

ON THE FEASIBILITY OF MALWARE UNPACKING

WITH HARDWARE PERFORMANCE COUNTERS

by

JAY MAYANK PATEL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2019

ii

Copyright © by Jay Mayank Patel 2019

All Rights Reserved

iii

ACKNOWLEDGMENT

I would like to thank my supervisor, Dr. Jiang Ming, for his kind co-operation, inspiring

discussion and realistic suggestion at all stages of my work and giving me such

opportunities to work on this topic. Without his guidance and efforts, I could not be able

to finish my work smoothly.

I would also like to thank Dr. Jeff Lei and Dr. Jia Rao for taking time out from their schedule

and attending my dissertation. Thank you, Erika and Haotian for helping me with my

research directly or indirectly.

Last but not the least, I would like to thank my wife, parents, my family, and friends for

encouraging me and supporting me throughout my research.

April 18, 2019.

iv

ABSTRACT

ON THE FEASIBILITY OF MALWARE UNPACKING

WITH HARDWARE PERFORMANCE COUNTERS

Jay Mayank Patel, MS

The University of Texas at Arlington, 2019

Supervising Professor: Jiang Ming

Most of the malware authors use Packers, to compress an executable file and attach a

stub, to the file containing the code, to decompress it at runtime, which will turn a known

piece of malware into something new, that known-malware scanners can't detect. The

researchers are finding ways to unpack and find the original program from such packed

binaries. However, the previous study of detection for unpacking in the packed malware

using different approach won’t provide many promising results.

This research explores a novel approach for the detection of the unpacking process using

hardware performance counters. In this approach, the unpacking process is closely

monitored with Hardware Performance Counters. The HPCs shows hot spot during the

unpacking process. By performing the per-process filtration, HPCs show a close relation

with the decompression algorithm. For this research, the analysis is performed on a bare-

v

metal machine. The packed executable is profiled for hardware calls using Intel®

VTune™ Amplifier.

vi

TABLE OF CONTENTS

Acknowledgment ... iii

Abstract ...iv

List of Figures .. viii

List of Tables ...ix

Chapter 1 Introduction ... 1

About Malware Analysis .. 2

Art of Packing .. 3

Packing with UPX ... 4

Hardware Performance Counters .. 4

Chapter 2 Background and Related Work ... 6

Unpacking .. 6

Unpacking with UPX .. 6

Manual unpacking with OllyDbg ... 7

Issues in previous work ... 10

Chapter 3 Problem Identification and Proposed Solution .. 12

Defining Problem ... 12

Potential Solution ... 14

Chapter 4 Evaluation ... 15

vii

Experimental Setup ... 15

HPC Collection with Intel® VTune™ Amplifier ... 15

Result Summary and Performance Measurement ... 15

Data Modeling with Eureqa .. 18

Chapter 5 Conclusion and Future Work .. 21

Appendix A Configure and Build UPX in Linux (Ubuntu 18.04 LTS) 22

References .. 24

Biographical Information .. 26

viii

LIST OF FIGURES

Figure 1-1 File System View for Packing of Windows PE ... 3

Figure 1-2 Screenshot of Packing a File with UPX .. 4

Figure 2-1 Memory View during Execution of Packed File .. 6

Figure 2-2 Representation of pf.exe in OllyDbg .. 7

Figure 2-3 Locating PUSHAD Instruction in the Packed Binary 8

Figure 2-4 Breakpoint Setup at POPAD Instruction .. 8

Figure 2-5 Location of OEP at the End of the Unpacking .. 9

Figure 2-6 Use of OllyDump Plugin to extract the Original Program 10

Figure 3-1 Hotspot View Summary for Manual Unpacking of pf.exe with UPX 12

Figure 3-2 Bottom-Up View of Manual Unpacking of pf.exe with UPX 13

Figure 4-1 File pf_lzma_upx_int.exe with Interrupt Before OEP 17

Figure 4-2 File pf_ucl_upx_int.exe with Interrupt Before OEP 17

Figure 4-3 Data Model by Eureqa for pf_ucl_upx_int.exe ... 19

Figure 4-4 Data Model by Eureqa for pf_ucl.exe ... 20

https://mavsuta-my.sharepoint.com/personal/jaymayank_patel_mavs_uta_edu/Documents/Thesis_1.docx#_Toc6236221

ix

LIST OF TABLES

Table 1-1 Types of Malware [2] ... 1

Table 4-1 File Name Convention with Packer and Algorithm Used 18

1

CHAPTER 1

INTRODUCTION

Malware is known as malicious software or malicious code. Malware can be defined as a

program that is inserted into a system, usually covertly, with the intent of compromising

the confidentiality, integrity, or availability of the victim’s data, applications, or operating

system or otherwise annoying or disrupting the victim [1]. Table 1-1 represents different

types of malware.

Table 1-1 Types of Malware [2]

Malware Description
Virus Mostly found in programs or executables. The processor executes

such malware code with the program.
Worm Like a virus in functional behavior except that they are stand-alone

software which does not require any assistance from a host
program or human aid for broadcasting.

Polymorphic Virus A virus that can alter its payload to evade detection, while
maintaining its functionality.

Metamorphic Virus A virus that alters both the payload and functionality
Trojan Malware that appears legitimate but acts maliciously once

activated.
AdWare Malware that floods a web-page with unwanted advertisements.
SpyWare Malware that secretly gathers reports the user's personal

information and grants access to such information to another
entity without the user's consent.

Ransomware Malware that blocks access to user data and threatens to delete
or publish it unless the user makes a predetermined payment.

Botnet Malware that employs an infected system as a node in a network
controlled by a central malicious unit called the bot herder.

Rootkit Malware that provides privileged access to a system while hiding
its or any other malicious software's presence.

2

The malware is categorized based on their purpose of use like mass or targeted. Mass

malware is designed to affect many machines at once, where targeted malware is created

to infect specific organization and are a bigger threat to networks than mass malware [3].

About Malware Analysis

Malware analysis is the art of dismembering malware to identify, know about its working,

and find a way to overcome or remove it. Malware can be identified by its host and

network-based signatures. There are two main approaches to malware analysis: Static

and Dynamic. Examine the malware without running it is Static approach, while Dynamic

approach involves running the malware. The detailed categorization of these technique

involves basic and advanced methods for both.

Malware authors use several tricks to avoid detection and analysis. The most popular

way is use technique called packing. Software packing is a method of compressing or

encrypting an executable or modifying a file’s format. The payload, which is the actual

malware is protected against reverse engineering and security software detection. This is

done by adding code that is not strictly malicious but only intended to hide the malicious

code. The goal is to hide the payload from the victim and from researchers that get their

hands on the file. Packing an executable changes file signature to avoid signature-based

detection. Most decompression techniques decompress the executable code in memory.

Utilities used to perform software packing are called packers. Though there are many

kinds of sophisticated packers available, malware writers also create custom packers to

make it harder for an analyst to detect.

3

Art of Packing

Portable Executable (PE) file format is developed by Microsoft as a common file format

to support all windows versions and on all supported systems. PE consists of PE header,

section table, and other sections. The PE Header includes information about the machine,

number of sections, time date stamp, pointer to the symbol table, number of symbols,

size of optional header and characteristics. Section table provides the reference to

various sections in the PE file and maintains section permissions for the file. Each of the

sections is maintained in the section table contains information related to how the

program runs. Section includes .text, .data, .rsrc and .reloc. Original file from Figure 1-1

describes PE file structure.

Figure 1-1 File System View for Packing of Windows PE

The binary packing is a benign process where the original file is being converted to a

packed file using compression and/or encryption algorithm by the packer. The input to

packer can be any executable file such as the Windows Portable Executable (PE) or the

Linux Executable and Linkable Format (ELF) and the output will be packed/compressed

executable as illustrated in Figure 1-1. In the packed file, the packed section contains the

original file and the decompression stub code is used to automatically decompresses and

runs the original file.

Packer

Original File

Original PE Header

Section Table

.text, .data, .rsrc,
.rdata, .idata, …

Packed File

New PE Header

Packed Section

Decompression Stub
Code

4

Packing with UPX

Figure 1-2 Screenshot of Packing a File with UPX

As shown in Figure 1-2, the file can be packed using UPX packer. When one pack any

Executable with UPX, all existing sections (.text, .data, .rsrc, etc.) are compressed. Each

of these sections is named as UPX0, UPX1, etc. Then it adds a new code section at the

end of the file which will decompress all the packed sections at execution time. As shown,

a file named as Pathfinder.exe (which is 32-bit Portable Executable) is packed into pf.exe.

During this process, the original size is compressed 20.96% as from 208 KB to 44 KB.

Hardware Performance Counters

Hardware Performance Counters are sets of special-purpose registers built into modern

microprocessors to record architectural and microarchitectural events precisely and

accurately as they occur. These counters are part of a special, dedicated unit in the

central processing unit (CPU) called the Performance Monitoring Unit (PMU). They have

the ability to access detailed information regarding the processor’s functional units and

caches, as well as the memory, etc. The availability of HPCs depends on the CPU

architecture and vendor. The HPCs are highly hardware dependent and that’s why, even

across the same vendor, each CPU generation has its own implementation. There are no

additional overheads of using HPCs because they are built-in CPU. Each time the

5

programmed event occurs, the count register is incremented, that’s why they provide

accurate results [4].

The HPCs are used to conduct low-level performance analysis or tuning [5]. From

performance analysis tools their usage has extended to detect firmware medication in

embedded systems [6], estimating system power utilization [7], and even detection of

malware [8]. Essentially, software engineers use HPCs for measuring the performance of

their code and thus optimizing it.

Some of the commonly used software interfaces include PAPI [9] which provides standard

APIs for accessing the HPCs. For Linux, based on perf event, perf [10] is a popular tool

provides support for HPCs and for Windows operating systems, Intel® VTune™ Amplifier

[11] for the Intel® processors and AMD's CodeAnalyst [12] for the AMD processors is

used. In this project, HPCs are used to construe a time-series trace of N

microarchitectural events by profiling packed benign application. Each packed binary

executed on CPU may or may not generate a different performance counter trace.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

Unpacking

During the execution of the packed file, decompression stub, stored in the packed file will

decompress the packed section. The original file is then loaded into memory as per

described in Figure 2-1.

During this process, the original entry point(OEP), the memory address where the

program starts, is relocated in the unpacked section.

Unpacking with UPX

To illustrate unpacking, consider the packed file pf.exe from Chapter-1. The following

process will occur on the execution of a UPX packed pf.exe file.

• First, it saves the current Register Status using PUSHAD instruction.

• All the Packed Sections are Unpacked in main memory.

• Resolve the import table of the original executable file.

• Restore the original Register Status using POPAD instruction.

• Finally, Jumps to Original Entry Point(OEP) to begin the actual execution.

Unpacked File in
Memory

Packed File

New PE Header

Packed Section

Decompression Stub
Code

Original PE Header

Section Table

.text, .data, .rsrc,
.rdata, .idata, …

Figure 2-1 Memory View during Execution of Packed File

7

• Execution starts from new OEP (from the newly added code section at the end of

file).

Manual unpacking with OllyDbg

To perform this process manually, we will debug pf.exe with OllyDbg [13]. OllyDbg is a

32-bit assembler level analyzing debugger for Microsoft® Windows®. Emphasis on binary

code analysis makes it particularly useful in cases where the source is unavailable.

As the pf.exe is loaded in OllyDbg for analysis, it will be represented as shown in Figure

2-2 below.

Figure 2-2 Representation of pf.exe in OllyDbg

Start tracing the EXE, until one encounter a PUSHAD instruction shown as Figure 2-3.

Usually, this is the first instruction, or it will be present after the first few instructions based

on the UPX version.

8

Figure 2-3 Locating PUSHAD Instruction in the Packed Binary

When one reaches PUSHAD instruction, put the Hardware Breakpoint to stop at POPAD

instruction as described in Figure 2-4. Another way is to manually search for POPAD

instruction and then set Breakpoint on it.

Figure 2-4 Breakpoint Setup at POPAD Instruction

9

Once set up the breakpoint, continue the execution. Shortly, it will break on the instruction

which is immediately after POPAD or on POPAD instruction. Now start step by step

tracing and soon one will encounter a JMP instruction which will take to actual OEP in the

original program as shown in Figure 2-5.

Figure 2-5 Location of OEP at the End of the Unpacking

When you reach OEP, dump the whole program using OllyDump plugin (use default

settings) as mentioned in Figure 2-6. It will automatically fix all the Import table as well.

10

Figure 2-6 Use of OllyDump Plugin to extract the Original Program

However for most of the packers, one can use an advanced tool called ImpREC (Import

Reconstructor) [14]. ImpREC is a highly advanced tool used for fixing the import table. It

provides multiple methods to trace the API functions as well as allow writing custom

plugins.

Issues in previous work

In [15], Das et al. have proposed some challenges, pitfalls, and risks of using HPCs for

security. The authors have provided reasons lead to inaccurate measurements as the

effect of external sources on the runtime environment, Non-Determinism, Overcounting,

Variations in tool implementations. The authors have suggested proper instantiation and

usage of various fundamentals like,

Context Switch Monitoring – In order to profile the runtime behavior of a process,

performance counter values must be saved during context switches to avoid any

contamination due to events from other processes.

11

Interrupt Handling – The performance counters are typically used in conjunction with

performance monitoring interrupts (PMI). This feature is not essential when reading

events in sampling mode; it can also profile events at a finer granularity.

Process Filtering Upon Process Monitoring Interrupt (PMI) – It is necessary to

implement a technique for filtering performance counter data relevant solely to the

process of interest. Otherwise, counter data will be contaminated by the events of other

processes.

Minimizing the impact of non-deterministic events – It is important to consider only

deterministic events. A deterministic event is defined as an event whose value does not

vary between identical runs and matches the expected values that would be obtained

through alternative means.

They have assessed 56 papers using HPCs in various field and pointed common

mistakes. To overcome issues,

No per-process filtering – Any implementation that does not apply per-process filtering

will capture events from other processes.

PMI-Based Filtering Only – Many papers did not save and restore the counter data

during context switches. This made the data have contamination of counter data from

other processes. To overcome this, obtain performance counter data by applying process

filtering only at PMI.

Lack of compensation for non-determinism and over overcounting issues – The

non-determinism and overcounting issues are a significant oversight.

12

CHAPTER 3

PROBLEM IDENTIFICATION AND PROPOSED SOLUTION

As described in Chapter 2, the process of unpacking is performed in a controlled

environment, but in actual, this packed code will be unpacked and loaded into main

memory and begun its execution, that’s why it is not possible to know exactly when the

original program has started. For the malware analyst, the most difficult task is to

differentiate between benign unpacking process and malicious program execution.

Defining Problem

As the packers use decompression and decryption functions, they mostly utilize CPU and

memory. To record this using HPCs, I have conducted profiling of such unpacking

process with Intel® VTune™ Amplifier. As shown in Figure 3-1, it is obvious that the

hotspot shows most of the HPCs related activities during unpacking.

Figure 3-1 Hotspot View Summary for Manual Unpacking of pf.exe with UPX

13

From Figure 3-2, the microarchitecture usage for the unpacking is high, which is 26.8%.

This gives the motivation to use HPC to explore the unpacking process.

Figure 3-2 Bottom-Up View of Manual Unpacking of pf.exe with UPX

To analyze more about unpacking process in UPX, download the source from [16] and

compile and build in Linux (Refer Appendix A). I have noticed that for the unpacking

process in UPX uses inbuilt source file, written in assembly code. This file takes the

original program as input and check for its packing method and based on that it will

automatically select the unpacking method and unpacks the packed code to main

memory. For 32-bit windows executable file, one has to look for i386-win32.pe.S file and

for 64-bit windows executable file, amd64-win64.pep.S.

Once one look into the assembly code, one can find different unpacking algorithms as

LZMA and different version of NRV. The NRV algorithms are part of UCL data

compression library, which has 3 variants of as NRV2B, NRV2D, and NRV2E. These

NRV algorithms are block compression algorithm, which takes 32-bit of data blocks to

14

perform packing or unpacking. To learn more about HPC activity during unpacking, I have

checked the result of decompression with the standalone application of LZMA and UCL

algorithms. By comparing them with the unpacking of UPX with their respective version,

I find out that the unpacking is closely related to the algorithm used for packing rather

than a different packer. The algorithms used to perform packing are less, different packers

use these algorithms with other techniques to make packers more complex.

Potential Solution

To investigate in this direction, I have conducted different experiments with Pathfinder.exe

as input to Lzma#.exe and uclpack.exe. I have generated packed file Pathfinder.exe for

both the algorithms and recorded HPCs with Intel® VTune™ Amplifier and compared the

HPCs with manual unpacking and interrupted unpacking just before OEP. I have collected

the HPCs recorded, which are around 575 [17].

15

CHAPTER 4

EVALUATION

Experimental Setup

I have used the bare-metal computer to perform experiments. This environment can be

helpful to work with the malicious packed file. As HPCs are CPU dependent, if one creates

a virtual environment to conduct such experiments, one cannot record the correct values

of HPCs. The HPCs can also capture the overhead of virtual machines, so one should

avoid using virtual environment of any HPCs related experiments.

Again from the suggestions of Das et al. [15], I have conducted all the experiments using

a single core of the processor. As the HPCs are related to CPU and using more core of

processor shows different values of HPCs, it is highly recommended to use a single core.

For this, I have to make a change in BIOS to use the processor as a single core.

HPC Collection with Intel® VTune™ Amplifier

During the collection of different HPCs, I have set CPU sampling interval as 1 ms and

enabled per-process filtration from advance settings. The sampling starts as soon as the

program starts its execution. During the sampling, HPCs generated by other processes

running are also included with the result. So, it is necessary to perform per-process

filtration of the result to computer correct HPCs for the unpacking process.

Result Summary and Performance Measurement

In this research, we have used a modified UPX source code to insert interrupt to stop the

execution of packed executable just before OEP. The source code of UPX is compiled

and built in Linux. To modify UPX source code and insert the interrupt refer to Appendix

16

A. The Pathfinder.exe should be packed in Linux then shifted to Windows for further

analysis. During primary analysis, we found hotspot using Intel® VTune™ Amplifier in the

unpacking process. By further investigating, I came to know that the algorithm behind the

unpacking is the only reason for such HPC deviations.

By default, UPX uses UCL compression library to pack any file. So, to pack or unpack

any file with LZMA in UPX is not straight forward, one must look into the source code of

UPX. After looking into the conf.h and main.cpp file its command line argument --lzma for

LZMA algorithm and --nrv2b, --nrv2d and --nrv2e for respective UCL algorithms NRV2B,

NRV2D, and NRV2E. In this experiment, I have used the default UCL algorithm, which is

NRV2B.

During the packing with UPX with LZMA and UCL algorithms, the interrupt was inserted

to the end of unpacking or just before OEP. To verify this, refer the Figure 4-1, which

shows the file pf_lzma_upx_int.exe in OllyDbg, where int 15 is the interrupt, inserted

before the jump to OEP.

17

Figure 4-1 File pf_lzma_upx_int.exe with Interrupt Before OEP

In Figure 4-2, the interrupt, int 15, inserted before at the end of unpacking in file

pf_ucl_upx_int.exe.

Figure 4-2 File pf_ucl_upx_int.exe with Interrupt Before OEP

18

These packed binaries while executed, they will stop automatically when the interrupt

occurred. So, during their execution, they will just perform unpacking and decompress

original code of the program into main memory and about to start its execution. The HPCs

will be recorded for these binaries using Intel® VTune™ Amplifier.

Consider the Table 4-1 for the filename convention as the files are being used throughout

the research experiments. The file used to pack, or compress is Pathfinder.exe.

Table 4-1 File Name Convention with Packer and Algorithm Used

No Packer Program Algorithm Interrupt File Name
1 lzma#.exe LZMA No pf_lzma.exe
2 upx.out LZMA Yes pf_lzma_upx_int.exe
3 uclpack.exe NRV2B No pf_ucl.exe
4 upx.out NRV2B Yes pf_ucl_upx_int.exe

To compare the recorded HPCs of UPX packed file, I have recorded the HPCs with the

standalone application of compression and decompression LZMA and UCL algorithms.

Data Modeling with Eureqa

For simplicity, we have decided to use a software tool for detecting mathematical

relationships in data. This tool is called Eureqa [18] and by providing the tool with HPCs

values we found significant, talked about in earlier sections, we were able to create a

simple linear relationship. The various selected HPC events during unpacking were

inputted into the software especially focusing on the maximum values and minimum

values. From there, the Eureqa provided a linear relationship algorithm that is based on

a certain threshold for the minimum and maximum values.

19

Figure 4-3 Data Model by Eureqa for pf_ucl_upx_int.exe

20

Figure 4-4 Data Model by Eureqa for pf_ucl.exe

Originally, we provided Eureqa with 10 HPCs that were found significant to unpacking

between pf_ucl.exe and pf_ucl_upx_int.exe. However, Eureqa had 7 HPCs out of the 10

HPCs not used when creating the relationship. After taking these 7 HPCs and only

running the Eureqa tool on the 3 remaining HPCs, it then created a relationship on 2

HPCs. We can see though, that when using these 2 HPCs, the model built using Eureqa

look very similar when comparing Figure 4-3 to Figure 4-4.

21

CHAPTER 5

CONCLUSION AND FUTURE WORK

Though this is a good place to start, it is to be said that if only using 2 HPCs out of the 10

HPCs we found significant, it might be easier for malware writers to evade presented

model. In theory, what our plan is moving forward, is to be able to input an entire

program’s HPCs into this model and if we see a similar generated model out of the entire

model for the program, we can infer that unpacking is happening there.

22

APPENDIX A

CONFIGURE AND BUILD UPX IN LINUX (UBUNTU 18.04 LTS)

To install dependencies, Open terminal and perform following commands for building
UPX.

sudo apt-get install gcc
sudo apt-get install make
sudo apt-get install zlib1g
sudo apt-get install zlib1g-dev
sudo apt-get install zlib1g:i386
sudo apt-get install python

To provide link between libmpfr.so.4 and libmpfr.so.6 (As in new version libmpfr.so.6 is
available)

sudo ln -s /usr/lib/x86_64-linux-gnu/libmpfr.so.6
/usr/lib/x86_64-linux-gnu/libmpfr.so.4

Download UPX [16] (For more information about how to build and configure refer
README.SRC). Extract it in the home directory.

cd ~

To download UCL data compression library [19] and configure. Create folder in home
directory ($(HOME)/local/src/).

cd ~
mkdir local
cd local
mkdir src
cd src

Decompress UCL folder as ucl-1.03 and build

cd ucl-1.03
./configure “CC=gcc -std=gnu89”
make all

To compile the UPX packer sources, Set the environment variable UPX_UCLDIR to point
to your UCL build directory

export UPX_UCLDIR=$HOME/local/src/ucl-1.03

Download LZMA SDK [20] and copy content of LZMA SDK to UPX. Go to UPX’s folder in
home directory ($(HOME)/upx…/).

cd src/lzma-sdk

23

Extract downloaded LZMA SDK content here.

To modify the stub sources, Download upx-stubtools [21] (a number of cross-assemblers
and cross-compilers) and go to the local folder in the home directory.
($(HOME)/local/).

cd ~/local
mkdir bin
cd bin

Decompress upx-build-20160918 folder as bin-upx

To make changes in .S file, go to upx’s folder in home directory ($(HOME)/upx…/).

cd src/stub/src
gedit i386-win32.pe.S

Find section PEDOJUMP and modify (Also read upx/doc/loader.txt). Add
instructions below after PEDOJUMP for setting exit interrupt just before Original Entry
Point encountered.

mov ah,0x4c
int 21

Save this file and exit.

Go to src/stub to build($(HOME)/upx…/src/stub/).

cd ..
make all

To build and get UPX’s executable, go to UPX’s folder in home directory
($(HOME)/upx…/).

make –B all
cd src

You can find upx.out here,

To execute UPX , for packing or compression

./upx.out <input_filename>.exe -o <output_filename>.exe
And for unpacking or decompression

./upx.out <input_filename>.exe -d <output_filename>.exe

24

REFERENCES

[1] P. Mell, K. Kent, and J. Nusbaum, “Guide to malware incident prevention and

handling,” Comput. Secur. Div. Inf. Technol. Lab. Natl. Inst. Stand. Technol., vol.

800–83, p. 101, 2005.

[2] A. Brijesh, “Assessing malware detection using hardware performance counters,”

Boston University, 2017.

[3] A. Mylonas and D. Gritzalis, Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. No Starch Press, 2012.

[4] E. W. L. Leng, M. Zwolinski, and B. Halak, “Hardware performance counters for

system reliability monitoring,” in 2017 IEEE 2nd International Verification and

Security Workshop (IVSW), 2017, pp. 76–81.

[5] J. Bulpin, “Hyper-threading aware process scheduling heuristics,” Proc. Annu.

Conf. USENIX, pp. 103–106, 2005.

[6] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “ConFirm: Detecting

firmware modifications in embedded systems using Hardware Performance

Counters,” 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015, pp. 544–551,

2016.

[7] G. Contreras and M. Martonosi, “Power prediction for Intel XScale/spl reg/

processors using performance monitoring unit events,” ISLPED ’05. Proc. 2005 Int.

Symp. Low Power Electron. Des. 2005., pp. 221–226, 2005.

[8] J. Demme, M. Maycock, J. Schmitz, and A. Tang, “On the Feasibility of Online

Malware Detection with Performance Counters Categories and Subject

Descriptors,” Proc. 40th Annu. Int. Symp. Comput. Archit., vol. 41, no. 3, pp. 559–

570, 2013.

[9] P. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface to hardware

performance counters,” Proc. Dep. Def. HPCMP users Gr. Conf., vol. 32, pp. 7–10,

1999.

[10] L. Kongress and A. Carvalho De Melo, “The New Linux ‘perf’ tools,” 2010.

[11] J. Reinders, “VTune Performance Analyzer Essentials Measurement and Tuning

25

Techniques James Reinders,” Interface, 2005.

[12] P. J. Drongowski, “An introduction to analysis and optimization with AMD

CodeAnalyst TM Performance Analyzer,” pp. 1–20, 2008.

[13] O. Yuschuk, “OllyDbg.” [Online]. Available: http://www.ollydbg.de/.

[14] “ImpREC - aldeid.” [Online]. Available: https://www.aldeid.com/wiki/ImpREC.

[15] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose, “SoK: The

Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for

Security,” 2019 2019 IEEE Symp. Secur. Priv., pp. 345–363, 2019.

[16] “UPX Source Code.” [Online]. Available: https://github.com/upx/upx.

[17] “Intel® Microarchitecture Code Named Sandy Bridge Events.” [Online]. Available:

https://download.01.org/perfmon/index/snb.html.

[18] “Uncover the hidden relationships in big data with Eureqa | Nutonian, Inc.” [Online].

Available: https://www.nutonian.com/.

[19] “oberhumer.com: UCL data compression library.” [Online]. Available:

http://www.oberhumer.com/opensource/ucl/.

[20] “UPX LZMA SDK.” [Online]. Available: https://github.com/upx/upx-lzma-sdk.

[21] “UPX stub-tools.” [Online]. Available: https://github.com/upx/upx-

stubtools/releases.

26

BIOGRAPHICAL INFORMATION

This report belongs to Jay Mayank Patel. Jay has obtained a Bachelor of Engineering

degree in Computer Engineering, Master of Technology in Information Technology and

Master of Science in Computer Science and he has successfully defended his master’s

thesis in Information Security under the supervision of Dr. Jiang Ming.

Jay is interested in pursuing his career in the field of Information Security, Cyber Security,

and Software Security. He has worked on several projects in Information Security area

involving static and dynamic analysis tools, cloud services, malware analysis and various

open source platforms such as Kali Linux, IDA Pro, IDS/IPS, Wireshark, etc. Jay was

appointed as a Grader for the Spring 2018 and Fall 2018 semester and had successfully

conducted the labs along with the CTF competition as a part of Information Security (CSE

5380).

Jay explored his expertise in the field of Information Security by working on the research

project “Ransomware Early Stage Detection Using Machine Learning on Hardware

Performance Counters” in Summer 2018 which improved his thought process and gave

an insight into his research “On The Feasibility Of Malware Unpacking With Hardware

Performance Counters”.

Jay is willing to pursue his career in the area of his major and looking for a full-time

opportunity in the field of Cyber Security to utilize her skills and R&D knowledge of

Malware Analysis and Detection in the corporate world.

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Chapter 1 Introduction
	About Malware Analysis
	Art of Packing
	Packing with UPX

	Hardware Performance Counters

	Chapter 2 Background and Related Work
	Unpacking
	Unpacking with UPX
	Manual unpacking with OllyDbg

	Issues in previous work

	Chapter 3 Problem Identification and Proposed Solution
	Defining Problem
	Potential Solution

	Chapter 4 Evaluation
	Experimental Setup
	HPC Collection with Intel® VTune™ Amplifier

	Result Summary and Performance Measurement
	Data Modeling with Eureqa

	Chapter 5 Conclusion and Future Work
	Appendix A Configure and Build UPX in Linux (Ubuntu 18.04 LTS)
	References
	Biographical Information

