
LEARNING REPRESENTATIONS USING REINFORCEMENT LEARNING

by

SOURABH BOSE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2019

Copyright c© by SOURABH BOSE 2019

All Rights Reserved

To my Mom & Dad

ACKNOWLEDGEMENTS

First and foremost I would like to express my sincere gratitude to my supervisor

Dr. Manfred Huber. Without his patience and continuous effort, this would not have

been possible. I have learned a lot from him, and I am extremely lucky to have him

as my mentor. Furthermore, I’d like to thank my thesis committee members, Dr.

Gergely Záruba, Dr. Farhad Kamangar, Dr. Vassilis Athitsos and Dr. Heng Huang

for their insightful discussions and valuable guidance over the years.

I would also like to thank Dr. Bob Weems for the wonderful years during which

I worked as his teaching assistant. Finally, I would like to thank my family members

for their love and support, and my labmates in Learning and Adaptive Robotics

(LEARN) lab, who have become a part of my extended family over the years. Thank

you.

April 22, 2019

iv

ABSTRACT

LEARNING REPRESENTATIONS USING REINFORCEMENT LEARNING

SOURABH BOSE, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Manfred Huber

The framework of reinforcement learning is a powerful suite of algorithms that

can learn generalized solutions to complex decision making problems. However, the

applications of reinforcement learning algorithms to traditional machine learning

problems such as clustering, classification and representation learning, have rarely

been explored. With the advent of large amounts of data, robust models are required

which can extract meaningful representations from the data that can potentially be

applied to new unseen tasks. The presented work investigates the applications of

reinforcement learning algorithms in the perspective of transfer learning by applying

algorithms in the framework of reinforcement learning to address a variety of machine

learning problems in order to learn concise abstractions useful for transfer.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xii

Chapter Page

1. Introduction . 1

1.1 Previous Work . 2

1.1.1 Neural Networks . 4

1.1.2 Reinforcement Learning . 5

1.1.3 Combining Reinforcement Learning Algorithms and
Neural Networks . 8

1.1.4 Summary and Contributions 9

1.2 Document Overview . 10

2. Learning in Neural Networks Using Reinforcement Learning to
Address Uncertain Data . 12

2.1 Types of Uncertainty in Data . 13

2.1.1 Interdependent and Non-Identically Distributed
Input Data . 13

2.1.2 Imperfect Supervision . 14

2.1.3 Underlying Structural Correlations 16

3. Incremental Learning of Neural Network Classifiers
Using Reinforcement Learning . 18

3.1 Introduction . 18

3.2 Existing methodologies . 19

vi

3.3 Approach . 20

3.3.1 Ensemble Learning MDP . 21

3.3.2 Type Selection MDP . 25

3.3.3 Network Creation MDP . 28

3.4 Experiments . 33

3.5 Conclusion . 40

4. Semi Unsupervised Clustering Using Reinforcement Learning 41

4.1 Introduction . 41

4.2 Existing Methodologies . 43

4.3 Approach . 43

4.4 Learning the Similarity Function . 47

4.5 Experimental results . 50

4.6 Conclusion . 53

5. Training Neural Networks with Policy Gradient 54

5.1 Introduction . 54

5.2 Existing Methodologies . 56

5.3 Overview of Reinforcement Learning, Actor-Critic, and Policy Gradient 57

5.4 Approach . 58

5.5 Classification with Incomplete Target Data 63

5.5.1 Experiments . 65

5.6 Proposed ”Lateral” Autoencoder Sparsity 68

5.6.1 Experiments . 71

5.7 Conclusion . 75

5.8 Future Work . 75

6. MDP Auto-encoder . 76

6.1 Introduction . 76

vii

6.2 Related Work . 78

6.3 Markov Decision Processes . 79

6.3.1 MDP Homomorphisms . 79

6.4 Latent Variable MDP Models . 82

6.4.1 Architecture . 83

6.4.2 Supervised Learning . 85

6.4.3 Adversarial Learning . 88

6.4.4 Cost Functions . 90

6.5 Experiments . 93

6.5.1 Training Procedure . 94

6.6 Conclusions . 97

7. Conclusions . 98

7.1 Contributions . 98

Appendix

REFERENCES . 100

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 (a) Outline of the learning techniques used in this work; (b) Architecture

used by Deep Reinforcement learning algorithms for decision making

problems. 13

3.1 Ensemble Learning MDP Workflow . 22

3.2 Flowchart for Type Selection MDP . 27

3.3 Flowchart for Network Creation MDP 29

3.4 Modifying the network, bold lines indicate weights which are fixed and

not relearned, fine lines denote the weights which are initialized to pre-

vious values and then relearned while dashed lines denote randomly

initialized weights to be relearned . 31

3.5 Policy learned by the Ensemble Learning MDP from the synthetic datasets 34

3.6 Policy learned by the Type Selection MDP from the synthetic datasets 35

3.7 Policy learned by the Network Creation MDP from the synthetic datasets 36

3.8 Accuracies achieved on test set with generic policy, each point repre-

senting the test accuracy achieved for a single problem in the set of test

problems . 37

3.9 Adaptation rate for concept drift dataset SEA 39

4.1 K-means clusters. Solution without dimension scaling (Left); Solution

with dimension scaling (Right) . 44

4.2 Distance Along a Pair of Constraint Points 46

4.3 Using Reinforcement learning to scale dimensions 47

ix

4.4 K-means clusters for a range of generated problems and constraint sets.

Left figures show the initial clusters and the right figures show the final

clusters after scaling with the learned policy. 52

5.1 General network architecture. (a) Actor network, shaded grey nodes

indicate input nodes while black nodes specify the nodes over which the

constraints are to be applied. (b) Critic network, checkered black nodes

indicate values from constrained nodes with added noise. Shaded grey

inputs and activations of affected nodes used as input to critic network,

the output being the utility for the activations produced 59

5.2 Target-less classification network. (a) Actor network, shaded grey nodes

indicate input nodes while constraints are applied on the output layer

nodes. (b) Critic network, with the input and noisy actor output node

activations as input . 64

5.3 Proposed approach with incomplete target data. (a) Mean-squared error

for the iris dataset, where the green line shows the validation error while

the blue line shows training error. (b) Reward accrued over epochs. (c)

Comparison of the approximated gradient vs the true gradient for a

single sample and a single node over epochs, where the green line shows

the approximated gradient from the critic network while the blue line

shows the true gradient. 67

5.4 Sparse autoencoder networks. (a) Actor network, shaded grey nodes

indicate input nodes while constraint applied on hidden nodes. (b)

Critic network, with input and noisy hidden node activations as input 70

5.5 Proposed form of sparsity. (a) Reconstruction mean-squared error for

thyroid dataset (b) Penalty accrued over epochs 74

x

5.6 Thyroid dataset features. x-axis represents sample activations, y-axis

represents individual nodes, intensity represents value of activations of a

node for the given sample with white being almost one while black denot-

ing non-firing nodes. (a) Proposed lateral inhibition sparsity constraint

approach (b) Traditional KL-divergence sparsity constraint approach . 74

6.1 Mapping MDP M to reduced MDP model M ′, where blocks shown as

circles denote the aggregated states . 81

6.2 Proposed model architecture. (a) Set of encoding networks for state

and action, generative model of MDP in latent space. (b) Discriminator

network differentiates between the true and learned model mapping. . 82

6.3 Rewards achieved by policy defined over latent space. (a) ε − loss for

reducing CartPole problem to 40 discrete latent states. (b) Rewards

over latent policy for solving the CartPole environment using 40 discrete

latent states. (c) Rewards over latent policy for solving the Acrobot

environment using 40 discrete latent states 95

6.4 Mapping continuous observed space to discrete graphical models. (a)

Sample frame for the Cartpole environment, where the state space is

defined with four continuous variables and two discrete actions. (b)

Transition dynamics of the learned latent space with five discrete blocks

and two actions. Transitions for a single action is shown. 96

xi

LIST OF TABLES

Table Page

3.1 Accuracies achieved vs other approaches 38

4.1 Performance analysis of individual policies 53

5.1 Results from incomplete target data vs traditional network with com-

plete target data . 66

5.2 Comparison of the two forms of sparsity 73

6.1 Performance for different block numbers in the latent MDP model . . . 96

xii

CHAPTER 1

Introduction

Reinforcement learning allows extracting suitable priors from many general op-

timization problems. The presented work focuses on traditional machine learning

problems, classification, clustering and representation learning etc., and applies algo-

rithms from the framework of reinforcement learning in order to extract structured

information suitable for transfer in such problems.

Artificial neural networks have been extensively used to solve many machine

learning problems. Recent breakthroughs in deep learning techniques [1] allow neural

networks to be extended to various new application domains. However, many real

world problems do not possess the complete information required by the standard

framework for training such networks. For example, in the case of lifelong learning

systems, many algorithms act in dynamic environments where data flows continuously

as streaming data. Such learning problems exhibit persistent changes in task require-

ments. Many classification problems also face such issues, often termed as a Concept

Drift [2][3] of the task distribution. Concept drift refers to the change in relationships

between input and output data in the underlying problem over time. Samples from

such systems are often not from a strictly stationary distribution. Learned models for

such problems thus become obsolete over time. To address this issue, reinforcement

learning algorithms are used to learn representations that can adapt to the changing

task specifications.

With the advent of large amounts of data, labeled data is usually expensive and

sometimes requires human domain experts to annotate, while partially labeled data

1

is often relatively easier to obtain. Many real world problems are poorly labeled,

often with sparse and partial supervision. Such issues are often termed as Weak

supervision problems and are often faced in constrained clustering problems [4] or

classification problems with partial labeling information [5]. In such cases, robust

representations are required which can capture the underlying structural dependencies

of the task. Learning systems in such situations must be able to learn structured

representations defined by imposing external constraints when available. Learning

structured representations also allows encoding the forward dynamics of a system.

Many real world tasks can share an underlying model that is common across tasks in

the same domain. In such cases discovering abstractions which define the underlying

structural dynamics is beneficial as it adds to the expressive power of the model.

Applying neural networks to such problems requires dealing with sparse feed-

back and being able to learn representations that are robust with respect to tasks

in dynamic environments. This dissertation develops algorithms to address these

requirements by combining reinforcement learning algorithms with artificial neural

networks and applies them to various machine learning problems. Here, reinforce-

ment learning algorithms are used to control various facets of neural network training

and their design, while focusing on hybrid learning techniques where elements from

the reinforcement learning framework are combined with artificial neural networks

for learning representations suitable for transfer.

1.1 Previous Work

A variety of approaches have been developed to address different aspects of the

issues discussed here. Problems with sparse structural constraints such as constrained

clustering problems often require forming a differentiable model for the constraints

which includes clustering quality, leading to a complex overall application with the

2

need for a modified clustering algorithm[6, 7, 8, 9]. Such algorithms, however, are

specific to the type of constraint. In such cases, introducing a new type of constraint

requires a reformulation of the learning algorithm.

Ensemble learning algorithms are often designed for problems with large datasets

with concept drift properties. Such algorithms often maintain a fixed size of the en-

semble or use evolutionary algorithms to build ensemble networks [2, 10, 11]. This

requires randomly re-exploring valid architectures from scratch for any new problem,

which greatly affects the applicability of such algorithms.

Integrating structural information is another issue that often requires hand en-

gineered context appended to the training data. Many constraints in the real world

are often non-differentiable or discontinuous functions. Solving such problems often

involve hill climbing algorithms, or versions of simulated annealing. SMO algorithms

have also been used to solve such problems where the solution is optimized by con-

sidering one variable at a time[12]. Such solutions are often unstable and require

carefully hand engineered hyper parameters[13]. Various neural network architec-

tures have been proposed for discovering hidden structures in data.

Apart from correlation among dimensions, the observed data might also be

spatially correlated. Learning effective representations for sequential data is an active

area of research. In such cases the structures are often modeled outside the network

architecture, using hidden Markov models or graph based modeling algorithms which

encode the temporal structure of the data [14]. These issues indicate that uncertainty

in real world data is an important challenge in various machine learning problems. A

more detailed review of existing methodologies for the individual problem domains

are presented in the corresponding chapters of this dissertation.

Neural networks and Reinforcement learning algorithms have been combined to

form a powerful learning tool that can model various uncertainties in the observed

3

data. Such algorithms are often restricted to the domain of sequential decision making

algorithms. Neural networks are used to learn complex representations from contin-

uous high dimensional datasets, while reinforcement learning algorithms are used to

model sparse feedback and solve problems in dynamic environments. This work exam-

ines various benefits of applying reinforcement learning techniques to other problem

domains where issues of uncertainty arise. The remainder of this section provides

a brief overview of artificial neural networks and reinforcement learning algorithms.

Following this, a brief review of algorithms combining neural networks and reinforce-

ment learning approaches is given.

1.1.1 Neural Networks

Artificial neural networks are a powerful modeling technique that can be used

for representation learning in complex high dimensional input data. Recent break-

throughs in multi-layered neural networks or Deep learning mechanisms [1] illus-

trate the effectiveness of such algorithms at discovering intricate structures in high-

dimensional data extending their application domains to many real world problems.

Deep learning techniques have made major advances in solving complex supervised

learning problems of science, business and government, ranging from image recogni-

tion [15], speech recognition and language modeling [16] [17], predicting the behavior

of new drug molecules [18], and modeling biological systems as in reconstructing brain

circuits [19] and predicting effects of gene mutations [20] [21]. Neural networks are ca-

pable of modeling arbitrarily complex functions in high dimensional continuous spaces

and have been shown to generalize well for unseen data far from the training input.

Furthermore, recent advances in deep learning demonstrate the complex representa-

tion learning capabilities of multi-layered architectures where a typical deep-learning

4

system, might have hundreds of millions of these adjustable weights, and hundreds of

millions of labeled examples for training.

However, neural networks assume some preconditions over the type and distri-

butions of training data allowed. In particular, the training data provided should be

Independent and Identically Distributed (IID) with a fixed underlying distribution,

and requires complete supervision in the form of ground truth or complete gradients

with respect to individual instances in the data. Such requirements are often infeasi-

ble for many learning problems and thus restrict the application of neural networks

to various problem domains where such uncertainties might arise in the observed real

world data. Furthermore, neural network models have no inherent preference for dis-

covering underlying structural information of the data which might prove beneficial

and add to the expressive power of the learned representations. This is an open area

of research where various architectural constraints have been proposed on the hidden

representations in the form of lateral or recurrent connections among nodes. However,

neural networks trained with traditional backpropagation algorithms and its variants

which provide some convergence guarantees for standard feed-forward networks, often

fail to converge when constrained by such recurrent connections.

1.1.2 Reinforcement Learning

The theory of sequential decision problems includes formulations of both de-

terministic and stochastic problems [22]. In such problems an agent interacts with

a discrete time stochastic dynamical system, by observing the current system state

and selecting an action at each time step. Sequential decision problems are pop-

ularly represented by the mathematical framework of Markov Decision Processes

(MDP) in stochastic domains [23]. A Markov Decision Process is defined as a tuple

〈S,A,Ψ, P,R〉, where S is a finite set of states, A is a finite set of actions, Ψ ⊆ S×A
5

is the set of admissible state-action pairs. As = a|(s, a) ∈ Ψ ⊆ A defines the set of ac-

tions admissible in state s, assuming that ∀s ∈ S, As is non-empty. P : Ψ×S 7→ [0, 1]

is the transition probability function with P (s, a, s′) being the probability of transi-

tion from state s to state s′ under action a where s, s′ ∈ S and a ∈ As. R : Ψ 7→ R is

the expected reward function, with R(s, a) being the expected reward for performing

action a in state s.

Decision making problems are a class of Credit Assignment Problems and are

often found in the real world. Solving such problems requires learning from sparse

delayed feedback in stochastic dynamical environments. Reinforcement learning [24],

[25] is a learning paradigm that acquires control policies without the need for extensive

outside supervision. This formulates a framework for reactive control which learns

from interactions with the environment utilizing supervision provided in the form of

simple, scalar rewards and punishments defined by the learning task. Reinforcement

learning algorithms use trial and error exploration to search for solutions to the credit

assignment problem by approximately optimizing the expected reward of the system.

Most reinforcement learning algorithms can be categorized into offline and on-

line learning algorithms. The Q-learning algorithm [26] is an offline model-free re-

inforcement learning approach and is a form of asynchronous Monte-Carlo dynamic

programming. Here, the utility of a state action pair depends on the current observed

reward and the utility of the greedy action choice for the next observed state. Given

an state transition tuple 〈st, at, st+1, rt〉, the Q-learning update step can be defined

as :

Qt+1(st, at) = Qt(st, at) + α(rt + γmax
a
Qt(st+1, a)−Qt(st, at))

Offline Reinforcement learning approaches have the benefit that they can learn from

existing data without the need to explicitly execute the policy to be learned. On the

6

other hand online learning algorithms have several advantages over offline learning

and are potentially more robust to errors or omissions in the training set [27].

Instead of selecting the greedy action for the utility, online algorithms choose

the next state action pair according to the current policy which allows online learning

systems without requiring the storage of previously observed state action utilities.

The SARSA algorithm [28], [29] is a modified connectionist Q-learning algorithm,

where the update step for a given experience tuple 〈st, at, rt, st+1, at+1〉 is defined as:

Qt+1(st, at) = Qt(st, at) + α(rt + γQt(st+1, at+1)−Qt(st, at))

Additionally, reinforcement learning algorithms allow parameterized policies by ap-

plying Actor Critic techniques as policy gradient algorithms [30]. Here, a policy

function is used to model the strategy and updated by estimating a gradient which

optimize the utility. Allowing step updates and assuming an uncertain problem do-

main allow for robust learning algorithms that are suitable for solving many decision

making problems in the real world.

Although rare, reinforcement learning algorithms have also been applied to

problems in other learning domains. For example, in clustering problems [31] where

the clustering problem is formulated as a reinforcement learning problem utilizing the

quality of the cluster as feedback.

Like many learning algorithms, reinforcement learning is also susceptible to

the curse of dimensionality while working on many real world problems that are

usually represented in high dimensional and potentially continuous domains. The

reinforcement learning framework defines various methods for addressing such issues.

For problems with continuous spaces, the states are often aggregated to form an

approximate factored representation of the space [32][29] [33]. In such cases the

representations used need to respect the underlying dynamical system. Apart from

7

discretized state spaces, a latent representation is often learned for the observed

system. Neural networks are most commonly combined with reinforcement learning

algorithms to allow decision making and perform value function approximations in

various real world problems with high dimensional input representations.

1.1.3 Combining Reinforcement Learning Algorithms and Neural Networks

Most existing research combines neural networks with reinforcement learning

algorithms to address issues in the the domain of sequential decision making prob-

lems. Artificial neural networks are used to address the issue of space complexity in

high dimensional, continuous space environments. Recently Reinforcement learning

algorithms have been combined with deep neural networks to solve problems in the

domain of sequential decision making problems. Deep Reinforcement learning algo-

rithms (DEEPRL) [34] have been used to solve many tasks in complex and uncertain

environments. Neural networks are used for function approximation, modeling the

estimated utility of a sample. Deep Q networks (DQN) algorithms which combine

deep learning models with reinforcement learning have been used for increasingly

complex decision problems [35]. Furthermore, artificial neural networks are compat-

ible with policy gradient algorithms which allow estimating gradients for learning a

policy. The DDPG algorithm [36] applies policy gradient algorithms on deterministic

deep networks. Training a critic network which models the feedback, it estimates the

gradients for an actor network which maximizes the feedback.

Reinforcement learning algorithms solve for credit assignment problems with

delayed feedback in uncertain environments. Using neural networks allows solving

complex sequential decision making tasks with high dimensions or in continuous

spaces. Thus the combination of Neural networks and Reinforcement learning al-

gorithms forms a powerful learning technique.

8

Apart from traditional decision problems, the combination of neural networks

and reinforcement learning algorithms have rarely been used to address issues arising

in other learning problems. Recently, attention based mechanisms have performed

extremely well [37] which applies reinforcement learning algorithms to manipulate

the representations learned by a neural network. Here, the REINFORCE algorithm

[38] has been used to decide the focus of attention over frames in sequential data

even though the underlying model is non-differentiable. The agent actively controls

the locations for deploying its convolutional sensor resources and thus influencing the

representations used to reconstruct the data. The extracted attention information

is potentially useful for other tasks in this domain. The algorithms proposed in

this dissertation explore similar applications of reinforcement learning paradigms for

feature learning problems focusing on various forms of uncertainty observed in samples

from real world data. Here, reinforcement learning algorithms are used to impose

control over the learned representation by utilizing some feedback provided by the

task definition.

1.1.4 Summary and Contributions

In order to apply machine learning algorithms to various problem domains, the

challenges posed by uncertainties in real world problems must be addressed. Such

uncertainties might arise from changing task distributions over time, availability of

sparse supervision and from underlying structural correlations which can introduce

bias and instability in learning algorithms. These issues are inherent in the data pro-

vided, and thus can affect many learning problems with real world data. Addressing

such issues requires robust learning techniques which can react to sparse feedback

and underlying dynamics of the data.

9

This work combines reinforcement learning algorithms with artificial neural

networks to solve for such issues. Here, reinforcement learning is used to control the

learning and design aspects of neural networks in machine learning problems such as

classification, clustering and representation learning. This addresses many important

issues of learning problems with uncertain real world data and contributes techniques

to the individual research areas.

For classification problems with large datasets exhibiting concept drift, an adap-

tive ensemble classifier is proposed. Here, Reinforcement learning algorithms are used

to control the architecture of the classifier network, utilizing the solution accuracy as

feedback. This allows adapting the learned representations to task distributions that

change over time. In case of sparse structural supervision in constrained clustering

problems, reinforcement learning algorithms are used to learn a policy that can auto-

matically map the observed space to different representations with respect to different

constraints. Furthermore, in order to discover underlying inter-dimensional correla-

tions in the data, a novel sparse structured coding is proposed. Here, Policy gradient

algorithms are used in order to impose the L0 norm which is a non-differentiable, dis-

continuous constraint objective and learn a structurally sparse, hierarchically related

representation of the input data.

Apart from that, an adversarial network is designed from a model minimiza-

tion framework in reinforcement learning. Here, the proposed architecture learns a

representation which models the underlying dynamics of the observed sequential data.

1.2 Document Overview

In the remainder of this document algorithms are developed which address the

challenges posed by uncertain data in various learning problems. In particular, issues

arising from partial supervision and inherent dynamics of data in clustering, classifica-

10

tion, and representation learning problems are explored. Chapter 2 gives an overview

of the general learning technique used in this dissertation and discusses some of the

main forms of uncertainty in real world data. Chapters 3 and 4 apply reinforcement

learning algorithms to learn adaptive features. Chapter 3 is dedicated to uncertain-

ties arising from interdependent and non-identically distributed (non-IID) input data

in classification problems and illustrates the use of reinforcement learning algorithms

in order to build feature sets that adapt to changing task requirements. Chapter 4

addresses the issues arising from sparse structural constraints in semi-unsupervised

clustering problems. The algorithm described here demonstrates the use of Reinforce-

ment learning techniques for constrained clustering on a given dataset by learning a

policy which can automatically map the observed space to a different feature rep-

resentation depending upon the constraints. Chapters 5 and 6 apply reinforcement

learning algorithms in order to guide representation learning. Chapter 5 discusses

some difficulties arising from partial and discontinuous supervision in classification

and feature learning problems, and illustrates the use of policy gradient algorithms to

address such issues. Chapter 6 formulates an MDP autoencoder architecture which

applies the MDP homomorphism framework to discover underlying latent dynamics

of an observed model. Finally, Chapter 7 concludes the work by summarizing the

various proposed algorithms.

11

CHAPTER 2

Learning in Neural Networks Using Reinforcement Learning to
Address Uncertain Data

This work applies elements of the reinforcement learning framework to con-

trol various aspects of representation learning and design of neural networks. This

extends the application domain of neural networks and allows learning robust rep-

resentations for uncertain and stochastic training data. Contrary to this, current

Deep reinforcement learning techniques [35] learn value function approximations and

control strategies by connecting a reinforcement learning algorithm to a deep neural

network which operates directly on raw input and efficiently estimates the environ-

ment by using stochastic gradient updates. Such algorithms are effectively used to

control the agent in a decision making environment by utilizing neural networks as

function approximators for reinforcement learning algorithms.

Figure 2.1(b) shows a general Deep Reinforcement Learning architecture used

for traditional decision problems, while Figure 2.1(a) outlines the general architecture

followed by the algorithms proposed in this dissertation. This work applies reinforce-

ment learning algorithms in order to extract abstractions in the form of meaningful

priors for multiple machine learning problems. The algorithms proposed here impose

control on the representations learned by a neural network to form robust represen-

tations useful for transfer and address various issues arising from uncertainty in real

world problems.

12

(a) Learning technique used in this work (b) DeepRL architecture

Figure 2.1: (a) Outline of the learning techniques used in this work; (b) Architecture
used by Deep Reinforcement learning algorithms for decision making problems.

2.1 Types of Uncertainty in Data

Reinforcement learning algorithms assume some uncertainty in the observed

data and are thus extensively used in sequential decision making problems. Solving

such problems requires robust algorithms that can adapt to noise and uncertainties

in the real world.

Other learning algorithms also face similar uncertainty issues when applied

to real world data. For example, the availability of partial labeling or imbalance

in datasets are important areas of research in classification algorithms. This work

focuses on three main sources of such uncertainties in data, and proposes various

algorithms which address these issues.

2.1.1 Interdependent and Non-Identically Distributed Input Data

Most Neural Network algorithms assume that the given input data are samples

from independent and identically distributed (IID) random variables. Such assump-

tions imply that the observed data sample does not depend on previous samples, do

not exhibit drifting temporal influence, and are realized from a balanced distribution

with respect to the task. Focusing on classification problems, there are many cases

in the real world where this assumption is often violated. It is often restrictive to

13

gather data that can represent the task perfectly. Many classification problems favor

imbalanced class data, where the training set representation is highly skewed towards

some classes. Such issues are abundant in problems where gathering a balanced dis-

tribution for all classes is often not feasible. Furthermore, with the advent of larger

datasets, real world data is often only available as streaming data, leading to the

need for sampling based algorithms. However, such samples are often temporally

or spatially correlated. In the case of streaming data, the task information might

change as data arrives over time, resulting in a concept drift. Such class distributions

result in poor performances when trained on standard neural network classification

algorithms.

This work proposes an approach that uses reinforcement learning to learn a

policy which can control the architecture of a neural network for any classification

problem. Here, Reinforcement learning algorithms are used to decide the architecture

of the network interactively by utilizing classification accuracy as feedback. This al-

lows the network to learn features that can adapt to changing task requirements. It

utilizes a sampling based approach and builds the learning system incrementally. Fur-

thermore, it can decide to selectively enable or disable parts of the network and allows

learning targeted representations for specific classes. This results in a robust neural

network architecture that takes the current quality of the solution in consideration

and adapts itself to data imperfections and distribution changes.

2.1.2 Imperfect Supervision

Training most learning algorithms requires complete supervision from the sys-

tem. However, only sparse supervision is available for many real world problems.

Sparse supervision problems are characterized as a special case of supervised learning

problems where some samples are provided with extra information regarding their

14

representations, which is not available for the other samples. In the case of con-

strained clustering problems, in addition to the unsupervised distance metric, a few

instance level constraints are provided which enforce cluster memberships of a pair of

instances. These sparse constraints indicate whether two samples should be grouped

to the same cluster or different clusters. Many learning algorithms including tra-

ditional clustering algorithms are ill-equipped to solve for such sparse supervision

problems. Imposing such constraints often requires a reformulation of the learning

algorithm which might not always be possible. This work proposes an approach which

learns a representation to indirectly impose such constraints on a traditional K-means

clustering algorithm. Reinforcement learning is used to model the feedback from the

clustering algorithm and learn a policy which morphs the input representation with

respect to the constraints. Here, the clustering algorithm acts as the environment,

while the agent designs the input representation which optimizes constraint satisfac-

tion as feedback. Using the clusters formed by the stochastic K-means algorithm, it

learns an input representation which results in clusters which satisfy the constraints.

This method allows incorporating sparse constraints directly into a learned input

representation, resulting in a framework where modification of the base clustering

algorithm is not necessary.

In addition to sparse supervision where only a few samples get the complete

supervision, some real world problems only provide incomplete supervision for all

samples. Training artificial neural networks for classification problems requires the

target class in order to compute the gradient with respect to the output class. How-

ever, many problems can only provide a feedback of whether the current solution is

correct or incorrect, without any guidance towards the true target. Such problems

are often termed lock and key prediction problems [5]. In such cases, the true tar-

get is unknown and thus the feedback has no gradient. In this work, a classification

15

problem is designed which provides supervision in the form of a boolean feedback

of either correct or incorrect. The solution for this is trivial for binary classification

problems. However, in case of more than two classes, it becomes a credit assignment

problem. Reinforcement learning algorithms allow modeling such feedback from the

system and solve for such problems. Policy gradient algorithms are used to model

the supervision. When combined with classification problems, such algorithms can

estimate the gradients for the provided incomplete feedback with respect to each class

output.

2.1.3 Underlying Structural Correlations

Neural networks can learn useful latent representations from input data. Such

representations are often accomplished by learning a compressed representation of

the input. However, such representations fail to capture inherent structure which is

often present in real world data. For example, in case of reconstruction problems,

it is beneficial to learn representations which encode correlations between the input

features. In such cases a sparsity constraint is applied as a regularization term,

such as KL-divergence based sparsity constraints, in order to discover some of those

correlations. However, it is sometimes appropriate to enforce more structure on the

latent representation than just sparsity. Structured sparse models encode information

about the dependencies between code words. Enforcing such constraints allows to

control the expressive power of the model without losing reconstruction accuracy.

Structured sparse coding for reconstruction tasks learns representations where

a feature is influenced by activations of sibling features in the hidden layer. Imposing

such constraints, usually termed structural constraints, requires lateral connections

among the nodes in the layer. This results in a complicated, recurrent network

architecture requiring gradient updates for a node to be affected by sibling nodes

16

connected in a distributed fashion. Such architectures increase the computational

overhead and are unstable, often failing to converge to a solution. This shows the

need for algorithms that can enforce such constraints without altering the architecture

of the network. This work proposes a form of structured sparsity influenced by the L0

norm. The L0 norm is defined as the number of non-zero elements in a given vector.

Unfortunately the L0 norm constraint is a discontinuous function which does not have

a gradient anywhere. However, minimizing this constraint results in a sparse coding

which requires as few non zero activations as possible in order to reconstruct a sample.

This constraint thus emulates sparsity in a fully interconnected layer with lateral

inhibitions. Here, Reinforcement learning is applied to influence the representation

learning process in a neural network. This algorithm models the L0 norm as a penalty

term, and estimates gradients in order to impose the constraint as a regularization

term.

Apart from correlations between dimensions, structure in data can also arise in

the form of temporal correlations between samples. In such cases the current observed

sample depends upon the previously observed samples. In such cases, an underlying

dynamics is assumed that can explain the observed data. Structured sequential data

is often present in graph based problems such as learning representations for social

networks, Markov decision making problems and natural language modeling prob-

lems. Reinforcement learning algorithms provide frameworks for minimizing such

models into a latent or factored representation which respects the underlying dynam-

ics of the sampled data. Here, an MDP autoencoder is formulated using the MDP

homomorphism framework, in order to learn latent MDP models encoding the dy-

namics of the model with respect to temporal structural dependencies directly from

observed samples.

17

CHAPTER 3

Incremental Learning of Neural Network Classifiers
Using Reinforcement Learning

3.1 Introduction

With the advent of larger amounts of data in the presence of limited computa-

tional resources there is a significant need for sampling based algorithms, and with

it arises the need for classification algorithms capable of incremental training. How-

ever, traditional algorithms, which are not designed around sampling, usually fail to

scale well to large data sets and are often not suited to situations where only limited

samples of the overall dataset are available at any point in time. The latter arises, for

example, in the case of streaming data where data arises over time and the accumu-

lation of a large data set a priori is infeasible either due to limitations in memory or

computation resources, or due to privacy and data ownership limitations which make

it impossible or inadvisable to store larger amounts of data over extended periods.

Training a classifier with such a dataset, often requires incremental training and thus

necessitates modifications of the existing structure or parameters of the classifiers

to adapt to the changes which arise from concurrent samples, which are usually not

possible for traditional classifiers. In such cases, Ensemble algorithms like boosting

methods with resampling [39] and bagging methods like bagging predictors [40] are

usually better suited as samples differing vastly from the learned distribution may

be handled by different, weaker classifiers. However, training weak classifiers from

samples from a larger dataset often results in an unnecessarily large ensemble leading

to computational costs, and usually decrease in effectiveness [41]. One way to resolve

18

this problem is to choose selective classifiers as members of the final ensemble. This,

however, results in a subset selection problem which is a combinatorial optimization

problem[41].

Apart from this, additional complexities arise in ensemble classifiers if the mem-

ber classifiers are neural networks, which have extra variables defining the structure of

the network. This chapter presents an approach to incrementally learn neural network

ensemble classifiers using a Reinforcement Learning based policy [42]. It shows that

incrementally building classifiers from a small fraction of the overall dataset using

this method achieves comparable performance to kernel SVM while achieving better

results when compared to standard neural network classifiers.

3.2 Existing methodologies

Existing methods to solve the problem of ensemble classifiers for large scale

datasets or streaming data usually involve a variation of online boosting algorithms

[10], training individual member classifiers with randomly sampled data and creating

a mega-ensemble of random forests [43], or integrating the collective results through

meta-learning [44]. In order to avoid a large ensemble [2] maintains a fixed size

ensemble, heuristically computing memberships.

Multiple techniques have been used to address the problem of ensemble mem-

berships with neural network member classifiers, include genetic algorithms to evolve

weights which are used as a metric for ensemble membership [11], tuning the member

classifiers, making them as accurate and diverse as possible [45]. Finally, methods to

dynamically modify the structure of the classifier involve recursively adding nodes as

needed [46] retraining the entire network or learning new features iteratively similar

to a decision tree.

19

3.3 Approach

The proposed approach is divided into three Markov Decision Problems (MDPs).

These MDPs, upon training, will learn policies which, when applied to new classifi-

cation problems build classifiers for them. Given the state of the system defined by

its state attributes, the policy learned for the Ensemble Learning MDP iteratively

decides on the membership of networks in the ensemble for the problem by adding

or pruning networks from the final system. Adding a new network to the system in-

volves creating a new network, a task which is delegated to the Type Selection MDP

policy which determines the type of network to build and then hands construction of

a new network to the Network Creation MDP policy. Given the current state of the

classification process, the policy learned by the Type selection MDP decides upon

the type of member classifier to build, which is either a One-vs-Rest or an All-vs-

All classifier. It is often necessary to be able to choose to build a One-vs-Rest [47]

classifier instead of an All-vs-All if the current system classifies some classes more

poorly than others. This problem usually arises if the training data is highly imbal-

anced, resulting in lower preference of classifying an under-represented class compare

to an over-represented class in the domain. Such problems require special attention,

because the goal of general classification algorithms is to reduce the error function,

which is representative of the error of the dominant class. Upon deciding the type

of network to be created, the task of building the network is delegated to the policy

for the Network Creation MDP. The policy learned for the Network Creation MDP

builds the required network with a small sample of the training set, which may arise

from sampling a large dataset or from streaming datasets. It iteratively decides to

either increase the number of nodes in the current layer or increase the number of

layers in the network. Training the network with a small sample provides the neces-

sary variance for a member of an ensemble of networks. The membership utility of

20

a network thus created is then evaluated by the Ensemble Creation MDP policy for

the final ensemble.

Subtasks defined over other MDPs behave as modules where each MDP policy

solves a part of the whole problem [48]. Subtasks in this system are flattened, which

means that the utility of the overall policy propagates through all the sub-MDPs, thus

the policies learned by the sub-MDPs achieve a global optimum instead of greedily

solving for the local maxima. In this approach, the Type Selection MDP is a subtask

of the Ensemble Learning MDP, and the Network Creation MDP is a subtask of

the Type Selection MDP. Given a state, when the Ensemble Learning MDP decides

to add a new network, the next state is the starting state of the Type Selection

MDP. Similarly in case of the Type Selection MDP, given the current state, upon

deciding the type of network required, the next state is the starting state of the

Network Creation MDP. The final state of the Network Creation MDP transitions to

the Ensemble Learning MDP state. This ensures that the MDPs cooperate to learn

a policy that is globally optimal since the utility of the entire ensemble is propagated

through the sub-MDPs.

3.3.1 Ensemble Learning MDP

Given a classification problem, the policy learned by this MDP builds the final

neural network ensemble classifier. The current set maintains the set of networks

currently considered as members of the final set, while a standby set of networks is

maintained, which consists of networks that were created, but are not members of

the current set. Upon reaching the end of the policy the current set of networks is

considered as the final set.

21

Output Layer

NW 1 NW 2 NW 3

Current Ensemble

Action
Decision

Add NetworkRemove Network

NW 4

NW 5

Current Stand-By Pool

Find Worst
Network in
Ensemble

(equation 2)
(say NW 3)

Remove Worst
Network

And Add to
Stand-By Pool

Type Selection
MDP

Remove Network
From Pool and

Add to Ensemble

Find Best
Network in

Stand-By Pool
(equation 1)
(say NW 5)

Add
Network

To Stand-
By Pool

Get New
Sample

NW6

Network From
Type Selection

MDP

Output Layer

NW 1 NW 2 NW 3 NW 5

Current Ensemble

NW 4

NW 6

Current
Stand-By

Pool

NW 4

NW 5

NW 6

Current
Stand-By

Pool

Output Layer

NW 1 NW 2

Current Ensemble

NW 3

NW 4

NW 5

Current Stand-By
Pool

Train L MERGE
(algorithm 1)

No
Change
for N

Steps ?

truefalse Get New
Sample

Input:
Dataset/Stream,
Empty Ensemble

Output:
Ensemble
Network

Figure 3.1: Ensemble Learning MDP Workflow

3.3.1.1 State Space of the MDP

The state space is defined by two state attributes, Accuracyensemble and

Qualityensemble. To compute the state attributes of the current ensemble configu-

ration, the networks in the current set are merged in a new output layer Layermerge,

which is trained with respect to a sampled training set and the accuracy,

Accuracyensemble is computed from the validation set.

The weights learned upon training the Layermerge layer are used as a measure

for the utility of each network in the current set, along with the quality of the cur-

rent ensemble. If the average of the set of weights in Layermerge for networki is

meanwnetworki , the quality of the current ensemble Qualityensemble is computed as

Qualityensemble =
minnetworki ∈current set(meanwnetworki)

maxnetworki ∈current set(meanwnetworki)

The policy learned with this method maximizes the accuracy of the final solution,

while pruning out networks which do not contribute much to the final solution. This

22

Qualityensemble and the Accuracyensemble are both in the range of [0..1]. The attributes

are discretized into bins in order to reduce the complexity since state values closer to

each other are related and thus can be grouped into a single state.

3.3.1.2 Action Space of the MDP

In order to modify the current configuration of network memberships, the agent

can take two actions which add a new network or remove an existing network, respec-

tively. Adding a new network to the system involves creating a new network using

the policies learned for the Type Selection MDP and the Network Creation MDP

with a small set of samples N’ of the overall set of samples N, and including it in the

standby set, heuristically computing the best candidate network in the set, and finally

appending the best network to the current set. Similarly, removing a network from

the current set involves heuristically choosing the network which might contribute

the least in the final classifier, and subsequently removing it from the current set and

appending it to the standby set for possible future use.

The agent is to decide, given the current state of the system identified by the

parameters Accuracyensemble and Qualityensemble, between the two actions

• Adding a network to the current set.

– Create a new network, appending it to the standby set.

– find the best network to add from the standby set.

– add best network to the current set.

• Removing a network from the current set.

– Find the worst network in the current set.

– remove the worst network from the current set, appending it to the

standby set.

23

After each action Layermerge is retrained and the new state variables are recomputed.

The Ensemble Learning workflow is shown in Figure 3.1.

3.3.1.3 Reward Function

The reward of the system after each action is computed as the change in accu-

racy achieved by the ensemble of networks in the current set over a sampled validation

set.

3.3.1.4 Termination Criteria

The terminating state is achieved if the accuracy attribute in the state space

does not change over consecutive Se actions. This ensures small variance of the

outcome.

3.3.1.5 Choosing the Candidate Network for Addition or Removal

The networks in the standby set are heuristically assessed to identify the best

candidate for inclusion in the current set of networks. Given a set of samples S, let

S’ be the samples mis-classified by the current set. The utility of a network in the

standby set is computed approximately as the degree of eligibility Eligibilitynetworki

of the network in the candidate space.

Eligibilitynetworki(∀networki ∈ current set) =

Accuracynetworki ∗
correctly classified in S ′

samples in S ′

(3.1)

For removal, the network i is assumed to contribute the least in the current

ensemble system and thus is chosen as the candidate for the action of removing the

worst network in the current set.

i = argmin
i

(meanwnetworki) (3.2)

24

3.3.1.6 Training the Layermerge Layer

In order to merge the networks in the current set, the activation outputs of

the last hidden layer of the member networks are merged into a single Layermerge

layer, with a common output layer. The weights of Layermerge define the voting

power of each network, while identifying the least contributing network. When a new

network is added to the current set, before retraining, Layermerge initial weights of

the existing networks are left unchanged, while the Layermerge weights of the new

network are initialized randomly. Similarly, retraining upon removal of a network

involves keeping the Layermerge weights of the networks in the current set unchanged

initially. Layermerge is trained with a small subset N ′ of the entire training set of

N samples. Starting from a previous point in error space This approximates online

batch training of the network with effectively a bigger set of training and validation

samples, while using the small sampled set, thus avoiding the subset selection [49]

and voting [50] problems faced by other ensemble selection methods.

3.3.2 Type Selection MDP

Given a state, the policy learned by the Type Selection MDP, which is a subtask

of the Ensemble Selection MDP, is used to decide between a One vs Rest or an All vs

All network. This is a 2-armed bandit system where, given a state, it chooses between

one of two actions and then delegates the rest of the work to the Network Creation

MDP.

25

Algorithm 1 Train layer L MERGE

WL ← L MERGE Weights

Knew ← Newly Added Network

Initialize Weights :

if NetworkRemoved == true then

WL ← RandomWeights

else if Networkadded == true then

β ← 0.5

∀WL ∈ Knew ← RandomWeights

WO ← ∀WL /∈ Knew

∀WL /∈ Knew ← β ∗WO
Get New Sample: S ← New Sample From Dataset Or Stream.

Train The Layer :

WL ← backprop(WL, S)

3.3.2.1 State Space of the MDP

For a given problem with M classes, let the individual accuracies of each class

be acci ∀i ∈M . The measure of bias towards each class Ci is computed:

Ci = acci/maxi(acci)

This represents the uniformity in classification accuracy for each class in the given

problem. The degree of classification bias towards classes in the current ensemble is

computed as T

T = min(Ci)

and the least accurate class

minC = argmin
i

(Ci) (3.3)

26

M samples
N dimensions
T classes

Action
Decision

Create
One-vs-All

Create
All-vs-All

Input:
Samples From

Ensemble Learning
MDP

No Change To
Sampled Data

Unmodified
Data

Identify
Worst Class
(equation 3)

Modify Sampled Data to
M samples

N dimensions
2 classes (Worst vs Rest)

< form >

Modified
Data

Network Creation
MDP

NW

Network From
Network Creation

MDP

Output:
Network NW

Figure 3.2: Flowchart for Type Selection MDP

T is in the range of [0..1], with value closer to 1 indicating that every class has close

to uniform successful classification rate. The attribute T along with the attribute

Accuracyensemble from the ensemble selection MDP is used as state attributes for the

Type Selection MDP.

3.3.2.2 Action Space of the MDP

Two types of networks are considered by the system, One vs Rest or an All

vs All network. Given a specific class K in the problem with M classes, a One vs

Rest network will give a Boolean output of class K or the rest of the classes in M

27

[47], while the All vs All network will classify among all classes at once, which is

common in case of neural networks. In this case a One vs Rest network is a binary

classifier with minC vs Rest, assuming that this class needs the most improvement.

Given a state, the agent is to decide between two actions, creating a One vs Rest or

an All vs All network. Upon selecting the type, the Network Creation MDP policy

is called as a subtask [48], which builds the network with the sampled dataset. The

Type Selection workflow is shown in Figure 3.2.

3.3.2.3 Reward Function

There is no intrinsic reward defined in this system and the utility of an action

taken is solely the reward propagated from the Ensemble Learning system.

3.3.3 Network Creation MDP

The policy learned by the Network Creation MDP, called as a subtask of the

Type Selection MDP, is used to incrementally build a neural network structure given

the sampled dataset from the overall problem.

3.3.3.1 State Space of the MDP

The network is built incrementally, adding nodes to the current layer or incre-

menting the number of layers by one as required, in an iterative manner. The measure

of accuracy, given the current structure of the network being built and the sampled

dataset, is computed as

ErrorStructure =
samples incorrectly classified

total samples

The error achieved by the structure in the layer previous to the current layer

ErrorStructureCurrentLayer−1 along with the current structure error ErrorStructure , de-

28

Output Layer

Current Network

Input:
Samples From
Type Selection

MDP

Action
Decision

Add New Nodes
to Current Layer

Add
New Layer

Output Layer

Current Network

Output Layer

Current Network
Train New

Nodes’\Layer
Weights

(algorithm 2)

No
Change
for N
Steps ?

falsetrue
Output:

Newly Created
Network NW

Figure 3.3: Flowchart for Network Creation MDP

fine the two state attributes of the system. ErrorStructureCurrentLayer−1 and

ErrorStructure both are in the range of [0..1]. As before the attributes are discretized

into bins in order to reduce the complexity, assuming that state values closer to each

other are related. Initially, a layer with numnodes = min(D,M) nodes, where D

is the number of dimensions of the input and M is the number of outputs in the

problem nodes, is added while ErrorStructureCurrentLayer−1 is being set to one.

29

3.3.3.2 Action Space of the MDP

Extending the structure of the network can be achieved in different ways, one

being to increase the number of nodes in the current layer by adding a set of V nodes

at each time to the layer. A neural network with one hidden layer is capable of

finding the solution to any given problem, however multiple layers find more complex

features as combinations of features from the layers below, which are necessary to

better define the problem at hand. While adding a new layer iteratively, the accuracy

of the network will drop dramatically if the new layer has too few nodes compared

to a previous layer with many nodes, which would in turn discourage multiple layers.

Thus a new layer with H nodes with H = min(VCurrentLayer,M) where VCurrentLayer is

the number nodes in current layer is added while incrementing the number of layers

in the structure by one. Thus given the state of the system the agent can choose

between two actions,

• Adding a new set of V nodes to the current layer.

• Adding a new layer with H nodes.

Figure 3.4 shows the basic mechanics of the two available actions on a simple

example network. The overall Network Creation workflow is shown in Figure 3.3.

3.3.3.3 Reward Function

The reward of the system after each action is computed as the change in error

ErrorStructure achieved taking the action.

30

(a) Adding a new set of nodes to the current
layer

(b) Adding a new hidden layer on top
of the current layer

Figure 3.4: Modifying the network, bold lines indicate weights which are fixed and not
relearned, fine lines denote the weights which are initialized to previous values and
then relearned while dashed lines denote randomly initialized weights to be relearned

3.3.3.4 Termination Criteria

The terminating state is achieved if the ErrorStructure attribute in the state

space does not change over consecutive Sn actions. This ensures minimal variance of

the outcome and overcoming possible plateaus in the error space.

3.3.3.5 Training the Network

The goal of the network formation system is to incrementally identify the fea-

tures required for the classification problem. Upon taking either action, the features

already learned by the current structure are not relearned. Thus adding a new set

of nodes as shown in Figure 3.4(a) to the current layer only requires the learning of

input weights to the new set of nodes keeping the input weights of the old features

fixed. The output weights of the layer comprised of the older and newer nodes are

relearned since the output weights represent the contribution of each feature in the

31

classification problem, which changes given any change to the feature set. In order

to approximately start in the same locality of the error space and forcing the output

to be more stable, the output weights of the existing set of nodes in the new layer

along with the bias weight are initialized to the last learned values, while the input

and output weights with respect to the new set of nodes in the layer are randomly

initialized. On the other hand, adding a new layer to the structure as shown in Figure

3.4(b), requires the learning of both the input and output weights of this new layer,

which are initialized randomly.

In order to counteract further instability in the form of oscillations in the out-

put accuracy, which results in a poorer network, the network prior to the onset of

oscillations is returned as a solution to the problem.

In order to reduce computational complexity, this system does not prune out

nodes which perform poorly, as extraneous nodes do not hinder the classification

criterion. Additionally, pruning unwanted nodes would result in wasted time over a

network which might possibly never be considered as part of the final ensemble.

Algorithm 2 Train new node or layer

WN ← WeightsOfTheCurrentNetwork

S ← Samples From Type Selection MDP

Nnew ← New Nodes

Freeze Old Weights : Freeze(∀WN /∈ Input, OutputNnew
)

Initialize Weights : ∀WN ∈ Input, OutputNnew
← RandomWeights.

Train New Node Weights : WN ← backprop(WN , S).

32

3.4 Experiments

The MDPs were trained with SARSA which is an online Reinforcement Learning

algorithm [29], while the state attributes of the Ensemble Learning, Type Selection,

and Network Creation MDPs were discretized into bins of size 0.06, 0.2, and 0.03,

respectively, while the criteria for stopping was set as observing a state in the En-

semble Learning and Network Creation MDPs consecutively for four times. The first

set of experiments were done with synthetic datasets to compare the performance of

the proposed approach which has access to a small sample of the entire dataset at

any given time, to existing algorithms which had access to the entire dataset. An-

other experiment was done to evaluate the performance of the proposed approach to

existing real world problems. The final experiment over a standard synthetic dataset

(SEA) was done to evaluate how fast the propsed approach adapts to datasets with

concept drift.

3.4.0.1 Synthetic Dataset

Problems for training, validation and testing were pseudo-randomly generated

as multivariate Gaussian distributions. The number of instances in the dataset be-

ing in the range of 2500 to 4000 samples in each problem with 65% used for train-

ing. The amount of samples N ′ for building the member networks was set to 500

samples. The performance results of optimized kernel SVMs computed using the

libSVM, C-SVM algorithm and standard neural networks with varying predefined

structures trained on the full dataset, were used as benchmarks to compare the re-

sults obtained in this work. In the case of standard neural networks the maximum

accuracy achieved by the five predefined structures were used for comparison, S =

{{1200, 800, 300, 100, 30}, {700, 500, 200, 50}, {500, 300, 200, 100, 30}, {200, 150, 70, 50},

{100, 70, 30, 15}}, where Si defines the number of nodes in each layer. For example

33

S1 defines a network with 5 layers and 1200, 800, 300, 100, 30 nodes in each layer,

respectively.

This set of diverse training problems was randomly partitioned in a training

and test set with 50% of the problems used for learning the MDP policies and the

rest for evaluation.

Figures 3.5, 3.6, and 3.7 show the learned policies for the individual MDPs.

Once learned, these policies are used to build and maintain the network architecture

for the various problems in the evaluation set.

Figure 3.5: Policy learned by the Ensemble Learning MDP from the synthetic datasets

Figure 3.5 shows the policy of the Ensemble Learning MDP. Here, the red

dots indicate states where a new network is added to the current ensemble, while

blue dots indicate states where an existing network is removed from the ensemble.

The Ensemble learning policy removes networks from the ensemble when either the

34

Quality or Accuracy of the ensemble degrades. Thus removing obsolete networks

from the system, and allowing creation of better sub-networks.

Figure 3.6: Policy learned by the Type Selection MDP from the synthetic datasets

The Type selection MDP decides over the type of classifier to be created. Figure

3.6 shows the policy for this MDP. Here, blue dots show states where the optimal

policy is to create an All − vs − All network, while red dots show states where

Worst − vs − Rest are created. This policy shows an interesting aspect, where the

agent prefers to create Worst − vs − Rest networks when the ensemble has a high

classification accuracy, while a few classes perform poorly. In such situations it is

intuitively better to create targeted classifiers in the form of One−vs−All classifiers.

Finally, Figure 3.7 shows the policy learned for the Network Creation MDP.

Here, states with green dots show states where the agent adds new node(s) to the

current layer of the network, blue dots show states that add a new layer to the network,

35

Figure 3.7: Policy learned by the Network Creation MDP from the synthetic datasets

while, red crosses depict states not seen during training. This policy shows that the

agent in most situations prefers to add new nodes to a layer rather than adding

a new layer. However, it also identifies situations where it extends the network by

adding layers, in particular at the edges of the encountered errors when the differences

between layer errors are largest.

Figure 3.8 shows comparison of the accuracy of the proposed method for each

of the test problems, with (a) comparing with the kernel SVM and (b) showing

the comparison with the single neural network. This data shows that while there

is no significant performance difference compared to the SVM classifier (p > 0.08),

it performs significantly better on average than the best neural network classifier

(p < 0.01). This is particularly significant considering that both SVM and neural

network classifiers had access to the complete training sets while the ensemble learner

36

only had access to consecutive random samples of 500 points both during policy

learning and classifier formation.

(a) Accuracy compared to SVM (b) Accuracy compared to pre-defined net-
works

Figure 3.8: Accuracies achieved on test set with generic policy, each point representing
the test accuracy achieved for a single problem in the set of test problems

3.4.0.2 Real World Dataset

Experiments were performed on real world streaming datasets and compared

to existing approaches. Table 3.1 shows the comparison of the proposed method

against existing approaches [51, 52, 53] for imbalanced datasets and datasets that ex-

hibit concept drift properties, presented as streaming datasets. The policies learned

by the system trained previously with the synthetic datasets was used to evaluate

performance on four real world datasets called poker-hand, forest covertype, shut-

tle datasets from the uci repository, airlines dataset from the MOA repository and

another standard synthetic dataset (SEA).

Poker Hand dataset is an example of an imbalanced dataset where the train-

ing set representation is highly skewed towards few classes. Additionally there is a

concept drift in the dataset, however the point of drift is unknown. Since the point

37

of drift is unknown this dataset achieves a poor performance when evaluated in a

streaming environment compared to classifiers which have access to the full dataset.

It consists of 1, 000, 000 testing and 25,010 training instances with 10 attributes. A

sample size of 4,000 was used to train the new networks. The results were compared

to posted accuracies by [51].

Forest Covertype dataset consists of 581,012 instances with 54 attributes

and has been tested in benchmarks for the evaluation of streaming data classification.

A sample size of 3,000 was used. The results were compared to posted accuracies by

[52].

Shuttle dataset is another imbalanced dataset where 80% of instances belong

to a single class. It consists of 58,000 instances with 9 attributes. A sample size of

2,000 was used. The results were compared to posted accuracies by [53].

Airlines dataset consists of 539,383 instances and 7 attributes with 2 classes.

A sample size of 3,000 was used. The results were compared to posted accuracies by

[51].

Dataset Accuracy of proposed method Accuracy posted
elsewhere

Poker hand 59.11% 52.00% [51]
Forest Covertype 75.03% 70.52% [52]
Shuttle 98.42% 95.33% [53]
Airlines 63.66% 60.74% [51]

Table 3.1: Accuracies achieved vs other approaches

Table 3.1 shows that the proposed method performs better compared to existing

approaches on streaming data.

SEA dataset [2] is a synthetic dataset with 3 attributes whose values range

from 0 to 10 and two classes. The data is divided into four blocks representing different

38

concepts. There are a total of 2, 000, 000 instances generated. The concept of a block

is defined as the membership of instances to the two classes as a function of the first

two attributes attribute1 + attribute2 ≤ θ while the third is irrelevant. The threshold

θ dictates the concept of the block. The θ values used were 8,9,7 and 9.5 which was

used to evaluate performance of the proposed method in case of concept drift. The

approach was evaluated with a dataset from the SEA generator. Additionally 20%

noise was also added to the system. This dataset simulates concept drifts in a system

with streaming data. Figure 3.9 shows how the ensemble adapts to abrupt changes in

concept. The proposed method performs extremely well in this scenario and adapts

to the drift in the iteration after the drift is observed.

Figure 3.9: Adaptation rate for concept drift dataset SEA

39

3.5 Conclusion

This proposed approach presents an adaptive ensemble learning technique which

incrementally builds the neural network classifiers. This algorithm first learns policies

to construct networks using Reinforcement Learning and then uses them on a new

problem to build a classifier. In both processes, learning uses incremental, small

samples of the training data, making it applicable to streaming data as well as to

very large data sets. Experiments show that incrementally building classifiers from

a small fraction of samples of the overall larger dataset achieves comparable results

to traditional classification algorithms trained with the entire data set. Furthermore,

experiments evaluating the performance on real world datasets and the SEA dataset

illustrate the approach’s applicability to streaming datasets and datasets with the

concept drift properties.

40

CHAPTER 4

Semi Unsupervised Clustering Using Reinforcement Learning

4.1 Introduction

Clustering of data into groups is an important task to perform dimensionality

reduction and to identify important properties of a data set. A wide range of algo-

rithms for clustering have been devised that all use some similarity measure that is

built into the algorithm to establish groupings of the data with a range of properties

[54]. For a given clustering problem, with a set of samples with dimension d, all these

clustering algorithms would usually cluster the data based on the built-in similarity/

distance measure, attempting to maximize the distance between the clusters while

minimizing the variance within the individual clusters. However, if some sparse in-

formation about the desired properties of the grouping of the input data is provided,

traditional clustering algorithms fail to utilize such information and often require a

reformulation of the algorithm. The need of semi-unsupervised clustering arises, for

example, in data sets with large numbers of attributes where most of the attributes

are not semantically relevant but will dominate any distance metric (due to their

number), used by traditional clustering algorithms. In these cases, sparse informa-

tion regarding the quality of clusters or regarding relations between a small number

of data points might be available which could be used to modify the cluster formation

process. For example, given a set of data points for cars that are to be clustered for

subsequent use in performance characterization, secondary attributes such as color,

year, registration state, etc, might lead to clusters that do not have desired charac-

teristics. In these cases, sparse feedback either from a subsequent task or provided

41

as sparse feedback on the membership of some samples and their respective clusters

could be used to improve the clustering results.

Semi unsupervised clustering formalizes a type of sparse constraints which might

be applied to a clustering problem [55], thus allowing constraints on the input data

in order to direct the clustering algorithm towards an answer which satisfies given

constraints. This framework defines two possible types of constraints, same cluster

constraints which indicate that points should be in the same cluster, and a different

cluster constraints which indicates that points should be in different clusters. These

constraints are often called must−link and must−not−link constraints, respectively,

each constraint being defined over a pair of points in the problem set. Same cluster

constraints state that for a given pair of points, their cluster membership should be of

the same cluster. Similarly for different cluster constraints over a pair of points, the

points should lie in different clusters. Note that this in no way specifies the cluster

which a point should lie in but only identifies whether two points should or should

not belong to the same cluster.

Given the input samples, it is often not possible to cluster the data according to

the constraints in their original feature space using unmodified distance measures as

indications for similarity. Thus we have to modify the feature space, usually by scaling

the dimensions, so that an unmodified clustering algorithm is able to cluster based on

it’s own distance and variance constraints. In order to solve this problem, this work

presents a novel approach [56] which, at first, learns a policy to compute the scaling

factors using Reinforcement learning from a set of training problems and subsequently

applies the learned policy to compute the scaling factors for new problems. The goal

here is that by working on the scaled dimensions, the traditional clustering algorithm

can yield results that satisfy the constraints.

42

4.2 Existing Methodologies

Existing methods to solve the problem usually include a regularization term

in the cluster optimization criteria, therefore, redefining the goal of the clustering

algorithm in order to include the satisfaction of the given constraints. Using this reg-

ularization term [6], these approaches then perform the clustering algorithm within

an expectation maximization framework [7] in order to solve for both the constraint

satisfaction and the similarity optimization [57, 8, 9]. For such methods one must,

along with satisfying the constraints, also satisfy the cluster validity requirements,

leading to a complex overall application with the need for a modified clustering al-

gorithm, yielding a framework that is limited to the specified constraint types [58].

Additionally, constraints often contain misleading information, which results in the

miscalculation of the final cluster. To solve this problem, a subset of constraints are

selected from the entire set as shown in [59] to achieve the required grouping.

4.3 Approach

Consider the set of sample data shown in Figure 4.1(a) that is originally gen-

erated from four distinct distributions (A,B,C,D), to be grouped into two clusters.

When a traditional clustering algorithm is applied on the data, it clusters the data

into (A,B) and (C,D) as shown in Figure 4.1(b).

However, if constraints are provided over the data points indicating that some

points in A and C should be clustered together and so should some points in B

and D, a midification is necessary. In order for the unmodified clustering algorithm

to produce the desired result, morphing the input representation is required. For

example, scaling the data along the x-axis, increases the importance of similarity

along the x-axis while keeping the y-axis variance the same. This would force the

43

(a) Original Data Resulting from Four Dis-
tributions A,B,C,D colored red,cyan,blue and
yellow respectively

(b) Data Clustered Using Traditional Clus-
tering Using Cartesian Distance

(c) Clustering of Re-Scaled Data with the
data expanded along the x-axis by a factor
of 5

Figure 4.1: K-means clusters. Solution without dimension scaling (Left); Solution
with dimension scaling (Right)

clustering algorithm to now group the data into (A,C) and (B,D) as shown in Figure

4.1(c) which, in order to satisfy its own distance and variance optimization criteria,

additionally also satisfies the point constraints. The constraints given to the system

are often the result of human feedback, and are thus prone to conflicting constraints.

Additionally, solving every constraint simultaneously in an analytic fashion would be

computationally expensive.

44

Thus an iterative approach is taken, wherein reinforcement learning is applied.

At each iteration an individual constraint, i.e., a constraint over a pair of points of

either same cluster or different cluster type is chosen and the dimensions are scaled

accordingly in order to better satisfy the given constraint.

For a same cluster type constraint, the dimensions are to be scaled in such

a way that the distance between the two points is reduced. This is achieved by

shrinking the dimension along which they are farthest apart. Similarly for a different

cluster type constraint the dimensions are to be scaled in a way that increases the

distance between the two points. This is achieved by expanding the dimension along

which they are the closest. Thus as shown in Figure 4.2 for the two constraint points

connected with a solid dark line, in case this is a same cluster type constraint the

x-axis is shrunk because the points are farthest apart along this dimension; however

if the constraint is of different cluster type, the y-axis would be expanded, since the

points are closest along that dimension.

Instead of scaling a single dimension at a time a subset of the dimensions might

be scaled simultaneously, i.e., for shrinking a subset of dimensions might be chosen

that have the highest distances, and vice versa for the different cluster constraint

type. If the dimensions along which scaling is performed are the same as those of the

original inputs, the number and forms of the potential final clusters are limited. For

example, in a two dimensional scenario, the final clusters formed with two clusters

can only be separated along the axes. However, converting the input dimension to a

kernel space with a distance metric to each point, the scaling process has more de-

grees of freedom as it can scale along a much higher number of dimensions, resulting

in a more complicated and nonlinear separation plane with the caveat that it is much

more computationally expensive to perform clustering and scaling in the resulting

dimensions. To trade off the computation complexity versus the desired higher com-

45

Figure 4.2: Distance Along a Pair of Constraint Points

plexity of the solution, the space is projected onto a higher dimension using kernels

but only use the constraint points given as points along which the similarity metric

of the kernel space is computed. A radial basis function (RBF) is used as a kernel

function [60], which allows the kernel function to have a local property where points

closer to each other should behave similarly. Thus, for input data with m samples

and d dimensions, the data samples are represented in a d + 2 ∗ c dimensional space

where c is the number of constraints provided, each specifying a pair of points over

which the constraint is defined. In general, this is a much smaller number than the

number of samples m. Since the new dimensions are functions of the distances from

the constraint points, points closer to such a point lie closer together. For example,

given a set of 10 dimensional data of 100 points and eight constraints, the resultant

space after conversion would be of 26 dimensions where the 10 features in the original

input are concatenated with the 16 new features computed, where the similarity met-

46

ric of the kernel is only computed with respect to the points in the constraints. This

allows the shrinking or enlarging in the kernel space along a dimension to be applied

more heavily to points closer to the pair of points in the constraint being satisfied.

Figure 4.3: Using Reinforcement learning to scale dimensions

Figure 4.3 shows an overview where reinforcement learning is used to guide

the clustering process. Upon mapping the dataset onto the new feature space, the

new dimensions are scaled using a Markov Decision Process (MDP) policy learned

by the Reinforcement Learning algorithm and subsequently a traditional clustering

algorithm is applied on the new feature space, which now achieves the desired clusters.

4.4 Learning the Similarity Function

To apply Reinforcement Learning to the learning of the effective scaling of

the feature dimensions, an MDP is defined that uses two state variables, namely, the

accuracy for same cluster constraints and the accuracy for different cluster constraints.

Since the variables are continuous, the state space is discretized into bins of size B.

47

It should be noted that, as with all such discretizations, the choice of discretization

level is a trade-off between the fine grained accuracy of the current state status and

the computation complexity of the algorithm.

State Space of the MDP : To compute state attributes, constraints are divided

into two groups, ones that are satisfied in the current clusters and ones that are not.

For the ones that are not satisfied, a degree of them being satisfied is calculated. This

degree is used as a metric to identify how close to satisfied a constraint is. Using a

probabilistic view on cluster membership, the probability of a point, x, being in a

cluster, Ki, is defined as

P (Ki|x) =
distance(x,Ki)∑
j distance(x,Kj)

The degree of a same cluster constraint, Cj,k, being satisfied is a function of the

probabilities of the two member points, xj and xk, in the constraint. For each cluster,

the likelihood of them lying in the same cluster, Ki, is defined as

P (Ki|Cj,k, type(Cj,k) = same cluster) =

P (Ki|xj) ∗ P (Ki|xk)

and the degree of a same cluster type constraint to be fulfilled is then calculated as the

maximum product of the probabilities for each point regarding every cluster. Thus

the degree of a constraint being satisfied is the maximum likelihood for any class that

both points are in that cluster. The maximum (rather than the sum) is used here to

achieve a stronger tie across multiple constraints containing the same data point since

it forces a single cluster to be picked for each constraint. Similarly, for a different

48

cluster type constraint, Cj,k, the probability of a point belonging to cluster Ki while

the other does not, is defined as

P (Ki|Cj, k, type(Cj,k) = different cluster) =

P (Ki|xj) ∗ (1− P (Ki|xk))

and the degree of the constraint to be satisfied is again calculated as the maximum

across all clusters of this probability. The accuracy of a constraint type as a state

variable is defined in Equation (4.1).

Pt(satisfied) =
#satisfied constraints of type t

#constraints of type t
(4.1)

Accuracyt =

Pt(satisfied) + (1− Pt(satisfied))∗

Ei∈unsatisfied of type t[P (Ki|Cj,k, type(Cj,k) = t)]

(4.2)

This results in two state attributes, Accuracysame cluster and Accuracydifferent cluster,

which are both in the range of [0..1]. The attribute is then discretized into bins of

size B in order to reduce the complexity since state values closer to each other are

related and thus can be grouped into a single state, the size of the group determined

by the bin size B.

Action Space of the MDP : Given the degrees of satisfaction of the individual

constraints of any type, the unsatisfied constraints closest to satisfaction and the

constraints farthest from satisfaction are identified, i.e. for each constraint type the

unsatisfied constraints with the highest and the lowest probabilities are selected.

There are 4 actions which the agent can take in every state in order to satisfy the

constraints.

• For same cluster constraint type, fix unsatisfied constraint farthest from satis-

faction

49

• For same cluster constraint type, fix unsatisfied constraint closest to satisfaction

• For different cluster constraint type, fix unsatisfied constraint farthest from

satisfaction

• For different cluster constraint type, fix unsatisfied constraint closest to satis-

faction

Upon choosing the specific constraint to fix, the dimensions to scale are chosen.

For same cluster constraint type, a subset of the dimensions with the highest distance

is selected and scaled down, bringing them closer in the new feature space. Similarly

for different cluster type, the dimensions with the lowest distance are selected and

scaled up, pushing them farther apart.

Reward Function : The reward function is simply defined as the improvement in

the satisfaction of the constraints as measured by the sum of the difference between

each of the two accuracy variables of the new state and the current state.

Goal State or End Criteria : The goal state is defined as the state where all

the constraints are satisfied. However it is often not possible to reach this state

due to many factors like human error in constraint selection or other contradicting

constraints. Thus, the condition where the state does not change for a given fixed

number of steps is allowed as a termination condition.

4.5 Experimental results

Problems for training, validation and testing were pseudo-randomly generated

as multivariate Gaussian distributions. Parameters controlling the individual cluster

size, number of distinct clusters, mean and co-variance of each cluster, along with

the number of input dimensions were seeded randomly, with a range of 400 to 800

50

samples in each problem. Furthermore, a set of constraints for each problem were

randomly chosen from the data points. Reinforcement learning was used to learn 5

different policies over a set of 70 training problems. Subsequently, the policies were

used to compute the dimension scaling factors for 30 test problems similar to their

respective training problems which were unseen during the policy learning phase.

For the experiments, a bin size of 0.05 was chosen, i.e. state variable values

are discretized into the accuracy intervals [0..0.05), [0.05..0.1), ..., [0.95..1]. For the

actions, scaling steps of 0.7 and 1.3 are chosen. For same cluster constraints the top

third of the dimensions with the highest distance are scaled down by multiplying the

dimensions by 0.7, and for different cluster constraints the bottom third dimensions

are scaled up by multiplying the selected dimensions by 1.3. The algorithms used were

K-means clustering [61] for the clustering process and SARSA[28] as the reinforcement

learning algorithm [24] for training the MDP.

The policies were trained with problems similar to each other with respect to the

number of dimensions in the original dataset and the number of proposed constraints

on the problem. Finally a policy was also trained with a broad range of problems,

for comparison with the performance of the other specialized policies.

Figure 4.4 shows the result of a cluster output of K-means on the original

dataset and the output upon scaling the dimensions using the policies learned. Red

lines indicate different cluster type constraints while green lines indicate same cluster

type constraints. Figures 4.4(a-d) are solutions to four 2-dimensional problems, each

with 10 constraints. Although, a few constraints might be contradictory, the pro-

posed approach is able to learn a representation which satisfies most constraints. By

contrast, Figure 4.4(e) is a 20-dimensional clustering problem, the solution to which

was mapped to 2 dimensions using t-sne [62] for visualization. Table 4.1 shows the

performance of the individual policies on 30 test problems and the range of dimen-

51

(a) problem with 2 potential clusters, left:
initial clustering has 3 satisfied constraints
right: the final solution is able to solve for 7
out of 10 constraints

(b) problem with 4 potential clusters left:
initial clustering has 4 satisfied constraints
right: the final solution is able to solve for 8
out of 10 constraints

(c) problem with 2 potential clusters left:
initial clustering has 4 satisfied constraints
right: the final solution is able to solve for 8
out of 10 constraints

(d) problem with 3 potential clusters left:
initial clustering has 3 satisfied constraints
right: the final solution is able to solve for 7
out of 10 constraints

(e) Solutions for 20-dimensional dataset
mapped to 2 dimensions using t-sne for vi-
sualization

Figure 4.4: K-means clusters for a range of generated problems and constraint sets.
Left figures show the initial clusters and the right figures show the final clusters after
scaling with the learned policy.

52

sions and constraints learned upon. Policies 1− 4 are learned on specific types while

policy 5 is a generic policy.

policy # dimensions # constraints % satisfied
1 2 - 7 4 - 10 81.2%
2 5 - 10 20 - 25 84.8%
3 7 - 15 20 - 25 72%
4 15 - 20 10 - 15 73.33%
5 2 - 20 10 - 25 40%

Table 4.1: Performance analysis of individual policies

Since the constraints were randomly generated, it is often impossible to solve

for all of them because of conflicting constraints. However, the solutions computed

from the policies above solve for the highest possible number of constraints while

maximizing the accuracy of unsatisfied constraints as shown in Equation (4.2). Table

4.1 also shows that policies learned for a specific type of problem (policies 1 to 4)

perform much better than a generic policy (policy 5).

4.6 Conclusion

The proposed framework shows that semi-unsupervised clustering is possible

by re-mapping and scaling the original input dimensions, without modifying the clus-

tering algorithm. Thus, this method can be applied to any traditional clustering

algorithm. Additionally experiments show that performance of the generic policy is

poor compared to policies from specific types of problems.

53

CHAPTER 5

Training Neural Networks with Policy Gradient

5.1 Introduction

A neural network is a powerful modeling tool which has the ability to ap-

proximate arbitrarily complex functions, provided the optimization function has a

gradient. However, it falls short if the function to be optimized does not have an

inherent gradient or if the function to be optimized is a black box where the equation

is unknown.

There are many problems where such scenarios are evident. For example, In a

classification task where instead of the target, a function outputs if the classification

was correct or not. Traditional classification neural networks fail to work in these

situations where a target is not explicitly specified,.

A similar problem arises where lateral inhibitions on a sparse autoencoder are

to be imposed on the features. Imposing such constraints, usually termed as struc-

tural constraints, is difficult since they require lateral connections among the nodes

in a particular layer. This results in a complicated, recurrent network architecture

requiring gradient updates for a node to be affected by sibling nodes connected in a

distributed fashion. However, imposing such a constraint without lateral connections

among the hidden nodes is not possible as the gradient is non-computable without

the error and activation information from the neighbor nodes.

The proposed method solves such problems where the gradient is non-differentiable

or simply non-computable by modeling an approximate smooth representation of the

54

optimization function, and subsequently deriving the gradient from that approxima-

tion instead.

A similar gradient problem is present in the case of solving reinforcement learn-

ing problems with neural networks where there is no inherent target but only a system

of rewards which is a qualitative utility of the output. In this case a secondary critic

network is used to approximate the gradient of the system of rewards with respect

to the output actions at each state. This method is called policy gradient where

one network learns which actions to take while another network approximates the

required gradient of the rewards with respect to the output actions[63].

The proposed method uses a modification of the policy gradient algorithm and

represents the problem as a context based n-armed bandit problem in order to enforce

the non-differentiable or non-computable constraints from a system of rewards. The

functions are considered to be a black box, modeled in a critic network where the

state is the input sample and the actions are the activations from nodes on which

the constraint is to be applied. The constraints are represented as a reward function

which is modeled by the critic network. Given any reward function which might be

non-differentiable the critic network learns a smooth approximation of the constraint.

The gradient of the output of this network with respect to the activations is then fed

into the actual actor network.

Experiments carried out show that the proposed method is able to solve prob-

lems which impose arbitrary structural constraints on the networks in addition to

minimizing the reconstruction error. Additionally it is shown that it is able to solve

multi-label classification problems without an actual target but with a correct or

wrong outcome indicator. Finally, a novel form of structural lateral sparsity is in-

troduced which results in much sparser representations without degrading the recon-

struction error. Lateral inhibitions are shown to learn more concise and an order of

55

magnitude sparser features with better generalizations compared to traditional KL

sparsity[13]. However, this form of sparsity is rarely used in the real world due to

their high computational complexity and complex architecture design. The proposed

approach negates the need for interconnected nodes in the hidden layer for lateral

inhibitions, thus reducing the complexity, while learning better laterally sparse fea-

tures, thus facilitating their use in real world applications which was not possible

earlier.

5.2 Existing Methodologies

Non-differentiable constraints are usually optimized by converting the function

into a multitude of convex piecewise linear functions or solving the function with a hill

climbing algorithm like simulated annealing. The function is then solved based on the

piece the function currently lies on [64]. However, this is not possible for functions

like the L0 norm which do not have a gradient for any piece. On the other hand

solving such constraints using simulated annealing is infeasible for higher degrees of

freedom of the constraint.

Another approach to solving such problems is to consider one variable at a time

of the constraint and solve for it using sequential minimal optimization (SMO)[12].

The constraint is formed as a dual problem, for example using Moreau-Yosida regu-

larization [65], for the SMO algorithm.

Existing methods of imposing a sparsity constraint involve forcing a feature

to fire as few times as possible for all samples [66]. KL-divergence between the

current average activation and a given target average activation is used to compute

the gradient for the sparsity constraint. However, another type of sparsity in the

form of lateral inhibitions is often imposed. This form of sparsity tries to minimize

the number of active features required to reconstruct a sample.

56

Existing methods achieve laterally inhibited sparse features using lateral con-

nections among nodes in a hidden layer [13]. Such connections are needed in order

to share information about which nodes have fired in the locality. The gradient for a

feature node is computed with respect to the laterally connected nodes. Although re-

sulting in a tighter and more compact representation of the data, it is computationally

expensive and requires a complex network architecture. Thus, only a few neighbor

nodes are locally connected in order to reduce the complexity while retaining some

lateral sparsity information.

5.3 Overview of Reinforcement Learning, Actor-Critic, and Policy Gradient

Reinforcement learning is a class of algorithms which learn decision making

systems[67]. Given a state, which represents the current status of the problem, an

agent needs to learn which action to take in order to maximize a reward function.

However, the agent does not know the correct action for each state and has to learn

this from intermediate or delayed rewards, possibly at the end of the entire sequence

of actions. The agent learns the best possible action to take by randomly exploring

all actions for the states and computes a utility value for each state action pair. This

utility function is known as the value function. This utility value is then used to

determine the best action to take at each state.

There are many Reinforcement learning algorithms which are used to learn this

utility value or Q-value. The SARSA algorithm [29] updates a Q-value for a state

action pair as a function of the reward for the current state action pair, and the utility

of the next state and action to be taken [29]. This is known as the Bellman equation.

Q(St, at) = Q(St, at) + α(R(St, at)

+γ(Q(St+1, at+1))−Q(St, at))

(5.1)

57

To solve such a system, which inherently does not have a gradient towards the best

possible action, using neural networks, the policy gradient algorithm is used [68] [69].

This method, uses an actor-critic model, where the actor learns the best action to

take as an output for a given input state [70]. The actor network learns a probability

distribution over the set of actions for a given state. An action is chosen based on

this distribution [36]. The critic network learns the value function with the current

state and chosen action as input. The gradient of the critic network value output

with respect to the actions is then used to train the actor network [34].

However, there are some simpler problems where there is no next state. In such

cases, taking an action from the state results in termination and a reward. The agent

has to learn which action results in the highest reward. Such systems are usually

known as n-armed bandit systems [71].

Additionally, there are problems where there exist multiple states, but taking

an action in any state results in a termination and a reward. In such cases the agent,

similar to an n-armed bandit, has to learn which action results in the maximum reward

for every state in the system. This is a slightly different problem than n-armed bandit,

and is usually known as a context-based n-armed bandit system [72].

5.4 Approach

The proposed approach uses policy gradient to impose constraints on the net-

work instead of learning actions. It solves the problem of constraint satisfaction using

an actor critic model. The given constraint C, is encoded as a system of rewards

R(Si, ac) which is a metric representing the satisfaction of the constraint. The critic

network approximates this reward function and provides the gradient with respect to

the activations to the actor network. In contrast to policy gradient where the input

to the critic network is the action taken by the actor network, the network models the

58

reward function from the sample and activations of the nodes where the constraint is

to be applied. The overall architecture of the Actor and Critic Networks with respect

to the constraint nodes is shown in Figure 5.1.

(a) Actor network (b) Critic network

Figure 5.1: General network architecture. (a) Actor network, shaded grey nodes
indicate input nodes while black nodes specify the nodes over which the constraints
are to be applied. (b) Critic network, checkered black nodes indicate values from
constrained nodes with added noise. Shaded grey inputs and activations of affected
nodes used as input to critic network, the output being the utility for the activations
produced

Let A be the set of activations in the actor network for all nodes in the input

layer ai, hidden layer activations ah and the output layer activations ao.

A = {{ai}, {ah}, {ao}}

For a given sample Si, ac is defined as the activation of the set of nodes affected

by the given constraint C over the set of all activations A in the actor network as

shown in Figure 5.1(a).

ac ⊆ A

For example, in case of the classification problem ac is the set of all activations

in the output layer, ao. In genral, however, the activations where the constraint is to

be applied can be a combination of ah and ao activations from different layers.

59

Similar to policy gradient systems, in order to train the critic network, some

exploration is required to approximate the space defined by the reward function. In

order to achieve this, a small zero-mean gaussian noise is added to the activation

outputs of the affected nodes. This process is similar to exploring actions in policy

gradient and allows the system to explore new nearby activation values which might

lead to better rewards during training.

a′c = ac +N (0, σ2)

The new activations a′c so formed, in addition to the given sample, is then used

as an input to the critic network as shown in Figure 5.1(b). Given the reward from

the constraint C the critic network then approximates the utility of the activations

for the given sample.

For each sample, the activations a′c with the added noise in the actor network

are used as inputs to the critic network along with the input values for the sample.

The critic network is trained with the reward from the constraint as the target. This

reward might be a one or zero as in the case of the classification problem without a

target dataset or in the case of sparsity with lateral inhibitions, the reward might be

the L0 norm of the constraint nodes per sample.

The proposed model represents the problem as a context based n-armed bandit

system, where there is no next state, and for each sample there exists a set of acti-

vations which maximizes the reward. The target of the critic network drifts during

training and depends on the current output of the network. The target value of the

network is given by the Bellman equation. The utility Q(St, a
′
ct) of a set of activations

a′ct for a given sample St, ignoring the next state is computed as

Q(St, a
′
ct) = Q(St, a

′
ct) + α(R(St, a

′
ct)−Q(St, a

′
ct)) (5.2)

60

The critic network is trained by minimizing the mean-squared error of the out-

put of the critic network and the target. The target of the network maintains an

adaptive average and over time converges to the expected reward E[R(St, a
′
ct)], for

activations a′ct and sample St. Given the error function as the mean-squared error

where the output y is given as the current utility learned by the network for sample

St and activation values a′c

y = Q(St, a
′
ct),

the new target τ computed as a function of the current output y and the reward

incurred is given as

τ = Q(St, a
′
ct) + α(R(St, a

′
ct)−Q(St, a

′
ct))

The mean squared error to train the critic network is computed as

Error =
1

2
(τ − y)2

=
1

2
(R(St, a

′
ct)−Q(St, a

′
ct))

2

The gradient of the critic network is computed as

∂Error

∂Q(St, a′ct)
= R(St, a

′
ct)−Q(St, a

′
ct)

which is the Bellman error for n-armed bandit systems[73]. This gradient is then

backpropagated to train the critic network. The weight w update is then computed

as

∂Error

∂w
=
∂Error

∂y

∂y

∂w

The gradient for the layers is backpropagated for the entire network while training.

The only difference is that the target is drifting over time and the gradient is the

Bellman error.

61

The critic network is trained using this gradient and therefore tries to approxi-

mate the reward function and output as closely as possible. If the reward function is

non-differentiable, it learns a smooth approximation for the function. On the other

hand, the actor network tries to maximize the reward function. This is a different

gradient than the one used to train the critic network which in contrast tries to get

consistent reward function outputs. To obtain the constraint related error for the

actor network, a separate gradient is computed during backpropagation in the critic

network which is the gradient without the Bellman error. This function is the gra-

dient of the output y of the critic network which is Q(St, a
′
ct) with respect to the

activations a′c.

∂Q(St, a
′
ct)

∂a′ct
(5.3)

Analogous to the policy gradient system, the critic network learns the value function

whose output is defined by the rewards from the constraint system. The probabilistic

actions are replaced by the noisy activations of the actor network.

Thus, in order to train the system, the actor network is forward propagated

to record the activations for the nodes affected by the constraint C. A zero mean

gaussian noise is added to these activations a′c. Subsequently, the samples and their

respective noisy activations a′c are fed as input to the critic network. The Bellman

error is computed for the critic network from the output of the network and the new

target computed from the output and the reward. This error is used to train the

critic network. A separate gradient is computed as the derivative of the output with

respect to the activation inputs. This gradient maximizes the reward function, i.e.,

the output of the critic network, with respect to the activations. Therefore the actor

network has to learn to maximize the reward function by modifying the activations.

62

This gradient may be applied to the actor network in two ways. It can be used

as the task error gradient in case of the classification problem with incomplete target

data. In this case the output layer activations ao are the affected nodes. The actor

network has to learn the activation class outputs for which the reward is maximized.

In this case the gradient from the critic network is the sole gradient applied to the

actor network.

In contrast, to solve the problem of lateral inhibitory sparsity constraint, this

gradient is applied to the hidden layer nodes. The gradient from the critic network

is combined with the task error or reconstruction error, backpropagated from the

output layer, as a regularization term in the hidden layer.

∂E

∂w
+ θ

(
∂Q(St, a

′
ct)

∂a′ct

)

where ∂E/∂w is the gradient element from the task error, and θ controls the weight of

the sparsity term from the critic network. In this case the actor network has to learn

activations in the hidden layer which, in addition to the actual reconstruction error,

also have to maximize the reward accrued from the imposed structural constraint.

5.5 Classification with Incomplete Target Data

In traditional multi-label classification problems the network tries to minimize

the mean squared error E between the output y and the target τ . The gradient is

defined as

E = (τ − y)2

∂E

∂y
= τ − y (5.4)

However, this is not possible for problems where the target τ is not defined. For

example, there are problems where, instead of the actual target, there exists a correct

63

or wrong boolean indicating whether the sample was correctly classified or not. The

function can be represented as

f(y) =

 1 : Cy = Cτ

0 : Cy 6= Cτ

(5.5)

Here Cy is the class from the output y and Ct is the correct class of the input. In

such cases the only information available is non-differentiable. The network is to be

rewarded for correct classification and no reward for wrong classification. For such

problems the system does not know what the actual class is nor does it know which

output nodes correspond to which class. For the proposed model in this case the

constraint to be satisfied is simply given by Equation 5.5 which provides the reward

for the critic network. To model this, the network architecture is instantiated as in

Figure 5.2.

(a) Actor network (b) Critic network

Figure 5.2: Target-less classification network. (a) Actor network, shaded grey nodes
indicate input nodes while constraints are applied on the output layer nodes. (b)
Critic network, with the input and noisy actor output node activations as input

Here the nodes affected by the constraint are the output node activations, ac =

ao. The critic network has to learn the constraint function such that the gradient in

Equation 5.3 approximately equals

∂Q(St, a
′
ct)

∂a′ct
≈ ∂E

∂y

64

5.5.1 Experiments

Experiments were performed to compare the classification accuracy and mean-

squared error achieved by classification using the proposed model and a traditional

neural network. Training was done with a reward of 1 if correctly classified and zero

if incorrectly classified and compared to the traditional classification network which

had access to the actual target data. The classifier network was trained with 70% of

the number of input nodes as hidden layer, and sigmoid activation functions for both

networks. Since the reward term is either one or zero, sigmoid activation functions

were also used in the critic network. A larger network might be used to increase

performance of the task, for example increasing the number of layers and nodes would

boost the performance of these tasks. However, a single hidden layer with few nodes

was chosen in order to demonstrate the validity of the proposed approach.

The model was tested on three real world problems, by dividing the data into

training, validation and testing segments.1

5.5.1.1 Iris dataset

The iris dataset has four input features and 150 samples in the dataset with

three classes.

5.5.1.2 Thyroid dataset

The thyroid dataset has 21 input features and 7200 samples in the dataset with

three classes.

1All datasets were accessed from UC Irvine Machine Learning Repository

http://archive.ics.uci.edu/ml/

65

5.5.1.3 White Wine Quality dataset

The white wine quality dataset has 11 input features and 3918 samples and 9

classes

Table 5.1 shows the comparisons of accuracy and mean squared error achieved

for the classification problems with the proposed model with incomplete data and

traditional neural network classifiers with the entire dataset. The first two columns

show the results from the proposed model while the traditional classifier is shown in

the next two columns.

Proposed traditional
Dataset accuracy MSE accuracy MSE
Iris 96.67% 0.0664 96.67% 0.0096
Thyroid 93.2% 0.037 94.2% 0.031
white Wine quality 56.63% 0.071 56.4% 0.067

Table 5.1: Results from incomplete target data vs traditional network with complete
target data

This data shows that despite having less information the proposed approach is

capable of learning a similar quality solution.

For the proposed model, Figure 5.3(a) shows the mean-squared classification

error plot for the iris dataset. It takes some time for the critic network to model the

reward function in order to provide an approximately correct gradient. There may be

multiple solutions in the reward space of the critic network. Maximizing the reward

function in the actor network might lead to going down towards a single solution and

then flipping the class outputs if a new, better space is found via exploration. This

might require redoing the gradient function. Thus, in the initial training stages, the

66

(a) MSE (b) Reward

(c) Gradient Comparison

Figure 5.3: Proposed approach with incomplete target data. (a) Mean-squared error
for the iris dataset, where the green line shows the validation error while the blue
line shows training error. (b) Reward accrued over epochs. (c) Comparison of the
approximated gradient vs the true gradient for a single sample and a single node over
epochs, where the green line shows the approximated gradient from the critic network
while the blue line shows the true gradient.

actor network performs poorly. However, once the critic network models the reward,

the mean-squared reconstruction error from the actor network is minimized.

Figure 5.3(b) shows the reward from the actor network structure over epochs.

This shows the jumps made by the critic network whenever a space with a higher

reward is identified via the added noise exploration.

67

Figure 5.3(c) compares the gradient from the critic network to the true gradient

of the traditional classifier network.

∂Q(St, a
′
ct)

∂a′ct
≈ ∂E

∂y

The gradient for a single sample and a single node over the training epochs is

shown. The green line shows the gradient learned by the critic network while the blue

line shows the true gradient computed with the entire target dataset. Figure 5.3(c)

shows that the critic network initially provides a wrong gradient, however, after some

time approximates the true gradient closely even with the incomplete target dataset.

5.6 Proposed ”Lateral” Autoencoder Sparsity

Sparsity in an autoencoder forces the feature activations to be as close to zero

as possible. This is usually achieved over the activation of a node over all samples[66].

The average activation of a hidden unit j over the training set of m samples is defined

as

ρ̂j =
1

m

m∑
i=1

[ahj (x
(i))]

A sparsity parameter ρ is defined as the target average activation of each node. In

order to achieve sparsity, an additional penalty term in the form of KL-divergence is

thus used.

KL(ρ||ρ̂j) = ρlog
ρ

ρ̂j
+ (1− ρ)log

1− ρ
1− ρ̂j

The gradient computed from this function is then used as a regularization parameter

in addition to the gradient backpropagated for minimizing the reconstruction error.

δh =
n∑
i=1

(W h
i δ

o)f ′(ah) + β

(
− ρ

ρ̂j
+

1− ρ
1− ρ̂j

)

Here f ′ is the derivative of the activation function and W are the weights.

68

The goal of sparsity is to represent the data using as few values as possible.

However traditional KL sparsity does not enforce any conditions on the maximum

number of activations allowable to reconstruct a given sample. Although it achieves

a similar form of sparsity indirectly as most features may fire for a few samples and

remain close to zero for the rest while still achieving the desired average activation,

it looses the essence of dimensionality reduction. Multiple features firing at the same

time indicate that some discriminative property of the data is divided among all the

features in order to keep the average activation of each node as low as possible, thus

features learned overlap over the dataset. This results in inefficient and redundant

features. The resulting feature set is temporally sparse but lacks important structural

insights of the data.

In order to learn non-overlapping discriminative and sparse features, it is of-

ten necessary to laterally inhibit features [74] [75]. However implementing such a

constraint requires interconnections among nodes in the hidden layer. This results

in additional computational complexity and a complex network architecture which

requires the update of a node to include the activations of other nodes in the layer.

In such architectures the networks have minimal lateral connections, usually between

immediate neighbors, in order to reduce the complexity but also preserve some lateral

inhibition [13]. The proposed model, however, allows us to impose a novel structural

constraint where the output of a node is influenced by every other node in the hidden

layer. This allows for a much stricter constraint, which is not possible for traditional

methods for lateral inhibitions. This constraint therefore enforces as few high acti-

vations as possible in the entire hidden layer to reconstruct the sample as opposed

to lateral inhibitions among immediate neighbors. In contrast to traditional sparsity

which strives to achieve close to zero average activation for a given node over all

samples, this form of sparsity tries to minimize the number of features required to

69

reconstruct a sample. This results in highly discriminative features and achieves the

desirable property of locally expert features which fire while most other nodes remain

close to zero.

(a) Actor network (b) Critic network

Figure 5.4: Sparse autoencoder networks. (a) Actor network, shaded grey nodes
indicate input nodes while constraint applied on hidden nodes. (b) Critic network,
with input and noisy hidden node activations as input

Figure 5.4 shows the adaptation of the Actor-Critic architecture to this problem.

The nodes affected by the constraint are the hidden layer nodes of the autoencoder,

ac = ah, as shown in Figure 5.4. A node is considered to be active if the activation

value is higher than a threshold parameter φ. The constraint is then encoded as a

system of penalties, where the penalty for sample St and activations a′c is given by

R(St, ac) =
n∑
i=1

[a′ci > φ]

which is the number of nodes ’firing’ for a given sample in the hidden layer with n

nodes. In addition to the constraint being non-computable because of the lack of

lateral connections among hidden nodes, the reward function is an L0 norm which is

usually impossible to optimize directly. The critic network models a smooth approx-

imation of the reward function which now has a gradient and can be optimized by

the actor network. The gradient from the critic network output with respect to the

70

hidden layer activations is used as a regularization parameter similar to traditional

sparse autoencoders.

δc =
n∑
i=1

(W c
i δ

o)f ′(ac) + θ

(
∂Q(x, a′c)

∂a′c

)

Here f ′ is the derivative of the activation function, W are the weights, and x are the

input training samples.

5.6.1 Experiments

Experiments were performed to compare the reconstruction accuracy and achiev-

able sparsity of the proposed form of sparsity and traditional sparse methods using

KL-divergence. The autoencoder network was trained with 70% of the number of

input nodes as hidden layer. A larger network is needed to increase performance

of the reconstruction task, however, the number of nodes for the hidden layer was

chosen in order to demonstrate the validity of the proposed approach. The sigmoid

function was used as activation functions of all nodes in the autoencoder. Since the

penalty term is the number of nodes firing for a given sample, which can be more

than one, softplus activation functions were used in the critic network for the hidden

and output layers. The softplus activation function has the property of non-linear

functions, whose output lies in the range of (0,∞).

Weight regularization is an important aspect of any sparse autoencoder system,

since the activations can be learned to arbitrarily small values by simply learning

higher weights. To force the system to learn proper sparse features, a weight reglar-

ization penalty term was added to both models in order to keep the weights low.

The model was tested on five real world problems, by dividing the data into training,

validation and testing segments. Weight parameters 0.1 − 2 as the range of θ and

0.2− 16.8 as β value ranges were used.

71

5.6.1.1 Abalone dataset

The abalone dataset is a highly imbalanced dataset with over 80% of the samples

belonging to the same class. The dataset has 8 input features and 4,177 samples. The

autoencoder network was trained with six hidden nodes.

5.6.1.2 White Wine dataset

The wine white dataset has 11 input features and 3,918 samples in the dataset.

The autoencoder network was trained with eight hidden nodes.

5.6.1.3 Wine dataset

The wine dataset has 13 input features and 178 samples in the dataset. The

autoencoder network was trained with 10 hidden nodes.

5.6.1.4 Glass dataset

The glass dataset has 9 input features and 214 samples in the dataset. The

autoencoder network was trained with seven hidden nodes.

5.6.1.5 Thyroid dataset

The thyroid dataset has 21 input features and 7,200 samples in the dataset.

The autoencoder network was trained with 15 hidden nodes.

The results of reconstruction and the minimum achievable sparsity for the prob-

lems are shown in Table 5.2. The proposed model is able to achieve better

reconstruction accuracies for many cases compared to the traditional form of KL-

divergence sparsity while achieving much more compact and sparser representations.

For the proposed model, the first column represents the minimum sparsity achieved

72

Proposed sparsity Traditional sparsity
minimum minimum

Dataset sparsity MSE sparsity MSE
achieved achieved

Abalone 0.1663 0.0076 0.4285 0.0119
Wine white 0.11 0.0035 0.4908 0.0037
wine 0.0972 0.0089 0.4514 0.0124
glass 0.00 0.0087 0.2716 0.0086
thyroid 0.01 0.0123 0.5495 0.0118

Table 5.2: Comparison of the two forms of sparsity

which is the percentage of times that a hidden node fires over the entire test sample

set for every node, while the second column shows the mean-squared reconstruction

error achieved for the sparsity. Similarly, the third and fourth column represent the

minimum sparsity achieved and mean-squared reconstruction error for the traditional

form of sparsity.

A separate experiment was done using the thyroid dataset, which has 21 input

dimensions, with eight hidden nodes. This forces the autoencoder networks to learn

some features with higher activation values since the feature vector is not over com-

plete. This was done to compare the type of features learned by the two approaches.

For the proposed model, Figure 5.5(a) shows the mean-squared reconstruction

error plot for the thyroid dataset. Figure 5.5(b) shows the decrease in penalty of the

actor network over epochs.

Figure 5.6 shows the features learned for 100 samples in the dataset. Figure

5.6(a), shows the features learned from the proposed approach while Figure 5.6(b)

shows the features learned for the traditional sparse model. As shown in Figure 5.6(a)

the features learned by the proposed model are much more discriminative as evident

in features from node pairs (four, six) and (two, seven) where each pair never fires

simultaneously.

73

(a) MSE (b) Penalty

Figure 5.5: Proposed form of sparsity. (a) Reconstruction mean-squared error for
thyroid dataset (b) Penalty accrued over epochs

(a) Features learned by proposed lateral inhibitions approach

(b) Features learned by traditional sparsity constraint

Figure 5.6: Thyroid dataset features. x-axis represents sample activations, y-axis
represents individual nodes, intensity represents value of activations of a node for the
given sample with white being almost one while black denoting non-firing nodes.
(a) Proposed lateral inhibition sparsity constraint approach (b) Traditional KL-
divergence sparsity constraint approach

In contrast, the traditional sparse system as shown in Figure 5.6(b) learns

features which fire together, i.e., the discriminative property of the dataset is divided

into multiple features in order to keep the average activation value of each feature as

low as possible. Figure 5.6(a) shows that the proposed approach is able to push down

the activations of unneeded features, namely one, three, five and eight, towards zero

in order to keep the number of activations per sample low.

74

5.7 Conclusion

An actor critic model is employed to solve problems without an inherent gra-

dient. Policy gradient algorithms are used to estimate gradients for tasks with a

non-differentiable or discontinuous performance metric. The gradient is learned from

a system of rewards from the imposed constraints function and is subsequently used

to train the actual network. A novel form of lateral inhibition sparsity is also pro-

posed which learns sparse features using as few activations as possible to reconstruct

a given sample. It does this without interconnections among nodes in the hidden

layer which made it unusable earlier with regards to computational complexity. Ex-

periments evaluated on real world data show that this form of lateral sparsity is able

to reconstruct the data better and with a much sparser representation.

5.8 Future Work

Given the applicability of the proposed approach, further exploration is nec-

essary in order to assess the performance of the proposed form of sparsity in deep

neural networks.

75

CHAPTER 6

MDP Auto-encoder

6.1 Introduction

Humans possess an intuitive understanding of the physical dynamics of the

world. For example, humans recognize correct dynamic behavior of planes flying and

balls rolling. This allows predicting the outcomes of actions and solve complex tasks

much faster, and would thus also be a useful ability in machine learning systems [76].

Learned models for the dynamics of the world can be used to simulate the environment

and perform multi-step lookaheads for planning. Model-based reinforcement learning

(RL) algorithms learn to model the observed data and then use it to solve the task.

Such models predict future observations as an outcome of executing actions from

the current observed state. Solving a task with the ability to predict the future

outcomes of actions has a fundamental appeal for reinforcement learning. There is a

vast variety of possible applications, from learning policies offline with a given model

[77, 78], solving a new task with better sample efficiency [25], encouraging exploration

in order to reduce model uncertainty [79], or using model predictability as an intrinsic

reward to learn models for better planning [80, 79].

However, most model-based approaches rely on predicting the raw observations

[76, 79, 81], which makes prediction very complex and might not be necessary to

solve a given task. For example, when solving a task from observed images, much of

the information in the image is irrelevant to the task at hand. Predicting the future

frame of an image might require encoding the color of a rainbow colored car even if

it behaves similar to other cars, irrespective of the color, when viewed in terms of

76

tasks that require driving. Furthermore, learning models which can predict the future

outcomes while relying on current observations might be difficult when observations

are not temporally and spatially correlated. Building an accurate prediction model for

a large and complex observation space is often challenging. This shows the need for

learning models that can extract information pertaining to the underlying dynamics

and rewards of the system by encoding information that is essential in solving the

task. This provides the ability to predict future rewards and identify the terminal

states, without the need for predicting future observations. Such models can learn

simpler representations for complex domains and are potentially more flexible when

dealing with stochastic environments.

Thus solving a task requires learning accurate models for the dynamics of the

system independent of the specific task such that it can potentially be transferred

to other tasks. Such models need to address several key difficulties in encoding sys-

tem dynamics in a latent space, and require the ability to capture multiple future

outcomes and predict rewards and chance of failure or termination, while minimizing

compounding errors from modeling inaccuracies for multi-step lookahead and plan-

ning.

This paper proposes a neural network architecture that utilize self-supervised

methods in order to learn a latent transition model from observed samples. This

work learns compressed models of the system dynamics by formulating the concept

of Markov decision process (MDP) homomorphisms [82] as a variational inference

problem. The method aggregates states that have similar rewards and transition

dynamics. This approach learns a latent MDP model that can predict or generate the

future rewards, identify termination or failure outcomes and can be used to simulate

transitions in the latent space. Experiments performed on the Cartpole and Acrobot

environments, show that the system is able to learn an efficient latent encoding and

77

model the dynamics of the latent representation with an equivalence to the underlying

real world dynamics and is able to learn policies on these representations which can

achieve close to the optimal performance.

6.2 Related Work

Most approaches for learning latent variable models for model-based RL involve

the complex task of predicting the future observations, additionally conditioned on

rewards and termination indicators, in order to infer the transition dynamics [76,

81]. However these approaches do not condition the representations on the predicted

dynamics in latent space and thus fail to capture the transition dynamics of the

observed system. The main distinction from such works is that the proposed approach

learns to predict rewards and terminating states and captures the behavior of the

observed system by modeling the transition dynamics in latent space.

There are approaches which model the transition dynamics directly without

predicting the next observations. However, such systems require access to expert

transitions or a computationally expensive nested gradient based planning module[78].

Another approach is to learn the dynamics in a latent representation using

some form of value function decomposition. For example Value Prediction Networks

(VPN)[83, 84] learn the models while minimizing the error in predicting the value

function for a state. These approaches are similar to the proposed architecture.

However, these methods learn models that depend upon the assumed hyperparameter

defining the horizon γ, for solving a task. Thus, depending upon the value of γ these

systems potentially learn different dynamics of the same observed model.

The proposed approach encodes the observed space irrespective of the choice

of γ, while learning more compact representations. Using a variational inference

based model, the method learns the dynamics of the abstract state space sufficient

78

for computing future rewards and identifying terminating states. Furthermore, the

proposed network architecture learns the representations from randomly observed

samples without requiring expert like trajectories, while still being able to utilize tra-

jectories efficiently when available by augmenting an adversarial learning component

with the inference model.

6.3 Markov Decision Processes

A Markov Decision Process is defined as a tuple 〈S,A,Ψ, P, R, β〉, where S is

a finite set of states, A is a finite set of actions, Ψ ⊆ S × A is the set of admissible

state-action pairs. As = a|(s, a) ∈ Ψ ⊆ A defines the set of actions admissible in

state s, assuming that ∀s ∈ S, As is non-empty. P : Ψ× S 7→ [0, 1] is the transition

probability function with P (s, a, s′) being the probability of transition from state s

to state s′ under action a where s, s′ ∈ S and a ∈ As. β : S 7→ [0, 1] is an attribute

defining the special transition to an absorbing state. These states {sβ} ∈ S form the

set of special states with β > 0 which have a chance of termination of the current

episode. R : Ψ 7→ R is the expected reward function, with R(s, a) being the expected

reward for performing action a in state s.

6.3.1 MDP Homomorphisms

An MDP homomorphism [82, 85, 86] is the mapping from an MDP M =

〈S,A,Ψ, P,R, β〉 to an MDP M̃ = 〈S̃, Ã, Ψ̃, P̃ , R̃, β̃〉 defined by a surjection, h, from

Ψ to Ψ̃, that is characterized by a tuple of surjections 〈f, us|s ∈ S〉, with h((s, a)) =

(f(s), us(a)), where f : S 7→ S̃ and us : As 7→ A′f(s) for s ∈ S, such that ∀s, s′ ∈

S, a ∈ As:

P ′(f(s), us(a), f(s′)) = P (s, a, f−1(f(s′))), (6.1)

79

P ′(βf(s)|f(s)) = P (βs|s), (6.2)

R′(f(s), us(a)) = R(s, a) (6.3)

An MDP homomorphism thus maps an MDP onto a different MDP which is

potentially more abstract but preserves the transition and reward dynamics of the

original system. Strict requirements of Equations (6.1) and (6.3) are often infeasible

for equivalence relations in probabilistic systems. To address such issues, approximate

homomorphisms are formulated, [82], which allow aggregating states that are not

exactly equivalent. This allows formulating approximate constraints:

Kr = max
s∈S
a∈As

|R(s, a)− R̃(f(s), us(a))| (6.4)

Kβ = max
s∈S
a∈As

|P (β′s|s′)− P̃ (βf(s′)|f(s))| (6.5)

Kp = max
s,s′∈S
a∈As

|P (s, a, f−1(f(s′)))− P̃ (f(s), us(a), f(s′))| (6.6)

Learning representations f(s) and us(a) while minimizing the divergence in

Equations (6.4) and (6.6) encodes approximate equivalence relations between the

observed transitions and latent transitions. This allows bounding the value function

V ∗(sk) with respect to the latent value function Ṽ ∗(f(sk)) for the given task with

respect to Kp and Kr.

|Ṽ ∗(f(sk))− V ∗(sk)| ≤
2Kp

Kr(1− γ)

Previous works form the reduced homomorphic image of the observed Markov

decision process by iteratively partitioning and fine tuning the space until convergence

[87, 88, 89, 90, 91]. These approaches initially partition the space by identifying all

termination states which are defined as states with a special transition, after which

the episode ends. These states are defined as sβ which are goal or termination states.

80

Figure 6.1: Mapping MDP M to reduced MDP model M ′, where blocks shown as
circles denote the aggregated states

Following this, the resultant space is partitioned with respect to reward equivalence,

where states aggregated together share a similar reward function(bounding the re-

ward residual from Equation (6.4)). Finally, the set of partitions are fine tuned with

respect to the corresponding observed state and partition space transition dynam-

ics (bounding the transition dynamics residual in Equation (6.6). Figure 6.1 shows

the process of performing ε-reduction and aggregating observed states to form the

representation in partition space M ′.

In contrast to this iterative construction approach that relies on pre-defined

residual bounds, εr, εt, the proposed approach formulates the problem of ε-reduction

into a variational inference problem, and applies an autoencoder architecture to di-

rectly learn the latent Markov decision process model from observed samples.

81

(a) Variational MDP Autoencoder Model (b) Discriminator Model

Figure 6.2: Proposed model architecture. (a) Set of encoding networks for state
and action, generative model of MDP in latent space. (b) Discriminator network
differentiates between the true and learned model mapping.

6.4 Latent Variable MDP Models

In order to learn a reduced Markov decision model, the proposed architecture

uses an adversarial neural network architecture to jointly model the latent variable

model in order to minimize the ε− loss as a combined metric from Equations (6.4),

(6.5) and (6.6):

ε− loss = |pr(hk+1|sk, ak)− pr(hk+1|hk, uk)|+

|pr(βk+1|sk+1)− pr(βk+1|hk, uk)|+

|(rk|sk, ak)− (rk|hk,uk)|

(6.7)

This architecture performs a gradient based approximate ε − reduction in order to

learn reduced MDP models using observed trajectory segments from the true model.

As shown in Figure 6.2, the latent MDP model predicts the next latent state hk+1 ∈ S̃,

reward rk ∈ R and the termination indicator βk+1 ∈ β, as a joint dynamics model of

the data conditioned over the latent variables hk ∈ S̃, uk ∈ Ã.

82

The proposed architecture is inspired by the V AE/GAN [92] architecture,

which is a combination of variational autoencoders (V AE)[93] and Generative Ad-

versarial Networks (GAN)[94]. The model is comprised of a set of component neural

networks as shown in Figure 6.2(a,b).In particular, the variational autoencoder por-

tion consists of a set of encoder networks that encode a data sample x to a latent

representation z, and a generator network that models the transitions in latent space.

The discriminator portion consists of an adversarial network that discriminates be-

tween real and generated transition and reward samples in latent space.

6.4.1 Architecture

The method combines the advantage ofGAN as a generative model and V AE as

a method that produces an encoder of data into the latent space. Variational autoen-

coders’ decoupled nature in terms of the latent space allows generating reconstructed

data as well as simulating new data. Unlike traditional variational autoencoder ar-

chitectures where the generator model is used to reconstruct the input data sample

from the latent representation, the proposed architecture modifies the generator and

discriminator networks in order to reconstruct the underlying transition dynamics of

the system instead.

6.4.1.1 Discriminator

Let X be the set of true samples and X ′, X ′p be the set of fake and simulated

samples, respectively. The GAN objective is to find the binary classifier that gives the

best possible discrimination between true and generated or simulated data, optimizing

with respect to the binary cross entropy, LGAN .

LGAN = log(Dis(X)) + log(1−Dis(X ′)) + log(1−Dis(X ′p)) (6.8)

83

6.4.1.2 State & Action Encoder

As shown in 6.2(a), the state and action encoder networks (H; θH,U ; θU) pa-

rameterized θH, θU learn the mapping functions H : S 7→ S̃ and U : S×A 7→ Ã which

encode data from observed space M to latent space M̃. Depending upon the type

of data, different network architectures can be used for encoding the observed space.

For example, convolutional neural networks (CNN) can be used to encode observed

space represented by image data or recurrent neural networks (RNN) for partially

observable systems. For an observed sample 〈sk, ak, sk+1, rk, βk〉, sk, sk+1 denote the

current observed state and the next state by executing action ak, while observing

reward rk ∈ R. The termination flag βk records whether the system terminated after

timestep k. Let hk, hk+1 denote the encoded representation of the current state sk

and the next state sk+1 respectively. The action encoder allows encoding the action

space with respect to the current state, where uk defines the encoded representation of

action ak when applied in state sk. These set of encoders together, map the observed

model onto a meaningful latent space.

6.4.1.3 Generator

The generator network as shown in Figure 6.2(a), learns a latent MDP model of

the observed system and models the function G; θG : S̃× Ã 7→ (S̃, R̃, β̃) parameterized

by θG. This function predicts the next latent state gk+1|(hk, {uk}), reward grk and

terminal, goal or failure conditions gβk , from the input latent state and action. Here,

gk+1|(hk, {uk}), grk , gβk denote the predicted dynamics of the system at timestep

k + 1, with respect to the encoded state and action hk and uk for a sample in some

timestep k.

84

The generated latent state gk+1 is used as a prediction of the next latent state

and shares the same space as that of hk. This is used to enforce the MDP homomor-

phic constraints on the encoder network such that the encoded representations agree

with the generated predictions and vice versa. Here the generator function G and

encoder functions (H,U) are constrained by each other in a self-supervised fashion.

This constraint forces the encoding to be consistent and be able to predict the respec-

tive reward and identify absorbing states. Forcing the generator to predict the reward

grk and terminations flag gβk allows the latent representation to be task-specific and

keeps the adversarial system from collapsing to the trivial solution where all observed

states are mapped to a single latent state.

Such a generator model is an important tool that is useful for offline simulations,

where the predicted next state is used as the input state for predictions. Staring from

a given state encoding and applying a sequence of actions, virtual rollouts allow

predicting the forward dynamics of the system. Here, gi+N |(hi, {ui, ui+1, ..., ui+N})

denotes the predicted state in latent space at step i+N while applying the sequence

of actions ui, ..., ui+N from the initial state hi and simulating onwards from the ith

timestep for N steps.

6.4.2 Supervised Learning

The system forms a latent representation in a self-supervised method by condi-

tioning the latent dynamics model on the encoded state hk and action uk where the

next observed state sk+1, reward rk and termination condition βk+1 depend upon the

current state sk. Equation (6.7) can then be rewritten as the KL-divergence between

the the true model posterior pφ(hk, uk|hk+1, rk, βk+1) and the approximated posterior

using the encoder networks qθH,θU (hh, uk|sk, ak). This formulation models the true

posterior using an approximation, while observing the latent encoding of the next

85

observed state hk+1, observed reward rk and whether the episode terminated at this

state βk+1 as evidence in order to update the latent variable.

ε−loss =

KL(qθH,θU (hh, uk|sk, ak)||pφ(hk, uk|hk+1, rk, βk+1))

(6.9)

This formulates the transition dynamics as a latent variable model by updating the

uncertainty given new evidence of the encoded next state, and the reward and termi-

nation conditions. However, this formulation is intractable and requires integrating

over the evidence across all possible latent representations of a state and the encod-

ing of the corresponding transition to the next observed states conditioned on the

executed action. In order to address this, [93] approximate the variational inference

by optimizing the Evidence Lower BOund (ELBO) loss function instead, which is a

differentiable approximation bounding the log likelhood of the evidence. Maximizing

the ELBO loss is equivalent to minimizing the KL-divergence. Using this approxima-

tion the network parameters θH, θU , θG can now be updated by defining the Lsupervised
loss.

Lsupervised =(
EqθH,θU (hh, uk|sk, ak)

[log GθG(gk+1, grk , rβk+1
|hk, uk)]

)
−(

KL(HθH(hk|sk)||p(h))+

KL(GθG(gk+1|hk, uk)||p(h))+

KL(UθU (uk|sk, ak)||p(u))

)
(6.10)

This equation can generally be viewed as having two component terms, where, the first

term is the reconstruction loss while the remaining elements regularize the network

parameters θH, θU , θG with respect to a prior on the latent variables. The Lsupervised
loss formulates the lower bound of the proposed ε−loss, i.e. on the divergence between

86

the latent model dynamics with respect to the true model behavior. Furthermore,

minimizing the ε − loss also bounds the loss when subsequentlylearning the value

function from the encoded space with respect to ε and γ.

Reparameterization Trick

Training this architecture requires backpropagation with respect to the random

variables hk, uk, which is not possible. In order to address this issue a reparameteri-

zation trick is applied [93] that involves injecting noise into the approximated latent

model and allowing backpropoagation through the networks and bypass the sampling

process. This reformulation allows the model to depend on a deterministic encoding

with a stochastic noise N as an auxillary variable . This approach can be gener-

alized to a variety of latent priors, which meet certain conditions. Latent models

with Gaussian priors have been used for encoding images, using noise from a normal

distribution with unit variance, N (0, I). Other forms of reparameterizations, include

learning binary representations using stochastic sigmoid representations.

The proposed approach learns discrerte representations for the latent model us-

ing a softmax layer and applies the Gumbel-softmax trick [95, 96] to efficiently sample

from a softmax distribution. This classifies the observed space into discrete blocks and

is similar to predicting actions in traditional reinforcement learning algorithms[35].

This network performs a gradient descent based approximate ε-reduction, with

a valid choice of the representation prior, training the variational autoencoder in a

self-supervised fashion.

87

6.4.3 Adversarial Learning

The system uses an adversarial component D, in order to derive gradients for

virtual rollouts. This discriminator network parameterized by θD, learns the similarity

function between model mappings D : M × M̃ 7→ [0, 1].

6.4.3.1 Samples

Given a set of observed samples ok ∈ O, where ok = 〈sk, ak, sk+1, rk, βk〉. The

encoder maps the observed space onto a latent variable model while the generator tries

to model the transition dynamics of the encoded representations in a self-supervised

fashion. The proposed architecture derives its losses by discriminating between true,

fake and simulated samples.

6.4.3.1.1 True Samples The state and action encoders H,U are used to create

the set of samples, xk ∈ X, which are assumed true by the discriminator D

xk = 〈sk, hk, uk, hk+1, rk, βk〉 (6.11)

Here hk = H(sk), hk+1 = H(sk+1) denote the latent representations of the observed

states sk, sk+1 ∈ ok. The action encoder U is used to map the observed action to

latent action space Ã with respect to the current state sk, where uk = U(sk, ak).

6.4.3.1.2 Fake Samples The generative model G is used to create the set of

samples x′k ∈ X ′, which are assumed false by the discriminator D

x′k = 〈sk, hk, uk, gk+1|(hk, uk), grk , gβk〉 (6.12)

Here gk+1, grk , gβk = G(hk, uk) is the predicted next latent state as modeled by the

generator G. The generator network also models the expected reward grk and the

chance of termination gβk upon simulating action uk at state hk.

88

The goal of the autoencoder architecture with encoder networks (H,U) and

the generator network G is to learn a predictable model which is equivalent to the

observed mapping such that the discriminator D is unable to distinguish between

them. Comparing the tuple of fake samples X ′ to that of true samples X, for a given

observed state sk ∈ S and action encoding uk ∈ U , the variables gk+1, grk , gβk+1
which

represent the predicted dynamics in latent space should have the same distribution

equivalent to the observed dynamics of the encoded space. Thus the gradients from

the discriminator network D is used to further constrain the autoencoder architecture

with respect to the learned distribution by imposing gk+1 ≈ hk+1, grk ≈ rk, gβk+1
≈

βk+1. This enforces the conditions proposed in the MDP homomorphism framework

in addition to the supervised training. Furthermore, in order to discriminate between

the encoded and generated model mapping, the discriminator network D learns a

similarity function between observed states sk and the corresponding step in the

mapped model which is beneficial for planning tasks on the latent space.

6.4.3.1.3 Simulated Samples The adversarial component allows computing

gradients for virtual rollouts or lookaheads. Utilizing single step segments from the

observation model M with samples of the form ok = 〈sk, ak, rk, sk+1, βk+1〉, one step

lookaheads can be generated using the latent MDP model. These samples are gener-

ated by using the predicted next latent state gk+1 as input to the latent MDP network

G, and predict the latent state gk+2 following state at timestep k+ 1. The generative

model G is used to create the set of samples x′pk ∈ X ′p, which are assumed false by the

discriminator D. Here up is a latent action up ∼ Ã randomly sampled from the set of

89

possible latent actions, or the encoding of a random action ap ∼ A, up = U(sk+1, ap)

with respect to the observed state.

x′pk+1
=

〈sk+1,gk+1|(hk, uk), up,

gk+2|(hk, {uk, up}), grk+1
, gβk+1

〉

(6.13)

Here gk+2, grk+1
, gβk+1

= G(gk+1, up)

6.4.3.1.4 Latent Overshooting with Trajectories Although Experiments

were performed by training the architecture using Markov samples, without exploit-

ing expert trajectories. However, trajectories can be utilized efficiently when available

by assuming the Markov property and comprehensively generating samples for each

step performed in multi step lookaheads. These samples can be used to minimize

compounding errors over longer horizons. For a given trajectory of length N + 1,

where ∀t ∈ {0, ..., N + 1}

X ′traj =

〈st+N ,gt+N |(ht, {ut, .., ut+N−1}), ut+N ,

gt+N+1|(ht, {ut, .., ut+N}), grt+N
, gβt+N

〉

6.4.4 Cost Functions

6.4.4.1 Adversarial Loss

The adversary is a classification network using samples M × M̃ → [0, 1] and

needs to distinguish between the true samples from the generated ones. The loss is

90

defined as LGAN , using the hyperparameter λ in order to normalize the losses with

respect to the true samples, and the fake or simulated samples.

LGAN = log(Dis(X))+

λ(log(1−Dis(X ′)) + log(1−Dis(X ′p)))
(6.14)

This function is used to update the network parameters of the discriminator,

θD
+←− −∇θD(LGAN), parameterized by θD.

The LGAN loss is used to train the state, action encoders and the generative

model. In addition to this, the divergence in the representations learned for true

and fake samples by the discriminator is used to provide information about the re-

construction loss for the autoencoder networks. Here Lllike is defined as the loss in

representations with respect to some layer l ∈ D

Lllike = −Eq(hk,uk|sk,ak)[log p(Dl(hk, uk)] (6.15)

6.4.4.2 Supervised Loss

The combined losses from the adversarial network and self-supevised losses are

used to update the autoencoder networks, the state action encoders (H,U) and the

generative latent model G.

Lvae = Lsupervised + Lllike − LGAN (6.16)

Algorithm 3 shows the process of training the complete architecture using sam-

ples of observed data O. Using a random batch of samples, the algorithm first com-

putes the latent encodings of the observed state, next state, and action. The generator

module is then used to simulate the dynamics using the generative network. These

samples and their respective representations in latent space are used to generate true,

fake and simulated samples as in Equations (6.11), (6.12), and (6.13). Finally the net-

91

Algorithm 3 Training the MDP autoencoder

Data: Dataset ok ∈ O, where ok = 〈sk, ak, rk, sk+1, βk+1〉

Result: Reduced Markov model M̃

Initialize network parameters θH, θU , θG, θD

while not done do

{ok} ← Random minibatch from dataset O,

where {ok} = {〈sk, ak, rk, sk+1, βk+1〉}

{hk}, {hk+1} ← H({sk}),H({sk+1})

{uk} ← U({sk, ak})

{gk+1, grk , gβk+1
} ← G({hk, uk})

X,X ′, X ′p ← Generate the set of true, fake and simulated samples for adversarial

learning using eqns (6.11, 6.12, & 6.13)

Compute losses Lvae,LGAN using eqns (6.14, 6.16) Perform updates using the

gradient w.r.t. the network parameters θH, θU , θG, θD

θH
+←− −∇θH(Lvae)

θU
+←− −∇θU (Lvae)

θG
+←− −∇θG(Lvae)

θD
+←− −∇θD(LGAN)

end

M̃ ← G

work parameters θH, θU , θG, θD, are updated as θH
+←− −∇θH(Lvae), θU +←− −∇θU (Lvae),

θG
+←− −∇θG(Lvae) with respect to the gradient of the loss functions Lvae,LGAN .

92

6.5 Experiments

This section evaluates the proposed approach to learn latent variable dynamics

models and evaluates the performance from the policy learned with the encoded

observations. The algorithms is evaluated on the CartPole and Acrobot problems

from OpenAI gym [97].

6.5.0.1 CartPole-v0

This environment emulates the classic cart-pole system defined in [25]. The

state space of this environment is defined as a tuple with four values defining the

current cart position, cart velocity, Pole angle and pole velocity at the tip. The system

consists of two discrete actions, push cart left and push cart right. Reward is 1 for

every step taken, including the termination step. The system starts in a random

state with the pole close to the upright position. An episode terminates when the

pole angle is more than 12 degrees, or cart position is more than 2.4 where the center

of the cart reaches the edge of the allowed space. The task is to balance a pole with

one end attached to a cart. The task is considered solved when the average reward

is greater than or equal to 195.0 over 100 consecutive trials.

6.5.0.2 Acrobot-v1

The acrobot system in comprised of two joints and two links, where the joint

between the two links is actuated. The state space of this environment consists of

the sin() and cos() of the two rotational joint angles θ1, θ2 and their respective angle

velocities θ̇1, θ̇2. Thus the observed state is defined as a tuple with six values [cos(θ1),

sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2]. The action space allows applying a +1, 0 or −1

torque on the joint between the two pendulum links. Reward is −1 for every step

93

taken, except the termination step. The task is considered solved when the average

reward is greater than −60 over 100 consecutive trials.

6.5.1 Training Procedure

Experiments were performed by training the architecture offline using one step

samples from the environments. For simplicity latent actions uk ∈ U is mapped to

actions in the observed MDP M , uk = ak where ak ∈ A.

6.5.1.1 Network Architectures

Experiments in both cases were performed with the proposed set of encoders

(H; θH,U ; θU), generator network (G; θG), and the discriminator network (D; θH) .

These networks have a similar architecture, with two hidden layers and 150 hidden

nodes in each layer. A softmax layer is used to learn a categorical encoding of the

observed states, while sigmoid activations were used for the reward and termination

outputs. Figure 6.3(b,c) show the scores achieved by the policy trained over the

encoded representations. The latent policy is trained and evaluated from scratch,

every 5000 steps of training. The policy network is designed with two hidden layers

and 50 nodes in each layer.

6.5.1.2 Performance

ε− loss is a measure of divergence between the true dynamics of the observed

space and the learned dynamics model. Figure 6.3(a), shows the ε − loss being

minimized for the CartPole problem, with 20 discrete latent states.

Figure 6.3(b) shows the scores achieved by the policy learned over the learned

latent model for the CartPole problem, while figure 6.3(c) shows the scores for the

latent policy for the Acrobot environment. These results show that the learned latent

94

(a) ε− loss for CartPole

(b) Latent CartPole policy scores (c) Latent Acrobot policy scores

Figure 6.3: Rewards achieved by policy defined over latent space. (a) ε − loss for
reducing CartPole problem to 40 discrete latent states. (b) Rewards over latent policy
for solving the CartPole environment using 40 discrete latent states. (c) Rewards over
latent policy for solving the Acrobot environment using 40 discrete latent states

95

(a) Cartpole Frame (b) Transition dynamics of the learned latent
space

Figure 6.4: Mapping continuous observed space to discrete graphical models. (a)
Sample frame for the Cartpole environment, where the state space is defined with
four continuous variables and two discrete actions. (b) Transition dynamics of the
learned latent space with five discrete blocks and two actions. Transitions for a
single action is shown.

model is able to encode the underlying dynamics of the system and permits to learn

policies with respect to the encoded space that can achieve scores close to the optimal

policy conditioned on the observed space.

To investigate the effect of the number of blocks in the latent representation on

the quality of the latent model, Table 6.1 shows the performance of policies learned

on representations of different complexity, illustrating that increasing the number of

blocks results in better performance for both problems.

Name 5 blocks 10 blocks 20 blocks 40 blocks Optimal

CartPole-v0 +140± 55 +180± 20 +195± 5 +195± 5 +195± 5
Acrobot-v1 −350± 100 −150± 50 −70± 10 -55± 5 -55± 5

Table 6.1: Performance for different block numbers in the latent MDP model

96

To further illustrate the nature of the latent MDP model, the resulting model

for the CartPole system with 5 blocks was explicitly extracted and represented graph-

ically. Figure 6.4(a) shows a state of the cart pole environment, while Figure 6.4(b)

shows a graphical MDP representation of the corresponding transition dynamics of

the learned latent model. Here the cartpole environment is encoded into five discrete

blocks. The results in the previous table show that even on this simple representation

the system is able to learn a relatively good policy with an average utility of 140.

6.6 Conclusions

The framework proposed here automatically learns and optimizes MDP homo-

morphisms by introducing a novel architecture which is able to simultaneously learn

the dynamics of abstract, latent states that can make predictions of future rewards

and termination or failure states rather than future observations. Our empirical eval-

uations shows that the proposed approach learns the underlying dynamics of the

system and the policy over the learned latent space is capable of achieving scores

similar or close to the maximum achievable value.

97

CHAPTER 7

Conclusions

The presented work shows various methods for applying algorithms from the

framework of reinforcement learning to traditional machine learning problems such

as classification, clustering, and general representation learning. Experiments show

that such algorithms are useful for extracting domain dependent abstractions which

can be applied to solve new tasks more efficiently. Furthermore, reinforcement learn-

ing algorithms are suitable for problems with sparse rewards which allow deriving

approximate gradients for complex non-differentiable objectives.

7.1 Contributions

The presented work uses reinforcement learning algorithms in thecontext of var-

ious machine learning problems. Chapter 3 applies reinforcement learning to extract

information for designing neural network architectures for classification problems,

even in the context of streaming data or concept drift. The design of a neural net-

work is defined by three MDP systems which are used to incrementally build ensemble

neural network classifiers. Chapter 4 applies reinforcement learning to learn a generic

policy to build feature mappings for constrained clustering tasks. For a given dataset,

this system learns a dynamic feature mapping process that automatically morphs the

observed space to a new feature space in order to satisfy the provided constraints.

Chapter 5 and 6 apply reinforcement learning in order to guide representations

learned by neural networks. Chapter 5 utilizes reinforcement learning to provide

gradients for non-differentiable objectives. This allows learning complex feature rep-

98

resentations which can encode hierarchical relationships within the same layer of

representations. Finally, Chapter 6 applies reinforcement learning in order to provide

bounds on the forward dynamics of a learned representation. This allows learning a

powerful representation which forms a predictive MDP model which is behaviorally

grounded to the observed model.

These algorithms show the power of using reinforcement learning in the context

of building and tuning neural network and deep learning architectures in situations

where task objectives are not easily representable or where completely labeled data

is hard to obtain.

99

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[2] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-

scale classification,” in Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2001, pp. 377–382.

[3] A. Tsymbal, “The problem of concept drift: definitions and related work,” Com-

puter Science Department, Trinity College Dublin, vol. 106, no. 2, 2004.

[4] K. L. Wagstaff, S. Basu, and I. Davidson, “When is constrained clustering ben-

eficial, and why?” Ionosphere, vol. 58, no. 60.1, pp. 62–3, 2006.

[5] J. Hernández-González, I. Inza, and J. A. Lozano, “Weak supervision and other

non-standard classification problems: a taxonomy,” Pattern Recognition Letters,

vol. 69, pp. 49–55, 2016.

[6] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised

learning on large graphs,” in COLT, vol. 3120. Springer, 2004, pp. 624–638.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the royal statistical society.

Series B (methodological), pp. 1–38, 1977.

[8] S. S. Rangapuram and M. Hein, “Constrained 1-spectral clustering,” arXiv

preprint arXiv:1505.06485, 2015.

[9] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework for semi-

supervised clustering,” in Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2004, pp. 59–68.

100

[10] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of computer and system sci-

ences, vol. 55, no. 1, pp. 119–139, 1997.

[11] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural networks: many could be

better than all,” Artificial intelligence, vol. 137, no. 1, pp. 239–263, 2002.

[12] J. Platt et al., “Sequential minimal optimization: A fast algorithm for training

support vector machines,” 1998.

[13] A. D. Szlam, K. Gregor, and Y. L. Cun, “Structured sparse coding via lateral

inhibition,” in Advances in Neural Information Processing Systems, 2011, pp.

1116–1124.

[14] A. Mahajan and T. Tulabandhula, “Symmetry learning for function approxima-

tion in reinforcement learning,” arXiv preprint arXiv:1706.02999, 2017.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

[16] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acous-

tic modeling in speech recognition: The shared views of four research groups,”

IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[17] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ, “Strategies for

training large scale neural network language models,” in Automatic Speech Recog-

nition and Understanding (ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp.

196–201.

[18] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as

a method for quantitative structure–activity relationships,” Journal of chemical

information and modeling, vol. 55, no. 2, pp. 263–274, 2015.

101

[19] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and

W. Denk, “Connectomic reconstruction of the inner plexiform layer in the mouse

retina,” Nature, vol. 500, no. 7461, p. 168, 2013.

[20] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. Yuen,

Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, et al., “The human splic-

ing code reveals new insights into the genetic determinants of disease,” Science,

vol. 347, no. 6218, p. 1254806, 2015.

[21] M. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning of the

tissue-regulated splicing code,” Bioinformatics, vol. 30, no. 12, pp. i121–i129,

2014.

[22] A. G. Barto, R. S. Sutton, and C. J. Watkins, “Sequential decision problems and

neural networks,” in Advances in neural information processing systems, 1990,

pp. 686–693.

[23] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solution algo-

rithms for factored mdps,” Journal of Artificial Intelligence Research, vol. 19,

pp. 399–468, 2003.

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, pp. 237–285, 1996.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[26] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.

279–292, 1992.

[27] R. S. Sutton, S. D. Whitehead, et al., “Online learning with random repre-

sentations,” in Proceedings of the Tenth International Conference on Machine

Learning, 1993, pp. 314–321.

102

[28] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist sys-

tems,” 1994.

[29] R. S. Sutton, “Generalization in reinforcement learning: Successful examples

using sparse coarse coding,” Advances in neural information processing systems,

pp. 1038–1044, 1996.

[30] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural

information processing systems, 2000, pp. 1008–1014.

[31] A. Likas, “A reinforcement learning approach to online clustering,” Neural com-

putation, vol. 11, no. 8, pp. 1915–1932, 1999.

[32] W. T. Uther and M. M. Veloso, “Tree based discretization for continuous state

space reinforcement learning,” in Aaai/iaai, 1998, pp. 769–774.

[33] B. Ravindran, “Smdp homomorphisms: An algebraic approach to abstraction in

semi markov decision processes,” 2003.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.

529–533, 2015.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[36] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[37] V. Mnih, N. Heess, A. Graves, et al., “Recurrent models of visual attention,” in

Advances in neural information processing systems, 2014, pp. 2204–2212.

103

[38] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances

in neural information processing systems, 2000, pp. 1057–1063.

[39] Y. Freund, R. E. Schapire, et al., “Experiments with a new boosting algorithm,”

in ICML, vol. 96, 1996, pp. 148–156.

[40] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140,

1996.

[41] Y. Zhang, S. Burer, and W. N. Street, “Ensemble pruning via semi-definite

programming,” The Journal of Machine Learning Research, vol. 7, pp. 1315–

1338, 2006.

[42] S. Bose and M. Huber, “Incremental learning of neural network classifiers using

reinforcement learning,” in Systems, Man, and Cybernetics (SMC), 2016 IEEE

International Conference on. IEEE, 2016, pp. 002 097–002 103.

[43] J. D. Basilico, M. A. Munson, T. G. Kolda, K. R. Dixon, and W. P. Kegelmeyer,

“Comet: A recipe for learning and using large ensembles on massive data,” in

Data mining (ICDM), 2011 IEEE 11th international conference on. IEEE, 2011,

pp. 41–50.

[44] P. K. Chan and S. J. Stolfo, “On the accuracy of meta-learning for scalable data

mining,” Journal of Intelligent Information Systems, vol. 8, no. 1, pp. 5–28, 1997.

[45] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, “Neural network ensembles:

evaluation of aggregation algorithms,” Artificial Intelligence, vol. 163, no. 2, pp.

139–162, 2005.

[46] M. R. Azimi-Sadjadi, S. Sheedvash, and F. O. Trujillo, “Recursive dynamic node

creation in multilayer neural networks,” Neural Networks, IEEE Transactions on,

vol. 4, no. 2, pp. 242–256, 1993.

104

[47] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” The Journal

of Machine Learning Research, vol. 5, pp. 101–141, 2004.

[48] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A frame-

work for temporal abstraction in reinforcement learning,” Artificial intelligence,

vol. 112, no. 1, pp. 181–211, 1999.

[49] G. Martinez-Muoz, D. Hernández-Lobato, and A. Suarez, “An analysis of en-

semble pruning techniques based on ordered aggregation,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 31, no. 2, pp. 245–259, 2009.

[50] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algo-

rithms: Bagging, boosting, and variants,” Machine learning, vol. 36, no. 1-2, pp.

105–139, 1999.

[51] D. Mena-Torres and J. S. Aguilar-Ruiz, “A similarity-based approach for data

stream classification,” Expert Systems with Applications, vol. 41, no. 9, pp. 4224–

4234, 2014.

[52] N. C. Oza, “Online bagging and boosting,” in Systems, man and cybernetics,

2005 IEEE international conference on, vol. 3. IEEE, 2005, pp. 2340–2345.

[53] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari, “Adapted one-versus-

all decision trees for data stream classification,” Knowledge and Data Engineer-

ing, IEEE Transactions on, vol. 21, no. 5, pp. 624–637, 2009.

[54] R. Xu, D. Wunsch, et al., “Survey of clustering algorithms,” Neural Networks,

IEEE Transactions on, vol. 16, no. 3, pp. 645–678, 2005.

[55] R. K. Ando and T. Zhang, “A framework for learning predictive structures from

multiple tasks and unlabeled data,” The Journal of Machine Learning Research,

vol. 6, pp. 1817–1853, 2005.

[56] S. Bose and M. Huber, “Semi-unsupervised clustering using reinforcement learn-

ing.” in FLAIRS Conference, 2016, pp. 150–153.

105

[57] H. Zeng and Y.-m. Cheung, “Semi-supervised maximum margin clustering with

pairwise constraints,” Knowledge and Data Engineering, IEEE Transactions on,

vol. 24, no. 5, pp. 926–939, 2012.

[58] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and semi-supervised

clustering: a brief survey,” A review of machine learning techniques for processing

multimedia content, Report of the MUSCLE European Network of Excellence

(FP6), 2004.

[59] W. Zhao, Q. He, H. Ma, and Z. Shi, “Effective semi-supervised document clus-

tering via active learning with instance-level constraints,” Knowledge and infor-

mation systems, vol. 30, no. 3, pp. 569–587, 2012.

[60] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid, “Local features and ker-

nels for classification of texture and object categories: A comprehensive study,”

International journal of computer vision, vol. 73, no. 2, pp. 213–238, 2007.

[61] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-

gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),

vol. 28, no. 1, pp. 100–108, 1979.

[62] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of

Machine Learning Research, vol. 9, no. 2579-2605, p. 85, 2008.

[63] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking

deep reinforcement learning for continuous control,” in Proceedings of the 33rd

International Conference on Machine Learning (ICML), 2016.

[64] N. Z. Shor, Minimization methods for non-differentiable functions. Springer

Science & Business Media, 2012, vol. 3.

[65] F. R. Bach, G. R. Lanckriet, and M. I. Jordan, “Multiple kernel learning, conic

duality, and the smo algorithm,” in Proceedings of the twenty-first international

conference on Machine learning. ACM, 2004, p. 6.

106

[66] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, pp. 1–19, 2011.

[67] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press Cambridge, 1998, vol. 1, no. 1.

[68] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, et al., “Policy gradi-

ent methods for reinforcement learning with function approximation.” in NIPS,

vol. 99, 1999, pp. 1057–1063.

[69] G. Lever, “Deterministic policy gradient algorithms,” 2014.

[70] S. Kakade, “A natural policy gradient.” in NIPS, vol. 14, 2001, pp. 1531–1538.

[71] M. N. Katehakis and A. F. Veinott Jr, “The multi-armed bandit problem: de-

composition and computation,” Mathematics of Operations Research, vol. 12,

no. 2, pp. 262–268, 1987.

[72] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-armed bandits

with side information,” in Advances in neural information processing systems,

2008, pp. 817–824.

[73] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback control,” Ma-

chine learning, vol. 84, no. 1-2, pp. 137–169, 2011.

[74] J. Mutch and D. G. Lowe, “Object class recognition and localization using sparse

features with limited receptive fields,” International Journal of Computer Vision,

vol. 80, no. 1, pp. 45–57, 2008.

[75] W. E. Vinje and J. L. Gallant, “Sparse coding and decorrelation in primary

visual cortex during natural vision,” Science, vol. 287, no. 5456, pp. 1273–1276,

2000.

[76] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski,

D. Erhan, C. Finn, P. Kozakowski, S. Levine, et al., “Model-based reinforcement

learning for atari,” arXiv preprint arXiv:1903.00374, 2019.

107

[77] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to control:

A locally linear latent dynamics model for control from raw images,” in Advances

in neural information processing systems, 2015, pp. 2746–2754.

[78] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. David-

son, “Learning latent dynamics for planning from pixels,” arXiv preprint

arXiv:1811.04551, 2018.

[79] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video pre-

diction using deep networks in atari games,” in Advances in neural information

processing systems, 2015, pp. 2863–2871.

[80] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motivation

(1990–2010),” IEEE Transactions on Autonomous Mental Development, vol. 2,

no. 3, pp. 230–247, 2010.

[81] N. Kalchbrenner, A. van den Oord, K. Simonyan, I. Danihelka, O. Vinyals,

A. Graves, and K. Kavukcuoglu, “Video pixel networks,” in Proceedings of the

34th International Conference on Machine Learning-Volume 70. JMLR. org,

2017, pp. 1771–1779.

[82] B. Ravindran and A. G. Barto, “Approximate homomorphisms: A framework

for non-exact minimization in markov decision processes,” 2004.

[83] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Advances in Neural

Information Processing Systems, 2017, pp. 6118–6128.

[84] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iteration net-

works,” in Advances in Neural Information Processing Systems, 2016, pp. 2154–

2162.

[85] J. Taylor, D. Precup, and P. Panagaden, “Bounding performance loss in ap-

proximate mdp homomorphisms,” in Advances in Neural Information Processing

Systems, 2009, pp. 1649–1656.

108

[86] T. Dean, R. Givan, and S. Leach, “Model reduction techniques for computing

approximately optimal solutions for markov decision processes,” in Proceedings

of the Thirteenth conference on Uncertainty in artificial intelligence. Morgan

Kaufmann Publishers Inc., 1997, pp. 124–131.

[87] S. Rajendran and M. Huber, “Learning to generalize and reuse skills using ap-

proximate partial policy homomorphisms,” in 2009 IEEE International Confer-

ence on Systems, Man and Cybernetics. IEEE, 2009, pp. 2239–2244.

[88] M. Asadi and M. Huber, “A dynamic hierarchical task transfer in multiple robot

explorations,” in Proceedings on the International Conference on Artificial Intel-

ligence (ICAI). The Steering Committee of The World Congress in Computer

Science, Computer . . . , 2015, p. 22.

[89] A. P. Wolfe and A. G. Barto, “Decision tree methods for finding reusable mdp ho-

momorphisms,” in PROCEEDINGS OF THE NATIONAL CONFERENCE ON

ARTIFICIAL INTELLIGENCE, vol. 21, no. 1. Menlo Park, CA; Cambridge,

MA; London; AAAI Press; MIT Press; 1999, 2006, p. 530.

[90] V. Soni and S. Singh, “Using homomorphisms to transfer options across contin-

uous reinforcement learning domains,” in AAAI, vol. 6, 2006, pp. 494–499.

[91] G. Comanici, D. Precup, and P. Panangaden, “Basis refinement strategies for

linear value function approximation in mdps,” in Advances in Neural Information

Processing Systems, 2015, pp. 2899–2907.

[92] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Au-

toencoding beyond pixels using a learned similarity metric,” arXiv preprint

arXiv:1512.09300, 2015.

[93] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

109

[94] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[95] E. J. Gumbel, Statistical theory of extreme values and some practical applications:

a series of lectures. US Government Printing Office, 1954, vol. 33.

[96] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-

softmax,” arXiv preprint arXiv:1611.01144, 2016.

[97] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,

and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

110

