
APPLICATIONS OF DEEP LEARNING IN LARGE-SCALE OBJECT

DETECTION AND SEMANTIC SEGMENTATION

by

WEI XIANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

March 2018

Copyright © by Wei Xiang 2018

All Rights Reserved

To my parents, my wife, and my lovely son, for their endless love and support.

ACKNOWLEDGEMENTS

There are many people whom I would like to thank and express my sincere

gratitude to during my PhD study.

First and foremost I want to give my deepest thanks to my supervising professor

Dr. Vassilis Athitsos for his constant encourage and motivation. He has taught me,

with great patience, a systematic way to conduct research. He always held highest

standards in research and set challenging targets for every milestone during my PhD

career, and was confident that I would be able to achieve those targets. Besides, he

also encouraged me to think out of academia world, by which I would have those

chances to understand industrial demands and apply my research outcome in real-

world problems.

Besides my advisor, I would like to thank the rest of my thesis committee:

Prof. Fillia Makedon, Prof. Farhad Kamangar and Dr. Chris McMurrough, for their

supportive encouragements and insightful comments.

I want to also thank all my colleagues from the Vision-Learning-Mining Re-

search Lab (VLM), at CSE Department. I was fortunate to meet these creative and

super nice people. My special thanks to Zhong Zhang, Christopher Conly and Pat

Jangyodsuk for their promote helps during my first two years of PhD.

The rest of my thanks go to my mentors and colleagues from the Media Lab of

Futurewei Technologies, NVIDIA and JD.COM, US Research Center. Particularly, I

want to express my sincere thanks to Dr. Heather Yu and Dr. Dong-Qing Zhang, for

their trust and providing a valuable internship opportunity at Futurewei Technologies

that enriched my career path. My special thanks also go to those nice persons during

iv

my stay at Futurewei Technologies, including Zecheng He, Hang Lv and Xing Li. For

my short sojourn at NVIDIA, I want to particularly thank Baris Demiroz, Gordon

Grigor, and Shane Murry for their trust and supports. As for those lovely people in

JD.COM, I want to express my deepest thanks to Weidong Zhang, Hongda Mao, Yan

Kang, Allison Lv, Wanyan Zheng, just to name a few. They make one of the sweetest

memories during my life at US.

Last but not least, I would like to give my special thanks to my family: my

parents, my wife Yi Xu and my little boy Harold Ziyu Xiang. Without their faithful

trust, love and support, I would never have come this far of my PhD career. It was,

has been, and alway remains my greatest pleasure to have them in my life.

March, 2018

v

ABSTRACT

APPLICATIONS OF DEEP LEARNING IN LARGE-SCALE OBJECT

DETECTION AND SEMANTIC SEGMENTATION

Wei Xiang, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Vassilis Athitsos

With the massive storage of multimedia data and increasing computational

power of mobile devices, developing scalable computer vision applications has become

the primary motivation for both research and industrial community. Among these

applications, object detection and semantic segmentation are two of the most popular

topics which, in addition, serve as the fundamental features for many computer vision

systems under platforms like mobile, healthcare, autonomous driving, etc. Inspired

by the current and foreseeable trend, this thesis focuses on developing both effective

and efficient object detection and semantic segmentation models, with the large-scale,

publicly available data sets sourced for various applications.

In the last several years, object detection and semantic segmentation have re-

ceived large attention in the literature, and have been significantly advanced with the

emergence of deep learning methods. Particularly, by applying Convolutional Neu-

ral Networks (CNNs), researchers have leveraged unsupervised features in modeling

which greatly simplified the tasks of classification and regression, compared to using

merely hand-crafted features in those traditional approaches.

vi

In object detection, however, there still exist many open research problems like

integrating contextual information to the existing models, the missing relationship

between proposal scales and receptive field sizes for different CNNs, etc. In this thesis,

we study extensively such relationship, and further demonstrate that our statistical

results can be used as a guideline to design both heuristically and efficiently new

detection models, with an improvement of detection accuracy particularly for small

objects.

In semantic segmentation, we investigate many of the state-of-the-art meth-

ods and figure out that current research have largely focused on using complicated

backbones together with some popular meta-architectures and designs which, in turn,

leads to the problem of overfitting and incapability for real-time tasks. To overcome

this issue, we propose Turbo Unified Network (ThunderNet), which builds on a min-

imum backbone followed by a pyramid pooling module and a customized, two-level

lightweight decoder. Our experimental results show that ThunderNet remains one

of the fastest models that are currently available, while achieving comparable accu-

racy to a majority of methods in the literature. We also test ThunderNet with a

GPU-powered embedded platform–NVIDIA Jetson TX2, whose results indicate that

ThunderNet performs sufficiently fast and accurate, thus meeting the demands for

embedded system.

Finally, this thesis also surveys on the joint calibration methods for RGB-D

sensor. We summarize the related work and present our quantitative evaluation

results thereafter.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT . vii

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xiv

Chapter Page

1. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Our Methods . 2

1.3 Thesis Overview . 5

2. DEEP NEURAL NETWORKS . 6

2.1 Introduction . 6

2.2 Tools . 8

2.3 GPU Acceleration . 11

2.3.1 Principles . 11

2.3.2 High-performance Computing Libraries 12

2.3.3 Data Parallelism vs. Model Parallelism 14

2.4 Deep vs. Shallow . 17

2.5 Spatial, Scaling and Rotation Invariance 21

2.6 Model Compression . 22

2.6.1 Related Work . 23

2.6.2 Evaluation . 25

2.6.3 Ways to Compress Neural Networks 29

viii

2.6.4 Ways to Reduce Parameters 31

2.6.5 Avoid FC Layers . 32

2.6.6 Placement and Tuning of Normalization Layer 33

2.6.7 Improvement With Model Compression 34

3. OBJECT DETECTION . 36

3.1 Introduction . 36

3.2 Related Work . 39

3.3 Context-Aware Single-Shot Detector 43

3.4 Empirical Receptive Fields . 45

3.4.1 A Data-Driven Approach . 45

3.4.2 Analysis and Visualization . 46

3.5 Training . 48

3.6 Experiments . 49

3.6.1 Ablation Study . 49

3.6.2 Convergence Speed . 49

3.6.3 Sensitivity and Impact Analysis on PASCAL VOC 2007 . . . 49

3.6.4 Our Results . 58

3.6.5 CSSD Curations . 64

4. SEMANTIC SEGMENTATION . 67

4.1 Introduction . 67

4.2 Related Work . 70

4.3 Framework . 73

4.4 Experiments . 75

4.4.1 Implementation . 75

4.4.2 Results on Cityscapes . 76

4.4.3 Performance Analysis . 77

ix

4.4.4 Ablation Studies . 79

4.4.5 Visualizations . 80

4.5 Conclusion . 80

5. 3D SENSOR CALIBRATION . 83

5.1 Introduction . 83

5.2 Related Work . 84

5.2.1 Joint calibration vs non-joint calibration 84

5.2.2 Supervised calibration . 85

5.2.3 Unsupervised calibration . 87

5.2.4 Kinect library . 87

5.3 Calibration Methods . 88

5.3.1 Burrus’s Method . 91

5.3.2 Smisek’s Method . 92

5.3.3 Herrera’s Method . 94

5.3.4 Teichman’s Method . 96

5.4 Evaluation . 97

5.4.1 Calibration error vs. parameters learned 100

5.4.2 Calibration performance vs. number of images 101

5.4.3 Depth uncertainty . 104

5.5 Conclusion . 106

6. CONCLUSIONS . 107

REFERENCES . 109

BIOGRAPHICAL STATEMENT . 128

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 State-of-the-art methods in ImageNet benchmark till 2016. 8

2.2 Illustration of how GPU acceleration works in space of the application

code. 12

2.3 GPU acceleration compared to its CPU counterpart using Caffe. . . . 12

2.4 Comparison of classification time with different HPCL. 13

2.5 Comparison of computational time using 32-bit vs. 64-bit float. 14

2.6 Illustration of synchronous data parallelism on a local configuration. . 15

2.7 Demonstration of how conv layer maps one neuron to its previous layer. 18

2.8 A comparison study of using smaller filter with 3 conv layers, versus

using larger filter but with a single conv layer. 19

2.9 Illustration of Inception module. 20

3.4 Example discrepancy maps of SSD’s conv4 3 layer. 47

3.5 ERF studies. 48

3.8 Sensitivity and impact analysis of different object characteristics for

PASCAL VOC 2007 . 51

3.9 Exemplified ERF computation for conv4 1 of SSD 51

3.11 Illustration of SSD’s default boxes at different prediction layers. 53

3.12 Illustration of the offsets between centers of default boxes and centers

of receptive field. 55

3.13 Offsets observed between RF centers and default box centers. 55

3.14 Analysis of degree of inaccuracy at different prediction layers. 56

xi

3.17 Sensitivity analysis of bounding box area for PASCAL VOC. 62

4.1 Comparisons of accuracy and inference speed for the state-of-the-art

methods on Cityscapes. 68

4.2 Visualization of adding PPM and decoder to a ResNet18 backbone. . . 72

4.3 Framework of ThunderNet. 74

4.4 Curated examples of the segmentation results output by ThunderNet. 81

5.1 Burrus method: corner detection in RGB and IR images. 91

5.2 Undistortion map visualized by data learned from Herrera’s method. . 93

5.3 Example pointcloud of environment recorded using Techiman’s method. 97

5.4 Undistortion map visualized by data learned from Teichman’s method. 98

5.5 Examples of dataset used in our evaluation. 98

5.6 Calibration error of Herrera’s method on A1 and A2. 101

5.7 Performance of Herrera’s method on B1 and B2. 103

5.8 Boxplot of performance of Herrera’s method. 103

5.9 Depth uncertainty measured from A1 and A2 for benchmarked methods. 105

xii

LIST OF TABLES

Table Page

2.1 Comparisons of five most popular deep learning toolkits. 9

2.2 Comparisons of four state-of-the-art model compression methods–Part1. 24

2.3 Comparisons of four state-of-the-art model compression methods–Part2. 25

3.1 Comparison of sizes of ERFs and TRFs in a VGG16 network. 45

3.2 Ablation study of the coverage degree of SSD’s default boxes to GT boxes. 58

3.3 New annotation labels created for DETRAC. 60

3.4 Evaluation of the proposed networks on DETRAC dataset. 60

3.5 Detection results on PASCAL VOC2007 test set. 62

3.6 MS-COCO test-dev2015 detection results. 63

3.7 Speed and accuracy comparisons on VOC2007. 64

4.1 Accuracy and speed comparisons on Cityscapes test set. 76

4.2 Comparison of inference speed for the fastest models currently available. 78

4.3 Comparison of inference speed for ENet, ERFNet, ICNet and ThunderNet. 78

4.4 Experimental results of using ResNet18 backbones with different input

sizes on Cityscapes val set. 80

4.5 Ablation study for adding PPM and decoder on Cityscapes val set. . . 80

5.1 Comparison of three different libraries available for Kinect (V1). 88

5.2 Description of all four datasets A1, A2, B1 and B2. 99

5.3 Different parameters learned from Herrera’s method in A1 and A2. . . 100

5.4 Comparison of depth uncertainty. 105

xiii

CHAPTER 1

INTRODUCTION

In this thesis, we focus on developing novel methods for large-scale computer

vision problems including object detection and semantic segmentation. Meanwhile,

we introduce the applications of deep learning with our proposed network architec-

tures, on both desktop and embedded platforms. Furthermore, we also investigate

the joint calibration methods for both depth and RGB sensor.

1.1 Motivation

With the emergence of deep learning, unsupervised feature learning has ad-

vanced hand-crafted feature designs on many benchmarks of traditional computer

vision tasks, including object detection and semantic segmentation. Among those,

how to design an effective and yet efficient neural networks still remains an open

problem. In this thesis, we aim at providing several computer vision methods and

techniques that have been shown to alleviate the above problem in a large-scale set-

ting.

Firstly, we discuss about neural network design and implementation techniques

with their applications to both object detection and semantic segmentation. While

the similar principles can also be utilized in many other computer vision tasks, these

techniques provide a both effective and efficient way to build our model. Many of the

state-of-the-art models adopted these techniques and thus advanced several popular

benchmarks as reported. Convolutional Neural Networks (CNNs), while being ex-

tremely popular in object detection and semantic segmentation, vary a lot regarding

1

to their combinations of network meta-architectures and designs. To name a few, they

span from the basic convolutions, to various factorization and/or stacking approaches

of those operations in an efficient way, and thus to the training policies that will most

likely maximize the representation power of models built.

Secondly, we show that deep learning based approaches which have already

demonstrated great representation power in unsupervised feature learning, can also

be guided by the inherent characteristics of their basic operations, i.e. convolutions.

For tasks like object detection and semantic segmentation, the contextual information

must be leveraged to achieve higher accuracies. Given a multi-scale neural network,

for example, the predictions rooted from early1 convolution layers are restricted by

how large areas they see/depend on the original image space. Such areas are called

receptive fields (RFs), which are also referred to as the fields of view. We explore the

missing relationship between context and receptive field, and further figure out that

by fusing feature maps obtained from dilated convolutions of different rates/strides,

the contextual information can thereof be learned in an intuitive approach.

Thirdly, all above discussions are about using deep neural networks to solve

traditional computer vision tasks. However, there exist many other fundamental

vision tasks that rarely depend on unsupervised feature learning, for instance 3D

reconstruction with depth sensor. Therefore, in this thesis, we also survey on 3D

depth sensor calibration methods in a quantitative approach.

1.2 Our Methods

The answer to designing and implementing an effective deep neural network is

not a simple one. It depends on the task we are trying to solve, the model we are

1We refer to early convolution layers as those bottom layers close to getting the input data.

2

building, the platform our models are running and the tools and techniques we are

utilizing.

To achieve our goal of getting high accuracies with fair runtime performance,

we fix the applications of our proposed methods onto two platforms: desktop and

embedded. The former provides a flexible environment for prototyping and has been

verified to be more tolerant to the parameter redundancy resulted from different

network designs, while the latter provides limited computing resources and therefore

demands effective but yet efficient networks. In the literature, however, there exists a

large gap between prototyping networks which aims at achieving high accuracies, and

designing efficient models under embedded environment. More recently, researchers

have explored and advanced this issue, as we can find many of the related works, with

keywords like embedded neural networks, model compression/acceleration, parallel

inference, etc [1, 2].

Afterwards, we realize that utilizing the hardware computational resources to its

maximum does not necessarily indicate running an efficient neural network. The neu-

ral network, by itself, is composed of various convolution operations followed by many

non-trivial non-linear and combinatory methods. Therefore, we present different net-

work architectures for object detection and semantic segmentation, respectively. The

proposed architectures apply those state-of-the-art techniques not only after purely

empirical experiments, but also with heuristic design patterns. We firstly study the

important factors of determining a best-fit neural network among many choices, from

which we show that the contextual information, while being admittedly a very cru-

cial factor in object detection and semantic segmentation, has not been explored and

analyzed extensively in many of the current network architectures. Starting from

this point, we further analyze the relationship between Theoretical Receptive Fields

(TRFs) and Empirical Receptive Fields (ERFs), and conclude with extensive exper-

3

iments that most of the state-of-the-art networks in object detection and semantic

segmentation, can be improved by taking into account accurately such relationship

from [3]. Admittedly, both the demand and realization of contextual information vary

between object detection and semantic segmentation, by which we will discuss more

details in this thesis.

Essentially, targets in object detection and semantic segmentation have different

forms, whereas predictions for the former can be divided into two parts: proposal

generation and classification, while for the latter we focus on predicting in a per-pixel

manner, i.e. obtaining a probabilistic map for each class whose size corresponds to

the input image. In object detection, predictions can either be made after the last

convolution layer in a single-scale setting, or at multiple, different layers in a multi-

scale setting. This is a rough categorization, however, as we can also make predictions

from single feature map which combines information at different scales [4, 5], or like

some other variants [6]. In this thesis, we focus on multi-scale network design and

address the problems of lacking context particularly at early prediction layers, by

using dilated convolutions and fusing the feature maps into one for future predictions.

Afterwards, we validate the effectiveness of proposed method with different settings

of hierarchical CNNs like VGGNet [7].

Regarding to the semantic segmentation, though it seems very easy to generate

pixel-wise predictions via CNN, the difficult part lies in how to combine multi-level

contextual information on pooled feature maps which most likely have lost many

detailed pixel-wise correlations. That being said, it remains a challenging task in se-

mantic segmentation, to keep accurately both geometry shapes and boundary details.

In this thesis, we propose an extremely lightweight network that achieves comparable

accuracy, but yet runs significantly faster than the methods currently available. We

also show with our experiments on a GPU-powered embedded platform that, our pro-

4

posed network meets the demand of fast segmentation under an embedded platform

with much better results than the fastest network so far [8].

Finally, in this thesis, we present a survey with quantitative evaluations about

3D depth sensor calibration methods, where the topic of joint calibration has been

found practically useful in many computer vision systems of gesture recognition,

robotics, etc.

1.3 Thesis Overview

We briefly provide an overview of this thesis: In Chapter 2 we introduce deep

learning neural networks, and talk about several popular tools, technologies and top-

ics in building convolutional neural networks. In Chapter 3, we analyze the empirical

receptive fields, and examine the context aggregations in our proposed network archi-

tecture for object detection. In Chapter 4, we study the current trend of research in

semantic segmentation, and propose an effective and efficient network architecture for

real-time applications. In Chapter 5, we survey on the 3D depth sensor calibration

methods.

Finally, in Chapter 6 we draw our conclusions of this thesis. We summarize the

contributions of our proposed methods for large-scale object detection and semantic

segmentation.

5

CHAPTER 2

DEEP NEURAL NETWORKS

This chapter introduces deep neural networks, with focus on the convolutional

neural network and its recent advances in large-scale image classification. We also

discuss some other relevant topics and implementation details, which cover but should

not be limited to, deep learning development frameworks, GPU acceleration, model

compression, etc. From these discussions and studies, we show that deep learning is a

rapid evolving approach in the field of machine learning, and it still requires ongoing

efforts from both research community and industrial practitioners.

2.1 Introduction

Deep convolutional neural networks (CNNs, also referred to as ConvNets) [9]

have made significant advances in the fields of image classification [10], object detec-

tion [11, 12, 13, 14], image segmentation [15, 16, 17], pose estimation [18] and many

other classification and regression based tasks. CNNs have enabled a large number

of flexible, data-driven methods for object recognition, detection and segmentation.

Besides, deep learning has already shown some promising results for even more chal-

lenging vision tasks, like multilabel classification and co-localization, where we aim

either to recognize multiple classes in a single image, or to detect multiple different

instances of the same class in one image. Furthermore, by utilizing the computational

power of GPUs, the state-of-the-art object detection frameworks can now achieve near

real-time rates with very large networks [19].

6

Before CNNs advanced previous methods by a large margin on ImageNet [20]

in 2012, which nowadays has become a standard testing benchmark for large-scale

object recognition, CIFAR-10 [21] was extensively challenged: In 2010, the best result

was 77% by Adam Coates [22]. Lately, given the rank lists in [23], after four years

Graham [24] presented a state-of-the-art result of 96.53%. The results look quite

impressive, however, it is not merely about getting higher numbers. As Karpathy

reported in [25] that the human accuracy is approximately 94% for CIFAR-10! That

being said, as deep learning proceeds on its fruitful road, it also makes breakthroughs

addressing many visual tasks, including object recognition, scene understanding, etc,

where in some fields its performance is even beyond human strength.

Back to the ImageNet ILSVRC challenges (see Fig. 2.1 for the best results

from 2012 to 2016), Microsoft announced their results in 2015 about ImageNet’s

top-5 classification error of 3.57%. This number has already surpassed the human

accuracy, which is approximately 5.1% (tested by Karpathy in [26]. It should also be

noted that ImageNet is much more challenging comparing to CIFAR-10 with respect

to the number of categories (1000 vs. 10) and input sizes. Therefore, given the

support from GPU clusters, such a result proves again that deep learning methods

are capable to handle large-scale vision tasks, which is even better than we humans

do. However, we quote from [26] that “Human accuracy is not a point. It lives

on a tradeoff curve.” The human accuracy was obtained by someone who was not

trained extensively (the hypothetical expert human ensemble of labelers will match

the performance down to 3%). From this perspective, it is not fair to compare human

accuracy with deep learning methods. But we humans are proud to say that our

brain do not take that huge amount of energy consumption to learn and infer new

objects than running costly deep learning programs.

7

Figure 2.1: State-of-the-art methods in ImageNet benchmark till 2016. Source by
[27].

In this thesis, we study particularly convolutional neural networks which include

the most popular backbones VGGNet [7] and ResNet [28], detectors Faster R-CNN

[29] and SSD [30], image semantic segmentation networks FCN [15] and PSPNet

[31], etc. It is noteworthy that while some topics in the deep learning research still

remain crucial, for e.g. Recurrent Neural Networks (RNNs), Auto-Encoder (AE),

Reinforcement Learning (RL), Generative Adversarial Network (GAN), etc., they may

be mentioned in this thesis but not brought into very details, albeit their significantly

important applications in natural language processing (NLP), speech recognition and

many others.

2.2 Tools

As deep learning becomes extremely popular in these years, many frameworks

and toolkits have been developed, bridging between the research community and in-

dustrial applications. Gulcehre [32] provides a list of software links to the publicly

available deep learning toolkits (with a total number of 46 softwares found so far).

Among them, there are five most popular deep learning toolkits for the general learn-

ing tasks, and those have also been actively maintained, including Caffe/Caffe2 [33],

CNTK [34], Theano [35], Torch/PyTorch [36] and TensorFlow [37].

8

Creator Written in Platform
Multi-GPU

Support
Pros Cons

Caffe/Caffe2
Berkeley Vision
and Learning

Center

C++,
Python

Linux,
Mac OS,
Windows,

AWS

Yes(6)

1. First industry-grade DL toolkit,
most popular in CV.
2. Plenty pre-trained models
available in Caffe Model Zoo [38].
3. Excellent model deployment
capability (cross-platform).

1. Poor support for RNNs
and language modeling.
2. Tedious labor needed to
construct deep net.
3. Poor interface design.

CNTK Microsoft C++
Linux,

Windows
Yes

1. Better-known in speech
community.
2. Easy to invent new layers.(1)

3. Integrated to Visual Studio.
4. Excellent model deployment
capability (except ARM).

1. Hard to debug.(2)

2. Not usable for tasks like
seq2seq [39].
3. Poor interface design.

Theano
University of

Montreal
Python

Cross-
platform

No
(Needs
work-

around [40])

1. Easy to invent new layers.(1)

2. Higher-level frameworks (e.g.
Blocks, Keras, Lasagne, etc.) exist
for fast prototyping.
3. Excellent for RNNs definition.(4)

4. Lack of low-level interface,
poor model deployment capability.

1. Hard to debug.(2)

2. Difficult tensor-level
implementation.
3. Compilation of large
networks is time-
consuming.

Torch/PyTorch
Ronan Collobert,

Koray Kavukcuoglu,
Clement Farabet

C, Lua/
Python

Linux,
Mac OS,
Android,

iOS

Yes

1. Excellent for conv net.
(native support for 3D conv).
2. Rich set of RNNs extensions
available [41].
3. Excellent for new network
definition.(5)

4. Amazingly fast (due to
running on LuaJIT).

1. New layer definition is
relatively hard.(5)

2. Hard to integrate into
a large production pipline.
3. Lua is still not accepted
in industry. (at least not
as a mainstream language).
4. Too few extensions.

TensorFlow Google Brain C++, Python
Cross-

platform
Yes

1. Excellent for new network
definition.
2. Easy implementation for RNNs.
3. Excellent graph visualization
with TensorBoard.

1. Hard to debug.(2)

2. Static Computational
flow.(3)

3. Lack of native support
for 3D/temporal conv.

Note

(1) A network is specified as a symbolic graph of vector/matrix operations, such as matrix add/multiply or convolution. By using
fine-grained vector operations as building blocks allows for easy invention of new, complex layers, which are often hard to implement
in a low-level language (e.g. C++ in Caffe).
(2) Error messages from symbolic compiler used in TensorFlow/Theano/CNTK is notoriously hard to track, compared to the traditional
compilers.
(3) Indicating that it is difficult to apply Beam Search [39] for decoding. Fortunately, there exist some workarounds [42].
(4) Theano’s loop control API (so-called Scan [43]) can be utilized for easy and efficient implementation of RNNs.
(5) The difference between new layer definition and new network definition is minimal but non-trivial. Torch is excellent for new network
definition without having to program in a low-level language, while it can define a new layer in an intuitive way, i.e., the users will have to
implement the full forward, backward and gradient update.
(6) As of the time this chapter is written, python interface of caffe (pycaffe) does not support multi-GPU yet.

Table 2.1: Comparisons of five most popular deep learning toolkits.

We give a brief comparison and evaluation in Table 2.1. In this table, evaluation

was done based on the newest online sources [44][45], as well as our extensive exper-

iments. All toolkits were evaluated from a user’s perspective, meaning that for each

toolkit, factors including architecture, code maintenance and future roadmap were

not taken into consideration. Besides, the training speed varies a lot by the factors

of machine configurations (for e.g. throughputs of data transfer), library version of

9

BLAS, CUDA, cuDNN supported and configured by the toolkit, and the optimization

degree of client’s code. Also, due to the lack of hardwares, their performance of data-

parallelism and model-parallelism with multi-GPUs were not evaluated. However,

given a sufficiently large dataset, parallelism remains a critical factor in both design

and implementation of the deep neural networks. In summary, we mainly investigated

on each toolkit into the supported platforms, multi-GPU support, low-level built-on

language(s), language interfaces, training speed, visibility for tracking debugging in-

formation, deployment capability and modeling capabilities including new layer and

network definition, extensions, etc. After carefully reviewing Table 2.1, we draw a

conclusion that:

• Given a dataset that shares many similar characteristics with one of the many

public datasets, and also suppose that we just want to quickly get results with

the state-of-the-art models, Caffe/Caffe2 will be our first bet due to its plug and

play nature (inside Caffe/Caffe2 it uses Google Protocol Buffers, with which

you do not have to literally write any code), along with a large set of publicly

available pre-trained models.

• When dealing with RNNs, we can choose among toolkits that were built on

symbolic compilers including Theano, CNTK and TensorFlow.

• When researching the newest CNN models, we prefer using Torch/PyTorch

since it has the greatest features for researchers such as quickly prototyping

new layers and networks, while the Torch/PyTorch toolkit has been actively

maintained. In addition, as a great add-on for large datasets, Torch/PyTorch

has been embedded with very convenient APIs for data-parallelism. Last, com-

pared to other toolkits that have been practically found very difficult to debug,

the output of Torch shows clear hints to the hidden bugs which helps easing our

work a lot when programming.

10

• Regarding to the software deployment, both Caffe and CNTK are able to inte-

grate their code into a large production pipline without much headache. How-

ever, they also came with worse interface design, and sometimes it leads to the

effort-consuming development for new models. In Caffe/Caffe2, for e.g. you will

have to specifically write C++ and CUDA code respectively to implement a new

layer on GPU. Such implementation has been found error-prone due to that the

data flow in GPU layers are often harder to track and debug compared to its

counterpart in CPU layers (not to mention the utilization of Prototype Buffer

makes it even more cumbersome for very large networks such as GoogLeNet

and ResNet).

Note that our evaluation in this section may not be accurate and up-to-date,

because all frameworks are still developing rapidly and their roadmaps are difficult to

predict and track. At the time of this writing, there are many ongoing projects that

have drawn great attention especially from industrial practitioners, including Mxnet

[46], PaddlePaddle [47], ncnn [48], etc.

2.3 GPU Acceleration

2.3.1 Principles

With GPU becoming more of a commodity in the deep learning field, com-

putationally intensive methods, such as convolutions, Fourier Transforms and other

matrix-based linear algebra operations, opt to be addressed in GPU clusters with mas-

sive amounts of training data. Normally, within the code framework of deep learning,

both input batch and model parameters need to be converted into GPU arrays and

fed into the CUDA framework. We expect the code that results in computationally

intensive operations being executed in a pure GPU environment. Taking Fig. 2.2 as

11

an example, compute-intensive functions that make up about 5% of code run on the

GPU.

Figure 2.2: Illustration of how GPU acceleration works in space of the application
code. Source by: http://www.nvidia.com/content/events/geoInt2015/LBrown_

DL.pdf.

2.3.2 High-performance Computing Libraries

Figure 2.3: GPU acceleration compared to its CPU counterpart using Caffe. Source
by: http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf.

Fig. 2.3 demonstrates how GPU greatly boosts training performance. To get

further details of its performance compared to other CPU-ready high-performance

12

http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf
http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf
http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf

computing (HPC) libraries such as ATLAS1, OpenBLAS2 and Intel MKL3, we em-

pirically benchmarked their performance using Caffe and Theano. The results are

shown in Fig. 2.4 and Fig. 2.5 respectively.

Figure 2.4: Comparison of classification time (in ms) using different high performance
computing libraries. The test was done in Caffe, using AlexNet with input of a batch
of images (50 in total, each of size 227× 227).

Fig. 2.4 gives a comparison of prediction time using AlexNet to classify 50

images, given different HPC libraries including ATLAS, MKL and CUDA+cuDNN.

Obviously, the combination of CUDA and cuDNN outperforms ATLAS with a factor

of 73, while accelerating MKL with a factor of 22. It also shows that when running

on CPUs, MKL achieves the best performance compared to other open source Basic

Linear Algebra Subprograms (BLAS) libraries, while it is still much slower than

CUDA.

In Fig. 2.5, We also tested their performance on matrix multiplication, for both

32-bit and 64-bit floats (namely FP32 and FP64). Still, matrix multiplication using

CUDA had the least computational time. Regarding to the experiments on FP32, it

outperform MKL and OpenBLAS by a factor of 77 and 170, respectively. There is an

interesting finding in Fig. 2.5 that if we take a side-by-side view to their performance

1http://math-atlas.sourceforge.net/
2http://www.openblas.net/
3https://software.intel.com/en-us/intel-mkl

13

http://math-atlas.sourceforge.net/
http://www.openblas.net/
https://software.intel.com/en-us/intel-mkl

Figure 2.5: Comparison of computational time (in ms) using different high perfor-
mance computing libraries, for 32-bit and 64-bit floats respectively. The test was done
in Theano, with 10 times of matrix multiplication A×B, each of size 5000× 5000.

on both FP32 and FP64, we realize that as for CUDA, the performance downgrades

168X with FP64 than FP32. While running MKL with FP64 incurs the minimal

penalty, performance of OpenBLAS also has downgraded 2X. We used K40 for this

test, but according to [49]: “K40 is given a special double precision processing unit,

and its performance of FP32:FP64 should not exceed 1:3”. In light of this finding, we

assume that Theano does not have an expected optimization at its core for the FP64

computation. The best bet is to avoid FP64 computations as best as we can when

the performance downgrades heavily with FP64. However, FP64 computations are

still very helpful, when running other applications like physics modeling/simulation,

high accuracy financial computations, etc. that require high precision results.

2.3.3 Data Parallelism vs. Model Parallelism

Data parallelism (also called “replicated training” in Tensorflow) is when run-

ning the same model across all GPUs, we feed each GPU different parts of the data

14

(see Fig. 2.6). The basic idea of data parallelism is simply, however, the dilemma

we have to face is that data parallelism does not scale with respect to the number of

GPUs, which is true especially during the backpropagation.

Figure 2.6: Illustration of synchronous data parallelism on a local configuration.
Notably, gradients calculated from GPU1 and GPU2 individually are averaged in
order to get the optimal training solution. Source by https://www.tensorflow.

org/versions/r0.7/images/Parallelism.png.

For e.g., given four K40s, and suppose that we have a 1000 × 1000 matrix (of

float type, definitely), meaning that we need 1000×1000×4
230

= 0.00093GB to store this

matrix, and it takes 0.00093GB/15.75GB/sec× 1000ms/s = 0.059ms to transfer this

matrix from one GPU to another through PCIe3.0 X16, where 15.75 GB/sec is the

throughput of PCIe3.0 X16. Note that here, we neglect additional overhead of di-

rect GPU-to-GPU data transfer happening in data parallelism. Instead, to upload

data from GPU0 to GPU1, it has to go through CPU0 with the Intel QuickPath

Interconnect (QPI) link whose speed is around 25GB/sec. Obviously, data transfer

between GPUs is bottlenecked on the PCI lane anyway. Given four GPUs, it is nec-

15

https://www.tensorflow.org/versions/r0.7/images/Parallelism.png
https://www.tensorflow.org/versions/r0.7/images/Parallelism.png

essary to synchronize this matrix three times across all GPUs, which in total takes

0.059 × 3 = 0.177ms. Besides, on K40, it takes only about 1 ms (or even less, de-

pending on the number of nodes in previous hidden layer) to forward the layer by

calculating A×B, with each matrix of size 1000× 1000. Compared to the computa-

tional time of forward/backward matrix multiplication4, data synchronization during

backpropagation takes around 20% of its time. However, this is ideal (and is only

applicable on single PC) cause we have not taken into account the cost of data trans-

fer via network card (which is often up to 40GB/sec and can only be used by one

GPU at any time) from one node to another. Therefore, if we are running the model

with data parallelism on a cluster, where data synchronization between nodes can

only be done via network card, things become worse due to that the additional data

synchronization time during backpropagation has become a bottleneck in data par-

allelism (even 100X cost than a forward matrix multiplication according to [50]). A

great tutorial on data parallelism using Tensorflow can be found at [51], where it also

explained clearly about the difference between asynchronous and synchronous data

parallelism (Fig. 2.6): “Naively employing asynchronous updates of model parame-

ters leads to sub-optimal training performance because an individual model replica

might be trained on a stale copy of the model parameters. Conversely, employing

fully synchronous updates will be as slow as the slowest model replica. [51]” In most

cases, running two different jobs (models, specifically) on the same GPU drastically

slows down GPU training. It is even much slower than training a single model on

one GPU at one time. However, model parallelism indicates that running multiple

models (or split models) simultaneously on the same number of GPUs with the same

input to each GPU.

4Backpropagation does twice matrix multiplications, see the equations of backpropagation.

16

A typical example is that given an extremely large weight matrix that can

hardly be held in the memory of a single GPU5, splitting a weight matrix either

horizontally or vertically, and then concatenate or stack the calculated matrices into

a big one and finally return the result. It is obvious that we must guarantee the data

are exactly the same to all splitting models across GPUs in order to get the correct

answer. Details about model parallelism can be found at [52].

It it worth noting that NVIDIA SLI technology can sometimes be misclassi-

fied as a data parallelism solver for deep learning. In fact, SLI only scales graphics

performance, and is not used within the CUDA programming. Since each GPU is

individually addressable in a CUDA application, adding a second GPU allows for

the distribution of workload freely with respect to both data and model parallelism.

Aside from SLI, an exemplary framework that can be utilized in deep neural network

modeling is the NVIDIA’s Deep Learning GPU Training System (DIGITS)6, which

powers both Caffe and Torch to a great extent.

2.4 Deep vs. Shallow

Why do we prefer a deep model than a shallow one? Since VGG [7] was firstly

introduced in 2014 with 19 layers (compared to 7 layers used in AlexNet [10]), re-

searchers tend to design deeper networks with small-sized conv layers: GoogLeNet v1

[53] is constructed with 100 layers. The winner in ILSVRC 2015 challenge (ResNet [28]

by Microsoft) proposed a network composed of 110 layers, and they even attempted

the deepest networks of up to 1202 layers! Slide in http://cs231n.stanford.edu/

slides/2016/winter1516_lecture11.pdf elucidated clearly on why we should pre-

5It is arguable that we can never have such a large weight matrix (i.e. more than 12GB), but

such problem indeed exists in some unsupervised learning tasks.
6https://developer.nvidia.com/digits

17

http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
https://developer.nvidia.com/digits

fer using small filter instead of large one. Considering a conv layer with 3× 3 small-

sized filter in Fig. 2.7, it is easy to observe that one neuron in the second conv layer

maps to a 5× 5 region in the input layer (i.e., its receptive field). Thereafter, at the

third conv layer, its receptive filed will be a 7×7 region. That being said, with respect

to the size of receptive field, a single conv layer with 7 × 7 filter will be tantamount

to a stack of three conv layers with 3× 3 filters.

Figure 2.7: A demonstration of how conv layer works by mapping one neuron to
its previous layer. In this example, two conv layers follow the input layer. At first
conv layer, one neuron maps to a 3 × 3 region in input, while at second conv layer,
the mapped region is enlarged to 5 × 5. Source by http://cs231n.stanford.edu/

slides/2016/winter1516_lecture11.pdf.

As shown in Fig. 2.8, stacking more conv layers with smaller filter has less

number of weights to store, as well as less number of multi-adds to compute than

using less conv layers with larger filter. Since non-linearity is what we want to achieve

in the neural networks, we should always avoid using conv layers with very large filter,

for it downgrades heavily the model’s capability to capture further details. But in

order to get a computationally feasible model (regarding to both storage and training

time), most likely we design the fist conv layer with a large filter7.

7It also depends on the size of input image, a ‘brute’ filter of size 10 × 10 should never be used

for a dataset like CIFAR-10, however, it is often utilized for ImageNet.

18

http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf

Figure 2.8: A comparison study of using smaller filter (3× 3×C) with 3 conv layers,
versus using larger filter (7 × 7 × C) but with a single conv layer. Both schemes
have the same-sized receptive field (7 × 7 × C) for a single neuron in the last conv
layer, however, the former one achieves much more non-linearity in addition to less
computation and storage cost compared the latter one.

So, how about 1 × 1 conv layer? Will it improve the performance further?

Using an individual 1 × 1 con layer theoretically only learns a linear combination of

input channels at its output. However, State-of-the-art methods [54, 53, 28] utilize

a technique in their design of networks by adding a 1× 1 conv layer before a 3 conv

layer, and thus the embeddings can be achieved after a 1×1 conv layer with dimension

reduction. Besides, the non-linearity can be further strengthened. Furthermore, 1×1

conv layers can also be positioned right after max pooling layer and thus play a role

19

as rectified linear activation, as depicted in Fig. 2.9. Szegedy et al. in their work

[55] fully discovered the possibilities of using such technique named bottleneck module,

which has been successfully utilized in the newer GoogLeNet models (since 2014).

Figure 2.9: An example of Inception module. Using the 1 × 1 conv layer achieves
the dual-purpose of 1) reducing dimensionality (i.e., embeddings) before a small-sized
conv layer, 2) rectifying linear activations after a max pooling layer. Source by [53].

Then, how do we define deep in deep neural network? Schmidhuber [56] in his

review gives a subjective definition that “Instead of committing myself to a precise

answer, let me just define for the purposes of this overview: problems of depth > 10

require Very Deep Learning.” As for the precise definition of depth, it is still a

controversial topic in academia. Schmidhuber firstly introduced in his work [56] a

new concept named the Credit Assignment Paths (CAPs), which models the chains

of possible causal links between two events. The author further introduces the CAP’s

depth that follows the path composed of layers with modifiable weights8. Problem

8By doing so, CAP’s path defines how far the backwards credit assignment can move down to a

causal chain and thus find a modifiable weight [56].

20

depth and solution depth were firstly introduced to distinguish between depth of the

deepest CAP and smallest CAP.

Compared to the acyclic feedforward neural networks, Recurrent Neural Net-

works (RNNs) have much larger depth because of its cyclic nature. In this sense,

RNNs and its variants are the deepest among all.

Notably, going deeper does not necessarily indicates learning better. Ba et al.

[57] figured out in an empirical approach that shallow models can achieve the same

performance than deep models, by using a novel technique called model compression.

The basic idea is to pass the large, unlabeled data into deep model (assumed to be

larger and more accurate than the mimic one), and then collect and feed the scores

into a much smaller, mimic model. Therefore, since the mimic model is not trained

with the original labels, the problem now lies in how to design an effective and efficient

algorithm leading the mimic model to learn the function that was learned by the larger

model. For anyone interested in the relevant work, more details can be found at [57].

In addition, given a long temporal window (often seen at some long video sequences),

shallow models are more capable of capturing the event evolution than deep models.

Our empirical experiments suggest that when designing a new neural network model,

at most times, the model does not have to fully capture the finest-grained details.

2.5 Spatial, Scaling and Rotation Invariance

When we develop a pipeline for certain computer vision system as in a tradi-

tional approach, it becomes crucial that the delicately designed features are invariant

to spatial, scaling and rotation changes. Similarly, this general principle applies to

the deep learning networks, but in an implicit manner.

One intriguing property of CNNs is their learning capability (to some extent)

for spatially invariant features by introducing spatial max-pooling layers. However,

21

the spatial invariance is only attainable after using a very deep network, so that

the receptive fields of neurons cover the whole target image. To this end, some

work [58, 59, 60, 61, 62, 63, 64] studied CNN representations in the hope that, the

model is capable to learn input image transformations including spatial translation,

rotation, etc. Among them, hard attention-based models [61] modulate responses

of neuronal activations for a subsequent forward pass of input, in order to attend

to specific convolutional feature maps. However, it is nearly impossible to perform

gradient descent in hard attention-based methods due to largely entangled networks,

and hence workarounds are required, for e.g. using reinforcement learning [61]. As

its counterpart, soft attention-based models [63] group all locations in input image

into fixed grids and come up with nice derivative solutions.

Nonetheless, grid generation in soft attention-based methods constrains the

appearance of attentions to fixed grid positions and thus is not able to attend to

arbitrary regions within the input image. To overcome this issue, Jaderberg et al.

[62] proposed spatial transformer networks (STN) [62]: “Unlike max-pooling layers,

where the receptive fields are fixed and local, STN can spatially transform an image

or its feature maps by learning an affine transformation matrix capable of producing

scaling, cropping, rotations, as well as non-rigid deformations.” Similarly, a very

recent work of [64] introduced four basic operations as layers in the network, in order

to build CNNs that are partially or fully rotation equivariant.

2.6 Model Compression

Model compression aims to reduce the number of parameters given a deep

neural network, while achieving comparable accuracies against the original model.

Due to that many researchers have realized the gap between prototyping deep neural

networks on a desktop-level machine and deploying them onto various embedded

22

platforms, model compression has become a very hot topic in these two years. This

section surveys and summarizes recent model compression methods in the literature,

whose main ideas can be used as general principles in designing our models for many

computer vision tasks. For example, the proposal of ThunderNet (Chapter 4) used

for semantic segmentation, was inspired by several model compression technologies

mentioned in this section.

2.6.1 Related Work

One of the pioneering work about model compression proposed by Han et al.

[65] compressed AlexNet by a factor of 9 using network pruning. Later, Han et

al. again proposed a compression framework called Deep Compression [1] which

compressed the model size further down to X35, by extending their previous work

using a combination of weight pruning, network quantization and Huffman coding.

Both methods achieve the similar accuracy to original AlexNet. In 2016, not only

Han et al. [66] successfully implement Deep Compression in hardware and filled

the gap of model compression between the desktop and embedded systems, but also

SqueezeNet was proposed [2] as a new architecture which followed several critical

design principles. The compression rate of SqueezeNet was reported to be X50. Till

today, SqueezeNet has become quite popular mainly because we can apply various

engineered techniques within its delicately designed architecture and compress further

our models. As reported by [2], applying Deep Compression on SqueezeNet with 6-

bit float resulted in a compression rate of 510! However, high compression rate does

not indicate large speedup factors. XNOR-Net [67] was proposed and claimed that

their compression rate is X34. XNOR-Net introduced a novel technique to binarize

weights and activations, so that conv operation which consists of multiplications plus

adds, can be implemented with pure adds, and even with the bit shifts! Notably, the

23

gradients in XNOR-Net still need to be in full precision. Afterwards, DoReFa-Net

[68] further exploited the network binarization problem, and was capable of using

arbitrary lower-bit data type (bandwidth, they call) in all parameters in network,

including weights, activations and gradients. According to [68], with an extreme

setting of using 1-bit weights, 1-bit activations and 6-bit gradients, the top-1 accuracy

on ImageNet (ILSVRC-2012) can achieve 46.1%, compared to 57.1% for the original

AlexNet.

As shown in Table. 2.2 and 2.3, state-of-the-art models we have surveyed include

Deep Compression [1], SqueezeNet [2], XNOR-Net [67] and DoReFa-Net [68].

Model
Open
Source

Platform
Performance on AlexNet

Accuracy
(Top-5)

Speed-up
(GPU)

Storage
(DRAM)

SqueezeNet [2] No Caffe(M) 80.3% N/A X5109

Deep Compression [1] No10 Caffe(M) 80.3% X4 X35

XNOR-Net [67] Yes [69] Torch(MC)11 80.2% X5812 X34

DoReFa-Net [68] Yes [70] TensorFlow(MC) N/A13 N/A X32

Table 2.2: Comparisons of four state-of-the-art model compression methods–Part1. M
= Model, C = Code. The accuracy was tested on ImageNet ILSVRC 2012 challenge.

Note that in Table. 2.2, the compression rates for all methods can not be com-

pared directly, since the numbers were obtained either from different measurement

9However, it is the result from 6-bit, which is very hard to implement. For 32-bit, the factor
drops down to X50.

10Ruiwei has implemented the first step of this model.
11XNOR-Net has been implemented in both TensorFlow and Torch, however, its implementation

under TensorFlow is slow and incomplete. See discussions at https://github.com/tensorflow/

tensorflow/issues/1592.
12A theoretical factor inferred regarding to one conv operation excluding time of memory allocation

and memory access, and for small filter size only. The overall performance in AlexNet is not reported.
13Top-1 accuracy is reported as 46.1%, compared to 57.1% for the original AlexNet (BLVC).

24

https://github.com/tensorflow/tensorflow/issues/1592
https://github.com/tensorflow/tensorflow/issues/1592

approaches (empirically vs. theoretically), or from different targets (conv vs. FC vs.

conv + FC, etc.).

Model Pros Cons

SqueezeNet

1. Both micro- and macro-architecture are taken
into account by following some design principles.
2. Capable of wrapping existing engineered,
compression techniques (like Deep Compression)
in the networks.
3. No/Replaced FC layers.

1. Bottlenecked architectures can not be easily extended
or combined with other meta-architectures.
2. Extensive use of bottlenecks will most likely lead to
underfitting.

Deep Compression

1. Both conv and FC layers are highly compressed.
2. Has already been implemented in hardware
[66].
3. Very complete benchmark.

1. Can’t process batch input.
2. Not robust to new models and datasets. Parameters
were engineered after a great number of experiments.
3. Performance looks nice, but it is difficult to
have a fine-tuned implementation since no public code
is available and the work seems too engineered.

XNOR-Net
1. Works extremely well on large dataset.
2. Approximates normal conv with bit conv.
3. No/Replaced FC layers.

1. Compression rate is low given small filters and few
of channels.
2. FC layers need to be replaced with conv layers in
order to be fully compressed.
3. Gradients are still in full precision, where most training
time are spent in backward pass.
4. 1-bit conv layer is not implemented using bit-shifts,
they still used full precision operation in their code.

DoReFa-Net
1. Low-bit approximations available on all
parameters: weights, activations and gradients.

1. Configuration space of bitwidth for weights, activations
and gradient need to be tuned for a specific application.
2. Accuracy decreases a lot when compressing the model
to an extreme setting.

Table 2.3: Comparisons of four state-of-the-art model compression methods–Part2.

2.6.2 Evaluation

There are only a few works in the literature that provide a complete benchmark

regarding to the performance of compression methods. We think model compression

methods need to be evaluated in terms of:

• Accuracy: Typically, we use classification accuracy for CIFAR-10 and MNIST,

as well as top-1 and top-5 classification error for ImageNet (ILSVRC-2012 chal-

lenge).

25

• Test models: In most work, researchers opt to test on LeNet, AlexNet, VGG,

ResNet and GoogLeNet, or subset of them. However, one problem is that all ad-

hoc parameters must have been fine-tuned given all those existing networks (like

in Deep Compression, they have many such parameters). Once we are given

a completely new network, we need to run a great number of experiments, in

order to fully compress the model while maintaining the same accuracy (which

seems a very difficult task).

• Model size: number of parameters we need to store on chip. Regarding to the

parameters in neural networks, mainly we talk about weights, activations and

gradients.

– Weights : These are the parameters for network, which decides the learning

capability of our model. As for model compression, we want to prune

weights and count the number of effective weights instead, cause in most

time our models are over-parameterized that results in over-fitting. See

Sect. 2.6.6 for a relevant discussion.

– Activations : During training we need to store activations for each layer,

cause they will be needed in back propagation. However, at test time, those

activations can be reduced by a huge amount, by only storing the activa-

tions at current layer, and getting rid of the activations of the layers below,

as the network infers. Since most of the memory is usually consumed by

the activations, finding a lower-bit representation for activations has been

utilized in many methods. In addition, when we chose optimization mo-

mentum, Adagrad, or RMSProp, cache needs to be stored. Therefore,

the memory to store the activations alone must usually be multiplied by a

factor of at least 3 or so (the factor differs a lot for the compressed models).

26

– Gradients : Memory required in back propagation is about 2 times com-

pared to forward pass, it is because we need double computations to update

the gradients and keep the calculated numbers. The problem becomes

worse if we have an extremely long Recurrent Neural Network (RNN).

However, improvement is possible, see the newest work at [71].

Usually, at bottom layers (especially the first conv layer) we need to store more

activations, while at top layers (especially the first fully connected (FC) layer

right after the last conv layer) the model will learn many more weights. In-

evitably, one CNN implementation has to maintain memory cache for miscella-

neous uses, such as image data batches, perhaps with their augmented copies,

etc. in order to feed into the network. Regarding to the optimization of suc, we

still have a lot of space to discover regarding to the model compression within

data parallelism and model parallelism. Another thing we should pay attention

to is that we should distinguish between training model size vs. test model size.

Model size referred to in most work, is essentially the training model size. How-

ever, the test model size is also important as we want to know how many space

needed for our system purely in testing phrase, when only weights are stored

during inference.

• Running time: Most of the existing work do not evaluate running performance

for their compressed models compared to their counterparts. Other than that,

both training and inference time need to be tested for a compressed model.

Some non-trivial questions we should take into account include:

– No-batch vs. batch: We should also test the running time both with single

image and batch of images. For some models that show no advantages in

batch processing (like Deep Compression [1]), its drawback is very obvious

(which shows no speed-up over original models on CPU), i.e., no block-

27

ing technique can be possibly used in matrix-matrix (MM) multiplication.

When blocking, the amount of memory access is O(n2), and that of com-

putation is O(n3), the ratio between memory access and computation is

in the order of 1
n
. However, given single input image, since it is a matrix-

vector (MV) multiplication, in this case, the amount of memory access is

O(n2) and the computation is O(n2), memory access and computation are

of the same magnitude (as opposed to 1
n
). So MV multiplications are more

memory-access-bounded, especially when we access a very large weight

matrix (for e.g. FC6 in VGG, which takes 392MB). In CPU with high

performance computing library for MM multiplication (like Intel MKL),

the speed-up of compressed model with batch input must be very little,

even slower, than its counterpart. We should not say batch processing

will never be used in the embedded systems (asserted in the work of [1]),

so giving a fair comparisons in both settings will suffice while taking the

aforementioned factors into account.

– On single conv layer vs. over whole network : When evaluating XNOR-Net

[67], the authors only infers the maximum speed-up on single conv layer,

rather than over the whole network. Yet it shows a speed-up factor of

X58, the number cannot fully demonstrate its running time performance.

Good things is that testing on single conv layer will help us understand the

model’s running time on compressed conv layers, similarly to those meth-

ods specifically designed for FC layers. If we find it has obvious shortcom-

ing in certain type of layers, then we can integrate other techniques to solve

this problem. Overall, testing running performance on both single type of

layer and whole network, is necessary for a comprehensive evaluation.

28

• Compatibility to other compression techniques/models: Some compres-

sion techniques/models can be combined, for e.g., SqueezeNet [2] plus Deep

Compression, or you can use bottleneck module together with weight prun-

ing, weight sharing after binarization etc. Therefore, how to fully discover the

configuration space from all existing work remains an open question.

• Easy implementation on software/hardware: SqueezeNet supports 6-bit

data type for its conv layers, where the implementation seems very difficult,

and will be even more troublesome than 1-bit in XNOR-Net.

• Energy consumption: Currently, Deep Compression is one of the few work

that reported energy consumption. They used Intel pcm-power for CPU socket

and DRAM power. For GPU, they used nvidia-smi and for mobile GPU, they

used a Jetson TK1 development board and measured the total power consump-

tion with a power-meter. All other details can be found at their paper [1].

2.6.3 Ways to Compress Neural Networks

As the core idea of model compression is to speed-up running time with smaller

model while maintaining the comparable accuracies, therefore we categorize model

compression methods into three categories:

• Mimic deep models using shallow networks: Learn shallow networks to

mimic the deep networks. Methods include [72, 57, 73].

• Prune and quantize existing models: Prune redundant, non-informative

weights and quantize both weights and gradients using minimum-cost optimiza-

tion, codebook and other coding technique (for e.g. Huffman coding) to largely

reduce the number of parameters to store. Besides, the sparse connection ma-

trix can be stored using format of compressed sparse row (CSR) or compressed

sparse column (CSC). The advantage is obvious: we can prune large matri-

29

ces that are unable to fit into the caches. For e.g., the FC6 in VGG requires

102, 760, 448 weights × 4Byte/220 = 392MB memory to store (far from the ca-

pacity of L3 cache, which must in turn affect negatively on processing time).

Once pruned with compression rate 1.10% as reported in Deep Compression,

the memory storage for effective weights now ideally becomes 4MB! One disad-

vantage of such methods is that they all contain critical parameters including

number of bits to store weights, number of bins used in quantization, etc., which

must be fine-tuned on existing networks (in most work, they prefer testing on

LeNet, AlexNet, VGG, ResNet, GoogLeNet). Given a new network model, no

matter shallow or deep, those parameters need to be tuned again so that neither

they will be too extreme to compress, nor they are too small to fit that model.

Methods include [74, 75, 76, 77, 78, 65, 1, 79].

• Replace layers using bottleneck module: bottleneck module (like Inception

Module in GoogLeNet [53]) has been shown to reduce the parameters to a great

extent, while achieving higher non-linearity. An extreme case is SqueezeNet [2],

where the parameters were surprisingly compressed by a factor of 50! Therefore,

as long as the “squeezed” modules capture the intrinsic features against vari-

ous variances, bottleneck module is preferred in model compression. Methods

include Network in Network [54], GoogLeNet v1-v4 [53, 80, 55, 81], ResNet [82]

and more recent SqueezeNet [2], Xception [83], ShuffleNet [84] and MobileNet

v1-v2[85, 86].

• Approximate parameters using lower-bit or quantitative vectoriza-

tion: Many other approaches have been proposed either to quantitatively vec-

torize parameters or approximate networks using L2 error minimization, in the

hope that, the accuracy will not drop much when approximated (vectorized)

parameters/networks are used. Methods include [87, 88, 89]. In addition, since

30

high precision storage of parameters including weights and gradients (and even

the input as done by [67] are not necessary in training the neural networks,

therefore, all parameters can be further compressed by using a lower-bit storage

format. 8-bit [90] and 3-bits activations [91] have already explored. Now it is

the time for binary bit networks!

• Binarize networks: 1-bit weights and activations: Using binary param-

eters in network is believed to have poor performance due to the limited in-

formation it can represent. In such an extreme scenario, BinaryConnect [92]

and BinaryNet [93] were proposed, where the former was reported to perform

very well (state-of-the-art) only on small datasets like CIFAR-10 and MNIST

but is not ideal for ImageNet (according to [67]), while the latter method is an

extension of the former one. The state-of-the-art binarization model on Ima-

geNet, including XNOR-Net [67] and DoReFa-Net [68] are proposed recently.

Furthermore, it is noteworthy that Expectation BackPropagation (EBP) [94]

and its variants [95, 92], provide a good lead on binarizing neural networks in

a probabilistic approach, i.e., within the variational Bayesian framework.

2.6.4 Ways to Reduce Parameters

Some principles were discussed in [2] about designing a network with fewer

parameters. The main idea is to use:

• Smaller filter size: Resize filters into 1× 1 as best as we can, so that we can

have 9X fewer parameters, compared to 3× 3 filters used in VGG networks.

• Smaller number of input channels and number of filters.: Thinking

about how we calculate storage of parameters in the conv layers:

of param. to store = # of filters× wh × ww × c, (2.1)

31

where wh and ww are the height and width of filters. Normally, wh, ww are

fixed: we use 7 × 7 against input layer (for ImageNet), 5 × 5 at early layers,

and 3 × 3 even 1 × 1 within the large body of network (middle layers). So, as

for model compression the task now becomes reducing # of filters and c while

maintaining the accuracies.

• Larger activation map: Especially when we have larger activation maps at

most early layers that are believed to achieve higher accuracy (i.e., delayed

downsampling as shown in both [82] and [2]).

2.6.5 Avoid FC Layers

Fully connected (FC) layers are critical in training a deep learning model, due

to the high linear transformation they can make. However, when we calculate the

number of weights learned, FC layers (especially the first FC layer after the last conv

layer, which in this thesis we call FC6 14) often needs much larger storage than its

counterparts (conv layers, pooling, etc.).

Take FC6 in AlexNet as an example, according to [1], it learns 38M weights,

which in turn requires extreme large amount of storage. Inspired by Deep Compres-

sion, we can prune the weights (without losing much representation power) to have

a sparse connectivity matrix to calculate XW. Deep Compression has pruned the

number of weights in FC6 of AlexNet to 9% in order to accelerate the computations!

Otherwise, we may consider to avoid using FC layers by replacing them with

the conv layers, which can be further binarized and calculated using only add oper-

ations instead of multiplications [67]. In [54], global average pooling layer was used

to replace FC and directly mapped from feature maps to category scores. As a more

native implementation, FC layers can be easily replaced by conv layers, where a great

14Conventionally, in the pioneering work of AlexNet, the first FC layer is the 6th layer.

32

example was given at the tutorial [96]. Take AlexNet again as an example, using a

1 × 4096 FC layer right after the output of pooling layer (of size 7 × 7 × 512), is

equivalent to going through a conv layer with 7 × 7-sized filters of depth 409615, so

that the output is a volume of size 1× 1× 4096. As for the next FC layer, the conv

layer will be with 1× 1 filters of depth 4096 again, and so on so forth.

According to [96], there exists another benefit by applying this technique: “this

conversion allows us to slide the original ConvNet very efficiently across many spatial

positions in a larger image, in a single forward pass. Evaluating the original ConvNet

(with FC layers) independently across 224x224 crops of the 384x384 image in strides

of 32 pixels gives an identical result to forwarding the converted ConvNet one time.”

It means that we can resize an input image into larger size, feed it into a converted

neural network to have class scores at many spatial positions and then average the

class scores. It is indeed what we have seen in feature augmentation, i.e. crop images

and feed them into original networks, and then average the class scores to get the

final scores. But this time, after we convert our neural network, the efficiency has

been improved quite a lot (feeding smaller images for multiple times vs. feeding larger

image into converted network for just one time).

2.6.6 Placement and Tuning of Normalization Layer

In SqueezeNet, they only placed one Dropout layer (with ratio 50%) after its

fire9 module, which is very close to the classification layer. The normalization tech-

nique needs to be paid great attentions in a compressed model. By following the

principles in Sect. 2.6.4, and especially after we prune our weights (which acts as sort

15Here, depth means the number of filters.

33

of normalization), normalization layers like Dropout [97] and Batch Normalization

[80], need to be placed at very late positions16.

Also, their parameters need to be fine-tuned, in terms of how many effective

weights have been picked before the normalization layer. Take SqueezeNet as an

exmaple, a ratio 50% at fire9, indicates that the number of effective weights are much

less than what we expected on original models (for which we need to place Dropout

right after first conv layers, and afterwards every three conv layers like what has been

done in VGG Net).

However, how to define effective weights is still arguable and remains as open

question. Han et al. [1] used KNN to cluster weights and assign each weight a specific

index of the nearest centroid, in order to reduce the space to store those weight in an

offset manner. Three initialization methods were examined: Forgy (random), density-

based, and linear. Since we have few large weights when training the network, they

tend to be clustered to small centroids, if we initialize centroids in either Density

or uniform based approach. In contrast, linear initialization allows large weights a

better chance to form a large centroid, thus perform better than other methods as

described in [1].

2.6.7 Improvement With Model Compression

As has been shown in the literature of model compression, the compressed

models sometimes outperforms the original model by a small margin. For e.g., in

Deep Compression [1], its top-1 classification error with VGG-16 on ImageNet is

0.33% less than the original model, and 0.41% smaller in terms of top-5 classification

error. The technique used in Deep Compression including pruning plus quantization,

16By late, we mean the layers are close to the classification. Similarly, those close to input layer

are referred to as early layers.

34

plays sort of a role as the network normalization, where such an argument by using the

similar technique (DropConnect) can be found at [98]. According to [67],“the noise

introduced by weight binarization provides a form of regularization, which could help

to improve test accuracy.”

It is not always true that when compressing network models, we must consider

the trade-off between memory compression rate and classification accuracy. We can

even think about to improve the accuracy by compressing models with some normal-

ization techniques, one great example would be using the bottleneck module as in

GoogLeNet [53].

35

CHAPTER 3

OBJECT DETECTION

This chapter studies particularly the application of CNNs in object detection.

Starting from a discussion about the important role that contextual information plays

for object detection, this chapter firstly analyzes the empirical receptive fields of a

classic VGG16 network. Afterwards, in light of our findings with SSD network, this

chapter further proposes a novel Context-aware Single-shot Detector, that has been

shown to outperform SSD to a great extent [3].

3.1 Introduction

Deep learning approaches have shown some impressive results in general ob-

ject detection. However, there still remain fundamental challenges to be addressed,

particularly in detecting objects of dramatically different scales. In the literature,

many attempts have been made to overcome this issue: from image pyramids-based

approaches which have often been combined with hand-crafted features [99, 100] to

feature map pyramid -based approaches [29, 30] within a deep learning framework.

In addition, the state of the art has moved from the sliding-window paradigm to the

much more efficient alternative of feature maps scanning, thanks to the representation

and learning capabilities of Convolutional Neural Networks (CNNs).

Within the deep learning paradigm, methods predicting proposals from feature

maps of the single highest-level scale [13, 14, 29] enable the most variance of scales,

due to the shared semantics. However, such methods also suffer from slow inference

time, given that the hypothesized proposals at all scales need to go through the

36

whole CNN, leading to large computational cost and memory usage. Single Shot

Detector (SSD) [30] mitigated this issue by making predictions from feature maps of

multiple scales in a hierarchical approach. This way, when hypothesizing proposals

at increasing scales, SSD goes deeper in CNNs with more learnable parameters and

thus takes longer time. Due to this bottom-up design, SSD assumes that small object

detection only relies on fine-grained local features, and ignores context outside those

local features. In Fig. 3.1, we show, for an SSD detector, the only conv4 3 Receptive

Field (RF) that was used to detect the smallest object. Within that RF, we can hardly

recognize the object of interest (green box). After expanding the conv4 3 RF into

multiple higher scales, more visual cues (marked by red ellipses) become available.

With that contextual information, it is possible not only to recognize the object as a

sheep, but also to detect the presence of a herd in the given picture.

Figure 3.1: In SSD [30], conv4 3 of the VGGNet was used to detect the smallest
object. As the TRF of conv4 3 includes limited visual cues, integrating informative
context from different scales can help us detect very small objects.

Both two dominant deep learning object detection methods: Faster R-CNN [29]

and SSD [30], require pre-computed grids (named anchors in [29] and default boxes

37

in [30])1 to either generate proposals or regress and classify directly upon them. Most

of the previous work in deep learning object detection focuses on architecture design

of networks, but there is relatively little work studying the underlying instrument of

generating grids and proposals. Consequently, the hierarchical structures in networks

and grid scales have to be fine-tuned exhaustively in order to obtain satisfactory

results.

In the VGGNet version2 of SSD, prescribed grid scales associated with each

RF size were specifically designed at different prediction layers, to ensure that every

point on the feature maps of prediction layers sees a sufficiently large area from input

image. Take as an example a 300 × 300 input: the grid scales versus RF sizes at all

SSD’s 6 prediction layers are 30/92, 60/420, 114/452, 168/516, 222/644 and 276/644

respectively. However, according to [101, 102], the effective receptive fields (ERFs) are

2D-gaussian distributed and proved to be significantly smaller than the corresponding

theoretical receptive fields (TRFs).

Following [101], our analysis (Fig. 3.5(c)) shows that the ERF of conv4 3 in SSD

is only ×1.9 larger than the corresponding grid scale θp (not exceeding ×2.5 across all

prediction layers), which motivates the need for more contexts to be integrated into

the existing framework. In this chapter, we present a context-aware framework for

SSD (Fig. 4.3), and give two different implementations, which either expands RF sizes

with multiple scales and then fuses to form new prediction layers, or reuses directly

feature maps from higher layers to integrate complex structure features. Because the

scale parameters are automatically learned during fusion of contextual feature maps,

1We use grid and default box interchangeably throughout this chapter.
2We compare the performance of ResNet50/101/152 versions of SSD as well in our experiments.

Considering that the runtime performance of SSD is dramatically reduced with ResNet101/152, in

this chapter we mainly investigate context layers for the VGGNet version of SSD.

38

the proposed network enables the trade-off between fine-grained features and richer

features encompassing more context.

Regarding to object detection, in this chapter, we make the following main

contributions:

(1) To our best knowledge, we are the first to analyze ERFs within the framework

of object detection. Using our analysis, we provide the ERF sizes of a standard

VGG16 network [7]. These sizes can be utilized as a reference to design more

effective CNNs for example in object detection.

(2) We present a new framework based on SSD, by introducing multi-scale dilated

convolution layers in a hierarchical approach, named Dilation-based Context-

aware SSD (DiCSSD). Moreover, we alternatively propose a VGGNet-based,

deconvolutional version of context-aware SSD (DeCSSD). Both were designed

specifically for small-scale object detection with scaling parameters learned au-

tomatically during feature map fusions. Our experimental results on VOC [103],

MS-COCO [104] and DETRAC [105] show that both DiCSSD and DeCSSD out-

perform SSD while maintaining real-time speed, in addition to producing promis-

ing detection results on small objects.

3.2 Related Work

Early object detectors in CNNs. Until a few years ago, the sliding-window

paradigm [106, 107] was commonly used. With the emerging technology of deep

learning, G. Ross et al. [12] proposed an object detection framework based on deep

neural networks named R-CNN, which performs a forward pass for every object pro-

posal and then classifies. Its followers, SPPnet [14] and Fast R-CNN [13] have been

shown to largely reduce the training and inference time by sharing computation upon

39

convolutional feature maps for the entire input image.

Figure 3.2: Visualization of ERFs vs. TRFs in a VGG16 network.

Faster R-CNN. With the introduction of Region Proposal Network (RPN), the

seminal work Faster R-CNN [29] unblocked the bottleneck imposed by hypothesizing

region proposals that took a large amount of processing time in Fast R-CNN. Despite

their crucial dependency on the proposal generation methods/networks, variants of

Fast(er) R-CNN3[108, 109] advanced the performance to a great extent in a majority

of open datasets like vehicle detection datasets KITTI [110], DETRAC [105], and

some general object detection datasets like PASCAL VOC [103] and MS-COCO [104].

More recent methods based on Faster R-CNN framework include Feature Pyra-

mid Network (FPN) [4] which designs a generic architecture with lateral connections

between low-resolution feature maps and higher, and Region-based Fully Convolu-

tional Networks (R-FCN) [109] which focuses on translation-invariance detections.

Single-Shot Detectors. Most Fast(er) R-CNN methods are able to classify ROIs

in 200ms4, however, proposal generation takes much longer than that and becomes

a major bottleneck in deploying the trained model into real-time systems. There-

3In this chapter, we refer to Fast(er) R-CNN as the CNNs that require region proposals using

either RPN or external proposal methods.
4A standard Faster R-CNN achieves 5fps on general image datasets.

40

fore, by directly sampling grids upon the input image, and then training a CNN to

directly regress and classify (namely single-shot prediction), method You Look Only

Once (YOLO) [111] accelerated the runtime performance to 45fps. However, YOLO

incurred a non-negligible penalty in accuracy, due to the coarseness of the features

that were learned. One of the state-of-the-art single-shot prediction methods, SSD

[30], alleviated this problem with an extension of VGG16 network used to predict

multi-scale grids (default boxes named in [30]) in a hierarchical structure. Despite

having distinct advantages over Fast(er) R-CNN, SSD suffers in accuracy at the task

of detecting small objects, because it cannot integrate context for the features learned

in bottom layers. We note that context has been shown crucial in recognizing tiny ob-

jects [112]. Furthermore, as the input size of SSD is limited below ∼512 (otherwise its

number of default boxes grows exponentially, incurring overwhelming computational

and memory cost), its performance on small object detection is greatly constrained.

More recently, YOLO9000 [113] improves accuracy by integrating dataset-specific

data augmentation techniques, which brings the need for more hyper-parameters.

DSSD [114] is also built directly on the existing SSD framework, and therefore is

the most similar to our proposed method. However, DSSD opts for ResNet101 as its

base network, and therefore its runtime performance has dropped from 46fps to 10fps.

Both the proposed CSSD and DSSD were designed to improve small object detection.

The proposed CSSD method achieves real-time speed and has been shown to perform

significantly better than SSD, in both MS-COCO [104] and vehicle detection dataset

DETRAC [105].

Effective Receptive Fields. Receptive field (RF), also called field of view, refers

to a region that a unit neuron in a certain layer of the network sees/depends on

in the original input image. Most previous work utilized the theoretical receptive

41

field sizes to guide their network designs [55, 115]. However, those designs have not

considered whether each pixel in the TRF contributes equally to the output of a

certain unit neuron. Zhou et al. [101] were the first to introduce the concept of

empirical receptive fields, and showed via a data-driven approach that the actual size

of RF is much smaller than TRF. Nevertheless, a solid mathematical model of how

the empirical receptive fields relate to their theoretical counterparts was offered only

recently, by Luo et al. [102], who pointed out that not all pixels in the effective

receptive fields5 contributes equally to a unit neuron’s response. Instead, the centers

of RFs have much larger impacts on the output leading to an obvious 2D-gaussian

shape. This is because in the forward pass the central pixels can reach the output

with many more different paths than the pixels in outer area, while in the backward

pass gradients are back-propagated across all paths equally [102].

Inspired by [101], we calculate the ERF sizes across all VGGNet layers in SSD

with associated TRF sizes (Fig. 3.2). To our best knowledge, we are the first to

provide the ERF sizes of a standard VGG16 Network [7]. In addition, we compare

our computed results against the fitted ERF sizes (Table 3.1) with
√

TRF, whose

finding suggests us to introduce the proposed context layers, which are fused so as to

enable the trade-off between fine-grained features and richer features encompassing

more context.

instead of
√

N (number of convolution layers) used in [102].As the number of

convolution layers is linearly correlated with TRF size, our finding in Fig. 3.5(b) is in

agreement with [102]. Furthermore, after analyzing the ERF sizes of SSD, we found

that the context learned by the original SSD was insufficient in terms of its coverage,

with respect to the grids at each prediction layer (Fig. 3.5(c)). This finding inspired us

5In this chapter, we use empirical receptive fields and effective receptive fields interchangeably

and both of them are shortened for ERFs.

42

to introduce the proposed context layers, which are fused so as to enable the trade-off

between fine-grained features and richer features encompassing more context.

3.3 Context-Aware Single-Shot Detector

We show the framework of our proposed CSSD in Fig. 4.3. Both CSSD and

SSD6 utilize a standard VGGNet [7] as its base network7. However, CSSD uses the

feature maps of prediction layers after fusion of context layers, rather than using them

directly as in SSD.

Figure 3.3: Flow diagram of CSSD. We built CSSD directly upon SSD with two
implementations of context layers using 1) multi-scale dilated convolution layers, 2)
deconvolution layers. The former has an adjustable parameter controlling the number
of context layers, while the latter directly reuses the feature maps from upper layers
fused specifically for smallest object detection. Both implementations learn associated
scaling parameters during fusion of feature maps.

To integrate context for small object detection, intuitively we reuse the feature

maps from top layers and merge them into the bottom one. However, as the feature

6In the newest implementation of SSD [116], its additional conv layers have been extended further

with more parameters, but the number of prediction layers is unchanged. Also note that any similar

extensions to SSD can easily be incorporated into CSSD.
7In this paper, VGGNet refers to the VGG16 version of [7].

43

map sizes differ a lot (for e.g. by a factor of 1/2 after every pooling layer with

stride = 2), we need to upsample maps from top layers first and ensure all sizes are

the same. We can consider the convolutional part of the network as an encoding step,

and deconvolution layers can be treated as a decoding processing step. The encode-

decode structure is known as an hourglass and has been shown to be particularly

useful in segmentation [117]. As SSD branches out into different prediction layers, in

our design of DeCSSD (option 2 in Fig. 4.3), we make hourglasses from all prediction

layers except the first one (where the hourglass is essentially the layer itself) and

fuse them with learnable scaling parameters across all maps. Subsequently, the fused

feature map becomes the new prediction layer used for small object detection only.

Using deconvolution layers to integrate multi-scale contexts has one obvious

drawback, namely that the memory usage of network increases significantly, because

the coefficients of bilinear filters and the following conv layers (which have been

verified to be especially useful in our experiments) take many more weight parameters.

Besides, DeSSD does not always work out of the box. Due to that, the training error

during fusion of conv4 3’s context layers is prone to drifting. To address that issue,

we additionally add one batch normalization layer that allows for more stable learning

after each context layer.

We alternatively propose a more lightweight, finetuning-friendly method to in-

tegrate contextual information into SSD’s framework, i.e., DiCSSD which uses multi-

scale dilated convolution layers [118] shown as option 1 in Fig. 4.3. In DiCSSD, the

context layers are fused via weighted sums (implemented as element-wise summations

with learnable scaling parameters following a batch normalization layer) of multi-scale

dilated convolution layers, where every original prediction layer is used individually,

unlike DeCSSD that has explicit messaging between them.

44

DiCSSD rapidly expands the TRF sizes of each prediction layer, thus ensuring

that every feature point within sees sufficiently large areas. If we choose a setting of

4 context layers in total for every prediction layer, then the TRF size in individual

prediction layers will be ×2, ×3, ×4 and ×5 larger (Fig. 3.1). Intuitively, during

feature map fusion the network collects a full set of visual cues that performs best

in recognizing the object of interest. Note that the number of context layers is a

hyper-parameter. In Sec. 3.6.1. we have set the value of that hyper-parameter to 4,

based on cross-validation experiments.

3.4 Empirical Receptive Fields

3.4.1 A Data-Driven Approach

conv2 1 conv2 2 pool2 conv3 1 conv3 2 conv3 3 pool3 conv4 1 conv4 2 conv4 3 pool4 conv5 1 conv5 2 conv5 3

TRF 10 14 16 24 32 40 44 60 76 92 100 132 164 196
ERF (Fitted [102]) 5.1 9.9 12.0 19.5 25.8 31.4 34.0 43.3 51.4 58.6 62.1 74.5 85.4 95.4
ERF (Data-Driven) 6.9±0.1 9.8±0.2 11.1±0.2 16.4±0.3 21.4±0.4 25.4±0.6 27.2±0.8 36.8±0.8 45.7±1.0 54.1±1.6 56.9±1.8 77.6±2.9 94.4±4.4 104.2±7.8

Table 3.1: Comparison of sizes of ERFs and TRFs in a VGG16 network. Results of
both a data-driven approach inspired by [101] and the fitted values based on theoretic
O(
√

TRF) [102] are given.

We show how to obtain ERFs in Alg. 1 and Alg. 2 respectively. While inspired

by [101], our algorithm differs from that [101] in that: 1) We evaluate our algorithms

within an object detection framework, instead of a classification framework in [101].

Therefore, our algorithm selects ROIs with the highest activations over K images for

the given neuron, rather than top-K images in [101]; 2) We visualize and validate

ERF sizes of all conv layers in a VGGNet (16 layers in total), which has been widely

used in object detection methods, while [101] only provides ERF sizes of Places-CNN

and ImageNet-CNN (5 layers in total), which have not been used much in object

detection; 3) We further calculate ERF sizes of SSD additional conv layers using

45

[102], based on the curve fitted from values of VGGNet. Our result justifies why SSD

has to extent its network from VGGNet with many conv layers and even more in

its newest implementation [116]: If we take SSD300 as an example, the TRF size of

pool5 (VGGNet’s last layer) is 196 but its ERF is only about 104, which fills merely

about 1/9 area of the original image. Therefore, the network is unable to learn fully

the complex structures of very large objects.

Before running Alg. 1, we need to calculate the TRF size at the i-th layer,

denoted as Ht ×Wt. After assigning H i = 1 and W i = 1 (according to the definition

of RF), TRF size is calculated in reverse order of feature map size , i.e. recursively

from i-th layer to the 1st layer:

H i−1 = (H i − 1) · si + li · (ki − 1) + 1

W i−1 = (W i − 1) · si + li · (ki − 1) + 1,

(3.1)

where si, li, ki denote convolution stride, dilation stride and kernel size at the i-th

layer respectively. Finally, we have Ht = H1, Wt = W 1.

The ERF sizes of VGGNet are shown in Table 3.1. We compute ERF (Alg. 2)

with a total of K = 300 images and threshold σ = 1.0. With K = 100, the computed

ERF values across all layers show at most ±0.1 difference from the corresponding

values computed with K = 300, therefore it is safe to use only 100 images.

3.4.2 Analysis and Visualization

We show some example discrepancy maps of conv4 3 in Fig. 3.4. Each discrep-

ancy map shows regions to which certain neuron are most responsive. Those regions

are semantic (car roofs/shields, highway shrubs, lanes, etc.) and thus can offer us

more insights into how neurons respond to our input image (similar to emergence of

detectors in [101]).

46

Figure 3.4: Example discrepancy maps of conv4 3. Each neuron responses differently
with semantics from input image. The raster effects on discrepancy maps are due to
conv4 3 ’s limited ERF size around 54.

After obtaining K discrepancy maps, for all neurons in a certain layer we extract

ROIs centered at the points with max activation (named Calibration in Alg. 2).

Subsequently, ROIs are averaged over all neurons, after which we will see a typical

2D-Gaussian shape in accordance with [102], as shown in Fig. 3.2.

Fig. 3.5 demonstrates our findings about ERF: In Fig. 3.5(a), ERF
TRF

becomes

smaller at top layers which is again in accordance to [102]. In addition, we fit a linear

curve of ERF vs.
√

TRF sizes in Fig. 3.5(b), where the variations of two lines are

mainly due to the pooling layers interleaved before conv5 3 in VGG16 network, as well

as the data noise introduced when calculating ERFs. Last but not least, we compare

ERF sizes against grid scales of SSD at different prediction layers in Fig. 3.5(c), from

which we realize that the sizes of SSD’s default boxes are not sufficiently large to

include context, especially for small objects (conv4 3).

47

(a) (b) (c)

Figure 3.5: (a) As the network goes deeper, ERF retains more intensity, and sur-
prisingly has lower ratio against its TRF counterpart. (b) A likely-linear relationship
between ERF and

√
TRF sizes. (c) Fitted ERF sizes to corresponding grid scales θp

at different prediction layers.

3.5 Training

We follow the same training process as [30]: After generating default boxes,

we match each of the ground truth boxes to the best overlapped default boxes with

Jaccard overlap higher than 0.5. For the rest of default boxes, which have been left

unmatched, we select a subset of them based on confidence loss while keeping the

ratio of matched to unmatched boxes to 1:3, which keeps a balance between number

of positive and negative proposals. Afterwards, our objective function minimizes

regression loss using Smooth `1 and classification loss using Softmax. Note that SSD

was updated with a new expansion data augmentation trick that has been shown to

boost the performance a lot in small object detection [116]. In this chapter, we follow

the newest data augmentation expansion trick in our experiments on VOC, while keep

using the original data augmentation technique [30] on DETRAC.

Both implementations [30, 116] use the entire original image as input, and then

randomly sample patches that have the minimum Jaccard overlap with one of the

ground truth objects. Multiple minimum Jaccard overlap thresholds have been used,

including 0.1, 0.3, 0.5, 0.7 and 0.9, each with 50 maximum trials. After doing so, the

48

statistical distribution of training sample scales fed into the network is expected to

be more equalized.

3.6 Experiments

3.6.1 Ablation Study

In Fig. 3.6(a), we study how mAP changes with different number of context

layers for DiCSSD, as measured on the DETRAC dataset. Note that the overall mAP

score is not necessarily indicative of the mAP value for small object detection. We note

that with higher number of context layers, the overall mAP score of DiCSSD drops

dramatically while memory requirements increase. We set the number of context

layers equal to 4, based on cross-validation on the DETRAC dataset, and we used the

same number (4 context layers) for the VOC 2007 dataset. In addition, we conducted

experiments under different settings of batch normalization, scaling, and context layer

fusion method and show the results in Fig. 3.6(b). The golden model compared in

Fig. 3.6(b) has been trained with a full combination of batch normalization + scaling

+ sum.

3.6.2 Convergence Speed

In Fig. 3.7, we demonstrate the superior convergence speed of our proposed

method DiCSSD against SSD. Due to that the learning rate was set to decay at 60k,

80k, 100k iteration for VOC and 280k, 360k iteration for MS-COCO respectively, we

can find noticeable mAP improvements at those iterations in Fig. 3.7.

3.6.3 Sensitivity and Impact Analysis on PASCAL VOC 2007

Using [119], we perform sensitivity and impact analysis of different object char-

acteristics on PASCAL VOC 2007 in Fig. 3.8, where less values of sensitivity indicate

49

(a) (b)

Figure 3.6: We perform our ablation study on DETRAC (Sec. 3.6.4) to test, for our
DiCSSD method: (a) mAP under different number of context layers. (b) Effects of
different settings with batch normalization, scaling and context layers fusion.

(a) VOC 2007 test set (b) MS-COCO minival set

Figure 3.7: Comparison of convergence speed.

more robustness to certain characteristic. We note that the sensitivity of DiCSSD in

terms of the BBox area is lower than that of SSD (0.421 vs. 0.453). Besides, due

to the additional context modeling, DiCSSD has been shown to perform better than

SSD under various occlusion conditions (0.327 vs. 0.324 in sensitivity analysis).

In Fig. 3.9, we give visualization results of calculating ERF for conv4 1 as

described in Alg. 2 of our submission. Though ROIs whereby each neuron (right

part) are mostly responsive show different activation shapes, their averaged result

50

occ trn size asp view part
0

0.2

0.4

0.6

0.8

1
CSSD300*: Sensitivity and Impact

0.562

0.889

0.804
0.853

0.525

0.946

0.730

0.869

0.727

0.914

0.696

0.883
0.834

occ trn size asp view part
0

0.2

0.4

0.6

0.8

1
SSD300*: Sensitivity and Impact

0.512

0.886

0.800
0.844

0.490

0.943

0.729

0.873

0.712

0.919

0.709

0.873
0.828

Figure 3.8: Sensitivity and impact analysis of different object characteristics [119].
We show the average mAP over categories within each characteristic (occlusion, trun-
cation, bounding box area, aspect ratio, viewpoint, part visibility), with the highest
performing and lowest performing shown in single column. Overall mAP across char-
acteristics is indicated by the black dashed line. The difference between max and
min indicates sensitivity while the difference between max and overall indicates the
impact.

Figure 3.9: Exemplified ERF computation for conv4 1. All 512 ROIs in right part
are calibrated and averaged over K = 300 input images. Both TRF (cropped patch)
and ERF (red box) are given.

51

(left part) is a typical 2D-Gaussian. The results are in accordance with the findings

from [102].

We review several important properties of SSD that have not been fully studied

in [30].

(a) DETRAC (b) VOC0712 (c) MS-COCO

Figure 3.10: Distribution of ground truth annotation scales in training sets of DE-
TRAC, VOC0712 and MS-COCO, versus the same datasets after data augmentation
with SSD300.

Effects of data augmentation. Fig. 3.10 demonstrates that all three object detec-

tion datasets have an decreasing number of annotations as the objects become larger,

due to which the SSD data augmentation technique polarizes the scale distribution

especially on VOC0712 and MS-COCO. For DETRAC, however, as the number of

relatively small objects dominates, in each trial it can hardly reach higher jaccard

thresholds of 0.7 and 0.9, resulting in a half-polarized distribution. Our statistical

analysis of DETRAC in Fig. 3.10(a) (µ ± σ): 74.6 ± 48.9 vs. 43.5 ± 37.7, indicate

that the data augmentation technique from SSD [30, 116] tends to shrink the ground

truth annotations to ×0.6 its original size. The scale coming with the largest number

of annotations has been shifted from 32.3px to 16.5px after augmentation.

52

Algorithm 1 Discrepancy maps

Input: A pre-trained model Z, input image set U ∈ {In|n = 1, . . . , N}, In ∈ RHI×WI ,

occluder o ∈ Rd×d, stride s, layer x with output size Hf ×Wf × l

Output: Discrepancy maps D ∈ RHI×WI×l

1: Compute TRF size Ht ×Wt at layer x using Eqn. (3.1)

2: Locate only fully responsive ROI Q ∈ RHQ×WQ within area of rows ∈ [Ht

2
, HI−Ht

2
],

cols ∈ [Wt

2
,WI − Wt

2
] /*To speed-up computation*/

3: Create empty discrepancy maps D

4: while i ≤ N do

5: In Q ∈ Ui, create occluded image set V ∈ {Im|m = 1, . . . ,M}, Im ∈ RHI×WI

using o with stride s

6: Record coordinates of each occluded area P ∈ {Pm|m = 1, . . . ,M}, Pm ∈ Rd×d

7: while j ≤M do

8: Feedforward Ui and Vj through Z. At layer x, obtain activation maps re-

spectively AxUi
and AxVj , both ∈ RHf×Wf×l

9: while k ≤ l do

10: Dk
Pj
← Dk

Pj
+
∑
|AxkUi

− AxkVj |

11: end while

12: end while

13: end while

Figure 3.11: At different prediction layers, SSD [30] generates default boxes with
various but uniformly sampled scales θp. All outbound default boxes will be clipped.

53

Algorithm 2 ERF

Input: Discrepancy maps D ∈ RHI×WI×l, TRF size Ht ×Wt at layer x, threshold σ

Output: ERF size He ×We

1: while i ≤ l do

2: Pi ← argmax
(m,n)

Di /*Calibration*/

3: Ei ← ROI centered at Pi in Di, Ei ∈ RHf×Wf

4: Si ←
√∑

[Ei ≥ σ ∗ µ(vec(Ei))] /*[. . .] are the Iverson brackets*/

5: end while

6: He ← µ(S)

7: We ← µ(S)

Offsets between RF centers and default boxes. We denote the feature map size

at certain prediction layer as Hf ×Wf . SSD uniformly generates a dot matrix (blue

dots in Fig. 3.13) of size Hf ×Wf given input image Im ∈ RHI×WI , using stride along

x, y axes as HI

Hf
, WI

Wf
respectively. Subsequently, those dots are treated as the centers

of a group of default boxes (Fig. 3.11). There exist, however, obvious offsets between

the centers of default boxes and the centers of RFs that has not been mentioned in

[30, 116].

Using above calculation, Fig. 3.12 demonstrates a simplified example for a 5×5

input image being convoluted by 3 × 3 filters, wherein there exist noticeable offsets

in-between. In Fig. 3.13, we further calculate and visualize the offsets at layers before

(and including) each pooling layer or conv layer with stride ≥ 2, given input size

300 × 300. As the network goes deeper, the offsets visualized in Fig. 3.13 become

much larger, thus leading to inaccurate estimation of proposal locations which in

54

turn negatively affects regression.

Figure 3.12: Illustration of the offsets between centers of default boxes and centers of
receptive field. This simple example displays a 5× 5 input image convoluted by 3× 3
filters (only top three are shown) with stride = 2, pad = 1.

Figure 3.13: In original SSD framework [30], we observe obvious offsets (yellow ar-
rows) between rf centers (red dots) and default box centers (blue dots).

55

(a) (b) (c)

Figure 3.14: At each prediction layer of SSD [30], we quantitatively evaluate the
degree of inaccurate estimation of proposal locations due to the offsets between boxes
centered at RF centers (named square RF boxes with side length TRF/ERF) and
default boxes. In (a) we assume RF boxes to have side length of TRF and calculate
the overlap coefficients, and (b) with side length of ERF. We define the aspect ratios
for group of default boxes at individual prediction layers as (also see Fig. 3.11): Square

(θp × θp), Tall/narrow (
√

2θp ×
√
2
2
θp), Short/wide (

√
2
2
θp ×

√
2θp) , Extra-tall/narrow

(
√

3θp×
√
3
3
θp), Extra-short/wide (

√
3
3
θp×
√

3θp). In (c), we expand ERF to its ×2, ×3
and ×4 original size, and calculate the overlap coefficient of two boxes respectively.

In order to have a quantitative measurement of this inaccuracy, in Fig. 3.14 we calcu-

late the overlap coefficient between boxes centered at RF centers (named RF boxes)

and default boxes. By using overlap coefficient c, we can see whether TRF/ERF cov-

ers the proposals. Otherwise, proposal location is considered inaccurate when c < 1.

If we assume the side length of RF boxes is its corresponding TRF size, then this

inaccuracy between RF boxes and default boxes associated with various aspect ratios

is considered to be insignificant, as shwon in Fig. 3.14(a). However, when we use ERF

size as the side length of RF boxes, then at prediction layers after fc7 most RF boxes

cannot fully cover ERFs which indicates inaccurate estimation of proposal locations,

as shown in Fig. 3.14(b).

After introducing context layers in our proposed DiCSSD, at each prediction layer

the ERF expands to its ×2, ×3 and ×4 (and even more depending on the number

56

of context layers used) original size and thus ensures sufficient coverage of RF boxes

against default boxes. Fig. 3.14(c) demonstrates that with the help of context layers,

the overlap coefficients in last three prediction layers have now become sufficiently

large with c = 1.

Coverage degree of grids to ground truth boxes. We investigate on the

(a) Pooled dataset (b) Uniformly sampled dataset

Figure 3.15: Distribution of ground truth annotation scales in DETRAC versus the
same dataset after data augmentation.

problem that at which scale the pre-computed grids8 cover most to the ground truth

boxes (i.e. with higher chances of hit). In order to do so, we firstly pool our dataset9

with a new data augmentation technique aiming to return more widely ranging an-

notations, and then sample the pooled dataset so as to obtain a dataset that consists

of annotations with uniformly distributed scales (Fig. 3.15). Next, we remove respec-

tively prediction layers used to hypothesize small, medium and large-scale proposals,

8Also called default boxes in SSD, we use them interchangeably.
9To ensure a rapid prototyping capability, we use a random subset of DETRAC which has been

split carefully into different scenes with various environment conditions (described in Sec. 6.2 of our

submission).

57

Model Description mAP

SML original SSD model [30] 64.5
ML remove (a), (b) 67.3
SL remove (c), (d) 61.7
SM remove (e), (f) 65.8

Table 3.2: We evaluate above models in our ablation study to test the coverage
degree of SSD’s default boxes to the ground truth boxes. Prediction layers numbered
by (a)-(f) are illustrated in Fig. 3.11. Keys: S=Small, M=Medium, L=Large.

and subsequently compute its mAP.

Our results in Table 3.2 indicate that prediction layers for medium objects are

the most crucial, and removing prediction layers for small/large objects surprisingly

improves mAP. Our finding suggests that adding more prediction layers with increas-

ing number of default boxes does not necessarily improve mAP. Instead, we speculate

about the detection performance in SSD to be more related to the coverage degree of

grids to ground truth boxes. Therefore, given a completely new dataset, the network

design of SSD should be the most effective and efficient via targeting the maximum

coverage degree with the minimum number of prediction layers.

3.6.4 Our Results

Similar to SSD, we load a pre-trained model of VGGNet on the ILSVRC CLS-

LOC dataset [20] and use the átrous algorithm [121] to convert fc6 and fc7 into conv

layers. In addition, we use SGD with initial learning rate 10−3, 0.9 momentum, 0.0005

weight decay and 32 batch size. The learning rate decay policy, however, is different

depending on the dataset used in experiments: for DETRAC, we use an initial learn-

ing rate 10−3 at the first 40k iterations, then continue training with learning rate 10−5

58

until the model is fully converged at iteration 60k. For PASCAL VOC 2007, we use

the same training policy with the newest implementation of SSD [116], which uses

initial learning rate 10−3 at first 80k iterations and continues training two rounds of

20k iterations with learning rate 10−4, 10−5 respectively. For MS-COCO, we train

our model with learning rate 10−3 for the first 160k iterations, followed by two rounds

of 40k iterations with learning rate 10−4 and 10−5 respectively.

DETRAC. DETRAC is a challenging real-world vehicle detection dataset [105], with

a total of 10 hours of videos. It consists of 60 sequences in train set and 40 in test set,

which include significant differences in vehicle categories, weather, scales, occlusion

ratios, and truncation ratios.

We note that ground truth for the DETRAC test set has not been released yet.

Since we needed ground truth for our quantitative experiments, we opted to split the

original 60 sequences of the DETRAC train set into 48 sequences that we used for

training, and 12 sequences that we used as our test set. Our test set consisted of the

12 sequences numbered by 20034, 20063, 39851, 40131, 40191, 40243, 40871, 40962,

40992, 41063, 63521, 63562. Moreover, we subsampled frames with step size 10 in all

sequences, leading to a total of 6349 training images and 1880 test images. To have

a comprehensive evaluation of the proposed networks, we also assign to each ground

truth bounding box new annotations for scale, occlusion and three difficulty levels,

as shown in Table 3.3.

We compare the performance of CSSD with SSD in Table 3.4. In that table,

(C)SSD533 indicate models trained with input size 533× 300, which keeps the same

aspect ratio with the original input size 940 × 540, and has been found to greatly

boost the mAP of (C)SSD300 (50.3% vs. 35.1% for SSD300). Our results show that

both DiCSSD and DeCSSD outperform SSD with two different input resolutions,

59

Scale
Small Medium Large

0-50 pixels 50-150 pixels > 150 pixels

Occlusion
No Partial Heavy
< 1% 1%− 50% > 50%

Difficulty

Easy Normal Hard
Medium or large object,
no occlusion,
0% ≤ truncation < 15%

Partial occlusion, or
15% ≤ truncation < 30%

Heavy occlusion, or
truncation ≥ 50%.

Table 3.3: New annotation labels created for DETRAC, where each of them has been
evaluated in Table 3.4. Bounding boxes with undefined conditions in difficulty are
defaulted to Normal.

while DiCSSD significantly improves SSD with higher mAP than DeCSSD (+10.2%

vs. +5.1% to SSD300, +5.3% vs. +1.2% to SSD533). In small object detection,

DiCSSD300 has been found particularly effective, with mAP increase > 5% over

both DeSSD300 and SSD300. Note that, although DeCSSD533 achieves the highest

mAP in small object detection among the three, its performance on large object

is down to the lowest 68.5%. This happens because, given high resolution images,

top prediction layers may contain much richer feature maps, but directly reusing

and fusing those maps into a single map may overweigh the training loss at the

first prediction layer. Consequently, while DeCSSD outperforms the other methods

in small object detection, its discriminative capabilities for large objects have been

greatly constrained.

Method Network Overall
Category Difficulty Occlusion Scale Weather

Car Van Bus Others Easy Normal Hard No Partial Heavy Small Medium Large Sunny Rainy Night Cloudy
DiCSSD533 VGGNet 55.6 63.2 52.1 81.2 46.3 63.2 41.0 12.2 57.5 47.4 26.7 35.6 79.9 84.4 61.8 70.6 53.9 69.8
DeCSSD533 VGGNet 51.5 64.3 47.9 71.9 14.3 60.6 40.9 10.2 59.2 44.2 24.3 39.2 76.5 68.5 64.0 64.8 52.8 72.2
SSD533 [30] VGGNet 50.3 58.7 45.6 75.8 37.0 61.3 34.1 7.1 56.5 38.9 17.4 31.1 74.2 81.7 55.6 64.0 52.5 63.8

DiCSSD300 VGGNet 45.3 53.0 39.5 71.5 19.4 61.9 25.0 9.8 50.9 32.5 24.0 19.6 72.5 78.7 48.5 60.7 48.1 54.6
DeCSSD300 VGGNet 40.2 47.8 37.4 64.6 11.4 57.3 21.1 7.2 47.8 30.3 17.6 14.7 67.8 63.3 41.2 55.1 45.7 53.0
SSD300 [30] VGGNet 35.1 43.5 24.8 50.2 4.5 53.2 19.0 6.5 42.8 26.6 16.2 14.2 60.2 59.4 42.0 42.3 39.4 51.6
SSD300 [30] ResNet152 35.2 42.3 33.5 54.3 4.5 52.8 17.5 7.1 41.1 34.7 17.6 6.8 62.9 60.2 36.8 50.8 30.5 44.4
SSD300 [30] ResNet101 39.1 42.8 32.6 69.5 30.2 55.4 16.4 7.1 43.2 30.4 17.5 8.1 63.1 69.5 40.0 48.0 44.2 46.5
SSD300 [30] ResNet50 25.1 42.4 30.5 59.8 26.9 46.1 4.8 0.0 35.9 0.4 0.0 7.4 63.2 63.8 44.7 0.0 0.0 0.0

Table 3.4: Evaluation of the proposed networks on DETRAC dataset.

60

In summary, DiCSSD was found to be the most effective compared to others

in DETRAC, with both low and high-resolution input size. Later on, we will see

that the run-time speed of DiCSSD is comparable to SSD, which proves the efficiency

of our proposed method. Visualization results on DETRAC can be found at Fig. 3.18.

Figure 3.16: Curated examples of DiCSSD (left) and SSD (right) on VOC07 test set.

PASCAL VOC 2007. In this dataset, we train each model with a union of VOC2007

trainval set and VOC 2012 trainval sets, and evaluate on VOC 2007 test set. Again,

our results in Table 3.5 indicate that both DiCSSD and DeCSSD outperform SSD

(+0.6% vs. +0.1%). We note that the performance of SSD has been improved greatly

with its new expansion data augmentation trick [116]. Still, our proposed context lay-

ers, applied on top of this improved SSD, further boost performance and take little

61

memory consumption. It is noteworthy that among all the 20 categories evaluated,

mAPs of DiCSSD are higher than those of SSD in 15 categories. We also evaluate

the performance of DiCSSD in Fig. 3.17 using [119]. Again DiCSSD is better than

SSD for categories that give the most false positives including airplane, bird, cat and

chair. Visualization results can be found at Fig. 3.16.

Method Network mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

DiCSSD300* VGGNet 78.1 82.2 85.4 76.5 69.8 51.1 86.4 86.4 88.0 61.6 82.7 76.4 86.5 87.9 85.7 78.8 54.2 76.9 77.6 88.9 78.2
DeCSSD300* VGGNet 77.6 79.9 84.7 76.4 70.2 48.2 86.5 86.1 88.9 61.7 83.1 76.8 86.1 87.4 85.3 78.8 52.0 77.0 79.1 87.0 77.2
SSD300* [116] VGGNet 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 84.0 79.4 52.3 77.9 79.5 87.6 76.8
DSSD321 [114] ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4
ION [120] VGGNet 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
R-FCN [109] ResNet101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
Faster [28] ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
Fast [13] VGGNet 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
Faster [29] VGGNet 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Table 3.5: Detection results on PASCAL VOC2007 test set. All models were trained
with VOC2007 trainval set + VOC2012 trainval set. (C)SSD300* and SSD512* are
the latest SSD models with the new expansion data augmentation trick [116].

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1
CSSD300*: BBox Area

0.63

0.86
0.89

0.98
0.93

0.67

0.96
0.910.940.97

0.45

0.74

0.860.88
0.95

0.58

0.72
0.76

0.91
0.99

0.63

0.90
0.95

1.000.99

0.29

0.49

0.750.73

0.46
0.43

0.79

0.93
0.990.99

airplane bicycle bird boat cat chair table

XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL XSS M L XL
0

0.2

0.4

0.6

0.8

1
SSD300*: BBox Area

0.40

0.860.87

0.98
0.94

0.67

0.94
0.89

0.93
0.97

0.38

0.76

0.86
0.90

0.96

0.59

0.71
0.79

0.88

0.99

0.70

0.90
0.971.000.97

0.26

0.46

0.720.73

0.51
0.44

0.76

0.92
0.990.99airplane bicycle bird boat cat chair table

Figure 3.17: Sensitivity analysis of bounding box area using [119]. Keys in BBox
Area: XS=extra-small, S=small, M=medium, L=large, XL=extra-large.

MS-COCO 2015. In order to evaluate CSSD on a more general, large-scale object

detection dataset, we compare our proposed model with both SSD , DSSD and many

others on MS-COCO 2015 dataset. To directly compare CSSD with SSD, we use the

same trainval35k training set [120] and follow the same training policy to SSD300*

[116]. In Table 3.6, we show our detection results on MS-COCO [104] test-dev2015

62

set. Both DiSSD300* and SSD300* use the new expansion data augmentation trick

[116], while SSD300 is with the original SSD implementation [30].

Method Train Set Network FPS
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

DiCSSD300* trainval35k VGGNet 40.8 26.9 46.3 27.7 8.2 27.5 43.4 25.0 37.3 39.8 15.4 43.1 60.0
SSD300* [116] trainval35k VGGNet 46 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4
SSD300 [30] trainval35k VGGNet 46 23.2 41.2 23.4 5.3 23.2 39.6 22.5 33.2 35.3 9.6 37.6 56.5
DSSD321 [114] trainval35k ResNet101 9.5 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6
R-FCN [109] trainval ResNet101 9 29.9 51.9 - 10.8 32.8 45.0 - - - - - -
ION [120] train VGGNet - 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6
Faster [29] trainval VGGNet 7 21.9 42.7 - - - - - - - - - -
Fast [13] train VGGNet - 19.7 35.9 - - - - - - - - - -

Table 3.6: MS-COCO test-dev2015 detection results.

Our proposed network DiCSSD has been shown to greatly boost the perfor-

mance of SSD (+3.2% given IoU=0.5), and even better than DSSD (+0.1% given

IoU=0.5) which uses ResNet101 as its base network but only achieves 9.5fps (com-

pared to 40.8 fps of ours). We also note that for small object, DiCSSD achieves

better precision than the newest SSD (8.2% vs. 6.6%), in addition to the highest re-

call (15.4%) among all the benchmarked methods. Visualization results can be found

at Fig. 3.19.

Inference time. In Table 3.7, we compare the speed and accuracy of benchmarked

models on PASCAL VOC 2007. The proposed DiCSSD network achieves the highest

mAP, while maintaining a real-time speed of 40.8 fps. Therefore, DiCSSD has been

the most effective model among all models compared. Note that we calculate fps with

batch size = 1, preprocessing time counted and cuDNN [122] enabled (v5.1 for Titan

X, v4 for K40 and GTX 980).

63

Method mAP Network
FPS Input

Resolution
K40 GTX 980

Titan X
(Pascal)

SSD300* [116] 77.5 VGGNet 16.2 36.2 46 300x300
DiSSD300* 78.1 VGGNet 12.2 24.3 40.8 300x300
DeSSD300* 77.6 VGGNet 8.7 18.4 39.8 300x300
DSSD [114] 78.6 ResNet101 - - 9.5 321x321
YOLO [111] 66.4 VGGNet - - 21 448x448
Faster R-CNN [13] 73.2 VGGNet - - 7 ∼1000x600
Faster R-CNN [28] 76.4 ResNet101 - - 2.4 ∼1000x600
R-FCN [109] 80.5 ResNet101 - - 9 ∼1000x600

Table 3.7: Speed and accuracy comparisons on VOC2007.

3.6.5 CSSD Curations

We show in Fig. 3.18 and Fig. 3.19 some visualization results of CSSD (partic-

ularly, DiCSSD) comparing to SSD.

64

Figure 3.18: Curated examples of DiCSSD (left) and SSD (right) on DETRAC test
set.

65

Figure 3.19: Curated examples of DiCSSD (left) and SSD (right) on MS-COCO test-
dev2015 set.

66

CHAPTER 4

SEMANTIC SEGMENTATION

This chapter gives an overview of deep learning based semantic segmentation

methods. To fill the gap between high-quality prediction and real-time performance,

this chapter proposes an effective but yet efficient semantic segmentation method

called ThunderNet. ThunderNet runs faster than the current fastest model in the

literature ENet [8], with up to 1.7x speedup on a desktop machine and 1.2x on an

embedded system, while performing significantly better than ENet.

4.1 Introduction

Image semantic segmentation is a fundamental problem in computer vision.

Its main task is to perform dense predictions over all pixels and output categories

belonging to each. Semantic segmentation has been in the long run treated as a

crucial part in achieving deep understandings of the image, with topics include, but

not limited to instance segmentation, scene parsing, and human object interactions

etc. [123, 124, 125]. In the past years, deep learning approaches [15, 17, 16, 126, 127,

128] have made fruitful progress in semantic segmentation, with the development of

Convolutional Neural Networks (CNNs) and many emerging technologies related to

it.

However, recent advances in semantic segmentation with CNNs largely depend

on those deep and wild backbones, with dedicated designs of various bottlenecks

and many other meta-architectures. Taking those sophisticated designs results in

a large amount of redundant overhead, regarding to the number of operations in

67

order to make dense predictions. In Fig. 4.1, we show the accuracy of state-of-

the-art methods on Cityscapes dataset [129], in addition to their runtime speed. By

increasing network complexity, most research [16, 15, 127, 31, 17, 130, 128, 126] in the

past few year has focused on generating high-quality predictions, and thus inevitably

slower the inference speed to a great extent. Several works in the literature have

been proposed to overcome the speed issue, including SQ [131], ENet [8], ICNet [132]

and the most recent ERFNet [133]. They aim at improving the inference speed while

attempting to maintain comparable accuracy. Nonetheless, as shown in Fig. 4.1,

few of these methods have achieved real-time speed with satisfactory performance

(i.e. above 65% mIoU on Cityscapes). Under such circumstances, real-time semantic

segmentation on embedded systems (mobile platforms, NVIDIA Jetson TX1/TX2,

etc.) has become a fundamentally crucial, but very challenging task.

0 20 40 60 80 100Real-time
Frames per second (FPS)

50%

55%

60%

65%

70%

75%

80%

m
Io

U
on

 C
ity

sc
ap

es

SegNet

PSPNet

ENet

ICNet ERFNet

FCN-8s
Deeplabv2

SQ

Dilation10

Ours

Figure 4.1: Accuracy (mIoU %) vs. inference speed (fps) for the state-of-the-art
methods on Cityscapes, including SegNet [16], FCN-8s [15], Dilation10 [127], SQ [131],
Deeplabv2 [17], PSPNet [31], ENet [8], ICNet [132], ERFNet [133]. Our proposed
ThuderNet is fastest and has obtained comparable accuracy to a majority of those
methods.

68

In this chapter, we focus on this challenging task and propose a fast and efficient

lightweight network that achieves 64% mIoU on Cityscapes with 96.2 fps, which

greatly boosts the previous methods regarding to the trade-off between accuracy and

runtime speed. Our method, called Turbo Unified Network (ThunderNet), unifies

both pyramid pooling module [31] and decoder structure, and builds upon a minimum

backbone truncated from ResNet18 [28]. In summary, our main contributions are:

(1) We present a novel and extremely lightweight network (ThunderNet) that achieves

high accuracy of 64% mIoU on Cityscapes1 with single-scale test, in addition to

significantly faster inference speed (96.2 fps on Titan XP, input size 512x1024).

(2) Comparing to those real-time methods currently available in the literature, Thun-

derNet does not utilize any bottleneck modules and thus enables easy and flexible

combinations with many popular meta-architectures and designs. We showcase

that by incorporating those meta-architectures directly, we can improve our model

further but with runtime speed penalized to a certain extent, depending on the

preferences and choices.

(3) ThunderNet follows the encoder-decoder architecture [16] which allows for train-

ing in an end-to-end fashion. Without bells and whistles (those non-trivial train-

ing techniques for e.g. transfer learning, alternative training and auxiliary loss),

ThunderNet can be trained in a simple setting and converges only in hours.

(4) We test the proposed ThunderNet on NVIDIA Jetson TX2, which achieves 20.9

fps (input size 256x512) with large speedup of inference time on embedded systems–

up to 1.2x over ENet [8] and 1.8x over ERFNet [133] respectively.

1https://www.cityscapes-dataset.com/method-details/?submissionID=1073

69

https://www.cityscapes-dataset.com/method-details/?submissionID=1073

4.2 Related Work

After CNN-based methods [7, 134] made a significant breakthrough in image

classification [135], Long et al. [15] pioneered the use of CNNs in semantic seg-

mentation. The proposed FCN firstly perform end-to-end semantic segmentation by

replacing last fully-connected layers with convolution layers. FCN’s output were very

coarse due to the successive use of pooling layers that had been previously found

useful in image classification for the integrated context. In semantic segmentation,

however, the lost of fine details with pooled feature maps will generally result in

coarse predictions. With skip connections, therefore, FCN refined the outputs by

fusing them with the feature maps from shallower layers. Afterwards, SegNet [16]

followed encoder-decoder architecture of FCN. But different from FCN where upsam-

pling was done using deconvolution, SegNet saved indices from pooling layers in order

to upsample feature maps at its decoder. As the progressively enlarged feature maps

learn both coarse geometries and fine boundaries, encoder-decoder architecture has

become very popular thereafter [136, 8, 137, 133, 138, 139]. In object detection, the

encoder-decoder architecture has also gained its popularity (for e.g. FPN [140]).

There also exists many other meta-architectures and designs that have been

found particularly useful in the literature of semantic segmentation. Deeplab family

(v1 to v3+) [141, 17, 130, 139] used atrous spatial pyramid pooling (ASPP) which

captured image context at multiple scales. In ASPP, dilated convolution plays a key

role to remedy the shortcoming of fine features and structures due to the progressive

downscaling of feature maps at classic networks like VGG and ResNet [28], where

more related studies can be found at [127] and [138]. In addition, RefineNet [142]

consists of a multi-path framework that runs pyramid of input image at different

scales. In RefineNet, both short-rang and long-range shortcut connections were ex-

ploited in order to enhance the fusion results from low and high-resolution feature

70

maps. Recently, Zhao et al. [31] propose PSPNet that has become one of the state-

of-the-art models in semantic segmentation. In PSPNet, a pyramid pooling module

(PPM) is applied to generate representations at different levels, whose output will be

upsampled and concatenated along feature map channels to form the final represen-

tation. By doing so, the final predictions will carry both local and global contextual

information at various levels. However, due to the pooling layers and strided convolu-

tion2 layers within the backbone network, detailed boundaries are still missing. After

realizing this problem, the most recent work Deeplabv3+ [139] chooses Xception [83]

as its backbone, and involves both ASPP to extract enriched semantic information

and a simple yet decoder to recover the detailed object boundaries.

Aforementioned methods opt to use heavy backbones and thus require more

computing resources. In Fig. 4.1, we demonstrate that only few of them has reached

the real-time inference speed. On mobile platforms like smart phones in addition to

those GPU-powered embedded systems like NVIDIA Jetson TX1/TX2 etc., applying

above methods becomes unfeasible. As there exists a big gap towards real-time seg-

mentation, some recent works try to alleviate the problem by developing a simplified,

lightweight network with bottleneck modules. For instance, ENet [8] was proposed

using an extreme setting of bottlenecks which results in underfit to the dataset (it only

achieves 58.3% on Cityscapes). ICNet [132] used input from multi-scales and trained

with each scale different number of convolution layers. ICNet achieves high accuracy

on Cityscapes (69.5%) with over 30 fps on a Desktop-level GPU. Implementation of

ICNet, however, is non-trivial because of the auxiliary losses used at all scales and

the dedicated design of sharing weights between the smallest and middle scale. The

newest work ERFNet [133], on the other hand, achieves much better results (69.7%)

2In this chapter, the strided convolution denotes the convolution operations with stride size

greater than or equal to 2.

71

than ENet with special bottlenecks composed of factorized convolutions. It is be-

cause more context are captured in ERFNet’s encoder with convolutions dilated by

the increasing rates, meanwhile ERFNet’s three-level decoder itself is capable to learn

more boundary details. However, the alternative training used in ERFNet is not easy

to realize. Besides, due to that its backbone is fully assembled with bottlenecks, it

becomes very hard to extend this work with other meta-architectures.

(a) Input image (b) ResNet18 + PPM

(c) ResNet18 + decoder (d) ResNet18 + PPM + decoder

Figure 4.2: We start with a simplified experiment that by adding the pyramid pooling
module (PPM) into a ResNet18 backbone, after convergence the output looks quite
smooth for geometry shapes, but losing clear boundaries (b). Instead, by adding a
four-level decoder (symmetric to encoder’s 24 = 16 total stride) to the same backbone,
the output shows more detailed object boundaries, but its shape is hardly preserved
(c). Inspired by this finding, we unify the two meta-architectures, after which the
final results look much better with both clear geometry shapes and sharp boundaries
(d).

Conclusively, both dilated convolution and pyramid pooling module aim at

capturing contextual information at various levels, while adding decoder to a classic

backbone used for image classification will enhance boundary details. Inspired by this

finding and related experiment illustrated in Fig. 4.2, in this chapter, we propose to

72

unify the two meta-architectures–PPM and decoder, into single network. Compared

to Deeplabv3+ [139] and ERFNet [133], our proposed ThuderNet builds on a mini-

mum backbone truncated only from a popular ResNet18 network, without using any

bottleneck modules. Due to that there are only ∼4.7m parameters in ThunderNet

and they are all from standard convolution layers3, its inference speed can be as fast

as 96.2 fps (on a Titan XP), given input size 512x1024.

4.3 Framework

We propose a lightweight network called ThunderNet and illustrate its frame-

work in Fig. 4.3. ThunderNet mainly consists of an encoder, a pyramid pooling

module and a customized decoder. As shown in Fig. 4.3, for encoder, we opt to use a

ResNet18 [28] network that has been truncated away from its 4th block. For pyramid

pooling module, we follow the same setting with PSPNet [31] but further reduce the

bottlenect convolution layer (the one after bilinear upsampling) to 1x1 convolution

with 256 channels (instead of 3x3 convolution with 512 channels in [31]). For decoder,

we use our customized decoder which consists of two consecutive deconvolution up-

sampling that both appends to and followed by a 1x1 convolution layer.

The proposed ThunderNet is simply, but yet very efficient for the task of image

semantic segmentation. Firstly, we realize that, in order to have a network with fast

inference speed, we must have a lightweight encoder that consists of fewer 3x3 con-

volution layers with smaller number of output channels, compared to those networks

similar to the VGG16 implementation [7]. According to an online study 4, ResNet18

3Compared to standard convolutions, performing convolutions in bottleneck modules will con-

sume much more runtime memory and thus take longer time, due to the largely expanded number

of operations.
4https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

73

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

Figure 4.3: Framework of our proposed ThunderNet. ThuderNet follows encoder-
decoder architecture, where its encoder mainly consists of a ResNet18 backbone
truncated away from its 4th block, and its decoder implemented as a customized,
two-level consecutive upsampling network. In between, the pyramid pooling module
(PPM) is added in order to capture the contextual information from different levels.

is one of those very efficient backbones regarding to the number of operations it

takes versus its performance on ImageNet. Moreover, in Table 4.4, we also compare

the performance of our truncated ResNet18 (ResNet18-3b) to the original ResNet18

(ResNet18-4b), which solidifies the reason for our selection of ResNet18-3b model.

Secondly, not only the import of PPM helps to visually enhance the smoothness

of object geometries (Fig. 4.2b), but also it boosts our quantitative segmentation

results, as shown in Table 4.5. By appending a FPN-alike decoder, the boundary

details can be learned more and thus improving our segmentation results further.

Thirdly, all convolution layers used in ThunderNet contain merely standard

convolution operations, either 1x1 or 3x3. This easy realization of our network enables

fast prototyping, as well as flexible combinations with other meta-architectures and

designs, as illustrated in Sect. 3.6.

Last but not least, due to the fully-optimized matrix adds/multiplications with

standard convolutions under a Desktop-level GPU like Titan X/XP, ThunderNet’s

dedicated design of using merely standard convolution layers will benefit significantly

74

more than those networks using bottleneck modules (for e.g. ENet [8] and ERFNet

[133]). We show in Sect. 3.6 that such advantage of ThunderNet will make it an

extremely fast network. With Titan XP, the inference speedup can be up to x2

compared to the currently fastest network ENet [8].

4.4 Experiments

4.4.1 Implementation

In this chapter, we use PyTorch for easily prototyping our models and measure

the inference speed with the exactly same model implemented in Caffe5. We follow a

similar training policy to ERFNet [133], by using Adam optimizer [144] with learn-

ing rate of 5e−4, momentum of 0.9, and weight decay of 1e−4. For all experiments,

we load a pre-trained ImageNet model of ResNet18 directly into ThunderNet, thus

abandoning weights of all layers at its 4th block. In order to overcome class imbal-

ancing problem on Cityscapes, we use the same class weights as [133] when training

alternatively ERFNet’s decoder part, i.e. weights of {2.81, 6.98, 3.78, 9.94, 9.77, 9.51,

10.31, 10.02, 4.63, 9.56, 7.86, 9.51, 10.37, 6.66, 10.26, 10.28, 10.28, 10.40, 10.13, 0}

for all 19 classes. Besides, the deconvolution layers adopted in ThunderNet’s decoder

are implemented with kernel size of 3, stride 1 and padding 1, followed by an explicit

padding of 1 around feature map outputs. Finally, we note that all our results use

single-scale test, which makes our evaluation unbiased in real scenario. In addition,

we report only the best result for all training models, with batch size 48 and maximum

training epoch of 150 on Cityscapes.

5In Caffe, we use a commonly adopted technique to accelerate the inference speed, by merging

batch normalization, scale and relu layers into their preceding convolution layer [143].

75

Method Sub mIoU (%) Time (ms) Frame (fps)

SegNet [16] 4 57.0 60 16.7
CRF-RNN [145] 2 62.5 700 1.4
DeepLabv2 [17] 2 63.1 400 2.5
FCN-8S [15] no 65.3 500 2
Adelaide [128] no 66.4 35000 0.03
Dilation10 [127] no 67.1 4000 0.25
SQ [131] no 59.8 60 16.7
ICNet [132] no 69.5 33 30.3
ENet [8] 2 58.3 13 76.9
ERFNet [133] 2 69.7 24 41.7

ThunderNet 2 64.0 10.4 96.2

Table 4.1: Final accuracy (mIoU) and speed comparisons on Cityscapes test set.

4.4.2 Results on Cityscapes

We evaluate our proposed ThunderNet on Cityscapes dataset [129], which has

a total of 19 classes and contains a train set of 2975 images, a validation set of 500

images, both with ground truth publicly available to download, in addition to a test

set of 1525 images whose ground truth data are not available. In order to have our

model evaluated on the test set, we will have to submit our results to an online testing

server. Therefore, by comparing our results on both val and test set, it allows for

the models present in this chapter to show clear signs of overfit/underfit. Note that

for all the experiments present in this chapter, we do not use any additional coarse

annotations from Cityscapes for our training.

All accuracies reported in this chapter use the common Intersection-Over-Union

(IoU) metric:

IoU =
TP

TP + FP + FN
, (4.1)

where TP, FP, FN denotes respectively the number of true positive, false positive and

false negative pixel-wise predictions. The IoU metric is designed for a specific class.

After averaging IoUs over all classes, we will have a fair evaluation metric namely the

76

mean of class-wise IoU (mIoU), which indicates the overall performance of our model.

Another metric that appears in this chapter is pixel-wise accuracy (Pixel Acc), which

takes additional TN (true negative) into account with all pixels:

Pixel Acc =
TP + TN

TP + TN + FP + FN
. (4.2)

We show our final results on Cityscapes test set in Table 4.1. Our proposed

ThunderNet has become the fastest network with comparable accuracy to a majority

of the methods benchmarked. Compared to the currently fastest network in the

literature ENet [8], our model has achieved much better results with more than 5.7%

mIoU. When benchmarked with those methods aiming at high-quality predictions

including SegNet [16], CRF-RNN [145] and DeepLabv2 [17], our method not only

shows better accuracy, but also runs at significantly faster inference speed.

4.4.3 Performance Analysis

In Table. 4.2 and Table. 4.3, we compare ThunderNet with those fastest net-

works currently available in the literature. Comparing to [133], we have enriched

the experiments by additionally testing ENet, ICNet and our ThunderNet on both

NVIDIA Jetson TX2 platform and Titan XP GPU. We conducted experiments for

all above three methods in Caffe, with CUDA 8.0 and cuDNN 7.0 under Titan XP,

CUDA 9.0 and cuDNN 7.0 under Jetson TX2 (using JetPack 3.2, L4T R28.2).

Same with [132], in order to have a fair evaluation of the inference speed testings

under Jetson TX2 and Titan XP, we use Caffe’s time measure tool Caffe time and

repeat the forward-backward operations for 100 times to reduce variances during

testing. It is noteworthy that as ENet published their code originally in PyTorch, we

used its caffe version publicly available at [146], which has been marked as ENet*.

As illustrated in Table. 4.2 and Table. 4.3, our experimental results show that

ThunderNet outperforms ENet at various input resolutions (except at the resolution

77

Model
NVIDIA TEGRA TX1 (Jetson) NVIDIA Titan X

480x320 640x360 1280x720 480x320 640x360 1280x720
ms fps ms fps ms fps ms fps ms fps ms fps

SegNet [16] 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6
ENet [8] 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6
SQ [131] 60 16.7 86 11.6 389 2.6 N/A
ERFNet [133] 93 10.8 141 7.1 535 1.9 12 83.3 41 24.4 88 11.4

NVIDIA TEGRA TX2 (Jetson) NVIDIA Titan XP
ENet* [8] 62.9 15.9 87.4 11.4 298.6 3.3 8.2 122 9.5 105.3 23.1 43.3
Ours 56.8 17.6 82.9 12.1 304.0 3.3 4.8 208 6.0 166.7 15.7 63.7

Table 4.2: Comparison of inference speed for fastest models currently available, given
different input sizes of 480x320 (HVGA), 640x360 (nHD) and 1280x720 (HD) respec-
tively. ENet indicates its original performance analysis reported in [8], while ENet*
indicates its Caffe implementation that has been tested in the same environment with
our proposed ThunderNet.

Model
NVIDIA TEGRA TX1 (Jetson) NVIDIA Titan X

512x256 1024x512 2048x1024 512x256 1024x512 2048x1024
ms fps ms fps ms fps ms fps ms fps ms fps

ENet [8] 41 24.4 145 6.9 660 1.5 7 142.9 13 76.9 49 20.4
ERFNet [133] 85 11.8 310 3.2 1240 0.8 8 125 24 41.7 89 11.2

NVIDIA TEGRA TX2 (Jetson) NVIDIA Titan XP
ICNet [132] 327.2 3.1 45.5 25.3
ENet* [8] 56.3 17.8 175.3 5.7 891.9 1.1 8.0 125.0 15.3 65.3 46.8 21.4
Ours 47.9 20.9 171.0 5.8 682.7 1.5 4.7 212.8 10.4 96.2 30.2 33.1

Table 4.3: Comparison of inference speed for ENet, ERFNet, ICNet and our Thun-
derNet, given different input sizes of 512x256, 1024x512 and 2048x1024 respectively.

of 1280x720, where ThunderNet is only 6.6 ms slower than ENet). ThunderNet runs

significantly faster than ENet (about ∼x1.5 faster across all resolutions), particularly

under Titan XP. This is due to that ThunderNet performs merely standard convolu-

tion operations that have been fully optimized with a Desktop-level GPU like Titan

XP, instead of bottlenecks used in ENet that will have to be expanded rapidly during

forwarding (thus benefit less regarding to those matrix optimizations). Therefore,

the optimization adopted in those powerful GPUs will have to be downgraded un-

der embedded platforms like NVIDIA Jetson TX2. With Jetson TX2, Our proposed

ThunderNet achieves much better results (64 % vs. 58.7%), and is still x1 to x1.2

faster than ENet.

78

Regarding to the real-time applications of deep learning based models for se-

mantic segmentation, under embedded systems ThunderNet can be as fast as 20.9 fps

with input size 256x512. With 640x360 (nHD) resolution, ThunderNet runs at 12.1

fps which is sufficiently fast for most applications even in autonomous driving. Fur-

thermore, even given the full-size (1024x2048) Cityscapes input images, by utilizing

GPU like Titan XP, ThunderNet has already passed the real-time requirement with

33.3 fps.

4.4.4 Ablation Studies

Backbone Selection. We started our work with ResNet18 backbone tests in Ta-

ble 4.4. These results show that given input size 512x512, ResNet18-3b backbone

achieves the best speed and accuracy trade-off, compared to all other options. Differ-

ent from other experiments, in this experiment we measured the fps using Tensorflow

and adopt a similar data augmentation method to PSPNet [31], i.e. a random mir-

ror and a fixed-size crop after aspect ratio preserving resize with smaller side length

randomly sampled between the crop size (384/512/783) and 1.5x the smaller size of

Cityscapes input images (∼1500). To ensure the convergence of our tests models, we

used Stochastic Gradient Descent (SGD) with learning rate 0.01 and batch size 8.

All results are reported with models converged at sufficiently large training iteration

∼100k.

PPM and Decoder Unification. Following the training configurations described

in Sect. 3.6, we perform the basic ablation studies by adding PPM and decoder,

respectively. Table 4.5 demonstrates that adding either PPM and decoder improves

our ResNet18-3b backbone to a certain extent (1.1% and 2.3% respectively), while

unifying the two meta-architectures significantly boosts the performance by 4.75%.

79

Backbone
Input Size
384x384

Input Size
512x512

Input Size
783x783

FPS
Pixel Acc %

(val)
mIoU %

(val)
FPS

Pixel Acc %
(val)

mIoU %
(val)

FPS
Pixel Acc %

(val)
mIoU %

(val)
ResNet18-3b 147.5 74.30 43.39 94.0 76.80 46.48 50.8 78.59 48.01
ResNet18-4b 104.5 74.94 45.33 71.5 76.37 46.73 39.0 78.82 48.16

Table 4.4: Experimental results of using ResNet18 backbones with different input
sizes on Cityscapes val set. We validate the effectiveness of our backbone by simply
appending bilinear upsampling layer to our ResNet18 truncated backbone (ResNet18-
3b) and the original backbone (ResNet18-4b), whose output will be finally converted
to logits.

Model ResNet18-3b
ResNet18-3b

+ PPM
ResNet18-3b
+ decoder

ResNet18-3b
+ PPM + decoder

mIoU % 60.02 61.18 62.31 64.77

Table 4.5: Ablation study for adding PPM and decoder respectively, on Cityscapes
val set.

4.4.5 Visualizations

Fig. 4.4 shows our qualitative segmentation results using ThunderNet. We can

see from those visualization results that although ThunderNet is composed of an

extremely small backbone and decoder structure, it can still make good predictions

for those objects far away. Despite of its lower accuracies on unbalanced classes for

instance wall, pole and truck, the network makes accurate pixel-wise predictions for

those commonly-seen classes including road, pedestrians and vehicles, which is suffi-

cient for the applications of autonomous driving regarding to the trade-off between

speed and accuracy it has already achieved.

4.5 Conclusion

In this chapter, we propose a fast and efficient network for semantic segmen-

tation called ThunderNet–a shorthand for the Turbo Unified Network. ThunderNet

builds on an extremely lightweight backbone truncated from the popular ResNet18

model, and unifies both the pyramid pooling module and a customized, two-level

80

(a) Input image (b) Ground truth (c) ThunderNet

Figure 4.4: Curated examples of the segmentation results output by ThunderNet.

81

consecutive upsampling decoder structure. Our experimental results on Cityscapes

show that ThunderNet has significantly surpassed the currently fastest network in the

literature ENet, regarding to both accuracy and inference speed. Even with GPU-

powered embedded systems like NVIDIA Jetson TX2, ThunderNet still achieves up

to 1.2x speedup. When compared to other methods proposed to achieve the better

trade-off between speed and accuracy, ThunderNet still shows its advantages in speed

due to its dedicated design of using merely standard convolutions. Without any other

non-trivial implementation details and training policies, ThunderNet is easy to train

and converges within only a few hours.

82

CHAPTER 5

3D SENSOR CALIBRATION

This chapter reviews the joint calibration methods for RGB-D sensor, where a

quantitative evaluation and comparison is present with our own datasets [147]. This

chapter also examines both advantages and disadvantages of current joint calibration

methods, from the perspective of practical use.

5.1 Introduction

RGB-Depth (RGB-D) cameras, such as the Microsoft Kinect and Asus Xtion

PRO, have become very widely used in perceptual computing applications. Human

gesture recognition [148, 149], tracking of facial expressions [150], image segmentation,

[151] and 3D reconstruction [152] can be accomplished using the fused color and depth

measurements provided by the sensors. In order for this sensor data to be transformed

into 3D spatial information, the intrinsic and extrinsic camera parameters must be

known or computed using a camera calibration process.

Calibration data is essential for sensing accuracy, and can vary somewhat be-

tween devices due to manufacturing variance. Device manufacturers generally provide

default calibration values, but these values may not give the best possible results. Ad-

ditionally, the manufacturer calibration does not take into account depth distortion,

referred to as myopic property in [153]: if the depth increases, the error increases as

well. Depth distortion can be alleviated by using an undistortion map that consists

of coefficients compensating for distortion on a per-pixel basis. The effectiveness of

depth distortion correction has been studied in various work [154, 155, 156].

83

Most calibration methods proposed for RGB-D devices utilize the color and

depth cameras jointly to estimate the relative pose between the two sensors [157,

158, 154, 159, 156]. In this chapter, we present a review and quantitative evaluation

of popular joint calibration methods (in particular, [157, 154, 153], where [157, 154]

belong to supervised method, and [153] is treated as an unsupervised method) on

Kinect V1. In this chapter, we answer some interesting and non-trivial questions

regarding the use of RGB-D sensors in practical applications:

• For a specific method, how many images do we need to obtain a stable and

satisfactory calibration performance?

• Do more images always result in better calibration?

• Do high-resolution color images help to achieve higher accuracy for a joint

calibration method?

• For calibration methods using different sources (IR, disparity, depth), what are

the differences and key features of them?

5.2 Related Work

5.2.1 Joint calibration vs non-joint calibration

Calibration for color cameras has been extensively studied in the literature

[160]. Most calibration methods proposed for Kinect-like devices utilize the color

and depth cameras jointly to estimate the relative pose between the two sensors

[157, 158, 154, 159, 156]. Unfortunately, joint calibration requires human interactions

to mark plane of the calibration target (checkerboard etc.).

Joint calibration of RGB-D sensors presents challenging problems: 1) it is not

easy to obtain correspondences between RGB points and the point cloud captured

by the depth sensor. These correspondences must come from structural corners and

84

edges that are difficult to find; 2) the point clouds generated from the depth sensor

are quite noisy and incomplete at such corners and edges, due to the technology used

(i.e. structured infrared light).

For reference, when using Herrera’s method [154], if the input size of images is

30, it took about 3 min to segment images and the calibration took about 2 min. The

whole procedure therefore took about 5.5 min [161]. It seems that skipping human

interventions will be of great interest and importance in the future development of

joint RGB-D calibration methods.

Calibration for color cameras has been extensively studied in literature [160].

As a depth-only calibration method, the work of Jin et al. [155] utilizes cuboids

instead of the traditional checkerboard pattern to calibrate Kinect merely in depth

domain for the purpose of getting rid of undesired interactions. Their method relies

on the precise measurement of angle difference and length, as well as a sophisticated

arrangement of cuboids. This adds complexity to the process and decreases ease-of-

use.

Calibration methods can be categorized into two classes: 1) supervised calibra-

tion and 2) unsupervised calibration, decided upon by whether the calibration target

parameters such as shape, size, and color are known in advance.

5.2.2 Supervised calibration

Early work in supervised calibration include Burrus’s rgbdemo toolbox [157],

Smisek’s method [156] and the pioneering study from Herrera et al. [154], with its

enhanced model [162], etc. Among these methods, Burrus’s and Smisek’s work use IR

images while Herrera’s method use disparity images to jointly calibrate the Kinect.

To minimize human intervention during calibration, some recent works [161,

163] have proposed methods that are able to detect a known pattern automatically.

85

Specifically, with [161] using a fixed checkerboard and [163] using a moving sphere,

both of which rely on ad-hoc parameters: Ilya et al. [161] presented an automatic

algorithm which detects the corners of a checkerboard in depth image. The algorithm

uses prior knowledge about checkerboard such as side length, diagonal length. Their

claimed performance improvement over Herrera’s method [154] is trivial, due to the

light-weight parameters used in the optimization with respect to the degradation of

performance, whereas the number of parameters decreased by 640 × 480 = 307200

in per-pixel level. Staranowicz et al. [163] also attempted to find correspondences

between the color and depth images. In the RGB image, they detected a sphere

using image processing techniques, while in the depth image, RANSAC was used to

distinguish between inliers (point cloud of sphere) and outliers (hand, etc.) so that

an ellipse of the sphere was fitted. Performance of this method is highly dependent

on the accuracy of image processing techniques, as well as the distribution of noise

that RANSAC was trying to minimize.

It is worth mentioning that recent work like [154, 164] estimate depth distor-

tion in a per-pixel basis, that is, given a pixel and the corresponding depth/disparity

value d, the real depth zd is estimated as zd = f(u,v)(d) [165]. Basso et al. [165] pro-

posed a novel supervised method which kept alternating local (error related to object

shape) and global (systematic wrong estimation of the average depth) optimization

during calibration process. In their study, depth distortion was imputed to an incor-

rect parameter set resulting in an absolute error that increases with distances [165],

and undistortion map was obtained by applying the local undistortion function to a

synthetic point cloud at a defined distance.

86

5.2.3 Unsupervised calibration

In unsupervised methods, calibration can be performed without a prefabricated

rig. Such methods are convenient, but vulnerable to many sources of noise. While the

performance of unsupervised methods are generally inferior to supervised methods,

their ease-of-use and potential for improvement make them a topic of research interest.

Recently, some unsupervised methods have been proposed [166, 153, 167] which

aim to remove prior knowledge of the target. Kummerle et al. [166] utilized simulta-

neous localization and mapping (SLAM) to perform online calibration on a moving

robot. Teichman et al. [153] proposed a generic approach to calibrate Kinect with

CLAMS: Calibrating, Localizing, and Mapping Simultaneously. Method of CLAMS

firstly reconstructed a scenario by storing trajectories of a moving camera and by

building pointcloud from close range data (less than 2m in order to obtain relatively

accurate training samples). Then camera parameters were calculated based on max-

imum likelihood estimation.

5.2.4 Kinect library

As shown in Table. 5.1, three libraries are available for capturing data from

Kinect (V1). It should be noted that for use of calibration and other stereo applica-

tions, Libfreenect is a better choice than others, since Libfreenect captures original

disparity data (sometime also called raw depth data), which enables calibration meth-

ods to have more accuracy evaluations by calculating reprojection errors of disparities.

Furthermore, both libraries, i.e. OpenNI and Kinect for Windows SDK, have auto-

matically transformed disparity to depth for ease of use, however, simply applying

inverse transform to obtain disparity by using estimation function like Eq. 5.5 will

make calibration results even worse. As we will explain later, Eq. 5.5 is used as an

approximation from disparity to depth, which follows distortion correction that plays

87

Library OpenNI Libfreenect Kinect for Windows SDK

High Resolution
Color Image Support

1280× 1024 1280× 1024 1280× 960 2

Format of Depth Data Depth in m Disparity in kdu Depth in mm

Operation Range
Default: 0.5m to 4m
Near: 0.4m to 3m

0.5m to 4m
Default: 0.8m to 4m
Near: 0.5m to 3m

Wrapper Available OpenCV Online source 3 Matlab Image
Acquisition Toolbox

Depth Field of View
(Horizontal, Vertical, Diagonal)

58°H, 45°V, 70°D [168]

Table 5.1: Comparison of three different libraries available for Kinect (V1).

an important role in calibration. Therefore only Libfreenect captures raw disparity

that can be used in disparity even though other libraries/wrappers available may

support generation of disparity that is not original. For instance, OpenCV1 supports

generation of disparity data using OpenNI which essentially performs d = b∗ f
zd

, where

b, f indicate horizontal baseline between the cameras (in meters) and focal length (in

pixels) respectively, zd is depth data measured by OpenNI and d is the transformed

disparity.

5.3 Calibration Methods

All methods reviewed in this chapter use the pinhole camera model. As in the

work of Herrera et al. [154], a 3D point in color camera coordinates xc = [xc, yc, zc]
T

is projected to the color image plane pc = [uc, vc]
T as follows:

(1) The point is normalized by the z coordinate: xn = [xn, yn]T = [xc/zc, yc/zc]
T .

1Relevant API can be found at: http://docs.opencv.org/doc/user_guide/ug_highgui.html.
2Since SDK v1.0, the high-res RGB color mode of 1280x1024 was replaced by 1280x960 mode,

which is the mode supported by the official Kinect for Windows hardware.
3For e.g., Matlab wrapper for Libfreenect is available at http://acberg.com/kinect/.

88

http://docs.opencv.org/doc/user_guide/ug_highgui.html
http://acberg.com/kinect/

(2) Geometric distortion is performed:

xg =

 2k3xnyn + k4(r
2 + 2x2n)

k3(r
2 + 2y2n) + 2k4xnyn

 (5.1)

xck = (1 + k1r
2 + k2r

4 + k5r
6)xn + xg (5.2)

where, r2 = x2n + y2n and kc = [k1, ..., k5] is a vector of the distortion coefficients.

(3) The image coordinates pc are calculated:

pc =

 uc

vc

 =

 fcx 0

0 fcy

 xck

yck

+

 u0c

v0c

 (5.3)

where fc = [fcx, fcy] are focal lengths in x, y axes, respectively, and p0c = [u0c, v0c]

is the principle point.

The raw depth data obtained from the Kinect are 11-bit numbers from 0-2047,

called disparity, expressed in Kinect disparity units (kdu). Conversion from disparity

d to depth zd occurs in two steps:

Distortion correction: The distortion pattern of the depth camera can be cor-

rected using a multiplier image, obtained by measuring reprojection errors of the wall

plane at several distances and then dividing all images by the median values across all

distances to normalize. Herrera et al. [154] determined that the resulting normalized

error medians for each measured disparity fits well to an exponential decay. The dis-

tortion model can be constructed with per-pixel coefficients that decay exponentially

with increasing disparity:

dk = d+Dδ(u, v) · exp(α0 − α1d), (5.4)

where d denotes distorted disparity returned by Kinect, Dδ denotes spatial distortion

pattern, and α = [α0, α1] models decay of the distortion effect.

89

Scaled inverse: There are several equations we can use to estimate depth values

[168] from disparity, of which the most commonly used is

zd =
1

c1dk + c0
, (5.5)

where c0 and c1 are depth camera intrinsic parameters to be calibrated and dk is the

corrected disparity.

Transformation between depth camera coordinates xd = [xd, yd, zd]
T and depth

image coordinates pd = [ud, vd]
T uses a similar model to the color camera:

pd =

 ud

vd

 =

 fdx 0

0 fdy

 xdk

ydk

+

 u0d

v0d

 (5.6)

where [xdk, ydk]
T are the coordinates of xd after normalization of geometric distortion.

As does Herrera et al. [154], we denote the model consisting of Equations (5.1)-

(5.3) as Lc = {fc, p0c, kc} for the color camera. Similarly, we use Ld = {fd, p0d, kd, c0, c1, Dδ, α}

to denote the intrinsic parameters of the depth camera.

To perform Kinect calibration, correspondences between color and depth cam-

eras frames are found and used to estimate sensor extrinsic parameters and relative

poses. We use three reference frames, {D} (depth), {C} (color) and {Vi} (reference

frame of the calibration plane in image i to which the checkerboard pattern is at-

tached). We denote the rigid transformation from one reference frame to another as

T = {R, t} (as specified by Herrera et al. [154]), where R indicates the rotation matrix

and t indicates the translation vector. To transform a point xw from calibration pat-

tern coordinates {W} to color camera coordinates {C}, we use xc = WRCxw + W tC ,

where the rotation and translation from {W} to {C} are denoted WRC and W tC ,

respectively. Similarly, the relative pose between depth and color cameras is denoted

DTC . For image i, ViTD and ViTC denote extrinsics from the reference frame to depth

and color frames.

90

(a) RGB image (b) IR image

Figure 5.1: Burrus method: corner detection in RGB and IR images.

In this chapter, we associate depth camera with IR camera, where dispar-

ity/depth/IR data are all calculated based on the same intrinsic depth parameters

and thus in the same world coordinates. Furthermore, image coordinates of dispar-

ity and depth are treated same whereas IR image coordinates can be calculated by

using a simple affine transformation from depth image coordinates (using for e.g.

Equation (5.7)).

5.3.1 Burrus’s Method

Kinect depth data is calculated by triangulation against known IR projection

patterns at a known depth [169]. As we can see in Fig. 5.1, only close-range objects

are visible, so the checkerboard must be placed near the camera. Burrus’s method

[157] uses IR images and is more user-friendly, since it requires no manual labeling.

However, it ignores depth distortion and results in relatively low calibration perfor-

mance.

91

The IR points are first shifted to disparity image coordinates by applying an

affine transformation (see [169] for details): dx

dy

 =

 1 0 −4.8s

0 1 −3.9s

uir

vir

1

 (5.7)

where, [uir, vir]
T denotes IR coordinates and [dx, dy]

T denotes disparity coordinates.

Factor s is set to 2 for high resolution (1280×1024) and 1 for low resolution (640×512)

images.

Corners are then extracted from the RGB and IR images. Using a similar

notation to Herrera et al., intrinsics Lc = {fc, p0c, kc} and Ld = {fd, p0d, kd} are

estimated for the RGB and IR camera, respectively. After stereo calibration between

RGB and IR correspondences is applied using Lc and Ld, the relative pose between

IR camera and RGB camera (DTC = {DRC,
DtC}) and the fundamental matrix F

are computed. Thus, calibration can be evaluated by computing alternatively the

corresponding epilines with F using RGB and depth points. As Burrus’s method

ignores depth distortion and uses one-step stereo calibration to coarsely estimate the

extrinsics between RGB and IR cameras, the approach leads to lower performance

compared to Herrera’s method, due to the coarser refinement of both intrinsic and

extrinsic parameters.

5.3.2 Smisek’s Method

Smisek et al. [156] proposed a method that also calibrates with IR images

whereas c0, c1 were calibrated with depth images. The procedure of Smisek’s and

Burrus’s method are the same at first (i.e. estimate Lc,Ld by showing the same

92

Figure 5.2: Undistortion map visualized by data learned from Herrera’s method. Less
intense pixels indicate higher values needed to compensate the depth distortion. The
horizontal null band of 8 columns on right-most side of image is caused by a 9 x
9 correlation window used by Kinect to compare the local pattern with memorized
pattern in order to estimate disparities from IR image [169].

calibration target to both IR and color cameras) except using a slightly different

affine transformation: dx

dy

 =

 1 0 −3.0s

0 1 −2.9s

uir

vir

1

 (5.8)

The shifting offset of (3.0, 2.9) was estimated as the mean value over all four

experiments the authors did by calculating misalignment offset in same IR and depth

image. After obtaining intrinsics of both cameras, DTC was estimated similarly by a

stereo calibration [170]. Instead of fixing c0 = 3.3309495161 and c1 = −0.0030711016

as in Burrus’s method, however, Smisek et al. calibrated c0, c1 by optimizing them

according to

min
c0,c1

∑
images

∑
u,v

∣∣∣d̂k − dk∣∣∣
2

(5.9)

As shown above, dk denotes measured disparity point within calibration plane,

d̂k denotes disparity data reconstructed by the best plane fit in IR coordinates (see

Appendices for details).

93

Some other contributions should be noted in Smisek’s work: first, they found

that by blocking the IR projector and illuminating the target with a halogen lamp, a

much more clear IR image can be obtained which makes it easier for corner detector

to extract corners in IR images. Second, they have observed by fitting a planar target

spanning the field of view and by measuring the errors with ground truth distances

that small and complex error residuals still exist which varies over distances. As

what has been explained early in this chapter, such pattern of residuals is often called

depth distortion (see Fig. 5.2). Furthermore, in order to compensate the residual

error, they formed a z-correction image (i.e., Dδ) by taking mean of all 18 residual

images captured from 0.7 to 1.3 meters. However, the relationship between Dδ and

disparity like the one shown in Equation (5.4) was not discovered in Smisek’s work.

5.3.3 Herrera’s Method

Herrera’s method [154] can be divided into two parts: (1) Initialization. (2)

Non-linear minimization. The first part involves initializations for three cameras:

color camera, depth camera and external camera. Since we are reviewing calibration

methods with Kinect only, all content related to external camera in [154] is removed

from this chapter. In Herrera’s work, Zhang’s method [160] is utilized to estimate

Lc and WiTC for each image i. The depth camera is then initialized by fixing fd =

[590, 590], p0d = [320, 230], [c0, c1] = [3.0938,−0.0028] and α = [1, 1], while assigning

0’s to fd and Dδ. As non-linear minimization will be applied later on, the relative pose

is also initialized with estimation values: DTC = {DRC = I3,
DtC = [−0.025, 0, 0]T}.

As for the second part, non-linear minimization involves: (1) Sample from dis-

parity images; (2) Refine Ld and DTC ; (3) Keep Dδ constant and optimize Equation

(5.11); (4) Refine Dδ and kd independently; (5) Joint minimization by continuing step

(3) and (4) iteratively until certain criterion has been met.

94

The initialization gives a rough estimate of the depth camera parameters and

relative pose, whereas the parameters have fairly good initial values for the color

camera. Thus, step (2) in non-linear minimization optimizes only Ld and DTC with

all other parameters fixed.

The non-linear minimization relies on using Levenberg-Marquardt algorithm

over all related parameters, whereas the cost error is calculated using Euclidean dis-

tance. Because the errors have different units, they are weighted by the inverse of the

corresponding measurement variance, σ2
C and σ2

D, before calibration:

c =

∑
‖p̂c − pc‖2

σ2
C

+

∑
(d̂− d)

2

σ2
D

, (5.10)

where p̂c and d̂ indicate the reprojected value for color image point pc and measured

disparity d, respectively. Since the above function has high nonlinearity and depends

on many parameters (for instance, computing d̂k − dk requires Dδ which contains

640 × 480 = 307, 200 entries), the authors simplify the cost function by separating

the optimization of disparity distortion parameters, i.e. by calculating the residuals

in undistorted disparity space instead of in measured disparity space:

c =

∑
‖p̂c − pc‖2

σ2
C

+

∑
(d̂k − dk)

2

σ2
D

. (5.11)

Using equation (5.4), residuals in undistorted disparity space can be rewritten

as

cd =
∑

images

ss
∑
u,v

(d+Dδ(u, v) · exp(α0 − α1d)− d̂k)
2
. (5.12)

It should be noted that Herrera’s method requires users to manually select

corner points of the calibration plane in disparity images in order to estimate the plane

equation and predict disparities. Though the procedure looks tedious , it allows for

non-minimization in disparity space where raw data were captured, therefore leading

to higher accuracy compared to Burrus’s method. Burrus’s calibration uses near-

range IR data and ignores depth points that can be gathered at various distances,

95

thus missing information on memorized patterns that have been embedded in Kinect.

Since Kinect is a closed system, it is just a deduction from the postulates.

5.3.4 Teichman’s Method

The unsupervised calibration method of Teichman et al. [153] employs SLAM

to capture the camera trajectory and build a map of the environment. After the point

cloud map is created, the depth points are then undistorted by adding a Gaussian

noise:

P (z|zd, w) = η exp

(
− (z − wzd)

2δ

)
(5.13)

where w denotes per-pixel multiplier in undistortion map, zd and z denote measured

depth and ground truth depth, respectively. Therefore, in sense of maximum likeli-

hood estimation, Teichman’s method optimized Dδ using

max
w

∏
zd∈map

P(z|zd, w) (5.14)

which can be reduced to

min
w

∏
zd∈map

(z − wzd)2 (5.15)

So far, Teichman’s method calibrates only the distortion pattern without con-

sidering relative pose between color camera and depth camera, as well as the depth

geometric distortion. As shown in Fig. 5.4, undistortion map obtained using Techi-

man’s method exhibits similar pattern with Fig. 5.2.

Though proposed as a pioneering work, we have discovered that when using

Teichman’s method it is difficult to capture enough samples at all parts of the view

frustum, because a sufficient number of training examples at far distances (6m to

10m) is guaranteed only if the scene consists of a planar surface that is long and wide

enough.

96

Figure 5.3: Example pointcloud of environment recorded using Techiman’s method.

We have discovered that it is difficult to capture enough training data at all

parts of the view frustum, because a sufficient number of samples on corners and

edges at far distances (6m to 10m) are guaranteed only if the scene consists of a

planar surface that is long and wide enough. In addition, it is unavoidable to repeat

the procedure of running SLAM and calibration for many times, in order to obtain

point clouds with adequate coverage of environment.

5.4 Evaluation

To examine Herrera’s method using disparity images, four datasets were cap-

tured: two for calibration (A1, A2) and two for validation (B1, B2). A1 and B1

consist of 51 and 61 images respectively and both of B1, B2 consist of 15 images. In

order to capture the original disparity data, we used the Libfreenect [168] driver. The

97

Figure 5.4: Undistortion map visualized by data learned from Teichman’s method.
Full red indicates multiplier of 1.1, full blue of 0.9 and full white of 1.0. Similar to
Fig. 5.2, lower values indicate the data need to be pulled closer to the sensor and
thus considered more unstable according to myopic property. Null band is removed
intentionally from this image.

(a) Frontal view (b) Around X coordinate

(c) Around Y coordinate (d) Miscellaneous pose

Figure 5.5: Examples of dataset used in our evaluation.

98

RGB data measured in our experiments are in medium resolution (640× 480) as well

as high resolution (1280 × 1024), both were paired with 640 × 480 disparity images.

All four datasets were captured with the same Kinect, among which A1 and B1 are in

medium resolution, A2 and B2 are in high resolution. Details are given in Table 5.2.

``````````````̀Description
Dataset

A1 A2 B1 B2

color resolution medium high medium high
# total poses 51 60 15 15
# frontal view 9 10 4 3

# around X coordinate 12 10 3 4
# around Y coordinate 9 10 3 4

# misc. poses 6 15 5 4
# wall images 15 15 0 0

Table 5.2: Description of all four datasets A1, A2, B1 and B2, where A1 and A2 are
used for calibration methods using disparity images.

For Burrus’s method, we captured an IR image dataset named A3 that consists

of 56 images for evaluation. Since the visible range for capturing IR images is limited,

the dataset was created by changing the distances slightly given multiple poses of the

calibration target.

For Teichman’s method, taking sufficient training examples at all depths (from

0m to 10m) over all areas of the image frame is difficult, and we have only been

able to capture a sufficient number of training examples from 0m to 4m. Since we

evaluate Teichman’s work with respect to depth uncertainty in both A1 and A2,

where maximum depths are less than 2.5m and 3m respectively, the performance is

therefore guaranteed with full capacity when evaluated in A1 and A2.

In this chapter, validation of Herrera’s method follows its original work[154]:

After estimating all calibration parameters, validation is performed by fixing intrinsic

parameters and estimating the poses of the checkerboard plane (WTC). The variances

99



Ld learned A1 error↓ A2 error↓
fd, p0d 1.75 — 2.14 —
fd, p0d, α 1.75 0.00 2.14 0.00
fd, p0d, α, c0, c1 1.73 0.02 2.13 0.01
fd, p0d, α, c0, c1, kd 1.69 0.04 1.98 0.15
fd, p0d, α, c0, c1, kd, Dδ 1.08 0.61 1.20 0.78

Table 5.3: Different parameters learned from Herrera’s method with corresponding
calibration error in A1 and A2. Errors are measured by std. dev. of residuals for
reprojected disparities with a 99% confidence interval.

of color and disparity error were kept constant (σc = 0.18px, σd = 0.9kdu) so that we

can compare different calibrations in an unbiased manner (see Equation (5.11)).

5.4.1 Calibration error vs. parameters learned

Table 5.3 presents how calibration error decreases as more parameters are

learned in Herrera’s calibration method. We have found the largest amount of de-

crease of calibration error after considering depth distortionDδ, and the second largest

one resulted from adding depth geometric distortion kd, meaning that both parame-

ters, especially Dδ, are deterministic in fitting the model to training examples. For

those parameters not learned during calibration, they were initialized as follows:

α =

[
1 1

]
(c0, c1) =

[
3.3309495161 −0.0030711016

]
kd =

[
0 0 0 0 0

]
Dδ = 0480×640

Note that as suggested by [171], we will calibrate Ld = {fd, p0d, α, kd, Dδ} in the

next two experiments meaning that (c0, c1) will be fixed at c0 = 3.3309495161 and

c1 = −0.0030711016 respectively.

100



10 20 30 40 50

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

A1

 

 
Minimal calibration error

Fitted: Minimal calibration error

(a) Minimal calibration error

10 20 30 40 50

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

A1

 

 
Average calibration error

Fitted: Average calibration error

(b) Average calibration error

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

A2

 

 
Minimal calibration error

Fitted: Minimal calibration error

(c) Minimal calibration error

10 20 30 40 50 60

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

A2

 

 
Average calibration error

Fitted: Average calibration error

(d) Average calibration error

Figure 5.6: Calibration error of Herrera’s method on A1 and A2 in random tests:
with corrections of both geometric distortion and depth distortion.

5.4.2 Calibration performance vs. number of images

In this experiment, we randomly selected n images 10 times from both A1 and

A2 (where 10 6 n 6 51 in A1 and 10 6 n 6 60 in A2), and then calculated the

calibration error based on disparity reprojection error by std. deviations of residuals

with a 99% confidence interval [154]. Validations were then performed in the same

manner using the corresponding validation dataset (i.e. from A1 to B1, from A2

to B2). For reference, Fig. 5.6 shows how well Herrera’s method fit the calibration

datasets with random tests. As we can see from Fig. 5.6, the calibration error increases

with the increasing number of images, due to the additional uncertain depth points

that are added to the calibration set.

101



Fig. 5.7 shows the calibration performance of Herrera’s method on B1 and B2.

The performance on datasets of medium resolution color images (A1 & B1) proved to

be better than on those of high resolution color images (A2 & B2). The performance

becomes stable in both B1 and B2 as the number of images increases. For both vali-

dations, the best performance can be obtained with extensive experiments, which in

our case n is around 12. Nevertheless, in order to achieve a stable and satisfactory

performance for one-time calibration, users of Herrera’s method are suggested to cal-

ibrate with 50 images in standard resolution while with 60 images in high resolution.

Besides, as the distributions of poses in training sets are almost identical, however, in

most of tests the average calibration performance of A1 are better than A2 showing

that the higher resolution color images used in Herrera’s method do not necessarily

improve calibration performance. The results of one-way An Analysis of Variance

(ANOVA) test (p = 0.1297 for B1 and p < 0.0001 for B2) indicate that when using

medium-resolution dataset, the random tests suggest a common mean with increas-

ing number of images, while using high-resolution dataset, the mean of random test

results differ given different number of images. This is because more details were cap-

tured in high-resolution dataset and thus calibration procedure is more vulnerable to

different sources of noise.

Also, as shown in Fig. 5.6, low calibration errors do not necessarily result in

higher calibration performance on validation datasets, especially after calibrating with

those images consisting of data of high variance. Most random tests in A1 have

average calibration error std. dev. ≥ 1, however, all of them have test results where

std. dev. ≤ 0.9. Conclusively, it is not fair to predict the calibration performance

merely based on calibration error. When using Herrera’s methods, it should be noted

that some restrictions apply during calibration:

102



10 20 30 40 50

0.8

0.85

0.9

0.95

1

1.05

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

Performance in random tests

 

 
Best performance

Fitted: Best performance

Average performance

Fitted: Average performance

(a) Validation of A1 in B1

10 20 30 40 50 60

0.8

0.85

0.9

0.95

1

1.05

Number of calibration images

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

Performance in random tests

 

 
Best performance

Fitted: Best performance

Average performance

Fitted: Average performance

(b) Validation of A2 in B2

Figure 5.7: Performance of Herrera’s method on B1 and B2 after calibration with
A1 and A2 in random tests: with corrections of both geometric distortion and depth
distortion.

0.85

0.9

0.95

1

10 20 30 40 50
Number of calibration images

Performance in random tests

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

(a) Validation of A1 in B1

0.8

0.9

1

1.1

1.2

1.3

10 20 30 40 50 60
Number of calibration images

Performance in random tests

s
td

. 
d

e
v
. 

o
f 

d
is

p
a

ri
ty

 e
rr

o
r 

(k
d

u
)

(b) Validation of A2 in B2

Figure 5.8: Boxplot of performance of Herrera’s method based on Fig. 5.7.

(1) Image of checkerboard should be attached to a plane big enough. Though you

don’t have to find a calibration plane which fills the whole space, it is suggested

to use a plane four times larger than the checkerboard image. Small calibration

plane will lead to unacceptable calibration result due to insufficient depth points

sampled and higher chances of sampling more noise.

(2) Users are required to follow Table. 5.2 to take images with various poses as it will

aid to get better calibration performance.

103



5.4.3 Depth uncertainty

Since stereo devices like Kinect are exposed to the problem of myopia as afore-

mentioned, we can compare the depth uncertainty of the three methods with the

manufacturer calibration. In Herrera’s method, depth uncertainty was measured in

A1 and A2 with calibration results from the two datasets respectively. As shown in

Fig. 5.9, depth points of A1 are more stable and accurate than those of A2. Herrera’s

method is clearly better than manufacturer calibration, especially at the camera’s

near range (up to 1.5m), in accordance with [154].

Depth uncertainty for Burrus’s method in Fig. 5.9 is presented as a curve that

fits closely to one of the manufacturer calibration. This method shows no improve-

ment over the manufacturer calibration. That being said, depth distortion was not

examined in manufacturer calibration, as it is also ignored in Burrus’s method.

Calibration performance of Teichman’s method is not satisfactory with respect

to depth uncertainty because they merely calibrated Dδ and ignored other important

parameters in Ld = {fd, p0d, kd, c0, c1, Dδ, α}. Note that in this experiment, fd, p0d are

fixed at [590, 590] and [320, 230] respectively, in order to correctly compute the depth

uncertainty.

Table 5.4 shows a quantitative comparison study for all three methods evaluated

in depth uncertainty. Herrera’s method clearly outperforms the other two methods

and the manufacturer calibration though for depths between 1.5m and 3.0m, the

manufacturer calibration can also achieve a satisfactory performance. In addition,

due to lack of parameters considered in the calibration procedure, Teichman’s method

performed worse than other approaches including manufacturer calibration, especially

at depth beyond 1m.

104



0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

35

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A1: Depth uncertainty

 

 
Herrera’s method

Manufacturer calibration

Simulated: σ
d
=0.8

0 1 2 3

0

5

10

15

20

25

30

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A2: Depth uncertainty

 

 
Herrera’s method

Manufacturer calibration

Simulated: σ
d
=0.8

0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A1: Depth uncertainty

 

 
Burrus’s method

Manufacturer calibration

Simulated: σ
d
=0.8

0 1 2 3

0

5

10

15

20

25

30

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A2: Depth uncertainty

 

 
Burrus’s method

Manufacturer calibration

Simulated: σ
d
=0.8

0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

35

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A1: Depth uncertainty

 

 
Teichman’s method

Manufacturer calibration

Simulated: σ
d
=0.8

0 1 2 3

0

5

10

15

20

25

30

35

Depth (m)

E
rr

o
r 

s
td

. 
d

e
v
. 

(m
m

)

A2: Depth uncertainty

 

 
Teichman’s method

Manufacturer calibration

Simulated: σ
d
=0.8

Figure 5.9: All methods: depth uncertainty measured from A1 and A2.

Depth z (m)
0 ≤ z < 0.5 0.5 ≤ z < 1 1 ≤ z < 1.5 1.5 ≤ z < 2 2 ≤ z < 2.5 2.5 ≤ z < 3
A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

Manufacturer 1.47 2.30 4.80 4.24 7.60 6.40 7.44 8.75 10.70 14.48 — 22.98
Burrus’s 1.36 2.10 4.74 4.15 7.31 6.40 7.50 8.90 10.68 15.92 — 23.10
Herrera’s 0.81 0.99 4.24 2.28 5.91 5.20 7.65 8.14 11.24 15.40 — 22.84
Teichman’s 1.73 2.21 5.38 4.60 15.80 15.71 14.17 22.68 13.79 25.73 — 25.81

Table 5.4: Comparison of three different methods evaluated with respect to depth
uncertainty. Depths are divided into bins of size 0.5m. For A1, the maximum depth
is 2.5m while 3.0m for A2. Depth uncertainty are measured in mm and best results
are highlighted in the table.

105



5.5 Conclusion

In this chapter, we have reviewed and presented a quantitative comparative

study of three calibration methods categorized as pioneering work, using different

sources: IR, disparity map, and depth image. We have shown that Herrera’s calibra-

tion method using disparity image outperforms other methods due to more intrinsic

depth parameters exploited. We also present an empirical sample complexity analysis

for Herrera’s method. The unsupervised approach proposed by Teichman et al. is of

great potential since it requires no assumption on calibration target or user interac-

tions. However, the performance of such methods is not as good as supervised ones

since it learns fewer parameters and is more likely to be implicitly constrained in in-

door environment. Future work can combine supervised and unsupervised approach

by adding more constraints in unsupervised fashion.

106



CHAPTER 6

CONCLUSIONS

This thesis aims to develop effective and efficient deep learning based models,

for both object detection and semantic segmentation. We investigate the state-of-the-

art methods in these two fields by testing on large-scale datasets including ImageNet,

MS-COCO, VOC, DETRAC, Cityscapes, etc. We have present, both theoretically

and empirically, different solutions for object detection and semantic segmentation in

order to develop effective and efficient models.

In object detection, we firstly study the empirical receptive fields and provide

the corresponding statistical analyses for a VGG16 network. To apply our findings

of ERFs onto SSD, we further propose a novel network architecture called context-

aware SSD, by integrating contextual information of different levels into the output

of prediction layers of SSD. Our experimental results demonstrated that CSSD not

only outperforms SSD with general large-scale object detection datasets like VOC

and MS-COCO, but also surpassed SSD in task-specific dataset like DETRAC for

surveillance scenario.

In semantic segmentation, we fill the gap in the literature between high-quality

prediction and real-time performance, by proposing ThunderNet–an effective and

efficient network that consists of a minimum backbone, a pyramid pooling module

and a two-level customized decoder. We test ThunderNet on Cityscapes with both

desktop-level machine and GPU-powered embedded system, and demonstrate that

ThunderNet is able to achieve comparable accuracy to a majority of methods currently

available and is extremely fast regarding to the inference speed. Besides, our results

107



on embedded systems indicate that ThunderNet requires much fewer computational

resources, and therefore meeting the industrial demands from the perspective of the

tradeoff between accuracy and runtime speed.

Finally, this thesis also provides a quantitative evaluation of joint calibration

methods for RGB-D sensor. We discuss the practical issues of current methods and

compare, both quantitatively and qualitatively, the benchmarked methods with our

own datasets.

108



REFERENCES

[1] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-

ral networks with pruning, trained quantization and huffman coding,” arXiv

preprint arXiv:1510.00149, 2015.

[2] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and

K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters

and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[3] W. Xiang, D.-Q. Zhang, H. Yu, and V. Athitsos, “Context-aware single-shot

detector,” arXiv preprint arXiv:1707.08682, 2017.

[4] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” arXiv preprint arXiv:1612.03144, 2016.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” arXiv preprint

arXiv:1703.06870, 2017.

[6] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu, “Ac-

curate single stage detector using recurrent rolling convolution,” arXiv preprint

arXiv:1704.05776, 2017.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neu-

ral network architecture for real-time semantic segmentation,” arXiv preprint

arXiv:1606.02147, 2016.

109



[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel, “Backpropagation applied to handwritten zip code recogni-

tion,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[11] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-

feat: Integrated recognition, localization and detection using convolutional net-

works,” arXiv preprint arXiv:1312.6229, 2013.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[13] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Conference

on Computer Vision, 2015, pp. 1440–1448.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-

lutional networks for visual recognition,” Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, vol. 37, no. 9, pp. 1904–1916, 2015.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-

tic segmentation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 3431–3440.

[16] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE transactions on

pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[17] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs,” arXiv preprint arXiv:1606.00915, 2016.

110



[18] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2014, pp. 1653–1660.

[19] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, “Light-head r-cnn: In

defense of two-stage object detector,” arXiv preprint arXiv:1711.07264, 2017.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.

211–252, 2015.

[21] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[22] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks in

unsupervised feature learning,” Ann Arbor, vol. 1001, no. 48109, p. 2, 2010.

[23] R. Benenson, “What is the class of this image? discover the current

state of the art in objects classification,” 2016, [accessed 22-Feb-

2016]. [Online]. Available: http://rodrigob.github.io/are we there yet/build/

classification datasets results.html

[24] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071, 2014.

[25] A. Karpathy, “Lessons learned from manually classifying cifar-10,” 2011,

[accessed Apr-2011]. [Online]. Available: http://karpathy.github.io/2011/04/

27/manually-classifying-cifar10/

[26] ——, “What i learned from competing against a convnet on imagenet,” 2014,

[accessed Feb-2015]. [Online]. Available: http://karpathy.github.io/2014/09/

02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

[27] A. Ray, “What is the state-of-the-art today on imagenet clas-

sification?” 2016, [accessed Jul-2016]. [Online]. Available:

111

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


https://www.quora.com/What-is-the-state-of-the-art-today-on-ImageNet-

classification-In-other-words-has-anybody-beaten-Deep-Residual-Learning

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” in Advances in Neural Information

Processing Systems, 2015, pp. 91–99.

[30] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,

“Ssd: Single shot multibox detector,” in European Conference on Computer

Vision. Springer, 2016, pp. 21–37.

[31] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”

in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017,

pp. 2881–2890.

[32] C. Gulcehre, “Deep learning — software links,” 2016, [accessed 23-Aug-2017].

[Online]. Available: http://deeplearning.net/software links/

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-

bedding,” arXiv preprint arXiv:1408.5093, 2014.

[34] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev,

Y. Zhang, F. Seide, H. Wang, et al., “An introduction to computational net-

works and the computational network toolkit,” Technical report, Tech. Rep.

MSR, Microsoft Research, 2014, 2014. research. microsoft. com/apps/pubs,

Tech. Rep., 2014.

112

https://www.quora.com/What-is-the-state-of-the-art-today-on-ImageNet-classification-In-other-words-has-anybody-beaten-Deep-Residual-Learning
https://www.quora.com/What-is-the-state-of-the-art-today-on-ImageNet-classification-In-other-words-has-anybody-beaten-Deep-Residual-Learning
http://deeplearning.net/software_links/


[35] Theano Development Team, “Theano: A Python framework for fast

computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,

May 2016. [Online]. Available: http://arxiv.org/abs/1605.02688

[36] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like envi-

ronment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,

and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous

systems,” 2015, software available from tensorflow.org. [Online]. Available:

http://tensorflow.org/

[38] B. Vision and L. Center, “platoon,” 2017, [accessed Oct-2017]. [Online].

Available: https://github.com/BVLC/caffe/wiki/Model-Zoo

[39] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in neural information processing systems, 2014,

pp. 3104–3112.

[40] M. I. for Learning Algorithms, “platoon,” 2015, [accessed Sep-2017]. [Online].

Available: https://github.com/mila-udem/platoon

[41] E. Research, “Recurrent neural network library for torch7’s nn,” 2016, [accessed

Nov-2016]. [Online]. Available: https://github.com/Element-Research/rnn

[42] P. Bhatia, “Neural conversation models,” 2016, [accessed Mar-2017]. [Online].

Available: https://github.com/pbhatia243/Neural Conversation Models

113

http://arxiv.org/abs/1605.02688
http://tensorflow.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/mila-udem/platoon
https://github.com/Element-Research/rnn
https://github.com/pbhatia243/Neural_Conversation_Models


[43] T. official tutorial, “Loop,” 2017, [accessed Nov-2017]. [Online]. Available:

http://deeplearning.net/software/theano/tutorial/loop.html

[44] Wikipedia, “Comparison of deep learning software,” 2016, [accessed 27-Jul-

2016]. [Online]. Available: https://en.wikipedia.org/wiki/Comparison of deep

learning software

[45] K. Tran, “Evaluation of deep learning toolkits,” 2016, [accessed May-2016].

[Online]. Available: https://github.com/zer0n/deepframeworks

[46] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,

and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[47] Baidu, “Paddlepaddle,” 2017, [accessed Mar-2018]. [Online]. Available:

https://github.com/PaddlePaddle/Paddle

[48] Tecent, “ncnn,” 2017, [accessed Mar-2018]. [Online]. Available: https:

//github.com/Tencent/ncnn

[49] S. Mohammed, “Explaining fp64 performance on gpus,” 2015, [accessed 22-Jun-

2015]. [Online]. Available: http://arrayfire.com/explaining-fp64-performance-

on-gpus/

[50] T. Dettmers, “How to parallelize deep learning on gpus part 1/2:

Data parallelism,” 2014, [accessed 09-Oct-2014]. [Online]. Available: http:

//timdettmers.com/2014/10/09/deep-learning-data-parallelism/

[51] T. O. Tutorials, “Convolutional neural networks,” 2018, [accessed Jan-2018].

[Online]. Available: https://www.tensorflow.org/tutorials/deep cnn

[52] T. Dettmers, “How to parallelize deep learning on gpus part 2/2:

Model parallelism,” 2014, [accessed 09-Nov-2014]. [Online]. Available:

http://timdettmers.com/2014/11/09/model-parallelism-deep-learning/

114

http://deeplearning.net/software/theano/tutorial/loop.html
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
https://github.com/zer0n/deepframeworks
https://github.com/PaddlePaddle/Paddle
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
http://arrayfire.com/explaining-fp64-performance-on-gpus/
http://arrayfire.com/explaining-fp64-performance-on-gpus/
http://timdettmers.com/2014/10/09/deep-learning-data-parallelism/
http://timdettmers.com/2014/10/09/deep-learning-data-parallelism/
https://www.tensorflow.org/tutorials/deep_cnn
http://timdettmers.com/2014/11/09/model-parallelism-deep-learning/


[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2015, pp. 1–9.

[54] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint

arXiv:1312.4400, 2013.

[55] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[56] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Net-

works, vol. 61, pp. 85–117, 2015.

[57] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances in

neural information processing systems, 2014, pp. 2654–2662.

[58] K. Sohn and H. Lee, “Learning invariant representations with local transforma-

tions,” arXiv preprint arXiv:1206.6418, 2012.

[59] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 8, pp.

1872–1886, 2013.

[60] A. Kanazawa, A. Sharma, and D. Jacobs, “Locally scale-invariant convolutional

neural networks,” arXiv preprint arXiv:1412.5104, 2014.

[61] M. F. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber, “Deep networks

with internal selective attention through feedback connections,” in Advances in

Neural Information Processing Systems, 2014, pp. 3545–3553.

[62] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer net-

works,” in Advances in Neural Information Processing Systems, 2015, pp. 2008–

2016.

115



[63] K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Ben-

gio, “Show, attend and tell: Neural image caption generation with visual at-

tention,” arXiv preprint arXiv:1502.03044, 2015.

[64] S. Dieleman, J. De Fauw, and K. Kavukcuoglu, “Exploiting cyclic symmetry in

convolutional neural networks,” arXiv preprint arXiv:1602.02660, 2016.

[65] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections

for efficient neural network,” in Advances in Neural Information Processing

Systems, 2015, pp. 1135–1143.

[66] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,

“Eie: efficient inference engine on compressed deep neural network,” arXiv

preprint arXiv:1602.01528, 2016.

[67] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Ima-

genet classification using binary convolutional neural networks,” arXiv preprint

arXiv:1603.05279, 2016.

[68] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients,” arXiv

preprint arXiv:1606.06160, 2016.

[69] AI2, “Xnor-net,” 2016, [accessed Dec-2017]. [Online]. Available: https:

//github.com/mrastegari/XNOR-Net

[70] Y. Wu, “Dorefa-net,” 2016, [accessed Mar-2018]. [Online]. Available: https:

//github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-Net

[71] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves, “Memory-

efficient backpropagation through time,” arXiv preprint arXiv:1606.03401,

2016.

[72] Y. N. Dauphin and Y. Bengio, “Big neural networks waste capacity,” arXiv

preprint arXiv:1301.3583, 2013.

116

https://github.com/mrastegari/XNOR-Net
https://github.com/mrastegari/XNOR-Net
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-Net
https://github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-Net


[73] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

“Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550, 2014.

[74] L. Y. Pratt, Comparing biases for minimal network construction with back-

propagation. Morgan Kaufmann Pub, 1989, vol. 1.

[75] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel, “Optimal

brain damage.” in NIPs, vol. 2, 1989, pp. 598–605.

[76] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Op-

timal brain surgeon. Morgan Kaufmann, 1993.

[77] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural

networks with low rank expansions,” arXiv preprint arXiv:1405.3866, 2014.

[78] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploit-

ing linear structure within convolutional networks for efficient evaluation,” in

Advances in Neural Information Processing Systems, 2014, pp. 1269–1277.

[79] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing

neural networks with the hashing trick,” CoRR, abs/1504.04788, 2015.

[80] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[81] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the

impact of residual connections on learning,” arXiv preprint arXiv:1602.07261,

2016.

[82] K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015, pp. 5353–5360.

[83] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”

arXiv preprint, 2016.

117



[84] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient con-

volutional neural network for mobile devices,” arXiv preprint arXiv:1707.01083,

2017.

[85] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[86] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Inverted

residuals and linear bottlenecks: Mobile networks for classification, detection

and segmentation,” arXiv preprint arXiv:1801.04381, 2018.

[87] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional

networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[88] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep con-

volutional neural networks for object recognition,” in 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015,

pp. 1131–1135.

[89] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks with

few multiplications,” arXiv preprint arXiv:1510.03009, 2015.

[90] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural

networks on cpus,” in Proc. Deep Learning and Unsupervised Feature Learning

NIPS Workshop, vol. 1. Citeseer, 2011, p. 4.

[91] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network design

using weights+ 1, 0, and- 1,” in 2014 IEEE Workshop on Signal Processing

Systems (SiPS). IEEE, 2014, pp. 1–6.

[92] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep

neural networks with binary weights during propagations,” in Advances in Neu-

ral Information Processing Systems, 2015, pp. 3123–3131.

118



[93] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural net-

works with weights and activations constrained to+ 1 or-1,” arXiv preprint

arXiv:1602.02830, 2016.

[94] D. Soudry, I. Hubara, and R. Meir, “Expectation backpropagation: Parameter-

free training of multilayer neural networks with continuous or discrete weights,”

in Advances in Neural Information Processing Systems, 2014, pp. 963–971.

[95] J. M. Hernández-Lobato and R. P. Adams, “Probabilistic backpropaga-

tion for scalable learning of bayesian neural networks,” arXiv preprint

arXiv:1502.05336, 2015.

[96] Stanford, “Cs231n course materials,” 2016, [accessed Nov-2017]. [Online].

Available: http://cs231n.github.io/convolutional-networks

[97] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[98] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of

neural networks using dropconnect,” in Proceedings of the 30th International

Conference on Machine Learning (ICML-13), 2013, pp. 1058–1066.

[99] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[100] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-

tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[101] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors

emerge in deep scene cnns,” International Conference on Learning Representa-

tions, 2015.

119

http://cs231n.github.io/convolutional-networks


[102] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive

field in deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 2016, pp. 4898–4906.

[103] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International journal of computer

vision, vol. 88, no. 2, pp. 303–338, 2010.

[104] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

Conference on Computer Vision. Springer, 2014, pp. 740–755.

[105] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi, J. Lim, M. Yang, and S. Lyu,

“DETRAC: A new benchmark and protocol for multi-object detection and

tracking,” arXiv CoRR, vol. abs/1511.04136, 2015.

[106] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for

object detection,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 36, no. 8, pp. 1532–1545, 2014.

[107] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective

search for object recognition,” International journal of computer vision, vol.

104, no. 2, pp. 154–171, 2013.

[108] S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala,

and P. Dollár, “A multipath network for object detection,” arXiv preprint

arXiv:1604.02135, 2016.

[109] Y. Li, K. He, J. Sun, et al., “R-fcn: Object detection via region-based fully con-

volutional networks,” in Advances in Neural Information Processing Systems,

2016, pp. 379–387.

120



[110] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?

the kitti vision benchmark suite,” in Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 3354–3361.

[111] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 779–788.

[112] P. Hu and D. Ramanan, “Finding tiny faces,” arXiv preprint arXiv:1612.04402,

2016.

[113] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint

arXiv:1612.08242, 2016.

[114] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional

single shot detector,” arXiv preprint arXiv:1701.06659, 2017.

[115] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo

matching,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 5695–5703.

[116] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.

Berg, “SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[Online]. Available: http://arxiv.org/abs/1512.02325

[117] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

segmentation,” in Proceedings of the IEEE International Conference on Com-

puter Vision, 2015, pp. 1520–1528.

[118] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015.

[119] D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in object detec-

tors,” in European conference on computer vision. Springer, 2012, pp. 340–353.

121

http://arxiv.org/abs/1512.02325


[120] S. Bell, C. Lawrence Zitnick, K. Bala, and R. Girshick, “Inside-outside net:

Detecting objects in context with skip pooling and recurrent neural networks,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2016, pp. 2874–2883.

[121] M. Holschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian, “A

real-time algorithm for signal analysis with the help of the wavelet transform,”

in Wavelets. Springer, 1990, pp. 286–297.

[122] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and

E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint

arXiv:1410.0759, 2014.

[123] L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total scene understanding: Clas-

sification, annotation and segmentation in an automatic framework,” in Com-

puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.

IEEE, 2009, pp. 2036–2043.

[124] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural scenes and

natural language with recursive neural networks,” in Proceedings of the 28th

international conference on machine learning (ICML-11), 2011, pp. 129–136.

[125] A. Mallya and S. Lazebnik, “Learning models for actions and person-object

interactions with transfer to question answering,” in European Conference on

Computer Vision. Springer, 2016, pp. 414–428.

[126] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

segmentation,” in Proceedings of the IEEE International Conference on Com-

puter Vision, 2015, pp. 1520–1528.

[127] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015.

122



[128] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise training of

deep structured models for semantic segmentation,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 3194–3203.

[129] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban

scene understanding,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 3213–3223.

[130] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-

volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,

2017.

[131] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann,

P. Schuberth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich, et al., “Speed-

ing up semantic segmentation for autonomous driving,” in MLITS, NIPS Work-

shop, 2016.

[132] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic seg-

mentation on high-resolution images,” arXiv preprint arXiv:1704.08545, 2017.

[133] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Efficient

residual factorized convnet for real-time semantic segmentation,” IEEE Trans-

actions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263–272, 2018.

[134] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[135] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recog-

nition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.

211–252, 2015.

123



[136] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” in International Conference on Medical image

computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

[137] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters–improve

semantic segmentation by global convolutional network,” arXiv preprint

arXiv:1703.02719, 2017.

[138] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cot-

trell, “Understanding convolution for semantic segmentation,” arXiv preprint

arXiv:1702.08502, 2017.

[139] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-

decoder with atrous separable convolution for semantic image segmentation,”

arXiv preprint arXiv:1802.02611, 2018.

[140] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” in CVPR, vol. 1, no. 2, 2017, p. 4.

[141] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

“Semantic image segmentation with deep convolutional nets and fully connected

crfs,” in ICLR, 2015. [Online]. Available: http://arxiv.org/abs/1412.7062

[142] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement

networks for high-resolution semantic segmentation,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[143] K.-H. Kim, S. Hong, B. Roh, Y. Cheon, and M. Park, “Pvanet: deep but

lightweight neural networks for real-time object detection,” arXiv preprint

arXiv:1608.08021, 2016.

[144] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

124

http://arxiv.org/abs/1412.7062


[145] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,

C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural

networks,” in Proceedings of the IEEE International Conference on Computer

Vision, 2015, pp. 1529–1537.

[146] T. Saemann, “Enet,” 2017, [accessed Jul-2017]. [Online]. Available:

https://github.com/TimoSaemann/ENet

[147] W. Xiang, C. Conly, C. D. McMurrough, and V. Athitsos, “A review and quan-

titative comparison of methods for kinect calibration,” in Proceedings of the 2nd

international Workshop on Sensor-based Activity Recognition and Interaction.

ACM, 2015, p. 3.

[148] O. Patsadu, C. Nukoolkit, and B. Watanapa, “Human gesture recognition using

kinect camera,” in Computer Science and Software Engineering (JCSSE), 2012

International Joint Conference on. IEEE, 2012, pp. 28–32.

[149] Z. Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust part-based hand gesture

recognition using kinect sensor,” Multimedia, IEEE Transactions on, vol. 15,

no. 5, pp. 1110–1120, 2013.

[150] Q. Cai, D. Gallup, C. Zhang, and Z. Zhang, “3d deformable face tracking with a

commodity depth camera,” in Computer Vision–ECCV 2010. Springer, 2010,

pp. 229–242.

[151] S. Nathan, H. Derek, K. Pushmeet, and F. Rob, “Indoor segmentation and

support inference from rgbd images,” in ECCV, 2012.

[152] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using

kinect-style depth cameras for dense 3d modeling of indoor environments,” The

International Journal of Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.

[153] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic calibration of

depth sensors via slam.” in Robotics: Science and Systems, 2013.

125

https://github.com/TimoSaemann/ENet


[154] C. Herrera, J. Kannala, J. Heikkilä, et al., “Joint depth and color camera cali-

bration with distortion correction,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 34, no. 10, pp. 2058–2064, 2012.

[155] B. Jin, H. Lei, and W. Geng, “Accurate intrinsic calibration of depth camera

with cuboids,” in Computer Vision–ECCV 2014. Springer, 2014, pp. 788–803.

[156] J. Smisek, M. Jancosek, and T. Pajdla, “3d with kinect,” in Consumer Depth

Cameras for Computer Vision. Springer, 2013, pp. 3–25.

[157] N. Burrus, “Rgbdemo,” June 2013, http://rgbdemo.org/.

[158] C. Zhang and Z. Zhang, “Calibration between depth and color sensors for com-

modity depth cameras,” in Multimedia and Expo (ICME), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 1–6.

[159] W. Liu, Y. Fan, Z. Zhong, and T. Lei, “A new method for calibrating depth and

color camera pair based on kinect,” in Audio, Language and Image Processing

(ICALIP), 2012 International Conference on. IEEE, 2012, pp. 212–217.

[160] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown ori-

entations,” in Computer Vision, 1999. The Proceedings of the Seventh IEEE

International Conference on, vol. 1. IEEE, 1999, pp. 666–673.

[161] I. V. Mikhelson, P. G. Lee, A. V. Sahakian, Y. Wu, and A. K. Katsaggelos,

“Automatic, fast, online calibration between depth and color cameras,” Journal

of Visual Communication and Image Representation, vol. 25, no. 1, pp. 218–226,

2014.

[162] C. Raposo, J. P. Barreto, and U. Nunes, “Fast and accurate calibration of

a kinect sensor,” in 3D Vision-3DV 2013, 2013 International Conference on.

IEEE, 2013, pp. 342–349.

126

http://rgbdemo.org/


[163] A. Staranowicz, G. R. Brown, F. Morbidi, and G. L. Mariottini, “Easy-to-use

and accurate calibration of rgb-d cameras from spheres,” in Image and Video

Technology. Springer, 2014, pp. 265–278.

[164] A. Canessa, M. Chessa, A. Gibaldi, S. P. Sabatini, and F. Solari, “Calibrated

depth and color cameras for accurate 3d interaction in a stereoscopic augmented

reality environment,” Journal of Visual Communication and Image Represen-

tation, vol. 25, no. 1, pp. 227–237, 2014.

[165] F. Basso, A. Pretto, and E. Menegatti, “Unsupervised intrinsic and extrin-

sic calibration of a camera-depth sensor couple,” in Robotics and Automation

(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp. 6244–6249.

[166] R. Kummerle, G. Grisetti, and W. Burgard, “Simultaneous calibration, localiza-

tion, and mapping,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference on. IEEE, 2011, pp. 3716–3721.

[167] S. Miller, A. Teichman, and S. Thrun, “Unsupervised extrinsic calibration of

depth sensors in dynamic scenes,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 2695–2702.

[168] OpenKinect.org, “Imaging information,” Nov. 2013, http://openkinect.org/

wiki/Imaging Information/.

[169] K. Konolige and P. Mihelich, “Technical description of kinect calibration,” Dec.

2012, http://wiki.ros.org/kinect calibration/technical/.

[170] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[171] J. Kramer, N. Burrus, F. Echtler, C. Herrera, and M. Parker, Hacking the

Kinect. Springer, 2012.

127

http://openkinect.org/wiki/Imaging_Information
http://openkinect.org/wiki/Imaging_Information
http://wiki.ros.org/kinect_calibration/technical/


BIOGRAPHICAL STATEMENT

Wei Xiang was born in Xi’an, China. He received his B.S. degree from Xidian

University, China, in 2012. His research interests centre around computer vision,

image processing, data mining and machine learning. Particularly, he is interested in

solving traditional computer vision tasks in a large-scale setting with deep learning

based methods. During his Ph.D. program, he interned at Futurewei Technologies,

NVIDIA and JD.COM.

128


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Motivation
	Our Methods
	Thesis Overview

	DEEP NEURAL NETWORKS
	Introduction
	Tools
	GPU Acceleration
	Principles
	High-performance Computing Libraries
	Data Parallelism vs. Model Parallelism

	Deep vs. Shallow
	Spatial, Scaling and Rotation Invariance
	Model Compression
	Related Work
	Evaluation
	Ways to Compress Neural Networks
	Ways to Reduce Parameters
	Avoid FC Layers
	Placement and Tuning of Normalization Layer
	Improvement With Model Compression


	OBJECT DETECTION
	Introduction
	Related Work
	Context-Aware Single-Shot Detector
	Empirical Receptive Fields
	A Data-Driven Approach
	Analysis and Visualization

	Training
	Experiments
	Ablation Study
	Convergence Speed
	Sensitivity and Impact Analysis on PASCAL VOC 2007
	Our Results
	CSSD Curations


	SEMANTIC SEGMENTATION
	Introduction
	Related Work
	Framework
	Experiments
	Implementation
	Results on Cityscapes
	Performance Analysis
	Ablation Studies
	Visualizations

	Conclusion

	3D SENSOR CALIBRATION
	Introduction
	Related Work
	Joint calibration vs non-joint calibration
	Supervised calibration
	Unsupervised calibration
	Kinect library

	Calibration Methods
	Burrus's Method
	Smisek's Method
	Herrera's Method
	Teichman's Method

	Evaluation
	Calibration error vs. parameters learned
	Calibration performance vs. number of images
	Depth uncertainty

	Conclusion

	CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL STATEMENT

