Therefore, rearranging

Eq. (1.25) as

qrej = cp,1T0

(
cp,2T10

cp,1T0
− 1

)
(1.26)

In this form, the thermal efficiency in Eq. (1.23) becomes

ηth = 1−

cp,2T10

cp,1T0
− 1

q̄
(1.27)

where q̄ = qadd/cp,1T0. Expressions for T10/T0 have been derived in Appendix A for the

PDE and Brayton cycles. As such, these expressions are given as:

T10

T0

∣∣∣∣∣
PDE

=
R1γ1

R2γ2M2
CJ

(
γ1M

2
CJ + 1

γ2 + 1

) γ2+1
γ2

ψ
1− γ1(γ2−1)

γ2(γ1−1) (1.28)

T10

T0

∣∣∣∣∣
Brayton

=
cp,1
cp,2

(
q̄

ψ
+ 1

)
ψ

1− γ1(γ2−1)
γ2(γ1−1) (1.29)

Substituting these expressions into Eq. (1.27) yields the resulting thermal efficiencies.

ηth,PDE = 1−

γ1 − 1

γ2 − 1

(
γ2

γ1MCJ

)2(γ1M
2
CJ + 1

γ2 + 1

)(γ2+1)/γ2

ψ
1− γ1(γ2−1)

γ2(γ1−1) − 1

q̄
(1.30)

ηth,Brayton = 1−

(
q̄

ψ
+ 1

)
ψ

1− γ1(γ2−1)
γ2(γ1−1) − 1

q̄
(1.31)

Figure 1.14(b) shows a comparison of the thermal efficiencies for the PDE and Brayton

cycles in Eqs. 1.30 and 1.31, respectively. For this comparison, the free stream initial

conditions are 1 atm and 300 K. In Eqs. 1.30 and 1.31, q̄ and γ2 were obtained with Cantera

by computing the equilibrium heat of reaction between states 3–4 for both cycles. Further,

the shock and detonation toolbox was used to evaluate MCJ for a given reactive mixture.

It is noted that the thermal efficiency of the PDE cycle outperforms that of the Brayton

cycle for the compression static temperature ratios shown. This suggests that the PDE

cycle is able to more efficiently convert the heat added by means of detonative combustion
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into useful work than the conventional Brayton cycle. Further, it is emphasized that this

efficiency estimate also includes the work lost due to the irreversible adiabatic compression

from states 3–3′ as this irreversible entropy gain becomes rejected heat. Additionally, unlike

the Brayton cycle, the pressure-gain combustion used in the PDE cycle permits the cycle to

operate without the need for inlet or mechanical compression. This is an attractive feature

that can potentially be exploited in an airbreathing engine designs to reduce, or eliminate

altogether, the need for mechanical compression and the associated complexities of intricate

turbomachinery. Hence, these results serve as a primary motivation for researching design

aspects of a detonation-based engine for potential use in aerospace propulsion applications.

Recall that the above idealized cycle analysis assumes that every fluid element in the

PDE thrust chamber perfectly expands from state 4 to state 10, whereby the exit plane

pressure is equal to the ambient, namely, p10 = p0. For a general PDE operation, this is a

mostly unrealistic assumption given the variation in pressure on the exit plane of the PDE.

For instance, in a PDE comprised of a constant-area thrust chamber without a nozzle, the

pressure can vary on the exit plane from roughly the ambient condition to as high as the

post-detonation pressure within a single cycle of operation [76]. Moreover, because the

pressure profile on the exit plane is transient, each fluid element passing across the exit

plane at a given instant in time is expanding to a different state 10 with a unique kinetic

energy. By extension, it is reasonable to assume that the pressure profile on the exit plane

of a nozzle will also have a considerable variation during a single cycle of operation. This

is expected to remain true for even optimum nozzles at a given operation condition, as any

fixed geometry nozzle will not be able to expand all fluid elements passing from the nozzle

throat to the same state 10. Therefore, it is of interest to investigate how sensitive the

PDE cycle is to an adiabatic expansion efficiency, whereby the nozzle does not achieve the

maximum kinetic energy of the exhausting products.
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If the expansion efficiency is defined as the ratio of real change in static enthalpy to

that of a ideal change for the same static pressure change, then the expansion efficiency can

be written as [99]

ηe =
h4 − h10

h4 − h10,i
=

cp,2T4 − cp,2T10

cp,2T4 − cp,2T10,i
=

T4 − T10

T4 − T10,i
(1.32)

where the subscript 10 is now the actual exit plane state and 10, i is the ideal state. Rear-

ranging Eq. (1.32) for T10 yields

T10 = (1− ηe)T4 + ηeT10,i (1.33)

Next, substituting Eq. (1.33) into Eq. (1.27) yields the thermal efficiency for the real cycle

as

η̄th = 1−

cp,2
cp,1

[
(1− ηe)

T4

T0
+ ηe

T10,i

T0

]
− 1

q̄
(1.34)

or equivalently,

η̄th = 1− (1− ηe)

cp,2
cp,1

T4

T3
ψ − 1

q̄
− ηe (1− ηth) (1.35)

Substituting T4/T3 for the PDE and Brayton cycles (Eqs. (A.7) and (A.11)) yields the

thermal efficiencies for the real cycles

η̄th,PDE = 1− (1− ηe)

γ1 − 1

γ2 − 1

(
γ2

γ1MCJ

)2(γ1M
2
CJ + 1

γ2 + 1

)(γ2+1)/γ2

ψ − 1

q̄
− ηe (1− ηth,PDE)

(1.36)

η̄th,Brayton = 1− (1− ηe)

(
q̄

ψ
+ 1

)
ψ − 1

q̄
− ηe (1− ηth,Brayton) (1.37)

For brevity, these real thermal efficiency expressions are simplified in terms of their ideal

thermal efficiencies.

Figures 1.15(a) and 1.15(b) show a comparison of the real thermal efficiency of the

PDE and Brayton cycles as a function of the expansion efficiency for ψ = 2 and 4, respec-

tively. Note that the real PDE thermal efficiency is more sensitive to the expansion efficiency
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compared to the Brayton cycle. Consequently, for ηe < 0.67 while ψ = 2, and ηe < 0.73

while ψ = 4, the Brayton cycle outperforms the PDE cycle, respectively. Moreover, for

continuous steady flow propulsion systems operating on the Brayton cycle, realistic expan-

sion efficiencies of approximately 0.9, or better, are to be expected [99,100]. Therefore, for

the PDE cycle to remain competitive against the Brayton cycle, it is likely that any design

aimed at efficiently expanding the burned products of a PDE cycle, should operate with a

nominal expansion efficiency of at least roughly 0.8.

(a) (b)

Figure 1.15. Effects of expansion efficiency ηe on cycle thermal efficiency η̄th for for stoi-
chiometric H2–air mixture initially at p0 = 1 atm and T0 = 300 K with (a) T3/T0 = 2 (b)
T3/T0 = 4.

In summary, thermodynamic cycle analysis can be used to demonstrate the potential

advantages of using detonative combustion in propulsion system compared to their deflagra-

tive combustion counterparts. In this case, a comparison of the idealized PDE and Brayton

cycles show that the PDE cycle features a better thermal efficiency for most operating con-

ditions. However, this advantage in thermal efficiency is predicated on the assumption that

a PDE nozzle system can expand each fluid element of the burned products to the ambient

condition, thereby maximizing the kinetic energy of the burned products. In practice, this
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does not usually occur and there is a significant pressure variation on the exit plane of the

engine, or nozzle. As a result, the analysis was extended to demonstrate the sensitivity of

the PDE cycle to an adiabatic expansion efficiency. It was shown that the real thermal

efficiency of the PDE cycle is more sensitive to the expansion efficiency than the Brayton

cycle. Additionally, unless the PDE can maintain a reasonably high expansion efficiency

compared to an engine operating on the Brayton cycle, then the performance advantages

become fairly minimal. Thus, it is crucial that a rigorous analysis of potential nozzle devices

for PDE propulsion systems be conducted to obtain a better understanding of the primary

gasdynamic processes that govern the nozzle and overall engine performance. The following

subsections discuss the advantages of partially filling the engine thrust chamber and the use

of diverging nozzles.

1.2.3 Method of Partial Filling

When operating a PDE in the fully-filled mode, such that the detonable mixture

fills the entire thrust chamber length, a significant propulsive performance loss arises. This

is because, in this mode of operation, the detonation wave travels the full length of the

thrust chamber before transmitting as a non-reactive decaying shock wave into the ambient.

Consequently, as the detonation wave exits the PDE, a considerable portion of the available

energy in the form of high-pressure burned products exits along with the detonation wave

without performing useful propulsive work. Additionally, because a fully-filled, constant-

area thrust chamber does not feature a device that efficiently converts the enthalpy of

the burned products into kinetic energy, elevated exhausting pressures are observed at

the exit plane of the PDE. As a result, this particular loss restricts the ideal maximum

propulsive performance of fully-filled PDEs to propellant-based specific impulses of only

100–200 seconds at sea level static conditions, for both hydrogen- and hydrocarbon-based

fuels [65,66,70]. The above observations have led researchers to explore further methods of
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improving and optimizing the performance of the PDE in order to more efficiently capture

the available energy of the exhausting burned products.

One of the commonly studied methods for enhancing the specific impulse includes

partially filling the PDE thrust chamber volume with a detonable propellant mixture. In

this mode of operation, as shown in the schematic of Fig. 1.16, only a fraction of the thrust

chamber at the head is filled with a detonable propellant and the remaining portion of the

chamber is filled with a non-combustible inert mixture. The additional chamber length that

is not filled with the detonable propellant is sometimes thought of as behaving like a straight-

extension nozzle; however, unlike conventional nozzles, the straight-extension section does

not effectively convert enthalpy into kinetic energy, but simply prolongs the gasdynamic

blowdown process of the engine due to the inertia of the non-combustible gas. In general,

the presence of the non-combustible gas downstream of the detonable propellant provides

a buffer between the burned detonation products and ambient condition, which allows

the burned products to further expand before reaching the engine exit plane. Similarly,

the inert gas provides a mechanism for which the burned products are impeded before

exhausting from the PDE, which can lengthen the duration of transient impulse generation

for the PDE cycle. Further, because less propellant is used in an individual cycle, the

partial-filling method can be used to significantly raise the PDE specific impulse, although

usually with a corresponding reduction in the total impulse and time-averaged thrust. Many

previous experimental, numerical, and analytical studies have focused on various aspects

of the performance benefits of partial filling, including the effect of propellant fill length-

to-overall thrust chamber length, α = Lf/L, namely, the propellant fill fraction, and the

role of the inert gas. As a result, much progress has been made towards quantifying the

performance gains associated with partial filling although only limited progress has been

made in regard to the understanding of physical gasdynamic processes within the thrust

chamber flow field that directly govern these observed performance gains. Therefore, the

following paragraphs are intended to provide a brief summary of the important findings from
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these various works and highlight fundamental performance characteristics that remain to

be understood.

Detonation Wave

WCJ

Contact Surface

}Burned Products

Non-Combustible Mixture

}Reactants

Lf

L

Figure 1.16. Schematic of partially-filled PDE operation.

In recent years, several experimental studies have investigated the performance ben-

efits of partially-filled PDEs by conducting idealized single-shot detonation tube studies,

and by performing more practical multi-cycle PDE studies. In single-shot studies, the

detonable and non-combustible inert mixtures are usually separated by a thin diaphragm,

as in [87, 89, 101, 102], which aids to create the most ideal distribution of detonable and

non-combustible mixtures at a desired fill fraction. Similarly, the fill fraction is controlled

by the diaphragm placement, which is usually varied by using segmented detonation tube

sections, or by coupling straight tube extensions to the end of a fixed-length detonation

tube. Alternatively, in multi-cycle PDE studies, the thrust chamber fill fraction is usually

varied by precision timing of fuel injection valves, as in [95,97,103], and the non-combustible

mixture normally consists of the purge gas from the previous cycle, or the ambient con-

dition. Moreover, the impulse of the PDE is frequently obtained by integrated pressure

histories on thrust surfaces [89], or by using ballistic pendulums [87,101,102], as in the case

of the single shot studies, or by means of dynamic thrust measurements with dynamic load

cells [95, 97,103], as in the case of multi-cycle PDE studies.

Early experimental studies primarily focused on the performance scaling effects of

varying the propellant fill fraction by means of single-shot experiments. Notably, in the
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single-shot study of Zhdan et al. [87], it was demonstrated that the specific impulse of

a partially-filled detonation tube could be increased by a factor of approximately 2 by

reducing the propellant fill fraction from 1 to 0.14, while operating with stoichiometric

acetylene–oxygen detonable mixtures and air as the inert gas. These performance gains

were later confirmed in the single-shot studies of Daniau et al. [104] which showed that the

specific impulse could be increased by a factor of roughly 2.5 by reducing the propellant

fill fraction from 1 to 0.15, while operating with stoichiometric ethylene–oxygen detonable

mixtures and air as the inert gas. Similarly, Kasahara et al. [101] demonstrated through

single-shot experiments that the specific impulse of a detonation tube could be increased

by a factor of approximately 1.8 by reducing the fill fraction from 1 to 0.44, while operating

with stoichiometric hydrogen–oxygen detonable mixtures and air as the inert gas. More

important, these experiments showed that at a first-order approximation, the ratio of specific

impulse for the partially- to fully-filled tube appears to be inversely proportional to the fill

fraction, namely, Isp/Isp,full ∝ 1/α, where α is the tube fill fraction. Therefore, it follows

that a reduction in the tube fill fraction results in an observed increase in the single-shot

specific impulse.

Following the single-shot experimental findings of [87, 101, 104], it became of imme-

diate interest to determine whether or not the single-shot partial filling performance of

detonation tubes was realizable in more practical multi-cycle PDE operations, where the

fuel distribution is less ideal and the fill fraction is controlled by precision timing of injection

valves. Notably, Schauer et al. [95] successfully demonstrated the performance benefits of

partially-filled PDEs using a damped thrust stand facility, and a PDE operating at 12 and

16 Hz. In those experiments, the specific impulse of the PDE was increased by a factor

of roughly 1.9 by reducing the fill fraction from 1 to 0.3, while operating with stoichio-

metric hydrogen–air detonable mixtures and purge air as the inert gas. Likewise, Joshi

and Lu [97] demonstrated similar results using dynamic thrust measurements and a PDE

operating at 1–20 Hz. However, in those experiments, the PDE was operated with sto-
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ichiometric hydrogen–oxygen detonable mixtures and purge air as the inert gas, and the

specific impulse was raised by a factor of approximately 1.7 by reducing the fill fraction

from 1 to 0.58. Additionally, Kasahara et al. [103] demonstrated similar results with a

multi-cycle PDE setup using a spring-damper mechanism while operating between 2.5–8.3

Hz with ethylene–oxygen mixtures at fill fractions of 0.13–0.26. In those experiments, it

was also shown that for fill fractions less than 0.13, the combined effects of diffusion across

the fuel-purge interface and shortened DDT distance results in improper detonation that

ultimately reduces the performance benefit of partial filling. Lastly, it is worth noting that

comparable results were also reported in the liquid fueled multi-cycle PDE facilities of Li et

al. [105] and Wang et al. [106], where kerosene–oxygen with nitrogen purge, and gasoline–air

(oxygen enriched) with no purge, were operated at 5–50 Hz and 10–110 Hz, respectively.

Among the various multi-cycle experiments mentioned above, it was demonstrated

that the performance benefits observed in single-shot detonation tube facilities are also re-

alizable in the more practical multi-cycle PDE facilities. However, most important, these

experiments showed that the multi-cycle partial filling performance scales in the same man-

ner as that observed in the single-shot partial filling studies. This indicates that the govern-

ing gasdynamic processes associated with the partial filling method can readily be studied

by simply analyzing the single-cycle thrust chamber flow field of a PDE. Hence, recent

analytical and numerical studies have investigated the single-cycle gasdynamic flow field

characteristics and performance aspects of partially-filled PDEs.

Using an inviscid two-dimensional numerical model with a coupled two-step induction-

parameter finite-rate chemistry model, Li and Kailasanath [107] investigated the single-cycle

performance of partially-filled PDEs operating with stoichiometric ethylene–oxygen deton-

able mixtures with air as the inert gas. It was shown that the thrust production is primarily

dominated by the dynamics of three distinct wave types, namely, the detonation, transmit-

ted shock, and interface and exhausting rarefaction waves. Additionally, they showed how

each wave type influences the pressure history on the thrust wall, which ultimately governs
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the thrust profile and impulse in a single cycle. In a similar study by Sato et al. [98], an

inviscid one- and two-dimensional axisymmetric numerical model with a coupled multi-step

finite-rate chemistry model was used to investigate the single-cycle performance of partially-

filled PDEs. In that study, in order to investigate the effects of the inert gas, PDEs operating

with hydrogen and hydrocarbon-based detonable mixtures were investigated, and the inert

gas was varied between air, argon, and helium. It was shown that the detonable and inert

gas acoustic impedances appear to govern the resulting gasdynamic flow field following the

collision of the detonation wave with the contact surface separating the respective mix-

tures. More specifically, it was shown that either a reflected shock or rarefaction wave can

result from the interface collision, depending on the ratio of acoustic impedance across the

gaseous interface. This was shown to yield a considerably different starting thrust chamber

flow field, which in turn alters the pressure history on the thrust wall and the associated

partial-filling performance gains. Consequently, the specific impulse gains over a fully-filled

PDE are significantly more with a light–heavy detonable–inert mixture combination, such

as oxyhydrogen–argon, than those obtained using a heavy–light detonable–inert mixture

combination, such as oxyhydrogen–helium. Morris [76] obtained similar results while inves-

tigating the single-cycle performance benefits of straight-extension nozzles on PDEs using

an inviscid quasi-one-dimensional numerical model with a coupled multi-step finite-rate

chemistry model. In that study, the PDE was operated with a stoichiometric oxyhydrogen

detonable mixture, and the inert was varied between hydrogen, helium, and nitrogen. Sim-

ilar to the findings of Sato et al. [98], it was determined that a heavier inert gas could yield

a significantly larger specific impulse compared to that of a fully-filled PDE; however, this

performance gain was shown to become drastically diminished as the blowdown pressure

ratio of the system increases, namely, when the pressure of the inert gas and ambient are

reduced.

Due to the performance benefits of partial filling, there have been various efforts at

modeling the performance characteristics of partially-filled PDEs. As a first-order estimate,
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Li and Kailasanath [107] used their stoichiometric ethylene–oxygen numerical results to

establish a correlation for fuel-based Isp/Isp,full as a function of 1/α = L/Lf , namely,

the inverse fill fraction. Similarly, Cooper and Shepherd [108] used the experimental results

of [87,89,90,109] and numerical results of [107] to develop empirical piecewise correlations for

the total impulse ratio It/It,full and specific impulse ratio Isp/Isp,full as functions of the fill

fraction α. It was shown that the partially-filled impulse appears to scale as It/It,full ∝ α,

whereas the partially-filled specific impulse scales as Isp/Isp,full ∝ 1/α for α > 0.0676.

Cooper [110] later extended the Gurney energetics-based explosives model [111] in order to

predict the total impulse and specific impulse of a partially-filled PDE operating with general

detonable and inert mixtures. This model showed that the mass fraction of detonable-to-

total mass (detonable plus inert) is a unique governing parameter that accurately scales the

partially-filled PDE specific impulse. The model was shown to have good agreement with

existing numerical and experimental results; however, the model is only appropriate for mass

fractions greater than roughly 0.15, and fails in the limit where the fill and mass fractions

approach zero. Further, Sato et al. [98] derived a scaling law in terms of the detonable-

to-total mass fraction for the specific impulse ratio Isp/Isp,full, based on the assumption

that the thermal efficiency of the partially-filled PDE is approximately equal to that of the

fully-filled PDE. This model was shown to successfully collapse the results of [101,107] using

general detonable and inert combinations for mass fractions above roughly 0.05.

In principle, the model of Sato et al. [98] is also based on energetics, and suffers from

the same defect as that proposed by Cooper [110] in the limit of zero mass fraction. In

order to approximate the specific impulse ratio in the limit of zero fill fraction, Cooper [110]

proposed a separate model that considered the isentropic expansion of burned products,

bounded by the thrust wall and contact surface, to estimate the impulse on the thrust

wall. This model, was shown to have good agreement with the numerical results of Li and

Kailasanath [107] in the limit of small fill fraction. However, it should be noted that [107]

used a rather non-ideal detonation initiation scheme in their study, which is known to
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largely influence the performance results at lower fill fractions. Lastly, the analytical work

of Endo et al. [112] provided a way of estimating the performance of a partially-filled PDE

by transforming the partially-filled PDE to an equivalent, homogeneous diluted, fully-filled

PDE. Their model is based on the hypothesis that performance parameters of the PDE

thrust chamber are predominantly governed by only the amount of energy and mass content

in the chamber. Good agreement was obtained with the data of [95, 98, 107]; however,

only for larger values of initial mole fraction of the detonable gas, or larger fill fractions.

Moreover, despite being an energetics-based model, a finite value of specific impulse is

predicted in the limit of zero fill fraction, which is approximately double that predicted

using the expanding bubble model of Cooper [110].

As discussed above, much progress has been made towards the understanding of

performance gains that accompany the partial filling method for PDEs. Notably, the work

of Li and Kailasanath [107] and Sato et al. [98] provided fundamental insights to the single-

cycle evolution of gasdynamic discontinuities and waves within the thrust chamber flow

field, and their corresponding influence on the thrust wall pressure history and overall engine

impulse. Similarly, the analytical models of Cooper [110], Sato et al. [98], and Endo [112]

provided methods to estimate the performance of partially-filled PDEs, and established

insights in regard to fundamental performance scaling parameters of partially-filled PDEs.

However, it should be noted that these analytical models are primarily based on energetics,

and do not treat the complex gasdynamic flow field encountered in a partially-filled PDE

thrust chamber. Unfortunately, this limits the understanding of performance gains of partial

filling as important details of the flow field are neglected, such as those discussed in the

numerical studies of [98,107]. Additionally, there is no consensus in the literature as to which

of the previous performance models most accurately captures the performance scaling of

partially-filled PDEs, especially at lower fill fractions. In fact, a recent study by Kasahara

et al. [113] investigated the partial-fill effect through an open-ended shock tube to better

understand the gasdynamic mechanisms that govern the performance gains of the partial
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filling method in PDEs. In that study, it was demonstrated that the acoustic impedance of

the driver and driven sections can significantly influence the impulse generated by the shock

tube. Moreover, most important, they determined that at lower fill fractions, the contact

surface could trap acoustic waves between the thrust wall and contact surface, given the

appropriate acoustic impedance ratio across the contact surface. This gasdynamic process

was shown to be a critical part of the performance gains associated with partial filling at

lower fill fractions, which previous analytical performance models fail to capture. Hence,

a major goal of the current work is to understand the performance gains of partially-

filled PDEs through identifying the manner in which the fill fraction and properties of the

detonable and non-combustible mixture, such as acoustic impedance, combine to influence

the propulsive performance.

1.2.4 Diverging Nozzles

Another common method used for enhancing the performance of PDEs is coupling a

nozzle to the thrust chamber exit. Like conventional propulsion systems, the addition of a

nozzle at the chamber exit provides a means of more efficiently expanding the enthalpy of

the burned products into exhaust kinetic energy, which can drastically improve the specific

impulse and attainable thrust levels. In fact, such performance enhancement has been

demonstrated for PDEs equipped with straight, converging, diverging, and converging-

diverging nozzle configurations [76, 114, 115], where the straight-extension nozzle is simply

that of the partially-filled PDE configuration discussed in the previous subsection. As

such, it is important to briefly comment on the findings of previous studies regarding the

use of nozzles with PDEs, and establish which nozzle configurations have shown the most

promising results. It is noted that only a brief review is provided here to highlight the

major contributions and results from previous numerical and experimental efforts. A more

comprehensive review of early research on various PDE nozzle configurations can be found

in the work of Kailasanath [116].
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In the study of Eidelman and Yang [114], an inviscid two-dimensional numerical

model with a coupled single-step finite-rate chemistry model was used to investigate the

effects of various nozzle configurations on the single-cycle performance of PDEs operating

with stoichiometric ethylene–air propellant. In that study, only the PDE thrust chamber

was filled with propellant, such that the nozzle extensions were filled with ambient air,

with both initially at 1 atm. Under these operating conditions, it was demonstrated that

a fixed length PDE coupled to either a converging, diverging, or straight-extension nozzle

will provide performance that is superior to the baseline fully-filled PDE. However, more

important, it was shown that diverging nozzles could deliver roughly 13 percent more im-

pulse than converging nozzles, while simultaneously achieving the maximum cycle frequency.

Similarly, He and Karagozian [115] investigated the effects of various nozzle configurations

on the single-cycle performance of PDEs operating with methane–oxygen propellant using

an inviscid quasi-one-dimensional and a two-dimensional numerical model with a coupled

single-step finite-rate chemistry model. Like the study of [114], both the detonable and

ambient condition were initially at 1 atm, and only the PDE thrust chamber was filled

with propellant, with the nozzle extensions filled with ambient air. In He and Karagozian’s

study, it was also shown that a diverging nozzle geometry provides the best overall impulse,

which was estimated to be roughly 8 percent higher than that of the converging nozzle,

and 4 percent higher than that of the straight-extension nozzle. Further, unlike diverging

nozzles, it was demonstrated that converging nozzles create a reflected shock in the thrust

chamber flow field, which results in increased thrust at the head end of the chamber once

the shock reflects from the thrust wall. It was also shown that this increase in thrust at

the thrust wall is not able to overcome the corresponding negative thrust at the converging

nozzle walls, due to the relatively high pressure loading along the converging walls during

the nozzle startup and gasdynamic blowdown. In fact, it is this negative thrust loading

mechanism that prevents converging nozzles from achieving performance metrics that are

superior to those obtained when using a diverging nozzle in PDE applications. Additionally,
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it should also be noted that the reflected shocks caused by the converging portion of the

nozzle adversely increase the overall gasdynamic blowdown time of the cycle, which was

recently shown by Zhang et al. [117] to hinder the high-frequency operation of valveless

PDEs.

In regard to a comparison of diverging and converging-diverging nozzles, it was shown

in the single-cycle numerical and experimental study of Owens and Hanson [118] that a PDE

equipped with a purely diverging nozzle yields better performance than one that is equipped

with a converging-diverging nozzle. In that study, the PDE was operating with a stoichio-

metric ethylene–oxygen detonable propellant and the nozzle was filled with ambient air,

where a fill-to-ambient pressure ratio of unity was used in all cases. Based on the numerical

results, it was determined in [118] that the single-cycle PDE specific impulse reduces with

increasing throat obstruction in converging-diverging nozzles. Moreover, this was deter-

mined to be a direct result of the losses incurred at the converging portion of the nozzle

during the nozzle startup and subsequent gasdynamic blowdown, where high pressure load-

ing was shown to cause a large resultant negative thrust. Similarly, this was confirmed

in the experiments conducted in [118], where the single-shot impulse was determined by

integrating pressure measurements at the thrust wall and along the nozzle walls. In those

experiments, it was shown that a diverging nozzle can provide nearly 12 percent higher

specific impulse than that obtained with a converging-diverging nozzle with the same ex-

pansion area ratio. Likewise, Cooper and Shepherd [102] also confirmed the performance

benefit of diverging nozzles over converging-diverging nozzles for detonation tubes operating

with stoichiometric ethylene–oxygen detonable propellants. However, in their experiments,

the detonation tube was suspended on a ballistic pendulum arrangement inside of a dump

tank, and the impulse was measured for various diverging and converging-diverging nozzle

configurations in sub-atmospheric environments ranging from 1.4–100 kPa. Like the results

of [118], Cooper and Shepherd [102] showed that the detonation tube impulse reduces with

increasing throat obstruction at a given blowdown pressure ratio, although this loss was
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shown to reduce as the blowdown pressure ratio increases. Despite this, it was demon-

strated in all test cases that diverging nozzles provide superior specific impulse compared

to converging-diverging nozzles, due to the losses produced at the throat obstruction for

converging-diverging nozzles.

Given the above observations, it can be said that purely diverging nozzles usually

yield more impulse for the PDE compared to that of a purely converging and converging-

diverging nozzle at the same operating condition. It is carefully noted that this remains

true provided the diverging nozzle is not operating in a severely over-expanded state during

the gasdynamic blowdown process, in which case significant losses can occur due to negative

net thrust production from the nozzle. However, a few important results should be noted

in regard to the use of diverging nozzles in PDE applications. Firstly, it is noted that a

converging section of the nozzle is not required to achieve choked flow at the nozzle entrance

or throat. In fact, choked flow is established at the entrance of a diverging nozzle due to

the formation of rarefaction waves in the thrust chamber flow field once the detonation

wave reaches the area change. Most important, this choking condition was confirmed in

the schlieren flow visualization experiments of Owens and Hanson [118], where expansion

fans were observed to emanate from the nozzle throat upon the passage of the detonation

wave. Note, this flow field characteristic is counter to what is usually required to achieve

a choked flow within a conventional-steady flow nozzle, which could prove to simplify the

design of PDE nozzles. Lastly, in the numerical study of Cambier and Tegnér [119], a

two-dimensional axisymmetric numerical model with a coupled finite-rate chemistry model

was used to investigate the effects of diverging nozzle wall curvature on PDE performance.

In that study, the diverging nozzles were varied between bell-shaped nozzles with negative

curvature, a conventional conical nozzle with zero curvature, and a flared nozzles with

positive curvature. It was demonstrated that a bell-shaped nozzle with negative curvature

provides the best overall performance compared to other diverging nozzle shapes. However,

unlike the nozzle studies of [102,114,115,118], the thrust chamber and nozzle were filled with
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propellant, and a corresponding decrease in specific impulse was observed with increasing

nozzle expansion area ratio. Consequently, this performance loss can be attributed to the

lost thrust potential of high pressure burned products at the nozzle exit during the nozzle

starting process, and to the large amount of detonable mixture required to fill diverging

nozzles. Hence, it is not advantageous to fill a diverging nozzle with detonable mixture

since any performance gain associated with the nozzle is not able to overcome the penalty

of using excess fuel to fill the nozzle. As such, Fig. 1.17 shows a general schematic of the

PDE with a diverging nozzle configuration that will be the focus of the current research.

Detonation Wave

WCJ}
Taylor Wave

}Burned Products

Non-Combustible
Mixture

Contact Surface

Lt

L

Ln

Figure 1.17. Schematic of PDE with diverging nozzle operation.

As shown in Fig. 1.17, only the constant-area portion of the thrust chamber is

filled with detonable propellant, while the remaining nozzle volume is filled with a non-

combustible gas. In practice, the non-combustible gas usually corresponds to the inert

purge gas used to exhaust the PDE of any remaining burned products from the previous

cycle, or simply the ambient condition. Additionally, the constant-area portion of the thrust

chamber is denoted by the length, Lt, and the nozzle by length, Ln, such that the overall

length of the PDE system is L = Lt + Ln. Moreover, the PDE and diverging nozzle con-

figuration can readily be characterized with the ratios α0 = Lt/L, and ε = Ae/A0, which

represent the axial fill fraction and nozzle expansion area ratio, respectively. In this case, the

axial fill fraction is analogous to the partially-filled PDE fill fraction defined in the previous
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subsection, such that the nozzle length has the relationship, Ln/L = 1 − α0. It is noted

that in the limit ε = Ae/A0 → 1, the PDE configuration depicted in 1.17 simply reduces to

that of a partially-filled PDE depicted in 1.16, whereby the performance is governed purely

by the gasdynamics associated with the method of partial filling. Conversely, when ε > 1,

the PDE configuration features geometric expansion in the nozzle, and the accompanying

thrust chamber flow field will evolve in a manner that is distinctly different from that ob-

served in partially-filled PDEs, due to the choking condition at the nozzle inlet. Hence,

the performance of a PDE with a given diverging nozzle will be governed by a coupling of

the gasdynamic expansion from the geometric area change in the nozzle, and the partial-fill

effect due to the presence of the non-combustible gas.

The coupling of the partial-fill effect and the performance of diverging nozzles has

been observed in previous numerical and experimental studies. For instance, in the ex-

perimental work conducted by Falempin et al. [109] the influence of various diverging and

straight-extension nozzle configurations on the impulse of detonation tubes operating with

stoichiometric ethylene–oxygen were investigated using a ballistic pendulum setup. In that

study, it was shown in one particular case that the detonation tube specific impulse could

be increased by a factor of roughly 1.4 by simply changing α0 from 0.5 to 0.33 while using a

diverging nozzle with the same expansion area ratio. Such performance behavior indicates

that the partial-fill effect, namely, where the specific impulse increases with decreasing fill

fraction, also influences the effectiveness of a given diverging nozzle. It is also worth noting

that these experiments were conducted with the ambient and initial propellant pressure

each at 1 atm. In the previously mentioned sub-atmospheric experimental work of Cooper

and Shepherd [102], it was shown that a straight-extension nozzle with α0 = 0.63 provides

superior specific impulse over a diverging nozzle with α0 = 0.77 and ε = 5.7 when the ratio

of ambient to initial propellant pressure is greater than roughly 0.5. However, once the

ambient pressure drops below roughly half the initial propellant pressure, it was shown that

the diverging nozzle provides superior performance. Lastly, it is noted that similar results
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were obtained in the multi-cycle PDE experimental study of Allgood et al. [120], where it

was shown that exhaust nozzles provide a performance benefit when the chamber fill frac-

tion was greater than 0.5; however, when the fill fraction reduces below 0.5 the optimum

performance is achieved with a straight-extension nozzle.

Based on the results mentioned above, it is evident that the fill fraction and acoustic

impedance of the non-combustible mixture governs the effectiveness of a given diverging

nozzle when compared to a straight-extension nozzle, or partially-filled PDE. Moreover,

given the discussion in the previous subsection regarding the method of partial filling, these

performance trends can best be explained by the effects of ambient acoustic impedance in

the nozzle. For instance, the partial-fill effect is known to have a strong presence when the

acoustic impedance of the non-combustible is high, namely, when the pressure of the ambient

is of similar order as the initial propellant pressure. However, as the ambient pressure is

reduced, the partial-fill effect attenuates and the effects of gasdynamic expansion in the

nozzle becomes the dominating factor that governs the performance. This observation was

first noted by Cooper [110], and was described in terms of the tamper mass effects regarding

the non-combustible mixture. Further, as discussed in [102], this suggests that the nozzle

flow can be characterized by a minimum of two distinct flow regimes, termed the unsteady-

or quasi-steady flow regimes, depending on the acoustic impedance of the non-combustible.

In the unsteady-flow regime, the partial-fill effect is said to dominate the impulse generation

of a PDE, and the most favorable performance gains are achieved with a simple straight-

extension nozzle. Further, in the quasi-steady-flow regime, the addition of a nozzle with the

corresponding gasdynamic expansion is said to dominate the impulse generation of a PDE,

and the most favorable performance gains are achieved with a diverging nozzle. However, a

PDE can still operate in the intermediate regime with an overlap of the unsteady- and quasi-

steady regimes, whereby the performance of the nozzle is governed by a more complicated

coupling of the partial-fill effect and the gasdynamic expansion in the nozzle.

59



It is of interest to be able to quantify the performance metrics associated with a given

nozzle design at general operating conditions. However, the complex nozzle flow inherent

to the operation of a PDE has made analytical performance modeling of PDE nozzles

especially challenging, except in a few restricted cases. For instance, in the unsteady-

flow regime, the performance of a nozzle is dominated by the partial-fill effect, and partial

filling models of Cooper [110], Sato et al. [98], and Endo [112] can be used to obtain

estimates of the associated performance. However, it is noted that these models are truly

only appropriate when ε = 1, namely, when no geometric expansion exists to further expand

the products during the gasdynamic blowdown. Moreover, in the quasi-steady-flow regime,

Cooper and Shepherd [102] proposed a very simple model based on the assumption that

the nozzle operates with steady flow and expands perfectly to match the ambient condition.

Additionally, the nozzle inlet state was chosen such that choked flow was achieved, but

with a stagnation enthalpy equal to that at the thrust wall. This model was shown to

qualitatively model the performance behavior of nozzles with increasing blowdown pressure

ratio; however, the model largely overestimated the measured specific impulse in [102].

Similarly, Barbour and Hanson [121] proposed a correction to the steady-flow model of [102]

based on the existence of an exhausting rarefaction wave in the actual thrust chamber flow

field. In that case, the throat stagnation enthalpy was replaced with the actual stagnation

enthalpy at the throat rather than that at the thrust wall, and slightly better agreement

was obtained with the measured specific impulse in [102]; however, the corrected model was

shown to still largely overestimate the specific impulse. Finally, Barbour and Hanson [121]

proposed an analytical model to treat the performance of detonation tube diverging nozzles

in the quasi-steady-flow regime. In this case, the combined analytical models for a fully-filled

detonation tube proposed by Wintenberger et al. [66,67] and Cooper and Shepherd [92] were

extended to the case of a diverging nozzle with quasi-steady flow. As discussed in [121],

the choking condition at the nozzle inlet was exploited to separately treat the impulse

generated from the detonation tube and coupled diverging nozzle. Moreover, the model was
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shown to agree well with the numerical and experimental results of [83, 102], provided the

acoustic impedance of the ambient and Ln/L are small, namely, when the partial fill effect

is negligible and the nozzle starting process is nearly instantaneous. Although, it is noted

that no reduced-order model currently exist that can accurately estimate the performance

of PDE nozzles across the unsteady and quasi-steady nozzle flow regimes. Hence, a major

goal of the current work is to understand the performance gains of general PDE diverging

nozzles through identifying the manner in which the acoustic impedance of the detonable

and non-combustible mixtures, nozzle length, and nozzle expansion area ratio combine to

influence the propulsive performance.

1.3 Thesis Outline and Research Objectives

As discussed in the previous sections, much progress has been made towards the un-

derstanding of performance gains associated with partially-filled PDEs, and PDEs equipped

with diverging nozzles. However, there is still no widely agreed upon model that can

readily evaluate the performance of general PDE configurations over a broad range of op-

erating conditions. Moreover, in order to establish comprehensive design methodologies

for partially-filled PDEs, and those equipped with diverging nozzles, rigorous treatment

of the unsteady thrust chamber and nozzle flow fields is required. In general, this can

usually only be accomplished with high-fidelity numerical models, such as those discussed

in [76, 81, 83, 98, 107, 114, 115, 119], whereby the performance is evaluated once the entire

thrust chamber and nozzle flow fields are determined. Although accurate, this approach

can become impractical when considering the computational expense of performing exten-

sive parametric studies in order to explore the design space of various PDE configurations.

Therefore, there is a need for simplified reduced-order models that can accurately and

rapidly evaluate the performance of general PDEs, while still capturing the physical gasdy-

namic flow phenomena inherent to the unsteady thrust chamber and nozzle flow fields. The

focus of the current research is to investigate and characterize the fundamental gasdynamic
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processes that govern the propulsive performance of a general PDE. This research effort is

separated into a series of related analytical, numerical, and experimental studies focused on

various gasdynamic interactions within a PDE thrust chamber and nozzle flow field. The

proposed work aims to investigate three distinct PDE operating configurations, namely,

the fully- and partially-filled PDE, and PDEs equipped with diverging nozzles. The thesis

outline and research objectives are listed below:

1. Chapter 1 discusses the fundamentals of detonations, which includes a detailed survey

of historical contributions leading up to the one-dimensional CJ and ZND detonation

theories. Additionally, the CJ theory is used to perform a comparative study of the

fundamental differences associated with the thermodynamics of deflagration and det-

onation waves, which is subsequently used to demonstrate the primary motivation of

pursuing detonation combustion in aerospace propulsion systems. Further, a com-

prehensive literature review of PDEs is provided, and a simple thermodynamic cycle

analysis is used to emphasize the importance of a properly designed nozzle device in

detonation-based propulsion systems. Consequently, a detailed review of the partial

filling method and use of diverging nozzles in PDE propulsion systems is provided

in order to detail the benefits of these respective performance enhancement methods.

A detailed discussion of recent modeling efforts for partially-filled PDEs and PDEs

equipped with diverging nozzles is provided, to highlight what phenomena appear to

govern the performance of these respective PDE configurations, and demonstrate the

limitations of existing models. As such, this discussion is used to establish the primary

motivation of this research, which is to investigate and characterize the fundamental

gasdynamic processes that govern the propulsive performance of a general PDE.

2. Chapter 2 provides a detailed description of the PDE thrust chamber flow field for a

fully- and partially-filled PDE, and for a PDE equipped with a diverging nozzle. More

important, this discussion is used to highlight the various gasdynamic discontinuities,

waves, and subsequent interactions that will arise during a single-cycle operation of
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a general PDE, which must be modeled appropriately in order to accurately evaluate

the various propulsive performance metrics.

3. Chapter 3 provides a detailed analytical description for the one-dimensional interac-

tion of a detonation wave with a contact discontinuity separating a detonable and non-

combustible mixture using the ZND detonation theory. This particular gasdynamic

interaction arises in PDEs when the detonation wave reaches the gaseous interface

separating the detonable and non-combustible mixtures. Moreover, this gasdynamic

interaction directly governs the incident properties of the shock that transmits into

the non-combustible mixture, and the incident reflected wave type and strength that

propagates upstream into the burned products, which can drastically influence the evo-

lution of the entire thrust chamber flow field. Additionally, a detonation-driven shock

tube facility is developed to experimentally investigate this particular gasdynamic in-

teraction, whereby experiments are conducted at various detonable equivalence ratios

and non-combustible inert mixture mole fractions. Finally, the experimental and an-

alytical results are reduced in terms of the ratio of detonable and non-combustible

mixture acoustic impedance.

4. In Chapter 4, a general quasi-one-dimensional method of characteristics (MOC) model

is developed for rapidly evaluating the single-cycle evolution of gasdynamic waves and

discontinuities in general PDE thrust chamber flow fields. The MOC model is devel-

oped using a simplified unit process approach with an explicit inverse time marching

algorithm in order to readily construct the complex thrust chamber flow field along

a predefined grid. Moreover, the model incorporates the detonation-contact surface

interaction results of Ch. 3 in order to accurately treat the one-dimensional collision

of a detonation wave with a contact discontinuity. A grid dependency study is carried

out to determine the appropriate grid resolution for the purposes of minimizing com-

putational expense without sacrificing numerical accuracy. Subsequently, a thorough

validation of the model is presented over a broad range of operating conditions with
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existing higher-fidelity numerical and experimental performance data for fully- and

partially-filled PDEs, and PDEs equipped with diverging nozzles. This includes PDEs

operating with a variety of detonable fuels, non-combustible inert gases, fill fractions,

blowdown pressure ratios, and nozzle expansion area ratios. Lastly, a detailed de-

scription of the model limitations is provided, and particular operating conditions are

addressed whereby the assumptions used in the development of the model become

inaccurate.

5. In Chapter 5, a simplified analytical model is developed based on control volume

analysis for evaluating the primary performance metrics of a general fully-filled PDE.

In this case, the MOC model is used to justify and establish a simplified thrust

relation based solely on the flow properties at the exit plane of a fully-filled PDE.

A detailed analytical description of the thrust chamber flow field is provided, from

which an analytical piecewise expression for thrust is derived based on the exit plane

pressure history. This expression is then used to evaluate the specific impulse, total

impulse, and time-averaged thrust of a fully-filled PDE. Lastly, this simplified model

is validated against the current MOC model and existing higher-fidelity numerical and

experimental performance data for a variety of detonable fuels, equivalence ratios, and

blowdown pressure ratios.

6. In Chapter 6, the MOC model developed in Ch. 4 is used to conduct a broad para-

metric study of the partially-filled PDE, and PDE equipped with a diverging nozzle.

In the case of partially-filled PDEs, the method of Ch. 3 is used to tailor the acous-

tic impedance of the non-combustible inert gas at a fixed fill fraction in order to

demonstrate the sensitivity of thrust chamber flow field and PDE performance to the

non-combustible acoustic impedance. Additionally, the detonable fill fraction and non-

combustible acoustic impedance are varied simultaneously in order to highlight the

general role of non-combustible acoustic impedance and fill fraction on the partially-

filled PDE performance. Subsequently, a parametric investigation of non-combustible
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mixture temperature is conducted to characterize the benefit of using moderately cold

non-combustible gases at different fill fractions. Similarly, the benefit of partial filling

is investigated for partially-filled PDEs operating in sub-atmospheric environments at

different fill fractions. It is demonstrated that the specific impulse performance results

generated with the MOC model from the various parametric investigations can suc-

cessfully be collapsed using the scaling law proposed by Sato et al. [98]. Additionally,

this scaling law is extended to other important performance metrics, such as the total

impulse and time-averaged thrust ratios. In the case of PDEs with diverging nozzles,

a parametric investigation is conducted to highlight the combined effects of nozzle

expansion area ratio and blowdown pressure ratio on the thrust chamber and nozzle

flow fields. In these cases, a detailed discussion of the transient nozzle starting flow

field is provided in relation to the acoustic impedance of the non-combustible mixture

and nozzle expansion area ratio. Similarly, a parametric investigation is conducted by

simultaneously varying the nozzle expansion area ratio at different blowdown pressure

ratios in order to determine the regimes of unsteady and quasi-steady flow, and the

associated influence on nozzle performance. For the regime of quasi-steady flow, a

simplified diverging nozzle performance model is developed based on the fully-filled

analytical model in Ch. 5. Lastly, the optimum nozzle performance characteristics of

PDEs are presented and discussed for diverging nozzles of different lengths, expansion

area ratios, and blowdown pressure ratios.

7. Chapter 7 provides a rigorous analytical description for the quasi-one-dimensional

dynamics of the transmitted shock wave inside a general contour diverging nozzle.

This model is derived on the basis of a two-equation approximation of the generalized

CCW theory for treating general shock dynamics in non-uniform channels. Addi-

tionally, unlike previous models, the present model includes the effects of both area

change and flow non-uniformity behind the transmitted shock, which is essential for

accurate modeling of the transmitted shock dynamics in PDE nozzles. In application
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to diverging PDE nozzles, this model is used to demonstrate how the thrust chamber

length governs the magnitude of flow non-uniformity behind the transmitted shock

entering the nozzle, and how drastically this can influence the nature of shock atten-

uation within a nozzle. Moreover, the shock dynamics model is used in conjunction

with the MOC model to demonstrate how different nozzle wall curvature influences

the PDE propulsive performance, due to the changes in transmitted shock attenua-

tion and gasdynamic over-expansion in the nozzle flow field during the nozzle starting

process.

8. Finally, in Chapter 8, a summary of the major research contributions from each chap-

ter is provided, and suggestions aimed at guiding further research of PDE propulsion

systems are discussed.
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CHAPTER 2

GASDYNAMIC FLOW FIELD IN PULSE DETONATION ENGINES

2.1 Fully-Filled Thrust Chamber

Before discussing details of analytical and numerical models, a discussion of the dom-

inant one-dimensional gasdynamic features of a fully- and partially-filled PDE flow fields,

as well as PDEs with diverging nozzles is provided. The intent of this chapter is to high-

light the important gasdynamic interactions and processes that must be considered when

developing a MOC-based solver for general PDE single-cycle flow fields. In this section, the

case of a fully-filled PDE is considered, and the subsequent sections are used to address

the additional flow features that arise in a partially-filled PDE, and PDEs equipped with

diverging nozzles.

Consider a straight and constant-area PDE thrust chamber with an overall length

L, which is fully filled with gaseous detonable propellant. The detonable propellant is

separated from the ambient by an idealized contact surface at the chamber exit plane.

For simplicity, it is assumed that the detonable propellant and contact surface are initially

stationary. After ignition, it is further assumed that a detonation wave is instantaneously

formed at the head end of the thrust chamber and propagates down the chamber away

from the thrust wall. In practice, such direct detonation initiation can be achieved using

exploding wire devices such as those used in the experiments of Zitoun and Desbordes [89].

However, in more practical operations, detonations are achieved using spark ignition with

DDT transition aided by Shchelkin spirals or various obstacles, such as those used in the

experiments of Schauer [95] and Cooper [90]. Once the detonation wave is formed, the

detonation is immediately followed by a self-similar rarefaction wave, also known as the

Taylor wave [122]. This rarefaction wave decelerates the gas from a high velocity to rest,

satisfying the closed wall boundary condition at the head end of the chamber. Figure
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2.1(a) shows a schematic of the developing gasdynamic flow field following initiation of a

detonation wave in the fully-filled PDE thrust chamber configuration under consideration.
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Figure 2.1. Schematic of (a) starting flow field following detonation initiation in fully-filled
PDE and (b) exhausting flow field after entrance of exhausting rarefaction at the thrust
chamber exit.

When the detonation wave collides with the contact surface, an unsteady shock wave is

transmitted into the surrounding. The incident strength of the transmitted shock depends

on the acoustic impedance change across the contact surface, which will be discussed in

detail in the following chapter. Simultaneously, a reflected wave propagates upstream into

the burned detonation products towards the head-end of the chamber. The strength of

this reflected wave is also governed by the acoustic impedance change across the contact

surface and can take the form of a reflected shock, a Mach wave, or rarefaction wave.

The reflected interface wave is immediately followed by an exhausting rarefaction wave

that propagates towards the thrust wall at the head end of the chamber. Moreover, the

exhausting rarefaction wave is the mechanism that accelerates the high pressure burned

products of the detonation wave out of the chamber and creates a sonic condition on the

exit plane of the PDE. This gasdynamic process is shown schematically in Fig. 2.1(b).
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Once the exhausting rarefaction reaches the head end of the chamber, the wave reflects,

causing the pressure on the thrust wall to start decreasing, which initiates the gasdynamic

blowdown of the thrust chamber to the ambient condition. This complete gasdynamic

flow field is depicted in the x–t diagram of Fig. 2.2, which highlights the behavior of the

detonation wave, Taylor wave, reflected interface wave, and exhausting rarefaction wave.

The generalized flow field description above details the dominant wave interaction processes

in a fully-filled PDE, which must be modeled appropriately in order to investigate the single-

cycle performance aspects of fully-filled PDEs.

Figure 2.2. x–t diagram of fully-filled PDE flow field where the color corresponds to pressure.

2.2 Partially-Filled Thrust Chamber

In the partially-filled case, only a portion of the PDE thrust chamber is filled with

detonable propellant, while the remaining portion of the chamber is filled with a non-

combustible gas. The non-combustible gas can either be ambient air outside the PDE, or as
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commonly encountered in practice, the inert gas used to purge the PDE from any remaining

combustion products from a previous cycle. The filled length is denoted by Lf , whereby

the parameter commonly referred to as the fill fraction for a constant-area thrust chamber

is simply the ratio of filled length-to-total chamber length, α = Lf/L. The detonable and

non-combustible mixtures are separated by a contact surface and are assumed to be initially

stationary. In practice, this is likely not the case as the fuel is being injected with a finite

velocity. However, for the sake of this discussion and subsequent idealized analysis, the

contact surface is assumed to be initially stationary. After ignition, the flow field begins to

evolve in a similar manner to that of a fully-filled PDE, with the propagating detonation

wave and following self-similar Taylor rarefaction wave. Figure 2.3(a) shows a schematic

of the developing gasdynamic flow field following initiation of a detonation wave for the

partially-filled PDE thrust chamber configuration under consideration.

As the detonation wave collides with the contact surface, an unsteady shock wave

is transmitted into the non-combustible gas. Simultaneously, a reflected wave propagates

upstream into the burned detonation products towards the head-end of the chamber. As in

the case of a fully-filled PDE, the strength of the transmitted shock and reflected wave are

directly governed by the acoustic impedance change across the contact surface. However,

unlike the fully-filled case, the exhausting rarefaction only enters the thrust chamber once

the transmitted shock exits the chamber. Following the detonation wave collision with the

contact surface, the transmitted shock and contact surface begin propagating towards the

PDE exit. While traveling towards the exit, both the contact surface and transmitted shock

wave decelerate as they are continually being overtaken by the transmitted Taylor rarefac-

tion wave from behind. Moreover, it is during this time that the burned products, now

bounded between the thrust wall and traveling contact surface, are continually expanded

before reaching the chamber exit plane. The reflected wave from the interface collision

travels upstream through the burned products until eventually reaching the thrust wall. In

the case of a reflected shock or Mach wave from the interface collision, the wave is immedi-
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Figure 2.3. Schematic of (a) starting flow field following detonation initiation in partially-
filled PDE, (b) intermediate flow field with transmitted shock, contact surface, reflected
interface wave, and following secondary rarefaction, and (c) exhausting flow field after
entrance of exhausting rarefaction at the thrust chamber exit.

ately followed by a secondary rarefaction wave. This secondary rarefaction wave forms to

relieve the gas behind the reflected shock or Mach wave to match the decaying pressure at

the contact surface traveling behind the decaying transmitted shock. Additionally, for the

sake of discussion in the subsequent analysis, the secondary rarefaction wave also includes

the reflected Taylor wave from the contact surface. This more complex flow field is shown

schematically in Fig. 2.3(b). As the contact surface encounters the exhausting rarefaction

wave, the contact surface accelerates through the rarefaction wave until eventually exiting

the chamber. Similarly, once the reflected interface wave and secondary rarefaction reach

the head end of the chamber, the wave reflects causing the pressure on the thrust wall to
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start decreasing, which initiates the intermediate phase of the gasdynamic blowdown. This

gasdynamic process is shown schematically in Fig. 2.3(c).

It can be noted that if the secondary rarefaction is led by a reflected shock from the

interface collision, then the pressure history on the thrust wall will experience an instanta-

neous increase from the shock reflection off the thrust wall, which is immediately followed

by a subsequent relaxation from the reflected secondary rarefaction. Once the secondary

rarefaction wave has completely reflected from the wall, the pressure history on the thrust

wall has decayed to an intermediate value that is above the ambient condition. In this case,

the exhausting rarefaction is the mechanism that returns the thrust wall pressure back to

the ambient condition. Hence, the exhausting rarefaction traveling towards the thrust wall

collides head on with the reflected secondary rarefaction and eventually reaches and reflects

off the thrust wall, initiating the remainder of the gasdynamic blowdown to the ambient

condition. This complete gasdynamic flow field is depicted in the x–t diagram of Fig. 2.4,

which highlights the behavior of the detonation wave, Taylor wave, reflected interface wave,

secondary rarefaction, and exhausting rarefaction.

Although not mentioned above, it is noted that the contact surface and exhausting

rarefaction interaction can result in reflected secondary compression waves that travel to-

wards the PDE exit. However, in most cases, these compression waves are weak and will not

significantly influence the performance of a partially-filled PDE. Further, it can be noted

that as the fill fraction becomes very low, it is possible to have cases where the reflected wave

from the interface collision propagates back towards the thrust wall, reflects, and eventually

intersects the contact surface before the contact surface has exited the PDE. This situation

is representative of the contact surface wave trapping mechanics studied by Kasahara et

al. [113] in an open-ended shock tube. Similarly, it is possible to get secondary reflected

compression or shock waves from the contact surface that reflect back towards the thrust

wall. These wave reflections can cause momentary pressure rises on the thrust wall during

72



Figure 2.4. x–t diagram of partially-filled PDE flow field where the color corresponds to
pressure.

the incident decay, and are regarded as a secondary flow phenomenon that only occur at

lower fill fractions.

2.3 Pulse Detonation Engines with Diverging Nozzles

A PDE with a diverging nozzle consists of a straight and constant area thrust cham-

ber that is coupled to a diverging nozzle section. The constant area portion of the PDE

thrust chamber is fully filled with detonable propellant up to the nozzle entrance, while

the volume occupied by the diverging nozzle is filled with a non-combustible gas. Similar

to the partially-filled PDE case, the non-combustible gas can either be ambient air outside

the PDE, or as commonly encountered in practice, the inert gas used to purge the PDE

from any remaining combustion products from a previous cycle. The detonable and non-

combustible mixtures are separated by a contact surface at the chamber exit and nozzle

inlet, and are assumed to be initially stationary. After ignition, the flow field begins to

evolve in a similar manner to that of a fully-filled PDE, with the propagating detonation
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wave and following self-similar Taylor rarefaction wave. Figure 2.5(a) shows a schematic of

the developing gasdynamic flow field following initiation of a detonation wave for the PDE

thrust chamber configuration with a diverging nozzle under consideration.
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Figure 2.5. Schematic of (a) starting flow field following detonation initiation in PDE with
a diverging nozzle, (b) intermediate and starting nozzle flow field with thrust chamber
reflected interface wave and exhausting rarefaction, nozzle transmitted shock and contact
surface, and (c) exhausting flow field after reflected exhausting rarefaction and formation
of secondary shock inside nozzle.

As the detonation wave collides with the contact surface, an unsteady shock wave

is transmitted into the non-combustible gas. Similarly, as in all previous cases, a reflected
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wave propagates upstream into the burned detonation products towards the head-end of the

chamber. The strength of the transmitted shock and reflected waves are directly governed

by the acoustic impedance change across the contact surface. Because the PDE features

a diverging nozzle, a sonic point forms at the inlet of the nozzle. The existence of this

sonic point drastically alters the nature in which the thrust chamber flow field develops

when compared with the partially-filled PDE, which features no area change. For instance,

the sonic point creates a unique situation where the flow field inside the constant area

portion of the thrust chamber is independent from the flow field within the nozzle. More

strictly, the sonic point at the nozzle inlet creates a choking condition whereby disturbances

from within the nozzle are unable to propagate into the constant area thrust chamber.

Consequently, so long as the choking condition exist at the nozzle inlet, the flow field within

the constant area portion of the thrust chamber is exact to that of a fully-filled PDE. Hence,

after the detonation wave collision with the contact surface, the reflected interface wave

is immediately followed by an exhausting rarefaction wave that together travel upstream

through the burned products until eventually reaching, and reflecting from the thrust wall.

Similar to the case of a fully-filled PDE, the exhausting rarefaction is the mechanism that

accelerates the gas within the thrust chamber to the sonic condition at the nozzle inlet

where the area change takes place, and relaxes the thrust chamber flow field back to the

ambient condition.

Immediately following the detonation and contact surface collision, the nozzle start-

ing flow begins with the transmitted shock and contact surface propagating through the

nozzle towards the nozzle exit. Similar to the case of a partially-filled PDE, while traveling

towards the exit, the transmitted shock wave decelerates as a result of continually being

overtaken by the transmitted Taylor rarefaction wave from behind. However, when the PDE

is equipped with a nozzle, the shock also decays as a result of the increasing area change

within the nozzle. This more complex flow field is shown schematically in Fig. 2.5(b). As

the transmitted shock travels the length of the nozzle, the gas behind the shock is expanding
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through the nozzle. If the expansion is rapid enough as a consequence of a rapidly increasing

area change, such that the gas coming from the nozzle inlet approaches pressures below that

behind the transmitted shock, then a secondary shock forms that brings the gas pressure

back up to that behind the transmitted shock. This gasdynamic process is shown schemat-

ically in Fig. 2.5(c). Moreover, the strength of the secondary shock in the nozzle starting

process is governed by the degree of over-expansion in the gas behind the transmitted shock.

Hence, cases of severe over-expansion yield fairly strong secondary shocks, whereas slight

over-expansion yields fairly weak secondary shocks. Note, that this type of unsteady noz-

zle starting process has similarities to the starting process found in hypersonic nozzles for

reflected shock tunnels [123–125]. In either case, the secondary shock is swept downstream

through the nozzle until eventually exiting. Once the transmitted shock, contact surface,

and secondary shock exit the nozzle, the unsteady nozzle starting process has completed

and a mostly quasi-steady flow field ensues, which is governed by the choking condition at

the nozzle inlet. In this case, the behavior of the exhausting rarefaction within the constant

area thrust chamber governs the flow properties at the choking condition at the nozzle inlet,

and the quasi-steady flow in the nozzle. This quasi-steady nozzle flow continues during the

thrust chamber blowdown until the head end pressure in the thrust chamber returns back to

the ambient condition. This complete gasdynamic flow field is depicted in the x–t diagram

of Fig. 2.6, which highlights the behavior of the detonation wave, Taylor wave, reflected

interface wave, exhausting rarefaction, transmitted shock, contact surface, and secondary

shock. To reiterate, the thrust chamber flow appears separate from the nozzle flow field due

to the sonic choking condition at the nozzle inlet at x/L = 0.7.

The generalized flow field description in this chapter details the dominant wave and

discontinuity interaction processes in fully- and partially-filled PDEs, as well as PDEs

equipped with diverging nozzles. In order to appropriately investigate the single-cycle per-

formance aspects of such PDE configurations with analytical or numerical methods, it is

critical that these gasdynamic processes be properly modeled. One of the most crucial pro-
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Figure 2.6. x–t diagram of PDE flow field with diverging nozzle where the color corresponds
to pressure.

cesses that governs the evolution of the resulting flow field in all cases is the collision of the

detonation wave with the contact surface. This particular gasdynamic interaction governs

the incident strength and velocity of the transmitted shock and reflected wave, which can

take the form of a shock, Mach wave, or rarefaction. Therefore, the next chapter is used to

investigate the one-dimensional collision of a detonation wave with a contact surface dis-

continuity in order to gain insights regarding the underlying physical parameters governing

this gasdynamic interaction.
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CHAPTER 3

DETONATION WAVE–CONTACT SURFACE INTERACTION 1

3.1 Background

The collision of a detonation wave with a contact surface discontinuity is a funda-

mental gasdynamic interaction process that takes place during the operation of a fully- or

partially-filled PDE, and PDEs operating with diverging nozzles. As mentioned in the pre-

vious chapter, the results of this gasdynamic collision drastically influences the evolving flow

field within the thrust chamber of a PDE, and the subsequent propulsive performance met-

rics. As such, properly capturing the underlying physics governing this gasdynamic collision

is vital to the success of analytical and numerical models for the propulsive performance of

general PDE based systems. The goal of this chapter is to provide a rigorous investigation of

this interface collision and demonstrate what properties of detonable and non-combustible

mixtures govern the transmission of a shock into the non-combustible mixture, and the re-

flected interface wave into the burned products. Additionally, the results of this chapter can

be used to properly tailor the reflected interface wave behavior in PDE thrust chambers,

which can be used as a means to adjust and control propulsive performance metrics.

Before discussing the interaction of a detonation with a contact surface discontinuity,

it is worth mentioning the insights gained from studies focused on the interaction of a

shock wave with a contact discontinuity. The one-dimensional transmission of a shock

wave into a gas as the result of a shock wave collision with a contact discontinuity has

received analytical and experimental coverage in previous studies [126–130]. This particular

interaction arises, for example, in shock tube flows where the reflected shock wave interacts

1Parts of this chapter were published in Peace, J.T. and Lu, F.K., “Detonation-to-Shock Wave Trans-

mission at a Contact Discontinuity,” Shock Waves, vol. 28, no. 5, pp. 981–992, 2018. doi: 10.1007/s00193-

018-0804-6
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with the contact surface separating the post-shock and driver gases. In this particular

flow process, a shock wave is transmitted through the contact surface and a simultaneous

reflected shock or rarefaction occurs in the opposite direction. In the studies conducted

by Bitondo et al. [127, 128], the exact reflection type has been shown to depend on the

ratio of internal energies across the contact surface and can either amplify or attenuate

the transmitted shock. This work was later used to tailor shock tube flows such that a

Mach wave reflection could be obtained from the interaction of the shock wave and contact

surface [131]. It is noteworthy that the shock collision with a contact discontinuity, in fact,

gives rise to a Richtmyer–Meshkov instability which is beyond the scope of the current

investigation [132].

Unlike the extensive treatment of the normal incidence of a shock wave on a con-

tact discontinuity, there has been less treatment of the transmitted shock wave from the

one-dimensional interaction of a detonation wave with a contact discontinuity separating

a detonable and non-combustible mixture. Morrison [133] conducted the first theoreti-

cal treatment of this gasdynamic interaction while investigating the use of a detonation

driver to induce shocks in the test section of a shock tube. An analytical expression was

provided for the strength of the transmitted shock, namely, the pressure ratio following

the collision for the cases of reflected shock, rarefaction, and Mach wave by matching the

pressure and gas velocity across the resulting interface. Similarly, Paterson [134] provided

further analytical treatment by calculating the properties of a transmitted shock wave into

a reactive and non-reactive medium following the collision of a detonation wave onto a con-

tact surface. Calculations were carried out assuming an equilibrium CJ detonation state

and waves reflecting into stoichiometric oxyhydrogen and stoichiometric oxygen and carbon

monoxide detonation products. The criterion for the reflection type was determined by use

of pressure–velocity diagrams and the locus of transmitted shock solutions relative to the

equilibrium detonation state. In Pack’s [135] analysis, a criterion was derived to uniquely

determine the nature of the reflected wave based on the relative shock impedances of the
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detonable medium and the medium for which the transmitted wave passes. In that study,

the shock impedance was defined as the product of equilibrium density of the medium and

the velocity of the shock relative to the medium. Lastly, this interaction was also treated

in an analytical study conducted by Fickett [136], where the incident interaction was used

to determine the trajectory of the transmitted shock in an inert medium with lower shock

impedance. Experiments were conducted by Thomas et al. [137] to determine the properties

of a transmitted shock wave as the result of a detonation wave incident on both an abrupt

planar gaseous interface and a diffuse concentration gradient. In the case of an abrupt

planar interface, the measured transmitted shock was shown to agree well with the theory

of Paterson for stoichiometric acetylene–oxygen detonations and helium, air, argon, and

carbon dioxide inert gases. It is noted that each of these cases would result in a reflected

rarefaction from the contact surface.

The current work provides a general analytical treatment of the interaction of a det-

onation wave with a stationary contact discontinuity and discusses the analytical results

obtained for oxyhydrogen detonations. In all known previous analytical studies, the detona-

tion state has been modeled by the equilibrium CJ state, such that the effects of the leading

shock front, and the induction and reaction zones were not considered in the one-dimensional

analysis. The methods used in the current study are similar to that implemented in the

works of Paterson [134], Pack [135], and Fickett [136]; however, the one-dimensional det-

onation wave is modeled using the ZND detonation wave representation. Making use of

this simplified detonation model allows one to investigate the effects of selecting various

representative post-detonation states across the one-dimensional detonation structure on

the transmitted shock wave properties. In actuality, a detailed rigorous treatment of this

gasdynamic interaction would encompass using the von Neumann peak [32] to determine

the incident transmitted shock and reflected wave strengths, and then computing the sub-

sequent interaction of the reflected wave with the reaction zone structure of the ZND wave

profile in order to establish the final transmitted shock strength following the collision. How-
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ever, such analysis is well beyond the capabilities of any analytical treatment and would

require high-fidelity numerical investigations featuring spatial resolution several orders of

magnitude less than that of the reaction zone thickness of a detonation wave. Therefore,

the goal of the current work is to simplify this gasdynamic interaction, and use a represen-

tative post-detonation state from within the detonation wave structure to obtain adequate

results regarding the transmitted shock wave properties. Concurrently, an experimental

investigation was conducted using a detonation-driven shock tube facility operating with

oxyhydrogen detonable mixtures and helium–air inert mixtures, and the measured trans-

mitted shock velocities are compared with the analytical results. Further, the acoustic

impedances of the detonable and non-combustible gases are used to develop a relationship

with the transmitted shock and detonation wave velocities that can assist in tailoring the

reflection type when a detonation wave is incident on a contact discontinuity.

3.2 Theory

The focus of this chapter is to analytically describe the one-dimensional interaction

of a detonation wave with a contact discontinuity. Consider a constant area, closed tube

which is partially filled with a gaseous detonable mixture with the remaining length filled

with an inert, non-combustible gas, which are separated by a contact surface discontinuity.

This setup was previously depicted in Fig. 2.3(a) of Ch. 2, which shows a detonation wave

traveling towards the contact surface in a partially-filled PDE. The initial pressure and

density of the gases on either side of the contact surface are denoted by p1, ρ1, p0, and

ρ0, where the subscripts 1 and 0 represent the detonable and inert gases, respectively.

Similarly, the ratio of specific heats for the detonable and inert gases is denoted by γ1 and γ0,

respectively. The detonation wave is modeled by the one-dimensional ZND theory [31–33].

In this representation, the detonation wave has a finite thickness as a result of the induction

and reaction zones following the detonation front. The ZND detonation wave representation

is utilized to preserve the theoretical, one-dimensional planar structure of the detonation
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wave from the von Neumann (vN) peak, a characteristic of the leading shock front, to the

equilibrium CJ detonation state. Consistent with this representation and depicted in Fig.

3.1(a), the planar detonation wave travels towards the contact surface at the characteristic

CJ velocity of the detonable mixture WCJ . As mentioned previously, when the detonation

wave collides with the contact surface, distinct reflection types can occur that determine the

transmitted shock wave properties. For example, Figs. 3.1(b) and 3.1(c) depict the cases of

a reflected shock and rarefaction from the contact surface, respectively. In these figures, the

post-detonation, reflected characteristic, and transmitted shock states are denoted by 2, 2′

and 0′, respectively. Although not shown in Fig. 3.1, a third degenerate case can exist such

that a reflected Mach wave, namely, an infinitely weak wave, propagates into the detonation

products. This reflection type can only occur under specified conditions and will also be

discussed further in the subsequent sections.

(0)(1)(2)

WCJ CS

(a)

(0')(2')(2)

Wr CS Wt

(0)

(b)

(0')(2')(2)

Rr CS Wt

(0)

(c)

Figure 3.1. (a) One-dimensional gasdynamic interaction and associated states for detonation
wave collision with contact surface (CS) with formation of (b) a reflected shock wave and
(c) a reflected rarefaction wave at the contact surface.

Following Paterson [134] and Pack [135], the properties of the transmitted shock wave

can be determined by considering a reflected shock, a rarefaction, or a Mach wave from the

contact surface following the collision. Consider a shock wave, where for idealized flow

82



in the absence of friction and heat transfer, the locus of all possible instantaneous states

behind a reflected shock wave from the contact surface is given by [138]

u2′ = u2 − a2

(
p2′

p2
− 1

)[
γ2 (γ2 − 1)

2

(
1 +

γ2 + 1

γ2 − 1

p2′

p2

)]−1/2

= u2 − φ (p2′) (3.1)

Similarly, the locus of all possible instantaneous states behind a reflected, (isentropic) rar-

efaction wave from the contact surface is given by [138]

u2′ = u2 −
2a2

γ2 − 1

[(
p2′

p2

)(γ2−1)/2γ2

− 1

]
= u2 − ψ(p2′) (3.2)

Lastly, the locus of all possible instantaneous states behind the transmitted shock wave is

given by

u0′ = u0 + a0

(
p0′

p0
− 1

)[
γ0 (γ0 − 1)

2

(
1 +

γ0 + 1

γ0 − 1

p0′

p0

)]−1/2

= u0 + χ (p0′) (3.3)

The strength and velocity of the transmitted shock wave into the inert gas can be solved for

given appropriate constraints to (3.1), (3.2) and (3.3). The constraints for this particular

interaction require the pressure and gas velocity behind the transmitted shock be exactly

equal to the pressure and gas velocity following the reflected characteristic at the contact

surface, namely p0′ = p2′ and u0′ = u2′ . Therefore, for the cases of a shock, a rarefaction, or

a Mach reflection from a stationary contact surface (u0 = 0), the following three conditions

exist, respectively:

u2 − φ (p2′) = χ (p0′) (p2′ > p2) (3.4)

u2 − ψ (p2′) = χ (p0′) (p2′ < p2) (3.5)

u2 = u2′ (p2′ = p2) (3.6)

Further, with p2, u2, a2 and γ2 solely dependent on the selection of the detonation state, and

with the constraint p0′ = p2′ , (3.4)–(3.6) provide separate equations for a single unknown,

namely p2′ , depending on whether p2′ ≷ p2 or equal to p2. Therefore, by numerically

solving for p0′ = p2′ in (3.4)–(3.6), the transmitted shock strength and wave velocity can

be obtained for an arbitrary gaseous detonable mixture for conditions that result in one of
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three possibilities, namely, a reflected shock, a rarefaction or a Mach wave occurs at the

contact surface, respectively.

To determine the final transmitted shock solution, the post-detonation state 2 must

be specified, namely, the post-detonation pressure p2, gas velocity u2, sound speed a2, and

ratio of specific heats γ2 must be known. The most obvious state to consider would be the

vN state immediately behind the leading shock front of the detonation wave. This selection

is consistent with the gasdynamic interaction depicted in Fig. 3.1. It is noted here that

making use of the ZND model widens the versatility of the current theoretical work to a

family of solutions that can be obtained based on the selection of state 2. At this point, it is

convenient to make use of the reaction progress variable λ that is associated with a particular

post-detonation state. The different states of reactants passing through the ZND detonation

wave structure can be uniquely assigned a value of λ from zero to unity, depending on the

given location in the combined induction and reaction zones. At the leading shock front,

the gas is assumed to be adiabatically compressed to the vN state, which can be regarded

as λ = 0. Similarly, at the equilibrium CJ plane, all relevant chemical reactions have fully

terminated and the reaction progress variable is taken as λ = 1. The intermediate, quasi-

equilibrium states residing in the induction and reaction zones will have a λ value ranging

from zero through unity. For an appropriately considered family of solutions, the cases of

λ = 0, 1/2 and 1 are chosen in this study, where only the case of λ = 1/2 is arbitrary. It

is noted that for general detonable mixtures, there are usually numerous reaction progress

variables that correspond to the various species in the post-detonation equilibrium state.

Hence, for this study, the state corresponding to λ = 1/2 is taken as the average temperature

location within the reaction between the vN and CJ equilibrium state. Note that the case

of λ = 1 is identical to the theoretical approach taken by Paterson [134].
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For λ = 0, where the detonation state 2 is defined by the vN peak, the pressure, gas

velocity in the wave reference frame, and sound speed are given by

pvN =
2γ1M

2
CJ − (γ1 − 1)

γ1 + 1
p1 (3.7)

uvN =
2 + (γ1 − 1)M2

CJ

(γ1 + 1)M2
CJ

WCJ (3.8)

avN =

{[
2γ1M

2
CJ − (γ1 − 1)

] [
(γ1 − 1)M2

CJ + 2
]}1/2

(γ1 − 1)M2
CJ

WCJ (3.9)

Additionally, the vN state can be regarded as calorically perfect such that, γvN = γ1. For

λ = 1, where the detonation state 2 is defined by the equilibrium CJ state, the pressure,

gas velocity in the wave reference frame, and sound speed are given by [65]

pCJ =
γ1M

2
CJ + 1

γ2 + 1
p1 (3.10)

uCJ =
γ1M

2
CJ − γ2

γ1M2
CJ

1

γ2 + 1
WCJ (3.11)

aCJ =
γ1M

2
CJ + 1

γ1M2
CJ

γ2

γ2 + 1
WCJ (3.12)

In the above equations, γ2 represents the equilibrium ratio of specific heats at the rear

surface of the chemical reaction zone. Lastly, to calculate the detonation properties and the

λ = 1/2 state, the chemical kinetics computer program Cantera with a Matlab shock and

detonation toolbox are utilized [24, 29, 30]. The three distinct detonation states utilized in

this study are summarized in Table 3.1.

Table 3.1. Denotation of state 2 using ZND detonation wave model.

λ p2 u2 a2 γ2

0 pvN uvN avN γvN

1/2 p1/2 u1/2 a1/2 γ1/2

1 pCJ uCJ aCJ γCJ

85



The gasdynamics of a reflected shock and rarefaction from the contact surface are

demonstrated in the form of an x–t diagram in Fig. 3.2. As shown in Fig. 3.2(a), the incident

transmitted shock wave propagates with a slower wave velocity than the detonation wave

velocity yielding a reflected shock wave from the contact surface. Alternatively, as shown

in Fig. 3.2(b), the incident transmitted shock wave propagates with a faster wave velocity

compared to the detonation wave velocity in the event of a rarefaction reflection from the

contact surface. The third scenario, not depicted in Fig. 3.2, is a reflected Mach wave. In

this case, the incident transmitted shock velocity is equal to the detonation wave velocity.

The characteristics of these incident shock wave velocities will be discussed in a later section

from the context of the relative acoustic impedance between the detonable and inert gases.
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Figure 3.2. x–t-diagram of (a) shock reflection and (b) rarefaction reflection at the contact
surface.

For completeness, it is worth considering the effects of vibrational excitation in the gas

immediately following the transmitted shock, especially when comparing with experimental

measurements made in the detonation-driven shock tube facility in the following subsec-
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tion. In the region just downstream of the diaphragm where time-of-flight measurements

are taken, it is possible for the post-transmitted shock gas to be in a state of vibrational

nonequilibrium or complete vibrational equilibrium. In the current study, the temperatures

experienced behind the shock are on the order of 2,000 K, which is high enough to vibra-

tionally excite any oxygen molecules present in the driven section. Therefore, it is pertinent

to estimate the distance for which the shock reaches a state of vibrational equilibrium re-

garding the experimental cases of 100 and 20 percent air by volume in the driven section.

In the case of 20 percent air by volume, the remaining gas is helium, which will effectively

lower the vibrational relaxation time as a result of oxygen molecules more frequently collid-

ing with a monatomic partner. Thus, it is to be expected that the case of a driven section

helium mole fraction equal to 0.8 will yield transmitted shock solutions where vibrational

equilibrium is reached within a shorter distance downstream of the diaphragm.

From the RH shock jump conditions, the nonequilibrium post-shock temperature

and pressure can be estimated by averaging the frozen and equilibrium states. Further,

using the estimated nonequilibrium pressure and temperature, the vibrational relaxation

time can be approximated with empirical correlations based on conventional Landau–Teller

plots (ln pτvib vs. T−1/3) [139,140]. Thus, considering a transmitted shock moving at Mach

5 in air and a helium–air mixture with a helium mole fraction of 0.8, the approximate

vibrational relaxation time is calculated to be 0.82 µs and 0.013 µs, respectively. These

relaxation times indicate that the transmitted shock will reach a state of vibrational equi-

librium within approximately 1.4 mm and 43 µm downstream of the diaphragm in the

respective cases specified above. Note, this is before the first pressure transducer used to

conduct time-of-flight measurements for the transmitted shock. Therefore, it is expected

that the experimentally created transmitted shock waves would be in a state of vibrational

equilibrium when passing the first transducer used in the time-of-flight measurement. For

this reason, equilibrium solutions have been computed and included in the results alongside

calorically perfect gas solutions discussed at the beginning of this section. It is worth not-
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ing that the vibrational equilibrium transmitted shock solutions deviate from the calorically

perfect gas solutions by a maximum of 2.5 percent in the case of 100 percent air by volume

in the driven section. This small deviation is attributed to the relatively small fraction of

O2 present in the air mixture, which is roughly 21 percent by volume in the case of air, and

only roughly 4.2 percent by volume in the case of helium mole fraction equal to 0.8. Addi-

tionally, it is noted that these curves provide the upper and lower bounds for transmitted

shock solutions where vibrational non-equilibrium is present.

A final comment is made regarding the range of application and validity of the cur-

rent theoretical work. As seen in Fig. 3.2, the Taylor wave following the detonation wave

transmits through the reflection type and now traveling contact surface following the col-

lision. This allows the Taylor wave to overtake the transmitted shock wave, which causes

the transmitted shock to decay from its incident strength as it continues to propagate into

the inert gas. However, the current theoretical work only treats the incident transmitted

shock strength and velocity. The decay behavior of the wave is not accounted for and re-

quires additional theoretical treatment, such as that discussed by Fickett [136]. Further,

the simplified one-dimensional ZND structure of a detonation wave is purely theoretical and

not entirely in concert with experimental observation. As discussed previously in Ch. 1,

a physical detonation wave is composed of a transient three-dimensional cellular structure

for which the steady, planar, and one-dimensional ZND theory fails to capture. Despite

this aspect of the experimentally observed detonation wave structure, the theoretical work

presented herein remains suitable for providing insights regarding the role of selecting var-

ious states within the simplified detonation structure and the corresponding effect on the

transmitted shock properties.

3.3 Experimental Setup

An experiment was constructed to validate the theoretical analysis discussed above.

The setup comprised of a 1.91 cm diameter detonation tube with an overall length of 1.93
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m and a detonation driver section length of 1.22 m. The driver and driven sections featured

an array of eight high-frequency PCB model 111A24 pressure transducers for obtaining

pressure and time-of-flight measurements of the incident detonation wave and transmitted

shock. For the experiments, only detonable mixtures of H2 and O2 were considered. To

provide an appropriate sweep of test conditions, the equivalence ratio of the oxyhydrogen

mixture was varied from 0.5 ≤ φ ≤ 1.5. Similarly, the driven section was filled with a

non-combustible mixture of helium and air where the helium mole fraction was varied from

0.0 ≤ XHe ≤ 1.0. This enabled a large range of experimental testing conditions for both

a reflected shock and rarefaction to be observed from the contact surface. Fig. 3.3 shows

a schematic of the experimental setup and the transducer locations. Table 3.2 provides

the location of each transducer relative to the diaphragm. Here the negative dimensions

indicate the transducers upstream in the driver section.

For each test, both the driver and driven sections were evacuated down to roughly 1

kPa before filling each section with the desired oxyhydrogen and helium–air mixtures. To

mitigate the possibility of contaminants or impurities in the desired mixtures, the sections

were then refilled with either O2 or helium and evacuated two additional times. This ensured

the remaining gas left in each sections was the appropriate gas for establishing the correct

mixture. The desired oxyhydrogen equivalence ratio and helium–air mixtures were obtained

by using partial pressures measured by two analog pressure gauges with a resolution of 3.4

kPa. This gauge resolution permits setting the desired oxyhydrogen mixture equivalence

ratio with a minimum and maximum uncertainty of ± 0.026 and ± 0.111, corresponding

to the fuel lean and fuel rich equivalence ratios of 0.5 and 1.5, respectively. Further, this

gauge resolution permits setting the driven section helium mole fraction with a minimum

and maximum uncertainty of ± 0.017 and ± 0.021, corresponding to the cases of helium–

air mixtures with helium mole fractions of 0.2 and 0.8, respectively. An automotive spark

plug was used in order to obtain a detonation wave in the driver section of the setup.

Moreover, to aid in the DDT transition process, a Shchelkin spiral with a blockage ratio
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BR = 1.58/2.85 = 0.55 was placed at the head end of the driver section. To allow for

proper mixing of the oxyhydrogen mixture after filling, the static detonable mixture was

left undisturbed in the driver section for 15 minutes prior to spark ignition of the detonable

driver mixture.

H2

O2

HePolyethylene
Diaphragm

Spark Plug

Vacuum Pump

Driver Section
1.22 m

Driven Section
0.71 m

P1 P2 P3
P4 P5 P6 P7 P8

Shchelkin Spiral

Figure 3.3. Schematic of detonation-driven shock tube experimental setup.

Table 3.2. Pressure transducer location relative to diaphragm (all dimensions in cm).

P1 P2 P3 P4 P5 P6 P7 P8

−30.48 −20.32 −10.61 1.91 13.97 24.13 34.29 44.45

To determine the influence of using a thin diaphragm as a contact surface, a sweep

of stacked 12.7 µm thick, low-density polyethylene diaphragms was conducted to determine

the differential rupture pressure and ratio of transmitted-to-detonation wave velocity. Fig.

3.4(a) shows the results of rupture pressure versus the number of diaphragms. The rela-

tionship can be seen to be adequately linear over the range of tested diaphragms with a

minimum differential rupture pressure of approximately 46 ± 3.5 kPa corresponding to a

single diaphragm.
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Figure 3.4. (a) Rupture pressure vs. number of diaphragms and (b) ratio of transmit-
ted shock to detonation wave velocity vs. diaphragm rupture pressure for a stoichiometric
oxyhydrogen detonation driver and helium driven section.

Figure 3.4(b) shows the results of the transmitted shock to detonation wave velocity

ratio for the sweep of diaphragms and associated rupture pressures. In this case, the H2/O2

mixture was stoichiometric and the inert gas was He. These conditions should result in a

reflected rarefaction from the contact surface and are most sensitive to the nature of the

reflection type that takes place at the contact surface. Further, it is noted that during

these diaphragm experiments, the average peak detonation pressure was measured to be

roughly 2,609 ± 37.3 kPa, which was well above that required to rupture all of the vari-

ous diaphragms. Additionally, if reflected shocks were observed as a result of the physical

diaphragm, then these conditions will make it most evident. It is clear from Fig. 3.4(b)

that there was a negligible effect of diaphragm rupture pressures on the ratio of transmit-

ted shock to detonation wave velocity for rupture pressures less than approximately 140

kPa. Further, for diaphragm rupture pressures less than 140 kPa, there was no observed

shock reflection at transducer P3 following the collision, which further indicated the single

diaphragm had a negligible effect. Similar results were obtained by Li et al. [141], where

the effects of diaphragms were investigated for detonation transmission across an interface
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of two detonable mixtures. Although rupture pressures were not reported in that study,

Li et al. [141] showed that polyester diaphragms less than 50 µm thick yielded detonation

wave propagation velocities that approached the case of no diaphragm when a slide gate

valve was utilized. Therefore, for these experiments, the driver and driven sections of the

setup were separated by a single 12.7 µm low-density polyethylene diaphragm to act as the

contact surface of the detonable and non-combustible mixtures.

3.4 Comparison of Theoretical and Experimental Results

To ensure that a meaningful comparison can be made between the analysis and ex-

perimental results, it must be shown that a detonation wave traveling near the CJ velocity

is established for the range of oxyhydrogen mixtures used within this study. Fig. 3.5 shows

the measured detonation wave velocity results from applying a time-of-flight method with

the array of pressure transducers in the driver side. For fuel-rich equivalence ratios, the

error between the measured detonation wave velocity and the CJ theory was less than one

percent. However, for the fuel lean mixtures, an average error of approximately seven per-

cent was observed. These error margins are thought to be acceptable for carrying out the

full experimental sweep of test conditions for validating the theoretical work. Thomas et

al. [137] never directly quoted the incident detonation wave velocity in their study; however,

similar error with the CJ theory can be deduced from various plots. It can also be noted

that a fully-developed detonation wave was observed in the present study by the first pres-

sure transducer P1 at a distance of 91.5 cm from the ignition source at the head end of the

driver section. Subsequent pressure histories also indicated the presence of a fully-developed

detonation wave which adds evidence that such a wave was properly established.

For the transmitted shock, the wave velocity is determined by using a time-of-flight

method between pressure transducers P4 and P5, where transducer P4 is located 1.91 cm

from the diaphragm and 12.1 cm from transducer P5. Fig. 3.6 compares the present analysis

and the measured transmitted shock wave velocities, where Fig. 3.6(a) corresponds to taking
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Figure 3.5. Measured detonation wave velocity for different oxyhydrogen mixtures compared
with the CJ theory.

state 2 as the λ = 0 or vN state, Fig. 3.6(b) corresponds to the λ = 1/2 or half-reaction

quasi-equilibrium state, and Fig. 3.6(c) corresponds to the λ = 1 or equilibrium CJ state.

In these experiments, a reflected shock was observed for all equivalence ratios when the

driven section is filled with 100 percent air, namely, when XHe = 0. However, a reflected

rarefaction was observed for all other tested equivalence ratios when the driven side contains

a mixture of helium–air with XHe = 0.8 and 1.0.

Comparison of the measured shock wave velocities and the theoretical predictions

suggested that using either the vN state or half-reaction quasi-equilibrium state as the

post-detonation state yielded the best agreement in the case of a reflected rarefaction.

However, the accuracy became diminished when reflected shock waves are observed from

the contact surface. This is true for both the calorically perfect and equilibrium transmitted

shock solutions. The opposite results were obtained when using the equilibrium CJ state

as the post-detonation state in the analytical calculations. Fig. 3.6(c) shows that moderate

agreement is achieved when the driven side was filled with air only and a reflected shock was

observed from the contact surface. However, mostly poor agreement is obtained in the case

of reflected rarefaction. The average error over the full test range between the measured

transmitted shock wave velocities and theoretical predictions based on various selections of
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Figure 3.6. Comparison of measured and theoretical transmitted shock velocity for (a) λ
= 0, (b) λ = 1/2, and (c) λ = 1 vs. oxyhydrogen mixture equivalence ratio at helium mole
fractions of 0.0, 0.8, and 1.0, where the solid and dashed lines represent the calorically
perfect and equilibrium solutions.

the post-detonation state is summarized as 15.3, 6.8, and 18.7 percent for λ = 0, 1/2 and

1, respectively. In the case of a reflected rarefaction from the contact surface, the average

error is summarized as 6.1, 2.1, and 21.4 percent for λ = 0, 1/2, and 1, respectively. Lastly,

in the case of a reflected shock from the contact surface, the average error is summarized

as 33.5, 16.4, and 13.4 percent for λ = 0, 1/2, and 1, respectively.
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The second range of test conditions consisted of sweeping the helium–air mixture

ratio by sweeping the helium mole fraction in the driven section from 0.0–1.0 at driver

oxyhydrogen mixture equivalence ratios of 0.5, 1.0, and 1.5. The measured transmitted

shock wave velocity and theoretical prediction are provided in Fig. 3.7 where Fig. 3.7(a)

corresponds to taking state 2 as the λ = 0 or vN state, Fig. 3.7(b) corresponds to the

λ = 1/2 or half-reaction, quasi-equilibrium state, and Fig. 3.7(c) corresponds to the λ

= 1 or equilibrium CJ state. For these conditions, a reflected shock from the contact

surface was observed for helium mole fractions of less than 0.4, 0.6 and 0.8 for oxyhydrogen

mixture equivalence ratios of 0.5, 1.0 and 1.5, respectively. Similar behavior regarding the

comparison of theoretical and measured transmitted shock wave velocities are shown in Fig.

3.7. For instance, better agreement is observed when using the vN or half-reaction quasi-

equilibrium states as the post-detonation state in the case of a reflected rarefaction from

the contact surface. Alternatively, the agreement becomes diminished as the helium mole

fraction in the driven section reduced to zero and the driven section consisted solely of air.

Once again, the reverse behavior is true for the case of selecting the equilibrium CJ state

as the post-detonation state. An average error is not reported in this case as the range of

test conditions yields both reflected shock and rarefaction waves from the contact surface

for a sweep of helium mole fraction at all test equivalence ratios.

3.5 Non-Dimensional Acoustic Impedance Results

It is desirable to introduce non-dimensional parameters to aid in collapsing the data

into a characteristic physical relationship regarding the interaction of a detonation wave with

a contact surface. An additional interpretation regarding the nature of the reflection type

can be established by making use of the transmitted shock and detonation wave acoustic

impedance. Past numerical studies have shown that the generalized acoustic impedance for

a shock wave can be used to predict the reflection type at the contact surface following the

collision of a detonation wave [98]. In essence, the nature of the reflection type is governed
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Figure 3.7. Comparison of measured and theoretical transmitted shock velocity for (a) λ =
0, (b) λ = 1/2 and (c) λ = 1 vs. helium mole fraction at oxyhydrogen mixture equivalence
ratios of 0.5, 1.0, and 1.5, where the solid and dashed lines represent the calorically perfect
and equilibrium solutions.

by the ratio of acoustic impedance across the contact surface. The generalized acoustic

impedance depends on the density, specific heat ratio, incident detonation and transmitted

shock wave pressure ratio, and are given by [142]

z0 =

{
ρ0p0

2

[
(γ0 + 1)

p0′

p0
+ (γ0 − 1)

]}1/2

(3.13)

z1 =

{
ρ1p1

2

[
(γ1 + 1)

p2

p1
+ (γ1 − 1)

]}1/2

(3.14)
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where the subscript 2 and 0′ correspond to the post-detonation state selected for the the-

oretical calculations, and the resulting post-transmitted shock state, respectively. In this

representation, the acoustic impedance is simply a measure of the mass flux through the

shock front of the detonation wave as a consequence of the upstream gas properties. This

definition is really only appropriate for a shock wave or, likewise, the vN state of a detona-

tion wave. Nonetheless, the definition can be extended to any general moving discontinuity

including the quasi-equilibrium state within the detonation wave structure in which heat

release is observed. It follows that in the case of λ = 0, if z0/z1 > 1 then a reflected shock

wave will occur when the detonation wave collides with the contact surface. Similarly, if

z0/z1 < 1 then a reflected rarefaction will result from the detonation contact surface col-

lision. Lastly, if z0/z1 = 1, namely, the acoustic impedances between the detonable and

non-combustible mixtures are identical, then the resulting reflection type is a Mach wave.

Therefore, the first non-dimensional parameter is taken as the ratio of acoustic impedance

between driven and driver sections, respectively.

Z =
z0

z1
(3.15)

The second non-dimensional parameter can be taken as the ratio of transmitted shock wave

velocity to detonation wave velocity.

Γ =
WT

WCJ
(3.16)

This is an effective way of normalizing the results to unity in the case of a reflected Mach

wave where Γ = 1 when Z = 1. The experimental acoustic impedance is determined using

the measured detonation and transmitted wave velocities and scaling by the appropriate gas

density to recover the mass flux ratio. Fig. 3.8 shows the results of all the experimental tests

collapsed into a single plot using the non-dimensional relationships in (3.15) and (3.16).

In this representation, it is evident that the selection of state 2 in the theoretical

calculations influences the observed agreement over the range of conditions yielding reflected

shock and rarefaction waves. In the case of a reflected rarefaction, Z < 1, the ratio of
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transmitted-to-detonation wave velocity Γ is best represented by taking λ = 0 as the post-

detonation state. This is despite the fact that taking λ = 1/2 provides the best estimate

for the physical transmitted shock wave velocity. As seen in Fig. 3.8, when Z > 1, the

experimental data appear to begin converging toward the theoretical curve associated with

taking the equilibrium CJ state as state 2 in the theoretical calculations. It is unknown if

the experimental data actually converges toward the λ = 1 or CJ curve for larger values

of Z, and appropriate confirmation would require further experimentation with heavier

gases in the driven section. Despite this, the current work has shown that making use of

the non-dimensional parameters Γ and Z is an effective approach that provides insightful

results regarding the role of the post-detonation state and the subsequent transmitted shock

properties.

To demonstrate the experimental cases of reflected shock and rarefaction from the

contact surface, Fig. 3.9 provides experimental pressure traces of transducer P3 for the case

of Z = 0.36 (reflected rarefaction) and Z = 1.69 (reflected shock), respectively. For plotting

purposes, the time has been scaled such that the reflected shock or rarefaction reached
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transducer P3 at t/tref = 1, where tref is the time at which the reflection type reaches the

transducer location. Note that a reflected shock appeared when using an inert gas with

an acoustic impedance substantially higher than that of the detonable mixture. As will be

shown in the following chapters, this gasdynamic process can drastically affect the evolving

flow field in a PDE thrust chamber.
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Figure 3.9. Experimental pressure trace of transducer P3 for the case of shock reflection
(Z = 1.69) and rarefaction reflection (Z = 0.36).

In summary, a theoretical model is formulated such that an arbitrary selection of

the post-detonation state can be chosen based on the reaction progress variable λ within

the one-dimensional ZND detonation wave structure. With this, the transmitted shock

properties into a non-combustible gas mixture can be determined for the cases of a reflected

shock, rarefaction, and Mach wave at the contact surface separating the detonable and

non-combustible mixtures. Further, a detonation-driven shock tube facility was used to

experimentally investigate the behavior of transmitted shock waves into a non-combustible

helium–air mixture for a range of oxyhydrogen driver equivalence ratios. Over the range of

considered test conditions, it was shown that selecting the half-reaction quasi-equilibrium

state (λ = 1/2) as the representative post-detonation state, yields the best prediction for
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the transmitted shock wave velocity into the non-combustible mixture. Additionally, non-

dimensional parameters were formulated based on the ratio of acoustic impedance between

the non-combustible and detonable mixtures, and transmitted shock and detonation wave

velocities. This non-dimensional relationship demonstrated that in the range of reflected

rarefaction waves from the contact surface where Z < 1, the ratio of transmitted shock

to detonation wave velocity is best represented by taking the vN state (λ = 0) as the

representative post-detonation state in the theoretical calculations. Similarly, in the range of

reflected shock waves from the contact surface where Z > 1, the ratio of transmitted shock to

detonation wave velocity is best represented by taking an intermediate state between the vN

peak (λ = 0) and equilibrium CJ states (λ = 1) as the representative post-detonation state

in the theoretical calculations. Moreover, for cases of Z � 1, the the ratio of transmitted

shock to detonation wave velocity appears to be best represented by taking the equilibrium

CJ state (λ = 1) as the representative post-detonation state in the theoretical calculations.

For this reason, the λ = 1/2 state will be used in all of the subsequent analysis, as this state

provides the best overall agreement with the experimentally measured transmitted shock

velocities WT , and provides the least error for Γ = WT /WCJ in Fig. 3.8 for the complete

range of tested acoustic impedance ratios.
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CHAPTER 4

METHOD OF CHARACTERISTICS MODELING 1

4.1 Introduction

A major part of this research is to perform a broad parametric study of PDEs under

various operating conditions in order to gain insightful understanding of the gasdynamic

phenomena that governs the primary performance metrics. For the purposes of modeling

general PDE thrust chamber flow fields, an unsteady, quasi-one-dimensional, MOC-based

solver is developed. This type of solver is a computationally inexpensive approach that

takes advantage of the hyperbolic nature of the governing equations for an idealized un-

steady, quasi-one-dimensional flow, and directly integrates the transient flow field using a

simple time-marching algorithm. With a simple MOC-based model, the thrust chamber flow

field can readily be computed along the characteristic pathlines and left- and right-running

Mach lines [143,144]. Moreover, a MOC-based solver treats discontinuities such as detona-

tions, shocks, and contact surfaces exactly, thereby eliminating the need for elaborate shock

capturing and gradient-based mesh refinement techniques commonly employed in higher-

fidelity numerical models. Consequently, complex interface collisions such as detonation

waves colliding with contact surfaces can be treated exactly without being dependent on

grid refinement. When implemented, these advantages permit convenient and rapid model-

ing of general PDE thrust chamber flow fields and the associated propulsive performance.

Previously, Morris [70] developed a simplified one-dimensional MOC model in order

to perform parametric studies of the single-cycle performance of fully-filled PDEs operat-

ing with various propellants and at different blowdown pressure ratios. Similarly, Guzik

1Parts of this chapter were published in Peace, J.T. and Lu, F.K., “Performance Modeling of Pulse

Detonation Engines Using the Method of Characteristics,” Aerospace Science and Technology, vol. 88, pp.

51–64, 2019. doi: 10.1016/j.ast.2019.03.015
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et al. [71] developed a simplified quasi-one-dimensional MOC model based on the left- and

right-running Mach lines in order to evaluate the single-cycle gasdynamic flow field and per-

formance of fully- and partially-filled PDEs, as well as PDEs fitted with quasi-steady ideal

nozzles. In the current study, a general quasi-one-dimensional MOC model is developed

using the approach of [143,144] in order to model the single-cycle evolution of gasdynamic

waves and discontinuities in general PDE thrust chamber flow fields and the associated

performance. The current MOC model differs from that of [71, 145], in that three charac-

teristics are used to develop the thrust chamber flow field solution, namely the characteristic

left- and right-running Mach lines and pathlines. Similarly, the quasi-one-dimensional noz-

zle flow is treated directly and no restriction is made regarding the nozzle length, thereby

eliminating the need for a quasi-steady nozzle flow assumption. For the purposes of treating

the one-dimensional interaction of the detonation wave with the contact surface separat-

ing the detonable and non-combustible mixtures, the method detailed in Ch. 3 is utilized.

Moreover, to aid the development of the model, a detailed description of the necessary unit

process algorithms required to accurately solve the PDE thrust chamber flow field is pro-

vided. Finally, the MOC model is validated against existing numerical and experimental

data for both hydrogen and hydrocarbon detonable propellants operating over a range of

fill fractions, blowdown pressure ratios, and nozzle expansion area ratios.

4.2 Governing Equations

The governing equations for an unsteady, quasi-one-dimensional flow in the absence

of friction, mass addition, and heat transfer take the form

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

A′(x)

A(x)
= 0 (4.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (4.2)

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0 (4.3)
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Note that the energy equation has been replaced by the combined entropy and sound speed

equations, a simplification specific to isentropic flow fields. Because these governing equa-

tions are restricted to isentropic flow without heat addition, all the heat release from the

detonation wave must be assumed to take place at a discontinuity. In such a flow field,

the above equations are then only appropriate for treating transient flow gradients between

boundary conditions and discontinuities. This aspect will be discussed throughout the re-

mainder of this section. Application of the MOC to the governing equations in (4.1)-(4.3),

which is carried out in Appendix B, yields the following ordinary differential characteristic

and compatibility equations [143,144](
dt

dx

)
0

= λ0 =
1

u
(4.4)

(
dt

dx

)
±

= λ± =
1

u± a
(4.5)

dp0 − a2dρ0 = 0 (4.6)

dp± ± ρadu± = −ρa2u
A′(x)

A(x)
dt± (4.7)

where Eqs. (4.4) and (4.6) apply along pathlines and denoted by the subscript 0, and Eqs.

(4.5) and (4.7) apply along the right- and left-running Mach lines and denoted by the

subscript ±. This approach differs from previous MOC-based analysis of PDE flow fields,

such as that carried out by Guzik et al. [71, 145], in that three distinct characteristics are

used presently to develop the flow field solution at each point. In Guzik et al.’s MOC

approach [71, 145], a homentropic assumption was employed which only requires the right-

and left-running Mach lines to develop the flow field at each solution point. In that model,

entropy changes were assumed to only take place at discontinuities, and isentropic regions

were approximated by strips of homentropic regions.

In the current approach, entropy changes are also only assumed to take place at dis-

continuities; however, isentropic regions are directly treated with the isentropic assumption

and the additional pathline characteristic. An example of such a flow field occurs in both
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the partially-filled PDE and PDE equipped with a diverging nozzle in the region that de-

velops behind the decaying transmitted shock wave. As the shock decays, each pathline

passing through the shock is subjected to a different entropy jump, such that an entropy

gradient forms in the flow field behind the decaying shock. Moreover, the current MOC

approach directly treats the starting nozzle flow field, such that no quasi-steady nozzle flow

assumption is required. This permits treating nozzles of general length and aids to capture

the effects of the transient nozzle starting process on thrust production.

With a MOC-based method, the solution is developed in x–t space by numerically in-

tegrating Eqs. (4.4)–(4.7), namely, integrating along the characteristic pathlines and right-

and left-running Mach lines coupled with their respective compatibility equations. Com-

pared to a conventional unsteady, one-dimensional Euler solver, a MOC-based solver permits

rapid solutions at low computational expense. The MOC approach provides a convenient

and, as it turns out, accurate approach for performing parametric sweeps of PDE flow

fields. Moreover, a MOC-based solver treats discontinuities such as detonations, shocks,

and contact surfaces exactly, including complex interface collisions such as detonation waves

colliding with contact surfaces without being dependent on grid resolution.

4.3 Method of Characteristics Unit Processes

The MOC model developed for this study closely follows the procedure presented by

Zucrow and Hoffman [143, 144]. This procedure was also used in the parametric study of

Morris [70]; however, only fully-filled PDEs were investigated. Similar to [70], the unit pro-

cess procedures discussed in [143,144] are utilized to solve each of the different gasdynamic

conditions that occur in the thrust chamber flow field during a single-cycle of operation.

These include interior, solid boundary, open-end, detonation wave, shock wave, and contact

surface points, each with a specific algorithm. For the purposes of this study, an inverse

time-marching method is utilized with a predefined grid based on a specified spacing in the
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x–t plane. The finite difference relations for the characteristic and compatibility equations

along the pathlines and right- and left-running Mach lines take the form

∆t0 = λ0(xi,j − x0) (4.8)

∆t± = λ±(xi,j − x±) (4.9)

pi,j − a2
0ρi,j = p0 − a2

0ρ0 (4.10)

pi,j ± ρ±a±ui,j = p± ± ρ±a±u± − ρ±a2
±u±

A′(x±)

A(x±)
∆t± (4.11)

where Eqs. (4.8) and (4.10) apply along the C0 pathline, and Eqs. (4.9) and (4.11) apply

along the right- and left-running C± Mach lines, respectively. Note that the solution points

are denoted by the subscripts i, j, where the gas properties with subscripts 0, +, and −

represent the averaged properties along the discretized pathline, and right- and left-running

Mach lines, respectively. The advantage of this method is the ability to compute and

develop the solution on predefined points for an unsteady flow field. However, an inverse

marching grid requires tracking of discontinuities such as shock waves and contact surfaces

since their location at any given time is likely to fall between any two predefined grid points.

The details of each unit process regarding the application of Eqs. (4.8)–(4.11), as well as

tracking of discontinuities, are discussed in the following paragraphs.

The algorithm for the unit process for an interior point is the most frequently used

in the evolving flow field. Interior points make up the flow field between discontinuities and

boundary conditions at any given time. Figure 4.1 is a schematic of the finite difference grid

utilized for calculating interior points. In this schematic, and in all subsequent schematics,

the black points represent the predefined grid points while the colored points represent

interpolated points from the intersection of the pathline and right- and left-running Mach

waves on the previous t–line. For obtaining a solution at xi,j , a modified Euler predictor–

corrector method is used to numerically integrate Eqs. (4.8)–(4.10) along the right- and

left-running C+, and C− Mach lines, as well as the C0 pathline that passes through the

point xi,j . This integration procedure encompasses solving for the intersection location of
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the C+, C− and C0 characteristics on the previous t–line, which are denoted by x+, x−, and

x0 in Fig. 4.1, respectively. For the predictor step, the solution is achieved by first iteratively

determining the location where each characteristic intersects the previous t–line using Eqs.

(4.8) and (4.9). Since the solution is known to pass through xi,j , this procedure simply

backward propagates the characteristics in order to determine where each characteristic

intersects the previous t–line. Additionally, for each iteration, λ0 and λ± are refined with

the interpolated u and a at x+, x−, and x0 using the neighboring points on the previous

solution at xi−1,j−1, xi,j−1, and xi+1,j−1. Iteration of this procedure is carried out until the

change in intersection location of all characteristics on the previous t–line satisfies a desired

tolerance, where a tolerance of 10−8 is used in the current study for all instances where

convergence is required. The predictor solution at xi,j is obtained by applying Eqs. (4.10)

and (4.11) along the C0, C+, and C− characteristics to simultaneously obtain pi,j , ρi,j , and

ui,j . Lastly, the corrector step is applied in a similar iterative method using the averaged

flow properties along the characteristics to refine the solution at xi,j until the change pi,j ,

ρi,j , and ui,j satisfies the desired tolerance.

Figure 4.1. Finite difference grid for interior point.

At the thrust wall, a unit process for a solid wall is utilized to impose a zero velocity

boundary condition. The finite difference grid utilized for calculating the thrust wall point is

shown in Fig. 4.2. Note that the C0 pathline characteristic follows the stationary wall, which

enforces the zero-velocity boundary condition. Similar to the interior point, a modified

Euler predictor–corrector method is utilized to determine pi,j and ρi,j at xi,j . In this
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case, the predictor solution at xi,j is determined by iteratively applying (4.9) to the C−

characteristic until the location of x− on the previous t–line satisfies the desired tolerance.

Then, application of Eqs. (4.10) and (4.11) along the C0 and C− characteristics permits

computation of pi,j and ρi,j at xi,j . Lastly, the corrector step is iteratively applied in a

similar manner with the averaged flow properties to refine the solution at xi,j until the

change in pi,j and ρi,j satisfies the desired tolerance.

Thrust Wall
u = 0

Figure 4.2. Finite difference grid for wall point.

At the exit of the thrust chamber, a unit process for an open-end point is utilized to

determine the flow condition on the boundary exit. In general, partially-filled PDEs and

PDEs with diverging nozzles can have a combination of subsonic and supersonic outflow on

the exit boundary. As indicated in the computational PDE study of Kailasanath et al. [69],

the open-end boundary condition can have a significant effect on the relaxation of flow

properties on the exit boundary, and consequently, in the thrust chamber. This is especially

true if the flow is subsonic, such that the external flow field outside the computational

domain can influence the solution at the exit. For the purposes of this study, a conditional

open-end point unit process is utilized on the exit boundary subject to subsonic or supersonic

outflow. The finite difference grids for subsonic and supersonic outflow at the open-end

point are shown in Figs. 4.3(a) and 4.3(b), respectively. Note, in Fig. 4.3(a), the C−

characteristic does not originate from inside the computational domain which complicates

the boundary condition for subsonic outflow. In such a situation, it is assumed that pi,j is

fixed at the ambient condition, namely, pamb. Subsequently, the intersection location of the
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C+ and C0 characteristics with the previous t–line are iteratively determined using Eqs.

(4.8) and (4.9) until convergence is obtained. Likewise, the predictor ρi,j and ui,j at xi,j

are simultaneously determined by application Eqs. (4.10) and (4.11) along the C+ and C0

characteristics. Lastly, the corrector is iteratively applied until ρi,j and ui,j at xi,j satisfy

the desired tolerance.

In the event of supersonic outflow, all three characteristics originate from within

the computational domain, as indicated in Fig. 4.3(b). This simplifies the solution point,

as no external disturbance from outside the PDE thrust chamber can influence the exit

boundary condition. Therefore, in the event of supersonic outflow, the solution point at

xi,j is readily obtained by the same algorithm used to compute an interior point, and the

pressure boundary condition is removed.

Open End
p = pamb
M < 1

(a)

Open End
M > 1

(b)

Figure 4.3. Finite difference grid for (a) subsonic outflow flow and (b) supersonic outflow
at an open-end point.

In order to treat shock waves such as the unsteady transmitted shock into the non-

combustible mixture, a unit process for a shock wave point is required. Figure 4.4 is a

schematic showing the finite difference grid for a general shock point. In this schematic, the

red square points represent the location of the shock wave. In general, the shock wave point

solution will not coincide with a point in the predefined grid. The solution can readily be

obtained by iteratively applying unit processes to the pre- and post-shock states separately

until convergence is achieved. Such a scheme is initiated by propagating the shock wave

forward with a guessed shock velocity equal to the shock velocity at the previous t–line.
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This provides the new location of the shock solution point denoted by xsL,j and xsR,j ,

namely, the left- and right-side locations of the shock wave, respectively. For the right-

hand side of the shock wave, the unit process for an interior point is utilized to determine

the pre-shock psR,j , ρsR,j , and usR,j at xsR,j . With knowledge of the shock velocity and

pre-shock flow condition, application of the Rankine–Hugoniot (RH) shock jump conditions

permits calculation of the post-shock psL,j , ρsL,j , and usL,j at xsL,j . Likewise, the pressure

at xsL,j can be obtained by applying Eqs. (4.9) and (4.11) along the forward propagating C+

characteristic that overtakes the shock from behind. With this procedure, psL,j is obtained

by two methods, namely, by estimating the shock velocity and applying the RH shock jump

conditions, and by applying Eqs. (4.9) and (4.11) along the C+ characteristic behind the

shock. Such a routine can be converged with application of root-finding scheme such as

the secant method. In this case, a new shock velocity is iterated until the error in psL,j

determined from the RH shock jump condition and the C+ characteristic behind the shock

satisfies the desired tolerance.

Figure 4.4. Finite difference grid for shock wave point.

As mentioned in the general flow description for partially-filled PDE thrust chambers

and PDEs with diverging nozzles, following the collision of the detonation wave with the

contact surface, the contact surface is set into motion towards the exit of the thrust cham-

ber. Similar to the transmitted shock wave, the contact surface also moves unsteadily and

interacts with both the overtaking Taylor rarefaction, as well as the head on interaction

with the exhausting rarefaction. Treatment of the contact surface motion through the grid
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is carried out using a unit process for a contact surface point. Figure 4.5 is a schematic of

the finite difference grid used to calculate the contact surface point, where the red square

points represent the contact surface point. Note that the contact surface coincides with

the C0 characteristic, a necessary condition that ensures the contact surface moves along

a pathline. In general, similar to the shock wave, the contact surface solution will not co-

incide with the predefined grid. In this case, a similar modified Euler predictor–corrector

algorithm is applied to both the right- and left-hand sides of the contact surface until p

and u across the contact surface converges. Hence, the solution method requires guessing

λ0, λ+, and λ− and using Eqs. (4.8) and (4.9) to simultaneously solve for the intersection

locations of xcL,j , xcR,j on the new t–line, and x+ and x− on the previous t–line. Similar to

previous unit processes, this method is carried out iteratively until the change in location

of x+ and x− satisfies the desired tolerance. Subsequently, the predictor solutions for xcL,j

and xcR,j are obtained from Eqs. (4.10) and (4.11), where the compatibility equation for the

C0 pathline is separated according to the right- and left-hand sides of the contact surface.

Lastly, the corrector is applied in a similar manner using the averaged flow properties until

p, ρcL,j , ρcR,j , and u at the contact surface point satisfies the desired tolerance.

Figure 4.5. Finite difference grid for contact surface point.

As previously mentioned, an isentropic flow field is assumed in developing the gov-

erning equations for the MOC model. This restricts the model in that a detonation wave

must be modeled as a distinct discontinuity where all the heat release takes place within

the discontinuity. This type of detonation wave representation is consistent with the one-
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dimensional Chapman–Jouguet (CJ) detonation wave theory [21–23]. In the CJ theory, it

is assumed that all of the chemical reactions and heat release takes place within the shock

front, and the coupled induction and reaction zones following the shock front have zero

width. Therefore, for the purposes of modeling a detonation wave using the MOC, the CJ

detonation wave representation is utilized. Unlike the shock and contact surface discontinu-

ity points previously discussed, the CJ detonation wave propagates at a constant velocity

for a given detonable propellant. In this case, the detonation wave is assumed to steadily

propagate through the gaseous propellant until finally reaching the contact surface. Note,

the Taylor rarefaction wave that develops behind the detonation wave cannot physically

overtake the detonation due to the sonic CJ condition associated with the post-detonation

state. Similarly, the propellant flow field ahead of the detonation is initially uniform, which

will not perturb the detonation wave velocity away from the CJ value. Therefore, the unit

process used to treat the detonation wave is simply a matter of propagating the CJ det-

onation state through the predefined grid points at given time steps. Note, this method

requires selecting an appropriate time step to ensure the detonation location for each new

time step coincides with the predefined grid points. The implementation of this method

will be discussed in the following subsections.

A few comments can be made about the unit processes detailed above and the na-

ture of the solution points. To ensure the computed solutions are numerically stable, the

unit process algorithms must satisfy the Courant–Friedrichs–Lewy (CFL) stability criterion.

This requires that the intersection points x0, x+, and x− for the C+, C− and C0 characteris-

tics intersect the previous t–line between the points used for interpolation, namely, xi−1,j−1,

xi,j−1, and xi+1,j−1. This ensures that the flow properties interpolated at x0, x+, and x−

use the appropriate neighboring points to perform the interpolation procedure. Addition-

ally, as noted in [143, 144], the act of interpolating to determine the flow properties at the

characteristic intersection locations on the previous t–line tends to reduce the accuracy of

the solution. In fact, smearing of the solution can occur since some of the neighboring points
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used in the interpolation scheme lie outside of the domain of dependence for the solution

points. This is a numerical artifact of such a MOC solution method that cannot be avoided,

but only mitigated by utilizing a finer grid spacing. Despite these numerical inaccuracies,

as will be seen in the following sections, the PDE modeling carried out in this study has

very good agreement with both theoretical and numerical models and various experiments.

4.4 Application to Pulse Detonation Engines

The solution procedure for generalized PDE thrust chamber flow fields requires the

application of all of the previously discussed unit processes. For this purpose, all of the

unit process algorithms are developed within a Matlab environment. In the case of a

fully-filled PDE, the grid spacing in x is selected and the time step is determined by,

∆t = ∆x/WCJ , which ensures the detonation wave propagation through the grid coincides

with a predefined grid point at each time step. Similarly, in the partially-filled or diverging

nozzle case, the time step for the solution prior to the detonation wave collision with the

contact surface is defined in the same manner. In each case, detonation initiation is assumed

to take place instantly at the head end of the thrust chamber, such that the equilibrium

CJ detonation solution is implemented at the first grid point adjacent to the thrust wall.

Once the detonation wave collides with the contact surface, the incident transmitted shock

strength and type of reflection are determined using the method in Ch. 3. The results of

this instantaneous interface interaction are constructed exactly on the t–line immediately

following the interface collision. Similarly, following the detonation wave collision with

the contact surface, if the transmitted shock velocity is larger than the detonation wave

velocity, then the time step is reduced according to, ∆t = ∆x/WT , where WT is the

incident transmitted shock velocity. This ensures that the CFL stability criterion is always

satisfied throughout the complete gasdynamic blowdown process.

A two-γ model is utilized for the propellant and detonation products, where the ratio

of specific heats behind the detonation wave is fixed at the equilibrium γCJ , and the chemical
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composition of the burned products are assumed to remain frozen for the remainder of the

blowdown process. Although this is a great simplification, Povinelli and Yungster [146,147]

demonstrated that recombination and chemical nonequilibrium only have small effects on

the performance of PDEs operating with both hydrogen- and hydrocarbon-air mixtures.

This is primarily attributed to the rather modest changes in γ across regions of frozen,

nonequilibrium, and equilibrium flow within the PDE flow field. Further, for the purposes

of computing the equilibrium CJ detonation wave properties, the chemical kinetics computer

program Cantera with a Matlab shock and detonation toolbox is utilized [24,29,30]. Lastly,

for the transmitted shock, a calorically perfect shock solution is assumed, such that the

specific heat ratio of the non-combustible mixture remains fixed across the transmitted

shock. Hence, across the contact surface following the interface interaction, γ changes from

γCJ behind the contact surface to γ0 associated with the purge or ambient condition ahead

of the contact surface.

The transient resultant force is simply expressed as a function of the pressure history

on the internal thrust surfaces as

F (t) = −
∫∫
S

(p− p0) dS (4.12)

Note, due to symmetry and the quasi-one-dimensional assumption, the only non-zero com-

ponent of thrust occurs in the x-direction, namely, Fx(t) = F (t) · î, and is the component

of thrust utilized in all of the subsequent performance analysis. Moreover, it is noted that

the thrust force can also be computed using a control volume surrounding the PDE and

summing the time rate of change of momentum integrated over the control volume, mo-

mentum flux through the control surfaces, and pressure area force acting on the PDE exit.

In fact, the difference in thrust computed between the two methods is less than 0.1 percent;

however, due to simplicity, the thrust obtained using Eq. (4.12) is used in the subsequent

analysis. If, however, viscous losses were included in the model, then Eq. (4.12) must mod-

ified to include such losses to maintain valid agreement with the control volume approach.

In fact, it is only in the inviscid limit that Eq. (4.12) becomes exact to the thrust force
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predicted by a complete control volume analysis. Moreover, the time-averaged thrust is

determined by

F̄ =
1

tf

∫ tf

0
Fx(t) dt (4.13)

where tf is the time at which the pressure at the head end of the thrust chamber returns back

to the ambient condition. Similarly, the thrust force can be integrated over the duration of

the cycle, namely, tf , in order to obtain the total impulse for the single-cycle operation of

the PDE

It =

∫ tf

0
Fx(t) dt (4.14)

Lastly, the propellant-based specific impulse is determined from the total impulse by

Isp =
It
mdg

(4.15)

where md is the mass of detonable propellant (fuel and oxidizer).

4.4.1 Effects of Grid Resolution

A grid dependency study is carried out to find a suitable grid spacing for minimizing

computational expense, but still able to properly model the thrust chamber flow field with

negligible error. For this purpose, the specific impulse of a fully-filled PDE is computed by

varying the total number of grid points, N , used to discretize the thrust chamber length.

Figure 4.6 shows how the specific impulse computed with the MOC model compares with the

theory of Endo et al. [65] and the model of Wintenberger et al. [66,67] for stoichiometric H2–

O2 and C2H4–O2 propellants in a 1 m long thrust chamber using grids with total number

of nodes ranging from 20–1,000. Note that for H2–O2 propellant, the specific impulse

calculated by the MOC model is slightly higher than that predicted by the theory of [65],

but converges towards that predicted by the model of [66, 67]. Similarly, for C2H4–O2

propellant, the specific impulse calculated by the MOC model is slightly higher than the

specific impulse predicted by both the theory of [65] and the model of [66,67]. Although not

shown in Fig. 4.6, the specific impulse calculated with the MOC model at the finest grid
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spacing for both propellants is within one percent of the values reported in the MOC study

by Morris [70]. It is noted that the computational time for 100 nodes is approximately 20

seconds, whereas the 1,000 node case requires more than 15 minutes of machine time in a

Matlab environment. Therefore, it is concluded that approximately 200 nodes provides the

best compromise between computational expense and negligible convergence error.

Figure 4.6. Dependence of specific impulse on grid resolution N for fully-filled PDE with
stoichiometric H2-O2 propellant (ψ = 1) and comparison with the theory of [65] and model
of [66,67].

4.5 Model Validation

It is desired to validate the current MOC model in order to ensure the model produces

adequate performance results for fully- and partially-filled PDEs, and PDEs equipped with

a diverging nozzle before conducting detailed parametric studies. As such, this section is

used to conduct a rigorous comparison of the current MOC model with existing numerical

and experimental results within the literature for a wide range of PDE operating conditions.
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4.5.1 Fully-Filled Pulse Detonation Engine

The first case of validation is to ensure the current MOC model can properly capture

the gasdynamic flow field evolution for a fully-filled PDE. For this, the MOC model results

are compared with experimental pressure traces obtained in a PDE test facility that was

previously used by Joshi and Lu [97] for unsteady thrust measurements. The PDE consists

of a constant-area stainless-steel tube with an overall length of 660 mm and an internal

diameter of 25.4 mm. In this case, the PDE was operated in a single shot manner, and an

array of high frequency pressure transducers (PCB model 111A24) were used to obtain the

experimental pressure traces. For the fully-filled configuration, a single 6.0 µm thick Mylar

diaphragm was used at the engine exit plane to separate a stoichiometric H2–O2 detonable

mixture from the ambient air. Additionally, for the purposes of achieving direct detonation

initiation within the PDE chamber, a small perpendicular pre-detonator was employed at

the head end of the tube. Within the pre-detonator, detonation is achieved by means of

energy deposition from an automotive spark plug and DDT transition.

Figure 4.7. Comparison of fully-filled (α = 1) PDE pressure flow field from MOC with
experimental results for 2H2–O2 propellant.

The temporal and spatial evolution of pressure for the fully-filled PDE operating

with stoichiometric H2–O2 detonable mixture and air as the ambient gas, both initially at
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1 atm and 300 K, is shown in Fig. 4.7. In this figure, tCJ represents the time at which

the detonation wave reaches the end of the engine. Hence, at t/tCJ = 1, the detonation

reaches the diaphragm at the exit plane of the engine. Note that the MOC model is

in very good agreement with the experimental pressure traces. In fact, an average error

of less than 10 percent is obtained across the distributed pressure flow field during the

full blowdown process, which indicates that the MOC model can adequately capture the

dominant gasdynamic processes and interactions within a fully-filled PDE.

It is also desired to ensure that the current MOC model properly captures the effects

of varying the propellant equivalence ratio and blowdown pressure ratio on specific impulse

for a fully-filled PDE. Figures 4.8(a) and 4.8(b) show a comparison of the MOC model with

the previously mentioned MOC model of [70], higher-fidelity numerical models of [76,83,98],

and experimental results of [92, 95] for hydrogen and hydrocarbon propellants at various

equivalence and blowdown pressure ratios. In the experiments of [95], the PDE was operated

at 12–16 Hz with a H2–O2+3.76N2 propellant mixture with air as the purge gas, and

the equivalence ratio was varied from roughly 0.4–2.8. Moreover, the thrust was directly

measured using a damped thrust stand, and similar to previous experimental efforts, a

Shchelkin spiral was used to aid the DDT process within the PDE. In the experiments

of [92], single-shot tests were conducted using a detonation tube with stoichiometric C2H4–

O2 and air as the ambient. In those experiments, the detonation tube was suspended on a

ballistic pendulum setup and enclosed inside of a dump tank in order to control the sub-

atmospheric ambient environment, and thin Mylar diaphragms where used to separate the

detonable and ambient mixtures. Note, very good agreement is obtained in Fig. 4.8(a) with

previous H2–O2 results, such that an average difference of 0.7 percent is obtained with the

MOC results of [70], and 7.9 percent for the numerical results of [98]. Additionally, in the

case of H2–air propellant, an average error of 6.1 percent is obtained with the measurements

of [95] for the equivalence ratio range shown. Moreover, in Fig. 4.8(b), very good agreement

is also obtained with previous results, such that an average difference of 4.4 percent is
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obtained with the MOC results of [70], and 1.7 percent for the numerical results of [76, 83]

over the range of blowdown pressure ratios shown for H2–O2 and C2H4–O2 propellants,

respectively. Lastly, in the case of stoichiometric C2H4–O2 propellant, an average error of

12 percent is obtained with the measurements of [92] for the blowdown pressure ratio range

shown.

(a) (b)

Figure 4.8. Comparison of current MOC model with existing numerical and experimental
data of [70, 76, 83, 92, 95, 98] for H2–(O2+3.76N2), H2–O2, and C2H4–O2 propellants at
various (a) equivalence ratios and (b) blowdown pressure ratios.

Finally, it is desired to ensure that the current MOC model provides an accurate

prediction for time-averaged thrust. In this case, this is primarily to ensure that the cycle

blowdown time is accurately determined. For this, a comparison is made with the experi-

mental results of [95] for a fully-filled PDE operating at 16 Hz and at various equivalence

ratios. Figure 4.9 shows that fairly good agreement is obtained with the experimental results

of [95], in that an average error of 8.3 percent is obtained over the equivalence ratio range

shown. In general, the comparison of the MOC model with the results of [95] becomes worse

as the equivalence ratio increases. This is largely attributed to the increased DDT run-up

distance with increasing propellant equivalence ratio, which can result in severe non-ideal
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Figure 4.9. Comparison of time-averaged thrust predicted by the current MOC model with
the experiments of [95] for H2–air propellant at different equivalence ratios (ψ = 1).

detonation initiation. In fact, this non-ideal initiation behavior was studied by Kiyanda

et al. [148] for oxyhydrogen mixtures at various equivalence ratios, where it was shown

that DDT run-up distance is very sensitive to the mixture equivalence ratio. Consequently,

the pressure history on the thrust wall can be significantly reduced with a corresponding

increase in the overall cycle blowdown time. Despite this, the above results suggests that

the current MOC model properly captures the manner in which the propellant equivalence

ratio and system blowdown pressure ratio influences the ideal fully-filled PDE performance.

4.5.2 Partially-Filled Pulse Detonation Engine

Similar to the fully-filled PDE, the first case of validation is to ensure the current

MOC model can properly capture the gasdynamic flow field evolution for partially-filled

PDEs. For this, the MOC model results are compared with experimental pressure traces

obtained in a partially-filled PDE test facility that was previously used by Joshi and Lu [97]

for unsteady thrust measurements. In this case, a 485 mm straight-extension section with

the same diameter was coupled to the end of the PDE in order to emulate a fill fraction

of α = 0.58. Additionally, a single 6.0 µm thick Mylar diaphragm was used to separate a
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stoichiometric H2–O2 detonable mixture from ambient air. As before, the PDE was operated

in a single-shot manner, whereby a small perpendicular pre-detonator was employed at the

head end of the tube to achieve direct initiation.

The temporal and spatial evolution of pressure for the partially-filled PDE operating

with stoichiometric H2–O2 detonable mixture and air as the ambient gas, both initially

at 1 atm and 300 K, is shown in Fig. 4.10. In this figure, tCJ represents the time at

which the detonation wave reaches the end of the filled length. Hence, at t/tCJ = 1, the

detonation reaches the diaphragm at 0.58L. Note that, similar to the fully-filled case, the

MOC model is in very good agreement with the experimental pressure traces. An average

error of less than 10 percent is obtained across the distributed pressure flow field during the

full blowdown process, which indicates that the MOC model can adequately capture the

dominant gasdynamic processes and interactions within of a partially-filled PDE.

Figure 4.10. Comparison of partially-filled (α = 0.58) PDE pressure flow field from MOC
with experimental results for 2H2–O2 propellant.

The next case of validation is to ensure that the current MOC model can properly

capture the performance of a partially-filled PDE thrust chamber. This is done by cal-

culating the performance while varying the fill fraction at a blowdown pressure ratio of

ψ = 1. In partial filling studies, it is common to investigate the partial-fill effect on per-
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formance by examining the ratio of specific impulse for a partially-filled PDE to that of a

fully-filled PDE. The results of the MOC model are compared in Fig. 4.11 with existing

numerical and experimental data for partially-filled PDEs using H2–O2 (filled symbols) and

H2–O2+3.76N2 (open symbols) propellant mixtures and air as the inert gas. It is important

to note that comparing the MOC model with experimental data in this normalized manner

will suppress variation in experimental data associated with separate detonation initiation

schemes and performance measurement techniques. However, this also provides a way to

help isolate the fundamental performance scaling associated with partially filling a PDE, for

which the MOC model can be validated against. The experiments by Kasahara et al. [101]

were single-shot (SS) tests using stoichiometric H2–O2 propellant, and the impulse was

measured using a ballistic pendulum setup. Thin Mylar diaphragms were used at different

locations in a fixed length tube to vary the fill fraction from 0.2–1, which also served to

separate the detonable mixture from the non-combustible ambient air. A Shchelkin spiral

was used to aid the DDT process. In the experiments conducted by Joshi and Lu [97],

the PDE was operated between 1–20 Hz using a H2–O2 propellant mixture with an air

purge, and the fill fraction was varied by precision timing controls of gaseous fuel injectors.

The thrust was directly measured using an innovative dynamic thrust measurement tech-

nique based on an effective inertial force for the PDE system and a deconvolved force from

the dynamic response of the PDE system. Because the specific impulse for a fully-filled

PDE was not reported for these experiments, the specific impulse was normalized using an

interpolated value between experimental fill fractions of 0.88 and 1.15. It is noted that a

Shchelkin spiral was also used in those experiments to enhance the DDT process. Moreover,

as previously mentioned, in the experiments conducted by Schauer et al. [95], the PDE was

operated between 12–16 Hz using a H2–O2+3.76N2 propellant mixture with air as the purge

gas. In these experiments, the fill fraction was varied from 0.2–1.6, but only the data with

fill fractions less than or equal to unity are used for validation in the present study. The

thrust was measured using a damped thrust stand, and similar to previous experimental
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efforts, a Shchelkin spiral was used to aid the DDT process within the PDE. The computa-

tional study of Sato et al. [98] is also used for validation since a wide range of single-cycle

PDE operating conditions was investigated. In this study, both H2–O2 and H2–O2+3.76N2

propellant mixtures were considered. The propellant fill fraction was varied from 0.3–1.0

with air as the inert gas. Further, these computations were carried out by modeling the

exhausting PDE flow field using a two-dimensional computational domain. This removes

the complications of specifying a boundary condition directly at the exit of the PDE, and

allows capturing of any multi-dimensional exhausting phenomena that influences the PDE

performance characteristics. Note, for H2–O2 (filled symbols), the agreement is very good

with the experiments of Kasahara et al. [101] and Joshi and Lu [97]. In fact, the average

error for fill fractions ranging from 0.44–1.0 is 7.6 percent. Moreover, for H2–O2+3.76N2

(open symbols), the agreement is excellent with the experiments of Schauer et al. [95] over

the fill fractions ranging from approximately 0.3–1.0. In this case, the average error with the

experiments is only 3.5 percent. Additionally, for the numerical results of Sato et al. [98],

the agreement is excellent over the fill fraction range of 0.3–1.0, with an average difference

of 3.1 percent.

The results of the MOC model are also compared in Fig. 4.12 with existing compu-

tational and experimental data for partially-filled PDEs using a stoichiometric C2H4–O2

propellant mixture and air as the inert gas. The experiments conducted by Zitoun and

Desbordes [89] were single-shot (SS) tests using an exploding wire in order to achieve di-

rect detonation initiation, and the impulse was measured by integrating Eq. (4.12) at the

head end. The fill fraction was varied from 0.82–0.98 by adding straight tube extensions,

and thin Mylar diaphragms were used to separate the detonable mixture from the non-

combustible ambient air. Note, a fully-filled specific impulse value was not reported in that

study; however, the data was normalized using the theory of Endo et al. [65]. The agree-

ment with these experiments is very good over the fill fraction range of 0.82–1.0, with an

average error of 4.5 percent. Similarly, the MOC model is shown to have excellent agree-
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Figure 4.11. Comparison of specific impulse ratio from MOC with published data in [95,
97, 98, 101] for 2H2–O2 (filled symbols) and 2H2–(O2+3.76N2) (open symbols) propellants
and air as the inert gas (ψ = 1).

ment with the previously mentioned computational study of Sato et al. [98]. Over the fill

fraction range of 0.1–1.0, the MOC results differ from those reported results by 1.2 percent.

Lastly, the computational study carried out by Li and Kailasanath [107] is also used for

the purposes of validation. In that study, the partially-filled solutions were computed using

a two-dimensional computational domain and the exhausting PDE flow field was directly

calculated. For fill fractions greater than 0.5, the MOC model is shown to have very good

agreement; however, this agreement starts to deviate at very low fill fractions. As the fill

fraction approaches zero, the MOC model has the tendency to over-predict the compu-

tational results of [107]. This is primarily attributed to the mostly non-ideal detonation

initiation scheme employed in [107], which featured only a 4 atm region near the thrust

wall; meanwhile, the current MOC model uses an idealized direct detonation initiation with

the CJ theory. Although not shown in Figs. 4.11 and 4.12, in the limit the fill fraction

approaches zero, the partial filling performance ratio Isp/Isp,full approaches 8.9 and 6.3 for

H2–O2 and C2H4–O2 with air as the inert gas, respectively. Note, these performance values

are for a fill fraction of α = 0.01, since the current MOC model cannot actually approach a
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fill fraction of zero. Further, these values are merely idealized representations of the upper

limit of partially-filled PDE performance, as this is an area with minimal numerical and

experimental results. However, it is interesting to note that these upper limits agree very

well with those obtained using the homogeneous dilution model of Endo et al. [112], and

are about a factor of 2 higher than those obtained using the bubble model of Cooper [110].

Despite these results, caution should be taken when using a MOC-based model to evalu-

ate the performance of partially-filled PDEs in the limit of small fill fraction. It is likely

that these reported values largely overestimate the actual performance due to the effects of

non-ideal detonation initiation. Alternatively, the MOC model is shown to have very good

agreement with both experimental and two-dimensional computational results for larger fill

fractions with the initial blowdown pressure ratio of the PDE system equal to unity.

Figure 4.12. Comparison of specific impulse ratio from MOC with published data in [89,
98,107] for C2H4–3O2 propellant and air as the inert gas (ψ = 1).

The final case for validation is ensuring the current MOC model can properly cap-

ture the combined effects of partially filling the PDE while varying the blowdown pressure

ratio. This operating condition would be encountered when using partially-filled PDEs in

sub-atmospheric environments. In this case, the magnitude of specific impulse is directly
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determined rather than the ratio of specific impulse of a partially-filled to fully-filled PDE.

Comparing the current MOC model with existing data in this manner better highlights any

potential deviation from previous results at a given blowdown pressure ratio. For the pur-

poses of comparing H2–O2 propellant mixtures, the one-dimensional computational study

of Morris [76] is used. In [76], stoichiometric H2–O2 propellant is used with an H2 ambient

condition. The exit boundary condition was modeled using a conditional supersonic and

subsonic flow condition, and an idealized diaphragm was assumed to separate the propel-

lants from the ambient condition until the detonation wave reached the diaphragm location.

Moreover, the fill fraction was varied from 0.33–1.0 by adding straight-extensions, and the

blowdown pressure ratio was varied from 1–1,000. Figure 4.13 shows the comparison of the

current MOC model with the results of [76]. It can be seen from Fig. 4.13 that excellent

agreement is obtained for fill fractions ranging from 0.5–1.0, and blowdown pressure ratio

ranging from 1–1,000. In those cases, the average error is 0.6 percent. It is noted that the

MOC model slightly underestimates the specific impulse as the fill fraction reaches 0.33,

which has an average error of roughly 1.4 percent over the full blowdown pressure ratio

range. In this case, the deviation is believed to be a result of the finite-rate chemistry

model used in [76], in that more chemical recombination is permitted to take place as the

fill fraction is decreased, which ultimately increases the specific impulse.

Lastly, the current MOC model is compared in Fig. 4.14 with existing numerical and

experimental data for partially-filled PDEs in sub-atmospheric environments using a C2H4–

O2 propellant mixture and air as the inert gas. The numerical results of Morris [83] were

computed using an axisymmetric two-dimensional numerical domain, and the exhausting

flow field was directly computed without requiring the specification of a boundary condition

on the PDE exit plane. In those computations, the PDE was filled with a stoichiometric

C2H4–O2 propellant mixture with air as the ambient. The fill fraction was fixed at 0.63 by

using a straight tube extension and an idealized diaphragm was used to separate the propel-

lant from the ambient condition, which varied from 1.4–100 kPa. Further, the experiments
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Figure 4.13. Comparison of specific impulse from MOC with published data in [76] at
various blowdown pressure ratios and fill fractions for 2H2–O2 propellant and H2 ambient.

conducted by Cooper and Shepherd [102] were single-shot (SS) tests using stoichiometric

C2H4–O2 and air as the ambient. The detonation tube was suspended on a ballistic pendu-

lum setup and enclosed inside of a dump tank in order to control the ambient environment.

The fill fraction was fixed at 0.63 by coupling a straight tube extension to the detonation

tube, and a thin Mylar diaphragm was used to separate the detonable propellant from the

ambient condition. In those experiments, the detonation tube was filled to 80 kPa with the

stoichiometric C2H4–O2 detonable mixture and the ambient air was varied from 1.4–100

kPa. As shown in Fig. 4.14, excellent agreement is obtained between the current MOC

model and the results reported by Morris [83], such that an average difference of one per-

cent is obtained for fill fractions cases of 0.63 and 1. Similarly, agreement is very good with

the experimental results of Cooper and Shepherd [102], such that an average error of 3.7

percent is obtained over the blowdown pressure ratio range test for fill fractions of 0.63 and

1.

4.5.3 Pulse Detonation Engine with Diverging Nozzles

Finally, it is desired to ensure the current MOC model can properly capture the

gasdynamic flow field evolution and resulting performance for PDEs equipped with diverging
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Figure 4.14. Comparison of specific impulse from MOC with published data in [83, 102] at
various blowdown pressure ratios for C2H4–3O2 propellant and air as the inert gas.

nozzles. As such, the first case of validation requires ensuring the MOC results accurately

model the experimental pressure traces obtained in the previously discussed test facility

of Joshi and Lu [97]. In this case, the 660 mm length PDE tube is coupled to a conical

diverging nozzle with a length, conical half-angle, and expansion area ratio of 165 mm,

8.4◦, and 8.0, respectively. Further, the PDE was operated in a similar single-shot manner,

where a single 6.0 µm thick Mylar diaphragm at the nozzle inlet was used to separate the

detonable mixture from the ambient air. The temporal and spatial evolution of pressure for

stoichiometric H2–O2 detonable mixture and air as the ambient gas, both initially at 1 atm

and 300 K, is shown in Fig. 4.15. Note, tCJ represents the time at which the detonation

wave reaches the end of the filled length, which corresponds to 0.8L for the present nozzle

case. Note that the MOC model is in very good agreement with the experimental pressure

traces. In fact, similar to the fully- and partially-filled cases, an average error of less than

10 percent is obtained across the distributed pressure flow field during the full blowdown

process, indicating that the MOC model can adequately capture the dominant gasdynamic

processes and interactions within a PDE coupled to a diverging nozzle.
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Figure 4.15. Comparison of pressure flow field from MOC with experimental results for
PDE featuring a diverging nozzle (ε = 8.0) and 2H2–O2 propellant.

Lastly, the final case of validation is ensuring the current MOC model can prop-

erly capture the combined effects of varying the nozzle expansion area ratio and blowdown

pressure ratio. For this, the MOC model is compared in Figs. 4.16 and 4.17 with existing

numerical and experimental data for PDEs equipped with diverging nozzles operating in

sub-atmospheric environments. It is noted that the cases of ε = 1 in these figures corre-

spond to the previously discussed fully-filled PDE results of [83,102], and the data is simply

repeated here to emphasize the performance benefit of diverging nozzles. As before, the

experiments conducted by Cooper and Shepherd [102] were single-shot tests using stoichio-

metric C2H4–O2 and air as the ambient. Additionally, the detonation tube was suspended

on a ballistic pendulum setup and enclosed inside of a dump tank in order to control the

ambient environment. In those experiments, the detonation tube was fitted with two sep-

arate conical diverging nozzles featuring expansion area ratios of ε = 5.7 and ε = 6.5 with

half-angles of 8 and 12 degrees, respectively. Additionally, a thin Mylar diaphragm was

placed at the tube exit, or nozzle inlet, in order to separate the detonable propellant within

the tube from the ambient condition within the nozzle. During operation, the detonation

tube was filled to 80 kPa with a stoichiometric C2H4–O2 detonable mixture and the ambient

air was varied from 1.4–100 kPa. In the case of ε = 6.5, Morris also used the experimental
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results of [102] to validate the previously mentioned two-dimensional axisymmetric numer-

ical model of [83]. Therefore, these numerical results have been included in the current

validation.

Figure 4.16. Comparison of specific impulse from MOC with published data in [102] for
conical diverging nozzles with ε = 5.7 at various blowdown pressure ratios for C2H4–3O2

propellant and air as the inert gas.

Figure 4.17. Comparison of specific impulse from MOC with published data in [83,102] for
conical diverging nozzles with ε = 6.5 at various blowdown pressure ratios for C2H4–3O2

propellant and air as the inert gas.
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As shown in Fig. 4.16, very good agreement is obtained between the current MOC

model and the experimental results of [102] for ε = 5.7. In this case, an average error of

5.7 percent is obtained over the blowdown pressure ratio of roughly 1–75. Similarly, as

shown in Fig. 4.17 for the case of ε = 6.5, excellent agreement is obtained with the two-

dimensional axisymmetric numerical model of Morris [83]. In this case, an average error

of 1.8 percent is obtained over the same blowdown pressure range. However, the current

MOC results and the results of Morris only share good agreement with the results of [102]

for larger blowdown pressure ratios, and deviate at lower blowdown pressure ratios near

unity. This was explained in [83] by the inability of an inviscid model to capture the shock

wave-boundary layer interaction that leads to flow separation during the cases of severely

over-expanded flow in the nozzle. For instance, in the study conducted by Owens and

Hanson [118], it was found that a PDE operating with stoichiometric C2H4–O2 propellant

and with a blowdown pressure ratio of ψ = 1 will achieve optimum performance for a nozzle

expansion area ratio of approximately ε = 1.8. Consequently, severely over-expanded flow

exists in the nozzle for the cases of ε = 5.7 and 6.5 at lower blowdown pressure ratios.

In fact, the nozzle flow for these cases resembles the over-expanded flow shown in Fig. 2.5,

where a strong secondary shock forms during the nozzle startup and blowdown. In practice,

such a strong shock can create a severe adverse pressure gradient within the wall boundary

layer that ultimately induces flow separation. Subsequently, the gas downstream of the

separation point expands in accordance with the boundary of the resulting core jet flow

rather than the physical nozzle wall. As a result, this mechanism causes inviscid models

to over-predict the losses accrued during severe over-expansion in the nozzle since the gas

expansion follows the nozzle wall geometry rather than the separated core flow. This leads

to the disagreement between the current MOC model and the experiments of Cooper and

Shepherd [102] in Figs. 4.16 and 4.17 at lower blowdown pressure ratios. Despite this,

an average error of 9.6 percent is obtained over the full blowdown pressure ratio shown;

however, this error reduces to only 2.3 percent for ψ & 6.
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4.5.4 Model Limitations

Based on the above comparisons with the existing numerical and experimental results,

the current MOC model is capable of accurately reproducing the performance of PDEs that

are both fully- and partially-filled, and operating with diverging nozzles. This included

operating in standard conditions where the propellant and ambient are at equal pressure,

and in sub-atmospheric environments, where the initial blowdown pressure ratio is greater

than unity. It is also noted that a variety of different numerical schemes were used for PDE

performance comparison including one-dimensional, two-dimensional, and axisymmetric,

with various exit boundary conditions. Similarly, a variety of different experimental results

were used for comparison for both hydrogen and hydrocarbon based propellant mixtures,

using single-shot and multi-cycle operations, and various thrust and impulse measurement

techniques including ballistic pendulums, damped thrust stands, and dynamic thrust mea-

surements. In most cases, the MOC model accurately reproduces the performance results;

however, a few limitations should be mentioned.

It is possible to encounter situations where the inviscid and adiabatic assumptions

used in the development of the MOC model begin to breakdown, yielding in an isentropic

assumption that is inaccurate. For instance, as the L/d of the engine increases, where L

is the tube length and d is the diameter, the effects of frictional losses and heat transfer

through the walls become more apparent causing deviations from the isentropic solution. In

general, heat losses will result in a reduction in pressure within the thrust chamber, whereby

larger localized pressure drops within the PDE flow field correlate with higher local heat flux

at the wall. Consequently, this heat transfer loss mechanism yields a plateau pressure deficit

at the thrust wall, and a corresponding decrease in this component of integrated thrust.

Similarly, frictional losses are a result of the boundary layer development along the internal

surfaces of the thrust chamber, which form a shear stress distribution over the internal

surfaces that counteract the thrust force. The characteristics of these performance losses
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have been discussed in detail in the fully-filled PDE studies of Radulescu and Hanson [149],

Owens and Hanson [150], and Kawane et al. [151].

Notably, Radulescu [149] demonstrated that the specific impulse losses in a fully-

filled PDE due to heat transfer through the walls approximately scales quasi-linearly with

increasing L/d. To arrive at this result, it is first necessary to recognize that the square of

specific impulse is directly proportional to the amount of heat released per unit mass of the

propellant, namely, q.

Isp ∝ q1/2 = Cq1/2 (4.16)

This is a fundamental relationship that was reported in the analytical model of Winten-

berger et al. [66,67], and later demonstrated in the experiments of Kiyanda et al. [148]. In

Eq. (4.16), C simply represents a proportionality constant, which was shown to be approxi-

mately 0.058 s2/m in [67] for various hydrogen- and hydrocarbon-based detonable mixtures

with air and oxygen as the oxidizer. It follows, after differentiating Eq. (4.16), that

dIsp =
1

2
Cq−1/2dq (4.17)

Or equivalently,

∆Isp

∣∣∣
qloss

= Isp,isentropic − Isp,qloss =

(
1

2
Cq−1/2

)
qloss (4.18)

Additionally, qloss can be approximated by an averaged wall heat flux for the cycle as

qloss =
Qloss
md

≈
q′′Astf
md

≈
4q′′πdLtf
ρ1πd2L

≈
4q′′tf
ρ1d

≈ 24q′′L

ρ1dWCJ
(4.19)

In this expression, it has been assumed that the fully-filled cycle time is approximated by

tf ≈ 6tCJ ≈ 6L/WCJ . Combining Eqs. (4.19) and (4.18) yields

∆Isp

∣∣∣
qloss
≈
[

12Cq′′

ρ1WCJq1/2

]
L

d
≈ K1

L

d
(4.20)

Note, a similar result was first reported in [149] using similar arguments. Thus, at a first-

order approximation, the decrement in specific impulse due to heat loss is proportional to

the L/d of the thrust chamber. In a given case, the value of K1 can be determined from
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the theoretical properties of the detonable mixture, and an empirically measured average

wall heat flux q′′.

A similar derivation can also be made for the decrement in specific impulse due to

frictional losses within the thrust chamber. In general, the specific impulse decrement from

frictional forces takes the form

∆Isp

∣∣∣
Fvisc

= Isp,isentropic − Isp,Fvisc =

∫ tf
0 Fvisc(t) dt

mdg
(4.21)

Further, if it is assumed that the contribution of the viscous frictional force can be replaced

by a representative averaged shear stress over the internal surface, namely, Fvisc(t) ≈ τwAs,

then it follows that the specific impulse decrement from frictional losses takes the form

∆Isp

∣∣∣
Fvisc

≈
∫ tf

0 τwAs dt

mdg
≈
τwAstf
mdg

≈
4τwπdLtf
ρ1πd2Lg

≈ 24τwL

ρ1dgWCJ
(4.22)

As before, it has been assumed that the fully-filled cycle time is approximated by tf ≈

6tCJ ≈ 6L/WCJ . Finally, rewriting Eq. (4.22) to the form

∆Isp

∣∣∣
Fvisc

≈
[

24τw
ρ1WCJg

]
L

d
≈ K2

L

d
(4.23)

Thus, at a first-order approximation, the decrement in specific impulse due to frictional

losses is also proportional to the L/d of the thrust chamber. Furthermore, the value of

K2 can be determined from the theoretical properties of the detonable mixture, and an

empirically measured average wall shear stress τw.

With Eqs. (4.20) and (4.23), an estimate for the actual fully-filled PDE specific im-

pulse can be written as

Isp,actual ≈ Isp,isentropic −∆Isp

∣∣∣
qloss
−∆Isp

∣∣∣
Fvisc

(4.24)

Or equivalently,

Isp,actual ≈ Isp,isentropic −K1
L

d
−K2

L

d
≈ Isp,isentropic − (K1 +K2)

L

d
(4.25)

where the definitions of K1 and K2 are shown in Eqs. (4.20) and (4.23), respectively. Com-

bining K1 and K2 into a single constant, K, and after manipulation of Eq. (4.25), a useful
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form of the desired expression for the performance decrement in a fully-filled PDE due to

heat and frictional losses can be obtained.

Isp,actual
Isp,isentropic

≈ 1−KL

d
(4.26)

Note, in this form, K = (K1 +K2)/Isp,isentropic, which is dependent on physical properties

of the detonable propellant, averaged heat flux through the wall, averaged shear stress

distribution along the internal surface, and ideal performance. Although simple, Eq. (4.26)

provides a very useful relationship for estimating how the heat and frictional losses combine

and scale with the thrust chamber L/d. To demonstrate this, a normalized specific impulse

comparison of the MOC model is made in Fig. 4.18 with existing published data for fully-

filled PDEs of varying L/d ranging from 8–200 and operating with 2H2–O2, C2H4–3O2, and

C3H8–5O2 propellants. In this case, a least-squares fit to the aggregate experimental data

in Fig. 4.18 of the form: Isp/Isp,MOC ≈ 1−K(L/d), yields K = 3.37×10−3. Note, this is an

averaged representation of K based on several experimental results with different detonable

mixtures. In practice, and for more accurate results, K should be estimated based on

the detonation properties of the respective propellant and physical conditions of the actual

setup. Despite this, it follows, albeit crudely, that the current MOC model will overestimate

the actual fully-filled PDE performance by more than 20 percent for L/d & 60, which is

similar to the findings of [149, 151]. Additionally, although these results are for fully-filled

PDEs, similar trends are expected for the partially-filled PDE and PDEs featuring diverging

nozzles. It should also be noted that the self-similarity of the flow begins to breakdown as

L/d→ 1, which causes an additional deviation in the experimental observations from that

of the ideal PDE performance. Details regarding the breakdown of self-similarity can be

found in [149].

It is also possible to encounter flow field situations whereby the frozen flow assumption

used in the development of the current MOC model is not entirely accurate. In the present

model, the frozen flow assumption implies that the burned products behave as a calorically

perfect gas, such that the distribution of molecular internal energy states and chemical
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Figure 4.18. Comparison of normalized specific impulse from MOC model with published
data in [89,90,97,149–153] for various L/d and 2H2–O2, C2H4–3O2, and C3H8–5O2 propel-
lants.

composition are invariant to changes in pressure and temperature in the thrust chamber

flow field. Another way of stating this, is that the current model assumes that the timescales

associated with the readjustment of thermodynamic and chemical equilibrium are infinitely

long compared to that of the characteristic flow timescale of a moving fluid element within

the thrust chamber flow field. In actuality, this is not true as the timescales associated with

chemical reactions and the translational, rotational, and vibrational relaxation processes are

in fact finite, and can be of the same order or smaller than that of the flow timescale. In such

cases, exothermic recombination of atomic species will take place across expansive regions of

the flow field, which will ultimately raise the PDE performance. Therefore, it is important

to comment on the limitations of the frozen flow assumption used in the development of the

current MOC model, and mention to what extent this assumption will influence the model

results in comparison to experimental measurements.

The degree to which the flow is locally frozen, in a state of equilibrium, or nonequi-

librium, can be determined by use of the Damköler number, Da. In general, the Damköler

number is simply defined as,

Da =
tf
tr

(4.27)
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where tf is the local characteristic flow time, and tr is the local time required to reach equi-

librium from either thermodynamic relaxation or chemical reaction processes. In this case,

tf corresponds to the amount of time required for a fluid element to traverse a distance of

interest, l, within the thrust chamber flow field. In application to the quasi-one-dimensional

PDE flow field, l would simply be the length of a pathline that traverses across any number

of gasdynamic waves within the thrust chamber flow field, such as the Taylor, secondary,

and exhausting rarefaction waves. Hence, tf = l/u, where u is the local velocity along the

fluid element pathline. However, it is worth noting that different selections of l, such as the

detonation or shock wave structure length, can yield drastically shorter flow time scales.

In essence, when Da � 1, namely, tf � tr, then it follows that the flow can be described

by a frozen flow assumption. Alternatively, when Da � 1, namely, tf � tr, then it fol-

lows that the flow can be described by a local equilibrium assumption. Lastly, if Da ≈ 1,

namely, tf ≈ tr, then it follows that the flow is in a state of nonequilibrium. Before evalu-

ating Da for processes in the PDE flow field, it is necessary to first establish which of the

timescales associated with various relaxation and chemical reaction processes are of impor-

tance. In general, the timescales required to reach thermodynamic equilibrium vary widely

among translational, rotational, and vibrational relaxation, which are also generally differ-

ent from the chemical reaction timescales. As discussed by Vincenti and Kruger [154] and

Zel’dovich and Raizer [155], equilibrium is generally established orders of magnitude faster

in high temperature gas flows for translational and rotational relaxation processes compared

to the much slower vibrational relaxation and chemical reaction processes. Additionally,

Bray [156] demonstrated that most of the nonequilibrium effects on thrust performance for

conventional rocket engines can be adequately captured when only considering vibrational

relaxation and chemical reaction processes. Therefore, only these respective timescales will

be considered in the following discussion.

The dynamics of burned products across the Taylor rarefaction will be used for the

purposes of estimating the flow timescale, and the associated vibrational relaxation and
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chemical timescales, as this rarefaction wave is the first rapid expansion process that a fluid

element encounters upon passing through the detonation wave. Moreover, these timescales

can then be used to create a first-order estimate of Da, whereby locally frozen, nonequilib-

rium, or equilibrium flow can be determined. As previously discussed, once a fluid element

passes through a detonation wave, the fluid element approaches a state of local thermo-

dynamic and chemical equilibrium upon reaching the equilibrium CJ point. Additionally,

once the fluid element begins to traverse across the Taylor rarefaction wave following the

detonation, rapid pressure and temperature changes cause the fluid element to undergo

readjustment towards a new thermodynamic and chemical equilibrium. The vibrational

relaxation timescale can be approximated with empirical correlations based on conven-

tional Landau–Teller plots (ln pτvib vs. T−1/3) [139] given the post-detonation mixture and

representative bath gas. For instance, in stoichiometric H2–O2 detonable mixtures, the

post-detonation state primarily consists of diatomic and polyatomic species H2O, H2, OH,

and O2 with mole fractions of XH2O = 0.534, XH2 = 0.162, XOH = 0.135, and XO2 = 0.048,

respectively. Consequently, H2O can be taken as the representative bath gas, and the vi-

brational relaxation timescale can be estimated for the various species with H2O as the

most frequent collision partner. At the temperatures and pressures encountered across the

Taylor rarefaction wave for stoichiometric H2–O2, the vibrational relaxation timescale of

H2O in H2O is estimated to be τvib ∼ O(10−8) seconds using the empirical results of Kung

and Center [157]. Similarly, a rough approximation for the vibrational relaxation timescale

of the diatomic species in H2O can be determined using N2 as a representative diatomic

species. In this case, the vibrational relaxation timescales of H2, OH, and O2 in H2O are

roughly τvib ∼ O(10−7) sec, using the empirical results of Center and Newton [158].

In stoichiometric H2–air detonable mixtures, the post-detonation state primarily con-

sists of diatomic and polyatomic species N2, H2O, H2, OH, and O2 with mole fractions of

XN2 = 0.632, XH2O = 0.295, XH2 = 0.031, XOH = 0.018, and XO2 = 0.008, respectively.

Consequently, N2 can be taken as the representative bath gas, and the vibrational relaxation
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timescale can be estimated for the various species with N2 as the most frequent collision

partner. At the temperatures and pressures encountered across the Taylor rarefaction wave

for stoichiometric H2–air, the vibrational relaxation timescale of N2 in N2 is estimated to

be τvib ∼ O(10−6) seconds using the empirical results of Millikan and White [140]. Simi-

larly, the vibrational relaxation timescale of H2O in N2 is estimated to be τvib ∼ O(10−8)

seconds using the empirical results of Kung and Center [157]. Lastly, a rough estimate for

the remaining diatomic species in N2 can be determined using the empirical results of [140]

to be approximately τvib ∼ O(10−7) seconds.

As previously discussed, it is also desired to estimate the timescales of the chemical

reactions upon departure from the equilibrium CJ state. A simple method for approximating

the chemical reaction timescales was discussed by Gou et al. [159] for combustion modeling

with reduced and detailed chemical kinetic mechanisms. In that study, it was demonstrated

that the chemical timescale could be approximated by,

τchem,i =
Yi
Di

(4.28)

where Yi and Di are the mass fraction and mass fraction destruction rate of the ith species,

respectively. It is noted, that the primary reactions to take place will be recombination

as the gas expands to lower pressures and temperatures during the gasdynamic blowdown

process. The mass fraction and destruction rates can be evaluated with the chemical ki-

netics program Cantera [24] for all of the post-detonation species by perturbing the re-

action system away from chemical equilibrium across the Taylor rarefaction wave. As

such, for stoichiometric H2–O2 detonable mixtures, the dominant chemical recombination

timescales occur on a range τchem ∼ O(10−5–10−6) seconds. Similarly, for stoichiomet-

ric H2–air detonable mixtures, the dominant chemical recombination timescales occur on

a range τchem ∼ O(10−4–10−6) seconds. One of the more significant conclusions to draw

from these estimates is that the PDE thrust chamber flow field is likely to always be in, or

near, a state of local thermodynamic equilibrium. This comes about from the result that

τvib < τchem by roughly an order of magnitude for hydrogen-based detonable mixtures. Fur-
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ther, this indicates that most nonequilibrium effects associated with PDE flow fields come

in the form of chemical nonequilibrium as opposed to thermodynamic nonequilibrium, in

which case the flow field chemical kinetics can be accurately modeled with Arrhenius-based

finite-rate chemistry models.

Based on the above discussion, the magnitude of the Damköler number can be esti-

mated by assuming tr ≈ τchem. Moreover, for the purposes of estimating the flow timescales,

it will be assumed that chemical equilibrium or nonequilibrium effects do not heavily in-

fluence the time required for a fluid element to traverse across the Taylor rarefaction wave.

Therefore, by use of the MOC model, it follows that the flow timescale for a fluid element

starting at x0 = 0.1, 0.5, and 1 m from the thrust wall, are characterized by 5.5×10−5,

2.7×10−4, and 5.4×10−4 seconds for H2–O2 detonable mixtures, and 7.5×10−5, 3.7×10−4,

and 7.4×10−4 seconds for H2–air detonable mixtures, respectively. Consequently, within the

thrust chamber flow field, 1 . Da . 100 for H2–O2 detonable mixtures and 0.1 . Da . 100

for H2–air detonable mixtures. Further, recognizing that the subsequent expansion processes

within the PDE flow field usually happen slower than that within the Taylor rarefaction

wave, it can be said that the H2–O2 PDE flow field is mostly characterized by an equilibrium

flow assumption, while the H2–air PDE flow field is characterized by regions of chemical

nonequilibrium and equilibrium. Although this analysis only pertains to the Taylor rarefac-

tion wave and subsequent gasdynamic expansion processes in the thrust chamber flow field,

the presence of chemical nonequilibrium is expected to be more significant in the event the

PDE is partially-filled, and even more severe when a diverging nozzle is coupled to the end

of the PDE. In the latter case, the diverging nozzle permits geometric expansion of the gas,

whereas the fully- and partially-filled PDEs only allow for gasdynamic expansion through

the various rarefaction waves. Consequently, the rate of expansion through a nozzle will

be considerably larger compared to rarefaction waves alone, which will in turn amplify the

effects of chemical nonequilibrium.
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The above discussion indicates that the frozen flow assumption utilized in the de-

velopment of the MOC model is not a very accurate description of the actual PDE flow

field. As such, it is necessary to highlight the consequences of employing such a simplifying

assumption. For instance, Kailasanath et al. [160] and Povinelli and Yungster [146] studied

the effects of dissociation and recombination on the performance of fully-filled PDEs using

a multi-step finite-rate chemistry model. They demonstrated that the heat released during

recombination of atomic species could raise the specific impulse by approximately 5 per-

cent over that of the idealized PDE with frozen chemistry for PDEs operating with H2–air.

Similarly, using a multi-step finite-rate chemistry model for H2–O2, Morris [76] and Sato

et al. [98] reported fully-filled PDE specific impulses that where 4.7 and 3.3 percent higher

than that predicted by the current MOC model with frozen chemistry, respectively. Fur-

ther, Povinelli and Yungster [147] and Sato et al. [98] also reported fully-filled PDE specific

impulses that were roughly 6.6 and 3.4 percent higher than that predicted by the current

MOC model for both stoichiometric C2H4–air and C2H4–O2 mixtures, respectively. Based

on these comparative results, it is anticipated that current MOC model will underestimate

the fully-filled performance of a PDE by roughly 5 percent due to freezing the chemistry

of the burned products and neglecting recombination during the gasdynamic blowdown

processes. Additionally, it follows that this deviation could be more severe with longer

PDE geometries (greater than 1 m in length) where the overall time for recombination is

lengthened, thereby increasing the performance increase from more efficient recombination.

In the case of partially-filled PDEs and PDEs with diverging nozzles, this deviation

due to the frozen flow assumption is expected to become more severe, as the gasdynamic

blowdown features more expansion of the burned products, and more time is allowed for

further recombination reactions to occur. For instance, in the case of partially-filled PDEs,

the current MOC model underestimates the specific impulse results reported by Sato et

al. [98] by 4.9 and 5.1 percent for stoichiometric H2–O2 and C2H4–O2 detonable mixtures

with air as the inert gas at a fill fraction of α = 0.5. Similarly, Barbour and Hanson [161]
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investigated the effects of chemical nonequilibrium on PDEs with diverging nozzles using

a multi-step finite-rate chemistry model. They showed that chemical nonequilibrium due

to incomplete recombination in the nozzle could lead to a 9 percent loss compared to the

chemical equilibrium solution for PDEs operating with stoichiometric H2–O2 and C2H4–O2

propellant and featuring diverging nozzles with a 12 degree half-angle and an expansion area

ratio of ε = 100. In comparison to the current frozen flow MOC model, this correlates to an

underestimation of 13 and 15 percent for stoichiometric H2–O2 and C2H4–O2 propellants,

respectively. However, it is interesting to note that when Barbour and Hanson [161] included

the losses due to friction and heat transfer, the agreement between the current MOC model

and those reported results reduced to only 3.0 and 4.8 percent, respectively. This result

is merely fortuitous, due to the simplifying assumptions of the MOC model. Although, it

does indicate that in some cases the performance gains due to recombination are similar in

magnitude to the performance losses associated with friction and heat transfer, such that

the PDE performance can be represented by an idealized model that neglects all of these

details. Despite this, it follows that by neglecting equilibrium or nonequilibrium chemical

recombination in the PDE flow field, the frozen flow assumption will have the tendency to

underestimate the actual PDE performance.

Finally, an additional limitation of the current MOC model is the ability to properly

model the exhausting nozzle flow field in cases where severe over-expansion manifests in the

nozzle. This usually occurs in scenarios with low ψ and large ε. In these cases, the inviscid

and quasi-one-dimensional assumptions fail to account for the shock wave-boundary layer

interaction and multi-dimensional core flow that develops past the separation point in the

nozzle. Consequently, this leads to an underestimation of the real PDE performance. As

a general note, the Summerfield criterion [162] can be used to estimate when a severely

over-expanded nozzle will result in flow separation, namely, when the nozzle exit pressure

reaches roughly 40 percent of the ambient condition. Although this criterion is based on

conventional steady flow nozzles, its accuracy should increase in the event quasi-steady flow
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is established in the nozzle after the transmitted and secondary shock passage. However,

it should also be noted that such severely over-expanded cases usually occur far away from

the conditions associated with optimum performance. Therefore, this limitation should

not prevent the MOC model from being used to accurately determine the optimum nozzle

expansion area ratio for a given blowdown pressure ratio.
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CHAPTER 5

ANALYTICAL MODEL OF FULLY-FILLED PULSE DETONATION ENGINE

5.1 Control Volume Analysis

It will be of use in the forthcoming analysis and discussion to have a simplified

analytical performance model for the fully-filled PDE. As will be seen in the following

chapter, performance scaling laws developed for partially-filled PDEs are normalized by that

of a fully-filled PDE operating under similar conditions. Therefore, it is of importance to

develop a simplified analytical model that can accurately predict the primary performance

metrics of a fully-filled PDE, such as time-averaged thrust, total impulse, and specific

impulse, without the need of performing a MOC-based computation. Additionally, it will be

of use in the following chapter to establish the upper limit of idealized optimum performance

for a PDE using a quasi-steady nozzle. Hence, it is desired first formulate a simplified

analytical model for the fully-filed PDE that can readily be extended the case of a quasi-

steady nozzle. In the development of such a simplified fully-filled performance model, a

detailed control volume analysis is advantageous, since the primary gasdynamic processes

that govern the impulse and thrust generation of a fully-filled PDE can be identified. For

this, the results from the MOC model are used to assist in the control volume analysis, as the

entire flow field can readily be calculated for the complete gasdynamic blowdown in a single-

cycle. Such analysis provides the opportunity to gain useful physical insights regarding

the nature of transient thrust and impulse generation, which can aid the identification of

conditions for which a fully-filled PDE performance model can be simplified. For the

subsequent control volume derivation and discussion, the control volume under consideration

is depicted in Fig. 5.1. Note, the control volume surrounds the entire PDE thrust chamber;

hence, the unsteady momentum within the control volume, momentum flux, and pressure-

area force at the exit control surface all contribute to the overall thrust and impulse. For
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Figure 5.1. Control volume (dashed line) for simplified analytical performance model of
fully-filled PDE.

this model, it is assumed that the gasdynamics are one-dimensional, unsteady, inviscid,

and absent from any heat transfer. Note, these assumptions were shown to be in agreement

with the actual gasdynamic flow field in a PDE thrust chamber during the development and

validation of the MOC model in Ch. 4. As such, they are used to simplify the current control

volume analysis. The general linear momentum equation for the closed control volume in

Fig. 5.1 is given by

Rx =
∂

∂t

[∫
cv
ρ(x, t)u(x, t) dV

]
+ ue(t)ṁe(t) + [pe(t)− p0]Ae (5.1)

In this form, Rx is the resultant thrust force on the control volume, and the first, second,

and third terms on the right-hand side of Eq. (5.1) represents the time rate of change

of internal momentum integrated over the control volume, momentum flux at the exit

control surface, and the net pressure-area force at the exit control surface, respectively.

Additionally, the actual reaction thrust force on the PDE thrust chamber is obtained by

application of Newton’s third law, Fx = −Rx, namely, equal and opposite the net force on

the control volume. However, without loss of generality, the negative sign can be neglected

in the subsequent analysis.

5.1.1 Transient Thrust and Impulse Generation

It is now of interest to investigate the behavior of each term in Eq. (5.1) for the

single-cycle gasdynamic blowdown of a fully-filled PDE. More specifically, it is of interest

to determine what fraction of the overall impulse is attributed to the unsteady momentum

within the chamber, momentum flux out of the chamber, and pressure-area force at the

chamber exit plane during a single-cycle of operation. For this, the MOC model is used to
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calculate the complete flow field of a fully-filled PDE. Fig. 5.2(a) shows the the integrated

unsteady momentum and time-rate of change of that momentum for a thrust chamber that

is 1 m in length with an L/d of 10, initially filled with stoichiometric H2-O2 propellant

at 1 atm and 300 K, and at an initial blowdown pressure ratio of unity. In this case, the

black curve represents the integrated momentum over the control volume at each instance

in time during the blowdown, and the red curve represents the time rate of change of that

integrated momentum.

For t/tCJ < 1, the detonation wave is steadily propagating down the length of the

thrust chamber until eventually exiting the chamber at t/tCJ = 1. Consequently, there is

a sharp rise in the integrated momentum being imparted on the propellant that is initially

at rest. Recall that the Taylor rarefaction wave behind the detonation wave decelerates

the gas to rest as a result of the thrust wall boundary condition. As a result, although the

detonation wave imparts momentum to the burned products, the Taylor wave subsequently

removes some of this momentum, or kinetic energy, and converts it back into internal en-

ergy in the stagnation region following the rarefaction wave. This causes the sharp drop

in integrated momentum across the chamber volume immediately following the exit of the

detonation wave. Additionally, the exhausting rarefaction wave enters the chamber imme-

diately following the exit of the detonation wave, which accelerates the burned products out

of the chamber. Consequently, as the exhausting rarefaction continues propagating into the

thrust chamber, the internal energy of the burned products is converted back into kinetic

energy, which begins to increase the momentum near the chamber exit. Eventually, the

exhausting rarefaction begins increasing the integrated momentum of the burned products

more than the Taylor rarefaction wave is able to attenuate the momentum, which results

in the minimum point on the black curve at t/tCJ ≈ 1.7 in Fig. 5.2(a). After the minimum

point, the exhausting rarefaction continues propagating into the chamber until the leading

characteristic of the rarefaction wave reaches the thrust wall at t/tCJ ≈ 3. Subsequently, as

the exhausting rarefaction reflects from the thrust wall, the integrated momentum reaches
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a secondary maximum at roughly t/tCJ ≈ 3.5, in which case the chamber begins to enter

a mostly quasi-steady constant volume blowdown, where the gas properties are nearly uni-

formly distributed and the integrated momentum slowly returns back to zero at the end of

the cycle.

(a)

(b)

Figure 5.2. (a) Integrated momentum over control volume (black) and time rate of
change (red), and (b) control surface force components (blue): momentum flux (green)
and pressure-area force (red) for fully-filled PDE operating with 2H2-O2 propellant at 1
atm and 300 K (ψ − 1).

146



As previously mentioned, the time rate of change of integrated momentum is given

by the red curve in Fig. 5.2(a). Physically, the magnitude of the red curve corresponds

to the slope of the integrated momentum (black curve), which is exactly equal to the net

force acting on the control volume due to the unsteady momentum within the chamber. As

such, given the steady propagation of the detonation for t/tCJ < 1, momentum is being

linearly imparted onto the burned products, which results in the constant positive force on

the control volume. However, after the detonation wave exits and the integrated momentum

begins decreasing due to the Taylor rarefaction, the net force from integrated momentum

across the volume becomes negative. Additionally, the net force remains negative until the

exhausting rarefaction begins imparting more momentum to the burned products than the

Taylor wave is able to attenuate, which takes place at t/tCJ ≈ 1.7, at which case the net

force equals zero. After this point, the exhausting rarefaction is accelerating the burned

products towards the chamber exit causing an increase in integrated momentum that is

mostly linear, resulting in the constant positive force until the instant in time when the

leading edge of the exhausting rarefaction reaches the thrust wall at t/tCJ ≈ 3. After this

point, the net force due to integrated momentum in the control volume passes back through

zero at the secondary peak on the black curve at t/tCJ ≈ 3.5, and remains negative for the

rest of the mostly quasi-steady constant volume blowdown. It is noted that the secondary

maximum negative force occurs at t/tCJ ≈ 4.5, which corresponds to the time at which

the leading characteristic of the exhausting rarefaction wave reaches the chamber exit after

reflecting from the thrust wall. Eventually, the net force from integrated momentum inside

the control volume returns back to zero at the end of the cycle. The important thing to

note about the time rate of change of integrated momentum in the control volume for a

fully-filled PDE, is the fact that the net force can be both positive and negative. As will be

seen in the following discussion, this will have a significant implication regarding the overall

impulse that is contributed by the first term on the right-hand side of Eq. (5.1).
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The last two terms on the right-hand-side of Eq. (5.1), namely, momentum flux and

the pressure-area force at the chamber exit plane, are shown in Fig. 5.2(b) in nondimensional

form. In this case, the momentum flux is shown with the green curve, while the pressure-

area force is shown with the red curve. The sum total of the two forces, which makes

up the net force at the exit control surface is shown by the blue curve. As expected,

both the momentum flux and pressure-area force on the exit plane are exactly zero for

t/tCJ < 1, since the detonation wave has not actually reached the exit plane of the chamber.

However, at t/tCJ = 1, the maximum momentum flux and pressure-area force are observed

on the exit plane. The relaxation in momentum flux and pressure on the exit plane from

1 ≤ t/tCJ . 2 is due to the interaction of the exhausting rarefaction and Taylor rarefaction

waves, which subsides to a steady value once the Taylor rarefaction wave has exited the

chamber at t/tCJ ≈ 2. From 2 . t/tCJ . 4.5, a quasi-steady flow persists on the exit

plane, which is indicated by the mostly steady momentum flux and pressure-area force,

and net control surface force. As previously mentioned, t/tCJ ≈ 4.5 corresponds to the

time at which the leading characteristic of the exhausting rarefaction wave reaches the

chamber exit after reflecting from the thrust wall, in which case both the momentum flux

and pressure-area force on the exit plane begin to relax in accordance with a quasi-steady

constant volume blowdown. This continues until the thrust chamber completely exhausts

into the surrounding and the net control surface force returns back to zero at the end of

the cycle. The important thing to note for the net momentum flux and pressure-area force

at the chamber exit, is the fact that the net control surface force is always positive. It is

also worth noting that the exhausting rarefaction wave accelerates the burned products to a

choking condition at the exit plane of the PDE, such that sonic flow exists at the exit plane

for the majority of the blowdown. As will be seen in the following subsections, this aspect

will have significant simplifying implications when modeling the exhausting flow properties

on the exit plane.
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(a) (b)

Figure 5.3. (a) Components of total thrust (black): net control surface momentum flux
and pressure-area force (blue) and time rate of change of integrated momentum over the
control volume (red), and (b) impulse generation for fully-filled PDE operating with 2H2-O2

propellant at 1 atm and 300 K (ψ − 1).

A comparison of the net control surface force, namely, the addition of momentum

flux and pressure-area force on the exit plane, and the control volume force, namely, the

time rate of change of integrated momentum over the control volume, are shown in Fig.

5.3(a). In this figure, the blue curve represents the net control surface force, while the red

curve represents the net control volume force. Additionally, the black curve represents the

total sum of the control surface and volume forces, which accounts for all three terms on the

right-hand-side of Eq. (5.1). As expected, the total thrust profile is identical to the profile

that would be obtained by simply evaluating the pressure-area force history on the thrust

wall, is in the case of [65]. However, in the current control volume analysis, it is easier to

visualize the behavior and breakdown of terms that contribute to the thrust. Although the

transient thrust profile and time-averaged thrust are important performance considerations,

the integrated impulse for the cycle is more indicative of which terms actually contribute to

the overall single-cycle performance. As such, Fig. 5.3(b) shows the breakdown of impulse

per unit thrust area from each of the three terms on the right-hand-side of Eq. (5.1). In

this figure, the green curve represents the integrated impulse as a result of the net control
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volume force, namely, time rate of change of integrated momentum over the control volume,

the blue curve represents the integrated impulse as a result of the net pressure-area force

on chamber exit plane, and the red curve represents the integrated impulse from the net

momentum flux at the chamber exit plane. Lastly, the black curve represents the sum total

of all three components, representing the total net impulse during a single-cycle.

Due to the manner in which momentum spatially changes throughout the control

volume during the blowdown, the contribution from the time rate of change of integrated

momentum contributes to a small fraction of the impulse during the cycle. In fact, because

of the positive and negative variation in the control volume force, the net area under the red

curve in Fig. 5.3(a) is effectively zero by the end of the cycle. This is indicated by the green

curve in Fig. 5.3(b) approaching zero towards the end of the cycle. This result indicates that

the net time rate of change of integrated momentum over the control volume is a negligible

quantity over the duration of a single-cycle of a fully-filled PDE, and minimally contributes

to the overall impulse. Physically, the above results indicates that∫ tf

0

{
∂

∂t

[∫
cv
ρ(x, t)u(x, t) dV

]}
dt�

∫ tf

0
{ue(t)ṁe(t) + [pe(t)− p0]Ae} dt (5.2)

where tf represents the duration of a single-cycle. Therefore, if it is desired to derive an

analytical model such that the primary performance metrics are based on the complete

cycle, i.e. time-averaged thrust, total impulse, and specific impulse, as opposed to the

transient evolution of thrust and impulse, then the general thrust equation for a fully-filled

PDE in Eq. (5.1) can be reduced to

Fx = ue(t)ṁe(t) + [pe(t)− p0]Ae (5.3)

Note, in this form the negative sign for the reaction force on the thrust chamber has been

dropped. It should be emphasized that an expression this simple will not provide the correct

temporal evolution of thrust and impulse generation during a single cycle of operation.

However, because the time rate of change of integrated momentum over the control volume
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negligibly contributes to the total impulse at the end of the cycle, the simplified expression

can be especially useful at modeling complete cycle performance metrics.

A comparison of the full thrust equation in Eq. (5.1) and the simplified expression in

Eq. (5.3) is shown in Fig. 5.4. In this figure, the black curve represents the total integrated

impulse from all three terms in Eq. (5.1), while the red curve simply represents the net

control surface force, namely, the momentum flux and pressure-area force at the chamber

exit in Eq. (5.3). As expected, the temporal evolution in impulse is very different for the

respective thrust equations; however, the total impulse at the end of the cycle is effectively

identical due to the behavior of the time rate of change of integrated momentum over the

control volume throughout the complete cycle.

Figure 5.4. Comparison of integrated impulse from complete control volume expression
(black) Eq. (5.1) and simplified expression (red) Eq. (5.3) for fully-filled PDE operating
with 2H2-O2 propellant at 1 atm and 300 K (ψ − 1).

Given the above control volume analysis and discussion, it is evident that a simplified

fully-filled PDE model can be developed whereby the time rate of change of integrated mo-

mentum over the control volume is neglected. Such an assumption allows modeling efforts

to be directed at the exit plane of the thrust chamber as opposed to the complete flow field,

whereby the goal becomes to model the momentum flux and pressure-area force on the
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chamber exit plane. Additionally, such an assumption restricts the performance model to

single-cycle performance metrics such as time-averaged thrust, total impulse, and specific

impulse; however, these are generally the primary figures of merit for evaluating prelimi-

nary PDE performance. Therefore, the following subsections is dedicated to developing a

simplified fully-filled PDE performance model based on Eq. (5.3).

5.1.2 Simplified Thrust Equation

Before proceeding to a description of flow properties on the chamber exit plane, it is

of interest to further simplify the thrust equation in Eq. (5.3). In the previous subsection,

the general thrust equation in Eq. (5.1) was reduced to Eq. (5.3) based on the behavior and

contribution of the unsteady momentum within the control volume. However, Eq. (5.3) can

be simplified even further given certain conditions that exist on the exit plane of a fully-

filled PDE during the gasdynamic blowdown process. It was previously mentioned that the

exhausting rarefaction of a fully-filled PDE creates a choked sonic flow condition on the exit

plane for the majority of the gasdynamic blowdown. Fortunately, this condition reduces

the number flow properties required to properly evaluate Eq. (5.3). Further, for simplicity,

it is assumed that the burnt products are chemically frozen during the gasdynamic blow-

down. This reduces the modeling of exit plane properties to a one-γ model, where the ratio

of specific heats is simply given by γ2 = γCJ , namely, the equilibrium value behind the

detonation wave. With the above assumptions, it follows that the exit gas velocity can be

replace by

ue(t) = a4(t) =
√
γ2R2T4(t) (5.4)

Similarly, the mass flow rate can be replaced by

ṁe(t) = ρ4(t)Aeu4(t) = ρ4(t)Ae
√
γ2R2T4(t) (5.5)
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where it is noted that the subscript 4 refers to the gas state on the exit plane at x = L.

Substituting these quantities into Eq. (5.3) yields

Fx = γ2R2T4(t)ρ4(t)Ae + [p4(t)− p0]Ae (5.6)

Replacing the density using the thermal equation of state for an ideal gas yields

Fx = γ2p4(t)Ae + [p4(t)− p0]Ae (5.7)

Lastly, regrouping terms results in the final simplified thrust equation:

Fx = p4(t)Ae

[
γ2 + 1− p0

p4(t)

]
(5.8)

With this final simplified thrust expression in Eq. (5.8), it is noted that the only time

varying quantity is p4(t), namely, the transient pressure profile on the chamber exit plane.

Therefore, the goal of the following subsections is to describe this pressure history at the

chamber exit plane for a generalized fully-filled PDE.

5.2 Model Description

Consider a straight and constant-area PDE thrust chamber with an overall length L,

which is fully-filled with gaseous detonable propellant. The propellant is separated from

the ambient by an idealized contact surface at the chamber exit plane. For simplicity, it

is assumed that the propellant and contact surface are initially stationary. Recall that a

detailed description of the gasdynamic flow field was provided in Ch. 2 for a fully-filled PDE,

therefore only a brief description is provided here. Following ignition, a detonation wave

is assumed to instantaneously form at the head end of the thrust chamber and propagate

down the chamber away from the thrust wall. The detonation wave is immediately followed

by the self-similar Taylor rarefaction wave, which decelerates the gas from a high velocity

to rest, satisfying the closed wall boundary condition at the head end of the chamber. As

the detonation wave reaches the exit, the detonation wave collides with the contact surface

at the chamber exit. Note, the full description of this gasdynamic interaction was provided
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in Ch. 3 for the cases of reflected shock, Mach, or rarefaction wave from the contact surface,

depending on the conditions across the discontinuity. Following the collision, a transmitted

shock propagates into the surrounding while a reflected wave propagates into the burned

products. Similarly, the exhausting rarefaction wave enters the chamber and immediately

follows the reflected interface wave, which together propagate towards the head end of the

chamber. A labeled x–t diagram is provided in Fig. 5.5 for the entire flow field of a fully-

filled PDE with the accompanying labeled state nomenclature for the current analytical

model. In this case, 1 denotes the initial propellant state, 2 the post-detonation state, 3

the stagnation state behind the Taylor rarefaction wave, and 4 the properties on the exit

plane of the PDE where x = L.

Figure 5.5. x–t diagram of fully-filled PDE flow field and associated important time in-
stances for analytical model where the color corresponds to pressure.

The flow condition on the exit plane can be described by four distinct phases. The

first is simply a quiescent phase prior to the arrival of the detonation wave, which has a
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duration of 0 < t < tCJ , where tCJ = L/WCJ . Similarly, the second phase accounts for the

starting flow process on the exit plane, which is caused by the arrival of the detonation wave

and passage of the Taylor rarefaction wave. The duration of the second phase is defined

by tCJ < t < tT , where tT is the time at which the trailing characteristic of the Taylor

rarefaction wave reaches the exit plane. Further, the third phase is a steady choked state

that arises due to the exhausting rarefaction accelerating the gas in the stagnation region

of state 3 to a sonic velocity on the exit plane at state 4. The duration of this steady

choked phase is defined by tT < t < tR, where tR is defined by the time at which the

leading characteristic of the exhausting rarefaction wave reflects from the thrust wall and

propagates back to the exit plane of the thrust chamber. Note, the leading characteristic of

the exhausting rarefaction has been colored red in Fig. 5.5. In this depiction, it is clear that

tR is governed by the dynamics of the leading characteristic of the exhausting rarefaction

wave. Lastly, the final phase is a mostly constant-volume blowdown of the thrust chamber

for t > tR. It is noted that the flow condition is not actually a constant-volume blowdown;

however, due to the spatial uniformity of flow properties in the PDE for t > tR, a constant-

volume blowdown is a reasonable approximation [121]. In summary, the flow condition on

the exit plane can be described by a quiescent condition, detonation wave arrival and Taylor

wave passage, steady choked flow, and a constant-volume blowdown. As such, the goal of

the following subsections is to provide an analytical description of state 4 on the exit plane

throughout these distinct flow phases. Lastly, before proceeding to a description of the flow

properties at state 4, it will be convenient to provide an analytical description of states

1, 2, and 3, as these states are required for evaluating state 4. Moreover, the variation in

flow properties through the Taylor rarefaction wave and exhausting rarefaction wave will

be required to properly define state 3 and tR.

State 1 is simply described by the initially quiescent propellant with u1 = 0, where

p1 and T1 are defined as part of the propellant initial conditions. Similarly, state 2 is

represented by the equilibrium post-detonation state, which was provided in Eqs. (3.10)-
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(3.12) for a CJ detonation in Ch. 3. In order to determine state 3, it is required to evaluate

the properties along the trailing characteristic of the Taylor rarefaction wave where u3 = 0.

The variation in flow properties through the Taylor rarefaction wave can readily be obtained

by considering a self-similar centered rarefaction wave, where the leading characteristic

travels at the detonation wave velocity, and the trailing characteristic travels at the local

sound speed once the gas has isentropically decelerated to rest. The variation in pressure,

sound speed, and gas velocity through the wave was given in [65] as

p(x, t) =

(
1− γ2 − 1

γ2 + 1

x2 − x
a2t

)2γ2/(γ2−1) γ1M
2
CJ + 1

γ2 + 1
p1 (5.9)

a(x, t) =
γ1M

2
CJ + γ2

γ1M2
CJ

1

γ2 + 1
WCJ +

γ2 − 1

γ2 + 1

x

t
(5.10)

u(x, t) = −
γ1M

2
CJ + γ2

γ1M2
CJ

1

γ2 + 1
WCJ +

2

γ2 + 1

x

t
(5.11)

In these expressions, x2 represents the location of the leading characteristic and is given by

x2 = WCJ t. Evaluating Eq. (5.11) at u(x3, t) = 0, and solving for x3/t reveals the path of

the trailing characteristic. Moreover, substituting that expression into Eqs. (5.9) and (5.10)

yields the resulting pressure and sound speed in the stagnation region of state 3.

p3 = p1

(
γ1M

2
CJ + γ2

2γ2

)(
γ1M

2
CJ + γ2

γ1M2
CJ + 1

γ2 + 1

2γ2

)(γ2+1)/(γ2−1)

(5.12)

a3 =
γ1M

2
CJ + γ2

2γ1M2
CJ

WCJ (5.13)

u3 = 0 (5.14)

It is now of interest to determine how the gas properties in state 3 vary across the

exhausting rarefaction wave upon reaching the desired state 4 at the chamber exit. In

this case, state 4 is simply governed by the nature in which state 3 expands through the

exhausting rarefaction. Recall that in the x–t diagram of Fig. 5.5, the exhausting rarefaction

is headed by the reflected interface wave (red line) from the interaction of the detonation

wave with the contact surface. If this reflected interface wave is a Mach wave, then the

reflected interface wave is simply that of the C− characteristic that leads the exhausting
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rarefaction wave. Similarly, if the reflected interface wave is a rarefaction wave, then the

reflected rarefaction and exhausting rarefaction waves become coincident. In this case, the

leading characteristic of the two coincident waves becomes the C− characteristic that leads

the exhausting rarefaction wave. Alternatively, in the event of a shock reflection from the

contact surface, the exhausting rarefaction is headed by a shock. The existence of this shock

can greatly complicate the gasdynamic description of the exhausting rarefaction. However,

if the reflected shock is fairly weak, such that p2′/p2 ≈ 1, then it can be assumed that the

reflected interface wave is simply that of the the C− characteristic that leads the exhausting

rarefaction. In fact, this assumption was also used in the performance model of [66,67], and

as will be shown in Ch. 6, the operating conditions that yield a reflected shock from the

contact surface usually result in a shock of relatively weak strength. Moreover, because the

shock is continually being overtaken by the exhausting rarefaction wave from behind, the

shock will significantly decay in strength as it propagates towards the thrust wall. Hence,

it will be assumed that cases of a shock reflection from the contact surface yields a shock

of weak strength that can be neglected. Thus, in general, if the exhausting rarefaction

is assumed to closely resemble that of a self-similar centered rarefaction wave, then the

pressure, sound speed, and gas velocity variation through the exhausting rarefaction are

given by

p(x, t) = p3

(
2

γ2 + 1
− γ2 − 1

γ2 + 1

x− L
a3(t− tCJ)

)2γ2/(γ2−1)

(5.15)

a(x, t) =
2

γ2 + 1
a3 −

γ2 − 1

γ2 + 1

x− L
t− tCJ

(5.16)

u(x, t) =
2

γ2 + 1
a3 +

2

γ2 + 1

x− L
t− tCJ

(5.17)

It is noted that these expressions where derived based on the results in [163] for a centered

rarefaction wave. With this generalized flow field description, it is now possible to describe

the flow properties on the exit plane for a single-cycle of operation of a fully-filled PDE.

157



5.2.1 Passage of Taylor Rarefaction Wave

The starting flow on the exit plane begins when the detonation wave arrives at the

chamber exit. The peak pressure on the exit plane at t = tCJ is denoted by p4(tCJ), and

governed by the pressure condition immediately after the detonation wave collision with

the contact surface. Note, the reflected wave strength can be directly calculated using

the detonation-contact surface interaction theory of Ch. 3 for the cases of reflected shock,

Mach, or rarefaction wave depending on the acoustic impedance ratio across the contact

surface. Recognizing that in the event of a reflected shock, the pressure behind the reflected

shock would be larger than the post-detonation pressure, namely, p2′ > p2. Similarly, in the

event of a reflected Mach or rarefaction wave, the pressure behind the reflected waves would

either be equal to, or less than, the post-detonation pressure, namely, p2′ = p2 or p2′ < p2,

respectively. This aspect must be considered when selecting the starting peak pressure on

the chamber exit plane. For instance, because the detonation wave collision with the contact

surface is modeled as a collision of discontinuities, the moment immediately following the

collision yields two distinct pressures on either side of the resulting wave type at the same

location. As such, the larger of the two pressures must be selected when considering what

pressure manifests as the physical peak if one were to measure the pressure immediately

following the collision. Hence, in the event of a reflected shock from the contact surface,

p4(tCJ) = p2′ as predicted by the procedure detailed in Ch. 3. Similarly, in the event of a

reflected Mach or rarefaction from the contact surface, p4(tCJ) = p2.

With the selection of peak pressure defined, it is now desired to formulate an ex-

pression for the remainder of the pressure relaxation during the Taylor rarefaction wave

passage. This relaxation in pressure occurs over the duration tCJ < t < tT , and is caused

by both the Taylor wave passage and interaction with the exhausting rarefaction at the exit

plane. This gasdynamic interaction is characterized by a non-simple region in x–t space,

where the Taylor and exhausting rarefaction wave interact in a manner similar to that of

a head on collision between two rarefaction waves. Consequently, providing a closed form
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analytical expression for p4(t) during the Taylor wave passage based solely on the governing

gasdynamics becomes a difficult task. In most gasdynamic problems where the solution

of interest lies within, or on the boundary of a non-simple region, the solution is usually

obtained numerically with a method such as the MOC. However, as the goal is to provide

an analytical expression for p4(t) during a complete PDE cycle, an approximate expression

based on a nondimensional pressure decay function will suffice. For this, the MOC model

was used to compute the pressure history on the thrust chamber exit plane for a wide

range of operating conditions. For the decay portion associated with the Taylor rarefaction

wave passage, the decay shape can be normalized based on [p4(t) − p4,s]/[p4(tCJ) − p4,s],

where p4(tCJ) represents the peak pressure and p4,s represents the steady choked pressure

at t = tT . Moreover, the time can be scaled by τ = tT − tCJ , which represents the dura-

tion of Taylor wave passage on the exit. Figure 5.6 shows the results for a wide range of

PDE operating condition with both H2–O2 and C2H4–O2 propellants at various equivalence

ratios, initial propellant temperatures, and blowdown pressure ratios.

Figure 5.6. Normalized pressure decay at PDE exit for various operating conditions and
comparison with Friedlander decay profile for α=3.
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It is evident that all of the pressure decay profiles collapse when plotted as a normal-

ized pressure decrement versus normalized overpressure duration, where the overpressure is

referenced to the steady choked pressure during tT < t < tR. This is an indication that the

trailing characteristic on the exit plane, which is on the far side of the non-simple region

in the x–t diagram of Fig. 5.5, is characterized by a mostly similar flow that scales with

L/τ . Additionally, it appears that the normalized decay shape is not sensitive to the pro-

pellant type or post-detonation properties. This permits for a model equation to represent

the decay solely based on the decay shape, rather than a combination of the shape and

gas properties. In this case, the modified Friedlander blast wave profile [164] can be used

to model the normalized overpressure decay for the duration defined by τ . This modified

decay profile is given by,

p4(t)− p4,s

p4(tCJ)− p4,s
=

(
1− t− tCJ

τ

)
e
−α

(
t−tCJ
τ

)
(5.18)

where α represents the shape factor. Based on a least-squares fit of the model equation

to the aggregate MOC data in Fig. 5.6 yields an α = 3. Note that application of Eq.

(5.18) requires knowledge of p4(tT ) = p4,s and τ = tT − tCJ . The determination of p4,s will

be carried out in the following subsection; however, tT will be addressed in the following

paragraphs.

A very good estimate for tT can be made by assuming that the trailing characteristic

of the Taylor rarefaction keeps a fairly constant slope as it traverses the full thrust chamber.

In fact, as seen in Fig. 5.5, the slope of the trailing characteristic of the Taylor wave remains

constant over the chamber length range 0 < x/L . 0.8. However, as the characteristic

encounters the exhausting rarefaction, the slope continues to decrease until finally reaching

the chamber exit. If this slight decrease in the characteristics slope is neglected for 0.8 .

x/L ≤ 1, then tT can be approximated as,

tT =
L

a3
(5.19)
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where it is reminded that a3 is the sound speed in the stagnation region of state 3 behind

the Taylor rarefaction wave and given in Eq. (5.13). Substituting this expression into Eq.

(5.19) yields an approximate general expression for tT as

tT
tCJ

=
2γ1M

2
CJ

γ1M2
CJ + γ2

(5.20)

Therefore, the expression for τ = tT − tCJ simply becomes

τ =

(
2γ1M

2
CJ

γ1M2
CJ + γ2

− 1

)
tCJ (5.21)

In summary, application of Eq. (5.18) with Eq. (5.21) yields an appropriate pressure

decay profile for modeling the passage of the Taylor wave on the exit plane from tCJ < t <

tT . The next subsection addresses the steady choked state on the chamber exit plane that

follows the Taylor wave passage.

5.2.2 Steady Choked Flow

After the passage of the Taylor rarefaction wave, a steady choked flow condition

develops on the exit plane for tT < t < tR. During this time interval, the exhausting

rarefaction wave accelerates the burned products in the stagnation region of state 3 behind

the Taylor rarefaction to a sonic velocity on the exit plane. As such, the steady choked

state on the exit plane can be determined by evaluating Eqs. (5.15)-(5.17) at x = L. Hence,

the steady choked flow condition on the exit plane is given by

p4,s = p3

(
2

γ2 + 1

)2γ2/(γ2−1)

(5.22)

a4,s =
2

γ2 + 1
a3 (5.23)

u4,s =
2

γ2 + 1
a3 = a4,s (5.24)

It is now desired to evaluate the duration for which this steady choked condition

persists on the exit plane. It is evident from Fig. 5.5 that tR marks the end of the steady flow

phase of the gasdynamic blowdown. This is caused by the arrival of the leading characteristic
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of the exhausting rarefaction wave that reflects from the thrust wall and propagates back

to the chamber exit. Consequently, it is required to derive an expression for tR based on

the dynamics of the leading characteristic of the exhausting rarefaction wave. Note that

when the exhausting wave first enters the chamber, the leading characteristic is initially

propagating through the Taylor rarefaction wave up until ti at xi. This causes a variable

slope for the leading characteristic, which depends on the flow property variation across

the Taylor rarefaction wave. Therefore, it becomes important to evaluate the time ti and

location xi for which the leading characteristic of the exhausting rarefaction wave reaches

the trailing characteristic of the Taylor rarefaction wave. This can readily be determined by

applying the characteristic equation for a C− characteristic that is propagating through the

Taylor rarefaction wave. In this case, the governing ordinary differential equation becomes

dx

dt
= u(x, t)− a(x, t) = −

γ1M
2
CJ + γ2

γ2M2
CJ

2

γ2 + 1
WCJ +

3− γ2

γ2 + 1

x

t
(5.25)

Solving this equation with the initial condition that x = L when t = tCJ yields the path of

the leading characteristic through the Taylor rarefaction wave as [65]

x(t) =
WCJ t

γ2 − 1

[
γ2γ1M

2
CJ + γ2

γ1M2
CJ

(
tCJ
t

)2(γ2−1)/(γ2+1)

−
γ1M

2
CJ + γ2

γ1M2
CJ

]
(5.26)

Similarly, solving (5.26) for the condition when x(ti) = a3ti = xi yields

ti
tCJ

=

(
γ1M

2
CJ + γ2

γ1M2
CJ

γ2 + 1

2γ2

)−(γ2+1)/2(γ2−1)

(5.27)

xi
L

=
γ1M

2
CJ + γ2

2γ1M2
CJ

(
γ1M

2
CJ + γ2

γ1M2
CJ

γ2 + 1

2γ2

)−(γ2+1)/2(γ2−1)

(5.28)

After the leading characteristic of the exhausting rarefaction reaches the trailing

characteristic in the Taylor rarefaction, the slope of the characteristic becomes constant

and the characteristic continues propagating towards the thrust wall through the stagnation

region of state 3. Consequently, the time at which the characteristic reaches the thrust wall,

defined by tr in Fig. 5.5, is simply

tr = ti +
xi
a3

(5.29)
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Substituting Eqs. (5.13), (5.27), and (5.28) into Eq. (5.29), after algebraic manipulation

yields,

tr
tCJ

= 2

(
γ1M

2
CJ + γ2

γ1M2
CJ

γ2 + 1

2γ2

)−(γ2+1)/2(γ2−1)

(5.30)

After the leading characteristic reaches the thrust wall at the head end of the cham-

ber, the characteristic reflects and begins propagating back towards the chamber exit. In

this case, the slope is variable and dependent on the flow property variation across the

exhausting rarefaction. As such, the path of the characteristic can readily be determined

by applying the characteristic equation for a C+ characteristic that is propagating through

the exhausting rarefaction wave. In this case, the governing differential equation becomes

dx

dt
= u(x, t) + a(x, t) =

4

γ2 + 1
a3 +

3− γ2

γ2 + 1

x− L
t− tCJ

(5.31)

Solving this equation with the initial condition that x = 0 when t = tr yields the path of

the reflected leading characteristic through the exhausting rarefaction wave as

x(t) = L− a3 (t− tCJ)
γ2 + 1

γ2 − 1

{[
(t− tCJ)

a3

L

]−2(γ2−1)/(γ2+1)
− 2

γ2 + 1

}
(5.32)

Similarly, solving (5.32) for the condition when x(tR) = L yields

tR
tCJ

=
tr
tCJ

+
γ1M

2
CJ

γ1M2
CJ + γ2

[(
2

γ2 + 1

)−(γ2+1)/2(γ2−1)

− 1

]
(5.33)

In summary, application of Eq. (5.22) over the duration tT < t < tR, where tT and

tR are given in Eqs. (5.19) and (5.33) yields the appropriate pressure profile for steady

choked flow phase of the blowdown. The following subsection addresses the final phase of

the blowdown, namely, the constant-volume blowdown for t > tR.

5.2.3 Constant Volume Blowdown

It was previously mentioned that the final portion of the gasdynamic blowdown closely

resembles that of a constant-volume blowdown [121]. This is a consequence of the flow

properties being nearly uniformly distributed across the thrust chamber for t > tR. As

a result, it may be assumed that the remainder of pressure relaxation on the exit plane
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to the ambient closely follows that of a constant-volume blowdown. In such a case, the

conservation of mass for the control volume in Fig. 5.1 becomes

∂

∂t

[∫
cv
ρe(t) dV

]
+ ṁe(t) = 0 (5.34)

where ρ(x, t) has been replaced with ρe(t) due to the spatially uniform flow assumption.

Performing the integration over the thrust chamber volume and noting that ṁe(t) =

ρ4(t)Aeue(t) yields

V dρ4(t)

dt
= −ρ4(t)Aeu4(t) (5.35)

If it is further assumed that the sonic flow exist on the chamber exit plane for the majority

of the constant-volume blowdown, then u4(t) = a4(t). Similarly, recognizing that the ratio

of V/Ae = L for a constant area thrust chamber, then Eq. (5.35) can be further simplified

to

L
dρ4(t)

dt
= −ρ4(t)a4(t) (5.36)

It is convenient at this point to introduce the ratio ρ4(t)/ρ4,s and a4(t)/a4,s in order to

relate the density and sound speed ratios on the exit plane through an isentropic expansion

process with the initial condition at t = tR. Hence, manipulating Eq. (5.36) to the form

L
d

dt

(
ρ4(t)

ρ4,s

)
= −

(
ρ4(t)

ρ4,s

)(
a4(t)

a4,s

)
a4,s (5.37)

Further, substituting the isentropic relation a4(t)/a4,s = [ρ4(t)/ρ4,s]
(γ2−1)/2, after algebraic

manipulation yields (
ρ4(t)

ρ4,s

)−(γ2+1)/2

d

(
ρ4(t)

ρ4,s

)
= −a4,s

L
dt (5.38)

Integrating this expression from 1 ≤ ρ4(t)/ρ4,s < ρ4(t)/ρ4,s on the time interval tR < t < t

yields the isentropic constant-volume decay in density on the chamber exit plane.

ρ4(t) =

[
1 +

γ2 − 1

2

a4,s (t− tR)

L

]−2/(γ2−1)

ρ4,s (5.39)

Subsequently, application of the isentropic relation for density and pressure yields the de-

sired constant-volume decay in pressure on the chamber exit plane.

p4(t) =

[
1 +

γ2 − 1

2

a4,s (t− tR)

L

]−2γ2/(γ2−1)

p4,s (5.40)
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Note, an equivalent expression was derived following a similar procedure in the study

of [121], which was used to evaluate the performance of detonation tubes coupled to di-

verging nozzles. In summary, application of Eq. (5.40) over the duration t > tR, where tR

is given by (5.33) yields the appropriate pressure profile for constant-volume blowdown on

the chamber exit.

5.2.4 Model Summary

Application of the model requires selecting a detonable propellant and setting the

initial conditions of the thrust chamber, i.e. p1, T1, γ1, and p0. Similarly, the model requires

computing the equilibrium CJ detonation wave properties, i.e. MCJ and γ2, using a chemical

equilibrium solver such as the Cantera detonation toolbox [29, 30], or the NASA CEA

code [28]. Additionally, application of the detonation-contact surface interaction theory

of Ch. 3 is required to determine p4(tCJ), namely, the peak pressure on the exit plane

following the collision of the detonation wave with the contact surface at the chamber exit.

Finally, application of Eq. (5.8) below with Eqs. (5.41) and (5.42)–(5.45) permits evaluation

of Fx(t) over the cycle interval 0 ≤ t ≤ tf , where tf represents the time at which p4(t) = p0

during the constant-volume blowdown. Lastly, application of Eqs. (4.13)–(4.15) permits

determination of the primary single-cycle performance parameters for a fully-filled PDE.

Fx(t) = p4(t)Ae

[
γ2 + 1− p0

p4(t)

]
(5.8)

p4(t) =



p1 t < tCJ

[p4(tCJ)− p4,s]
(
1− t−tCJ

τ

)
e
−α

(
t−tCJ
τ

)
+ p4,s tCJ ≤ t < tT

p1

(
2

γ2+1

)2γ2/(γ2−1) (γ1M2
CJ+γ2
2γ2

)(
γ1M2

CJ+γ2
γ1M2

CJ+1
γ2+1
2γ2

)(γ2+1)/(γ2−1)
tT ≤ t < tR

p4(t) = p4,s

[
1 + γ2−1

2
a4,s(t−tR)

L

]−2γ2/(γ2−1)
tR ≤ t ≤ tf

(5.41)

tCJ =
L

WCJ
(5.42)
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tT =
2γ1M

2
CJ

γ1M2
CJ + γ2

tCJ (5.43)

tr = 2

(
γ1M

2
CJ + γ2

γ1M2
CJ

γ2 + 1

2γ2

)−(γ2+1)/2(γ2−1)

tCJ (5.44)

tR = tr +
γ1M

2
CJ

γ1M2
CJ + γ2

[(
2

γ2 + 1

)−(γ2+1)/2(γ2−1)

− 1

]
tCJ (5.45)

5.3 Model Validation

In order to validate the current analytical performance model for a fully-filled PDE,

a comparison is first made with the current MOC model to verify that the model accurately

represents the pressure profile on the chamber exit plane. Additionally, a comparison is

made with previously published numerical and experimental results for PDEs operating with

different equivalence ratios and blowdown pressure ratios. Figure 5.7 shows a comparison

of the current analytical model and MOC model regarding the pressure history on the

exit plane. In these cases, excellent agreement is obtained for the Taylor rarefaction wave

passage phase from 1 < t/tCJ . 2, and the steady choked flow phase from 2 . t/tCJ . 4.5.

Additionally, very good agreement is obtained during the approximated constant-volume

blowdown phase for t/tCJ & 4.5; however, the constant-volume blowdown phase terminates

slightly prematurely compared to the full gasdynamic blowdown computed with the MOC

model. This should not influence the integrated total impulse or specific impulse; however,

this could cause an over-estimation for the time-averaged thrust. This will be shown in the

following discussion when comparing against previous numerical and experimental data.

It is also desired to ensure that the current analytical model properly captures the ef-

fects of varying the propellant equivalence and blowdown pressure ratios on specific impulse

for a fully-filled PDE. Figures 5.8(a) and 5.8(b) show a comparison of the analytical model

with the current MOC model and the previously discussed MOC model of [70], higher-

fidelity numerical models of [76, 83, 98], and experimental results of [92, 95] for hydrogen

and hydrocarbon propellants at various equivalence ratios and blowdown pressure ratios.

In Fig. 5.8(a), very good agreement is obtained with the current MOC model, such that an
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Figure 5.7. Comparison of pressure profile at PDE exit predicted by the analytical model
and the MOC model for 2H2–O2 and C2H4–3O2 propellants at 1 atm and 300 K and ψ = 1.

average difference of 0.4 percent is obtained over the range of equivalence ratios shown for

H2–air and H2–O2 propellants. This suggests that the model properly captures the manner

in which the equivalence ratio influences the pressure history on the chamber exit plane.

Similarly, an average difference of 0.8 percent is obtained with the MOC results of [70], and

7.4 percent for the numerical results of [98]. Additionally, in the case of H2–air propellant,

an average error of 6.6 percent is obtained with the measurements of [95] for the equivalence

ratio range shown. Moreover, in Fig. 5.8(b), very good agreement is also obtained with the

current MOC model, such that an average difference of 0.6 and 1.1 percent is obtained over

the range of blowdown pressure ratios shown for H2–air and C2H4–O2 propellants, respec-

tively. This suggests that the model properly captures the manner in which the blowdown

pressure ratio influences the pressure history on the chamber exit plane. Similarly, an av-

erage difference of 5.9 percent is obtained with the MOC results of [70], and 2.1 percent for

the numerical results of [76, 83]. Lastly, in the case of stoichiometric C2H4–O2 propellant,

an average error of 12 percent is obtained with the measurements of [92] for the equivalence

ratio range shown.
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(a) (b)

Figure 5.8. Comparison of current analytical model with current MOC and existing nu-
merical and experimental data of [70, 76, 83, 92, 95, 98] for H2–(O2+3.76N2), H2–O2, and
C2H4–O2 propellants at various (a) equivalence ratios and (b) blowdown pressure ratios.

Lastly, it is desired to ensure that the current analytical model provides an accurate

prediction for time-averaged thrust given the premature termination of the constant-volume

blowdown assumption. In this case, a comparison is made with the current MOC model

where the fully blowdown is directly calculated, and with the experimental results of [95]

for a fully-filled PDE operating at 16 Hz and at different equivalence ratios. Figure 5.9

shows that the current analytical and MOC models share very good agreement, where

an average difference of 3.1 percent is obtained over the equivalence ratio range shown.

Similarly, fairly good agreement is obtained with the experimental results of [95], in that

an average error of 11.7 percent is obtained over the equivalence ratio range shown. In

general, the analytical model slightly over-predicts the time-averaged thrust for a single-

cycle as the constant-volume blowdown approaches the ambient condition faster than that

of the full gasdynamic blowdown. However, despite this over-prediction for F̄ , the model

still yields sufficiently accurate results for a reduced-order model. Lastly, it should be

noted that the faster relaxation of the constant-volume blowdown assumption does not

significantly affect the models ability to predict reliable total and specific impulse results,

as the thrust level towards the end of the cycle is gradually approaches zero. Hence, the
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accrued error becomes less significant for performance metrics that are not directly or

inversely proportional to tf . This is the reason for the excellent agreement shown in Fig.

5.8(a) between the analytical model and the specific impulse results of [95], namely, the

constant-volume blowdown assumption does not significantly influence the integrated total

impulse and subsequent specific impulse.

Figure 5.9. Comparison of time-averaged thrust predicted by the current analytical model
and the MOC model with the experiments of [95] for H2–air propellant at different equiva-
lence ratios (ψ = 1).
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CHAPTER 6

PERFORMANCE CHARACTERISTICS OF PULSE DETONATION ENGINES

6.1 Partially-Filled Pulse Detonation Engines

In this section, the single-cycle performance characteristics of partially-filled PDEs

are discussed, including the effects of detonable and inert acoustic impedance, inert mix-

ture temperature, and engine blowdown pressure ratio. Subsequently, partially-filled PDE

performance scaling laws in the form of nondimensional specific impulse, total impulse, and

time-averaged thrust ratios are discussed.

6.1.1 Effects of Detonable and Inert Acoustic Impedance

The reflection type that results from the collision of the detonation wave with the

contact surface separating the detonable and non-combustible mixture can largely influence

the pressure history on the thrust wall and corresponding PDE impulse. This was shown in

the numerical study of Sato et al. [98] for various propellant mixtures, and helium, air, and

argon as the inert gas. They showed that the ratio of acoustic impedance of the detonable

and inert mixtures can be used to determine whether a compression or rarefaction wave

reflects from the contact surface. Moreover, in Ch. 3, the acoustic impedance ratio across

the contact surface, z0/z1, was determined to be the primary parameter governing the

reflection type at the contact surface, which can take the form of a reflected rarefaction, a

Mach wave, or a shock wave. Using the approach of Ch. 3, the strength of the reflected

wave can be determined for a given acoustic impedance ratio across the contact surface.

Figure 6.1 shows how the strength of the reflected wave varies with the ratio of acoustic

impedance for stoichiometric H2–O2 and C2H4–O2 propellant mixtures. It is noted that the

solutions shown in Fig. 6.1 are obtained by sweeping the acoustic impedance z0 of the inert

mixture. Further, in Fig. 6.1, p2′ and p2 represent the post-reflected wave pressure and
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post-detonation pressure, respectively. Hence, when the acoustic impedance ratio is less

than unity, the reflected wave is a rarefaction wave with a strength p2′/p2 < 1. Similarly,

when the acoustic impedance ratio is greater than unity, the reflected wave is a shock wave

with a strength p2′/p2 > 1. Lastly, the unique case of a reflected Mach wave with a strength

p2′/p2 = 1 results when the acoustic impedance ratio is exactly equal to unity. With a fixed

propellant mixture, varying the gas properties of the inert mixture can influence the nature

of the reflection type at the contact surface. Additionally, proper understanding of this

interface interaction permits tailoring of the gasdynamic collision which can be used for

PDE performance enhancement.

Figure 6.1. Strength of reflection type at contact surface as a function of acoustic impedance
ratio across the contact surface for 2H2–O2 and C2H4–3O2 propellants.

In order to investigate the role of the interface interaction on the performance of a

partially-filled PDE, the three types of reflections, namely, rarefaction, Mach and shock

wave are considered. The method of Ch. 3 is used to tailor the interface collision of a

stoichiometric H2–O2 detonable propellant with a helium–air inert mixture. For each case,

the PDE is partially filled with a stoichiometric H2–O2 propellant mixture to a fill fraction

of α = 0.5, and the remaining portion of the chamber is filled with a helium–air inert
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mixture, each at 1 atm and 300 K. In the case of helium as the inert mixture (XHe = 1.0),

the acoustic impedance ratio across the contact surface is z0/z1 = 0.36, which results in a

reflected rarefaction from the contact surface with a strength of p2′/p2 = 0.58. The starting

flow field for this case is shown in the form of a non-dimensional x–t diagram pressure

contour in Fig. 6.2. In this figure, tCJ is defined by the time required for the detonation

wave to propagate from the thrust wall to the contact surface location, tCJ = αL/WCJ .

The thrust chamber pressure distribution shown throughout the PDE corresponds to the

constant dashed t–line in the x–t diagram pressure contour. Because the ratio of acoustic

impedance is less than unity, a reflected rarefaction results from the interface collision and

propagates upstream towards the thrust wall. Additionally, it is noted that the incident

transmitted shock wave into the non-combustible mixture has a larger velocity than the

detonation wave velocity. As will be shown later in this section, these two flow characteristics

will yield a more rapid decay of the pressure history on the thrust wall and a lower overall

impulse.

In the case of a helium–air inert mixture with a helium mole fraction of XHe = 0.36,

the acoustic impedance ratio is z0/z1 = 1.0 and a reflected Mach wave with a strength

of p2′/p2 = 1.0 results from the collision of the detonation wave with the contact surface.

Figure 6.3 shows the corresponding non-dimensional x–t diagram pressure contour and

thrust chamber pressure distribution on the constant dashed t–line. Note that the reflected

Mach wave does not cause an increase or decrease in the pressure immediately behind the

reflected interface wave. However, because the Mach wave is immediately followed by the

secondary rarefaction wave, as described in Ch. 2, there is a slight decrease in pressure in

order to match the decaying pressure at the contact surface behind the transmitted shock.

In this case, the incident transmitted shock wave has a slower velocity than the detonation

wave velocity, which will delay the time for which the exhausting rarefaction enters the

thrust chamber.
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Detonable Inert

Reflected Rarefaction

Figure 6.2. Non-dimensional x–t diagram of p/p0 pressure contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and helium as the inert
gas yielding a reflected rarefaction wave at the contact surface (ψ = 1).

In the case of air as the inert mixture (XHe = 0.0), the acoustic impedance ratio is

z0/z1 = 1.24 and a reflected shock wave with a strength of p2′/p2 = 1.11 results from the

collision of the detonation wave with the contact surface. Figure 6.4 shows the corresponding

x–t diagram pressure contour and thrust chamber pressure distribution on the constant

dashed t–line. Notice that the reflected shock wave is accompanied by an increase in the

pressure immediately behind the shock. Moreover, as previously mentioned, because the

shock wave is immediately followed by the secondary rarefaction, there is a decrease in

pressure in the flow field behind the shock in order to match the decaying pressure at the

contact surface behind the transmitted shock. Once, the reflected shock wave reaches the

thrust wall, the wave will reflect and cause a momentary rise in pressure on the thrust wall.

Similar to the previous reflected Mach wave example, the incident transmitted shock wave

has a slower velocity than the detonation wave velocity, which will delay the time for which

the exhausting rarefaction enters the tube. Subsequently, these two gasdynamic processes
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Detonable Inert

Reflected Mach Wave

Figure 6.3. Non-dimensional x–t diagram of p/p0 pressure contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and helium–air mixture
as the inert gas with XHe = 0.36 yielding a reflected Mach wave at the contact surface
(ψ = 1).

will result in a longer positive pressure duration on the thrust wall and a higher impulse.

The corresponding pressure history, pw = p(0, t), on the thrust wall for the previously

discussed cases of a reflected shock, Mach, and rarefaction wave from the contact surface for

stoichiometric H2–O2 detonable mixture, and fill fraction of α = 0.5, are shown in Fig. 6.5.

Because tCJ is defined as the time required for the detonation wave to travel the fill length of

the thrust chamber, t/tCJ = 1 represents the time at which the detonation wave collides with

the contact surface. As shown in Fig. 6.5, the pressure history on the thrust wall for all cases

starts as a steady plateau pressure. The magnitude of this pressure is equal to the pressure

at the tail-end of the Taylor rarefaction wave, which is propellant dependent and provided in

Eq. (5.12) based on the analytical work of [65]. Following the detonation wave collision with

the contact surface, the reflected interface wave travels towards the thrust wall and reaches
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Detonable Inert

Reflected Shock

Figure 6.4. Non-dimensional x–t diagram of p/p0 pressure contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert gas
yielding a reflected shock at the contact surface (ψ = 1).

the head-end of the chamber at roughly t/tCJ ≈ 3.5, which initiates the pressure decay at

the thrust wall. It is noted that this non-dimensional time is dependent on the fill fraction

and strength of the reflection type at the interface, and the t/tCJ ≈ 3.5 condition shown

in Fig. 6.5 is specific to the stoichiometric H2–O2 propellant, helium–air inert mixture, and

α = 0.5 case previously discussed. For the case of a reflected shock (XHe = 0.0), a spike in

pressure is observed at the end of the plateau pressure history from the reflected shock on

the thrust wall, which is then immediately followed by a subsequent pressure decay from

the following secondary rarefaction wave. In the cases of reflected Mach (XHe = 0.36) and

rarefaction wave (XHe = 1.0), the pressure history simply decays from the steady plateau

pressure without any additional pressure rise. The behavior of the decay is very different

given the strength of the reflection from the contact surface. For instance, the case of a

Mach wave is the limiting lower bound for the strength of a rarefaction wave, as the reflected

Mach wave leads the secondary rarefaction from the contact surface. Hence, the incident
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decay on the thrust wall is solely dependent on the reflected secondary rarefaction wave.

Alternatively, in the event of a reflected rarefaction from the contact surface, the reflected

rarefaction and secondary rarefaction waves are coincident and identical. As shown in Fig.

6.5, the case of a reflected rarefaction from the contact surface yields a more rapid decay

in pressure at the thrust wall. This remains true for any reflected rarefaction from the

interface collision, such that stronger reflected rarefaction waves result in more rapid decay

in pressure at the the thrust wall.

In any of the respective gasdynamic cases, once the reflected interface wave and sec-

ondary rarefaction reflect from the thrust wall, the pressure begins to relax towards an

intermediate plateau value between the starting plateau pressure behind the Taylor rarefac-

tion wave and the ambient condition. The magnitude of this secondary plateau is directly

governed by the nature of the interface collision and strength of the secondary rarefaction

wave. In general, a reflected shock from the contact surface yields a stronger transmitted

shock wave into the non-combustible inert mixture than the case of a reflected Mach or

rarefaction wave. This directly causes higher pressures at the now traveling contact surface,

which separates the post-transmitted shock gas, and the gas being relieved through the sec-

ondary rarefaction wave. Hence, the case of a reflected shock from the contact surface yields

the highest pressure conditions at the tail of the secondary rarefaction wave compared to

the cases of a reflected Mach or rarefaction wave. It can then be expected that the pressure

magnitude of the intermediate plateau is largest in the cases of a reflected shock, followed

by a reflected Mach and rarefaction wave from the contact surface, respectively. This is

demonstrated in Fig. 6.5; however, only the case of a reflected shock actually completely

reaches the intermediate plateau pressure before the exhausting rarefaction wave reaches

the thrust wall. Depending on how long it takes for the transmitted shock to reach the

exit of the thrust chamber, namely, the time at which the exhausting rarefaction is able

to begin propagating into the chamber, the pressure at the thrust wall may actually never

completely reach the intermediate plateau value. This pressure decay behavior is shown for
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the cases of a reflected rarefaction (XHe = 1.0) and Mach wave (XHe = 0.36) in Fig. 6.5. In

these cases, the transmitted shock is moving with a faster velocity than the case of reflected

shock, and a shorter time is required for the transmitted shock to exit the tube. This allows

the exhausting rarefaction to reach the head-end of the chamber and begin relieving the

gas at the thrust wall in a shorter amount of time, as indicated by the second decay in

pressure at t/tCJ ≈ 8 and 9.5, respectively, whereas the exhausting rarefaction reaches the

thrust wall at roughly t/tCJ ≈ 10.5 for a reflected shock. Consequently, these gasdynamic

processes yield a more rapid decay in pressure at the thrust wall and shorter time for which

the pressure history on the thrust wall returns to the ambient condition, yielding a lower

overall impulse for the PDE cycle.
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Figure 6.5. Pressure history at the thrust wall for 2H2–O2 propellant and inert helium mole
fractions of 0, 0.36, and 1, corresponding to reflected shock, Mach, and rarefaction waves
at the contact surface, respectively (ψ = 1).

This transient variation in impulse for the complete cycle is shown in Fig. 6.6 As

expected, the largest impulse obtained is for the case of a reflected shock at the contact

surface. This is attributed to the reflected shock raising the pressure on the thrust wall after

the steady plateau pressure, and the delayed entrance of the exhausting rarefaction wave

into the PDE from the slower transmitted shock velocity. Similarly, the case of a reflected
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Mach wave yields an integrated impulse that is less than that obtained for a reflected shock,

but higher than that obtained for a reflected rarefaction. The total cycle impulse for the

case of a reflected shock (XHe = 0.0) is approximately 24% and 57% higher than the cases

of a reflected Mach (XHe = 0.36) and rarefaction wave (XHe = 1.0), respectively. Although

the slower transmitted shock wave has the tendency to prolong the over-pressure duration

on the thrust wall and increase the total impulse, the maximum operating frequency of

the partially-filled PDE becomes reduced. In the cases of reflected shock, Mach, and rar-

efaction wave, the non-dimensional gasdynamic blowdown times of t/tCJ ≈ 12, 14, and

16, correspond to limit operating frequencies for a 1 m long thrust chamber of 363, 411,

and 493 Hz, respectively. Namely, a 30 percent reduction in maximum operating frequency

is obtained for the case of a reflected shock compared to a reflected rarefaction. This is

an adverse performance characteristic that cannot be avoided in single-tube PDE systems;

however, multi-tube systems could potentially manage the desired propulsive performance

characteristics with reduced operating frequency in individual tubes [165–167].

Figure 6.6. Integrated impulse history per unit area for 2H2–O2 propellant and inert helium
mole fractions of 0, 0.36, and 1, corresponding to reflected shock, Mach, and rarefaction
waves at the contact surface, respectively (ψ = 1).
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All of the above discussion is focused on the case of α = 0.5 in order to highlight the

primary gasdynamic phenomena that govern the pressure history on the thrust wall and

resulting gasdynamic blowdown time. It is of interest to investigate how the combination

of fill fraction and helium–air mixture influence the performance characteristics. For this

purpose, the MOC model is used to perform a parametric sweep of helium mole fraction on

the range 0 ≤ XHe ≤ 1 for the non-combustible helium–air mixture, and the fill fraction

on the range 0.2 ≤ α ≤ 1. The propellant-based specific impulse is calculated and plotted

in Fig. 6.7(a) for the parametric ranges considered above. Similar to results from previous

investigations, as the fill fraction is lowered, the specific impulse continually increases for

a given inert helium mole fraction. Further, at a fixed fill fraction, the specific impulse is

strongly dependent on the helium mole fraction, or effective acoustic impedance of the inert

gas. Recall that a reflected Mach wave results from the collision of the detonation wave

with the contact surface at XHe = 0.36, which is independent of fill fraction. Hence, for

XHe < 0.36 and XHe > 0.36, a reflected shock and rarefaction results from the interface

collision, respectively. With this knowledge, an important result is shown in Fig. 6.7(a),

in that as the acoustic impedance ratio z0/z1 increases, the benefit of partial filling be-

comes more apparent. For instance, in the case of helium as the inert gas (XHe = 1.0),

the performance gains of partial filling are respectable but only up to Isp/Isp,full = 1.47 at

α = 0.2. Alternatively, in the case of air as the inert gas (XHe = 0.0), the performance

gains are quite significant with Isp/Isp,full = 3.36 at α = 0.2. This is best explained by the

gasdynamic processes discussed at the beginning of this section. As the helium mole frac-

tion of the inert gas decreases, the acoustic impedance of the inert mixture increases. As a

result, decreasing XHe from 1 to 0.36 results in weaker reflected rarefaction waves from the

contact surface until ultimately reaching the limiting condition of a reflected Mach wave.

Further, any decrease in XHe beyond 0.36 yields a reflected shock wave with increasing

strength at the interface collision. As previously mentioned, in either of these cases, the

following secondary rarefaction wave is now the only mechanism relieving the gas bounded

179



by the reflected Mach or shock wave and propagating contact surface. Hence, the nature

of the first decay in pressure at the thrust wall following the initial steady plateau pressure

becomes less rapid as the helium mole fraction is reduced, and even experiences an abrupt

increase in the event of a reflected shock. The second major gasdynamic process governing

the performance gains shown in Fig. 6.7(a) is the magnitude of the intermediate plateau

pressure. As mentioned previously, the interface collision and resulting flow field is what

governs the pressure behind the reflected secondary wave from the thrust wall, namely, the

pressure magnitude of the second plateau. As XHe is decreased, the pressure behind the

incident and decaying transmitted shock becomes much higher. Consequently, the pres-

sure at the contact surface traveling behind the transmitted shock is also higher, which

serves as the tail boundary condition for the secondary rarefaction wave. Hence, as XHe

decreases, the intermediate plateau pressure on the thrust wall increases, which causes a

corresponding increase in the total impulse. Lastly, the final gasdynamic process governing

the performance shown in Fig. 6.7(a) is the propagation velocity of the transmitted shock

while traveling through the non-combustible inert mixture. As XHe is decreased, the acous-

tic impedance of the inert mixture increases, which lowers the transmission velocity of the

transmitted shock. Effectively, this delays the time at which the exhausting rarefaction en-

ters the thrust chamber and propagates towards and reflects from the thrust wall, initiating

the final decay in pressure to the ambient condition.

In addition to the performance characteristics, it is also of interest to investigate

how the propellant fill fraction and helium mole fraction of the inert mixture influences the

gasdynamic blowdown time. Figure 6.7(b) shows the corresponding blowdown time for the

parametric sweep of fill fraction and XHe shown in Fig. 6.7(a). For the case of the strongest

reflected rarefaction from the contact surface (XHe = 1.0), the time required to return

the pressure history at the thrust wall to the ambient condition continually decreases with

decreasing fill fraction. This is due to the initial rapid pressure decay experienced on the

thrust wall from the reflected rarefaction, and the shorter time required for the exhausting
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(a) (b)

Figure 6.7. (a) Specific impulse and (b) normalized gasdynamic blowdown time for 2H2–O2

propellant and helium–air inert mixtures at different fill fractions and helium mole fractions
(ψ = 1).

rarefaction to begin propagating into the thrust chamber. For instance, in this case, the

ratio of the transmitted shock to detonation wave velocity is WT /WCJ = 1.07; hence, the

transmitted shock initially moves faster towards the PDE exit than the detonation wave

velocity, and lower fill fractions result in shorter blowdown times than the case of a fully-

filled PDE. Alternatively, in the case of the strongest shock reflection from the contact

surface (XHe = 0.0), the time required to return the pressure history at the thrust wall to

the ambient condition continually increases with decreasing fill fraction. This is caused by

the reflected shock wave from the contact surface that slows the decay in pressure at the

thrust wall, and the fact that a longer amount of time is required before the transmitted

shock reaches the exit of the PDE, allowing the exhausting rarefaction to enter the thrust

chamber. In this case, the ratio of the detonation wave velocity to the transmitted shock

velocity is WT /WCJ = 0.52.

It is noted that some of the cases of XHe in Fig. 6.7(b) do not display the monotonic

behavior of non-dimensional blowdown time versus fill fraction. For instance, the cases of

XHe = 0.4 and 0.6 result in a reflected rarefaction from the contact surface; however, as
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the fill fraction decreases below roughly 0.4, a minimum in τ = tf/tf,full is reached. As

mentioned previously, at lower fill fractions, it is possible to have the reflected interface

wave reflect from the thrust wall and catch the contact surface before the contact surface

exits the thrust chamber. Additionally, depending on the acoustic impedance ratio across

the contact surface separating the inert gas behind the decaying transmitted shock and the

relieved burned products behind the secondary rarefaction, secondary reflected compression

waves can reflect and propagate back towards the thrust wall. For XHe . 0.6 and α . 0.4,

secondary reflected compression waves form that slightly raise the intermediate plateau

pressure and subsequently delay the time required for the pressure history on the thrust

wall to return back to the ambient condition. Note, for the case of reflected shocks from

the contact surface (XHe < 0.36), this becomes more evident as τ starts to increase much

faster for α . 0.4. As noted in the open-ended shock tube study of Kasahara et al. [113],

any acoustic wave originating behind the contact surface will reflect with an amplitude of

roughly 4/3 that of the incident value. Additionally, once the acoustic wave reflects from

the contact surface and propagates back towards the thrust wall, the wall reflection results

in a doubling of the wave amplitude. Their analysis showed that the impulse of the shock

tube was primarily governed by the wave dynamics between the thrust wall and contact

surface, rather than the inertia of the inert gas in the driven section. In essence, as the fill

fraction reduces to the point where the reflected interface wave can catch the contact surface

before it exits the thrust chamber, the contact surface can act as a barrier between the inert

and burned mixtures that traps the gasdynamic waves between the thrust wall and contact

surface. Moreover, as the inert acoustic impedance increases, the ability of the contact

surface to trap acoustic waves starts to increase. Subsequently, each additional reflection

between the thrust wall and contact surface raises the intermediate plateau pressure, which

requires the exhausting rarefaction to relieve a higher pressure on the thrust wall, effectively

lengthening the gasdynamic blowdown time. Such a description is applicable in the current
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study for describing the minimum point behavior in τ in Fig. 6.7(b) and the corresponding

rise in τ for lower fill fractions.

It is interesting to note that similar trends for τ in the case of XHe = 0 and 1 were

reported in the analytical homogeneous dilution study of Endo et al. [112]. As previously

discussed, [112] is primarily focused on describing the gasdynamics of an energetically equiv-

alent fully-filled PDE that has been diluted based on the inert mixture of a partially-filled

PDE. Because the model is focused on a diluted fully-filled PDE, there is no contact surface

present in the flow field for which the mechanism of contact surface trapping can influ-

ence the ratio of τ . Despite this, their results imply that an energetics-based model can

approximately capture the effects of this gasdynamic phenomenon by simply modeling the

effective detonation wave and acoustic velocities in a diluted detonable mixture. Addition-

ally, although the effects of compression waves reflecting from the contact surface become

apparent for α . 0.4, there is a region of lower fill fractions where the energetics-based

models of [98, 110, 112] still accurately reflect the trends of higher-fidelity numerical and

experimental results.

6.1.2 Effects of Non-Combustible Mixture Temperature

It is also of interest to investigate how the temperature of the inert mixture influences

the performance gains of partially filling the PDE thrust chamber. In general, the acoustic

impedance of the inert mixture is inversely proportional to the mixture temperature, which

will ultimately influence the observed performance gains of partial filling. Additionally,

varying the inert mixture temperature will highlight the importance of maintaining a cold

purge gas during operation. For this parametric sweep, the detonable propellant is fixed

at a stoichiometric H2–O2 mixture at 1 atm and 300 K, and the inert air mixture is varied

from 150-800 K at 1 atm. The specific impulse results from this parametric variation are

shown in Fig. 6.8(a) for fill fractions ranging from 0.2–1. By decreasing the inert mixture

temperature Ti, the acoustic impedance of the non-combustible mixture simultaneously in-
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creases, provided the pressure of the mixture is held constant. Additionally, with a fixed

stoichiometric H2–O2 detonable propellant, a reflected Mach wave will result from the in-

terface collision of the detonation wave and contact surface when Ti = 418 K. Subsequently,

a reflected shock and rarefaction wave results from the interface collision when Ti < 418

K and Ti > 418 K, respectively. With this knowledge, it is evident from Fig. 6.8(a) that

the performance gains from partial filling are significantly increased when the inert mixture

temperature is relatively low. For instance, in the case of Ti = 800 K, the performance

gains of partial filling are respectable but only up to Isp/Isp,full = 2.10 at α = 0.2. Alter-

natively, in the case of air as the inert gas features a Ti = 150 K, the performance gains

are quite significant with Isp/Isp,full = 4.46 at α = 0.2. Again, this is best explained by the

gasdynamic processes discussed at the beginning of this section in relation to the acoustic

impedance of the inert mixture. In this case, as the inert mixture temperature decreases,

the acoustic impedance of the inert mixture increases. As a result, decreasing Ti from 800 to

418 K results in weaker reflected rarefaction waves from the contact surface until ultimately

reaching the limiting condition of a reflected Mach wave. Further, any decrease in Ti below

418 K yields a reflected shock wave with increasing strength at the interface collision. These

results demonstrate that it is important to ensure the temperature of the purge gas is kept

relatively low in order to maintain a high acoustic impedance, which serves to enhance the

performance benefit of partially filling the PDE thrust chamber.

The normalized gasdynamic blowdown time behaves in a similar manner to that of

the case of varying the acoustic impedance of the inert mixture by changing the helium

mole fraction; however, in this case the acoustic impedance is lowered by increasing the

inert mixture temperature. It is evident from Fig. 6.8(b) that the variation in normalized

blowdown time, τ is strongly dependent on the acoustic impedance of the inert mixture. For

instance, when Ti < 300 K, τ continually increases with decreasing fill fraction, whereby the

rate of increase becomes more pronounced once the contact surface wave trapping mechanics

discussed in [113] begin to take effect. Alternatively, for Ti > 300 K, the normalized
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(a) (b)

Figure 6.8. (a) Specific impulse and (b) normalized gasdynamic blowdown time for 2H2–O2

propellant and air as the inert gas at different fill fractions and inert temperatures (ψ = 1).

blowdown time continually decreases with decreasing fill fraction until ultimately reaching

a minimum point at roughly 0.3 . α . 0.4. As mentioned before, this minimum point

behavior in τ coincides with the lowest fill fraction upon which the leading characteristic

of the reflected secondary wave catches the contact surface from behind before exiting the

chamber. Hence, any reduction in fill fraction for the given conditions results in reflected

compression waves at the thrust wall and a associated increase in the time required to

exhaust the PDE to the ambient condition.

6.1.3 Effects of Blowdown Pressure Ratio

It is also of interest to investigate how the blowdown pressure ratio of the PDE

influences the performance gains of partially filling the PDE thrust chamber, since the

acoustic impedance of the inert mixture is directly proportional to the mixture pressure.

For these cases, the inert non-combustible mixture is taken as the ambient condition and

an idealized diaphragm is assumed to separate the ambient from the propellant. Note,

this is an idealized representation of PDEs operating in sub-atmospheric environments, as

practical multi-cycle operations would not employ a diaphragm to separate the detonable
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propellant from the ambient condition. However, the subsequent results are indicative

of the ideal single-cycle performance of partially-filled PDEs. For this parametric sweep,

the detonable propellant is fixed at a stoichiometric H2–O2 mixture at 1 atm and 300 K,

and the ambient air is varied from 0.01–1 atm at 300 K, corresponding to a blowdown

pressure ratio variation of ψ = p1/p0 = 100–1. The specific impulse results from this

parametric variation are shown in Fig. 6.9(a) for fill fractions ranging from 0.2–1. By

decreasing the ambient pressure p0, the acoustic impedance of the non-combustible mixture

simultaneously decreases. For sub-atmospheric operation with a fixed stoichiometric H2–

O2 detonable propellant, a reflected shock and rarefaction wave results from the interface

collision when ψ < 1.35 and ψ > 1.35, respectively. Hence, when ψ = 1.35 a reflected Mach

wave is obtained. It is evident from Fig. 6.9(a) that the performance gains from partial

filling in a sub-atmospheric environment is dependent on the operating fill fraction. For

instance, in the fully-filled case and consistent with conventional rocket engine performance,

the PDE specific impulse continually increases as the PDE exhausts into a lower back

pressure. Conversely, in the case of α = 0.2, the specific impulse reduces with increasing

ψ. This trend remains true until the fill fraction increases to roughly 0.7, in which case the

specific impulse becomes nearly independent of the blowdown pressure ratio. Increasing

the fill fraction above 0.7 results in similar behavior for a fully-filled PDE operating in sub-

atmospheric environments. This performance behavior is best explained using the acoustic

impedance discussion from the forgoing section. In the case of ψ = 1, 10, and 100, the

transmitted shock to detonation wave velocity ratio is equal to WT /WCJ = 0.52, 1.03, and

1.71, respectively. Hence, as the ambient back pressure drops while holding the propellant

at 1 atm, the transmitted shock velocity into the ambient condition in the remaining portion

of the thrust chamber increases. Consequently, the reflected rarefaction from the interface

collision becomes stronger as ψ increases above 1.35. These two gasdynamic processes lower

the intermediate plateau pressure on the thrust wall and allow for the exhausting rarefaction

to enter the thrust chamber in a shorter amount of time, effectively lowering the specific
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impulse and time required to return the pressure history on the thrust wall back to the

ambient condition. These are the gasdynamic mechanisms that lower the specific impulse

for α < 0.7 with increasing ψ. For α ≥ 0.7, the partial-fill effect becomes reduced as the

acoustic impedance of the ambient air reduces with increasing ψ, and the ability of the

ambient air to impede the exhausting blowdown gasdynamics of the PDE is diminished.

(a) (b)

Figure 6.9. (a) Specific impulse and (b) normalized gasdynamic blowdown time for 2H2–O2

propellant and air as the inert gas at different fill fractions and blowdown pressure ratios.

The normalized gasdynamic blowdown time behaves in a similar manner to that of

the case of varying the acoustic impedance of the inert mixture by changing the helium

mole fraction; however, in this case the acoustic impedance is lowered by decreasing the

back pressure. It is evident from Fig. 6.9(b) that the normalized blowdown time continually

decreases for all fill fractions when ψ < 2. Note, these are the cases that result in a reflected

rarefaction from the contact surface, and subsequently result in faster transmitted shock

waves into the non-combustible ambient air, which yields reduced shorter time intervals until

the exhausting rarefaction is able to enter the thrust chamber. For the case of ψ = 1.35,

a reflected Mach wave results from the interface collision and the normalized gasdynamic

blowdown time decreases with decreasing fill fraction until α ≈ 0.3. At this point, the
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fill fraction is low enough to allow the secondary rarefaction wave, lead by the reflected

interface Mach wave, to reflect from the thrust wall and catch the contact surface before

the contact surface leaves the PDE. Hence, a secondary reflected compression wave results

from this interface interaction, which slightly raises the intermediate plateau pressure on

the thrust wall and increases the gasdynamic blowdown time. Lastly, the case of ψ = 1 is

identical to that of XHe = 0.0 in the previous discussion.

6.1.4 Performance Scaling Laws

It is of interest to normalize the previously discussed partial filling results with re-

spect to the performance of a fully-filled PDE. Non-dimensional performance relations for

the single-cycle specific impulse, total impulse, and time-averaged thrust of partially-filled

PDEs are crucial for guiding the design of PDE based propulsion systems and engine scal-

ability. Previously, there have been various efforts at normalizing the specific impulse of

partially-filled PDEs. One of the first approaches was in the numerical study of Li and

Kailasanath [107], where their numerical results were used to obtain an empirical corre-

lation for Isp/Isp,full as a function of fill fraction. Similarly, Cooper and Shepherd [108]

used the experimental and numerical results of [87, 89, 90, 107, 109] to obtain an empirical

piecewise correlation for It/It,full and Isp/Isp,full versus the ratio of propellant fill volume to

PDE thrust chamber volume, namely, volumetric fill fraction. They adjusted experimental

data using the Gurney model [111, 168] to correct for the tamping mass of the diaphragm.

However, as mentioned previously and in [110], any correlation based solely on the fill frac-

tion is not general, but specific to the respective detonable and inert mixture combination.

In recognition of this, Cooper [110] used the Gurney model to normalize the specific im-

pulse as a function of the inert and detonable gas mixture masses. In this form, the Gurney

model was shown to successfully collapse Isp/Isp,full versus the mass fraction of detonable-

to-total mass (detonable plus inert) for generalized detonable and inert combinations. A

comparison of the Gurney model was made in [110] with the experimental and numerical
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results of [87, 89, 90, 98, 101, 107, 109], and the model was shown to represent the general

trend well, with only a slight over-estimation of the experimental results. This was the

first result that provided insights to a governing parameter, namely, the mass fraction of

the detonable and inert mixtures, to collapse the ratio of Isp/Isp,full for general detonable

and inert mixture combinations. This was later confirmed by Sato et al. [98] where their

analysis showed that Isp/Isp,full is inversely related to the square root of mass fraction for

any detonable propellant and inert gas mixture. The Gurney and Sato models are discussed

in the following paragraphs.

The model proposed by Cooper [110] made use of the original Gurney model [111],

which is an explosives model based on using momentum and energy conservation to asso-

ciate the terminal velocity of an accelerating mass with the Gurney velocity. From that

analysis, a relationship was developed for the impulse of the PDE in terms of the Gurney

velocity, total thrust chamber mass, tamper mass fraction, mi/md, and thrust chamber

mass fraction, mtc/md. Further, if it is assumed that mtc/md → ∞, which is appropriate

for PDE propulsion systems, then the normalized expression for Isp/Isp,full based on the

Gurney model can be written as [113]

Isp
Isp,full

=

√
4

3

(
mi

md
+

1

2

)(
mi

md
+

1

3

)−1/2

(6.1)

In the study by Sato et al. [98], an expression was derived for Isp/Isp,full based on

similar energy conservation considerations. They introduced the mass fraction parameter

Z =
md

md +mi
=

[
1 +

(
1

α
− 1

)
ρi
ρd

]−1

(6.2)

which is related to the ratio of heat released by means of combustion for fully- and partially-

filled PDEs, respectively. Further, they assumed that the thermal efficiency of a fully- and

partially-filled PDE are approximately equal, and then deduced a relation for the ratio of

characteristic exhaust velocities of the partially- and fully-filled PDE, namely, vp/vf ≈
√
Z,

where the subscripts p and f correspond to partially- and fully-filled, respectively. From
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this relation, they were able to show that the normalized specific impulse ratio can simply

be written as

Isp
Isp,full

=
1√
Z

= η (6.3)

Further, for the purposes of this study, it is convenient to write η in terms of α and the

inert-to-detonable density ratio, ρi/ρd, as

η =

[
1 +

(
1

α
− 1

)
ρi
ρd

]1/2

(6.4)

Additionally, for comparison purposes, it is convenient to re-write the normalized specific

impulse from the Gurney model using the mass fraction parameter Z as

Isp
Isp,full

=

√
4

3

(
1

Z
− 1

2

)(
1

Z
− 1

3

)−1/2

(6.5)

A few comments can be made about these models. As the mass and fill fractions ap-

proach zero, the normalized specific impulse tends towards infinity. Unfortunately, both the

Sato and Cooper models suffer from this singularity in the limit of zero α. Additionally, this

behavior is inconsistent with experimental and numerical observations [98, 110]. Although

not the target of the current parametric study, it is noted that the magnitude of Isp/Isp,full

as α approaches zero can be estimated using the models developed by Cooper [110] and

Endo et al. [112].

The normalized specific impulse ratio for partially-filled PDEs operating with H2–O2

and C2H4–O2 detonable propellants are shown in Fig. 6.10. Note, the mass fraction Z

is varied in accordance with the previously discussed parametric study of sweeping the fill

fraction (0.2 ≤ α ≤ 1), helium mole fraction (0 ≤ XHe ≤ 1), inert mixture temperature

(150 ≤ Ti ≤ 800), and blowdown pressure ratio (1 ≤ ψ ≤ 100). It is noted that for the cases

of varying blowdown pressure ratio, the partially-filled specific impulse is normalized by

the specific impulse of a fully-filled PDE that is operating at the same blowdown pressure

ratio. It is evident from Fig. 6.10 that the normalized specific impulse ratio predicted by

the MOC model is best modeled using the scaling law proposed by Sato et al. [98], with

an average error of 2 percent for Z ranging from 0.1–1. Moreover, an average error of 4
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percent is obtained between the results of the present MOC model and the Gurney model

proposed by Cooper [110]; however, the Gurney model mostly over-predicts the MOC results

for Z < 0.5. Therefore, the model proposed by Sato et al. [98] is used in the subsequent

analysis to further normalize the total impulse and average thrust of partially-filled PDEs.

It is worth mentioning that despite the simplicity of the Sato model, it still manages to

capture the effects of sweeping ψ for partially- and fully-filled PDEs operating at the same

blowdown pressure ratio. This is a result that has not yet been reported for partially-filled

PDEs operating in sub-atmospheric environments, which increases the applicability of the

model proposed by Sato et al. [98].

Figure 6.10. Comparison of normalized MOC specific impulse Isp/Isp,full with the scaling
laws of [98, 110] in Eqs. (6.3) and (6.5) for fill fractions ranging from 0.2–1.0 while varying
the helium mole fraction for the helium–air inert mixture, inert mixture temperature, and
blowdown pressure ratio.

It is of interest to investigate how the combination of fill fraction and density ratio

of detonable-to-inert gas mixture influences the behavior of η = Isp/Isp,full. By inspection

of Eq. (6.4), it is clear that η increases with decreasing fill fraction, for any combination

of detonable and inert mixtures. This is consistent with all of the previous analysis and

discussion on partial filling. Similarly, as the fill fraction increases, the effects of the inert
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mixture becomes less significant as the density ratio ρi/ρd is scaled by 1/α−1. Hence, when

the fill fraction equals unity, i.e., a fully-filled PDE thrust chamber with no inert mixture,

η becomes independent of the inert mixture or ambient condition and equals unity. In a

similar manner, holding the fill fraction constant at a value less than unity, it is clear from

(6.4) that η will increase with increasing ρi/ρd. Effectively, this is equivalent to raising the

density of the inert mixture ρi, which is analogous to increasing the acoustic impedance of

the inert mixture. This is an alternative way of viewing the effects of partial filling that

provides better insights into the dependency and sensitivity of the partial-fill effect to fill

fraction and density ratio of the inert-to-detonable mixture. Figure 6.11 is a contour plot of

how the reduced normalized specific impulse (η− 1) varies with fill fraction and detonable-

to-inert density ratio. Such a contour plot is useful for visualizing the performance map of

partially-filled PDEs. For instance, if it were desired to obtain a specific impulse ratio of

η = 1.5, then identifying the curve with a magnitude of 0.5 reveals all the combinations

of α and ρd/ρi required to achieve this level of propulsive performance. Hence, for a fixed

fill fraction, varying either the propellant equivalence ratio or inert temperature could tune

the desired propulsive performance. Additionally, for fixed detonable and inert mixture

densities, varying the fill fraction could tune the desired propulsive performance. Lastly, in

the case of sub-atmospheric operation, the density of the ambient is dropping with altitude;

hence, varying both the fill fraction and equivalence ratio of the detonable propellant can

be used to obtain the desired propulsive performance. Note that the fill fraction varies from

0–1 in Fig. 6.11; however, the model proposed by Sato et al. [98] fails in the limit of zero

fill fraction. Hence, the results in the range of α < 0.2 should be taken with caution.

The total impulse defined by Eq. (4.14) is an important propulsive performance pa-

rameter of the PDE, for which previous researchers have tried to develop scaling relations.

As previously mentioned, Cooper et al. [108] provided a piecewise correlation for It/It,full

in terms of the volumetric fill fraction ranging from 0–1 for experimental and numerical hy-

drocarbon data of [87,89,90,107,109]. However, given the previous discussion, it is evident
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Figure 6.11. Contour plot of reduced normalized specific impulse, η−1, vs. fill fraction and
detonable-to-inert mixture density ratio.

that any correlation based solely on fill fraction is not general, but specific to the respective

detonable and inert mixture combination. Therefore, in the remainder of the section, the

scaling law of Sato et al. [98] is extended to the total impulse ratio and compared with the

results of the MOC model and existing numerical and experimental data.

From the definition of specific impulse in Eq. (4.15), it can be shown that the total

impulse ratio of a partially- to fully-filled PDE takes the form It/It,full = αIsp/Isp,full;

hence, in terms of η,

It
It,full

= αη = Ω (6.6)

where Ω can be expressed in terms of Z, ρd, ρi and α as,

Ω = Z1/2

[
ρd
ρi

+

(
1− ρd

ρi

)
Z

]−1

=

[
ρi
ρd
α+

(
1− ρi

ρd

)
α2

]1/2

(6.7)

Inspection of Eq. (6.7) reveals the dependency of the total impulse ratio on the partially-

filled PDE operating parameters. For instance, using the expression for Ω in terms of α

and ρi/ρd, it is clear that Ω2 is quadratic in α with coefficients proportional to the ratio

of densities of the detonable and inert mixtures. In this form, it is clear that the total

impulse ratio It/It,full = Ω vanishes as the fill fraction approaches zero, which is consistent

with experimental observations and physical intuition. Additionally, as the fill fraction

193



approaches unity, much like the expression for η, the influence of the inert mixture vanishes,

and Ω subsequently approaches unity. It is interesting to note that Eq. (6.7) implies Ω does

not have to be bounded between 0–1 for a fill fraction less than unity. For instance, for a

fill fraction of less than unity, it is possible to have a combination of detonable and inert

densities such that Ω > 1. This is in contrast to the conclusions presented in [108]. However,

as will be shown in the subsequent analysis, heavier inert gases, namely, inert mixtures

with high acoustic impedance, can actually cause the total impulse ratio to exceed unity.

A comparison of Eq. (6.6) with the MOC parametric sweep of fill fraction (0.2 ≤ α ≤ 1),

helium mole fraction (0 ≤ XHe ≤ 1), inert mixture temperature (150 ≤ Ti ≤ 800), and

blowdown pressure ratio (1 ≤ ψ ≤ 100) for PDEs operating with H2–O2 and C2H4–O2

detonable propellants is shown in Fig. 6.12. The scaling law in Eq. (6.6) agrees very well

with the results of the MOC parametric sweep, such that an average error of 2 percent is

obtained over the range 0.2 < Ω . 1. This implies that the extended scaling law of Sato

et al. [98] also accurately represents the total impulse ratio, including PDEs operating in

sub-atmospheric environments.

Figure 6.12. Comparison of the normalized MOC total impulse It/It,full with the scaling
law in Eq. (6.6) for fill fractions ranging from 0.2–1.0 while varying the helium mole fraction
for the helium–air inert mixture, inert mixture temperature, and blowdown pressure ratio.
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It is of interest to compare the generalized expression for It/It,full = Ω with exist-

ing partially-filled PDE numerical and experimental data. For this, the numerical results

of [76,83,98,107] and experimental results of [89,95,97,101,102] are used, which were pre-

viously discussed in Ch. 4. In addition to the previously discussed results, the numerical

results of [71] and experimental results of [87,90,103,106] are also used. In the MOC study

carried out by Guzik et al. [71], the detonable propellant is a gaseous propane–oxygen mix-

ture with ambient air as the inert mixture, and the fill fraction is varied from 0.2-1 by

adding straight constant-area extensions to the PDE. In the experimental study carried

out by Zhdan et al. [87], single-shot (SS) experiments were conducted with a detonation

tube and the impulse was directly measured using a ballistic pendulum arrangement. The

detonation tube was evacuated by a vacuum pump prior to operation and then filled with

a stoichiometric acetylene–oxygen mixture, where a thin diaphragm was used to separate

the detonable propellant from the ambient air. Further, detonation was achieved by direct

initiation using an initiating tube, and the fill fraction was varied from 0.14–1 by adding

straight-tube extensions with the same area. Similarly, in the experimental study conducted

by Cooper et al. [90], single-shot (SS) experiments were conducted with a detonation tube

and the impulse was directly measured using a ballistic pendulum setup. No internal ob-

stacles were used to enhance the DDT length. The detonation tube was evacuated with

a vacuum pump and then filled with a nitrogen diluted ethylene–oxygen mixture that was

separated from the ambient air using a thin Mylar diaphragm. The nitrogen dilution was

varied from 0–40 percent and a fill fraction was changed from 1 to 0.63 by adding a straight-

tube extension with the same area. In the experiments conducted by Kasahara et al. [103],

a partially-filled multi-cycle PDE was operated at frequencies ranging from 2.5–8.3 Hz, and

the thrust was directly measured using a spring-damper mechanism and a dynamic load cell.

An ethylene–oxygen detonable mixture was injected using solenoid valves, and the PDE was

purged with helium after each cycle. Further, the fill fraction was varied from 0.075–0.26 by

precision timing of the solenoid valves. A value for the fully-filled specific impulse was not
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reported, thus the data was normalized using the theory of Endo et al. [65]. For this case,

the inert mixture was taken as helium since the PDE was purged with helium. However,

it was noted in [103] that the unfilled portion of the tube contained a mixture of helium,

burned products from the previous cycle, and suctioned air from the ambient. Additionally,

for the lowest fill fractions of 0.075–0.087, it was concluded that proper detonation was not

achieved due to diffusion between the helium and fresh propellant interface. Lastly, in the

experiments conducted by Wang et al. [106], a valveless partially-filled multi-cycle PDE was

operated at frequencies ranging from 50–96 Hz, and the thrust was determined using the

arithmetic mean of dynamic thrust loading measured with a load cell. An oxygen-enriched

gasoline propellant was used as the detonable mixture, which required no purge during the

PDE operation, and a combination of burned products and ambient air acted as the inert

mixture in the unfilled portion of the PDE. The fill fraction was varied from roughly 0.5–1

by tuning the operating frequency, and a Shchelkin spiral was used to aid the DDT process.

As noted in [106], the detonable-to-inert density ratio was determined to be equal to unity,

which provided the best agreement with the specific impulse model of Sato et al. [98].

In each of these studies, if the total impulse was not reported, then it is calculated

based on the reported specific impulse, geometry of the PDE thrust chamber, detonable

propellant and inert mixture, and fill fraction. Further, if the fill fraction was varied by

adding straight-tube extensions to the PDE, the normalized total impulse is adjusted for an

equivalent fully-filled PDE. Lastly, the fill fraction and densities of the reported detonable

and inert mixtures are used to calculate the equivalent numerical or experimental value of

Ω. Figure 6.13 provides a comparison of the scaling law in Eq. (6.6) with the partially-filled

PDE results of [71, 76, 83, 87, 89, 90, 95, 97, 98, 101–104, 106, 107]. Astonishingly, remark-

able agreement is obtained with existing published performance data, which encompasses

partially-filled PDEs operating over a very wide range of conditions. An average error of

6 percent is obtained between Eq. (6.6) and the numerical and experimental data shown

in Fig. 6.13 over a range 0.1 < Ω . 1.0. In contrast to the specific impulse ratio, η, good
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agreement with experimental data is maintained at very low fill fractions. This is primarily

caused by the scaling for Ω vanishing at a fill fraction of zero, which is consistent with the

physical operating aspects of partially-filled PDEs.

Figure 6.13. Comparison of normalized total impulse It/It,full scaling law in Eq. (6.6) with
experimental and numerical results of [71,76,83,87,89,90,95,97,98,101–104,106,107].

For adequate design of PDEs employing the partial-filling method, it is of interest to

visualize the performance map of It/It,full = Ω , while varying the operating parameters

for a partially-filled PDE. Figure 6.14 is a contour plot demonstrating how Ω varies with

fill fraction and density ratio of the detonable-to-inert mixtures. As previously mentioned,

there is no restriction on Eq. (6.7) which limits Ω ≤ 1. This is shown in Fig. 6.14 for

combinations of α and ρd/ρi that are less than unity. For instance, for a fill fraction of 0.5,

a density ratio of ρd/ρi < 0.33 is required to achieve an impulse ratio greater than unity. In

practice, however, a density ratio of ρd/ρi = 0.33 would be difficult to achieve in a practical

operation, as the inert mixture density would have to be 3 times that of the detonable
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density. Realizable density ratios of approximately 0.4 for the case of stoichiometric H2–O2

detonable propellant and ambient air as the inert mixture can be achieved, which results

in a maximum total impulse ratio of It/It,full = 1.014 at a fill fraction of α = 0.88. This

condition was experimentally studied by Joshi and Lu [97], with the PDE operating at 10 Hz,

where they obtained an impulse ratio of It/It,full = 0.97 at a fill fraction of 0.88. Although

the experimentally obtained total impulse ratio does not actually exceed unity, it is very

close to the value predicted by Eq. (6.7) and within the range of experimental error. Given

these results, this is an area of partially-filled PDEs that warrants further experimental

investigation in order to verify the degree to which the impulse ratio can practically be held

at or above unity. In the case of sub-atmospheric PDE operation, the benefit of partial

filling becomes drastically diminished as ρd/ρi, or blowdown pressure ratio, increases. In

fact, as demonstrated in Eq. (6.7) and Fig. 6.14, the normalized total impulse equals the

fill fraction in the limit where ρd/ρi → ∞. This is a characteristic result that is obtained

when the acoustic impedance of the inert mixture is effectively zero and has no influence on

the thrust chamber gasdynamics of the PDE. Conversely, as ρd/ρi decreases, the acoustic

impedance of the inert mixture begins to influence the thrust chamber gasdynamics of the

PDE for α < 1, and the resulting impulse ratio varies as shown in Fig. 6.14.

The final propulsive performance metric of interest in the design of partially-filled

PDEs is the time-averaged thrust over a single-cycle. Therefore, it is of interest to normalize

the single-cycle time-averaged thrust of a partially-filled PDE to that of a fully-filled PDE.

From the definition of total impulse in Eq. (4.14), the normalized time-averaged thrust

ratio, F̄ /F̄full, is related to the ratio of gasdynamic blowdown time, τ , by

F̄

F̄full
=

It
It,full

(
tf

tf,full

)−1

=
Ω

τ
(6.8)

A comparison of Eq. (6.8) with the MOC parametric sweep of fill fraction (0.2 ≤ α ≤ 1),

helium mole fraction (0 ≤ XHe ≤ 1), inert mixture temperature (150 ≤ Ti ≤ 800), and

blowdown pressure ratio (1 ≤ ψ ≤ 100) for PDEs operating with H2–O2 and C2H4–O2

detonable propellants is shown in Fig. 6.15. The scaling law in Eq. (6.8) agrees very well
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Figure 6.14. Contour plot of normalized total impulse It/It,full in Eq. (6.6) vs. fill fraction
and detonable-to-inert mixture density ratio.

with the results of the MOC parametric sweep, such that an average error of roughly 3% is

obtained over the range 0.3 < Ω/τ < 1. This further signifies that the extended scaling law

of Sato et al. [98] also accurately represents the time-averaged thrust ratio of partially-filled

PDEs.

Figure 6.15. Comparison of the normalized MOC time-averaged thrust F̄ /F̄full with the
scaling law in Eq. (6.8) for fill fractions ranging from 0.2–1.0 while varying the helium
mole fraction for the helium–air inert mixture, inert mixture temperature, and blowdown
pressure ratio.
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Although the scaling relationship in Eq. (6.8) captures the time-averaged thrust char-

acteristics, the accurate determination of τ in practice is quite difficult, and usually requires

numerical analysis of the PDE thrust chamber gasdynamics. Hence, it is of interest to obtain

a reduced-order expression for τ in terms of the partial filling parameters that approximately

models the blowdown gasdynamic behavior of fully- and partially-filled PDEs. By analysis

of the behavior of τ in the parametric sweep conducted with the MOC model, an approx-

imate scaling relation for ρd/ρi & 1, in terms of the mass fraction, Z, fill fraction, α, and

detonable-to-inert mixture density ratio, ρd/ρi is

τ = Z1/7

[
ρd
ρi

+

(
1− ρd

ρi

)
Z

]−2/7

=

[
ρi
ρd
α+

(
1− ρi

ρd

)
α2

]1/7

(6.9)

Substitution of this expression for τ into Eq. (6.8) yields

F̄

F̄full
= Λ (6.10)

where

Λ = Z5/14

[
ρd
ρi

+

(
1− ρd

ρi

)
Z

]−5/7

=

[
ρi
ρd
α+

(
1− ρi

ρd

)
α2

]5/14

(6.11)

A comparison of Eq. (6.11) with the MOC parametric sweep is shown in Fig. 6.16.

Note, in an attempt to not clutter the results in Fig. 6.16, the parametric sweep of helium

mole fraction for the helium–air inert mixture was not included; however, it is noted that

those results agree with the results shown. The scaling in Eq. (6.8) has very good agreement

with the results of the MOC parametric sweep for ρd/ρi & 1. In this case, an average error of

roughly 4 percent is obtained over the range 0.3 < Λ < 1. However, for ρd/ρi < 1, the effects

of contact surface trapping becomes more evident regarding the blowdown gasdynamics

at lower fill fractions, making any one general scaling law for τ = tf/tf,full difficult to

obtain. This is demonstrated by the disagreement of Eq. (6.8) in Fig. 6.16 for the cases

of ρd/ρi = 0.56 and 0.42, respectively. Despite this disagreement, in practical partially-

filled PDE systems using hydrocarbon propellant, the density ratio is close to unity, which

makes the scaling relationship more appropriate. This remains true for PDEs operating in
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sub-atmospheric environments, as the density ratio is usually greater than unity for both

hydrogen and hydrocarbon propellants.
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Figure 6.16. Comparison of normalized MOC time-averaged thrust F̄ /F̄full with the scaling
law in Eq. (6.10) for various blowdown pressure ratios.

A comparison of the scaling relation in Eq. (6.10) with the MOC results of Guzik

et al. [71] and the experimental results of Schauer et al. [95] is provided in Fig. 6.17. As

mentioned previously, the MOC results in [71] are associated with partially-filled PDEs

operating with stoichiometric propane–oxygen detonable propellant and air as the inert

mixture. Hence, this operating condition results in a detonable-to-inert density ratio of

ρd/ρi = 1.18, which results in the very good agreement with Eq. (6.10) shown in Fig.

6.17. Conversely, the experiments of [95] are conducted with a stoichiometric hydrogen–

air detonable mixture and air as the inert mixture, which results in a detonable-to-inert

density ratio of ρd/ρi = 0.72. Hence, as expected, the agreement is not very good given the

limitations on the density ratio of Eq. (6.9). Despite the disagreement with the experiments

of [95], the scaling relation in Eq. (6.11) is believed to share better agreement with partially-

filled PDEs operating with hydrocarbon propellants, and partially-filled PDEs operating in

sub-atmospheric environments.
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Figure 6.17. Comparison of normalized time-averaged thrust F̄ /F̄full scaling law in Eq.
(6.10) with previous experimental and numerical results of [71,95].

Lastly, it is of interest to analyze the performance map of Λ = F̄ /F̄full as a function

of the partially-filled PDE operating parameters. Figure 6.18 is a contour plot showing the

variation of Λ as a function of the fill fraction, α, and detonable-to-inert mixture density

ratio, ρd/ρi. Because the scaling for the non-dimensional gasdynamic blowdown time, τ =

tf/tf,full, was used to derive the expression for Λ, the density ratio in Fig. 6.18 is limited to

ρd/ρi ≥ 1. It is evident from Fig. 6.18 that the benefits of partial filling on the normalized

time-averaged thrust are more pronounced for large acoustic impedance of the inert mixture,

namely, small ρd/ρi. Similar to the total impulse ratio, in the case of sub-atmospheric PDE

operation, the benefit of partial filling becomes drastically diminished as ρd/ρi, or blowdown

pressure ratio, increases. As demonstrated in Eq. (6.11) and Fig. 6.18, the normalized time-

averaged thrust approaches α5/7 in the limit where ρd/ρi → ∞. This is a characteristic of

Eq. (6.11), and consistent with all previous discussion regarding the reduction in acoustic

impedance of the inert mixture.

In summary, the current work provides several nondimensional scaling laws for the

purposes of modeling the propulsive performance of partially-filled PDEs. In the develop-

ment of these performance scaling relations, the results from Sato et al. [98] were used, and
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Figure 6.18. Contour plot of normalized time-averaged thrust F̄ /F̄full in Eq. (6.10) vs. fill
fraction and detonable-to-inert mixture density ratio.

it is therefore important that a range of applicability be mentioned for the scaling laws in

Eqs. (6.7), (6.8), and (6.10). As mentioned in [98], the normalized specific impulse scaling

law for η is limited to mass fractions of 0.05 < Z < 1.0, as the model approaches infinity

in the limit of zero mass fraction. However, for the normalized impulse and time-averaged

thrust ratios in Eqs. (6.7) and (6.8), the mass fraction range can be extended to 0 ≤ Z ≤ 1,

as the scaling approaches zero in the limit of zero mass fraction, which is consistent with

experimental observations. However, it is cautioned that very small values of ρd/ρi, i.e.,

large inert acoustic impedance, and low fill fractions may result in predictions that deviate

from experiments. This is purely a consequence of the contact surface trapping becoming

more severe, which changes the performance characteristics and mechanism of the partial-

fill effect. Lastly, the simplified scaling for normalized time-averaged thrust in Eq. (6.11) is

applicable over the mass fraction range of, 0 ≤ Z ≤ 1, with the constraint that ρd/ρi & 1.

For the purposes of completeness, Table 6.1 provides a comparison of the scaling laws

for η, Ω, and Λ with the results of the MOC model for partially-filled PDEs with operating

conditions that were not discussed in the current study. This includes partially-filled PDEs

operating with H2–O2 and CH4–O2 detonable propellants at various equivalence ratios, fill
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fractions, blowdown pressure ratios, and inert mixtures. The scaling laws for η and Ω are

shown to accurately represent the results from the MOC model over these wide operating

conditions, including the cases of krypton as the inert gas, which has a very high acoustic

impedance. Further, the scaling law for Λ is only shown to accurately model the results of

the MOC model for the conditions where ρd/ρi & 1. Finally, it is noted that the partially-

filled PDE performance can be recovered in its entirety with the scaling laws in Eqs. (6.3),

(6.6), and (6.10), provided the fully-filled analytical performance model of Ch. 5 (or those

of [65] and [66,67]) is used to calculate the denominator of η, Ω, and Λ, respectively.

Table 6.1. Comparison of scaling laws for η (Eq. (6.3)), Ω (Eq. (6.6)), and Λ (Eq. (6.10))
with MOC at various operating conditions.

Propellant/Inert φ α ψ ρd/ρi η
Isp

Isp,full
Ω It

It,full
% Diff. a Λ F̄

F̄full
% Diff.

H2–O2/air 0.5 0.5 1 0.589 1.642 1.657 0.821 0.829 0.9 0.869 0.812 6.6

H2–O2/air 1.0 0.5 1 0.416 1.845 1.833 0.922 0.916 0.6 0.944 0.862 8.7

H2–O2/air 2.0 0.5 1 0.278 2.145 2.096 1.072 1.048 2.3 1.051 0.913 13.1

H2–O2/air 1.0 0.25 1 0.416 2.865 2.975 0.716 0.744 3.8 0.788 0.623 20.9

H2–O2/air 1.0 0.75 1 0.416 1.342 1.360 1.006 1.020 1.4 1.005 0.953 5.1

H2–O2/air 1.0 0.5 10 4.163 1.114 1.146 0.557 0.573 2.9 0.658 0.624 5.2

H2–O2/air 1.0 0.5 100 41.63 1.012 1.095 0.506 0.547 8.2 0.615 0.593 3.5

H2–O2/He 1.0 0.5 1 3.000 1.155 1.164 0.577 0.528 0.8 0.675 0.660 2.3

H2–O2/Ar 1.0 0.5 1 0.301 2.080 2.105 1.040 1.053 1.2 1.028 0.933 9.3

H2–O2/Kr 1.0 0.5 1 0.143 2.824 2.763 1.412 1.381 2.2 1.280 1.094 14.5

CH4–O2/air 0.5 0.5 1 0.998 1.415 1.440 0.707 0.720 1.8 0.781 0.768 1.6

CH4–O2/air 1.0 0.5 1 0.925 1.443 1.469 0.721 0.735 1.8 0.792 0.773 2.4

CH4–O2/air 2.0 0.5 1 0.833 1.484 1.500 0.742 0.750 1.1 0.808 0.780 3.4

CH4–O2/air 1.0 0.25 1 0.925 2.060 2.133 0.515 0.533 3.5 0.623 0.617 0.9

CH4–O2/air 1.0 0.75 1 0.925 1.166 1.200 0.875 0.900 2.9 0.909 0.867 4.6

CH4–O2/air 1.0 0.5 10 9.247 1.053 1.107 0.526 0.554 5.2 0.632 0.606 4.2

CH4–O2/air 1.0 0.5 100 92.47 1.005 1.069 0.503 0.535 6.4 0.612 0.588 3.9

CH4–O2/He 1.0 0.5 1 6.665 1.072 1.068 0.536 0.534 0.4 0.641 0.638 0.4

CH4–O2/Ar 1.0 0.5 1 0.668 1.580 1.642 0.790 0.821 3.9 0.845 0.829 2.0

CH4–O2/Kr 1.0 0.5 1 0.318 2.035 2.026 1.017 1.013 0.4 1.012 0.937 7.4

a η and Ω share the same percent error with the MOC results.
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6.2 Pulse Detonation Engines with Diverging Nozzles

In this section, the single-cycle performance characteristics of PDEs equipped with

diverging nozzles are discussed, including the effects of nozzle expansion area ratio, engine

blowdown pressure ratio, and inert mixture acoustic impedance. Subsequently, a parametric

study is conducted to identify the general performance map of PDEs fitted with diverging

nozzles, and the optimum specific impulse, nozzle expansion area ratio, and blowdown

pressure ratio combinations are discussed. The effects of inert mixture are also included

to highlight the influence of the partial-fill effect on blowdown pressure ratios near unity.

Finally, an analytical performance model for a PDE with a quasi-steady nozzle is developed.

This model is compared with the results from the MOC results at various blowdown pressure

ratios in order to highlight the significant performance difference between idealized quasi-

steady PDE nozzles, and those whereby the unsteady nozzle starting process of a PDE is

taken into consideration.

6.2.1 Effects of Nozzle Expansion Area Ratio

It is of interest to first investigate the effects of varying the nozzle expansion area ra-

tio, ε, at a fixed blowdown pressure ratio, ψ, in order to highlight the gasdynamic processes

within the thrust chamber flow field that govern the observed performance of a given PDE

nozzle. Additionally, this will prove to be useful for interpreting the performance results

of larger parametric studies in the following subsections. For this, a PDE operating with

stoichiometric H2–O2 detonable propellant with air as the inert mixture is utilized. Addi-

tionally, the detonable propellant is initially at 1 atm and 300 K, while the ambient air is

initially held at 0.1 atm and 300 K, yielding a ψ = 10. The PDE is comprised of a combus-

tion chamber of length Lt = 0.7 m, and a conical diverging nozzle of length Ln = 0.3 m,

yielding a thrust chamber-to-total length ratio of α0 = 0.7. Moreover, the nozzle expansion

area ratio is varied from ε = 1–10, by increasing the nozzle half-angle from 0–10.2 degrees,
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such that the case of a 0 degree half-angle corresponds to a straight-extension nozzle, or

simply a partially-filled PDE with α = 0.7.

Figure 6.19. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert with
ψ = 10 and ε = 1. Note, the detonation/transmitted shock and contact surface paths are
denoted with the solid and dotted lines, respectively.

The starting flow field for ε = 1 is shown in the form of a non-dimensional x–t diagram

Mach number contour in Fig. 6.19. In this figure tCJ is defined by the time required for the

detonation wave to propagate from the thrust wall to the nozzle entrance, namely, tCJ =
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Lt/WCJ . Similarly, the thrust chamber pressure distribution corresponds to the constant

dashed t–line in the x–t diagram Mach number contour. In this case, the starting flow field

is characterized by the partially-filled PDE gasdynamic processes described in the previous

section, such that the flow field evolution begins with a transmitted shock and reflected

rarefaction wave, since the ratio of acoustic impedance across the contact surface is z0/z1 =

0.25. Consequently, the ratio of incident transmitted shock to detonation wave velocity is

WT /WCJ = 1.03, and the flow immediately behind the transmitted shock is initially moving

supersonic with a Mach number of roughly 1.8 with respect to the laboratory frame. In

fact, unsteady supersonic flow develops behind the transmitted shock and contact surface

in the non-simple region where the Taylor and secondary rarefactions interact; however, the

supersonic flow in this region only persists for a small fraction of the overall cycle time since

the straight-extension nozzle does not feature geometric expansion to continue accelerating

the gas. As a result, the flow in the straight-extension nozzle quickly returns subsonic for

the remainder of the gasdynamic blowdown process. Moreover, starting at t/tCJ ≈ 2, the

exhausting rarefaction wave enters the PDE thrust chamber and accelerates the gas to a

sonic choking condition on the chamber exit plane. As discussed in the previous section,

the exhausting rarefaction is the mechanism that eventually returns the chamber pressure

back to the ambient condition.

Similarly, the starting flow field for ε = 3 is shown in the form of a non-dimensional x–t

diagram Mach number contour in Fig. 6.20, where the thrust chamber pressure distribution

corresponds to the constant dashed t–line on the x–t diagram. In this case, the nozzle

half-angle is 3.5 degrees, which yields a starting flow field that is drastically different from

that when ε = 1 and the nozzle half-angle is 0 degrees. In fact, a sonic choking condition

is established at the inlet of the nozzle at x/L = 0.7 due to the geometric area change

in the nozzle [118]. As mentioned in Ch. 2, this creates a condition whereby the flow

field in the constant-area portion of the thrust chamber is unaffected by the nozzle flow

field, and the flow field upstream of the nozzle is identical to that of a fully-filled PDE for
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ψ = 10. Similar to the previous case, the ratio of acoustic impedance across the contact

surface is z0/z1 = 0.25, which results in a reflected rarefaction that is coincident with the

exhausting rarefaction that together propagate into the constant-area portion of the thrust

chamber. Likewise, the ratio of incident transmitted shock to detonation wave velocity is

WT /WCJ = 1.03, and a region of supersonic flow with a Mach number of roughly 1.8 is

immediately established behind the transmitted shock. However, unlike the case of ε = 1,

supersonic flow continues to rapidly develop behinds the transmitted shock and contact

surface due to the geometric expansion in the nozzle. In fact, the gas is expanded so rapidly

with ε = 3 that an unsteady secondary shock wave forms behind the contact surface in order

to elevate the pressure of the expanding gas to a condition that nearly matches that at the

contact surface behind the transmitted shock. Consequently, the unsteady secondary shock

wave reduces the initially supersonic flow emanating from the nozzle entrance to a region

consisting of nearly sonic flow, which is bounded by the secondary shock and contact surface.

Eventually, the transient nozzle starting process terminates with the exit of the secondary

shock from the nozzle at t/tCJ ≈ 2.5, and the nozzle flow returns entirely supersonic with

an exit Mach number of roughly 2.9.

Lastly, the starting flow field for ε = 10 is shown in the form of a non-dimensional x–t

diagram Mach number contour in Fig. 6.21, where the thrust chamber pressure distribution

corresponds to the constant dashed t–line on the x–t diagram. In this case, the nozzle half-

angle is 10.2 degrees, which yields a starting flow field that is similar to the case of ε = 3,

although with severe over-expansion. As before, a sonic choking condition is established

at the inlet of the nozzle at x/L = 0.7 due to the geometric area change in the nozzle,

whereby the flow field in the constant-area portion of the thrust chamber is unaffected by

the nozzle flow field. Similarly, for ψ = 10, the ratio of acoustic impedance across the contact

surface is z0/z1 = 0.25, which results in a reflected rarefaction that is coincident with the

exhausting rarefaction that together propagate into the constant-area portion of the thrust

chamber. Likewise, the ratio of incident transmitted shock to detonation wave velocity is
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Figure 6.20. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert with
ψ = 10 and ε = 3. Note, the detonation/transmitted shock, contact surface, and secondary
shock paths are denoted with the solid, dotted, and dashed lines, respectively.

WT /WCJ = 1.03, and a region of supersonic flow with a Mach number of roughly 1.8 is

immediately established behind the transmitted shock. Unlike the case of ε = 3, the gas is

expanded so rapidly that a relatively strong secondary shock wave forms in the nozzle in

order to match the pressure condition at the contact surface behind the transmitted shock.

In fact, as shown in Figs. 6.20 and 6.21, the secondary shock in this case features a pressure

ratio that is roughly 6 times that of when ε = 3 at t/tCJ ≈ 1.5. As a result, the region of

209



flow that is bounded by this much stronger secondary shock wave and the contact surface

is entirely subsonic, a consequence of the severe nozzle over-expansion. Once the contact

surface reaches the nozzle exit at t/tCJ ≈ 2, a secondary exhausting rarefaction wave enters

the nozzle, which serves to accelerate the gas to a choking condition on the nozzle exit plane.

Further, this secondary exhausting rarefaction eventually reaches the secondary shock and

rapidly accelerates the shock towards the nozzle exit. As such, the transient nozzle starting

process terminates with the exit of the secondary shock from the nozzle at t/tCJ ≈ 2.8, and

the nozzle flow returns entirely supersonic with an exit Mach number of roughly 4.1.

The transient variation of thrust for the cases of ε = 1, 2, 3, 6, and 10 at ψ = 10

are shown in Fig. 6.22(a), respectively. Note that the thrust force has been normalized by

A0p1, namely, the product of thrust wall area and initial propellant pressure. This transient

variation in thrust is obtained by application of Eq. (4.12) at each time step, such that the

contribution from all of the internal thrust surfaces are accounted for. It is noted that the

thrust force is identical for each case of ε up until t/tCJ = 1, namely, the moment at which

the detonation wave reaches the nozzle entrance at x/L = 0.7. In the case of ε = 1, the PDE

thrust profile simply mimics that of a partially-filled PDE with a fill fraction of α = 0.7.

Additionally, this is the only condition where the nozzle contributes no additional thrust

as the half-angle is fixed at zero, and all of the thrust comes from the pressure history at

the thrust wall. In this case, it is evident that the secondary and exhausting rarefaction

waves reach the thrust wall at t/tCJ ≈ 3 and t/tCJ ≈ 8, respectively. Alternatively, in the

cases of ε > 1, the thrust profiles experience a sharp rise in thrust just after t/tCJ = 1,

due to the transmitted shock wave entering the nozzle and distributing a high post-shock

pressure along the nozzle wall. In fact, the maximum peak in thrust corresponds to the

time at which the maximum distributed pressure is observed on the nozzle wall, which is

due to the combined effects of the transmitted and secondary shock waves in the nozzle,

and usually occurs before the transmitted shock reaches the nozzle exit. As such, it follows

that the nozzle with the largest peak thrust corresponds to the nozzle with the largest
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Figure 6.21. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert with
ψ = 10 and ε = 10. Note, the detonation/transmitted shock, contact surface, and secondary
shock paths are denoted with the solid, dotted, and dashed lines, respectively.

degree of over-expansion, namely, ε = 10, whereby the strongest secondary shock is formed.

Although this appears to serve as a performance benefit in the early stages of the cycle, it

will be shown later that this severe over-expansion ultimately leads to a significant loss in

the latter part of the cycle.

Once the transmitted and secondary shocks exit the nozzle, the pressure begins to

rapidly decay in the nozzle due to the passage of the Taylor rarefaction wave. In the cases of
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(a) (b)

Figure 6.22. (a) Normalized thrust and (b) total impulse per unit thrust-wall area at ψ = 10
for a PDE operating with 2H2–O2 propellant and air as the ambient at various ε.

ε = 2 and 3, this rapid decay in thrust is subsequently followed by a secondary plateau, which

is caused by the establishment of nearly quasi-steady flow in the nozzle. Additionally, this

secondary plateau only lasts until the moment when the coincident reflected and exhausting

rarefaction reach the head end of the chamber at t/tCJ ≈ 3, whereby a rapid decay in

pressure at the thrust wall takes place. Note that this intermediate plateau is not entirely

reached in the cases of ε = 6 and 10, as the strong secondary shock in these cases only exits

the nozzle at approximately the same time at which the coincident reflected and exhausting

rarefaction reach the head end of the chamber. As such, the rapid decay in pressure in the

nozzle and at the thrust wall occur at nearly the same time. For t/tCJ & 3, the continued

decay in thrust is a result of the exhausting rarefaction wave slowly returning the pressure

in the thrust chamber back to the ambient condition. Note that for some of the cases of

ε, the net thrust drops below the zero thrust line in Fig. 6.22(a). This is a direct result of

large over-expansion in the nozzle, which indicates that the resultant force on the nozzle

wall from the wall pressure distribution is not able to overcome that from the ambient

condition. Hence, a negative thrust is observed for a sizable portion of the cycle, as in the

cases of ε = 6 and 10, respectively.
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The temporal variation in total impulse for these respective cases is shown in Fig.

6.22(b). In this case, the impulse has been scaled by the thrust wall area. As shown in Fig.

6.22(b), the maximum total impulse occurs for the case of ε = 3, which indicates that this

nozzle expansion area ratio is near the optimum for a blowdown pressure ratio of ψ = 10,

and α0 = 0.7. In this case, only a slight negative thrust is obtained towards the end of

the cycle, which correlates to a minor downturn in total impulse near t/tCJ ≈ 12.5. In

fact, as will be shown in the coming subsections, the optimum nozzle expansion area ratio

for ψ = 10 and α0 = 0.7, occurs when ε = 3.08, whereby the thrust curve asymptotically

approaches the zero thrust line in Fig. 6.22(a). Alternatively, as shown in the case of ε = 10,

the maximum total impulse occurs once the thrust curve passes through the zero thrust

line at t/tCJ ≈ 8 in Fig. 6.22(a). Consequently, the remaining total impulse proceeds into a

downturn, since the over-expansion in the nozzle yields a nozzle wall pressure distribution

that is less than the ambient condition. As a result, the case of ε = 10 yields a final total

impulse that is 11 percent lower than the case of ε = 3. Additionally, for the case of ε = 1,

the maximum impulse occurs once the pressure history on the thrust wall returns to the

ambient condition, which results in an impulse that is roughly 4 percent lower than that

of ε = 3. Hence, it follows that at ψ = 10 and α0 = 0.7, the best performance of a PDE

is achieved with a diverging nozzle that features an expansion area ratio of approximately

ε = 3. Additionally, it is worth noting that this optimum nozzle case still features a

small degree of over-expansion during the unsteady nozzle starting flow process, whereby a

secondary shock momentarily forms within the nozzle.

6.2.2 Effects of Blowdown Pressure Ratio

It is also of interest to investigate the effects of varying the blowdown pressure ratio,

ψ, at a fixed nozzle expansion area ratio, ε, in order to highlight the gasdynamic processes

within the thrust chamber flow field that govern the observed performance of a given PDE

nozzle. As in the previous subsection, this will prove to be useful for interpreting the
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performance results of larger parametric studies in the following sections. For this, a PDE

operating with stoichiometric H2–O2 detonable propellant with air as the inert mixture is

utilized. Additionally, the detonable propellant is initially at 1 atm and 300 K, while the

ambient air is varied from 1–0.01 atm at 300K, yielding a blowdown pressure ratio range of

ψ = 1–100. As before, the PDE is comprised of a combustion chamber of length Lt = 0.7

m, and a conical diverging nozzle of length Ln = 0.3 m, yielding a thrust chamber-to-total

length ratio of α0 = 0.7. Moreover, the nozzle expansion area ratio is fixed at ε = 4 with a

half-angle of 4.8 degrees.

The starting flow field for ψ = 4 is shown in the form of a non-dimensional x–t diagram

Mach number contour in Fig. 6.23. Note, as before, tCJ is defined by the time required

for the detonation wave to propagate from the thrust wall to the contact surface location

at the nozzle entrance, tCJ = Lt/WCJ . Similarly, the thrust chamber pressure distribution

corresponds to the constant dashed t–line in the x–t diagram Mach number contour. In this

case, a weak shock reflects from the contact surface with an initial pressure ratio of 1.11

as the acoustic impedance ratio across the contact surface is z0/z1 = 1.24. As such, the

ratio of incident transmitted shock to detonation wave velocity is WT /WCJ = 0.52, and the

flow immediately behind the transmitted shock is initially moving supersonic with a Mach

number of 1.6 with respect to the laboratory frame. It is noted that a nozzle with ε = 4

at ψ = 1 yields a starting nozzle flow field that is severely over-expanded, in that a strong

secondary shock wave forms in the nozzle. In fact, as shown in Fig. 6.23, the secondary

shock features a pressure ratio of nearly 4 in the early stages of its formation in the nozzle

at t/tCJ ≈ 2. Consequently, the flow field bounded by the secondary shock and contact

surface is entirely subsonic until the moment when the contact surface exits the nozzle at

t/tCJ ≈ 3.1, whereby a secondary exhausting rarefaction enters the nozzle and accelerates

the gas to a choking condition on the nozzle exit plane. Similarly, the secondary exhausting

rarefaction interacts with the secondary shock wave and accelerates the shock out of the

nozzle at t/tCJ ≈ 4.5. Moreover, once the secondary shock exits the nozzle, the unsteady

214



nozzle starting process is terminated and the nozzle returns entirely supersonic with an exit

Mach number of roughly 3.2.

Figure 6.23. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert with
ψ = 1 and ε = 4. Note, the detonation/transmitted shock, contact surface, and secondary
shock paths are denoted with the solid, dotted, and dashed lines, respectively.

Similarly, the starting flow field for ψ = 10 is shown in the form of a non-dimensional

x–t diagram Mach number contour in Fig. 6.24, where the thrust chamber pressure dis-

tribution corresponds to the constant dashed t–line on the x–t diagram. In this case, a
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rarefaction wave reflects from the contact surface as the acoustic impedance ratio across

the contact surface is z0/z1 = 0.25. As such, the ratio of incident transmitted shock to

detonation wave velocity is WT /WCJ = 1.03, and the flow immediately behind the trans-

mitted shock is initially moving supersonic with a Mach number of 1.8 with respect to the

laboratory frame. It is noted that a nozzle with ε = 4 at ψ = 10 yields a starting nozzle flow

field that is slightly over-expanded compared to the results from the previous subsection.

In fact, it was shown there that the optimum nozzle features an expansion area ratio of

ε ≈ 3. As such a strong secondary shock wave forms in the nozzle starting flow field, where

a pressure ratio of nearly 2.7 is reached during the early stages of its formation in the nozzle

at t/tCJ ≈ 1.5. Consequently, the flow field bounded by the secondary shock and contact

surface is slightly subsonic until the moment when the contact surface exits the nozzle at

t/tCJ ≈ 1.7, whereby a secondary exhausting rarefaction enters the nozzle and accelerates

the gas to a choking condition on the nozzle exit plane. As before, the secondary exhausting

rarefaction interacts with the secondary shock wave and accelerates the shock out of the

nozzle at t/tCJ ≈ 2.5, such that the nozzle flow field returns entirely supersonic with an

exit Mach number of roughly 3.2.

Lastly, the starting flow field for ψ = 100 is shown in the form of a non-dimensional x–t

diagram Mach number contour in Fig. 6.25, where the thrust chamber pressure distribution

corresponds to the constant dashed t–line on the x–t diagram. Similar to the previous

case, a rarefaction wave reflects from the contact surface as the acoustic impedance ratio

across the contact surface is z0/z1 = 0.041. As such, the ratio of incident transmitted

shock to detonation wave velocity is WT /WCJ = 1.7, and the flow immediately behind the

transmitted shock is initially moving supersonic with a Mach number of nearly 1.9 with

respect to the laboratory frame. It is noted that a nozzle with ε = 4 at ψ = 100 yields a

starting nozzle flow field that is primarily under-expanded, in that a very weak secondary

shock wave briefly forms in the nozzle and exits within a small fraction of the overall cycle

time. As such, the flow field bounded by the secondary shock and contact surface is only
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Figure 6.24. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 propellant and air as the inert with
ψ = 10 and ε = 4. Note, the detonation/transmitted shock, contact surface, and secondary
shock paths are denoted with the solid, dotted, and dashed lines, respectively.

slightly supersonic until the secondary shock exits the nozzle at t/tCJ ≈ 1.4, in which case

the nozzle establishes complete supersonic flow with an exit Mach number of roughly 3.2.

In fact, it will be shown in the following subsection that the optimum blowdown pressure

ratio for a nozzle of ε = 4 is roughly ψ = 17, and the optimum nozzle expansion area ratio

for ψ = 100 is roughly ε = 17. Hence, it can be said that this nozzle configuration yields a
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mostly under-expanded flow despite the formation of a weak secondary shock in the nozzle

starting process.

Figure 6.25. Non-dimensional x–t diagram of Mach number contour (bottom) and pressure
distribution on constant dashed t–line (top) for 2H2–O2 detonable propellant and air as the
inert with ψ = 100 and ε = 4. Note, the detonation/transmitted shock, contact surface, and
secondary shock paths are denoted with the solid, dotted, and dashed lines, respectively.

The transient variation of thrust for the cases of ψ = 1, 2, 5, 10, 20, 50, and 100

for ε = 4 are shown in Fig. 6.26(a), respectively. Note that the thrust force has been

normalized by A0p1, namely, the product of thrust wall area and initial propellant pressure.
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As before, the thrust profiles experience a sharp rise in thrust just after t/tCJ = 1, due to

the transmitted shock wave entering the nozzle and distributing a high post-shock pressure

along the nozzle wall. Similarly, the maximum peak in thrust corresponds to the time

at which the maximum distributed pressure is observed on the nozzle wall, which is due

to the combined effects of the transmitted and secondary shock waves in the nozzle, and

usually occurs before the transmitted shock reaches the nozzle exit. As such, it follows

that the nozzle with largest peak thrust corresponds to the nozzle with the largest degree

of over-expansion, namely, ψ = 1. Moreover, once the transmitted and secondary shocks

exit the nozzle, the pressure begins to rapidly decay in the nozzle due to the passage of the

Taylor rarefaction wave. In the cases of ψ = 10, 20, 50, and 100, this rapid decay in thrust

is subsequently followed by a secondary plateau, which is caused by the establishment of

nearly quasi-steady flow in the nozzle. Additionally, this secondary plateau only lasts until

the moment when the coincident reflected and exhausting rarefaction reach the head end

of the chamber at t/tCJ ≈ 3, causing a rapid decay in pressure at the thrust wall. Note

that this intermediate plateau is not entirely reached in the cases of ψ = 1, 2, and 5, as

the fairly strong secondary shock in these cases only exits the nozzle at approximately the

same time at which the coincident reflected and exhausting rarefaction reach the head end

of the chamber. As such, the rapid decay in pressure in the nozzle and at the thrust wall

occur at nearly the same time. For t/tCJ & 3, the continued decay in thrust is a result of

the exhausting rarefaction wave slowly returning the pressure in the thrust chamber back

to the ambient condition. As previously mentioned, some of the cases of ψ drop below the

zero thrust line in Fig. 6.26(a). This is a direct result of large over-expansion that occurs

in the nozzle, which results in a negative resultant thrust for a sizable portion of the cycle,

such as in the cases of ψ = 1, 2, and 5, respectively.

Finally, the temporal variation in total impulse for these respective cases is shown

in Fig. 6.26(b). Similar to the previous cases, the impulse has been scaled by the thrust

wall area. As shown in Fig. 6.26(b), the total impulse at the end of the cycle continually
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(a) (b)

Figure 6.26. (a) Normalized thrust and (b) total impulse per unit thrust-wall area at various
ψ for a PDE operating with 2H2–O2 propellant and air as the ambient and with ε = 4.

increases with increasing ψ. This is to be expected as the majority of the nozzle flow during

the cycle is transitioning from over-expanded, nearly perfectly expanded, to under-expanded

as ψ varies from 1–100 at a fixed nozzle expansion area ratio of ε = 4. Despite this, it is

noted that severe over-expansion is present in the case of ψ = 1, as the thrust curve drops

well below the zero thrust line in Fig. 6.26(a), which leads to the downturn in total impulse

in Fig. 6.26(b). Similarly, this occurs in the cases of ψ = 2, 5, and 10, although to a

lesser degree. The first case to nearly terminate at the maximum total impulse occurs when

ψ = 20. This is a direct result of the nozzle being nearly perfectly expanded for a majority

of the cycle in this case, as mentioned in the previous discussion. It is noted that the severe

over-expansion in the case of ψ = 1 yields a final total impulse that is nearly 34 percent

less than that of the nearly perfectly expanded case of ψ = 20. Lastly, the cases of ψ = 50

and 100 yield mostly under-expanded nozzle flow during the gasdynamic blowdown of the

PDE, such that the maximum total impulse asymptotically approaches the limiting case

when ψ →∞.
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6.2.3 General Nozzle Performance Characteristics

The previous subsections discussed the gasdynamic flow field and PDE performance

for two separate nozzle cases, first by fixing the blowdown pressure ratio and varying the

nozzle expansion area ratio, and second by fixing the nozzle expansion area ratio and vary-

ing the blowdown pressure ratio. In the current subsection, it is of interest to show the

generalized performance trends of PDEs with diverging nozzles by simultaneously varying

both the nozzle expansion area ratio, ε, and blowdown pressure ratio, ψ. For this, PDEs

operating with stoichiometric H2–O2 and C2H4–O2 detonable propellants initially at 1 atm

and 300 K are utilized. Moreover, the ambient is varied between air and helium to demon-

strate the effects of inert mixture acoustic impedance at lower blowdown pressure ratios.

In this case, the ambient temperature is kept at 300 K and the ambient pressure is varied

from 1–0.005 atm, yielding a blowdown pressure ratio range of 1–200. Similarly, the PDE

is comprised of a combustion chamber of length Lt = 0.7 m, and a conical diverging nozzle

of length Ln = 0.3 m, yielding a thrust chamber-to-total length ratio of α0 = 0.7.

The general idealized performance trends for stoichiometric H2–O2 detonable propel-

lant are shown in Figs. 6.27(a) and 6.27(b) for air and helium as the ambient, respectively.

One of the more important results demonstrated in Fig. 6.27(a) is that a diverging noz-

zle will not always yield the optimum performance solution for a PDE, especially at lower

blowdown pressure ratios. For instance, when ψ = 1 and 2, the optimum performance is

achieved when the nozzle features an expansion area ratio of ε = 1, namely, a partially-

filled PDE. In this case, the performance benefit from the partial-fill effect is superior to

any performance gain that can be achieved by adding a nozzle with ε > 1. In fact, as in

the case of ψ = 1 and 2, the addition of a nozzle with a half-angle greater than zero results

in a predominantly over-expanded nozzle flow with an associated performance loss. In the

case of ψ = 5, the benefit from the partial-fill effect only remains superior up until ε = 2, in

which case the nozzle outperforms the partially-filled PDE; however, the performance gain

is less than 1 percent. Most important, it is shown in Fig. 6.27(a) that in all other cases
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where ψ > 5, the addition of a diverging nozzle becomes very advantageous for increasing

the overall performance of the PDE. As discussed in the previous section, the performance

benefit of partially filling the PDE thrust chamber becomes rapidly diminished as the ambi-

ent pressure is reduced, which causes the acoustic impedance of the inert mixture to rapidly

decrease. To demonstrate this, Fig. 6.27(b) shows the same parametric sweep for nozzles,

but with helium as the inert mixture. In this case, it is very evident that reducing the

acoustic impedance of the inert mixture by a factor of roughly 3.4, by simply changing the

inert mixture from air to helium, drastically reduces the performance gains from partial

filling at small ψ. Simultaneously, reducing the acoustic impedance of the inert mixture

helps demonstrate the benefit of fitting a properly designed nozzle to a PDE in situations

where the acoustic impedance does not strongly influence the results. In fact, in the cases of

air and helium as the inert mixture, the performance benefit of a properly designed nozzle

becomes evident at only ψ = 5, and ψ = 2, respectively. Hence, at a given ψ, it is apparent

that there exists an optimum nozzle expansion area ratio, ε, for which the specific impulse

reaches a maximum. Additionally, this optimum expansion area ratio varies drastically

depending on the corresponding ψ. Consequently, it can be said that there is a need for a

properly designed diverging nozzle on PDE systems at higher ψ, as the straight-extension

nozzle is unable to adequately convert the enthalpy of the burned products into kinetic en-

ergy, thereby enhancing the propulsive performance of the PDE. Moreover, it is also noted

that as the back pressure is reduced and ψ increases, the performance difference between

air and helium as the inert mixture becomes nearly indistinguishable. This is especially

evident in the case of ψ = 200, such that the optimum specific impulse and nozzle area

ratio occurs at Isp = 369.3 seconds and ε = 40.3, and Isp = 363.7 seconds and ε = 36.5, for

air and helium, respectively.

Similarly, the general idealized performance trends for stoichiometric C2H4–O2 det-

onable propellant are shown in Figs. 6.28(a) and 6.28(b) for air and helium as the ambient,

respectively. As in the case of H2–O2 detonable propellant, it is evident that a diverging
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(a) (b)

Figure 6.27. Specific impulse variation with ε and ψ for a PDE with α0 = 0.7 and operating
with 2H2–O2 propellant with (a) air and (b) helium as the inert mixture in the nozzle.

nozzle will not always yield the optimum performance solution for a PDE, especially at

lower blowdown pressure ratios. As shown in Fig. 6.28(a), a partially-filled PDE with ε = 1

provides the best performance for ψ = 1 and 2. As previously discussed, this is a direct

result of the large losses associated with severe over-expansion of the burned products.

However, for ψ & 5, a properly designed diverging nozzle will provide the best performance

for the PDE. In the case of helium as the inert mixture, it is evident from Fig. 6.28(b)

that the partially-filled PDE will never provide superior performance compared to that of

a PDE with a diverging nozzle. Again, this is a direct result of the reduction in acous-

tic impedance ratio due to the density of ethylene–oxygen mixture compared to that of

a hydrogen–oxygen mixture, such that the partial-fill effect is almost entirely absent. In

such a case, the optimum performance can only be achieved by adequately expanding the

burned products through a diverging nozzle. Hence, it becomes of immediate importance

that the PDE be equipped with a properly designed diverging nozzle in order to enhance

the propulsive performance and maximize the efficiency of the system. Another important

result to note is that a PDE operating with an ethylene–oxygen mixture will require a nozzle
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with a expansion area ratio nearly double that of a hydrogen–oxygen mixture for the same

optimum condition. This is simply due to the larger post-detonation pressures experienced

in a PDE operating with hydrocarbon fuels. For instance, in the case of ψ = 100 and air as

the inert mixture, the optimum specific impulse and nozzle area ratio occurs at Isp = 350.6

seconds and ε = 16.7, and Isp = 287.5 seconds and ε = 31.2, for stoichiometric H2–O2 and

C2H4–O2 detonable propellants, respectively.

(a) (b)

Figure 6.28. Specific impulse variation with ε and ψ for a PDE with α0 = 0.7 and operating
with C2H4–3O2 propellant with (a) air and (b) helium as the inert mixture in the nozzle.

In summary, the generalized results reported above for stoichiometric H2–O2 and

C2H4–O2 detonable mixtures demonstrate that a properly designed nozzle is crucial to the

optimization of PDE performance for blowdown pressure ratios of ψ � 1. In these cases,

the performance benefit due to partial filling is significantly reduced, as a result of the

acoustic impedance of the inert mixture rapidly reducing with increasing ψ. Consequently,

optimum performance of the PDE is achieved only through physical expansion of the burned

products by means of a diverging nozzle. More important, there exist a unique optimum

nozzle expansion area ratio for the PDE at a given blowdown pressure ratio, which varies
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drastically as ψ increases. Hence, it is important to identify these combinations of blowdown

pressure and nozzle expansion area ratio that result in the maximum specific impulse.

Additionally, it is reminded that all of the results reported in this subsection are specific to

the case of α0 = 0.7. It is noted that the PDE performance also changes given the ratio of

PDE tube length-to-total length, namely, α0, which includes the tube and nozzle lengths.

As such, the optimum performance results will be reported in the final subsection of this

chapter for the cases of α0 = 0.6, 0.7, 0.8, and 0.9, respectively.

6.2.4 Analytical Quasi-Steady Nozzle Performance Model

Before proceeding to the optimum nozzle performance results, it is of interest to de-

velop a diverging nozzle performance model for the PDE based on a quasi-steady nozzle flow

assumption. As discussed at the beginning of this section, the nozzle flow field approaches

a mostly quasi-steady flow condition once the transmitted shock wave, contact surface, and

secondary shock wave exit the nozzle. In fact, in the limit of α0 → 1, the nozzle start up

time is effectively zero and quasi-steady flow persist during the entire gasdynamic blow-

down process. Moreover, in cases where α0 ≈ 1, as ψ →∞, the nozzle start up time tends

towards zero. Note, this was shown in the case of ψ = 100 for ε = 4 and α0 = 0.7 in

Fig. 6.25, where the nozzle startup time is only a small fraction of the overall cycle time.

Consequently, evaluation of the PDE performance with a diverging nozzle in the limit of a

quasi-steady nozzle flow assumption yields an absolute theoretical maximum performance

for a PDE nozzle, such that all of the losses associated with the nozzle starting process are

neglected.

Previously, Barbour and Hanson [121] developed a PDE performance model for di-

verging nozzles, by employing a quasi-steady assumption and extending the fully-filled mod-

els of Wintenberger et al. [66, 67] and Cooper and Shepherd [92] to PDEs with diverging

nozzles in sub-atmospheric environments. The present model closely follows that of Bar-

bour and Hanson [121]; however, the analytical model developed in Ch. 5 is utilized. Recall
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that the analytical model in Ch. 5 reduced the thrust force and associated performance

parameters of the fully-filled PDE to a description of the pressure history on the exit plane

of the PDE. Accordingly, it follows that this pressure history can be especially useful for

describing the flow condition on the exit plane of a quasi-steady diverging nozzle. For in-

stance, it was shown that when a PDE is equipped with a diverging nozzle, the flow field

within the constant-area portion of the thrust chamber is identical to that of a fully-filled

PDE, due to the choking condition that develops at the nozzle inlet. Subsequently, with a

quasi-steady nozzle flow assumption, the performance of a nozzle can readily be obtained

by extending this pressure history at the nozzle entrance to that on the nozzle exit plane for

a given expansion area ratio. Therefore, the remainder of this subsection is used to develop

an expression for the thrust of a PDE that is equipped with a quasi-steady nozzle.

x

ρe (t)
ue (t)

pe (t)

ρ(x,t)
u(x,t)

Figure 6.29. Control volume (dashed line) for simplified analytical performance model of
PDE with a diverging nozzle.

For the subsequent derivation and discussion, the control volume under consideration

is depicted in Fig. 6.29. For this model, it is assumed that the gasdynamics are quasi-one-

dimensional, unsteady, inviscid, and absent from any heat transfer. These assumptions were

shown to be in agreement with the actual gasdynamic flow field in a PDE thrust chamber

during the development and validation of the MOC model in Ch. 4. Therefore, they are

used here to simplify the current control volume analysis. The general linear momentum

equation for the closed control volume in Fig. 6.29 is given by

Rx =
∂

∂t

[∫
cv
ρ(x, t)u(x, t) dV

]
+ ue(t)ṁe(t) + [pe(t)− p0]Ae (6.12)
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In this form, Rx is the resultant thrust force on the control volume, and the first, second,

and third terms on the right-hand side of Eq. (6.12) represents the time rate of change

of internal momentum integrated over the control volume, momentum flux at the exit

control surface, and the net pressure-area force at the exit control surface, respectively.

Additionally, the actual reaction thrust force on the PDE thrust chamber is obtained by

application of Newton’s third law, Fx = −Rx, namely, equal and opposite the net force on

the control volume. However, without loss of generality, the negative sign can be neglected

in the subsequent analysis.

Based on the analysis of Ch. 5, it was shown that over the full cycle time, tf , the

time rate of change of momentum within the constant-area portion of the control volume

contributes negligibly to the overall time-averaged thrust and corresponding impulse. More-

over, for a quasi-steady nozzle, such that α0 → 1, or ψ → ∞, it follows that the time rate

of change of momentum within the nozzle approaches zero. Hence, Eq. (6.12) reduces to

the simplified form

Fx = ue(t)ṁe(t) + [pe(t)− p0]Ae (6.13)

Note, in this expression, the subscript e represents the properties on the nozzle exit plane.

Further, under the assumption of a quasi-steady nozzle flow, it follows that ṁe(t) = ṁ4(t) =

ρ4(t)A0u4(t), where it is reminded that state 4 corresponds to the condition at the exit of

the constant-area portion of the thrust chamber, namely, the nozzle inlet. Similarly, due to

the choking condition that develops at the nozzle inlet, it follows that

ṁe(t) =
p4(t)A0√
T4(t)

√
γ2

R2
(6.14)

Substituting Eq. (6.14) into Eq. (6.13), and noting that u2(t) = a2M2, the following expres-

sion can be obtained

Fx = p4(t)A0γ2Me

√
Te(t)

T4(t)
+ (pe(t)− p0)Ae (6.15)
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Moreover, using the isentropic relation to replace Te(t)/T4(t) in Eq. (6.15) in terms of

pe(t)/p4(t) yields

Fx = p4(t)A0γ2Me

(
pe(t)

p4(t)

)(γ2−1)/2γ2

+ (pe(t)− p0)Ae (6.16)

Lastly, it can be shown [121] that the pressure ratio for a given nozzle, pe(t)/p4(t), can be

expressed in terms of the Mach number at the nozzle exit, Me, and the nozzle expansion

area ratio, ε = Ae/A0, as

pe(t)

p4(t)
= (Meε)

−2γ2/(γ2+1) (6.17)

Hence, substitution of Eq. (6.17) into Eq. (6.16), after algebraic manipulation, yields

Fx = p4(t)A0

{
γ2Me (Meε)

−(γ2−1)/(γ2+1) + ε

[
(Meε)

−(2γ2)/(γ2+1) − p0

p4(t)

]}
(6.18)

This simple expression represents the thrust of a PDE equipped with a quasi-steady nozzle,

and has been reduced to only a function of p4(t), given the nozzle expansion area ratio,

ε, and ambient condition p0. Additionally, it is worth noting that when ε = 1, the Mach

number at the nozzle exit is Me = 1, and Eq. (6.18) reduces to that of the fully-filled case

in Eq. (5.8) of Ch. 5. Hence, with Eqs. (5.41) and (5.42)–(5.45), the single-cycle varia-

tion in Fx(t) can be determined for a PDE equipped with a quasi-steady diverging nozzle.

Lastly, application of Eqs. (4.13)–(4.15) permits determination of the primary single-cycle

performance parameters. Moreover, these expressions are used in the following subsection

to identify the ideal maximum specific impulse at a given blowdown pressure ratio for a

PDE with a diverging nozzle.

6.2.5 Optimum Nozzle Performance

In this section, the general optimum performance characteristics of PDEs with conical

diverging nozzles are presented. These results are of great importance for the design of PDEs

with diverging nozzles and for the quantification of idealized PDE performance, such that

the unsteady nozzle flow field is considered. It is noted that these results are obtained by

using the golden-section-search method with the current MOC model in order to locate
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the optimum nozzle expansion area ratio that maximizes the specific impulse at a given

blowdown pressure ratio. Similarly, the same iterative minimization scheme was used with

the quasi-steady analytical performance model described in the previous subsection in order

to identify the theoretical maximum PDE performance in the limit that quasi-steady nozzle

flow exists in the nozzle throughout during the entire gasdynamic blowdown process. These

maximum specific impulses are denoted by I∗sp, which corresponds to the specific impulse

obtained when the PDE nozzle is perfectly expanded for the largest fraction of the overall

cycle time.

Figures 6.30(a) and 6.30(b) show the variation in I∗sp for PDEs operating with sto-

ichiometric H2–O2 detonable propellant and equipped with conical diverging nozzles with

thrust chamber-to-total length ratios of α0 = 0.6, 0.7, 0.8, and 0.9 at blowdown pressure

ratios ranging from 1–200, and with air and helium as the inert mixture, respectively. Note

that the dashed line corresponds to the results obtained using the quasi-steady nozzle (Q-S

Nozzle) model and represents the theoretical maximum performance in the limit α0 → 1,

while the dash-dot line represents the performance of a fully-filled PDE with no nozzle. One

of the primary results demonstrated in Figs. 6.30(a) and 6.30(b) is that the optimum spe-

cific impulse increases with increasing α0 at higher blowdown pressure ratio. For instance,

in the cases of air and helium as the inert mixture, the PDE with α0 = 0.9 provides roughly

2.6 and 4.2 percent higher I∗sp than that of the PDE with α0 = 0.6 at a blowdown pressure

ratio of ψ = 100, respectively. Similarly, this increment in I∗sp grows to 5.8 and 7.8 percent

for air and helium inert mixture at a blowdown pressure ratio of ψ = 200, respectively.

Alternatively, at lower blowdown pressure ratios, the PDEs with lower α0 provide the high-

est I∗sp. For instance, in Fig. 6.30(a) where air is the inert mixture, there is a deviation in

I∗sp for the α0 = 0.6 curve at blowdown pressure ratios of ψ . 5. As previously discussed,

this region corresponds to the operating conditions where the optimum specific impulse is

provided by a partially-filled PDE with ε = 1 rather than a PDE with a diverging nozzle

and ε > 1. Moreover, for the case of α0 = 0.6, this remains true up until ψ = 5, whereby
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a minimum in I∗sp is reached. This minimum point represents the condition for which a

diverging nozzle with ε > 1 begins to provide superior performance compared to that of a

partially-filled PDE. Correspondingly, for blowdown pressure ratios beyond this minimum

point, namely, ψ > 5, a diverging nozzle with ε > 1 provides the optimum performance.

As such, the PDE with α0 = 0.6 provides the highest I∗sp for blowdown pressure ratios of

ψ . 25, at which point the PDE with α0 = 0.9 yields the optimum solution, which continues

as the blowdown pressure ratio increases. Again, it is reiterated that the partial-fill effect

is the mechanism that allows the PDE with α0 = 0.6 to provide superior performance for

ψ . 25 when air is the inert mixture in the nozzle. Note that this is not true when the

nozzle if filled with helium. For instance, in Fig. 6.30(a) where helium is the inert mixture,

the partial-fill effect is almost entirely suppressed by the time the blowdown pressure ratio

reaches ψ = 2. As such, the optimum performance is achieved from a PDE with α0 = 0.9

for ψ > 2 due to the reduced acoustic impedance.

(a) (b)

Figure 6.30. Optimum specific impulse variation with ψ for 2H2–O2 propellant with (a) air
and (b) helium as inert mixture in the nozzle.

Similarly, figures 6.31(a) and 6.31(b) show the variation in I∗sp for PDEs operating

with stoichiometric C2H4–O2 detonable propellant and equipped with conical diverging noz-
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zles with thrust chamber-to-total length ratios of α0 = 0.6, 0.7, 0.8, and 0.9 at blowdown

pressure ratios ranging from 1–200, and with air and helium as the inert mixture, respec-

tively. As before, the dashed line corresponds to the results obtained using the quasi-steady

nozzle (Q-S Nozzle) model and represents the theoretical maximum performance in the

limit α0 → 1, while the dash-dot line represents the performance of a fully-filled PDE with

no nozzle. As in the previous case, one of the primary results demonstrated in Figs. 6.31(a)

and 6.31(b) is that the optimum specific impulse increases with increasing α0 at higher

blowdown pressure ratio. For instance, in the cases of air and helium as the inert mixture,

the PDE with α0 = 0.9 provides roughly 5.5 and 6.8 percent higher I∗sp than that of the

PDE with α0 = 0.6 at a blowdown pressure ratio of ψ = 100, respectively. Similarly, this

increment in I∗sp grows to 6.6 and 7.6 percent for air and helium inert mixture at a blow-

down pressure ratio of ψ = 200, respectively. Alternatively, unlike the case of stoichiometric

H2–O2 detonable propellant, the partial-fill effect for the case of α0 = 0.6 is less pronounced

at lower ψ. As discussed in the previous section, this is a direct result of the lower acoustic

impedance ratio due to the increased density of a stoichiometric C2H4–O2 detonable pro-

pellant. As a result, the optimum performance is achieved from a PDE with α0 = 0.9 for

ψ & 8 and ψ & 2 in the cases of air and helium as the inert mixture, respectively.

A final important result demonstrated in Figs. 6.30 and 6.31 is the behavior of the

quasi-steady nozzle solution, in that the solution underestimates the nozzle performance at

lower ψ where the partial-fill effect is present, and over-predicts the PDE nozzle performance

at higher ψ. This is to be expected as this solution simultaneously neglects the gasdynamic

mechanisms that govern the partial-fill effect and the associated increase in performance,

and the gasdynamic mechanisms that govern the performance losses associated with the

transient nozzle startup, such as the transmitted shock, contact surface, and secondary

shock motion in a diverging nozzle. Consequently, this can result in a misrepresentation

of the optimum PDE nozzle performance. As such, the quasi-steady solution should be

regarded as a highly idealized representation of the actual PDE nozzle performance. Al-
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(a) (b)

Figure 6.31. Optimum specific impulse variation with ψ for C2H4–3O2 propellant with (a)
air and (b) helium as the non-combustible mixture in the nozzle.

though, it is noted that in the limits where ψ → ∞ and α0 → 1, the quasi-steady nozzle

solution becomes a more accurate representation of the optimum PDE nozzle performance.

As mentioned previously, these cases yield a nozzle startup time that tends towards zero,

and the losses associated with the unsteady nozzle startup are negligible. This is evident

in Figs. 6.30 and 6.31 where the optimum I∗sp from the quasi-steady nozzle model only

overestimates that of the PDE with α0 = 0.9 by an average of 1.4 percent at ψ = 200.

As such, only in the limit of α0 near unity and large ψ will the quasi-steady nozzle flow

assumption become an accurate depiction of the actual gasdynamic flow field in a diverging

PDE nozzle.
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CHAPTER 7

SHOCK DYNAMICS IN DIVERGING NOZZLES 1

7.1 Background

One of the key aspects of the starting nozzle flow field in a PDE is the dynamic

behavior of the transmitted shock wave as it traverses through the nozzle. As discussed in

Chs. 2 and 6, the nozzle starting flow field is initiated once the detonation wave collides with

the contact surface at the nozzle entrance, and the transmitted shock enters the nozzle. In

general, the dynamics of the transmitted shock are governed by the local area change of the

nozzle and the gasdynamic interaction with the flow field from behind. Moreover, as noted

in the study of Wu [169], a general performance trend for PDEs with diverging nozzles is the

increase in single-cycle total impulse with increasing attenuation of the transmitted shock

wave strength. However, it should be noted that this trend only remains true provided

severe over-expansion in the exhausting nozzle flow field is avoided during the remainder

of the gasdynamic blowdown. Therefore, it is very important in the design of diverging

nozzles for use in PDE propulsion systems to consider the dynamic characteristics of the

transmitted shock within the nozzle. In particular, it is of great interest to identify noz-

zle shapes that significantly attenuate the transmitted shock wave without causing severe

over-expansion in the flow field behind the shock, as in the example x–t diagram of Fig.

2.6. In the work of Wu [169], the classical Chester–Chisnell–Whitham (CCW) theory was

proposed as a low-order model to determine the decay behavior of the transmitted shock.

However, the classical CCW theory is really only appropriate for shock waves that are ini-

tially uniformly propagating and free of any gradients in the flow field immediately behind

1Parts of this chapter were published in Peace, J.T. and Lu, F.K., “On the Propagation of Decaying

Planar Shock and Blast Waves Through Non-Uniform Channels,” Shock Waves, vol. 28, no. 6, pp. 1223–

1237, 2018. doi: 10.1007/s00193-018-0818-0
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the shock. Additionally, given the previous discussion in Chs. 2 and 6 regarding the dynam-

ics of the transmitted shock, the shock strength and motion is governed by both the nozzle

area change, and from the interaction of the Taylor rarefaction wave from behind. Hence,

the classical CCW theory is not entirely appropriate for a description of shock dynamics in

PDE nozzles. It is the goal of this chapter to formulate a rigorous analytical model that can

estimate the strength and motion of a transmitted shock wave through a general contour

diverging nozzle. Additionally, before discussing the transmitted shock dynamics in a PDE

nozzle, it is convenient to generalize the analysis to shock motion in non-uniform channels,

and then apply those results to the case of a PDE.

The propagation of shock waves through non-uniform channels with varying cross-

sections has been studied analytically from the 1950s. Notably, Chester [170] provided

a linearized solution to the problem of a transmitted shock wave in a channel of non-

uniform cross-sectional area, specifically, channels that feature monotonically increasing or

decreasing sections. The solution allowed for an approximate determination of the change in

shock strength over a finite length of channel of arbitrary shape. A significant result was that

the shock strength, averaged at any time over the flow cross-sectional area, is proportional to

the change in area of the channel. A similar theoretical treatment by Chisnell [171] yielded

a closed-form approximate expression for the change in shock strength as a function of

channel area by using a steady-state analysis. This was achieved by neglecting the reflected

disturbances generated by the shock. The final major theoretical treatment was that of

Whitham [172]. Whitham’s theory allowed for the computation of the shock motion without

directly determining the flow field following the shock. The shock motion was determined by

integrating the Rankine–Hugoniot (RH) shock jump conditions on the forward propagating

characteristic, which yielded an explicit relationship for the channel area and the local

shock Mach number. The shock strength and channel area relation obtained by Whitham

is exact with those of Chester and Chisnell. Whitham’s theory has been widely used in

analyzing the motion of shock waves in various geometries with accurate results [173–176].
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Collectively, the work of Chester, Chisnell, and Whitham is known as the CCW theory. It

is noted that the results of CCW theory provide the basis for formulating Whitham’s theory

of geometrical shock dynamics [177], which can be used to analyze shock propagation in

two-dimensional geometries.

In the case of decaying shock waves, or shock motion with a non-uniform flow field

following the shock, application of the classical CCW theory is not entirely appropriate.

This is because the CCW theory neglects gradients in the flow field just behind a shock

wave, which strictly prohibits its application to initially uniformly propagating shocks, or

commonly referred to as freely propagating shocks. In regard to this aspect, Best [178]

provided a theoretical framework for the generalization of CCW theory. Best reconsidered

the motion of a shock through a channel of varying cross-section and described it by an

infinite sequence of ordinary differential equations. Truncation was used to show the varying

degree of approximation between the original CCW theory and the generalized CCW theory

with the inclusion of higher-order terms for cylindrical and spherical shock motion. In this

manner, a non-uniform flow field following the shock can be taken into account. Best applied

the generalized theory successfully to the propagation of underwater blast waves. Moreover,

the newer generalized theory was shown to have excellent agreement with the approximate

Kirkwood–Bethe method [179].

The focus of this chapter is to investigate the propagation of general decaying shocks

that are incident on non-uniform channels using the generalized theory of Best. This gas-

dynamic process is shown schematically in Fig. 7.1 for a general diverging geometry. It is

desired to analyze the case of an arbitrary strength shock that is being overtaken by an

unsteady rarefaction wave, much like that of the Taylor rarefaction wave overtaking the

transmitted shock in the PDE nozzle. For this particular wave process, the overtaking

rarefaction wave creates a non-uniformity in the flow behind the shock that can largely in-

fluence the shock wave propagation dynamics as it traverses through a region of increasing
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area. Thus, the Best generalized extension of classical CCW theory will be used to treat

this gasdynamic process and is discussed in the following subsections.

MsA0 A(x)

Figure 7.1. Shock wave traveling with a shock Mach number of Ms entering a diverging
channel.

7.2 Generalized CCW Theory

7.2.1 Area–Mach Relation

The area–Mach (A–M) relation is a classical result obtained by Chester [170], Chisnell

[171], and Whitham [172] from linearization of the governing equations of inviscid and quasi

one-dimensional flow with no heat transfer or mass addition. Substituting the RH shock

jump conditions on the forward propagating C+ compatibility equation (Eq. (4.7)) yields

the ordinary differential equation

dM

dx
= − 1

g(M)

A′(x)

A(x)
(7.1)

where

g(M) =
M

M2 − 1

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

M2

)
(7.2)

and

µ2 =
(γ − 1)M2 + 2

2γM2 − (γ − 1)
(7.3)

It is noted that through linearization, the accuracy of the above result is dependent upon

the condition that [178] ∣∣∣∣A′(x)

A(x)

∣∣∣∣� 1

ρa2u

∣∣∣∣1− a+ u

a0M

∣∣∣∣ ∣∣∣∣∂p∂t + ρa
∂u

∂t

∣∣∣∣ (7.4)
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where p, u, ρ, and a represent the post-shock state and are given by the RH shock jump

conditions.

The inequality of Eq. (7.4) necessitates that the area change dominates the motion of

the shock wave compared to the unsteadiness in pressure and velocity following the shock.

Moreover, on the right-hand side of Eq. (7.4), the term |1− (u+ a)/(a0M)| is a measure

of the coincidence between the C+ characteristic and the shock wave in x–t space. This

term is exactly equal to zero for M = 1, and approaches 0.309, 0.274, and 0.261 as M →∞

for γ = 5/3, 7/5, and 4/3, respectively. The behavior of this term is shown in Fig. 7.2.

Similarly, the term |∂p/∂t+ ρa∂u/∂t| is a measure of the non-uniformity of the flow behind

the shock and is exactly zero for a freely propagating shock, namely, uniform planar shock

motion. This type of shock motion is shown schematically in Fig. 7.3(a). However, as the

shock moves through an area change, the changing shock strength perturbs the immediate

flow behind the shock such that |∂p/∂t+ ρa∂u/∂t| 6= 0. Han and Yin [180] used Chester’s

small perturbation theory to demonstrate that the term is usually very small along the

C+ characteristics originating from the uniform region behind the shock. Therefore, it is

these conditions that justify the assumptions of Eq. (7.1), and make the A–M relation

a good approximation for describing the dynamics and strength of an initially uniformly

propagating shock wave as it traverses through a non-uniform area change.

7.2.2 Higher-Order Equations

For the cases of decaying shock wave propagation, such that the wave is continu-

ously being overtaken by an unsteady rarefaction wave as shown in Fig. 7.3(b), the term

|∂p/∂t+ ρa∂u/∂t| can be very large, thereby violating the inequality relation in Eq. (7.4)

that permits use of the A–M relation. This is especially true if the temporal and spatial

decay rates of such waves are rapid. The theory of shock dynamics must therefore be ex-

tended to take into account the non-uniformity of the flow following the shock wave. This

generalization was carried out by Best [178]. Best reconsidered the propagation of a shock
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Figure 7.2. Measure of coincidence between C+ characteristic and shock in x–t space.

p(x)

x

Ms

 |Q1| = 0

(a)

p(x)

x

Ms

 |Q1| > 0

(b)

Figure 7.3. (a) Pressure profile of uniformly propagating shock wave and (b) decaying shock
wave with flow non-uniformity.

wave down a channel of varying cross section and demonstrated that the motion of the

shock wave is governed by an infinite sequence of ordinary differential equations given by:

dM

dx
= −

[
1

g (M)

A′(x)

A(x)
+ f (M)Q1

]
(7.5)

dQn
dx

= −
[
∂n

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)
+

n∑
i=1

{(
n

i

)
∂i

∂t

(
1

u+ a

)
Qn+1−i

}
+
∂n−1

∂t

(
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t

)
+

(
1

u+ a
− 1

a0M

)
Qn+1

]
(7.6)

for n = 1, 2, 3, ..., where

Qn = ∂n−1
t (∂p/∂t+ ρa∂u/∂t) (7.7)
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f(M) = (γ + 1)
[

(γ − 1)M2 + 2
][

(γ − 1)M2 − (γ + 1) νM + 2
][

2ρ0a
3
0M
[
2M2

+ (γ + 1) νM − 2
][

(γ + 1) ν + 2 (γ − 1)M3 + (γ + 1) νM2 + 4M
]]−1

and

ν2 =

[
(γ − 1)M2 + 2

][
2γM2 − γ + 1

]
(γ + 1)M2

(7.8)

Note that a derivation of Eqs. (7.5) and (7.6) is provided in section C.1 of the ap-

pendix. Moreover, the behavior of both g(M) and f(M) are shown in Figs. C.1 and C.2 of

section C.2 of the appendix. These equations have been recast from that reported by Best

for convenience to include ordinary derivatives of the spatial coordinate x, as opposed to

time t. By using the general Leibniz rule combined with the characteristic form of the gov-

erning equations, Best obtained explicit formulas for the nth-order time and space partial

derivatives of p, u, ρ, and a. These general formulas are not repeated here; although, the

first-order time and space partial derivatives of p, u, ρ, and a are provided in section C.1

of the appendix. It is noted that these expressions are reduced to only depend on the RH

shock jump conditions and channel area profile.

In order to compute a solution, truncation is required to obtain a mathematically

closed set of ordinary differential equations in terms of the Mach number M and variable

Qn. As a first-order approximation for n = 0, Eq. (7.6) becomes null and therefore trun-

cating Q1 in Eq. (7.5) yields the classical CCW A–M relation. Moreover, for higher-order

approximations, the term Qn+1 is truncated to yield a closed set of n+ 1 coupled ordinary

differential equations in the variables M and Qn, such that each additional equation is cou-

pled to its successor. This is the same closure scheme of [178], where details regarding the

convergence of such a closure scheme were discussed. For this work, only a second-order

approximation is considered and the resulting equation set is used to describe the motion of

decaying shock waves in non-uniform channels. Therefore, for n = 1, the resulting equations

consists of Eq. (7.5) and

dQ1

dx
= −

[
∂

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)
+
∂

∂t
(ρa)

∂u

∂x
− ∂

∂x
(ρa)

∂u

∂t
+
∂

∂t

(
1

u+ a

)
Q1

]
(7.9)
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where Q1 = ∂p/∂t+ ρa∂u/∂t, is a measure of flow non-uniformity behind the shock. Thus,

with this second-order approximation, the role of flow non-uniformity on the motion of

the shock, or pressure and velocity gradients behind the shock, is taken into consideration.

In essence, this second-order approximation allows for an analytical description of waves

in non-uniform channels where the initial value of Q1 is non-zero. In the event that the

initial condition Q1,0 = 0, namely, the gradients in the flow field following the shock are

exactly zero, the shock motion is simply that of a uniformly propagating shock as shown

in Fig. 7.3(a). However, if Q1,0 < 0, the shock motion is representative of one that is being

overtaken by a rarefaction wave resulting in the propagation of a decaying shock as shown in

Fig. 7.3(b). It is also worth noting that for decaying shock waves, the rarefaction following

the shock is continuously overtaking the wave causing a decrease in the strength and velocity

of the wave as it propagates. Similarly, when the shock is subjected to a non-uniform area

change, the effects of the changing area alters the wave dynamics. This process is a coupling

between the effects of the following rarefaction and the change in channel cross-sectional

area. The current work does not exactly treat this coupling in closed form. However, the

effects of the overtaking rarefaction enters the analysis through the initial condition imposed

on Q1. This aspect will be further discussed in the following sections.

Before proceeding, it is desired to investigate the nature of Eq. (7.9) and provide a

formal criterion regarding its validity. Substitution of the first-order partial time and space

derivatives is required to reveal the complete structure of these equations. By using the

formulas obtained by Best [178] (Eqs. (C.39)–(C.46)) with the RH shock jump conditions,

Eq. (7.9) can be reduced to the following ordinary differential equation

dQ1

dx
= α1(M)

A′(x)

A(x)
Q1 +α2(M)

dM

dx
Q1 +α3(M)

(
dM

dx

)2

+α4(M)
dM

dx
+α5(M)

(
A′(x)

A(x)

)2

(7.10)

In this form, αi has the functional dependence αi = αi (p, u, ρ, a,dp/dM, du/dM, dρ/dM)

on the shock. Note, explicit formulas were obtained within a Mathematica environment

for αi. For brevity, these relations are not reported here. However, the behavior of the αi
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coefficient functions are shown in Figs. C.3–C.7 of the appendix. It should be noted that

these figures do not include real gas effects such as vibrational excitation, dissociation, or

ionization; therefore, the results at higher Mach numbers in the forgoing analysis should be

taken with caution. At this point, it is evident that the shock wave motion for a second-

order approximation is governed by two coupled first-order, non-linear ordinary differential

equations. For the purposes of establishing a formal criterion to investigate the validity of

the above equations, it is convenient to define the quantity

Λ̄ = α1(M)
A′(x)

A(x)
Q1 + α2(M)

dM

dx
Q1 + α3(M)

(
dM

dx

)2

+ α4(M)
dM

dx
+ α5(M)

(
A′(x)

A(x)

)2

(7.11)

Thus, by truncation, the accuracy of the two-equation approximation is dependent upon

the condition that

|Λ̄| � 1

u+ a

∣∣∣∣1− u+ a

a0M

∣∣∣∣ ∣∣∣∣ ∂∂t
(
∂p

∂t
+ ρa

∂u

∂t

)∣∣∣∣ (7.12)

It is now clear that the accuracy of Eq. (7.10) necessitates that the combined effects of

area change and first-order temporal derivatives of flow properties behind the shock domi-

nate the dynamics of the shock compared to the effects of second-order temporal derivatives

of flow properties. Further, the right-hand side of Eq. (7.12) is scaled by the measure of

coincidence between the C+ characteristic and shock wave in x–t space. The behavior of

this term was previously discussed in regard to the A–M inequality relation of Eq. (7.4).

The second term, |∂/∂t(∂p/∂t + ρa∂u/∂t)|, represents the first-order temporal derivative

of flow non-uniformity behind the shock, which can be rewritten as |∂Q1/∂t|. The physical

interpretation of this quantity is rendered difficult given the dependence on second-order

temporal derivatives of pressure and gas velocity behind the shock. Despite this complex-

ity, the criterion remains true for the validity of a two-equation approximation for shock

dynamics governed by an area change and flow non-uniformity following the shock. Further

investigation regarding the behavior and estimates for the orders of magnitude of both the

remaining terms and the truncated terms is provided in the following section.

241



7.3 Order-Of-Magnitude Analysis

It is desired to examine the conditions for which the criteria in Eqs. (7.4) and (7.12)

remain true. This requires assessing the relative order of magnitude for each term contained

in these criteria, namely, the channel area properties A′(x)/A(x), and general flow non-

uniformity properties Q1 and Q2. For the channel sectional area properties, a generalized

relationship exists given a constant half-angle and starting channel height. This geometrical

relation is given by

A′(x)

A(x)
=

2n tan θ

h0 + 2x tan θ
(7.13)

where θ and h0 correspond to the half-angle of the area change and starting channel height,

respectively. In this expression, n represents a geometric index equaling unity for a two-

dimensional finite width channel, and 2 for a conical area change in a tube. In this form, a

diverging geometry corresponds to a half-angle on the range 0 < θ < π/2, with the domain

0 ≤ x <∞. Further, the maximum of |A′(x)/A(x)| occurs at the origin of the area change

when x = 0, and is equal to 2n tan θ/h0. Moreover, as x→∞ the value of |A′(x)/A(x)| → 0.

A few comments can be made about the nature of diverging geometries in application to the

CCW theory. For diverging geometries, the magnitude of |A′(x)/A(x)| tends towards zero

with increasing distance from the origin of the area change. Thus, caution must be taken

in such geometries to ensure the A–M relation satisfies Eq. (7.4), as relatively minor flow

non-uniformity following the shock could be enough to render the approximation invalid.

For this reason, it is useful to approximate the relative order of magnitude of Q1 and Q2 for

the sake of establishing a range of validity for the approximate shock dynamic expressions

in Eqs. (7.1) and (7.9).

As previously stated, the measures of flow non-uniformity Q1 and Q2 are dependent

on temporal partial derivatives of pressure, gas velocity, density, and sound speed behind

the shock. Therefore, as a first-order approximation, the relaxation in pressure behind the

shock at any point in the flow field can be characterized with the Friedlander waveform [164]

p(xi, t) ≈ ps

(
1− t

τ

)
e−t/τ (7.14)
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In this form, τ represents the duration of the over-pressure which can be regarded as a

time constant for flow non-uniformity behind the shock. In a similar manner, the transient

velocity profile at a given point can be estimated with a linear decay expressed as

u(xi, t) ≈ us

(
1− t

τ

)
(7.15)

Further, the density profile, although not entirely similar to the pressure profile, can be

estimated using an exponential decay

ρ(xi, t) ≈ ρse
−t/τ (7.16)

In these approximate expressions, the subscript s represents the post-shock state and given

by the RH shock jump conditions. Note, the above expressions merely approximate the

behavior of flow properties following a decaying shock wave, and are thus used only for

the sake of argument at estimating the relative order of magnitude for both Q1 and Q2.

Assuming an ideal gas, a2 = γp/ρ, evaluation of the appropriate temporal derivatives of

flow properties at t = 0 yields

Q1 ≈ −
1

τ
(2ps + ρsasus) (7.17)

Q2 ≈
1

τ2

(
3ps + γ

psus

as
+

1

2
ρsasus

)
(7.18)

Thus, the estimates for flow non-uniformity scales with the properties in the post-

shock state and the time constant associated with the relaxation of flow quantities behind

the shock. The more important result regarding these approximations is that Qi ∝ (−1)i/τ i,

or equivalently, |Qi| ∝ 1/τ i. In most shock decay problems, the time constant of relaxation

behind the shock is less than unity. Therefore, it is to be expected that |Q2| > |Q1|

under most conditions. This aspect is what motivates the investigation of the criterion

in Eq. (7.12) because the term involving Q2 is truncated for mathematical closure of the

remaining coupled equations. Figures 7.4 and 7.5 show contour plots of |Q1| and |Q2| for

ambient air (γ = 7/5) at standard temperature and pressure, respectively.
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Figure 7.4. Contour plot of |Q1| (kg/m·s3) vs. shock Mach number and time constant of
flow non-uniformity τ for air at standard temperature and pressure.

Figure 7.5. Contour plot of |Q2| (kg/m·s4) vs. shock Mach number and time constant of
flow non-uniformity τ for air at standard temperature and pressure.

7.3.1 One-Equation Approximation

It is now possible to assess the condition under which the classical A–M relation is

appropriate for shock motion with a varying degree of non-uniform flow Q1 in the immediate

post-shock flow field. Defining the quantity,

Ψ =
1

ρa2u

(
1− u+ a

a0M

)
Q1 (7.19)
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where ρ, u, and a correspond to the post-shock state and are given by the RH shock jump

conditions, it then follows that the criterion for validity of the A–M relation can be reduced

to ∣∣∣∣A′(x)

A(x)

∣∣∣∣� |Ψ| (7.20)

Fig. 7.6 is a contour plot of |Ψ| with respect to the shock Mach number and time constant

of relaxation for air (γ = 7/5) at standard temperature and pressure. Therefore, given the

value of |A′(x)/A(x)| at any location in the area change, Fig. 7.6 can be used to determine

if |A′(x)/A(x)| � |Ψ|. A reasonable approximation would be the condition such that

|Ψ|/|A′(x)/A(x)| ≤ 0.1. Effectively, this would ensure the A–M relation is used under

conditions where the shock motion is primarily influenced by an area change as opposed

to the interaction with flow non-uniformity behind the shock. As an example, consider the

case where |A′(x)/A(x)| = 1 and a shock Mach number of 5. Using the reasoning above,

the minimum time constant of decay τ for appropriate use of the A–M relation under

these conditions would be restricted to approximately 100 ms. Note that the time constant

of decay is application and problem specific. However, in most laboratory conditions, a

time constant on the order of 100 ms would require establishing decaying shock profiles

in linear channels or tubes of impractically long length. An equivalent argument for the

specified conditions in the context of flow non-uniformity can also be made. Hence, for

|A′(x)/A(x)| = 1 and a shock Mach number of 5, the maximum magnitude of flow non-

uniformity |Q1| behind the shock for appropriate use of the A–M relation would be restricted

to approximately O(107) kg/m·s3. Therefore, under most laboratory conditions, use of the

A–M relation for decaying shock motion in diverging area channels would be inappropriate

making higher-order approximations necessary.
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Figure 7.6. Contour plot of |Ψ| (1/m) vs. shock Mach number and time constant of flow
non-uniformity τ for air at standard temperature and pressure.

7.3.2 Two-Equation Approximation

In a similar manner, the two-equation approximation can be assessed to determine

under which conditions Eq. (7.12) remains true. For this purpose, it is convenient to make

use of Eq. (7.11) to define the ratio

Ω̄ =
1

u+ a

(
1− u+ a

a0M

) ∣∣∣∣Q2

Λ̄

∣∣∣∣ (7.21)

in which case the criterion for validity of the two-equation approximation reduces to

|Ω̄| � 1 (7.22)

Note that the order of magnitude of Λ̄ is dependent on dM/dx, area profile prop-

erties A′(x)/A(x), coefficient functions αi(M), and flow non-uniformity Q1. The order of

magnitude for dM/dx is estimated by using (7.5) and the expressions for g(M), f(M), and

the approximation for Q1 in Eq. (7.17). Likewise, the order of magnitude for Λ̄ is evaluated

by using the expressions for αi(M) and Q1 at a specified A′(x)/A(x). Figure 7.7 is a con-

tour plot of |Ω̄| with respect to shock Mach number and time constant of relaxation in air

(γ = 7/5) at standard temperature and pressure for A′(x)/A(x) = 1. A reasonable use of

the two-equation approximation is under conditions for which |Ω̄| ≤ 0.1, namely, when the
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truncated term involving Q2 negligibly contributes to dQ1/dx in Eq. (7.10). Using this rea-

soning, and the Mach 5 example for assessing the A–M relation, the time constant of decay

can be extended from 100 ms to approximately 0.1 ms with the two-equation approxima-

tion. Hence, for |A′(x)/A(x)| = 1 and a shock Mach number of 5, the maximum magnitude

of flow non-uniformity |Q1| behind the shock for appropriate use of the two-equation ap-

proximation would be extended to approximately O(1010) kg/m·s3. This is an important

result that demonstrates the degree to which the two-equation approximation can account

for non-uniform flow following the shock and still accurately represent the dynamics of a

shock in a non-uniform area change. As such, it can be concluded that there exist practical

problems regarding decaying shock motion for which the two-equation approximation is

appropriate.

Another important feature of the two-equation approximation shown in Fig. 7.7 is the

behavior in the weak shock limit. From the contour lines of |Ω̄|, it is clear that in the limit

of weak shocks, the equations can be applied to problems with significantly smaller values of

τ without exceeding |Ω̄| ≤ 0.1. This result is to be expected as the measure in coincidence

between the C+ characteristic and shock approaches zero, which in turn cancels the effects

of flow non-uniformity behind the shock. Therefore, the two-equation approximation can

properly be used in the weak shock limit to describe the dynamics of decaying shocks in

non-uniform area changes.

7.4 Effects of Initial Flow Non-Uniformity

It is now desired to analyze the behavior of the solutions to the coupled equations

in Eqs. (7.5) and (7.10) for the case of diverging geometries and arbitrary strength shocks.

For this, the conical channel (n = 2) under consideration consists of a tube featuring a 1 cm

starting radius with a conical diverging profile characterized by a half angle of θ = 5 degree.

For initially uniform planar shock motion, it follows that Q1,0 ≡ 0 and a direct

comparison can be made between the A–M relation and the current second-order approx-
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Figure 7.7. Contour plot of |Ω̄| vs. shock Mach number and time constant of flow non-
uniformity τ for air at standard temperature and pressure and A′(x)/A(x) = 1.

imation. In essence, making Q1,0 = 0 allows for isolating the effects of Q1 on the solution

behavior. Figure 7.8 shows the behavior of planar shock waves with an initial Mach number

5 in conical diverging geometries. Note that as the area ratio increases, the two-equation

approximation begins to deviate from that predicted by the A–M relation. As expected,

this deviation is attributed to the introduction of Q1 into the two-equation approximation.

Moreover, although the flow non-uniformity initial condition Q1,0 = 0 is being imposed,

once the wave begins to propagate into the diverging area change, the value of Q1 becomes

non-zero on the shock as dQ1/dx is dependent on both A′(x)/A(x) and dM/dx. Note that

the effects of re-reflected disturbances are not accounted for in this study. As such, the de-

gree to which these disturbances influence the shock trajectory as opposed to the changing

area and |Q1| may become more significant at large distances from the start of the area

change. Further analysis, similar to that carried out by Milton [181], would be required to

formally assess this aspect of decaying shock propagation in non-uniform area changes.

It is also desirable to consider the influence of Q1,0 on the behavior of the two-equation

approximation in diverging geometries. This is carried out before applying the current work

to PDE nozzles, as it aides to demonstrate the physical meaning and significant of the flow
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Figure 7.8. Normalized comparison of A–M relation and second-order approximation for
an initial shock Mach number of 5 in conical diverging geometry with various flow non-
uniformity, Q1,0.

non-uniformity. For an initial shock wave Mach number of 5, Fig. 7.8 shows a comparison of

the A–M relation and solutions to (7.5) and (7.10) for various values of flow non-uniformity

Q1,0 = {0,−5.0× 108,−1.0× 109,−2.5× 109,−5.0× 109,−1.0× 1010} kg/m-s3. Note that

the initial value of Q1,0 significantly influences the rate at which the decaying shock wave

approaches an acoustic wave. For these cases, it intuitively follows that the shock wave

decays faster when the initial value of |Q1,0| is larger because the temporal gradient of

flow properties behind the shock also becomes larger. As such, it is evident that the two-

equation approximation improves the versatility of an analytical model aimed at treating

shock propagation problems where flow non-uniformity is present. Thus, the following

section discusses the extension of the two-equation approximation to the transmitted shock

in the PDE starting nozzle flow field and the associated impact on propulsive performance.

7.5 Application to Pulse Detonation Engines

In this section, it is desired to apply the two-equation approximation for shock dy-

namics to the transmitted shock wave in the starting flow field of PDE diverging nozzles.

Additionally, the intent of this work is to identify which parameters of the PDE configura-
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tion govern the magnitude of flow non-uniformity behind the incident transmitted shock,

and characterize the influence of nozzle wall shape on the dynamics of the transmitted

shock. Concurrently, the MOC model will be used to compare the results obtained with the

current two-equation approximation in order to justify the need for a higher-order approx-

imation of shock dynamics in PDE nozzles, and to associate a given case of transmitted

shock behavior to a corresponding propulsive performance.

7.5.1 Initial Flow Non-Uniformity

In application to PDEs, the magnitude of flow non-uniformity that develops behind

the incident transmitted shock is directly governed by the motion and evolution of the Taylor

rarefaction wave within the constant-area portion of the thrust chamber. This creates the

situation where |Q1,0| is inversely proportional to the PDE tube length upstream of the

diverging nozzle, since the transient variation in flow properties at the nozzle throat is

dependent on the time required for the Taylor rarefaction to traverse the nozzle entrance.

As discussed in Ch. 5, it was shown that the head and tail of the Taylor rarefaction wave

travel with the detonation wave velocity, WCJ , and stagnation sound speed, a3, respectively.

Consequently, the Taylor rarefaction wave spreads out over a given length of the thrust

chamber until the detonation wave reaches the contact surface at the nozzle throat. As

such, the temporal gradient in flow properties behind the Taylor rarefaction wave scales

inversely proportional to thrust chamber length, such that short tubes have very large

magnitudes of flow non-uniformity, and long tubes have relatively low magnitudes of flow

non-uniformity.

Since the PDE with a diverging nozzle chokes once the detonation wave arrives at

the nozzle inlet, it follows that flow property variation at the nozzle inlet is exact to that

a the exit of a fully-filled PDE. Hence, a first-order estimate for the magnitude of Q1,0 can

be obtained by considering the pressure profile at the nozzle inlet just after the transmitted

shock has passed. It is noted that an expression for this pressure decay profile was derived
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in Ch. 5, where the pressure profile during the Taylor wave passage was modeled using the

modified Friedlander equation. In application to diverging nozzles, this profile at x = Lt

can be approximated by [164],

p4(x = Lt, t) = p4(tCJ)

(
1− t− tCJ

τ

)
e
−α

(
t−tCJ
τ

)
(7.23)

where the subscript 4 corresponds to the nozzle inlet state, α is a shape parameter for

the decay profile, and τ is the time constant of the decay and equal to the duration of the

Taylor rarefaction wave passage given in Eq. (5.21). In this expression, the quantity p4(tCJ)

is the incident transmitted post-shock pressure, following the interaction of the detonation

wave and contact surface, which is obtained by the methods previously described in Ch. 3.

Additionally, in Ch. 5 α was determined to be approximately 3 based on a least-squares

fit of numerical MOC pressure profiles at the exit of a fully-filled PDE. Lastly, from the

definition of Q1 and (7.23), the initial value Q1,0 at t = tCJ is estimated as

Q1,0 ≈
(
∂p4

∂t

) ∣∣∣
t=tCJ

= −p4(tCJ)

τ
(α+ 1) (7.24)

With the expression in Eq. (7.24), the measure of initial flow non-uniformity for

various detonable mixtures has been tabulated in Table 7.1 for different thrust chamber

Lt/dt. In this table, the thrust chamber diameter is held constant at 0.1 m and the various

Lt/dt correspond to different chamber lengths. It follows that the temporal gradient |∂p4/∂t|

at the nozzle throat becomes more relaxed with longer tube lengths, namely, increasing

duration of Taylor wave passage τ , such that |Q1,0| decreases with increasing PDE tube

length. Moreover, in the limit that Lt →∞, the duration of Taylor wave passage τ →∞ and

the initial non-uniformity of the flow approaches zero. Hence, only in the limit of an infinite

tube length does the incident shock dynamics at the nozzle throat become representative of

a uniformly propagating shock. Additionally, it should be noted that maximum magnitude

of |Q1,0| for realistic PDE configurations is expected to be within that deemed appropriate

for use of the two-equation approximation.
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Table 7.1. Typical values of incident flow non-uniformity Q1,0 for common detonable mix-
tures at φ = 1.0, p1 = 1 atm, and T1 = 300 K, in a thrust chamber tube with diameter of
dt = 0.1 m.

Q1,0 (kg/s3)

Lt/dt H2–O2 H2–air C2H4–O2 C2H4–air

5 -5.031 · 1010 -2.475 · 1010 -5.324 · 1010 -2.393 · 1010

10 -2.515 · 1010 -1.237 · 1010 -2.662 · 1010 -1.196 · 1010

20 -1.258 · 1010 -6.187 · 109 -1.331 · 1010 -5.982 · 109

40 -6.288 · 109 -3.093 · 109 -6.655 · 109 -2.991 · 109

60 -4.192 · 109 -2.062 · 109 -4.437 · 109 -1.994 · 109

80 -3.144 · 109 -1.547 · 109 -3.328 · 109 -1.495 · 109

100 -2.515 · 109 -1.237 · 109 -2.656 · 109 -1.196 · 109

500 -5.031 · 108 -2.475 · 108 -5.324 · 108 -2.393 · 108

1000 -2.515 · 108 -1.237 · 108 -2.662 · 108 -1.196 · 108

∞ 0 0 0 0

It is now of interest to compare the results of the current simplified two-equation

approximation for the transmitted shock dynamics with that predicted by the lower-order

A–M relation and the current MOC model for various thrust chamber lengths. For this,

a conical diverging nozzle of fixed length Ln = 0.5 m is coupled to the end of a variable

length thrust chamber, in order to demonstrate the effects of flow non-uniformity on the

transmitted shock attenuation. Figures 7.9–7.11 show the results for a PDE filled with sto-

ichiometric H2–O2 detonable mixture and air as the non-combustible at blowdown pressure

ratios of ψ = 1, 10, and 50, and nozzle expansion area ratios of ε = 2, 4, and 8, respectively.

In these figures, the results are shown for various nozzle to thrust chamber lengths, Ln/Lt,

which is related to the axial fill fraction as Ln/Lt = (1−α0)/α0. Similarly, the transmitted

shock Mach number decrement at the exit of the nozzle is used as the basis for comparison

between the various models.

In Figs. 7.9–7.11, very fundamental results are demonstrated. In these cases, it is

evident that the A–M relation is unable to properly model the transmitted shock dynam-
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ics in PDE nozzles, due to the relation being invariant to flow non-uniformity caused by

different thrust chamber lengths. Additionally, it is only in the limit when Lt → ∞ that

a true uniformly propagating transmitted shock is established, and the two-equation and

MOC models begin to converge towards the shock Mach number decrement predicted by

the A–M relation. Secondly, it is evident that the two-equation model accurately models

the transmitted shock Mach number attenuation behavior due to the variation in initial

flow non-uniformity behind the shock when varying the thrust chamber length. In fact, for

Ln/Lt < 1, or α0 > 0.5, the current two-equation approximation shares good agreement

with the current MOC model such that an average difference of roughly 4 percent is ob-

tained. This result indicates that under these conditions a fairly accurate description of the

transmitted shock attenuation can readily be modeled with the simple two-equation approx-

imation, which does not require direct treatment of the flow field behind the transmitted

shock. Alternatively, for Ln/Lt > 1, or α0 < 0.5, the current two-equation approximation

begins to deviate from the MOC results, such that an average difference of roughly 30 per-

cent is obtained. In these cases, it is noted that the discrepancy is primarily caused by

the formation of the secondary shock wave behind the transmitted shock during the nozzle

starting process, which acts to delay the attenuation of the shock in the nozzle. Hence, in

cases where the formation of the secondary shock significantly alters the dynamics of the

transmitted shock, the transmitted shock dynamics can only accurately be described with

a model similar to the MOC model. Finally, it is noted that given the optimum nozzle

performance results of Ch. 6, it is not desirable to operate with α0 < 0.5 at high blow-

down pressure ratios. Therefore, many cases of realistic PDE transmitted shock dynamics

in various nozzles can be treated with a two-equation approximation, provided severe over-

expansion is avoided in the nozzle starting process.
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Figure 7.9. Comparison of transmitted shock Mach number decrement [Ms(Ln) −
1]/[Ms(x0) − 1] at exit of conical diverging nozzle for PDE operating with 2H2–O2 pro-
pellant with air as the ambient at different thrust chamber lengths and with Ln = 0.5 m,
ε = 2, and ψ = 1.

Figure 7.10. Comparison of transmitted shock Mach number decrement [Ms(Ln) −
1]/[Ms(x0) − 1] at exit of conical diverging nozzle for PDE operating with 2H2–O2 pro-
pellant with air as the ambient at different thrust chamber lengths and with Ln = 0.5 m,
ε = 4, and ψ = 10.

7.5.2 Nozzle Wall Curvature

In the previous subsection, the influence of initial flow non-uniformity on the trans-

mitted nozzle shock dynamics was investigated and discussed. However, this aspect is only

one of two governing mechanisms that can influence the transmitted shock dynamics in a

given nozzle. As discussed at the beginning of this chapter, it was shown that the general
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Figure 7.11. Comparison of transmitted shock Mach number decrement [Ms(Ln) −
1]/[Ms(x0) − 1] at exit of conical diverging nozzle for PDE operating with 2H2–O2 pro-
pellant with air as the ambient at different thrust chamber lengths and with Ln = 0.5 m,
ε = 8, and ψ = 50.

nozzle shock dynamics is governed by a coupling of the nozzle area contour and by the

magnitude of flow non-uniformity behind the transmitted shock. Therefore, it is of interest

in this final subsection to investigate the effects of nozzle wall curvature on the motion of

the transmitted shock. In particular, this type of study will be of most value in the design

of PDE diverging nozzles, as specific nozzle geometries can be selected that most efficiently

attenuate the transmitted shock and simultaneously enhance the propulsive performance.

In fact, as discussed in previous numerical studies [81, 119], it was shown that bell-shaped

diverging nozzles provide superior performance to conical diverging nozzles; however, those

studies did not mention the importance of transmitted shock attenuation, and the under-

lying fundamental relation to impulse generation during the nozzle starting process. As

such, a detailed study of nozzle wall curvature is provided in this subsection to highlight

the connection between attenuation of the transmitted shock and the associated effects on

single-cycle thrust and impulse generation.

For this study, various nozzle shapes are investigated in order to identify which nozzle

shape provides the best attenuation of the transmitted shock for a given nozzle length and
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expansion area ratio. A general expression for different nozzle contours can be described

with an exponential relationship as [119]

r(x) = r0 + (re − r0)
eζx − eζx0
eζxe − eζx0

(7.25)

where r(x), r0, and re represent the general nozzle radius, initial radius at the nozzle inlet,

and radius at the nozzle exit, respectively. Further, in this form, ζ corresponds to a nozzle

shape parameter, such that for ζ < 0, ζ = 0, or ζ > 0, the nozzle features negative, zero,

or positive curvature, respectively. Hence, for ζ < 0, the nozzle shape is representative

of a classical diverging bell-shaped nozzle. In the case ζ = 0, the nozzle is identical to

that of a conical diverging nozzle. Lastly, for ζ < 0, the nozzle shape is representative of

a flare-shaped diverging nozzle. Figures 7.12(a)–7.12(c) show schematics for these general

nozzle profile shapes.

r0
reζ < 0

(a)

r0
reζ = 0

(b)

r0
re

ζ > 0

(c)

Figure 7.12. (a) Diverging bell-shaped (ζ < 0), (b) conical (ζ = 0), and (c) flare-shaped
(ζ > 0) nozzle contours.

The general transmitted shock dynamics solution from the two-equation model is

shown in Fig. 7.13 for a PDE operating with stoichiometric H2–O2 detonable mixture and

air as the ambient, with a diverging nozzle of length Ln = 0.5 m and characterized by var-

ious shape parameters. In this case, the nozzle consists of an axial fill fraction of α0 = 0.7,
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with an expansion area ratio of ε = 4 and a blowdown pressure ratio of ψ = 10, respectively.

It is evident from Fig. 7.13 that the most rapid attenuation in transmitted shock strength is

achieved with a bell-shaped diverging nozzle with negative curvature. Although not partic-

ularly surprising, this result is directly governed by the rapid expansion of area immediately

downstream of the nozzle inlet, which drastically attenuates the transmitted shock. Addi-

tionally, such a result is very important and will be useful in the following discussion on

impulse generation. The conical diverging nozzle solution is shown by the thick black line

at ζ = 0, and represents the intermediate case of transmitted shock attenuation. Lastly, the

least rapid shock attenuation takes place in flare-shaped nozzles with positive curvature.

Again, this result is to be expected and is directly governed by the very gradual expansion

of area after the nozzle inlet, which drastically delays the attenuation of the transmitted

shock.

Figure 7.13. Surface plot of general transmitted shock Mach number decrement [Ms(x) −
1]/[Ms(x0)−1] from two-equation approximation vs. nozzle location x/Ln and nozzle shape
parameter ζ for PDE operating with 2H2–O2 propellant and α0 = 0.7, ε = 4, and ψ = 10.

The above analysis can be used to provide insights regarding which nozzle shape

best attenuates the transmitted shock; however, without any knowledge of possible over-
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expansion in the flow field behind the transmitted shock during the nozzle startup process

and the resulting impact on thrust and impulse generation. Therefore, it is desired to use

the MOC model and quantify the associated effects that the transmitted shock dynamics

have on the overall propulsive performance. The transmitted shock dynamics solution from

the MOC model is shown in Fig. 7.14 for a PDE operating with stoichiometric H2–O2

detonable mixture and air as the ambient, with a diverging nozzle of length Ln = 0.5 m and

characterized by various shape parameters. As before, the nozzle consists of an axial fill

fraction of α0 = 0.7, with an expansion area ratio of ε = 4, and a blowdown pressure ratio

of ψ = 10, respectively. It is noted that these results are in very good agreement with those

shown in Fig. 7.13, which were computed using the two-equation approximation. Similarly,

the corresponding thrust and impulse are shown in Figs. 7.15(a) and 7.15(b), respectively.

In this case, the thrust force has been normalized by A0p1, namely, the product of thrust

wall area and initial propellant pressure. In these figures, the detonation wave reaches the

nozzle inlet at x/L = 0.7 at t/tCJ = 1, which initiates the nozzle starting process. Note that

the generation of thrust from the nozzle occurs more rapidly, and with more magnitude,

in the case of a bell-shaped nozzle with negative curvature when compared to that of a

flare-shaped nozzle with positive curvature. Additionally, although the most rapid decay of

the transmitted shock occurs in the case of ζ = −5 as shown in Fig. 7.14, the location of

largest transmitted post-shock pressure corresponds to the largest projected thrust area in

the nozzle, which yields the thrust generation results shown in Fig. 7.15(a). Likewise, the

lowest amount of thrust generation is achieved with the flare-shaped nozzle characterized

with ζ = 5, such that the transmitted shock rapidly attenuates due to the overtaking

Taylor rarefaction from behind before encountering the portion of the nozzle that features

the largest projected thrust area. Lastly, for this operating condition it follows that the

bell-shaped nozzle and flare-shaped nozzle with ζ = −5 and 5, yield total impulse results

that are 13.4 and 8.5 percent higher than that of the fully-filled PDE at the same blowdown

pressure ratio, respectively.
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Figure 7.14. Transmitted shock Mach number decrement [Ms(x) − 1]/[Ms(x0) − 1] from
MOC model vs. nozzle location x/Ln and nozzle shape parameter ζ for PDE operating
with 2H2–O2 detonable propellant and air as the ambient with Ln = 0.5 m, α0 = 0.7, ε = 4,
and ψ = 10.

(a) (b)

Figure 7.15. (a) Normalized thrust and (b) total impulse per unit thrust-wall area for
various nozzle shape parameters ζ of a PDE operating with 2H2–O2 propellant and air as
the ambient with Ln = 0.5 m, α0 = 0.7, ε = 4, and ψ = 10.

In a similar manner, the transmitted shock dynamics solution from the MOC model

is shown in Fig. 7.16 for a PDE operating with stoichiometric H2–O2 detonable mixture

and air as the ambient, with a diverging nozzle of length Ln = 0.5 m and characterized by

various shape parameters. However, in this case the nozzle consists of an axial fill fraction of
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α0 = 0.7, with an expansion area ratio of ε = 20, and a blowdown pressure ratio of ψ = 100,

respectively. The corresponding thrust and impulse are shown in Figs. 7.17(a) and 7.17(b),

respectively. As before, the generation of thrust from the nozzle occurs more rapidly, and

with more magnitude, in the case of a bell-shaped nozzle with negative curvature than that

achieved with a flare-shaped nozzle and positive curvature. Similarly, although the most

rapid decay of the transmitted shock occurs in the case of ζ = −5 as shown in Fig. 7.16,

the location of largest transmitted post-shock pressure corresponds to the largest projected

thrust area in the nozzle, which yields the thrust generation results shown in Fig. 7.15(a).

Moreover, as before, the lowest amount of thrust generation is achieved with the flare-shaped

nozzle characterized with ζ = 5. This is simply a result of the transmitted shock rapidly

attenuating due to the overtaking rarefaction from behind before encountering the portion

of the nozzle that features the largest projected thrust area. Lastly, for this operating

condition it follows that the bell-shaped nozzle and flare-shaped nozzle with ζ = −5 and 5,

yield total impulse results that are 22.6 and 9.1 percent higher than that of the fully-filled

PDE at the same blowdown pressure ratio.

Figure 7.16. Transmitted shock Mach number decrement [Ms(x) − 1]/[Ms(x0) − 1] from
MOC model vs. nozzle location x/Ln and nozzle shape parameter ζ for PDE operating
with 2H2–O2 propellant and air as the ambient with Ln = 0.5 m, α0 = 0.7, ε = 20, and
ψ = 100.
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(a) (b)

Figure 7.17. (a) Normalized thrust and (b) total impulse per unit thrust-wall area for
various nozzle shape parameters ζ of a PDE operating with 2H2–O2 propellant and air as
the ambient with Ln = 0.5 m, α0 = 0.7, ε = 20, and ψ = 100.

Finally, a parametric sweep was conducted to show the generalized performance

trends of PDEs with diverging nozzles of different nozzle wall curvature by simultaneously

varying both the nozzle expansion area ratio and blowdown pressure ratio. In this case,

the ambient temperature is kept at 300 K and the ambient pressure is varied from 1–0.01

atm, yielding a blowdown pressure ratio range of 1–100. Similarly, the PDE is comprised

of a thrust chamber-to-total length ratio of α0 = 0.7 m, with a diverging nozzle of length

Ln = 0.5 m. Figure 7.18 shows these results for ψ = 1, 10, and 100, over a range of nozzle

expansion area ratios. As mentioned previously, it is evident that the best specific impulse

is achieved with a bell-shaped diverging nozzle with negative curvature. Additionally, this

advantage becomes more pronounced as the nozzle expansion area ratio increases, which is

caused by the rapid increase in projected thrust area coinciding with the region of strongest

transmitted shock within the nozzle.

From these results, it is clear that the best performance can be achieved when the

PDE is equipped with a bell-shaped nozzle over conventional conical or flare-shaped noz-

zles. Additionally, it appears as though this performance benefit will continue to increase
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Figure 7.18. Specific impulse variation with ε, ψ, and ζ for a PDE with α0 = 0.7 and
operating with 2H2–O2 propellant with ambient air in the nozzle.

provided the nozzle wall curvature continually decreases. It is cautioned here that this

trend will likely not continue to remain true at very large negative wall curvature. For

instance, in the limit that ζ → −∞, the bell-shaped nozzle reduces to the case of a nozzle

that is characterized by an abrupt area change with a 90 degree turning angle at the nozzle

entrance. Clearly, such a nozzle is not practical in PDE design and complications will arise

due to the nature of transmitted shock diffraction along the convex walls. For instance,

Skews [182, 183] studied shock diffraction over convex walls and noted the complex flow

behavior that develops in the perturbed region behind the diffracting shock. Additionally,

Skews et al. [184] later studied the shear layer behavior that develops behind a diffracting

shock wave, and it was shown that flow separation can occur in the perturbed flow behind

the diffracting shock for incident shock Mach numbers as low as 1.3 and deflection angles of

only 20 degrees. It is noted here that this is a two-dimensional gasdynamic interaction pro-

cess that is beyond the scope of the current quasi-one-dimensional analysis. Additionally,

this complex gasdynamic interaction is not well studied in application to PDE diverging

nozzles, and it is not entirely known to what extent the work of [182–184] is applicable

in the design of PDE nozzles as the pressure profile behind the transmitted shock is more
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indicative of a blast wave rather than a uniformly propagating shock. However, this com-

plication is noted here as this gasdynamic mechanism will place a geometrical constraint

on the largest negative wall curvature that can be used before severe flow separation takes

place during the nozzle starting process due to shock diffraction at the nozzle inlet.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The present research investigated the fundamental gasdynamic processes that govern

the single-cycle propulsive performance of a pulse detonation engine (PDE). This research

effort was separated into a series of related analytical, numerical, and experimental studies

focused on various gasdynamic interactions within a PDE thrust chamber and nozzle flow

field. The current work studied three distinct PDE operating configurations, namely, the

fully- and partially-filled PDE, and PDEs equipped with diverging nozzles. The major

conclusions and contributions are summarized below.

A comprehensive description of the PDE thrust chamber flow field for a fully- and

partially-filled PDE, and for a PDE equipped with a diverging nozzle was provided. This

discussion was used to highlight the various gasdynamic discontinuities, waves, and subse-

quent interactions that will arise during a single-cycle operation of a general PDE, which

must be modeled appropriately in order to accurately evaluate the various propulsive per-

formance metrics.

An analytical description for the one-dimensional interaction of a detonation wave

with a contact discontinuity separating a detonable and non-combustible mixture using the

Zel’dovich–von Neumann–Döring (ZND) detonation theory was provided. This particular

gasdynamic interaction arises in PDEs when the detonation wave reaches the gaseous inter-

face separating the detonable and non-combustible mixtures. Moreover, this gasdynamic

interaction directly governs the incident properties of the shock that transmits into the

non-combustible mixture, and the incident reflected wave type and strength that propa-

gates upstream into the burned products, which were shown to drastically influence the

evolution of the entire thrust chamber flow field. Additionally, a detonation-driven shock
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tube facility was developed to experimentally investigate this particular gasdynamic inter-

action, whereby experiments were conducted at various detonable equivalence ratios and

non-combustible inert mixture mole fractions. Finally, the experimental and analytical re-

sults were reduced in terms of the ratio of detonable and non-combustible mixture acoustic

impedance.

A general quasi-one-dimensional method of characteristics (MOC) model was devel-

oped for rapidly evaluating the single-cycle evolution of gasdynamic waves and discontinu-

ities in general PDE thrust chamber flow fields. The MOC model was developed using a

simplified unit process approach with an explicit inverse time marching algorithm in order

to readily construct the complex thrust chamber flow field along a predefined grid. More-

over, the model incorporated the detonation-contact surface interaction results of Ch. 3 in

order to accurately treat the one-dimensional collision of a detonation wave with a contact

discontinuity. A thorough validation of the model was presented over a broad range of

operating conditions with existing higher-fidelity numerical and experimental performance

data for fully- and partially-filled PDEs, and PDEs equipped with diverging nozzles. This

included PDEs operating with a variety of detonable fuels, non-combustible inert gases, fill

fractions, blowdown pressure ratios, and nozzle expansion area ratios. Further, discussion

of the model limitations was provided, and particular operating conditions were addressed

whereby the assumptions used in the development of the model begin to breakdown.

A simplified analytical model was developed based on control volume analysis for

evaluating the primary performance metrics of a general fully-filled PDE. For this, the

MOC model was used to justify and establish a simplified thrust relation based solely on

the flow properties at the exit plane of a fully-filled PDE. An analytical description of

the thrust chamber flow field was provided, from which an analytical piecewise expression

for thrust was derived based on the exit plane pressure history. This expression was then

used to evaluate the specific impulse, total impulse, and time-averaged thrust of a fully-

filled PDE. Lastly, the simplified model was validated against the current MOC model
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and existing higher-fidelity numerical and experimental performance data for a variety of

detonable fuels, equivalence ratios, and blowdown pressure ratios.

The present MOC model was used to conduct a broad parametric study of the

partially-filled PDE. For this, the method of Ch. 3 was used to tailor the acoustic impedance

of the non-combustible inert gas at a fixed fill fraction in order to demonstrate the sensi-

tivity of thrust chamber flow field and PDE performance to the non-combustible acoustic

impedance. Additionally, the detonable fill fraction and non-combustible acoustic impedance

were varied simultaneously in order to highlight the general role of non-combustible acous-

tic impedance and fill fraction on the partially-filled PDE performance. Subsequently, a

parametric investigation of non-combustible mixture temperature was conducted to charac-

terize the benefit of using moderately cold non-combustible gases at different fill fractions.

Similarly, the benefit of partial filling was investigated for partially-filled PDEs operating

in sub-atmospheric environments at different fill fractions. It was demonstrated that the

specific impulse performance results generated with the MOC model from the various para-

metric investigations was successfully collapsed using the scaling law proposed by Sato et

al. [98]. Additionally, this scaling law was extended to other important performance metrics,

such as the total impulse and time-averaged thrust ratios.

Similarly, the single-cycle propulsive performance of PDEs with diverging nozzles was

examined. A parametric investigation was conducted by simultaneously varying the nozzle

expansion area and blowdown pressure ratios in order to characterize the combined effects

on the resulting thrust chamber and nozzle flow fields. Detailed discussion of the tran-

sient nozzle flow field was provided in order to emphasize the influence of non-combustible

acoustic impedance on the partial-fill effect in diverging nozzles, and the losses associated

with severe over-expansion. Moreover, a comparative study was used to demonstrate the

performance advantages of diverging nozzles in sub-atmospheric environments compared to

straight-extension nozzles. Lastly, a comprehensive parametric investigation was conducted

by simultaneously varying the nozzle length, expansion area ratio, and blowdown pressure
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ratio in order to determine the optimum nozzle performance characteristics. These results

were then compared with a PDE using an idealized quasi-steady nozzle, in order to demon-

strate the importance of properly modeling the starting nozzle flow field when evaluating

the propulsive performance.

Finally, a rigorous analytical description for the quasi-one-dimensional dynamics of

the transmitted shock wave inside a general contour diverging nozzle was provided. This

model was derived on the basis of a two-equation approximation of the generalized Chester–

Chisnell–Whitham (CCW) theory for treating general shock dynamics in non-uniform chan-

nels. Additionally, unlike previous models, the present model included the effects of both

area change and flow non-uniformity behind the transmitted shock, which was shown to be

essential for accurate modeling of the transmitted shock dynamics in PDE nozzles. This

model was also used to demonstrate how the thrust chamber length governs the magnitude

of flow non-uniformity behind the transmitted shock entering the nozzle, and how drasti-

cally this can influence the nature of shock attenuation within the nozzle. Moreover, the

shock dynamics model was used in conjunction with the current MOC model to demonstrate

how different nozzle wall curvature influences the PDE propulsive performance, due to the

changes in transmitted shock attenuation in the nozzle flow field during the nozzle starting

process. It was shown that bell-shaped nozzles with negative wall curvature provide the

most rapid transmitted shock attenuation and best overall propulsive performance.

8.2 Suggestions for Future Work

Based on the findings of the present research project, a few suggestions can be made

to guide future research on fundamental gasdynamic interaction studies, continued devel-

opment of PDE propulsion systems, and other related unsteady gasdynamic research areas.

These suggestions are described below.

The analytical model developed for treating the one-dimensional interaction of a

detonation wave with a contact discontinuity relied on the selection of a representative
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post-detonation state to accurately model the transmitted shock and reflected wave prop-

erties. Moreover, this approach was shown to have good agreement with experimental

transmitted shock velocity time-of-flight measurements in a detonation-driven shock tube.

However, such an analytical model is approximate in nature, as the complete interaction of

the reflected wave with the detonation induction and reaction zones are bypassed. Improve-

ments to the present model can be made by studying this gasdynamic interaction using a

high-fidelity numerical approach. For instance, a one-dimensional numerical model with a

coupled finite-rate chemistry model could be used to directly compute the head-on collision

of a ZND detonation wave with a contact discontinuity with high spatial and temporal

resolution, including the subsequent interaction of the reflected wave with the induction

and reaction zones. Such analysis could be used to provide better insights regarding the

reaction zone influence on the transmitted shock properties. Additionally, improved experi-

ments could be conducted in detonation-driven shock tubes, where the physical diaphragms

are replaced with a slide gate valve and optical access is used to obtain high-speed schlieren

imaging for instantaneous time-of-flight measurements.

In general, the MOC model developed in this work was shown to have very good

agreement with existing higher-fidelity numerical and experimental performance data for

PDEs operating with a variety of detonable fuels, non-combustible inert gases, fill fractions,

blowdown pressure ratios, and nozzle expansion area ratios. However, to simplify the devel-

opment of the model, the flow was assumed to be isentropic and free from any frictional and

heat transfer losses. It was also demonstrated that such assumptions can lead to an under-

estimation of the actual PDE performance as the thrust chamber L/d increases. Therefore,

improvements to the current MOC model can readily be made by incorporating the fric-

tion and heat transfer models proposed by Owens and Hanson [150] for PDEs. It is noted

that incorporating these physical loss mechanisms will change the governing equations from

which the characteristic and compatibility conditions used herein were based. However, de-

tails on how to extend the present MOC approach to non-isentropic flows with friction and
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heat losses can be found in Zucrow and Hoffman [143,144]. Similarly, the present model can

be improved by removing the frozen flow assumption for the burned products, and imple-

menting a coupled finite-rate chemistry model with reduced chemical kinetics to treat the

true chemically reacting flow field during the gasdynamic blowdown process. Although, it

is noted that coupling a finite-rate chemistry model can greatly increase the computational

expense of the present model.

It was shown with the proposed partially-filled PDE scaling law for It/It,full in Eq.

(6.6) that the total impulse ratio is not bounded by unity. In fact, the combination of

fill fractions and detonable-to-inert mixture densities that cause It/It,full to exceed unity

were shown in Fig. 6.14. It is of interest in the future development of PDE propulsion

systems to explore the operating conditions that yield It/It,full ≈ 1, and verify if such

performance can be realized in practical systems. At present, few experiments have explored

these operating conditions, which could prove very useful for the performance enhancement

of PDEs employing the partial-fill method. This is especially true for airbreathing PDEs

operating with hydrogen-based fuels and ambient air as the inert gas, since the detonable-to-

inert density ratio is in the appropriate region for It/It,full ≈ 1. However, the present results

indicate that this can also be achieved with general fuels, provided a relatively cold inert

gas is used, since the inert gas acoustic impedance scales inversely with the temperature.

The parametric investigation of diverging nozzles indicated that a properly designed

nozzle can be very useful at drastically enhancing the performance of a fully-filled PDE at

high blowdown pressure ratios. Additionally, it was determined that bell-shaped nozzles

with negative curvature provide the best diverging nozzle design for rapidly attenuating the

transmitted shock and increasing the transient generation of thrust and impulse. However,

these results are based on an inviscid quasi-one-dimensional analysis, such that the two-

dimensional aspects of transmitted shock diffraction and subsequent shock-boundary layer

interaction in the nozzle were neglected. Moreover, it is known that shock diffraction over

convex walls will generally yield flow separation in the perturbed region behind the diffract-
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ing shock [184]. This is a feature of PDE nozzle flows that has received minimal treatment

in the literature, and is believed to be a crucial feature of proper nozzle design for PDEs.

A simple inviscid reduced-order model for this problem can readily be obtained by incorpo-

rating the current two-equation approximation of shock dynamics, and the accompanying

flow non-uniformity, with the classical theory of geometrical shock dynamics [177]. In this

manner, the flow non-uniformity can be taken into consideration and the two-dimensional

dynamics of the transmitted shock propagation through a given diverging nozzle can be

studied. However, higher-fidelity numerical and experimental methods will be required to

study the subsequent transmitted and secondary shock-boundary layer interactions during

the nozzle starting process.

Lastly, the quasi-one-dimensional MOC model developed for this study can readily

be extended to serve as a preliminary design tool for many relevant aerospace applications

involving unsteady gasdynamics. For instance, the present model could be used to support

the design of future shock and detonation tubes for fundamental gasdynamic studies, and

the design of future high-enthalpy wind tunnel facilities such as hypersonic and detonation-

driven shock tunnels.
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A.1 Thermodynamic Cycle Derivation

As shown in Ch. 1, the general thermal efficiency for any idealized cycle can be

expressed as

ηth = 1−

cp,2T10

cp,1T0
− 1

q̄
(A.1)

where q̄ = qadd/cp,1T0. Therefore, it is of interest to obtain an expression for T10/T0 for any

cycle with a specified heat addition process. In general, the temperature ratio T10/T0 can

be expressed as function of the upstream processes in the cycle as

T10

T0
=
T10

T4

T4

T3

T3

T0
(A.2)

Additionally, recall that for the idealized cycle analysis, the burned products are assumed

to isentropically expand from state 4–10 through the nozzle; hence T10/T4 may be expressed

as

T10

T4
=

(
p10

p4

)(γ2−1)/γ2

(A.3)

Since p10 = p0, and noting that the free stream is assumed to isentropically compress from

state 0–3, Eq. (A.3) can be rewritten as

T10

T4
=

(
p3

p4

)(γ2−1)/γ2

ψ
− γ1(γ2−1)
γ2(γ1−1) (A.4)

where ψ = T3/T0. Lastly, substituting Eq. (A.4) into (A.2), after algebraic manipulation,

yields

T10

T0
=

(
p3

p4

)(γ2−1)/γ2 (T4

T3

)
ψ

1− γ1(γ2−1)
γ2(γ1−1) (A.5)

Note that Eq. (A.5) is completely general for an idealized cycle and requires no knowledge

of the heat addition process. As such, substituting the heat addition processes from the

PDE and Brayton cycles will yield the desired temperature ratio of the rejected heat from

states 10–0, and the resulting cycle thermal efficiency.
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A.1.1 PDE Cycle

For the PDE cycle, the pressure and temperature ratios from state 3–4 are given by

the pressure and temperature ratios across the detonation wave front. These ratios can be

expressed in closed form [65] as

p4

p3
=
γ1M

2
CJ + 1

γ2 + 1
(A.6)

T4

T3
=
γ1R1

γ2R2

(
γ1M

2
CJ + 1

γ1MCJ

γ2

γ2 + 1

)2

(A.7)

Substituting these expressions into Eq. (A.5), after algebraic manipulation, yields

T10

T0
=

R1γ1

R2γ2M2
CJ

(
γ1M

2
CJ + 1

γ2 + 1

) γ2+1
γ2

ψ
1− γ1(γ2−1)

γ2(γ1−1) (A.8)

Lastly, substituting this expression into Eq. (A.1) yields the final result

ηth,PDE = 1−

γ1 − 1

γ2 − 1

(
γ2

γ1MCJ

)2(γ1M
2
CJ + 1

γ2 + 1

)(γ2+1)/γ2

ψ
1− γ1(γ2−1)

γ2(γ1−1) − 1

q̄
(A.9)

A.1.2 Brayton Cycle

For the Brayton cycle, the constant-pressure heat addition process from state 3–4 can

be expressed as,

qadd =

∫ 4

3
T ds = h4 − h3 = cp,2T4 − cp,1T3 (A.10)

which makes use of the combined first and second laws for a constant-pressure process.

Rearranging Eq. (A.10) yields

T4

T3
=
cp,1
cp,2

(
q̄

ψ
+ 1

)
(A.11)

Substituting this expression into the general temperature ratio expression of Eq. (A.5), and

noting that p4 = p3 for the constant-pressure heat addition process

T10

T0
=
cp,1
cp,2

(
q̄

ψ
+ 1

)
ψ

1− γ1(γ2−1)
γ2(γ1−1) (A.12)

Lastly, substituting this expression into Eq. (A.1) yields the final result

ηth,Brayton = 1−

(
q̄

ψ
+ 1

)
ψ

1− γ1(γ2−1)
γ2(γ1−1) − 1

q̄
(A.13)
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In this appendix, the characteristic form of the governing equations are derived, with

the accompanying characteristic and compatibility relations. This is achieved by application

of the method of characteristics to the governing system of partial differential equations

[143, 144]. The governing equations for an unsteady, quasi-one-dimensional flow in the

absence of friction, mass addition, and heat transfer, were provided in Eqs. (4.1)-(4.3) as:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

A′(x)

A(x)
= 0 (4.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (4.2)

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0 (4.3)

Taking a linear combination of the mass, momentum, and energy equations in the unknown

parameters σ1, σ2, and σ3 yields

σ1

[
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

A′(x)

A(x)

]
+ σ2

[
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x

]
+ σ3

[
∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)]
= 0

(B.1)

Factoring out the coefficients of the x derivatives in Eq. (B.1) yields

(ρσ1 + ρuσ2)

[
∂u

∂x
+

ρσ2

ρσ1 + ρuσ2

∂u

∂t

]
+ (σ2 + uσ3)

[
∂p

∂x
+

σ3

σ2 + uσ3

∂p

∂t

]
+
(
uσ1 − a2uσ3

) [∂ρ
∂x

+
σ1 − a2σ3

uσ1 − a2uσ3

∂ρ

∂t

]
+ σ1ρu

A′(x)

A(x)
= 0

(B.2)

Further, if it is assumed that u(x, t), ρ(x, t), and p(x, t) are continuous functions, then the

following exact differentials hold

du =
∂u

∂x
dx+

∂u

∂t
dt (B.3)

dρ =
∂ρ

∂x
dx+

∂ρ

∂t
dt (B.4)

dp =
∂p

∂x
dx+

∂p

∂t
dt (B.5)

Differentiating these expressions with respect to the spatial coordinate x yields

du

dx
=
∂u

∂x
+
∂u

∂t

dt

dx
=
∂u

∂x
+ λ

∂u

∂t
(B.6)
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dρ

dx
=
∂ρ

∂x
+
∂ρ

∂t

dt

dx
=
∂ρ

∂x
+ λ

∂ρ

∂t
(B.7)

dp

dx
=
∂p

∂x
+
∂p

∂t

dt

dx
=
∂p

∂x
+ λ

∂p

∂t
(B.8)

Substituting the exact differentials of Eqs. (B.6)–(B.8) into Eq. (B.2) yields,

(ρσ1 + ρuσ2)
du

dx
+ (σ2 + uσ3)

dp

dx
+
(
uσ1 − a2uσ3

) dρ
dx

+ σ1ρu
A′(x)

A(x)
= 0 (B.9)

or equivalently,

(ρσ1 + ρuσ2) du+ (σ2 + uσ3) dp+
(
uσ1 − a2uσ3

)
dρ+ σ1ρu

A′(x)

A(x)
dx = 0 (B.10)

This is the general compatibility equation and will be used to derive the compatibility

relations for the C+, C− and C0 characteristic in Eqs. (4.4)–(4.7).

Recognizing that the slope of the characteristic curves, dt/dx = λ, are the coefficients

of the derivatives ∂u/∂t, ∂p/∂t, and ∂ρ/∂t in (B.2), it then follows that

λ =
σ2

σ1 + uσ2
=

σ3

σ2 + uσ3
=

σ1 − a2σ3

uσ1 − a2uσ3

(B.11)

Solving the system of equations in Eq. (B.11) for σ1, σ2, and σ3 yields

σ1(λ) + σ2(uλ− 1) = 0 (B.12)

σ2(λ) + σ3(uλ− 1) = 0 (B.13)

σ1(uλ− 1) + σ3a
2(1− uλ) = 0 (B.14)

Since the equation system in Eqs. (B.12)–(B.14) is homogeneous, it directly follows that the

only case in which the system can have additional solutions other than the trivial solution

is when the determinant of the coefficient matrix is exactly equal to zero. If this condition

occurs, then there are an infinite number of solutions that satisfy the system. Thus, taking

the determinant yields ∣∣∣∣∣∣∣∣∣∣∣
λ (uλ− 1) 0

0 λ (uλ− 1)

(uλ− 1) 0 −a2(uλ− 1)

∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.15)
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(uλ− 1)
[
(uλ− 1)2 − a2λ2

]
= 0 (B.16)

Note that Eq. (B.16) is cubic in λ and consequently has three roots. Setting the first term

equal to zero and solving for the first root yields(
dt

dx

)
0

= λ0 =
1

u
(B.17)

This expression represents the slope along the C0 pathline characteristic in x–t space, as

the the slope is directly equal to the local gas velocity. Similarly, letting the second term

be equal to zero and solving for the two remaining roots yields(
dt

dx

)
±

= λ± =
1

u± a (B.18)

This expressions represent the slopes along the C+ and C− characteristics in x–t space,

respectively. Therefore, the results above indicates that the determinant of the coefficient

matrix is exactly equal to zero provided (uλ− 1) = 0 along the C0 pathline characteristic,

or if (uλ− 1) = aλ along the C+ and C− characteristics. Thus, to derive the characteristic

form of the governing equations it is desired to determine the values of σ1, σ2, and σ3 along

the C0, C+, and C− characteristics.

Along the pathline characteristic, (uλ− 1) = 0, hence:

σ1 = −σ2
(uλ− 1)

λ
= 0

σ2 = −σ3
(uλ− 1)

λ
= 0

(B.19)

Consequently, σ3 becomes arbitrary, and without loss of generality σ3 = 1.

Along the C± characteristics, (uλ− 1) = aλ, hence:

σ1 = −σ2
(uλ− 1)

λ

σ2 = −σ3
(uλ− 1)

λ

σ1 = σ3
a2(uλ− 1)

(uλ− 1)
= a2σ3

(B.20)

Notice that this system is not independent since the last equation is a redundant expression

in regard to the first. Therefore, there exist only two independent relations between σ1,
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σ2, and σ3, and one of the σ′s can be treated as arbitrary. Thus, arbitrarily letting σ3 = 1

yields

σ1 = a2

σ2 = −(uλ− 1)

λ
= ±aλ

λ
= ±a

σ3 = 1

(B.21)

In summary it follows that:

Along C0 :


σ1

σ2

σ3

 =


0

0

1

 , Along C+ :


σ1

σ2

σ3

 =


a2

a

1

 , Along C− :


σ1

σ2

σ3

 =


a2

−a

1


(B.22)

Substituting the expressions for σ1, σ2, and σ3 in Eq. (B.22) into the general com-

patibility equation in Eq. (B.10) yields, after algebraic manipulation:

dp+ + ρadu+ = −ρua2A
′(x)

A(x)
dt (B.23)

dp− − ρadu− = −ρua2A
′(x)

A(x)
dt (B.24)

dp0 + a2ρdu0 = 0 (B.25)

Note that Eqs. (B.23), (B.24), and (B.25) corresponds to the differential compatibility

equations along the C+, C−, and C0 characteristics, respectively.

Finally, substituting the expressions for σ1, σ2, and σ3 into Eq. (B.2), after algebraic

manipulation, yields the characteristic form of the governing equations:

∂p

∂t
+ (u+ a)

∂p

∂x
+ ρa

(
∂u

∂t
+ (u+ a)

∂u

∂x

)
= −ρa2u

A′(x)

A(x)
(B.26)

∂p

∂t
+ (u− a)

∂p

∂x
− ρa

(
∂u

∂t
+ (u− a)

∂u

∂x

)
= −ρa2u

A′(x)

A(x)
(B.27)

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0 (B.28)

Note that Eqs. (B.26), (B.27), and (B.28) corresponds to the governing characteristic equa-

tions along the C+, C−, and C0 characteristics, respectively.
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In summary, Eqs. (B.17) and (B.18) represent the ordinary differential characteristic

equations along the C+, C−, and C0 characteristics, and Eqs. (B.23)–(B.25) represent the

ordinary differential compatibility equations along the C+, C−, and C0 characteristics,

respectively. Hence, it has been shown that by application of the method of characteristics,

the governing system of quasi-linear hyperbolic partial differential equations, namely, Eqs.

(4.1)–(4.3), are transformed into a system of characteristic ordinary differential equations

that can readily be solved using the simple numerical scheme detailed in Ch. 4.
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C.1 Generalized CCW Theory Derivation

In order to derive (7.5), it is required to apply the C+ compatibility condition in Eq.

(B.23) to the shock trajectory. Hence, differentiating (B.23) with respect to time yields,

dp

dt
+ ρa

du

dt
= −ρua2A

′(x)

A(x)
(C.1)

where the subscript + has been dropped. In this form, it is noted that dt represents a total

derivative along the shock path. Therefore, expanding the left-hand side of Eq. (C.1) and

noting that dx/dt = a0M along the shock, yields,

dp

dt
+ ρa

du

dt
=
∂p

∂t
+ a0M

∂p

∂x
+ ρa

(
∂u

∂t
+ a0M

∂u

∂x

)
(C.2)

or equivalently,

dp

dt
+ ρa

du

dt
=
∂p

∂t
+ ρa

∂u

∂t
+ a0M

(
∂p

∂x
+ ρa

∂u

∂x

)
(C.3)

Recall that the governing partial differential equation along the C+ characteristic was de-

rived in the previous section as,

∂p

∂t
+ (u+ a)

∂p

∂x
+ ρa

(
∂u

∂t
+ (u+ a)

∂u

∂x

)
= −ρa2u

A′(x)

A(x)
(B.26)

or equivalently,

∂p

∂x
+ ρa

∂u

∂x
= − 1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t
+ ρa2u

A′(x)

A(x)

)
(C.4)

Therefore, substituting Eq. (C.4) into Eq. (C.3) yields

dp

dt
+ ρa

du

dt
=
∂p

∂t
+ ρa

∂u

∂t
− a0M

u+ a

(
∂p

∂t
+ ρa

∂u

∂t
+ ρa2u

A′(x)

A(x)

)
(C.5)

Grouping like terms and simplifying yields

dp

dt
+ ρa

du

dt
= −

[
a0M

(
ρa2u

u+ a

)
A′(x)

A(x)
+

(
a0M

u+ a
− 1

)(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.6)

Additionally, since this expression is being applied to the shock wave, the RH shock jump

conditions show that p = p(M), ρ = ρ(M), u = u(M), and a = a(M); therefore; Eq. (C.6)

can be reduced to,(
dp

dM
+ ρa

du

dM

)
dM

dt
= −

[
a0M

(
ρa2u

u+ a

)
A′(x)

A(x)
+

(
a0M

u+ a
− 1

)(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.7)
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or equivalently,

dM

dt
= −

(
dp

dM
+ ρa

du

dM

)−1 [
a0M

(
ρa2u

u+ a

)
A′(x)

A(x)
+

(
a0M

u+ a
− 1

)(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.8)

Lastly, noting that dx/dt = a0M , it follows that

dM

dx
= − 1

a0M

(
dp

dM
+ ρa

du

dM

)−1

×
[
a0M

(
ρa2u

u+ a

)
A′(x)

A(x)
+

(
a0M

u+ a
− 1

)(
∂p

∂t
+ ρa

∂u

∂t

)] (C.9)

Similarly, in terms of the coefficient functions g(M) and f(M),

dM

dx
= −

[
1

g(M)

A′(x)

A(x)
+ f(M)Q1

]
(C.10)

where Q1 = ∂p/∂t+ ρa∂u/∂t.

Similarly, in order to derive (7.6), it is required that ρ, u, and p be continuously

differentiable. Hence, we can write,

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

∂n+1

∂x∂tn

(
∂p

∂t

)
+

∂n+1

∂x∂tn

(
ρa
∂u

∂t

)
(C.11)

Applying Clairaut’s theorem allows reordering the partial derivatives of x and t for the

second term on the right-hand side, namely,

∂n+1

∂x∂tn

(
ρa
∂u

∂t

)
=

∂n+1

∂tn∂x

(
ρa
∂u

∂t

)
(C.12)

Therefore, (C.11) can be rewritten as

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

∂n+1

∂x∂tn

(
∂p

∂t

)
+

∂n+1

∂tn∂x

(
ρa
∂u

∂t

)
(C.13)

Expanding the right-hand side of Eq. (C.13) yields,

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

∂

∂x

[
∂n+1p

∂t

]
+
∂n

∂t

[
ρa

∂

∂x

(
∂u

∂t

)
+

∂

∂x
(ρa)

∂u

∂t

]
(C.14)

or equivalently,

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

∂

∂x

(
∂n+1p

∂t

)
+
∂n

∂t

[
ρa

∂

∂x

(
∂u

∂t

)]
+
∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t

]
(C.15)
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Similarly, we can write

∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
=
∂n+1

∂t

(
∂p

∂x

)
+
∂n+1

∂t

(
ρa
∂u

∂x

)
(C.16)

Expanding the right-hand side Eq. (C.16) yields,

∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
=
∂n+1

∂t

(
∂p

∂x

)
+
∂n

∂t

[
ρa

∂

∂t

(
∂u

∂x

)
+
∂

∂t
(ρa)

∂u

∂x

]
(C.17)

or equivalently,

∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
=
∂n+1

∂t

(
∂p

∂x

)
+
∂n

∂t

[
ρa

∂

∂t

(
∂u

∂x

)]
+
∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x

]
(C.18)

Rearranging Eq. (C.18) yields

∂n

∂t

[
ρa

∂

∂t

(
∂u

∂x

)]
=
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
− ∂n+1

∂t

(
∂p

∂x

)
− ∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x

]
(C.19)

Once again, from the Clairaut theorem, it follows that

∂

∂x

(
∂u

∂t

)
=

∂

∂t

(
∂u

∂x

)
(C.20)

Therefore substituting (C.20) into (C.19) yields

∂n

∂t

[
ρa

∂

∂x

(
∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
− ∂n+1

∂t

(
∂p

∂x

)
− ∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x

]
(C.21)

Now substituting (C.21) into (C.15) yields

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

∂

∂x

(
∂n+1p

∂t

)
+
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
− ∂n+1

∂t

(
∂p

∂x

)
− ∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x

]
+
∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t

] (C.22)

Once again, from the Clairaut theorem, it follows that

∂

∂x

(
∂n+1p

∂t

)
=
∂n+1

∂t

(
∂p

∂x

)
(C.23)

Thus, (C.22) can be reduced to

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
− ∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x

]
+
∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t

] (C.24)

283



or equivalently,

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
+
∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t
− ∂

∂t
(ρa)

∂u

∂x

]
(C.25)

Now to set up the desired expression in Eq. (7.6), it is required to evaluate the total

derivative on the shock for the quantity ∂n/∂t(∂p/∂t+ ρa∂u/∂t). Note, this represents the

effects of flow non-uniformity behind the shock, and will set up the closure scheme for the

final result. Hence,

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
+ a0M

∂

∂x

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.26)

Substituting (C.25) into (C.26) yields

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
+ a0M

{
∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
+
∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t
− ∂

∂t
(ρa)

∂u

∂x

]} (C.27)

Further, expanding the right-hand side of (C.27) yields

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
+ a0M

∂n+1

∂t

(
∂p

∂x
+ ρa

∂u

∂x

)
+ a0M

∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t
− ∂

∂t
(ρa)

∂u

∂x

] (C.28)

Substituting (C.4) yields

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
=
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
+ a0M

∂n+1

∂t

[
− 1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t
+ ρa2u

A′(x)

A(x)

)]
+ a0M

∂n

∂t

[
∂

∂x
(ρa)

∂u

∂t
− ∂

∂t
(ρa)

∂u

∂x

] (C.29)

Lastly, rearranging yields

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
= −a0M

∂n+1

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)

− a0M
∂n+1

∂t

[
1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t

)]
− a0M

∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x
− ∂

∂x
(ρa)

∂u

∂t

]
+
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

) (C.30)
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Applying the general Leibniz formula to the term −a0M∂n+1/∂t[1/(u+a)(∂p/∂+ρa∂u/∂t)]

of Eq. (C.30) yields

−a0M
∂n+1

∂t

[
1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t

)]
=

−a0M
n+1∑
i=0

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)} (C.31)

Expanding the first term of the summation in Eq. (C.31) yields

−a0M
∂n+1

∂t

[
1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t

)]
= − a0M

u+ a

∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
− a0M

n+1∑
i=1

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)} (C.32)

Similarly, substituting (C.32) into (C.30) yields

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
= −a0M

∂n+1

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)
− a0M

u+ a

∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
− a0M

n+1∑
i=1

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)}
− a0M

∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x
− ∂

∂x
(ρa)

∂u

∂t

]
+
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
(C.33)

Regrouping terms,

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
= −a0M

∂n+1

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)

− a0M
n+1∑
i=1

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)}
− a0M

∂n

∂t

[
∂

∂t
(ρa)

∂u

∂x
− ∂

∂x
(ρa)

∂u

∂t

]
+

(
1− a0M

u+ a

)
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

) (C.34)

or equivalently,

d

dt

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
= −

[
a0M

∂n+1

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)

+ a0M

n+1∑
i=1

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)}

+ a0M
∂n

∂t

(
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t

)
+

(
a0M

u+ a
− 1

)
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.35)
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Similarly, noting that dx/dt = a0M on the shock, it then follows that Eq. (C.35) can be

recast as

d

dx

[
∂n

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
= −

[
∂n+1

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)

+

n+1∑
i=1

{(
n+ 1

i

)
∂i

∂t

(
1

u+ a

)
∂n+1−i

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)}

+
∂n

∂t

(
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t

)
+

(
1

u+ a
− 1

a0M

)
∂n+1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)]
(C.36)

Lastly, in terms of the non-uniformity parameter Qn = ∂n−1
t (∂p/∂t+ ρa∂u/∂t), Eq. (C.36)

can be simplified to

dQn
dx

= −
[
∂n

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)
+

n∑
i=1

{(
n

i

)
∂i

∂t

(
1

u+ a

)
Qn+1−i

}
+
∂n−1

∂t

(
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t

)
+

(
1

u+ a
− 1

a0M

)
Qn+1

]
(C.37)

In summary equations (C.10) and (C.37) are the generalized governing conditions on the

shock. Moreover, for n = 1, Eq. (C.37) simplifies to:

dQ1

dx
= −

[
∂

∂t

(
ρa2u

u+ a

)
A′(x)

A(x)
+
∂

∂t
(ρa)

∂u

∂x
− ∂

∂x
(ρa)

∂u

∂t
+
∂

∂t

(
1

u+ a

)
Q1

]
(C.38)

where the term involving Q2 has been truncated.

Finally, in order to obtain the simplified expression in Eq. (7.10), it is required to

replace the partial time and space derivatives of p, u, ρ and a in Eq. (C.38) with the

formulas derived by Best [178]. Note, these formulas were obtained in [178] by manipulating

the characteristic form of the governing equations on the C+, C−, and C0 characteristics,

namely, Eqs. (B.26)–(B.28). Hence, the first-order partial time and space derivative of p,

u, ρ and a in terms of the shock properties are listed as follows:

∂p

∂t
=

{
a0M

dM
dx

[(
a2 + u (a0M − u)

) dp
dM + a0Mρa2 du

dM

]
+ a0Mρa2u (a0M − u) A

′(x)
A(x)

}
(
a2 − (a0M − u)2

) (C.39)

∂p

∂x
= −

{
a0M

dM
dx

[
(a0M − u) dp

dM + ρa2 du
dM

]
+ ρa2u (a0M − u) A

′(x)
A(x)

}
(
a2 − (a0M − u)2

) (C.40)
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∂u

∂t
=

{
a0M

dM
dx

[
a0M
ρ

dp
dM +

(
a2 + u (a0M − u)

)
du
dM

]
+ a0Ma2uA

′(x)
A(x)

}
(
a2 − (a0M − u)2

) (C.41)

∂u

∂x
= −

{
a0M

dM
dx

[
1
ρ
dp
dM + (a0M − u) du

dM

]
+ a2uA

′(x)
A(x)

}
(
a2 − (a0M − u)2

) (C.42)

∂ρ

∂t
=

{
a0M

dM
dx

[
a0M

dp
dM + a0M (a0M − u) du

dM

− u
(
a2 − (a0M − u)2 dρ

dM

) ]
+ a0Mρu (a0M − u)2 A′(x)

A(x)

}

(a0M − u)
(
a2 − (a0M − u)2

) (C.43)

∂ρ

∂x
= −

{
a0M

dM
dx

[
dp
dM + a0Mρ (a0M − u) du

dM

−
(
a2 − (a0M − u)2 dρ

dM

) ]
+ ρu (a0M − u)2 A′(x)

A(x)

}

(a0M − u)
(
a2 − (a0M − u)2

) (C.44)

Lastly, with the speed of sound defined by a2 = γp/ρ:

∂a

∂t
=

γ

2a

(
1

ρ

∂p

∂t
− p

ρ2

∂ρ

∂t

)
(C.45)

∂a

∂x
=

γ

2a

(
1

ρ

∂p

∂x
− p

ρ2

∂ρ

∂x

)
(C.46)

Note, substitution of Eqs. (C.39)–(C.46) into Eq. (C.38) yields the result shown in (7.10),

which is reduced in terms of the coefficient functions αi(M).

C.2 CCW Coefficient Functions

This section provides plots to show the behavior of the αi(M) coefficient functions in

Eq. (7.10).
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Figure C.1. g(Ms) vs. shock Mach number.

Figure C.2. a0p0|f(Ms)| vs. shock Mach number.
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Figure C.3. |α1(Ms)| vs. shock Mach number.

Figure C.4. |α2(Ms)| vs. shock Mach number.
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Figure C.5. |α3(Ms)|/a0p0 vs. shock Mach number.

Figure C.6. |α4(Ms)|/a0p0 vs. shock Mach number.
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Figure C.7. |α5(Ms)|/a0p0 vs. shock Mach number.
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détonation et sur les conditions d’établissement de l’onde explosifs,” Comptes Rendus

de l’Académie de Paris, vol. 95, pp. 199–205, 1882.

[18] Berthelot, M. and Vielle, P., “Sur les vagues explosifs,” Comptes Rendus Hebdo-
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