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Abstract

ON OPTIMIZING THE SUM OF RAYLEIGH QUOTIENTS ON THE UNIT

SPHERE

Aohud Abdulrahman Binbuhaer, Ph.D.

The University of Texas at Arlington, 2019

Supervising Professor: Ren-Cang Li

Given symmetric matrices Ai,D ∈ Rn×n and symmetric positive definite matrices

Bi ∈ Rn×n for i = 1, . . . , k, we are concerned with the solution of the maximization

problem:

max
∥x∥2=1

f(x) with f(x) ∶=
k

∑
i=1

x⊺Aix

x⊺Bix
+ x⊺Dx

on the unit sphere: M ∶= {x ∈ Rn ∣ ∥x∥2 = 1}. In this dissertation, we establish

necessary optimality conditions for local maximizers. Moreover, a self-consistent-field

(SCF) iterative method for solving the above problem is introduced and analyzed. We

use the Trust-Region SCF iteration to improve the convergence of the SCF method.

Furthermore, we show the first and second order optimality conditions for maximizing

the function:
k

∑
i=1

tr(V ⊺AiV )

tr(V ⊺BiV )
+ tr(V ⊺DV )

over the Stiefel manifold: On×` ∶= {V ∈ Rn×` ∣ V ⊺V = I`} where ` ≤ n, and tr(⋅)

stands for the trace of a square matrix. Also, some necessary conditions for the local

maximizers of this problem are investigated.
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Chapter 1

Introduction

1.1 Introduction

The Rayleigh quotient plays a significant role in finding eigenvalues of symmetric

matrices. Moreover, maximizing the sum of the Rayleigh quotient and the generalized

Rayleigh quotient over the unit sphere has several applications in the real world.

It can arise in the downlink of a multi-user multi-input and multi-output (MIMO)

system and in the sparse Fisher discriminant analysis in pattern recognition [10]. The

computation of the eigenvalues of matrices appears in a wide variety of problems in

engineering and physical sciences. Indeed, eigenspace computation is used in several

areas, such as control theory, signal processing, structural dynamics, and data mining

[1].

We are concerned with the solution of the optimization problem

max
∥x∥2=1

f(x) with f(x) ∶=
k

∑
i=1

x⊺Aix

x⊺Bix
+ x⊺Dx (1.1)

on the unit sphere

M ∶= {x ∈ Rn ∣ ∥x∥2 = 1},

where Ai,Bi, and D ∈ Rn×n are symmetric matrices with Bi positive definite for all

i = 1, . . . , k.

In this chapter, we recall some basic linear algebra concepts. Most of these

definitions and properties and their proofs can be found in [1,4,6,11]. Furthermore, we

present special and related cases of our optimization problem (1.1), which have been

1



studied in [19] and [18], and the optimality conditions including necessary conditions

for the local and global maximizers are established.

In chapter 2, we establish necessary optimality conditions for local maximizers.

In chapter 3, a self-consistent-field (SCF) iterative method for solving (1.1) is

introduced and analyzed. Also, the local convergence of the SCF iteration is discussed

in this chapter.

In chapter 4, we present first and second order optimality conditions of maxi-

mizing the objective function

f(V ) ∶=
k

∑
i=1

tr(V ⊺AiV )

tr(V ⊺BiV )
+ tr(V ⊺DV )

over the Stiefel manifold

On×` ∶= {V ∈ Rn×` ∣ V ⊺V = I`},

where ` ≤ n, and Ai,Bi and D ∈ Rn×n are symmetric matrices with Bi positive definite

for i = 1, . . . , k. Also, necessary conditions for the local maximizers of this problem

are investigated.

Notation. R denotes the set of all real numbers, and Rn consists of all n-tuples of R.

We use the symbol Rn×` for the set of all n × ` real matrices. In is the n × n identity

matrix. All vectors are column vectors and are in bold. For a vector x ∈ Rn,x⊺

denotes its transpose, which is a row vector x⊺ = [x1, x2, . . . , xn],

where

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For a matrix V = [vij] ∈ Rn×`, its transpose is V ⊺ = [vji] ∈ R`×n.

The notations Sn and S++n are for the set of symmetric and symmetric positive definite

2



matrices of size n×n, respectively. We use λ1(A) ≥ . . . ≥ λn(A) to denote the eigenval-

ues of symmetric A in the descending order. Moreover, to simplify the presentation,

we use the notation φG(x) ∶= x⊺Gx for a matrix G to be specified.

1.2 Preliminaries

Definition 1.2.1. Let A be an n × n symmetric matrix with entries in R. Any

nonvanishing vector v ∈ Rn that satisfies

Av = λv

for some λ ∈ R is called an eigenvector of A, λ is the associated eigenvalue, and the

pair (λ,v) is called an eigenpair.

Remark. The set of eigenvalues of A is called the spectrum of A. The eigenvalues of

A are the zeros of the characteristic polynomial of A.

Theorem 1.2.2 (Weyl). Let A,B ∈ Rn×n be symmetric, and {λi(A)}ni=1,{λi(B)}ni=1,

and {λi(A + B)}ni=1 denote the sets of eigenvalues of A,B,and A + B in increasing

order, respectively. Then, for 1 ≤m ≤ n,

λm(A) + λ1(B) ≤ λm(A +B) ≤ λm(A) + λn(B).

Remark. We can decompose a symmetric matrix A into its action in an eigenspace

S and its action on the orthogonal complement S⊥:

A = E0A0E
⊺
0 +E1A1E

⊺
1 ,

where E0 is an orthonormal basis matrix for S, and E1 is an orthonormal basis matrix

for S⊥. Similarly, for A +H:

A +H = F0Λ0F
⊺
0 + F1Λ1F

⊺
1 ,

where F0 is an orthonormal basis matrix for S, and F1 is an orthonormal basis matrix

for S⊥.

3



Theorem 1.2.3 (Davis-Kahan sin(Θ) theorem). Let A ∈ Rn×n,A = E0A0E
⊺
0 +E1A1E

⊺
1

and A + H = F0Λ0F
⊺
0 + F1Λ1F

⊺
1 be symmetric matrices with [E0,E1] and [F0, F1]

orthogonal. If the eigenvalues of A0 in (a, b) and the eigenvalues of Λ1 are excluded

from the interval (a − δ, b + δ) for some δ > 0, then

∥F ⊺
1 E0∥ ≤

∥F ⊺
1 HE0∥

δ

for any unitarily invariant norm ∥⋅∥.

Definition 1.2.4. The Raleigh quotient of a symmetric matrix A and nonzero vector

x is

R(A;x) ≡
x⊺Ax

x⊺x
for 0 ≠ x ∈ Rn.

Definition 1.2.5. Given a symmetric matrix A and a symmetric positive definite

matrix B, we define the generalized Rayleigh quotient as

R(A,B;x) =
x⊺Ax

x⊺Bx
for 0 ≠ x ∈ Rn.

Definition 1.2.6. There are several important types of square matrices. We say that

A ∈ Rn×n is

• symmetric if A⊺ = A;

• positive definite if x⊺Ax > 0 for 0 ≠ x ∈ Rn;

• orthogonal if A⊺A = In.

Definition 1.2.7. A vector norm on Rn is a function ∥⋅∥ ∶ Rn → R with the following

properties:

1. ∥x∥ ≥ 0 for all x ∈ Rn with equality if and only if x = 0.

2. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x,y ∈ Rn.

3. ∥αx∥ = ∣α∣ ∥x∥ for all α ∈ R, x ∈ Rn.

A useful class of norms are `p-norms defined by, for x = [xi] ∈ Rn and 0 ≤ p ≤ ∞,

∥x∥p = (∣x1∣
p + ∣x2∣

p +⋯ + ∣xn∣
p)1/p.
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In particular

∥x∥2 = (∣x1∣
2 + ∣x2∣

2 +⋯ + ∣xn∣
2)1/2 =

√
x⊺x

is the Euclidean norm and most often used.

Definition 1.2.8. A matrix norm on Rm×n is a function ∥⋅∥ ∶ Rm×n → R with the

following properties:

1. ∥A∥ ≥ 0 and ∥A∥ = 0 if and only if A = 0 for A ∈ Rm×n,

2. ∥αA∥ = ∣α∣ ⋅ ∥A∥ for α ∈ R and A ∈ Rm×n,

3. ∥A +B∥ ≤ ∥A∥ + ∥B∥ for A,B ∈ Rm×n.

In numerical analysis, the F -norm (Frobenius norm), and the p-norms are the

most frequently used matrix norms, where

∥A∥F =[
m

∑
i=1

n

∑
j=1

∣aij ∣
2]

1/2

, A = [aij]

and

∥A∥p = sup
x≠0

∥Ax∥p
∥x∥p

,

the vector p-norms are part of this definition.

Definition 1.2.9. Suppose that x̂ ∈ Rn is an approximation to x ∈ Rn. For a given

vector norm ∥⋅∥ , we say that

εa = ∥x̂ − x∥

is the absolute error, and

εr =
∥x̂ − x∥

∥x∥
, x ≠ 0,

the relative error.

One of the most important decomposition in matrix computations is the singular

value decomposition.

Theorem (Singular Value Decomposition (SVD)). If A ∈ Rm×n then there exist or-

thogonal matrices

U = [u1, . . . , um] ∈ Rm×m

5



and

V = [v1, . . . , vn] ∈ Rn×n

such that

U⊺AV = diag(σ1, . . . , σp), p = min{m,n}

where

σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σp ≥ 0.

Definition 1.2.10. A projector P is a linear transformation from Rn to itself which

is idempotent, i.e.,

P 2 = P.

Remark. We define the kernel and range of a projector P , denoted by ker(P) and

R(P ), respectively, as

ker(P ) ∶= {y ∈ Rn ∣ Py = 0},

and

R(P ) ∶= {x ∈ Rn ∣ x = Py for some y ∈ Rn}.

Proposition 1.2.1. If P is a projector, then so is (I − P ), and we have ker(P) =

R(I −P), and ker(P )⋂R(P ) = {0}.

There is a particular case in which the subspace ker(P ) is the orthogonal com-

plement of R(P ).

Definition 1.2.11. The projector P is said to be an orthogonal projector onto R(P )

when

ker(P ) = R(P )⊥.

Remark. • We say that a set of vectors {a1,a2, . . . ,an} in Rm is linearly inde-

pendent if
n

∑
j=1

αjaj = 0 ⇔ α1 = ⋯ = αn = 0.

6



• The set of all linear combinations of a1, . . . ,an ∈ Rm is a subspace referred to as

the span of {a1, . . . ,an}:

span{a1, . . . ,an} ={∑
j

βjaj ∣ β1, . . . , βn ∈ R}.

A smooth mapping γ ∶ R →M ∶ t ↦ γ(t) is described as a curve in a manifold

M. Given a smooth real-valued function f onM, the function f ○γ ∶ t↦ f(γ(t)) is a

smooth function from R to R with a well-defined classical derivative. The set of these

smooth real-valued functions defined on a neighborhood of x is denoted by Jx(M).

The following definitions and propositions are well known and can be found in [1]

Definition 1.2.12. A tangent vector ξx to a manifold M at a point x is a mapping

from Jx(M) to R such that there exists a curve γ on M with γ(0) = x, satisfying

ξxf = γ̇(0)f ∶=
d(f(γ(t)))

dt
∣
t=0

for all f ∈ Jx(M). Such a curve γ is said to realize the tangent vector ξx.

Definition 1.2.13. The tangent space toM at x, denoted by TxM, is the set of all

tangent vectors to M at x.

Definition 1.2.14. Let X(M) be the set of smooth vector field on M. An affine

connection ∇ on a manifold M is a mapping

∇ ∶ X(M) ×X(M) → X(M),

which is denoted by (η, ξ)
∇
Ð→ ∇ηξ and satisfies the following axioms:

i) ∇fη+gχξ = f∇ηξ + g∇χξ,

ii) ∇η(aξ + bζ) = a∇ηξ + b∇ηζ,

iii) ∇η(fξ) = (ηf)ξ + f∇ηξ,

where η, ξ, χ, ζ ∈ X(M), f, g ∈ Jx(M), and a, b ∈ R. A connection ∇ on M is called

Riemannian connection if in addition to the above axioms, ∇ also satisfies

7



i) ∇ηξ −∇ξη = [η, ξ],

ii) χ⟨η, ξ⟩ = ⟨∇χη, ξ⟩ + ⟨η,∇χξ⟩ for any η, ξ, χ ∈ X(M).

Definition 1.2.15. Given a real-valued function f on a Riemannian manifold M,

the Riemannian Hessian of f at a point x inM is the linear mapping Hess f(x) from

TxM into itself defined by

Hess f(x)[ξx] = ∇ξx grad f

for all ξx in TxM, where ∇ is the Riemannian connection on M.

Proposition 1.2.2. The Riemannian Hessian satisfies the formula

⟨Hess f[ξ], η⟩ = ξ(ηf) − (∇ξη)f

for all ξ, η ∈ X(M), where X(M) is the set of all (smooth) vector fields on M.

Proof. We have ⟨Hess f[ξ], η⟩ = ⟨∇ξ grad f, η⟩. Since the Riemannian connection leaves

the Riemannian metric invariant, this is equivalent to ξ⟨grad f, η⟩ − ⟨grad f,∇ξη⟩. By

the definition of the gradient, this yields ξ(ηf) − (∇ξη)f . ∎

Proposition 1.2.3. The Riemannian Hessian is symmetric (in the sense of the Rie-

mannian metric). That is,

⟨Hess f[ξ], η⟩ = ⟨η,Hess f[ξ]⟩

for all ξ, η ∈ X(M).

Proof. By the previous proposition, the left-hand side is equal to ξ(ηf) − (∇ξη)f

and the right-hand side is equal to ⟨Hess f(x)[η], ξ⟩ = η(ξf) − (∇ηξ)f. Using the

symmetry property of the Riemannian connection on the latter expression, we obtain

η(ξf)−(∇ηξ)f = η(ξf)−[η, ξ]f−(∇ξη)f = ξ(ηf)−(∇ξη)f, and the result is proved. ∎

8



Remark. An affine connection ∇ on a manifold M is said to be symmetric when

∇ηξ −∇ξη = [η, ξ],

for ξ, η ∈ X(M).

1.3 Past Work

In this section, we review existing results on some special and related cases of

(1.1).

• Case I: k = 1, D = 0 ∶

max
∥x∥2=1

f(x) with f(x) ∶=
x⊺Ax

x⊺Bx
. (1.2)

The maximization of the objective function in (1.2) on M is equivalent to

computing the extreme eigenpair of a symmetric-definite matrix pair (A,B) [6].

• Case II: k = 1 ∶

max
∥x∥2=1

f(x) with f(x) ∶=
x⊺Ax

x⊺Bx
+ x⊺Dx, (1.3)

where A,D ∈ Sn and B ∈ S++n . Zhang [18] studies the solution of (1.3). There

are several practical applications of (1.3), such as the downlink of a multi-

user MIMO system [10], and the sparse Fisher discriminant analysis in pattern

recognition.

1.3.1 Optimality Conditions for a Local Maximizer

We have the following first order optimality condition:

Theorem 1.3.1 ( [18]). Let A,D ∈ Sn and B ∈ S++n . A point x ∈ M is a critical

point of f∣M(x) if and only if it satisfies

E(x)x = λ(x)x, (1.4)

9



where

λ(x) ∶= φB(x)φD(x), E(x) ∶= A −
φA(x)

φB(x)
B + φB(x)D. (1.5)

Proof. The gradient at x ∈ M is

g(x) ∶= grad f∣M(x) = Px∇f(x),

where Px = In − xx⊺ is the orthogonal projection onto ker(x⊺). The expression

of ∇f(x) is given as

∇f(x) = 2(
AφB(x) −BφA(x)

φ2
B(x)

+D)x.

x ∈ M is a critical point if and only if g(x) = 0 where

g(x) ∶= grad f∣M(x) = Px∇f(x) = 2(
AφB(x) −BφA(x)

φ2
B(x)

+D − φD(x)In)x.

The conclusion now follows. ∎

Remark. Finding a global maximizer of (1.3) cannot be obtained by a gener-

alized eigenvalue problem or the standard eigenvalue problem, since the matrix

E(x) is dependent on the eigenvector x. In general, solving the nonlinear eigen-

value problem (1.4) is a more complicated problem.

Next, the second order optimality conditions can be established using the sym-

metric Hessian operator at x ∈ M:

Hess f∣M(x) ∶ TxM→ TxM ∶ h↦ ∇h grad f∣M(x),

which is expressed by

Hess f∣M(x)[h] = Px(Dg(x)[h]), ∀h ∈ TxM,

where Dg(x)[h] is the derivative of g(x) at x ∈ M along h.

10



We now calculate Dg(x)[h] :

Dg(x)[h] =
2

φB(x)
[E(x) − φB(x)φD(x)In +

4φA(x)

φ2
B(x)

Bxx⊺B

−
2

φB(x)
(Axx⊺B +Bxx⊺A)]h − 4(x⊺Dh)x.

The second order optimality conditions are presented in the following theorem.

Theorem 1.3.2 ( [18]). Let A,D ∈ Sn and B ∈ S++n .

i) If x is a local maximizer of (1.3), then the matrix

K(x) ∶= E(x) = φB(x)φD(x)In + 2Px(Dxx⊺B +Bxx⊺D)Px

is negative semidefinite.

ii) For any critical point, x, of f∣M(x), if K(x) ∶ TxM → TxM is negative

definite, then x is a strictly local maximizer of (1.3).

Theorem 1.3.3 ( [18]). Let A,D ∈ Sn and B ∈ S++n . If x is a local maximizer

of (1.3), then it must be a unit eigenvector corresponding to either the largest

or the second largest eigenvalue of E(x).

1.3.2 Optimality Condition for a Global Maximizer

The necessary global optimality condition for (1.3) will be presented in this

subsection, particularly, in the following theorem.

Theorem 1.3.4 ( [18]). Let A,D ∈ Sn and B ∈ S++n . Then for any global max-

imizer x̂ of (1.3), (λ(x̂), x̂) must be an eigenpair corresponding to the largest

eigenvalue of E(x̂), where λ(x̂) ∶= φD(x̂)φB(x̂).

• Case III: Let k = 1, and replace the vector x with a matrix V ∈ Rn×` to

get

max
V ⊺V =I`

{
tr(V ⊺AV )

tr(V ⊺BV )
+ tr(V ⊺DV )}, (1.6)

11



where tr(⋅) stands for the trace of a square matrix, A,B,D ∈ Rn×n are real

symmetric with B positive definite, and integer ` < n. In [19] many properties

for ` = 1 were extended to ` > 1. [19] was focused on the theoretical aspect of

the maximization problem (1.6). Introduce

φA(V ) ∶= tr(V ⊺AV ), φB(V ) ∶= tr(V ⊺BV ), φD(V ) ∶= tr(V ⊺DV )

for any V ∈ Rn×`. The function in (1.6) can now be written as

f(V ) ∶=
φA(V )

φB(V )
+ φD(V )

over the Stiefel manifold

On×` ∶= {V ∈ Rn×` ∣ V ⊺V = I`}.

The tangent space TVOn×` at V ∈ On×` is given by

TVOn×` ∶={X ∈ Rn×` ∶ X⊺V + V ⊺X = 0}

={X = V K + (In − V V
⊺)J ∶ K = −K⊺ ∈ R`×`, J ∈ Rn×`}.

(1.7)

The standard inner product on TVOn×` is given by

⟨X,Y ⟩ = tr(X⊺Y ), X,Y ∈ TVOn×`.

The orthogonal projection of Z ∈ Rn×` onto the tangent space TVOn×` is

ΠT (Z) ∶=V (
V ⊺Z −Z⊺V

2
) + (In − V V

⊺)Z

=Z − V
V ⊺Z +Z⊺V

2
= Z − V sym(V ⊺Z) ∈ TVOn×`,

where sym(Z) ∶= 1
2(Z

⊺ +Z) is the symmetric part of Z. Since

∂f(V )

∂V
= 2[A

1

φB(V )
−B

φA(V )

(φB(V ))2
+D]V = 2E(V )V,

12



the gradient of the function f∣On×` is given by

grad f∣On×`(V ) = ΠT (
∂f(V )

∂V
) = 2[E(V )V − V (V ⊺E(V )V )].

The first order optimality condition which is grad f∣On×` = 0 leads to the following

theorem.

Theorem 1.3.5. [19] If V ∈ On×` is a local maximizer of (1.6), then

E(V )V = VMV , (1.8)

where

E(V ) ∶= [A
1

φB(V )
−B

φA(V )

(φB(V ))2
+D],

and

MV ∶= V ⊺E(V )V.

Therefore eig(MV ) ⊂ eig(E(V )), and V is an orthogonal eigenbasis matrix of

E(V ) associated with its eigenvalues in eig(MV ).

Now, let g(V ) ∶= grad f∣On×`(V ), and assume that V ∈ On×` is a critical point,

which means V satisfies (1.8). Using the standard second order optimality

conditions, we have the following theorem.

Theorem 1.3.6 ( [19]). If V is a local maximizer of (1.6), then

tr(X⊺E(V )X) − tr(XMV (V )X⊺) + tr(X⊺G(V,X)V ) ≤ 0 for X ∈ TVOn×`,

(1.9)

where

G(V,X) ∶= 4
tr(V ⊺AV ) tr(X⊺BV )

[tr(V ⊺BX)]3
− 2

tr(X⊺BV )A + tr(X⊺AV )B

[tr(V ⊺BV )]2
,

and MV = V ⊺E(V )V . On the other hand, if V ∈ On×` satisfies (1.8) and if (1.9)

is a strict inequality for X ≠ 0, then V is a strict local maximizer.
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There are other necessary conditions for both the local and global maximizers.

A necessary condition for a local maximizer V of (1.6) is stated in terms of the

eigenvalues of E(V ). From Theorem 1.3.5, eig(MV ) ⊂ eig(E(V )), i.e.,

eig(MV) = {λπi(E(V)), i = 1,2, . . . , `}, (1.10)

where 1 ≤ π1 < π2 . . . < π` ≤ n.

Theorem 1.3.7 ( [19]). Let V ∈ On×` be a local maximizer of (1.6), and denote

eig(MV ) by (1.10). Then

λπ1(E(V )) ≥ λ2`(E(V )). (1.11)

Moreover, regarding a necessary condition for a global maximizer, we have the

following result:

Theorem 1.3.8 ( [19]). Suppose D is positive definite. If V is a global max-

imizer of (1.6), then it must be an orthonormal eigenbasis matrix of E(V )

corresponding to its ` largest eigenvalues λi(E(V )) for 1 ≤ i ≤ `.
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Chapter 2

Optimality Conditions for Local Maximizers

In this chapter, we characterize the solution of the maximization problem (1.1)

by providing the optimality conditions. We have the cost function f(x)

f(x) ∶=
k

∑
i=1

x⊺Aix

x⊺Bix
+ x⊺Dx

and its restriction f∣M(x) ∶ M → R.

2.1 The First Order Optimality Conditions

We can consider the unit sphere M as a Riemannian submanifold of the Eu-

clidean space Rn endowed with the natural inner product. The tangent space TxM

at any point x ∈ M can be expressed as [1]:

TxM= {z ∣ z = Pxy, ∀y ∈ Rn},

where Px = In − xx⊺ is the orthogonal projection onto the kernel ker(x⊺) = R(x)�.

Using the orthogonal projection Px, we can express the gradient of the smooth real-

valued function f∣M(x) by [18]:

g(x) ∶= grad f∣M(x) = Px∇f(x). (2.1)

Also, a critical point x ∈ M of a function f∣M(x) is a point that satisfies g(x) = 0.

The first order optimality condition is given in the following theorem.

Theorem 2.1.1. Let Ai,D ∈ Sn and Bi ∈ S++n for i = 1, . . . , k. A point x ∈ M is a

critical point of the function f∣M(x) on M if and only if it satisfies

E(x)x = λ(x)x, (2.2)
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where

λ(x) ∶= φD(x)
k

∏
i=1

φBi
(x),

E(x) ∶=
k

∑
i=1

k

∏
j=1,j≠i

φBj
(x)(Ai −

φAi
(x)

φBi
(x)

Bi) +
k

∏
i=1

φBi
(x)D, (2.3)

and φG(x) ∶= x⊺Gx for G ∈ {Ai,Bi,D}.

Proof. First, we calculate ∇f(x):

∇f(x) = ∇(
k

∑
i=1

x⊺Aix

x⊺Bix
+ x⊺Dx)

= ∇(
k

∑
i=1

φAi
(x)

φBi
(x)

+ φD(x))

= 2(
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
+D)x.

Next, we need to find g(x) = Px∇f(x):

g(x) = 2[
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
x +Dx

−
k

∑
i=1

φBi
(x)xx⊺Aix − φAi

(x)xx⊺Bix

φ2
Bi

(x)
− xx⊺Dx]

= 2[
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
+D − φD(x)In]x. (2.4)

Since x ∈ M is a critical point if and only if g(x) = 0, we have

g(x) = 0⇔(
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
+D)x = φD(x)x

⇔(
k

∑
i=1

k

∏
j=1,j≠i

φBi
(x)(Ai −

φAi
(x)

φBi
(x)

Bi) +
k

∏
i=1

φBi
(x)D)x = φD(x)

k

∏
i=1

φBi
(x)x,

as expected. ∎

From the previous result, we can see that any critical point x is an eigenvector of

E(x) with the corresponding eigenvalue λ(x) = φD(x)∏
k
i=1 φBi

(x). Now, we denote

the set of all critical points of f∣M(x) by Y i.e.,

Y = {∥x∥2 = 1 ∣ E(x)x = λ(x)x}. (2.5)

16



Moreover, finding a global maximizer of the problem (1.1) is not easy because (2.2)

is an eigenvector-dependent nonlinear problem.

2.2 The Second Order Optimality Conditions

In this section, we establish the second order optimality conditions for (1.1).

First, we need the Hessian of f∣M(x) in order to prove our results regarding a local

maximizer of (1.1). We define the symmetric Hessian operator at x ∈ M as

Hess f∣M(x) ∶ TxM→ TxM ∶ h↦ ∇h grad f∣M(x).

The Riemannian connection is considered as a natural choice of affine connection

since it simplifies the analytical derivations. The action of Riemannian Hessian of

f∣M(x) on a tangent vector h ∈ TxM is given by [1]:

Hess f∣M(x)[h] = Px(Dg(x)[h]), h ∈ TxM. (2.6)

Now, we calculate Dg(x)[h]:

Dg(x)[h] = 2D[(
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
+D − φD(x)In)x][h]

= 2[(
k

∑
i=1

φBi
(x)Ai − φAi

(x)Bi

φ2
Bi

(x)
+D − φD(x)In)h

+
k

∑
i=1

(Ai(2x⊺Bih) −Bi(2x⊺Aih))φ2
Bi

(x)

φ4
Bi

(x)

−
(φBi

(x)Ai − φAi
(x)Bi)(4φBi

(x)x⊺Bih)

φ4
Bi

(x)
− 2x⊺Dh]x.

Then,

Dg(x)[h] =
2

∏
k
i=1 φBi

(x)
[E(x) − λ(x)In − 2

∏
k
j=1,j≠i φBj

(x)

φBi
(x)

k

∑
i=1

((Aixx⊺Bi +Bixx⊺Ai)

+ 2
φAi

(x)

φBi
(x)

(Bixx⊺Bi))]h − 4(x⊺Dh)x.

(2.7)
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The second order optimality conditions are established in the following theorem.

Theorem 2.2.1. Let Ai,D ∈ Sn and Bi ∈ S++n , i = 1, . . . , k.

i) The Hessian operator of f∣M(x) at point x ∈ M acting on h ∈ TxM is

Hess f∣M(x)[h] =
2

∏
k
i=1 φBi

(x)
H(x)h,

where H(x) ∈ Sn is given by

H(x) = Px[E(x) − λ(x)In − 2
∏
k
j=1,j≠i φBj

(x)

φBi
(x)

k

∑
i=1

((Aixx⊺Bi +Bixx⊺Ai)

+ 2
φAi

(x)

φBi
(x)

(Bixx⊺Bi))]Px.

(2.8)

ii) If x is a local maximizer of (1.1), then the matrix

K(x) ∶= E(x) −
k

∏
i=1

φBi
(x)φD(x)In + 2Px

k

∑
i=1

k

∏
j=1,j≠i

φBj
(x)[(Bixx⊺D +Dxx⊺Bi)

+
k

∑
`=1

1

φB`
(x)

((Bixx⊺A` +A`xx⊺Bi) −
φA`

(x)

φB`
(x)

(Bixx⊺B` +B`xx⊺Bi))]Px (2.9)

is negative semidefinite.

iii) If K(x) ∶ TxM→ TxM is negative definite, for any x ∈ Y = {∥x∥2 = 1∣ E(x)x =

λ(x)x}, then x is a strict local maximizer of the problem (1.1).

Proof. i) Using Pxx = 0, Pxh = h, ∀h ∈ TxM, by (2.6) and (2.7), we have the

desired result.

ii) If x is a local maximizer of (1.1), then we have

E(x)x = (
k

∑
i=1

k

∏
j=1,j≠i

φBj
(x)(Ai −

φAi
(x)

φBi
(x)

Bi) +
k

∏
i=1

φBi
(x)D)x

= φD(x)
k

∏
i=1

φBi
(x)x

= λ(x)x.

We claim that

Px(E(x) − λ(x)In)Px = E(x) − λ(x)In. (2.10)
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To prove (2.10), we note

Px(E(x) − λ(x)In)Px

= E(x) − λ(x)In − 2E(x)xx⊺ + 2∏
k
i=1 φBi

(x)φD(x)xx⊺

= E(x) − λ(x)In − 2(E(x)x − λ(x)x)x⊺

= E(x) − λ(x)In,

where we have used:

(a) E(x)xx⊺ = xx⊺E(x) by Theorem 2.1.1;

(b) xx⊺E(x)xx⊺ = λ(x)xx⊺.

Moreover,

2∏
k
j=1,j≠i φBj

(x)

φBi
(x)

k

∑
i=1

(2
φAi

(x)

φBi
(x)

(Bixx⊺Bi) − (Aixx⊺Bi +Bixx⊺Ai))

= 2
k

∑
i=1

∏
k
j=1,j≠i φBj

(x)

φBi
(x)

(Bixx⊺(
φAi

(x)

φBi
(x)

Bi −Ai) + (
φAi

(x)

φBi
(x)

Bi −Ai)xx⊺Bi)

= 2
k

∑
i=1

k

∏
j=1,j≠i

φBj
(x)[(Bixx⊺D +Dxx⊺Bi) − φD(x)(Bixx⊺ + xx⊺Bi)

+Bixx⊺
k

∑
`=1,`≠i

1

φB`
(x)

(A` −
φA`

(x)

φB`
(x)

B`) +
k

∑
`=1,`≠i

1

φB`
(x)

(A` −
φA`

(x)

φB`
(x)

B`)xx⊺Bi]

= 2
k

∑
i=1

k

∏
j=1,j≠i

φBj
(x)[(Bixx⊺D +Dxx⊺Bi) − φD(x)(Bixx⊺ + xx⊺Bi)

+
k

∑
`=1,`≠i

1

φB`
(x)

((Bixx⊺A` +A`xx⊺Bi) −
φA`

(x)

φB`
(x)

(Bixx⊺B` +B`xx⊺Bi))].

(2.11)

Note that

Px(Bixx⊺ + xx⊺Bi)Px = 0, i = 1, . . . , k. (2.12)

Therefore, from (2.10), (2.11) and (2.12), we have H(x) =K(x).

iii) The condition in (iii) of Theorem 2.2.1 is a sufficient condition for x to be a strict

local maximizer of (1.1).

∎
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There is a particular result appearing in the following theorem from Theorem

2.2.1 that is related to the eigenvalue of E(x) where x is a local maximizer of (1.1),

and the following theorem shows this result. We assume that D is a positive definit

matrix.

Theorem 2.2.2. Let Ai ∈ Sn and Bi,D ∈ S++n for i = 1, . . . , k. If x is a local maximizer

of (1.1), then it must be a unit eigenvector corresponding to either the largest or the

second largest eigenvalue of E(x).

Proof. Let

u = 2PxDx,

and

vi = Px[Bix +
1

2

k

∑
`=1,`≠i

1

φB`
(x)Dxx⊺

((Bixx⊺A` +A`xx⊺Bi)

−
φA`

(x)

φB`
(x)

(Bixx⊺B` +B`xx⊺Bi))x], i = 1, . . . , k.

Rewrite K(x) in Theorem 2.2.1 to get

K(x) = E(x) − λ(x)In +
k

∑
i=1

(uv⊺
i + viu

⊺).

The rank of the matrix W ∶= ∑
k
i=1(uv⊺

i +viu⊺) ∈ Sn is at most 2, and its only possible

nonzero eigenvalues are

λ1,2 = u⊺
k

∑
i=1

vi ± ∥u∥2 (
k

∑
i=1

∥vi∥2 +
√

2
k

∑
i=1,i≠j

√
vivj).

That implies

λ1(W ) ≥ 0 = λ2(W ) = ⋯ = λn−1(W ) ≥ λn(W ).

As stated in (ii) of Theorem 2.2.1, since x is a local maximizer of (1.1) and K(x) is a

negative semidefinite matrix, based on Weyl’s monotonicity principle Theorem 1.2.2,

we have

λ1(K(x)) + λm(−W ) ≥ λm(K(x) −W ) ≥ λn(K(x)) + λm(−W ), 1 ≤m ≤ n.
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Then, for m = 1,

λ1(K(x)) + λ1(−W ) ≥ λ1(K(x) −W )

⇒ λ1(−W ) ≥ λ1(K(x) −W ), because λ1(K(x)) ≤ 0

⇒ λ1(E(x) − λ(x)In) ≤ λ1(−W ) = −λn(W ).

Similarly, for m = n, we have

λn(E(x) − λ(x)In) ≤ −λ1(W ).

Hence, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(E(x) − λ(x)In) ≤ −λn(W ),

λ2(E(x) − λ(x)In) ≤ −λn−1(W ) = 0,

⋮

λn(E(x) − λ(x)In) ≤ −λ1(W ),

(2.13)

and note that

λ2(E(x) − λ(x)In) ≤ 0 ≤ λ1(E(x) − λ(x)In). (2.14)

Since (0,x) is an eigenpair of E(x)−λ(x)In, the previous relation (2.14) leads to the

following three possible cases:

1. λ2(E(x) − λ(x)In) < 0 = λ1(E(x) − λ(x)In)

⇒ λ1(E(x)) = λ(x) ∶ λ(x) is the largest eigenvalue of E(x);

2. λ2(E(x) − λ(x)In) = 0 = λ1(E(x) − λ(x)In)

⇒ λ1,2(E(x)) = λ(x) ∶ λ(x) is either the largest eigenvalue or the second largest

eigenvalue of E(x);

3. λ2(E(x) − λ(x)In) = 0 < λ1(E(x) − λ(x)In)

⇒ λ2(E(x)) = λ(x) ∶ λ(x) is the second largest eigenvalue of E(x).

This completes the proof. ∎
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Chapter 3

Convergence Analysis for the Self-Consistent-Field (SCF) Iteration

3.1 SCF Iteration

Currently, the SCF is considered one of the most commonly used algorithms

to solve the Kohn-Sham equations in electronic structure calculations (e.g., [8, 9, 12,

15, 16]). In [2, 7, 20], we find the convergence of the SCF iteration for solving the

Kohn-Sham equations and numerical algorithms for electronic structure calculations.

In this section, we introduce a self-consistent-field (SCF) iterative method for

solving (1.1). In spite of the fact that the solution x in E(x) of (2.2) is unknown, one

can approach the target solution x using an iterative scheme: a simple self-consistent-

field iterative method (Algorithm 1).

There are several remarks regarding this algorithm:

i) Step 1 has the major computational cost of Algorithm 1, where it computes a

dominant eigenvector of E(x(t)) in every iteration.

ii) In step 2, the term r(t+1) defines the residual for the approximate x(t) of the

nonlinear eigenvalue problem (2.2).

iii) Once the sequence {x(t)} converges to x̂, x̂ satisfies the necessary conditions

for local optimality in Theorem 2.2.2. This can be considered one of the major

advantages of the SCF iteration over some optimization-based methods (see [1,

5]).
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Algorithm 1 A self-consistent-field (SCF) iteration

Given x(0) ∈ M and tolerance ε > 0; set t = 0. This algorithm computes an approxi-

mate maximizer for the optimization problem (1.1).

1: Compute the dominant eigenvector x(t+1) of E(x(t));

2: Compute the residual r(t+1) ∶=
∥E(x(t+1))x(t+1)−λ(x(t+1))x(t+1)∥

2

(∥E(x(t+1))∥
2
+∣λ(x(t+1))∣)∥x(t+1)∥

2

;

3: if r(t+1) ≤ ε then

4: stop and return the approximation solution x(t+1);

otherwise, set t ∶= t + 1 and go to step 1.

5: end if

(a) n = 20, k = 4 (b) n = 50, k = 10

(c) n = 30, k = 30

Figure 3.1: The residual r(t) from SCF with n ≥ k
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(a) n = 10, k = 50 (b) n = 5, k = 10

Figure 3.2: The residual r(t) from SCF with n < k

We have presented some results using the SCF iteration, Algorithm 1, for several

matrices that are generated by MATLAB, using “randn(n)” command to return an

n-by-n matrix of normally distributed random numbers. Then, in order to make this

matrix to be symmetric, we use “(G +G′)/2” for G ∈ {Ai,Bi,D}, where “G′” is the

transpose of G which is G⊺. After that, Ai,Bi for i = 1, . . . , k are sorted using “cell”

arry command which is a data type with indexed data containers called cells, where

each cell can contain one of the generated matrices Ai, and Bi for i = 1, . . . , k. (see

Figure 3.1 and Figure 3.2).

3.2 Local Convergence of the SCF Iteration

We analyze the local covergence behavior of the SCF iteration. In this section,

we provide a condition to ensure the local convergence of {x(t)}. It is desirable to

utilize the distance between subspaces, in order to measure the convergence rate of

the SCF iteration [17]. Yang et al. in [15] have used this technique for analyzing

the SCF iteration convergence. Particularly, for (1.1), we analyze the distance be-

tween span(x(t)) and span(x̂), where span(u) denotes the one-dimentional subspace

24



spanned by u, and x̂ is the dominant eigenvector of E(x̂). The distance between

span(x(t)) and span(x̂) is defined by (see §2.6.3 in [6]):

d(t) ∶= dist(span(x(t)), span(x̂)) = ∥x̂(x̂)⊺ − x(t)(x(t))⊺∥
2
= sinσ(t), (3.1)

where σ(t) ∶= ∠(span(x(t)), span(x̂)) is the angle between span(x(t)) and span(x̂),

given by cosσ(t) = ∣(x̂)⊺x(t)∣.

Lemma 3.2.1. Let x, x̂ ∈ M, σ ∶= ∠(span(x), span(x̂)), and η = 2 sinσ/2. The

following statements hold:

i) sinσ ≤ η ≤
√

2 sinσ.

ii) There exists a scalar α ∈ R with ∣α∣ = 1 and a vector y�x̂ with ∥y∥2 = sinσ such

that αx = x̂ cosσ + y. As a consequence ∥αx − x̂∥2 = η.

Proof. Since 0 ≤ σ ≤ π/2, we have cos(σ/2) ≥ 1/
√

2 and thus

sinσ ≤ η ≤
√

2 sinσ.

This proves the first statement. For (ii), let y = αx − x̂ cosσ. We have

x̂⊺y = x̂⊺(αx − x̂ cosσ) = x̂⊺(αx) − x̂⊺x̂ cosσ = 0,

i.e., y�x̂. It follows from αx = x̂ cosσ + y and y�x̂ that

12 = ∥αx∥2 = cos2 σ + ∥y∥2 ⇒ ∥y∥2 = sinσ.

Finally,

∥αx − x̂∥2
2 = (cosσ − 1)2 + ∥y∥2

2 = 2(1 − cosσ) = (2 sin
σ

2
)

2

,

yielding

∥αx − x̂∥2 = 2 sin
σ

2
=

sinσ

cos(σ/2)
= η,

as expected. ∎
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We present the main result of this section in the following theorem.

Theorem 3.2.2. Let Ai,D ∈ Sn and Bi ∈ S++n , i = 1, . . . , k. Suppose x̂ is the dominant

eigenvector of E(x̂) and

δ ∶= λ1(E(x̂)) − λ2(E(x̂)) > 0. (3.2)

If

4
√

2χ < δ, (3.3)

then SCF iteration converges locally to x̂, where

χ ∶= 2{
k

∑
i=1

[2∥Ai∥2∥B
−1
i ∥2

2 +
∥Ai∥2

∥Bi∥2

(1 + ∥B−1
i ∥2)] + ∥D∥2}

k

∏
j=1

∥Bj∥2.

Proof. First, we will drop the superscript of iteration index t in order to simplify the

presentation of the proof. We write x for x(t), φBi
for φBi

(x(t)) and x+ for x(t+1), and

so on.

We will show that d+ < γd with γ = 4
√

2χ
δ < 1, where d+ ∶= dist(span(x+), span(x̂))

and d ∶= dist(span(x), span(x̂)). For that, we estimate ∥∆E(x)∥2 = ∥E(x) −E(x̂)∥2 .

Let σ = ∠(span(x), span(x̂)) and η = ∥αx−x̂∥2. By Lemma 3.2.1, we have d ≤ η ≤
√

2d.

First, we estimate ∣φG(x) − φG(x̂)∣ for G ∈ {Ai,Bi,D}. Let αx be as in Lemma

3.2.1 and set x̃ = αx. It can be seen that φG(x) = φG(x̃). Thus

φG(x) − φG(x̂) = φG(x̃) − φG(x̂) = x̃⊺Gx̃ − x̂⊺Gx̂ = (x̃ − x̂)⊺Gx̃ + x̂⊺G(x̃ − x̂),

yielding

∣φG(x) − φG(x̂)∣ ≤ 2∥G∥2η. (3.4)

Next, estimate ∣∏
k
i=1 φBi

(x) −∏
k
i=1 φBi

(x̂)∣. Adopt the convention

0

∏
i=1

(⋯) ≡ 1,
k

∏
i=k+1

(⋯) ≡ 1.
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We have

k

∏
i=1

φBi
(x) −

k

∏
i=1

φBi
(x̂) =

k

∑
j=1

(

j−1

∏
i=1

φBi
(x)) [φBi

(x) − φBi
(x̂)] (

k

∏
i=j+1

φBi
(x̂)) ,

yielding with (3.4)

∣
k

∏
i=1

φBi
(x) −

k

∏
i=1

φBi
(x̂)∣ ≤ 2η

k

∏
i=1

∥Bi∥2.

For positive definite Bi, i = 1, . . . , k, and ∥x∥2 = 1,

∥B−1
i ∥−1

2 ≤ φBi
(x) ≤ ∥Bi∥2.

Also, we estimat ∣
φAi
(x̂)

φBi
(x̂) −

φAi
(x)

φBi
(x) ∣ using ∠(span(x), span(x̂)). We have

φAi
(x̂)

φBi
(x̂)

−
φAi

(x)

φBi
(x)

=
φAi

(x̂)φBi
(x) − φAi

(x)φBi
(x̂)

φBi
(x̂)φBi

(x)

=
[φAi

(x̂) − φAi
(x)]φBi

(x) + φAi
(x)[φBi

(x) − φBi
(x̂)]

φBi
(x̂)φBi

(x)
,

yielding

∣
φAi

(x̂)

φBi
(x̂)

−
φAi

(x)

φBi
(x)

∣ ≤ 4∥Ai∥2∥Bi∥2∥B
−1
i ∥2

2 η.

Now estimate ∥∆E(x)∥2 = ∥E(x) −E(x̂)∥2. We have

E(x) −E(x̂) =
k

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(Ai −
φAi

(x)

φBi
(x)

Bi)
k

∏
j=1,
j≠i

φBj
(x) − (Ai −

φAi
(x̂)

φBi
(x̂)

)
k

∏
j=1,
j≠i

φBj
(x̂)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ [
k

∏
i=1

φBi
(x) −

k

∏
i=1

φBi
(x̂)]D

=
k

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
φAi

(x̂)

φBi
(x̂)

−
φAi

(x)

φBi
(x)

)
k

∏
j=1,
j≠i

φBj
(x)

+(Ai −
φAi

(x̂)

φBi
(x̂)

Bi)

⎛
⎜
⎜
⎝

k

∏
j=1,
j≠i

φBj
(x) −

k

∏
j=1,j≠i

φBj
(x̂)

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ [
k

∏
i=1

φBi
(x) −

k

∏
i=1

φBi
(x̂)]D,
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yielding

∥E(x) −E(x̂)∥2 ≤
k

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4η∥Ai∥2∥B
−1
i ∥2

2

k

∏
j=1

∥Bj∥2 + 2η∥Ai∥2(1 + ∥B−1
i ∥2)

k

∏
j=1,
j≠i

∥Bj∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 2η∥D∥2

k

∏
j=1,
j≠i

∥Bj∥2

= χη.

Finally, as stated in Theorem 8.1.10 and Corollary 8.1.11 (see Theorem 1.2.3), we

have

d+ ∶= dist(span(x+), span(x̂)) ≤
4 ∥E(x) −E(x̂)∥2

δ
≤

4χη

δ
≤

4
√

2χ

δ
d.

Therefore, the local convergence is ensured.

∎

3.3 Trust-Region Self-Consistent-Field (TRSCF) Iteration

The SCF iteration may not always converge, and sometimes the iterate x(t)

oscillates and the sequence {f (t)} is not monotonically increasing [17]. In electronic

structure calculations, there is an observation about this convergence behavior of

the SCF iteration. More explanation and analysis of this phenomenon can be found

in [15,16]. According to [16], since calculating a dominant eigenvector x(t+1) of E(x(t))

is equivalent to solving the following problem:

max
x∈M

x⊺E(t)x, (3.5)

the SCF iteration is considered an iterative procedure that maximizes the related

objective function of problem (1.1) by maximizing a sequence of the objective function

in (3.5). Refer to [16] for more explanation and detailed discussion about this point.

28



In order to improve the convergence of the SCF iteration, there are several

heuristics which are proposed in the material sciences and in quantum chemistry

[12, 13, 16]. The trust-region SCF (TRSCF) iteration is one of them. The target of

this method is to restrict the approximate solution of the problem (3.5) to a trust

region such that the next iterate x(t+1) is required to not be far away from x(t). Since

∥xx⊺ − x(t)(x(t))⊺∥F measures the distance between span(x(t)) and span(x) [6], with

this in mind, the trust-region-based quadratic surrogate problem was designed as [17]

max
∥x∥2=1,

∥xx⊺−x(t)(x(t))⊺∥
F
≤∆t

x⊺E(t)x, (3.6)

where ∆t is the trust-region radius, and ∥⋅∥F is the Frobenius norm.

In [17], a technique of transforming the constraint ∥x(x)⊺ − x(t)(x(t))⊺∥F ≤ ∆t

into a penalty term, i.e.,

max
x∈M

{x⊺E(t)x −
ρ

2
∥x(x)⊺ − x(t)(x(t))⊺∥

2

F
}, (3.7)

is used to solve (3.6), where ρ > 0 is a penalty parameter.

Since x,x(t) ∈ M, (3.7) is equivalent to the problem

max
x∈M

{x⊺[E(t) + ρx(t)(x(t))⊺]x}, (3.8)

whose maximizer is the unit dominant eigenvector of E(t) + ρx(t)(x(t))⊺. The choice

of penalty parameter, ρ, was discussed in Theorem 4.1 of [17]. The monotonicity of

{f (t)} is controlled by the parameter, ρ. Also, this parameter plays an important role

in adjusting the convergence speed, as well. We present the TRSCF iterative method

in Algorithm 2, and compare the results of the sequences {f (t)} using the SCF and

TRSCF iterative methods, in Figure 3.4. Actually, we can observe that the sequence

{f (t)} converges using the TRSCF iteration while the sequence is oscillating for the

SCF iteration, where we used a tolerance ε = 10−7.
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Algorithm 2 The TRSCF iteration.

Choose tolerance ε, and x(0) ∈ M; set t = 0, ρ = 0 and E
(t)
ρ = E(x(t)).

1: while r(t) ∶=
∥E(x(t))x(t)−λ(x(t))x(t)∥

2

(∥E(x(t))∥
2
+∣λ(x(t))∣)∥x(t)∥

2

> ε, do

2: Compute the dominant eigenvector x(t+1) of E
(t)
ρ ;

3: if f(x(t)) > f(x(t+1)) then

4: ρ = 2(λ1(E
(t)
ρ ) − λ2(E

(t)
ρ )); E

(t+1)
ρ ∶= E(x(t+1)) + ρx(t+1)(x(t+1))⊺;

5: else

6: E
(t+1)
ρ ∶= E(x(t+1));

7: end if

8: t = t + 1;

9: end while

(a) SCF (b) TRSCF

Figure 3.3: The residual r(t) from SCF and TRSCF.
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Figure 3.4: The sequences {f (t)} from SCF and TRSCF.
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Chapter 4

On Optimizing the Sum of the Trace Ratios on the Stiefel Manifold

In this chapter, we are concerned with the solution of the optimization problem

max
V ⊺V =I`

f(V ) with f(V ) ∶=
k

∑
i=1

tr(V ⊺AiV )

tr(V ⊺BiV )
+ tr(V ⊺DV ) (4.1)

over the Stiefel manifold

On×` ∶= {V ∈ Rn×` ∣ V ⊺V = I`},

where ` < n, and Ai,Bi,D ∈ Rn×n are real symmetric with Bi positive definite for

i = 1, . . . , k.

The problem (4.1) for the case k = 1 was investigated in [19], in which many

properties for ` = 1 were extended to ` > 1. In the previous sections, we studied the

case ` = 1.

We simplify the presentation by using the following notations:

φG(V ) ∶= tr(V ⊺GV ), G ∈ {Ai,Bi,D}, V ∈ Rn×`.

Then, the function in (4.1) can be written as

f(V ) ∶=
k

∑
i=1

φAi
(V )

φBi
(V )

+ φD(V ).

In fact, maximizing f(V ) over On×` is more complicated than maximizing each

term individually. For the term, tr(V ⊺DV ), we have a classical result for

max
V ∈On×`

tr(V ⊺DV ). (4.2)
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Any solution V of the problem (4.2) is an orthonormal eigenbasis matrix associated

with the ` largest eigenvalues of D. Also, there is no local but non-global maximizer.

Generally, it is difficult to establish necessary and sufficient conditions for global

maximizers of an optimization problem, and the problem (4.1) is no exception.

Since On×` can be viewed as an embeded submanifold of the Euclidean space

Rn×` [1, 3, 5], the tangent space TVOn×` at V ∈ On×` is given by (see [1, 3])

TVOn×` ∶={X ∈ Rn×` ∶ X⊺V + V ⊺X = 0}

={X = V K + (In − V V
⊺)J ∶ K = −K⊺ ∈ R`×`, J ∈ Rn×`}.

(4.3)

On TVOn×` , the standard inner product is

⟨X,Y ⟩ = tr(X⊺Y ), for X,Y ∈ TVOn×`.

The orthogonal projection of Z ∈ Rn×` onto the tangent space TVOn×` is

ΠT (Z) ∶=V (
V ⊺Z −Z⊺V

2
) + (In − V V

⊺)Z

=Z − V
V ⊺Z +Z⊺V

2
= Z − V sym(V ⊺Z) ∈ TVOn×`,

(4.4)

where sym(Z) ∶= 1
2(Z

⊺ +Z) is the symmetric part of Z.

4.1 First and Second Order Optimality Conditions

The first order optimality condition is given in the following theorem.

Theorem 4.1.1. If V ∈ On×` is a local maximizer of (4.1), then

E(V )V = VWV , (4.5)

where

E(V ) ∶=
k

∑
i=1

[
Ai

φBi
(V )

−
φAi

(V )Bi

(φBi
(V ))2

] +D,

and

WV ∶= V ⊺E(V )V.
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Thus, eig(WV ) ⊂ eig(E(V )), and V is an orthogonal eigenbasis matrix of E(V )

corresponding to its eigenvalues in eig(WV ).

Proof. Using the projection in (4.4), we find the gradient of f∣On×`(V ). We have

∂f(V )

∂V
= 2[

k

∑
i=1

Ai
φBi

(V )
−
φAi

(V )Bi

(φBi
(V ))2

+D]V = 2E(V )V,

and thus

grad f∣On×`(V ) =ΠT (
∂f(V )

∂V
)

=2E(V )V − V
V ⊺(2E(V )V ) + (2E(V )V )⊺V

2

=2[E(V )V − V (V ⊺E(V )V )].

Therefore,

grad f∣On×`(V ) = 0⇔ E(V )V = VWV ,

where WV ∶= V ⊺E(V )V. ∎

Theorem 4.1.2. If V is a local maximizer of (4.1), then

tr(X⊺E(V )X) − tr(XWVX
⊺) + tr(X⊺H(V,X)V ) ≤ 0 for X ∈ TVOn×`, (4.6)

where

H(V,X) ∶= 2
k

∑
i=1

{2
tr(V ⊺AiV ) tr(X⊺BiV )Bi

[tr(V ⊺BiV )]3
−

tr(X⊺BiV )Ai + tr(X⊺AiV )Bi

[tr(V ⊺BiV )]2
}.

If V ∈ On×` satisfies (4.5), and (4.6) is a strict inequality for X ≠ 0, then V is a strict

local maximizer.

Proof. By calculating D(Df(V ))[X]:

D(Df(V ))[X] =2D(E(V )V )[X]

=2E(V )X + 2DE(V )[X]V,
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we get

DE(V )[X] =
k

∑
i=1

−2
Ai tr(X⊺BiV )

[tr(V ⊺BiV )]2
− 2

Bi tr(X⊺AiV )[tr(V ⊺BiV )]2

[tr(V ⊺BiV )]4

+ 2
2Bi tr(V ⊺AiV )2 tr(V ⊺BiV ) tr(X⊺BiV )

[tr(V ⊺BiV )]4

= 2
k

∑
i=1

2 tr(V ⊺AiV ) tr(X⊺BiV )Bi

[tr(V ⊺BiV )]3
−

tr(X⊺BiV )Ai + tr(X⊺AiV )Bi

[tr(V topBiV )]2

=∶H(V,X).

Thus,

D(Df(V ))[X] = 2E(V )X + 2H(V,X)V.

Furthermore, if V is a critical point, then V ⊺ ∂f(V )
∂V = 2WV and by the necessary second

order optimality condition in [14], we have

2 tr(X⊺E(V )X) + 2 tr(X⊺H(V,X)V ) − 2 tr(WVX
⊺X) ≤ 0 for X ∈ TVOn×`,

which is (4.6). Therefore, the sufficient condition follows. ∎

Next, in the following theorem, we present the second order optimality condition

in terms of J ∈ Rn×`. For more general case, in Theorem 4.1.2, the second order

optimality condition has presented in terms of the tangent vector X ∈ TV ∈ On×`.

Theorem 4.1.3. If V is a local maximizer of (1.6), then

tr(J⊺E(V )J)+ tr(V ⊺JWV J
⊺V ) − tr(J⊺VWV V

⊺J) − tr(JWV J
⊺)

+ 4
k

∑
i=1

tr(J⊺[In − V V ⊺]BiV )

[φBi
(V )]3

(φAi
(V ) tr(J⊺[In − V V

⊺]BiV )

− φBi
(V ) tr(J⊺[In − V V

⊺]AiV )) ≤ 0 for J ∈ Rn×`.

(4.7)

If V ∈ On×` satisfies (4.5), and if (4.7) is strict for 0 ≠ J ∈ Rn×`, then V is a strict

local maximizer.
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Proof. Any element of the tangent space TVOn×` at V ∈ On×`, by (4.3), can be

expressed as [19]

X = V K + (In − V V
⊺)J ∈ TVOn×`

for anyJ ∈ Rn×` and skew-symmetric matrix K. Using (4.5), we have

E(V )X = VWVK +E(V )J − VWV V
⊺J. (4.8)

Also, we have

X⊺E(V )X =(K⊺V ⊺ + J⊺(InV V
⊺))E(V )X

=K⊺V ⊺E(V )X + J⊺(InV V
⊺)E(V )X

=K⊺V ⊺(VWVK) +K⊺V ⊺E(V )J −K⊺V ⊺ −K⊺V ⊺VWV V
⊺J

+ J⊺(In − V V
⊺)(VWVK +E(V )J − VWV V

⊺J)

=K⊺WVK +K⊺V ⊺E(V )J −K⊺WV V
⊺J + J⊺(InV V

⊺)E(V )J

=K⊺WVK +K⊺WV V
⊺J −K⊺WV V

⊺J + J⊺E(V )J − J⊺VWV V
⊺J

=K⊺WVK + J⊺E(V )J − J⊺VWV V
⊺J.

Then

tr(X⊺E(V )X) = tr(K⊺WVK) + tr(J⊺E(V )J) − tr(J⊺VWV V
⊺J). (4.9)

Since X⊺X =K⊺K + J⊺(In − V V ⊺J), by using K⊺ = −K we have

tr(X⊺XMV ) = tr(K⊺MVK) + tr(J⊺JMV ) − tr(V ⊺JWV J
⊺V ). (4.10)

Now, in order to write each term of (4.6) in terms of J ∈ Rn×` instead of X ∈ TVOn×`,

we also need to compute tr(X⊺H(V,X)V ) ∶

X⊺H(V,X)V =4
k

∑
i=1

φAi
(V ) tr(X⊺BiV )2

[φBi
(V )]3

−
tr(X⊺AiV ) tr(X⊺BiV )

[φBi
(V )]2

=4
k

∑
i=1

tr(X⊺BiV )

[φBi
(V )]3

(φAi
(V ) tr(X⊺BiV ) − φBi

(V ) tr(X⊺AiV )).
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Note that

tr(X⊺AiV ) = ⟨X,AiV ⟩ = ⟨V K + (In − V V
⊺)J,AiV ⟩ = tr(J⊺[In − V V

⊺]AiV ),

tr(X⊺BiV ) = ⟨X,BiV ⟩ = ⟨V K + (In − V V
⊺)J,BiV ⟩ = tr(J⊺[In − V V

⊺]BiV ).

Then,

tr(X⊺H(V,X)V ) =4
k

∑
i=1

tr(J⊺[In − V V ⊺]BiV )

[φBi
(V )]3

(φAi
(V ) tr(J⊺[In − V V

⊺]BiV ) − φBi
(V ) tr(J⊺[In − V V

⊺]AiV )).

(4.11)

From (4.9), (4.10) and (4.11) with (4.6), we have

tr(X⊺E(V )X) − tr(XMVX
⊺) + tr(X⊺H(V,X)V ) ≤ 0,

⇒ tr(J⊺E(V )J) − tr(J⊺VWV V
⊺J) − tr(J⊺JMV ) + tr(V ⊺JWV J

⊺V )

+ 4
k

∑
i=1

tr(J⊺[In − V V ⊺]BiV )

[φBi
(V )]3

(φAi
(V ) tr(J⊺[In − V V

⊺]BiV )

− φBi
(V ) tr(J⊺[In − V V

⊺]AiV )) ≤ 0,

which leads to (4.7). ∎

4.2 A Necessary Condition for Local Maximizers

Suppose V is a local maximizer of (4.1). We will establish a necessary condition

for a local maximizer of (4.1) in this section. According to Theorem 4.1, we have that

eig(WV ) ⊂ eig(E(V )),

and thus

eig(WV ) = {λωj
(E(V )), j = 1,2, . . . , `}, (4.12)

where 1 ≤ ω1 < ⋅ ⋅ ⋅ < ω` ≤ n.
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Theorem 4.2.1. Let V ∈ On×` be a local maximizer of (4.1), and set eig(WV ) as in

(4.12). Then

λω1(E(V )) ≥ λ2`(E(V )), (4.13)

provided 2` ≤ n.

Proof. We will proof this theorem using the contradiction [19]. So, suppose that

λω1(E(V )) < λ2`(E(V )). (4.14)

Let Y ∈ Rn×2` be an orthonormal eigenbasis matrix of E(V ) associated with its 2`

largest eigenvalues λj(E(V )) for 1 ≤ j ≤ 2`. Since V is the orthonormal eigenbasis of

E(V ) associated with its eigenvalues λωj
(E(V )) for 1 ≤ j ≤ `, we have Y ⊺V = 0. Also,

let Ji = Y Qi ∈ Rn×` where Qi ∈ R2`×` for i = 1, . . . , k, with orthonormal columns are to

be chosen. Then

J⊺i V = Q⊺
i Y

⊺V = 0 and J⊺i Ji = I`.

Therefore, for i = 1, . . . , k,

tr(J⊺i E(V )Ji) > tr(V ⊺E(V )V ) = tr(WV ) = tr(J⊺i JiWV ) = tr(JiWV J
⊺
i ). (4.15)

Hence, by (4.7), we have

tr(J⊺i E(V )Ji) − tr(WV )+4
k

∑
i=1

tr(J⊺i BiV )

[φBi
(V )]3

(φAi
(V ) tr(J⊺i BiV )

− φBi
(V ) tr(J⊺i AiV )) ≤ 0, i = 1, . . . , k.

(4.16)

We can write that

J⊺i BiV = Q⊺
i (Y

⊺BiV ) = Q⊺
i (UiΣiW

⊺
i ), i = 1, . . . , k,

such that UiΣiW
⊺
i is the SVD of Y ⊺BiV and Ui ∈ R2`×`,Σi ∈ R`×`, and Wi ∈ R`×`.

We choose Qi to be the one makes [Ui,Qi] ∈ R2`×2` orthogonal [19]. Then,

J⊺i BiV = Q⊺
i (Y

⊺BiV ) = Q⊺
iUiΣiW

⊺
i = 0, i = 1, . . . , k.
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Therefore, from (4.16), we have

tr(J⊺i E(V )Ji) − tr(WV ) ≤ 0 for i = 1, . . . , k,

which contradicts (4.15). Thus, (4.13) holds. ∎
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