ON THE FEASIBILITY OF MALWARE UNPACKING

WITH HARDWARE PERFORMANCE COUNTERS

by

JAY MAYANK PATEL

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2019

Copyright © by Jay Mayank Patel 2019

All Rights Reserved

ACKNOWLEDGMENT

| would like to thank my supervisor, Dr. Jiang Ming, for his kind co-operation, inspiring
discussion and realistic suggestion at all stages of my work and giving me such
opportunities to work on this topic. Without his guidance and efforts, | could not be able
to finish my work smoothly.

| would also like to thank Dr. Jeff Lei and Dr. Jia Rao for taking time out from their schedule
and attending my dissertation. Thank you, Erika and Haotian for helping me with my
research directly or indirectly.

Last but not the least, | would like to thank my wife, parents, my family, and friends for
encouraging me and supporting me throughout my research.

April 18, 2019.

ABSTRACT

ON THE FEASIBILITY OF MALWARE UNPACKING

WITH HARDWARE PERFORMANCE COUNTERS

Jay Mayank Patel, MS

The University of Texas at Arlington, 2019

Supervising Professor: Jiang Ming

Most of the malware authors use Packers, to compress an executable file and attach a
stub, to the file containing the code, to decompress it at runtime, which will turn a known
piece of malware into something new, that known-malware scanners can't detect. The
researchers are finding ways to unpack and find the original program from such packed
binaries. However, the previous study of detection for unpacking in the packed malware

using different approach won’t provide many promising results.

This research explores a novel approach for the detection of the unpacking process using
hardware performance counters. In this approach, the unpacking process is closely
monitored with Hardware Performance Counters. The HPCs shows hot spot during the
unpacking process. By performing the per-process filtration, HPCs show a close relation

with the decompression algorithm. For this research, the analysis is performed on a bare-

metal machine. The packed executable is profiled for hardware calls using Intel®

VTune™ Amplifier.

TABLE OF CONTENTS

F ol (L0111 [=To (oo 4 =T o | PRSPPI ii
ADSITACT ... v
IS A0 T U P ERRPPURRR Vil
LISt Of TADIES ... iX
(@4 gF=T o (= g A 1011 0o L1110 o I RSPPPUPR 1
ADOUL MAIWAIE ANAIYSIS ...t e et e e e e e eeanaea 2

F N o) = Te3 (] o PP PURPPPRPPRRTIN 3
Packing WItN UPX.... ...t e e e e e e e e e e e e e e e e e e eeeenennan 4
Hardware Performance COUNTEIScooiiiiiiiiiiiieeee et 4
Chapter 2 Background and Related WOrK.............cooiiiiiiiiiiiiiiicee e 6
[g T o F=Tod (1 o TSRS UPPPPPPPRTRI 6
UNPAacKing WIth UPX ...ttt e e e e e ee et e e e e e e e e eeeennnen 6
Manual unpacking With OllYDDgcoooiiiiiiiiii e 7
[SSUES IN PrEVIOUS WOIK ...vvuiieeeeeeeeeieiiie e e e e e et s e e e e e e e e e e s e e e e e e e e eesannnneaeeeeeeees 10
Chapter 3 Problem Identification and Proposed Solution..............cccovvvvvviiiiieieeeeeeeeiins 12
DefiniNng ProbIEM ... e e e e e e aa 12
POtENTIAl SOIULION ...ttt s e e e e e e eeeees 14
Chapter 4 EVAIUBLION.........oiiiii et e e e e e e e et a e e e e e e e eeeenennns 15

Vi

EXPErMENTAl SEIUP ...ovviiiie ettt e e et e e e e eeaneaa 15

HPC Collection with Intel® VTune™ AmPplifier ... 15
Result Summary and Performance Measurement.............ccceveeeeeeieeeeiiiiiiieeeeeeeeeeennnnns 15
Data Modeling With EUFEQA...........uuuiiiie e s e e e e e e e e e e e e e e aeeennnnns 18

Chapter 5 Conclusion and FUtUre Workiiiiiioiiiiieeiiee e e e e 21
Appendix A Configure and Build UPX in Linux (Ubuntu 18.04 LTS)cccvvviviiiiiinneeennee. 22
REFEIENCES ...ttt eeeeneeeees 24
Biographical INfOrME@atION........cooeiiiieeiiii e e e e e e e e e eeneane 26

Vi

LIST OF FIGURES

Figure 1-1 File System View for Packing of Windows PEcoooiiiiiiiiiiiieeeeceeiies 3
Figure 1-2 Screenshot of Packing a File with UPX..........coooiii i, 4
Figure 2-1 Memory View during Execution of Packed File.............ccooviiiiiiiiiiniiiiiiiiins 6
Figure 2-2 Representation of pf.exe in OllyDDQgcoooviiiiiiiiiiiiii e 7
Figure 2-3 Locating PUSHAD Instruction in the Packed Binaryccccceiiiiiiiiiiiininnn, 8
Figure 2-4 Breakpoint Setup at POPAD INSLrUCLIONcooviiiiiiiiieeeeeeeiiiiiie e 8
Figure 2-5 Location of OEP at the End of the Unpacking.............ccccoovvviiiiiiiinniiiiiiiiins 9
Figure 2-6 Use of OllyDump Plugin to extract the Original Programccccevvunees 10
Figure 3-1 Hotspot View Summary for Manual Unpacking of pf.exe with UPX 12
Figure 3-2 Bottom-Up View of Manual Unpacking of pf.exe with UPX 13
Figure 4-1 File pf_lzma_upx_int.exe with Interrupt Before OEP...........c.cccccceeiiiiiiiiiininnnns 17
Figure 4-2 File pf_ucl_upx_int.exe with Interrupt Before OEP............ccooviiiieiiiiiiieiinnnns 17
Figure 4-3 Data Model by Eureqga for pf_ucl_upX_iNt.@Xecccoeeiiiiiiiiiiiiiiiieeeeeeeeeeiiens 19
Figure 4-4 Data Model by Eureqa for pf_UCLeXe........cooiiiiiiiiiiiiiie e 20

viii

https://mavsuta-my.sharepoint.com/personal/jaymayank_patel_mavs_uta_edu/Documents/Thesis_1.docx#_Toc6236221

Table 1-1 Types of Malware [2]

LIST OF TABLES

Table 4-1 File Name Convention with Packer and Algorithm Used.............ccccoevvviinnnnnn. 18

CHAPTER 1

INTRODUCTION

Malware is known as malicious software or malicious code. Malware can be defined as a

program that is inserted into a system, usually covertly, with the intent of compromising

the confidentiality, integrity, or availability of the victim’s data, applications, or operating

system or otherwise annoying or disrupting the victim [1]. Table 1-1 represents different

types of malware.

Table 1-1 Types of Malware [2]

Malware Description
Virus Mostly found in programs or executables. The processor executes
such malware code with the program.
Worm Like a virus in functional behavior except that they are stand-alone

software which does not require any assistance from a host
program or human aid for broadcasting.

Polymorphic Virus

A virus that can alter its payload to evade detection, while
maintaining its functionality.

Metamorphic Virus

A virus that alters both the payload and functionality

Trojan

Malware that appears legitimate but acts maliciously once
activated.

AdWare Malware that floods a web-page with unwanted advertisements.

SpyWare Malware that secretly gathers reports the user's personal
information and grants access to such information to another
entity without the user's consent.

Ransomware Malware that blocks access to user data and threatens to delete
or publish it unless the user makes a predetermined payment.

Botnet Malware that employs an infected system as a node in a network
controlled by a central malicious unit called the bot herder.

Rootkit Malware that provides privileged access to a system while hiding

its or any other malicious software's presence.

The malware is categorized based on their purpose of use like mass or targeted. Mass
malware is designed to affect many machines at once, where targeted malware is created
to infect specific organization and are a bigger threat to networks than mass malware [3].
About Malware Analysis

Malware analysis is the art of dismembering malware to identify, know about its working,
and find a way to overcome or remove it. Malware can be identified by its host and
network-based signatures. There are two main approaches to malware analysis: Static
and Dynamic. Examine the malware without running it is Static approach, while Dynamic
approach involves running the malware. The detailed categorization of these technique
involves basic and advanced methods for both.

Malware authors use several tricks to avoid detection and analysis. The most popular
way is use technique called packing. Software packing is a method of compressing or
encrypting an executable or modifying a file’s format. The payload, which is the actual
malware is protected against reverse engineering and security software detection. This is
done by adding code that is not strictly malicious but only intended to hide the malicious
code. The goal is to hide the payload from the victim and from researchers that get their
hands on the file. Packing an executable changes file signature to avoid signature-based
detection. Most decompression techniques decompress the executable code in memory.
Utilities used to perform software packing are called packers. Though there are many
kinds of sophisticated packers available, malware writers also create custom packers to

make it harder for an analyst to detect.

Art of Packing
Portable Executable (PE) file format is developed by Microsoft as a common file format
to support all windows versions and on all supported systems. PE consists of PE header,
section table, and other sections. The PE Header includes information about the machine,
number of sections, time date stamp, pointer to the symbol table, number of symbols,
size of optional header and characteristics. Section table provides the reference to
various sections in the PE file and maintains section permissions for the file. Each of the
sections is maintained in the section table contains information related to how the
program runs. Section includes .text, .data, .rsrc and .reloc. Original file from Figure 1-1

describes PE file structure.

Original File Packed File

Original PE Header

New PE Header

Packed Section

Section Table

.text, .data, .rsrc,
.rdata, .idata, ...

Decompression Stub
Code

Figure 1-1 File System View for Packing of Windows PE
The binary packing is a benign process where the original file is being converted to a
packed file using compression and/or encryption algorithm by the packer. The input to
packer can be any executable file such as the Windows Portable Executable (PE) or the
Linux Executable and Linkable Format (ELF) and the output will be packed/compressed
executable as illustrated in Figure 1-1. In the packed file, the packed section contains the
original file and the decompression stub code is used to automatically decompresses and

runs the original file.

Packing with UPX

B Administrator: C\Windows\system32\cmd.exe = = %

C:\Users\cuckoo2\Downloads\Pathfinder-master\Pathfinder-master\Debug>upx Pathfinjg
der.exe -o pf.exe

m

File size Ratio Format

212480 -> Lysyy 20.96% Win32/pe pf.exe

Packed 1 file. -

Figure 1-2 Screenshot of Packing a File with UPX
As shown in Figure 1-2, the file can be packed using UPX packer. When one pack any
Executable with UPX, all existing sections (.text, .data, .rsrc, etc.) are compressed. Each
of these sections is named as UPXO0, UPX1, etc. Then it adds a new code section at the
end of the file which will decompress all the packed sections at execution time. As shown,
a file named as Pathfinder.exe (which is 32-bit Portable Executable) is packed into pf.exe.
During this process, the original size is compressed 20.96% as from 208 KB to 44 KB.
Hardware Performance Counters

Hardware Performance Counters are sets of special-purpose registers built into modern
microprocessors to record architectural and microarchitectural events precisely and
accurately as they occur. These counters are part of a special, dedicated unit in the
central processing unit (CPU) called the Performance Monitoring Unit (PMU). They have
the ability to access detailed information regarding the processor’s functional units and
caches, as well as the memory, etc. The availability of HPCs depends on the CPU
architecture and vendor. The HPCs are highly hardware dependent and that's why, even
across the same vendor, each CPU generation has its own implementation. There are no

additional overheads of using HPCs because they are built-in CPU. Each time the

programmed event occurs, the count register is incremented, that's why they provide
accurate results [4].

The HPCs are used to conduct low-level performance analysis or tuning [5]. From
performance analysis tools their usage has extended to detect firmware medication in
embedded systems [6], estimating system power utilization [7], and even detection of
malware [8]. Essentially, software engineers use HPCs for measuring the performance of
their code and thus optimizing it.

Some of the commonly used software interfaces include PAPI [9] which provides standard
APIs for accessing the HPCs. For Linux, based on perf event, perf [10] is a popular tool
provides support for HPCs and for Windows operating systems, Intel® VTune™ Amplifier
[11] for the Intel® processors and AMD's CodeAnalyst [12] for the AMD processors is
used. In this project, HPCs are used to construe a time-series trace of N
microarchitectural events by profiling packed benign application. Each packed binary

executed on CPU may or may not generate a different performance counter trace.

CHAPTER 2

BACKGROUND AND RELATED WORK

Unpacking
During the execution of the packed file, decompression stub, stored in the packed file will
decompress the packed section. The original file is then loaded into memory as per

described in Figure 2-1.

Packed File

New PE Header

Packed Section

‘ Decompression Stub
Code

Figure 2-1 Memory View during Execution of Packed File

Original PE Header

Section Table

.text, .data, .rsrc,
.rdata, .idata, ...

During this process, the original entry point(OEP), the memory address where the
program starts, is relocated in the unpacked section.
Unpacking with UPX
To illustrate unpacking, consider the packed file pf.exe from Chapter-1. The following
process will occur on the execution of a UPX packed pf.exe file.

e First, it saves the current Register Status using PUSHAD instruction.

e All the Packed Sections are Unpacked in main memory.

e Resolve the import table of the original executable file.

e Restore the original Register Status using POPAD instruction.

e Finally, Jumps to Original Entry Point(OEP) to begin the actual execution.

e Execution starts from new OEP (from the newly added code section at the end of
file).
Manual unpacking with OllyDbg
To perform this process manually, we will debug pf.exe with OllyDbg [13]. OllyDbg is a
32-bit assembler level analyzing debugger for Microsoft® Windows®. Emphasis on binary
code analysis makes it particularly useful in cases where the source is unavailable.

As the pf.exe is loaded in OllyDbg for analysis, it will be represented as shown in Figure

2-2 below.

Registers (FPU)
E pT.<Modu |eERTryPoINtT

5 FTR 55: [ESP+8
E9 £9950200 JMP ntd11.76ECITBA

§DA424 00000000 LEA ESP,DWORD PTR SS: [ESP]
804424 00000000 LEA ESP,DWORD PTR SS: [ESP]
90 NOP

BED4 MOV EDX,ESP
0F34 SYSENTER

C3 RE

8DA424 00000000 LEA ESP,DWORD PTR 55:[ESP]
806424 00 LEA ESP,DWORD PTR 55:[ESP]
ED5424 08 LEA EDX,DWORD PTR 55: [ESP+8]
INT 2E

RETN

TEEADLES

NOP

ADD BYTE PTR DS:[EAX],AL

ADD BYTE PTR DS:[EAX],AL

OR DWORD PTR DS:[ECX+26],EDI
FOP ESP

ADD BYTE PTR DS5:[EAX],AL

ERROR_MOD_NOT_FOUND (0000007E)
0000 ADD BYTE PTR DS:[EAX],AL e e S

EFDEOOD
Stack 55:[0034FF34]=00000000

[aserr |

Figure 2-2 Representation of pf.exe in OllyDbg

Start tracing the EXE, until one encounter a PUSHAD instruction shown as Figure 2-3.
Usually, this is the first instruction, or it will be present after the first few instructions based

on the UPX version.

Registers (FPU) < < < % < = < <
E 18342? kerne|32.B3 2

EAX

Hi
. BE D0302C00 MOV ESI,pf.002C3000
. BDBE QOEOFBFF LEA EDI,DWORD PTR DS5:[ESI+FFFBEQQQ]
57 EDI

002CD2FD pf

+ B3CD FF OR EBP,FFFFFFFF EFDEDOD
..EB 10 IMP SHORT pf.002CD312
a0 NO
90
90
a0
a0
90
> BADB AL,BYTE PTR DS: [ESI]
a6
. 8807 BYTE PTR DS:[EDI], AL
. 47 EDI
> 0108 EBX, EBX
.75 07 SHORT pf.002C0319
> BB1E EBX,DWORD PTR DS: [ESI] LastErr
83EE FC ESI,-4

00000246 (NO

Kernel3Z.75183430

Figure 2-3 Locating PUSHAD Instruction in the Packed Binary
When one reaches PUSHAD instruction, put the Hardware Breakpoint to stop at POPAD
instruction as described in Figure 2-4. Another way is to manually search for POPAD

instruction and then set Breakpoint on it.

8020 7F AND BYTE PTR D5:[EAX isters (FPU) <
. BOBO 28 7F AND BYTE PTR DS5:[EAX+2 nk

58 POP EAX

50 PUSH EA&X

81 | POPAD
. BD4424 B0 LEA EAX,DWORD PTR 55:[ESP-30]
= BA 00 PUSH 0
. 39C4 CMP ESP,EAX
75 FA INZ SHORT pf.00CAD4A3
- 83EC 80 SUB ESP,-80
-—E9 C359FCFF ImP pf.00CT2ET4
o0 5 ‘00

00
00

LastErr

00000246

Figure 2-4 Breakpoint Setup at POPAD Instruction

Once set up the breakpoint, continue the execution. Shortly, it will break on the instruction
which is immediately after POPAD or on POPAD instruction. Now start step by step

tracing and soon one will encounter a JMP instruction which will take to actual OEP in the

original program as shown in Figure 2-5.

EAX],TF
AND BYTE PTR DS:[EAX+28],7F

LEA EAX,DWORD PTR 55:[ESP-80]
PUSH O

CMP ESP,EAX

INZ SHORT pf.00CAD4A3

SUB ESP,-80

IMP pf.00CT2ET4

L 00000203

Figure 2-5 Location of OEP at the End of the Unpacking

When you reach OEP, dump the whole program using OllyDump plugin (use default

settings) as mentioned in Figure 2-6. It will automatically fix all the Import table as well.

OllyDump - pf.exe

Start Ad

Entry Point:

Figure 2-6 Use of OllyDump Plugin to extract the Original Program
However for most of the packers, one can use an advanced tool called ImpREC (Import
Reconstructor) [14]. ImpREC is a highly advanced tool used for fixing the import table. It
provides multiple methods to trace the API functions as well as allow writing custom
plugins.
Issues in previous work

In [15], Das et al. have proposed some challenges, pitfalls, and risks of using HPCs for
security. The authors have provided reasons lead to inaccurate measurements as the
effect of external sources on the runtime environment, Non-Determinism, Overcounting,
Variations in tool implementations. The authors have suggested proper instantiation and
usage of various fundamentals like,

Context Switch Monitoring — In order to profile the runtime behavior of a process,
performance counter values must be saved during context switches to avoid any

contamination due to events from other processes.

10

Interrupt Handling — The performance counters are typically used in conjunction with
performance monitoring interrupts (PMI). This feature is not essential when reading
events in sampling mode; it can also profile events at a finer granularity.

Process Filtering Upon Process Monitoring Interrupt (PMI) — It is necessary to
implement a technique for filtering performance counter data relevant solely to the
process of interest. Otherwise, counter data will be contaminated by the events of other
processes.

Minimizing the impact of non-deterministic events — It is important to consider only
deterministic events. A deterministic event is defined as an event whose value does not
vary between identical runs and matches the expected values that would be obtained
through alternative means.

They have assessed 56 papers using HPCs in various field and pointed common
mistakes. To overcome issues,

No per-process filtering — Any implementation that does not apply per-process filtering
will capture events from other processes.

PMI-Based Filtering Only — Many papers did not save and restore the counter data
during context switches. This made the data have contamination of counter data from
other processes. To overcome this, obtain performance counter data by applying process
filtering only at PMI.

Lack of compensation for non-determinism and over overcounting issues — The

non-determinism and overcounting issues are a significant oversight.

11

CHAPTER 3

PROBLEM IDENTIFICATION AND PROPOSED SOLUTION

As described in Chapter 2, the process of unpacking is performed in a controlled
environment, but in actual, this packed code will be unpacked and loaded into main
memory and begun its execution, that’'s why it is not possible to know exactly when the
original program has started. For the malware analyst, the most difficult task is to
differentiate between benign unpacking process and malicious program execution.
Defining Problem

As the packers use decompression and decryption functions, they mostly utilize CPU and
memory. To record this using HPCs, | have conducted profiling of such unpacking
process with Intel® VTune™ Amplifier. As shown in Figure 3-1, it is obvious that the

hotspot shows most of the HPCs related activities during unpacking.

& Intel VTune Amplifier - X
Project Navigator 8 &3 & 0= O | welkome r000hs =
ﬁ Hotspots Hotspots by CPU Utilization ~ @ |NTELUIUNEAMP“HER 2["9

r000hs Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform
~
- . Hotspots Insights
Elapsed Time : 0.224s If you see significant hotspots in the Top Holspots list, switch to the
CPU Time “: 0.076s Bottom-up view for in-depth analysis per function. Otherwise, use the
Instructions Retired: 162 800 000 Caller/Callee view to track critical paths for these hotspots.
Micrearchitecture Usage “: 22.2% K& of Pipeline Slots Explore Additional Insights.
CPI Raie 1095k Parallelism @ - 34 0% (0.340 out of 1 logical CPUs) &
Total Thread Count: 2 Use @ Th’e_admg 1o explore more opportunities to increase parallelism
in your application
Paused Time - 0s

Microarchitecture Usage © : 22.2% k
Use @ Microarchitecture Exploration to explore how efficiently your
Top Hotspots application runs on the used hardware.
This section lists the most active functions in your application. Optimizing these
hotspot functions typically results in improving overall application performance.

Function Module CPU Time
[upx.exe] upx.exe 0.053s
func@0x140058c20 ntoskrnl.exe 0.002s
0054ee0 ntoskrnl.exe 0.002s
00d4aes nifs.sys 0.001s
p0x1400410e0 ntoskrnl.exe 0.001s
0017s

“*N/A is applied to non-summable metrics.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization
value.

160MS 7 0 i =3 v

Figure 3-1 Hotspot View Summary for Manual Unpacking of pf.exe with UPX

12

From Figure 3-2, the microarchitecture usage for the unpacking is high, which is 26.8%.

This gives the motivation to use HPC to explore the unpacking process.

& Intel VTune Amplifier - x
Project Navigator & & b & O = O | welkome r000hs =
ﬁ Hotspots Hotspots by CPU Utilization ~ @ |NTELUIUNEAMP“HER 2']19

r000hs Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform
Groupmg:| Function / Call Stack v” -« ” jo ” f,ul
Function / Call Stack CPU Time D | Instructions Retired ‘ Microarchitecture Usage »/| Module ‘ Function (Full} ‘ Source File ‘ Start Address
[upx exe] 53 172ms (D 136,400,000 26.8% upxexe [upxexe] o]
< >
D: 4 0ms 50ms 100ms 150‘m5 ZDD‘ms Pracess / Thread / Modu ~
3
RS TR s [T || Gwcue
3 umee I] F | D e e e
3 [[= Clocktick Sample
=
= [J CPU Time
2
-
S
2
a
FILTER " 69.7% % | ‘Any Process V‘ |Ar|y Thread V‘ |[69.7%] upX.exe V| ‘Any Utilizatit V‘ | ‘Uﬁerf\mctmns +1 V| ‘Shuw inline funct V‘ ‘ Functions only ~

Figure 3-2 Bottom-Up View of Manual Unpacking of pf.exe with UPX

To analyze more about unpacking process in UPX, download the source from [16] and
compile and build in Linux (Refer Appendix A). | have noticed that for the unpacking
process in UPX uses inbuilt source file, written in assembly code. This file takes the
original program as input and check for its packing method and based on that it will
automatically select the unpacking method and unpacks the packed code to main
memory. For 32-bit windows executable file, one has to look for i386-win32.pe.S file and
for 64-bit windows executable file, amd64-win64.pep.S.

Once one look into the assembly code, one can find different unpacking algorithms as
LZMA and different version of NRV. The NRV algorithms are part of UCL data
compression library, which has 3 variants of as NRV2B, NRV2D, and NRV2E. These

NRV algorithms are block compression algorithm, which takes 32-bit of data blocks to

13

perform packing or unpacking. To learn more about HPC activity during unpacking, | have
checked the result of decompression with the standalone application of LZMA and UCL
algorithms. By comparing them with the unpacking of UPX with their respective version,
| find out that the unpacking is closely related to the algorithm used for packing rather
than a different packer. The algorithms used to perform packing are less, different packers
use these algorithms with other techniques to make packers more complex.
Potential Solution

To investigate in this direction, | have conducted different experiments with Pathfinder.exe
as input to Lzma#.exe and uclpack.exe. | have generated packed file Pathfinder.exe for
both the algorithms and recorded HPCs with Intel® VTune™ Amplifier and compared the
HPCs with manual unpacking and interrupted unpacking just before OEP. | have collected

the HPCs recorded, which are around 575 [17].

14

CHAPTER 4

EVALUATION

Experimental Setup

| have used the bare-metal computer to perform experiments. This environment can be
helpful to work with the malicious packed file. As HPCs are CPU dependent, if one creates
a virtual environment to conduct such experiments, one cannot record the correct values
of HPCs. The HPCs can also capture the overhead of virtual machines, so one should
avoid using virtual environment of any HPCs related experiments.
Again from the suggestions of Das et al. [15], | have conducted all the experiments using
a single core of the processor. As the HPCs are related to CPU and using more core of
processor shows different values of HPCs, it is highly recommended to use a single core.
For this, | have to make a change in BIOS to use the processor as a single core.
HPC Collection with Intel® VTune™ Amplifier
During the collection of different HPCs, | have set CPU sampling interval as 1 ms and
enabled per-process filtration from advance settings. The sampling starts as soon as the
program starts its execution. During the sampling, HPCs generated by other processes
running are also included with the result. So, it is necessary to perform per-process
filtration of the result to computer correct HPCs for the unpacking process.

Result Summary and Performance Measurement
In this research, we have used a modified UPX source code to insert interrupt to stop the
execution of packed executable just before OEP. The source code of UPX is compiled

and built in Linux. To modify UPX source code and insert the interrupt refer to Appendix

15

A. The Pathfinder.exe should be packed in Linux then shifted to Windows for further
analysis. During primary analysis, we found hotspot using Intel® VTune™ Amplifier in the
unpacking process. By further investigating, | came to know that the algorithm behind the
unpacking is the only reason for such HPC deviations.

By default, UPX uses UCL compression library to pack any file. So, to pack or unpack
any file with LZMA in UPX is not straight forward, one must look into the source code of
UPX. After looking into the conf.h and main.cpp file its command line argument --lzma for
LZMA algorithm and --nrv2b, --nrv2d and --nrv2e for respective UCL algorithms NRV2B,
NRV2D, and NRV2E. In this experiment, | have used the default UCL algorithm, which is
NRV2B.

During the packing with UPX with LZMA and UCL algorithms, the interrupt was inserted
to the end of unpacking or just before OEP. To verify this, refer the Figure 4-1, which
shows the file pf_lzma_upx_int.exe in OllyDbg, where int 15 is the interrupt, inserted

before the jump to OEP.

16

O0ZSDF37
O029DF3A
0029DF3E| .
0D29DF3F| . 50
Q0290F40| . 54
0029DF41| . 50
0029DF42| . 53
D029DF43

0023DF46 58
D02SDF48

. 87
0029DF44| . FFDS

E
8060 28 7F
58

00290F4C, > BA 00
DO2SDF4E| . 39C4
0029DF50| .“75 FA
0029DF52 83EC 80
0029DF55| . B4 4C
00290F57| . €D 15
00290F59 | -E9 164FFCFF
0029DF5E 00

LEA EAX,DWORD PTR 55: [ESP-80]
PUSH 0

CMP ESP
INZ SHURTagf _1zma_.00290F4C
SUB ESP
MOV AH,dC

INT 15
e gf_1 zma_.00262E74
D8 O

C029EQQQ
O029E008
0029010
0029E0LE
0029E020
D029EQ2E
DO2SED30|
0029E038
0029EQ40
QD29EQ48 | 5
D029EQS0
DO29EDSS
0029E060
DO29EQES
0029EQ70
CO2IEQ7E
DO29EQED
0029E08S
CO29E090
0029EQ98 |73 65
Q029EQAD| 6D 6C

In Figure 4-2, the interrupt, int 15, inserted before at the end of unpacking

79 20 78 |sembl
27 75 ?2 mins= ur

0023FF14
0023FF18
0023FF1C
Q023FF20
0023FF24
Q023FF28
0023FF2C
0023FF30
0023FF34
O023FF38
0023FF3C
G023FF40
0023FF44
0023FF48
0023FF4C
0023FF50
0023FF54
0023FF58
0023FFSC
0023FF60
O023FF64

C630000
ZFE30E
001000

0023FF10

751B438E

00251000

00250000

00290F47

E5 0028 32bit
€5 0023 32bit
55 0028 32bit
DS 0028 32bit
FS 0053 32bit
G5 0028 3zbit

LastErr ERROR
00000202

empty ¢.0
empty 0.0
o

0023FF38
0023FF30
JEFDEQOQ
00290390
GO000000
75183428
75183430
7EFDEQOO
~0023FFTE
FGEC9802
TEFDEOOO
03C57272
00000000
00000000
7EFDEQQQ
00000000
FEDOTCTF
QO000000
Q023FF44
00000000

00000000 |

kernel3z.virtualProtect
pf_lzma_ 00251000
pf_lzma_.00250000

pf_lzma_

-D029DF4T

O(FFFFFFFF)
O(FFFFFFFF)
Q{FFFFFFFF)
O(FFFFFFFF)
7EFDDOOO(FFF)
Q(FFFFFFFF)

_MOD_NOT_FOUND (0000007E)
(ND,NB,NE, A NS, PO, GE,G)

pf_lzma_.<ModuleEntryPoint>

kerne132.BaseThreadInitThunk
RETURN to kernel32.7518343D

RETURN to ntdll.76ECIB02

o)

RETURN to 76DO07CTF from 76007920

Figure 4-1 File pf_lzma_upx_int.exe with Interrupt Before OEP

pf_ucl_upx_int.exe.

013?D£?1
O137DETS
0137DE76
D137DETT
01370ETS
Q137DE7Y
0137DE7A
Q137DETB
Ql37DETD

!!!!DE!F

0137DES3
O137DESS
O137DEST
0137DESS
0137DESC

D137DEST|
0137DESS|

POPAD

LEA EAX,DWORD PTR 55:[ESP-80]

PUSH O

CMP ESP,EAX

INZ snom'sgf_u:‘t _u.0137DEE3
P,-

in file

kernel32.virtualProtect
pf_uc]_u.01331000

EDI 01330000 pf_ucl_u.01330000
EIP O1370E7E pf_ucl_u.0137DETE

ES 0028 32bit O(FFFFFFFF)
€5 0023 32bit O(FFFFFFFF)
55 0028 32bit OCFFFFFFFF)

F5 0053 32bit

0

0

0 L

0 D5 Q02B 32bit O(FFFFFFFF)
o

0 GS 0028 32bit

(4]

0

0137EQDD
O137EQ0S
0137E010
0137E018
0137ED20
0137E028
0137EQ30
D137EQ3E
D137E040
0137E048
0137E050
0137EQSE
O137EQ60
0137E068 | 6E 3D
D137E070{65 BE
0137ED7S |30 27
O137E080 20 73
D137EQ8E |6F BE
0137EQ90| 27 3F
DQ137EQ98| 73 &5
0137EQAQ| 6D BC

Q. <7xm
versio
20(n="1.0"
69 BE 67 encoding
2D 38 27|="UTF-8"
64 61 6C standa1

79 20 78|sembly x
27 75 72| m1ns— ur

0043F8 zn |
0043F828 |
0043F82C|

0043F830|
0043F534 |

0043F838 |
0043F83C|
0043FB40 |
0043FB44 |
0043FB48 |
0043F84C|
0043F850|
0043FE54 |
0043F858|
0043F85C|
0043F860 |
0043F864 |
0043FE65 |
0043F86C|

| 0043F870||

00000000
0043FE44
DO43F83C
7EFDEOOO
0137DCD0
00000000
75183428
75183430
7EFDEOQO
0043F884
7GEC9802
FEFDEQQQ
D38852C8
00000000
00000000
7EFDEQCO
00000000
TEDOTCTF
00000000
CO43F850

DDOOOOOD

7EFDDOOO{FFF)
Q(FFFFFFFF)

ERROR_MOD_NOT_FOUND (0000007E)
(ND,NB,NE, A N5, PO,GE,G)

pf_uci_u. <ModuleEntryPoints>
kernel32.BaseThreadInitThunk
RETURN to kernel32.751B343D

RETURN to ntdl].76ECI802

RETURN to 76DO7CPF from 76007920 e

Figure 4-2 File pf_ucl_upx_int. exe W|th Interrupt Before OEP

17

These packed binaries while executed, they will stop automatically when the interrupt
occurred. So, during their execution, they will just perform unpacking and decompress
original code of the program into main memory and about to start its execution. The HPCs
will be recorded for these binaries using Intel® VTune™ Amplifier.

Consider the Table 4-1 for the filename convention as the files are being used throughout
the research experiments. The file used to pack, or compress is Pathfinder.exe.

Table 4-1 File Name Convention with Packer and Algorithm Used

No Packer Program Algorithm Interrupt File Name
1 lzma#.exe LZMA No pf_lzma.exe
2 upx.out LZMA Yes pf_Izma_upx_int.exe
3 uclpack.exe NRV2B No pf_ucl.exe
4 upx.out NRV2B Yes pf_ucl_upx_int.exe

To compare the recorded HPCs of UPX packed file, | have recorded the HPCs with the
standalone application of compression and decompression LZMA and UCL algorithms.
Data Modeling with Eurega

For simplicity, we have decided to use a software tool for detecting mathematical
relationships in data. This tool is called Eureqga [18] and by providing the tool with HPCs
values we found significant, talked about in earlier sections, we were able to create a
simple linear relationship. The various selected HPC events during unpacking were
inputted into the software especially focusing on the maximum values and minimum
values. From there, the Eureqga provided a linear relationship algorithm that is based on

a certain threshold for the minimum and maximum values.

18

Te?

6e7

5e7

de7

3e7

2e7

1e7

1

2 3 4 5 6 7

Figure 4-3 Data Model by Eurega for pf_ucl_upx_int.exe

19

8

4e7

3e7?

2e7

1e7

1 2 3 s 5 6 7 8
Figure 4-4 Data Model by Eureqa for pf_ucl.exe

Originally, we provided Eurega with 10 HPCs that were found significant to unpacking

between pf_ucl.exe and pf_ucl_upx_int.exe. However, Eurega had 7 HPCs out of the 10

HPCs not used when creating the relationship. After taking these 7 HPCs and only

running the Eurega tool on the 3 remaining HPCs, it then created a relationship on 2

HPCs. We can see though, that when using these 2 HPCs, the model built using Eurega

look very similar when comparing Figure 4-3 to Figure 4-4.

20

CHAPTER 5

CONCLUSION AND FUTURE WORK

Though this is a good place to start, it is to be said that if only using 2 HPCs out of the 10
HPCs we found significant, it might be easier for malware writers to evade presented
model. In theory, what our plan is moving forward, is to be able to input an entire
program’s HPCs into this model and if we see a similar generated model out of the entire

model for the program, we can infer that unpacking is happening there.

21

APPENDIX A
CONFIGURE AND BUILD UPX IN LINUX (UBUNTU 18.04 LTS)

To install dependencies, Open terminal and perform following commands for building
UPX.

sudo apt-get install gcc

sudo apt-get install make

sudo apt-get install zliblg

sudo apt-get install zliblg-dev

sudo apt-get install zliblg:i1386

sudo apt-get install python

To provide link between libmpfr.so.4 and libmpfr.so.6 (As in new version libmpfr.so.6 is
available)

sudo In -s /usr/1ib/x86_64-1inux-gnu/libmpfr.so.6
/usr/1ib/x86_64-1inux-gnu/libmpfr.so.4

Download UPX [16] (For more information about how to build and configure refer
README.SRC). Extract it in the home directory.

cd ~

To download UCL data compression library [19] and configure. Create folder in home
directory ($(HOME)/local/src/).

cd ~

mkdir local

cd local

mkdir src

cd src

Decompress UCL folder as ucl-1.03 and build
cd ucl-1.03
./configure “CC=gcc -std=gnu89”
make all

To compile the UPX packer sources, Set the environment variable UPX_UCLDIR to point
to your UCL build directory

export UPX_UCLDIR=$HOME/local/src/ucl-1.03

Download LZMA SDK [20] and copy content of LZMA SDK to UPX. Go to UPX’s folder in
home directory ($(HOME) Zupx.../).

cd src/lzma-sdk

22

Extract downloaded LZMA SDK content here.

To modify the stub sources, Download upx-stubtools [21] (a number of cross-assemblers
and cross-compilers) and go to the local folder in the home directory.
($(HOME)/1ocal’).

cd ~/local
mkdir bin
cd bin

Decompress upx-build-20160918 folder as bin-upx

To make changes in .S file, go to upx’s folder in home directory ($(HOME) Zupx.../).

cd src/stub/src
gedit 1386-win32.pe.S

Find section PEDOJUMP and modify (Also read upx/doc/loader.txt). Add
instructions below after PEDOJUMP for setting exit interrupt just before Original Entry
Point encountered.

mov ah,0x4c
int 21

Save this file and exit.

Go to src/stub to build($(HOME) Zupx../src/stub/).

cd ..
make all

To build and get UPX's executable, go to UPX's folder in home directory
($(HOME) Zupx.../).

make —B all

cd src

You can find upx.out here,

To execute UPX , for packing or compression

./upx.out <input_filename>.exe -0 <output_ filename>_exe
And for unpacking or decompression

./upx.out <input_filename>_exe -d <output_filename>_exe

23

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

REFERENCES

P. Mell, K. Kent, and J. Nusbaum, “Guide to malware incident prevention and
handling,” Comput. Secur. Div. Inf. Technol. Lab. Natl. Inst. Stand. Technol., vol.
800-83, p. 101, 2005.

A. Brijesh, “Assessing malware detection using hardware performance counters,”
Boston University, 2017.

A. Mylonas and D. Gritzalis, Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. No Starch Press, 2012.

E. W. L. Leng, M. Zwolinski, and B. Halak, “Hardware performance counters for
system reliability monitoring,” in 2017 IEEE 2nd International Verification and
Security Workshop (IVSW), 2017, pp. 76-81.

J. Bulpin, “Hyper-threading aware process scheduling heuristics,” Proc. Annu.
Conf. USENIX, pp. 103-106, 2005.

X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “ConFirm: Detecting
firmware modifications in embedded systems using Hardware Performance
Counters,” 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015, pp. 544-551,
2016.

G. Contreras and M. Martonosi, “Power prediction for Intel XScale/spl reg/
processors using performance monitoring unit events,” ISLPED '05. Proc. 2005 Int.
Symp. Low Power Electron. Des. 2005., pp. 221-226, 2005.

J. Demme, M. Maycock, J. Schmitz, and A. Tang, “On the Feasibility of Online
Malware Detection with Performance Counters Categories and Subject
Descriptors,” Proc. 40th Annu. Int. Symp. Comput. Archit., vol. 41, no. 3, pp. 559—
570, 2013.

P. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface to hardware
performance counters,” Proc. Dep. Def. HPCMP users Gr. Conf., vol. 32, pp. 7-10,
1999.

L. Kongress and A. Carvalho De Melo, “The New Linux ‘perf’ tools,” 2010.

J. Reinders, “VTune Performance Analyzer Essentials Measurement and Tuning

24

[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

Techniques James Reinders,” Interface, 2005.

P. J. Drongowski, “An introduction to analysis and optimization with AMD
CodeAnalyst ™ Performance Analyzer,” pp. 1-20, 2008.

O. Yuschuk, “OllyDbg.” [Online]. Available: http://www.ollydbg.de/.

“ImpREC - aldeid.” [Online]. Available: https://www.aldeid.com/wiki/ImpREC.

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose, “SoK: The
Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for
Security,” 2019 2019 IEEE Symp. Secur. Priv., pp. 345-363, 2019.

“UPX Source Code.” [Online]. Available: https://github.com/upx/upx.

“Intel® Microarchitecture Code Named Sandy Bridge Events.” [Online]. Available:
https://download.01.org/perfmon/index/snb.html.

“Uncover the hidden relationships in big data with Eurega | Nutonian, Inc.” [Online].
Available: https://www.nutonian.com/.

“‘oberhumer.com: UCL data compression library.” [Online]. Available:
http://www.oberhumer.com/opensource/ucl/.

“UPX LZMA SDK.” [Online]. Available: https://github.com/upx/upx-lzma-sdk.

“UPX stub-tools.” [Online]. Available: https://github.com/upx/upx-
stubtools/releases.

25

BIOGRAPHICAL INFORMATION

This report belongs to Jay Mayank Patel. Jay has obtained a Bachelor of Engineering
degree in Computer Engineering, Master of Technology in Information Technology and
Master of Science in Computer Science and he has successfully defended his master’'s
thesis in Information Security under the supervision of Dr. Jiang Ming.

Jay is interested in pursuing his career in the field of Information Security, Cyber Security,
and Software Security. He has worked on several projects in Information Security area
involving static and dynamic analysis tools, cloud services, malware analysis and various
open source platforms such as Kali Linux, IDA Pro, IDS/IPS, Wireshark, etc. Jay was
appointed as a Grader for the Spring 2018 and Fall 2018 semester and had successfully
conducted the labs along with the CTF competition as a part of Information Security (CSE
5380).

Jay explored his expertise in the field of Information Security by working on the research
project “Ransomware Early Stage Detection Using Machine Learning on Hardware
Performance Counters” in Summer 2018 which improved his thought process and gave
an insight into his research “On The Feasibility Of Malware Unpacking With Hardware
Performance Counters”.

Jay is willing to pursue his career in the area of his major and looking for a full-time
opportunity in the field of Cyber Security to utilize her skills and R&D knowledge of

Malware Analysis and Detection in the corporate world.

26

	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Chapter 1 Introduction
	About Malware Analysis
	Art of Packing
	Packing with UPX

	Hardware Performance Counters

	Chapter 2 Background and Related Work
	Unpacking
	Unpacking with UPX
	Manual unpacking with OllyDbg

	Issues in previous work

	Chapter 3 Problem Identification and Proposed Solution
	Defining Problem
	Potential Solution

	Chapter 4 Evaluation
	Experimental Setup
	HPC Collection with Intel® VTune™ Amplifier

	Result Summary and Performance Measurement
	Data Modeling with Eureqa

	Chapter 5 Conclusion and Future Work
	Appendix A Configure and Build UPX in Linux (Ubuntu 18.04 LTS)
	References
	Biographical Information

