
A Framework for Optimal Path Planning and Nonlinear Guidance

for Autonomous Mobile Robots

by

PAUL A. QUILLEN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2018

Copyright c© by Paul A. Quillen 2018

All Rights Reserved

I would like to dedicate this to my Mom and Dad for always being there for me and

for encouraging me to pursue my dreams.

ACKNOWLEDGEMENTS

I would like to first thank my supervising professor, Dr. Kamesh Subbarao for

his mentorship and making the learning experience fun both inside of the classroom

and out. I am very thankful for his insight and patience over the course of my studies.

Similarly, I would like to acknowledge the members of my committee from

UTA, Dr. Panayiotis Shiakolas, Dr. Alan Bowling, Dr. Bo P. Wang and Dr. Gaik

Ambartsoumian for their instruction and guidance both in forming my dissertation

and over the course of my graduate and undergraduate studies. Moreover, I would

like to thank the administrative staff in the Mechanical and Aerospace Engineering

department. I am convinced this process would be impossible without them.

Another important group I would like to thank is the Space Scholar program

at the Air Force Research Lab. I have met many wonderful people through my

internship work at Kirtland AFB; most notably my internship mentor, Dr. Josué

Muñoz. I am truly thankful for the ways he made me approach each problem, and for

always having the perfect questions to further my understanding and for helping me

through the research process at AFRL and as a member of my dissertation committee.

Further, I would like to give special thanks to the Air Force Research Lab Space

Vehicle directorate for supporting my research through award # FA945316-1-0058

and through the Space Scholar program.

To my friends, schoolmates and lab mates, thank you all for listening to my

rants and for all the memories that I will take with me. I know that being around

each of you is a great pleasure and it has helped me stay grounded over the duration

of this work.

iv

Most importantly, I would like to thank my family. I could not have gotten

here without the encouragement of my brothers and my parents. I cannot put into

words the significance of having parents who have inspired me to be curious from the

very beginning and to be fearless in chasing my dreams. And to my brothers, Brian

and Steven, your excellent examples and our friendly sibling rivalries have truly been

a blessing.

July 26, 2018

v

ABSTRACT

A Framework for Optimal Path Planning and Nonlinear Guidance

for Autonomous Mobile Robots

Paul A. Quillen, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Kamesh Subbarao

The purpose of this research is to investigate methods and technology for en-

hancing autonomous capabilities for mobile robots. The measures of autonomy which

are specifically covered in this dissertation pertain to a mobile robot’s ability to make

decisions and act, in other words guidance and control. This dissertation puts forth a

framework using optimal path planning and nonlinear guidance techniques to address

these matters. The path plans are synthesized using a numerical navigation function

algorithm that will form its potential contour levels based on the minimum control

effort of the system. Additionally, extensions of the path planning algorithm in the

presence of uncertainty using modified versions of the RRT* and D* algorithms are

studied. Then, an improved nonlinear model predictive control (NMPC) approach is

employed to generate high-level guidance commands for the mobile robot to track a

trajectory fitted along the path plan leading to the goal. A backstepping-like non-

linear guidance law is also implemented for comparison with the NMPC formulation.

Furthermore, a cooperative control policy, making use of a combination of artificial

potential functions (APF) and the numerical navigation function, is devised to guide

vi

multiple mobile robots in cooperative aggregation and social foraging tasks. The

results of this research are verified in simulation and validated experimentally us-

ing the mobile robot testing platforms in the Aerospace Systems Laboratory at The

University of Texas at Arlington.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xvi

Chapter Page

Executive Summary . xvii

1. Introduction and Motivation . 1

1.1 Background . 3

1.1.1 Path Planning with Control Effort and Navigation Functions . 3

1.1.2 Nonlinear Guidance Law . 8

1.1.3 Cooperative Control with Artificial Potential Functions 13

1.2 Objectives and Contributions . 16

1.2.1 List of Contributions . 16

1.2.2 List of Published Works . 17

1.3 Dissertation Outline . 18

2. Framework and Problem Description . 20

2.1 Framework Setup . 20

2.2 Mobile Robot Kinematic Model . 24

2.2.1 Nonlinear Kinematic Equations 25

2.2.2 Kinematics in Linear State-Space Form 26

3. Path Planning to a Reachable State using Numerical Navigation Functions 28

3.1 Navigation Function Generation . 30

viii

3.1.1 Initialization Block . 30

3.1.2 Main Block . 31

3.2 Minimum Control Energy Approach 35

3.3 Inverse Dynamics Approach . 39

3.4 Simulation Results . 41

3.4.1 Case 1: No obstacles present 41

3.4.2 Case 2: Obstacles Present . 43

3.4.3 Effects of Changing umax . 45

4. Path Planning Extensions . 48

4.1 Modified-RRT* Algorithm . 49

4.2 Modified D* Algorithm . 52

4.3 Simulation Results . 56

4.3.1 Modified RRT* Path Plan Results 57

4.3.2 Modified D* Path Plan Results 61

4.3.3 Comparing the Path Plan Algorithms 62

5. State Dependent Coefficient Based Nonlinear Model Predictive Control . . 66

5.1 State Dependent Coefficient Representation of the Vehicle Kinematics 66

5.2 Nonlinear Model Predictive Control Design 70

5.3 Input and State Constraints . 71

5.4 Guidance Command Synthesis Using the Linear Matrix Inequality (LMI)

Form . 73

5.5 Stability of Constrained, Sampled-Data, SDC-based NMPC 75

5.6 Simulation Results . 76

6. Nonlinear Guidance Law Design . 81

6.1 Guidance Law Design for Path Plan Algorithm 82

6.2 Framework Guidance Law Design . 85

ix

6.3 Guidance Design with Disturbance in the Acceleration 90

6.4 Simulation Results . 94

6.4.1 Trajectory Tracking . 95

6.4.2 Trajectory Tracking with Disturbance Present 97

7. Cooperative Control with Artificial Potential Functions 103

7.1 Artificial Potential Function for ‘Conflict-Free’ Trajectory Synthesis . 103

7.1.1 Swarm Aggregation APF Design 105

7.1.2 Minimum Control Effort Navigation Function for Social Foraging106

7.1.3 APF for Collision Avoidance 108

7.2 Control Design . 109

7.3 Inter-Vehicle Communication . 110

7.4 Simulation Results . 111

8. Real-Time Experiment Setup and Results 117

8.1 Mobile Robot Platform . 118

8.1.1 Hardware Components . 118

8.1.2 Cooperative Platform Setup 121

8.1.3 Software . 122

8.2 Real-Time Experiment Results . 123

8.2.1 Individual Mobile Robot Results 125

8.2.2 Multiple Robot Cooperative Control Results 135

9. Summary, Conclusions and Future Work 148

9.1 Summary and Conclusions . 148

9.2 Future Work . 150

Appendix

A. Preliminary Material . 152

REFERENCES . 169

x

BIOGRAPHICAL STATEMENT . 179

xi

LIST OF ILLUSTRATIONS

Figure Page

1.1 ASL Gremlin Mobile Robot. 2

1.2 Local minimum example with traditional APF. 5

1.3 Illustration of mpc control horizon. 9

2.1 Block diagram depicting general GNC framework. 21

2.2 Flow of information for cooperative control framework. 23

2.3 Kinematics of the wheeled mobile robot. 24

3.1 Control effort based navigation function algorithm. 29

3.2 Bitmap representation of working environment. 30

3.3 Wavefront expansion cost propagation. 32

3.4 Grid set up in two dimensional space for a mobile robot model. 38

3.5 Minimum control energy path plan and potential field. 42

3.6 Inverse dynamics approach, path plan and potential field. 43

3.7 Minimum control energy path plan and potential field. 44

3.8 Inverse dynamics approach, path plan and potential field. 44

3.9 Effects of tuning umax with MCE approach, first example. 46

3.10 Effects of tuning umax with MCE approach, second example. 46

3.11 Effects of tuning umax with ID approach, first example. 47

3.12 Effects of tuning umax with ID approach, second example. 47

4.1 Flowchart of modified RRT* algorithm. 49

4.2 Steer procedure within RRT* algorithm. 51

4.3 Main algorithm flowchart for the modified/original D* algorithm. . . . 54

xii

4.4 Process-State procedure of D* algorithm. 56

4.5 Exploring Tree using modified-RRT* with 500 samples 57

4.6 Exploring Tree using modified-RRT* with 1000 samples 58

4.7 Exploring tree with generated path plan overlayed using 500 samples. . 59

4.8 Generated path plan using modified-RRT* with 500 samples. 59

4.9 Exploring tree with generated path plan overlayed using 1000 samples. 60

4.10 Generated path plan using modified-RRT* with 1000 samples. 60

4.11 Modified-D* path plan with no change in terrain detected. 61

4.12 Modified-D* path plans with a change in terrain traversability detected. 62

4.13 Comparative example with the different planning algorithms. 63

5.1 Example 1 constrained trajectory tracking with SDC based NMPC guid-

ance commands and an MCE path plan. 78

5.2 Example 2 constrained trajectory tracking with SDC based NMPC guid-

ance commands and an MCE path plan with obstacles. 78

5.3 Example 3 constrained trajectory tracking with SDC based NMPC guid-

ance commands and an ID path plan. 79

5.4 Example 4 constrained trajectory tracking with SDC based NMPC guid-

ance commands and an ID path plan with obstacles. 79

6.1 Example 1, position tracking with backstepping guidance commands

and MCE path plan. 96

6.2 Example 2, position tracking with backstepping guidance commands

and MCE path plan. 96

6.3 Example 3, position tracking with backstepping guidance commands

and ID path plan. 97

6.4 Example 4, position tracking with backstepping guidance commands

and ID path plan. 97

xiii

6.5 Scenario setup and trajectory tracking with disturbance present. . . . 99

6.6 Position error plots with d = −2m/s2. 99

6.7 Velocity error plot with d = −2m/s2. 100

6.8 Plot of rover velocity with d = −2m/s2. 101

6.9 Heading angle error plot with d = −2m/s2. 102

7.1 Communication protocol. 111

7.2 Example 1 with swarm aggregation policy, setting δ = 1 in eq. (7.3). . 113

7.3 Example 1 with social foraging policy, setting δ = 0 in eq. (7.3). 113

7.4 Example 2 environment and navigation function potential field. 115

7.5 Example 2 with social foraging policy, setting δ = 0 in eq. (7.3). 115

7.6 Example 3 environment and navigation function potential field. 116

7.7 Example 3 with social foraging policy, setting δ = 0 in eq. (7.3). 116

8.1 ASL-Gremlin Mobile Robot Testing Platform. 117

8.2 On-board hardware components for the ‘ASL-Gremlin’ mobile robot

platform. 119

8.3 Flow of information between hardware components for mobile robot

platform. 120

8.4 Flow of information within the GNC framework for the mobile robot

platform. 121

8.5 Flow of information for cooperative control experiments. 122

8.6 Waypoint setup for individual experiment 1. 126

8.7 Robot’s waypoint traversal for individual experiment 1. 127

8.8 Robot’s heading angle for individual experiment 1. 128

8.9 Robot’s velocity profile for individual experiment 1. 129

8.10 Robot’s wheel speed commands for individual experiment 1. 130

8.11 Waypoint setup for individual experiment 2. 131

xiv

8.12 Robot’s waypoint traversal for individual experiment 2. 132

8.13 Robot’s heading angle for individual experiment 2. 133

8.14 Robot’s velocity profile for individual experiment 2. 134

8.15 Robot’s wheel speed commands for individual experiment 2. 135

8.16 Setup for cooperative experiment 1. 136

8.17 Robot positions for cooperative experiment 1. 137

8.18 Wheel speed commands for cooperative experiment 1. 138

8.19 Robot’s relative distance for cooperative experiment 1. 139

8.20 Setup for cooperative experiment 2. 140

8.21 Robot positions for cooperative experiment 2. 141

8.22 Wheel speed commands for cooperative experiment 2. 142

8.23 Robot’s relative distance for cooperative experiment 2. 143

8.24 Setup for cooperative experiment 3. 144

8.25 Robot positions for cooperative experiment 3. 145

8.26 Wheel speed commands for cooperative experiment 3. 146

8.27 Robot’s relative distance for cooperative experiment 3. 147

A.1 Example result using the traditional wavefront expansion algorithm. . 162

A.2 Traditional wavefront expansion algorithm. 163

xv

LIST OF TABLES

Table Page

4.1 Main parameters used with respective algorithms. 63

4.2 Computation time to generate path plan. 64

xvi

Executive Summary

The design of robust guidance and control algorithms for increasing autonomy

with wheeled mobile robots and other vehicles have received a great deal of attention

across different research communities. There have been many different approaches

presented in the literature discussing either guidance or control individually or both

aspects concurrently. The main motivation for developing guidance methods, in the

form of path planning, is that this area has been identified as a key component for

autonomous operations given the kinds of uncertain environments the different types

of vehicles may encounter. And the addition of stable control designs to safely follow

the resulting path plans intuitively follows. The goal of this research is to present a

framework consisting of control effort based path planning algorithms along with two

nonlinear guidance methods for a wheeled mobile robot.

The first problem discussed in this dissertation is the development of a reliable

path planning algorithm to safely guide a mobile robot through a constrained envi-

ronment. The environment will be considered constrained by the presence of static

obstacles obstructing the paths to an objective destination. The path planning algo-

rithm will be designed based on a special class of artificial potential functions called

navigation functions. Specifically, a grid-based numerical navigation function will

be implemented as one of the main contributions of this research. This dissertation

will detail a methodology for numerically constructing a navigation function using a

metric defined by the control effort of the system instead of a traditional distance

based metric. To accomplish this, the formation of the navigation function relies on

setting a desired reachable state for the robot to achieve. This enables the algorithm

xvii

to not just consider where the goal is located but also how the robot can best form its

approach. Additionally, two widely used optimal path planning algorithms are mod-

ified to include a control effort-based metric to guide the vehicle through uncertain

environments.

The next problem is to derive stable nonlinear guidance laws which will enable

the vehicle to follow the path plan and arrive at its objective. Two different stable

nonlinear guidance designs will be introduced in this work. The first guidance design

will make use of a nonlinear model predictive control (NMPC) methodology. In this

research, the NMPC formulation will result from a state dependent coefficient (SDC)

factorization of the nonlinear kinematic model for a wheeled mobile robot. The SDC

form has been researched in connection with finding linear optimal control solutions

involving nonlinear models. The NMPC methodology in this dissertation will make

use of the SDC form of the robot’s kinematics to design its guidance inputs. The use

of the NMPC method here will allow constraints to be enforced on the robot’s inputs

and state as it tracks a trajectory to the goal.

The second guidance design will be based on a backstepping-like approach. The

stable backstepping guidance law in this dissertation will allow the robot to track a

trajectory along the path plan and ensure the task will be performed with bounded

tracking errors.

Another important consideration in this dissertation will cover cooperative con-

trol involving multiple wheeled mobile robots. It is reasonable to assume that multiple

vehicles may be present in a given operation and a procedure to accomplish tasks co-

operatively is necessary. In this dissertation, the cooperative control tasks are handled

with artificial potential functions. The main tasks involved with this technique be-

comes aggregation and social foraging. In other words, the robots must be able to

coalesce and travel to designated areas of interest while avoiding obstructions and col-

xviii

lisions among the vehicles within the group. This technique will utilize the numerical

navigation function algorithm to set the areas of interest and obstacle avoidance with

additional cooperative potentials introduced to ensure there is no collisions within

the group.

In this dissertation, all the above concepts are applied to mobile robot vehicles

in simulation. Additionally, some of the concepts, such as the nonlinear guidance laws

and cooperative control framework are validated experimentally using mobile robot

testing platforms in the Aerospace Systems Laboratory at The University of Texas

at Arlington.

xix

CHAPTER 1

Introduction and Motivation

The focus of this research is to present a framework for path planning and

guidance for autonomous mobile robots. The framework is designed as a step to-

wards increased autonomy for wheeled mobile robots. The quantifiable measures of

autonomy recognized in this dissertation are the vehicle’s ability to observe, orient,

make decisions, and act [1]. Of those autonomy measures, this research will focus

primarily on expanding a mobile robot’s ability to make decisions and to control its

actions within a given environment.

There is an increasing need for reliable path planning and guidance algorithms

for wheeled mobile robots such as planetary exploration rovers [2–4] as well as au-

tonomous cars and other car-like vehicles [5, 6]. The need for guidance, in the form

of path planning, for mobile robots arises from the kinds of environments they may

encounter. The environment may possess obstacles of varying sizes as well as different

kinds of terrain, such loose rocks, sand, or embedded pointy rocks, etc. The vehicle

must be able to account for these details and suggest safe paths for it to follow. To

help the vehicles make decisions and find safe paths in the environment, a numerical

navigation function algorithm is presented in this research.

Another important issue with these mobile robots is how to follow the safe

paths which have been generated. The vehicle must have the capability to arrive at

its destination safely in the presence of uncertainty in the environment or its own

physical limitations. The ability to act within the vehicle’s confines is of particular

interest in this research and is addressed in the form of an improved nonlinear model

1

predictive control derivation. Additionally, the ability to have guidance in how to

act when multiple vehicles are acting in the same environment is of interest and is

addressed through a cooperative control policy.

The components of the framework are verified in simulation and extended to

real-time testing platforms, such as the vehicle in figure 1.1, to provide experimental

validation.

Figure 1.1: ASL Gremlin Mobile Robot.

2

1.1 Background

1.1.1 Path Planning with Control Effort and Navigation Functions

The first component of the framework presented in this dissertation is a path

planning algorithm to help a mobile robot make decisions in finding safe reference

paths through the environment. In general, path planning is the process of finding

a safe path between two points for a mobile vehicle to travel. There are a variety

of different methods for path planning found in textbooks and papers alike. Many

of the path planning methods currently being researched consider collision and ob-

stacle avoidance as a primary objective. And while obstacle avoidance is considered

with this research, its novel contribution is an investigation into how to include con-

trol information into the path plan through a grid-based numerical potential field

construction.

Other path planning techniques that make use of the control effort and the

kinematic model of the system are discussed in terms of rapid exploring randomized

trees (rrt and rrt*) in [7, 8], kinodynamic rrt in [9], and probabilistic roadmap ap-

proach in [10]. These methods use a randomized approach with state information of

the system to determine the path plans, and the paths are designed with information

of the environment and the initial location. While these methods can be computa-

tionally intensive, depending on the model, they also generate plans without needing

to know where the objective is located.

The path planning methods discussed in references [7–10] can incorporate knowl-

edge of a system’s control effort to generate a path plan in a randomized sampling

based manner. In contrast, the methodology discussed with this work makes use of

a special class of artificial potential functions called navigation functions. This con-

3

struction method will make use of the control effort of the system and enable a path

plan to be formed from almost any point in the environment.

In general, potential fields for path planning purposes are generated such that

their structure, potential levels and shapes, can intuitively reflect the virtual makeup

of the workspace. And a vehicle within a potential field is treated as a particle under

the influence of gravity. The paths with these methods are then generated through a

method that is similar to a steepest descent optimization problem [11–14].

Traditional potential field methods were first designed as an online collision

avoidance scheme in which the attractive potential is represented by a parabolic well

at the goal and the repulsive potentials are defined in the constrained space which

will tend towards infinity for the points in their vicinity [11]. Then, a path, as well

as the control input, can be found by following the negative gradient of this function

(similar to steepest descent).

Although traditional APF methods can effectively create collision-free paths,

there is one possible drawback. Since the method by which the paths are generated

is similar to a steepest descent problem, the paths derived for the system could reach

equilibrium at a configuration that is not its goal. This is known as the local minimum

problem [12]. An example of the local minimum problem arises when considering the

dynamical system at a configuration where the attractive potential from the goal is

equal to the repulsive potential of the constrained space.

An illustrative example of a potential field with a local minimum and a U-shaped

obstacle using the traditional APF method is shown in figure 1.2. It is evident from

figure 1.2 that not every path plan following the negative gradient of the potential

field will arrive at the goal. The local minima problem with potential field methods

is what gave rise to the development of navigation functions, which possess only a

global minimum in its potential field that is located at the goal [12–14].

4

300

50

100

150

APF 3-D Plot

200

250

0

300

350

U
to

t(
X

,Y
)

400

450

20

Y-axis

10

X-axis

1020
030

APF contour levels

0 10 20 30
X-axis

0

5

10

15

20

25

30

Y
-a

xi
s

50

100

150

200

250

300

350

400

450

Local Minimum

Figure 1.2: Local minimum example with traditional APF.

There are two main approaches to create a navigation function. The first

method is to define an analytic function which possesses an attractive component

associated with the objective and repulsive components attached to the obstacles.

These approaches are motivated by the research introduced in [11] for online collision

avoidance using artificial potential functions. Examples of the analytical approach

with a NF are presented in [15–17] whose results originate from the NF definition

introduced in [14]. With this approach, the navigation function is defined as a com-

position of several functions each designed to satisfy specific properties established

in [14]. The specific properties established to define a navigation function analytically

are summarized as:

1. The function is continuous and differentiable (smooth function) on the path

connected set to the goal

2. The function is uniformly maximal on the boundaries

3. The function must have a unique and global minimum at the goal

5

4. The function must be a Morse function

And while effective, this method requires proper tuning of several parameters within

the function before the local minima can be removed and for the NF to be properly

defined.

The second method for constructing a viable navigation function is to construct

it numerically in a discrete grid. This can be done either by using numerical solutions

to partial differential equations (PDE) as seen in references [18–20] or by assigning

potentials to a discrete workspace based on their distance from the objective [12, 13,

21–24]. The numerical navigation functions described in references [19] and [20] use

harmonic functions to represent the workspace with the boundary conditions enforced

to ensure that a viable path is found. The navigation function in reference [18] is

constructed similarly in that it uses the finite difference method to solve a PDE

representation of the Hamilton-Jacobi-Bellman (HJB) equation over the workspace.

Additionally, the method described in reference [18] can be made to rely upon the

system’s dynamics.

Numerical potential functions, such as those described in references [12,13,21–

24], have an advantage of being constructed in such a way that the goal location is

given the minimum value and the rest of the potential values are propagated through-

out the rest of the free operating space. These approaches are done through wavefront

expansion with counting and logic involved.

Navigation function path planners are effective in generating safe paths to the

goal, however the methods that have been introduced in the past are primarily formed

only with knowledge of the distance to the goal and the connectivity of the free regions

in the workspace. Conversely, the novel algorithm introduced in this dissertation will

generate the navigation function based on the control effort of a given model to go from

one grid point to another in a given environment. The novel algorithm will leverage

6

the construction method for the navigation functions described in references [12]

and [13] but will use the system’s control effort to determine the contour levels.

The path plan algorithm introduced in this dissertation can generate reference

paths from anywhere in the free environment. However, the algorithm will require

knowledge of both the objective location as well as a final desired state and would

need to be regenerated if new information is acquired. The result, however, is a path

plan that will guide the robot safely to its objective while also considering the control

effort to get there as well as how to form its approach to a goal state. Additionally, the

path plan algorithm enables the inclusion of the kinematics of the mobile robot in its

formation without increasing the dimensions of the configuration space of the system.

The planner in this research considers the model of the mobile robot to consist of four

state variables, but it generates the path plan within a two-dimensional environment

making it computationally cheap.

While the navigation function path planner is able to generate path plan from

anywhere in the free space, the fact that it will need to be regenerated whenever

new knowledge is obtained can make it inefficient in the presence of uncertainty. To

overcome this issue, extensions of the path planning algorithm are presented using

modified versions of RRT* and D* with a minimum control effort-based metric to

determine the cost to move between configurations.

The RRT* algorithm, as presented in reference [8] is designed to form its tree

from the starting configuration of the robot and can use the tree to find a minimum

cost traversal to anywhere in the free space. This ability gives the planner the ability

to determine a path with an uncertain goal and eliminates the dependence on grid

resolution. The D* algorithm is another grid-based path planner and is discussed in

references [25, 26]. This algorithm is designed as a dynamic A* algorithm, discussed

in references [27] and [28], where it has the ability to dynamically re-plan a path

7

in the presence of an uncertain environment. These algorithms are chosen due to

their ability to account for uncertain objectives, terrain types and can be used to find

optimal traverses.

1.1.2 Nonlinear Guidance Law

The next component of the framework applied in this research is a nonlinear

guidance technique. This part of the research is intended to provide a mobile robot

with an increased ability to act in the given scenarios. The guidance laws are designed

to provide commands to ensure that the vehicle can track the reference paths it is

given.

1.1.2.1 Nonlinear Model Predictive Control-Based Guidance

The main nonlinear guidance technique that is applied within this framework

is based on nonlinear model predictive control (NMPC). The NMPC algorithm is

chosen due to its ability to incorporate constraints on the inputs and outputs of the

system being studied. Additionally, the NMPC algorithm is solved by making use

of the State Dependent Riccati Equation (SDRE) and its associated state-dependent

coefficient formulation.

The use of model predictive control, or receding horizon control (RHC), is a

widely researched topic in controls engineering for a variety of applications. Model

predictive control is a process control method where the current inputs to the system

are determined by forecasting the behavior of the system model over a finite horizon.

The control is designed to minimize a cost function over the finite horizon and can

be used for regulation or tracking of a reference trajectory [29]. For MPC to be

implemented, a continuous system is discretized given a sampling time based on the

process being studied. Then, a prediction horizon is taken as the number of time

8

steps into the future being considered in the forecast. This allows for a control input

to be determined at each time step over the horizon. Although the model behavior is

considered over the time horizon, only the first input is applied to the mobile robot

using the technique in this research, as illustrated in figure 1.3.

Figure 1.3: Illustration of mpc control horizon.

This approach is used to generate high-level guidance commands for the mobile

robot to track a given trajectory. The derived guidance commands will be unique

since it will make use of the state-dependent coefficient (SDC) form of the nonlinear

kinematic equations and the system’s inputs will be found by quadratic programming.

The SDC formulation is used because it can preserve the nonlinear nature of the

system being studied.

The SDC form for nonlinear systems as it pertains to controller, observer or

filter design is discussed in references [30–33]. The focus of using the SDC form is to

transform a nonlinear system into a psuedo-linear form and then implement optimal

control or estimation techniques through solving the SDRE. As it relates to control

design, the SDC form allows for synthesis of nonlinear feedback controllers that are

9

similar to the LQR structure. In references [30] and [31], the problems are posed to

use the SDRE to solve problems such as the infinite horizon quadratic regulator for

some example nonlinear dynamics. The authors use direct parameterization to place

the dynamics into the SDC form, which they note is not unique for a given system.

The SDC form and control designs using the SDRE discussed in references

[30–33] center on solutions over an infinite time horizon. In contrast, the results

described in references [34] and [35] look at solutions for control problems with a

finite horizon. Both papers include a change of variables to solve for the control over

a finite horizon as well as fixed terminal constraints, so that they can achieve their

respective objectives [34,35].

The results presented in references [30–35] highlight the use of the SDC form

and the nonlinear feedback control laws that can be found through solving the SDRE.

These results, however, do not consider constraints on the system’s inputs or outputs

(other than some terminal constraints, shown in references [34] and [35]). The contri-

bution of the work presented in this dissertation will make use of an SDC formulation

and nonlinear model predictive control, which will enforce input and output con-

straints while performing reference trajectory tracking.

Traditionally, nonlinear model predictive control involves linearizing the sys-

tem’s dynamics about a nominal trajectory [29, 36, 37]. References [29] and [36] give

an overview of the traditional formulation for NMPC. And reference [38] discusses

important results for MPC in general with considerations towards both stability and

optimality of the results.

An alternate approach for NMPC employs a Control Lyapunov Function (CLF)

to help with achieving stability and applying an approximation to the terminal cost to

the tail of the infinite horizon problem [39–44]. The CLF approach for receding hori-

zon control along with an SDC factorized system is shown in references [41] and [42],

10

without considering constraints. Reference [39] presents the CLF technique in detail

with receding horizon control and focuses on time varying and input constrained sys-

tems. Also, the author in [39] propose that finding an appropriate CLF is equivalent

to finding a continuous stabilizing control law for the system.

Then, the author in reference [40] further the discussion from [39] covering the

CLF approach with RHC. The developments found in [40] pertain to the stabilization

of unconstrained nonlinear systems and use the CLF as a terminal cost function.

Furthermore, the authors conclude that there is no need for constraints on the system

or the CLF to achieve stability, with the proposed methodology.

The contribution of the work covered with this research is motivated by the

developments in reference [45]. However, the research presented in this dissertation

distinguishes itself in that the NMPC guidance design is applied to a wheeled mobile

robot and is verified both in simulations and through experiments by applying the

design to a real-time mobile robot testing platform.

1.1.2.2 Nonlinear Control of Rover Vehicles

Another nonlinear guidance method that will be derived and used in the frame-

work is a backstepping-like guidance law. This design is provably stable and guaran-

tees bounded trajectory tracking errors. This will ensure that the mobile robot can

safely and accurately follow a path plan generated by the navigation function. Also,

this method is widely-researched and can be used for comparison with the NMPC

design.

There have been implementations of different nonlinear control designs in a

wide variety of mobile robot applications [46–55]. Some of the applications of non-

linear control with wheeled robots have only been verified through simulation, as in

references [46–52], while others have been validated by hardware experiments such as

11

references [53–55]. Reference [46] provides a control design based on a virtual struc-

ture approach to follow a simple user defined trajectory. And in reference [47], an

adaptive control design is implemented in simulation to control a mobile robot where

it is also proven to be robust to input saturation and disturbances.

The experimental results presented in reference [53] validates a learning based

nonlinear model predictive control design that is constructed so that it must learn a

path through repetition to improve its model parameters. The experimental results

discussed in reference [54] are for an adaptive dynamic control design that applies its

control inputs to the dynamics in order to govern the kinematics of a wheeled robot.

The applications of this work are for an autonomous load carrying wheeled mobile

robot in an industrial setting [54]. Also, in reference [55] the results show a velocity

scheduling based controller that utilizes dynamic feedback linearization of a mobile

robot with only two out of four wheels being actuated.

Backstepping control designs for wheeled mobile robots are discussed in ref-

erences [48–52]. The control laws in references [48] and [49] apply backstepping to

control the kinematic model directly from the dynamics of the system and torques on

the vehicle are applied as the control inputs. In contrast, the backstepping control

design in references [50, 51] account for commanding the robot’s heading angle turn

rate and its forward acceleration. Also, a backstepping-like control design is proposed

in reference [52], which is derived so that the control inputs are given in terms of the

wheel speeds of a robot in order to facilitate its implementation on an experimental

testbed.

The backstepping-like guidance law discussed in this framework will be moti-

vated by the developments presented in references [50, 51]. The results from [50, 51]

are expanded upon in this dissertation with updated stability considerations and

presentation of real-time implementation results using the derived guidance laws.

12

1.1.3 Cooperative Control with Artificial Potential Functions

It is possible that more than one mobile robot may be present in a given scenario

and they will need to collaborate with one another. Therefore, it is practical to

consider a guidance methodology for scenarios involving multiple vehicles needing to

cooperate. The chosen approach to investigate the interactions between the vehicles

will be evaluated based on an artificial potential function (APF) approach.

With this approach, the vehicles will be modeled based on a wheeled robot’s

kinematic equations and the commanded velocity and heading angle guidance com-

mands will be determined from a composite potential function. The composite poten-

tial function will consist of a numerical navigation function, an analytical potential

function governing the interaction forces between the vehicles and an additional re-

pulsive potential function. The numerical navigation function will represent the given

environment, given obstacle locations and an objective gathering location. The ana-

lytical APF component will have attractive and repulsive characteristics to dictate the

behavior of the individual agents within the group. Finally, the additional repulsive

term is used as an extra layer to ensure the vehicles do not collide.

In general, the goal of this cooperative control policy is to derive guidance

commands that govern how individuals within a group move so that they stay together

and/or avoid collisions. The set of rules called Reynold’s Rules were defined in order

to capture the collective motion of large groups based on observations in nature.

Formally, Reynolds’ rules for collective motion are [56]:

1. Collision avoidance

2. Velocity matching - matching speed and motion direction

3. Flock centering

Traditional approaches for cooperative control frameworks involve portraying

the communication topology of the group as a graph of nodes and edges, called

13

the graph theoretic framework [56]. In this arrangement, the flow of information is

structured within a communication graph. The resulting graph helps to illustrate

which agents communicate with each other and which information is available to

the group. In the graph theoretic framework, the feedback control laws are derived

based on graph theory, involving the formation of an adjacency matrix, based on

the information flow, and an in-degree matrix, based on the number of agents in

communication with a particular node. Then, the feedback control law is found by

evaluating the graph Laplacian, which is the difference between the in-degree matrix

and the adjacency matrix, multiplied by the state of the group considering integrator

dynamics [56].

An alternate approach to the graph theoretic framework for cooperative control

involves defining potential energy functions, also called artificial potential functions

(APF). The APF method was initially introduced as an online collision avoidance

algorithm, as detailed in reference [11]. The design is such that it posseses an attracive

component as well as a repulsive component. The attractive component is designed

to draw the system to a desired state and the repulsive component is designed to

avoid potential hazards or undesired states for the system [11]. For cooperative

control scenarios, however, the APF is used to influence the behavior of the group in

a decentralized approach. Thus, the individual vehicles act in accordance with their

respective locations relative to the other vehicles present.

There are some defined objectives in the literature for cooperative control using

APFs, which are similar to Reynold’s Rules. The main behavioral objectives using

the potential function approach for a group of vehicles are aggregation, social foraging

and formation control [57, 58]. For aggregation, the objective is to bring the group

together while avoiding inter-vehicle collisions. And in social foraging, the behavior

resembles the search of an environment for areas of interest while avoiding areas

14

of potential danger. And formation control is to have the vehicles achieve a final

geometrical structure while moving together [58].

One approach using APF cooperative control is demonstrated in reference [59].

In [59], double integrator dynamics are assumed and the potential function defines

the interaction between neighboring vehicles with a virtual leader providing a moving

reference trajectory to track. The virtual leader is introduced to provide direction

and possibly manipulate the group’s geometry. Another example using a point mass

dynamics is shown in reference [60] where guidelines for constructing a potential

energy function is discussed. In [60], the potential function is defined as a composition

of different functions each designed to attain a certain performance. Both references

[59] and [60] discuss flocking behavior of multiple agents moving together to different

objectives in a given environment.

While references [59] and [60] consider vehicles with point mass dynamics, the

author in reference [61] provides a cooperative APF framework for unicycle mobile

robots. In [61], each robot is assumed to have a safety area and communication area

which are designed to dictate the communication protocol of the group. The APF

introduced in [61] is a smooth p-differentiable bump function designed such that the

vehicles in the group can track a reference trajectory while avoiding collisions with

all other robots.

The research presented in reference [57] gives an alternate APF formulation

along with guidance for defining such a potential function for cooperative control. The

authors in [57] define a general class of odd functions that have attractive and repulsive

components that can be solved to find the equilibrium distances between the agents

with tuning of several design parameters. Several objectives can be reached due to the

properties of the APF defined by the authors in [57] such as stable aggregation, and

formation control for a group. The work in reference [58] extends the results in [57] to

15

include social foraging considerations and applies the results to non-holonomic agents

where the APF provides reference values to be tracked with a sliding mode controller.

Other extensions inspired by the research in reference [57] can be found in

references [62] and [63]. Reference [62] presents guidelines for overcoming some po-

tential pitfalls with APF frameworks. The problem areas addressed in [62] consider a

non-reachable goal (local minimum), obstacle collision (when the attractive potential

overwhelms the repulsive component), obstacle collisions in swarms and inter-agent

collisions. The guidelines in [62] combines additive and multiplicitive configurations

of the APF to address the problems with a point mass system. Then, reference [63]

makes use of the APF guidelines found in [57] for use on a system of quadcopters

with multi-loop control and some considerations towards obstacle avoidance.

The research that will be discussed in this dissertation is influenced by the

APF design found in reference [57]. However, this work will consider wheeled mobile

robot’s kinematics. An additional contribution from this aspect of the disseration is

the insertion of the numerical navigation function for social foraging tasks.

1.2 Objectives and Contributions

1.2.1 List of Contributions

I. Developed a path planning algorithm that considers a system’s kinematics and

control effort.

II. Designed path planning algorithm that plans to a reachable state.

III. Derived a stable backstepping guidance law that ensures bounded tracking er-

rors.

IV. Derived a stable nonlinear model predictive control-based guidance law that can

enforce constraints on the inputs and outputs of the system.

16

V. Implemented a combination of the path planning algorithm and either of the

nonlinear controllers to construct a guidance and control framework.

VI. Combined the path planning algorithm’s potential field with cooperative poten-

tial functions for a group of rover vehicles for aggregation and social foraging

tasks.

VII. Applied guidance techniques, individual and cooperative, to real-time mobile

robot platforms.

1.2.2 List of Published Works

Journal Publications:

(a) Objectives I.,II.,III.,V.:

P. Quillen, K. Subbarao and J. Muñoz, “Path Planning to a Reachable State

Using Minimum Control Effort Based Navigation Functions,” in Journal of As-

tronautical Sciences. (In review)

(b) Objectives I.,II.,IV.,V.:

P. Quillen, K. Subbarao and J. Muñoz, “Minimum Control Effort Based Path

Planning and Nonlinear Guidance for Autonomous Mobile Robots,” in The In-

ternational Journal of Advanced Robotic Systems. (In review)

(c) Objectives I.,II.,VI.,VII.:

P. Quillen, K. Subbarao and J. Muñoz, “Cooperative Control with Minimum

Control Effort Based Navigation Functions,” in Journal of Intelligent Robotics.

(Pending)

(d) Objectives III.,IV.,VII.:

P. Quillen, K. Subbarao, “Real-Time Nonlinear Model Predictive Control for

Wheeled Mobile Robots,” in The Journal of Advanced Robotics Systems. (Pend-

ing)

17

Conference Publications:

(a) Objectives III.:

P. Quillen, K. Subbarao and J. Muñoz, “Guidance and Control of a Mobile Robot

via Numerical Navigation Functions and Backstepping for Planetary Exploration

Missions,” in AIAA Space 2016, AIAA Space Forum, (AIAA 2016-5237). (Ref-

erence [50])

(b) Objectives I.,II.,,III.,IV.:

P. Quillen, J. Muñoz and K. Subbarao, “Path Planning to a Reachable State

Using Inverse Dynamics and Minimum Control Effort Based Navigation Func-

tions,” in AAS/AIAA Space Flight Mechanics Meeting, no. AAS 17-849, 2017.

(Reference [51])

(c) Objective III.:

A. Godbole, V. Murali, P. Quillen and K. Subbarao, “Optimal Trajectory Design

and Control of a Planetary Exploration Rover,” in Advances in the Astronautical

Sciences Spaceflight Mechanics, vol. 160, 2017. (Reference [52])

1.3 Dissertation Outline

This dissertation is organized as follows: A description of the framework is given

in chapter 2 along with a summary of its components and the mobile robot kinematic

model used for the results. Chapter 3 details the numerical navigation function al-

gorithm using a modified wavefront expansion for path planning with control effort.

Chapter 4 presents extensions of the path planning algorithm using modified versions

of RRT* and D* to find safe paths. The nonlinear model predictive control-based

guidance law is presented in chapter 5. A different nonlinear guidance law based on a

backstepping-like approach is covered in chapter 6. The cooperative guidance policy

for multiple mobile robots is presented in chapter 7. The simulation results using the

18

components of the framework are given respectively in chapters 3 through 7. The

experiment results using the mobile robot testing platforms with the guidance tech-

niques covered in this dissertation are compiled in chapter 8. Finally, the conclusions

and future work with this research is given in chapter 9.

19

CHAPTER 2

Framework and Problem Description

This dissertation involves approaches which either involve a single mobile robot

or a group of mobile robots in a given scenario. The individual tasks will be used

to verify the nonlinear guidance techniques in tandem with the path planning algo-

rithm. Then, the group tasks will be used to verify the cooperative control policy

using a combination of potential functions with the potential field constructed by the

navigation function to perform aggregation and social foraging tasks.

2.1 Framework Setup

The proposed framework in this dissertation for individual mobile robots will

consist of two main capabilities meant to enhance the vehicle’s autonomy. Figure

2.1 illustrates the main flow of information in a typical guidance, navigation, and

control framework. The main contributions of this research will be in the areas of

a navigation function path planner and two different nonlinear guidance designs,

as highlighted in figure 2.1. For the results given, it is assumed that information

concerning the environment such as obstacle positions and objectives are known to

the vehicle and that the maneuvers occur within a flat environment.

20

NF Path Planner

Trajectory
Design

Guidance
Vehicle

Kinematics

Navigation
(Localization)

• Generated with control effort based metric.
• Generates paths which consider the approach to

a final desired state.
• A path can be formed from anywhere in the

workspace.

Reference path (𝐗𝐫):
Set of (x, y) points
leading to the goal.

• Stable nonlinear guidance law designs.
• Produces high-level guidance commands

for the rover to follow the trajectory.

-

+
Reference
values

Error terms
Guidance
Commands

Figure 2.1: Block diagram depicting general GNC framework.

The first capability of the framework, evident with the path planning algorithm,

has the ability to guide the vehicle safely through a hazardous, obstacle laden environ-

ment to a reachable state. This aspect of the work will be addressed through a special

class of artificial potential functions called navigation functions. The approach shown

in this dissertation will be discussed with the algorithm described in chapter 3. The

objective with this component of the framework is to introduce the technique with

the vehicle’s kinematic model and to generate a path plan that directs the approach

of the vehicle to a final desired reachable state.

Extensions of the path planning algorithm in chapter 3 are also provided in

chapter 4. These extensions make use of the same minimum control effort approach

but utilize different methods for planning the path. The two extensions studied in

this dissertation use modified version of the RRT* and D* path planning algorithms.

21

The second capability is a guidance law which generates high-level commands to

have the vehicle track a desired path through the environment. This aspect within the

framework is handled through two different nonlinear guidance techniques. The first

technique is based on a nonlinear model predictive control derivation and the second is

a backstepping-based design. The NMPC technique applied in this framework is given

in chapter 5 and is based on the developments found in [45]. For this methodology,

the SDC form is used to preserve the nonlinear nature of the vehicle’s kinematic

equations and the weight on the terminal state of the system is found by solving the

discrete time state-dependent Riccati equation. The guidance commands are then

found by quadratic programming with input and state constraints enforced on the

system.

Then, the backstepping guidance law in this framework is presented in chapter

6 of this dissertation. This approach is chosen for comparison with the NMPC design

as it is an extensively studied method used for controlling differential drive mobile

robots. This guidance law is designed to provide provably stable, high-level guidance

commands.

Simulation results are presented in chapters 5 and 6 and involve the combina-

tion of the NF path planner with the nonlinear guidance designs to close the loop

of the framework. Additionally, experimental validation of the nonlinear guidance

techniques is presented in chapter 8 of this work.

22

Navigation Function
Potential Field

APF Guidance
(Vehicle 1)

APF Guidance
(Vehicle 2)

APF Guidance
(Vehicle N)

Vehicle 1
Kinematics

Vehicle 2
Kinematics

Vehicle N
Kinematics

Steering
Commands

Steering
Commands

Steering
Commands

Environment
Information

Environment
Information

Environment
Information

Vehicle 1, …, N
position

information

Vehicle 1, …, N
position

information

Vehicle 1, …, N
position

information

Figure 2.2: Flow of information for cooperative control framework.

The next aspect of this research involves cooperative control with multiple mo-

bile robots. An illustration of the flow of information within the cooperative control

framework is given in figure 2.2.

The potential field generated by the navigation function algorithm allows for

a path to be formed from anywhere in the given environment. It also provides in-

formation such as areas to avoid (obstacles) and the objective location for the group

to arrive at. The APF guidance block within the framework uses the environment

information provided by the navigation function potential field and combines it with

information about the relative positions of the other robots to generate steering com-

mands to safely guide the vehicles to their objective. The APF guidance uses the

relative position information along with different potential functions intended to gen-

erate conflict free trajectories through the environment for the group of robots. The

23

cooperative control policy and simulation results are presented in chapter 7 with

experimental results given in chapter 8.

2.2 Mobile Robot Kinematic Model

The kinematic model of the wheeled mobile robot considered in this research is

illustrated in figure 2.3. For the results discussed, an east-north-up (ENU) convention

is used. The heading angle, ψ, is defined positively going in a counter clockwise

direction about the z-axis (up) going from the inertial x-axis (xI) to the body x-axis

(xb). The state variables of the robot is taken as the inertial position in x and y

coordinates, its heading angle and its forward velocity, and it can be represented by

the vector x = [x, y, ψ, v]T . Without loss of generality, the subscript I for the inertial

x and y positions of the robot is dropped.

Figure 2.3: Kinematics of the wheeled mobile robot.

24

2.2.1 Nonlinear Kinematic Equations

There are two sets of nonlinear kinematics used here to represent a wheeled

mobile robot. The first set of equations are given by

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = u1

v̇ = u2

(2.1)

where u1 and u2 are the guidance inputs. These kinematics can be used as a repre-

sentative model with inputs influencing the heading angle turn rate and the vehicle’s

forward acceleration. The set of equations defined in eq. (2.1) are used for the path

planning algorithm and the nonlinear model predictive control derivation. Stability

with the set of equations in eq. (2.1) with a backstepping approach is shown in chapter

6 to prove their feasibility in the navigation function algorithm.

The second representation of the mobile robot’s kinematics are considered with

the backstepping guidance derivation and are given by

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = α1 (ψc − ψ)

v̇ = α2 (vc − v)

(2.2)

In eq. (2.2), the high level guidance commands are ψc and vc, which denote the

commanded heading angle and commanded velocity, and are used to track a reference

trajectory. The equations for ψ̇ and v̇ are changed from eq. (2.1) to add an extra

layer of control for implementing the nonlinear backstepping guidance law.

25

2.2.2 Kinematics in Linear State-Space Form

A linear version of the kinematics are needed for the path planning algorithm

described in chapter 3. The kinematics given in eq. (2.1) need to be placed in a linear

state-space form, i.e.

ẋ = Ax + Bu (2.3)

where x ∈ <n, u ∈ <m, A ∈ <n×n and B ∈ <n×m are the state and input vectors and

state and input system matrices respectively. In order to achieve this, the deviation of

the state from a nominal trajectory is considered. And in order to place the system of

equations in a linear state-space form, the jacobian of eq. (2.1) needs to be evaluated

about a nominal trajectory, xn ∈ <n. Given a nonlinear autonomous system of the

form

ẋ = f (x,u)

the A matrix is equal to

A =
∂f

∂x

∣∣∣∣
xn

and the B matrix is equal to

B =
∂f

∂u

∣∣∣∣
xn

Hence, the linear system A and B matrices for the wheeled mobile robot are defined

as

A =

0 0 −vn sin (ψn) cos (ψn)

0 0 vn cos (ψn) sin (ψn)

0 0 0 0

0 0 0 0

(2.4)

26

and

B =

0 0

0 0

1 0

0 1

(2.5)

Thus, the linear kinematics for the mobile robot are of the form

δẋ = Aδx + Bδu (2.6)

where the A and B matrices are evaluated through eqs. (2.4) and (2.5) respectively

and δx ∈ <n, and δu ∈ <m are perturbations of the state and input vectors from the

nominal trajectory, i.e. δx = x− xn and δu = u− un.

For the path planning algorithm, the nominal trajectory for the robot is con-

sidered as a straight-line, un-accelerating trajectory between two points in a grid over

a constant sample time, ∆t. The nominal values for ψn and vn are evaluated as

ψn = tan−1

(
∆y

∆x

)
vn =

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

(2.7)

Within the path planning algorithm described in chapter 3, the values for ∆x and

∆y are evaluated as the cell difference of two neighboring points in a grid.

27

CHAPTER 3

Path Planning to a Reachable State using Numerical Navigation Functions

The main contribution of this research is the construction of the navigation

function, which is motivated by the wavefront expansion described in [12] and [13].

However, the novel design discussed here distinguishes itself from the traditional

methods since it will use a metric based on the control effort of the system to form

the contour levels in the potential field as opposed to a distance based metric. The

work presented in this dissertation makes use of the kinematic equations for a mobile

robot and observing how it influences the potential contour levels with the algorithm.

The end result is a path plan algorithm that is model-dependent.

The full algorithm is outlined in figure 3.1 with the contributions to the algo-

rithm highlighted. These modifications were added to the original wavefront expan-

sion algorithm to enable the inclusion of a metric defined by the control effort of the

system and allow for some constraints to be considered.

Two methods are introduced for constructing the navigation function. The first

method will make use of the solution to the minimum control effort problem given a

fixed initial and final state for a linear system. This method is constructed to plan

a path to an objective reachable state, expressed as xgoal, and will form a minimum

control effort path plan. Then, the second method will be to take an inverse dynamics

approach to a reachable state. This approach is considered for the nonlinear mobile

robot kinematic model. Both methods are constructed to reach an objective reachable

state, expressed as xgoal, and will form a minimum control effort path plan.

28

Initialize

Bitmap

𝑞𝑓𝑟𝑒𝑒

𝐽 𝑜𝑏𝑠 = 𝑀 → 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

𝑘 = 0, 𝑎𝑛𝑑 𝑙𝑖𝑠𝑡0(𝐱𝐠𝐨𝐚𝐥, J(𝐱𝐠𝐨𝐚𝐥))

𝐽 𝐱𝐠𝐨𝐚𝐥 = 𝐮 𝐱𝒈𝒐𝒂𝒍, 𝐱𝐠𝐨𝐚𝐥 = 0

𝑢𝑚𝑎𝑥 & 𝑑𝑒𝑓𝑓 are set

Model = ቊ
𝐿𝑖𝑛𝑒𝑎𝑟

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

Compute 𝒖 𝐱, 𝐱𝐟 based on model:

Linear: Minimum Control Effort

𝐮𝐋 = 𝐵𝑇ΦT 𝑡𝑓 , 𝑡 𝑊𝑅
−1 𝑡0, 𝑡𝑓 𝐱𝐟 −Φ 𝑡𝑓 , 𝑡0 𝐱𝟎

Nonlinear:

𝐮𝐍𝐋 =
𝛼1(𝜓

𝑐 − 𝜓)

𝛼2 𝑣𝑐 − 𝑣

Model:

Linear: ሶ𝐱𝐿 = 𝐴𝐱 + 𝐵𝐮𝐋

Nonlinear: ሶ𝐱𝐍𝐋 = 𝑓 𝐱 + 𝑔 𝐱 𝐮𝐍𝐋

𝑙𝑖𝑠𝑡𝑘 𝐱𝐟 𝑖 , 𝐽 𝐱𝐟 𝑖

𝑓𝑜𝑟 𝑖 = 1,… , 𝑛
𝑛 ≔ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑙𝑖𝑠𝑡𝑘

Find neighbors
of 𝐱𝐟 𝑖

Get 𝑗𝑡ℎ 2-neighbor
point ->𝐱𝟎 𝑗
𝑓𝑜𝑟 𝑗 = 1,… , 8

If j > 8

Extract next 𝐱𝐟𝑓𝑟𝑜𝑚 𝑙𝑖𝑠𝑡𝑘
𝑖 = 𝑖 + 1

If 𝑖 > 𝑛

Start

Get next neighbor
𝑗 = 𝑗 + 1

𝐽 𝐱𝟎 𝑗 = 𝐽 𝑜𝑏𝑠

J 𝐱𝟎 j =
1

2
𝐮 𝐱𝟎 j , 𝐱𝐟 i

T
𝐮 𝐱𝟎 j , 𝐱𝐟 i δt + 𝐽 𝐱𝐟 𝑖

Complete the state
ሶ𝐱 = ሶ𝐱𝐍𝐋

Append to the bottom of 𝑙𝑖𝑠𝑡𝑘+1
𝑙𝑖𝑠𝑡𝑘+1 𝐱𝟎 𝑗 , J(𝐱𝐟 𝑖)

𝑘 = 𝑘 + 1

Best first
search𝐱𝑟

Navigation
Function

• 𝑙𝑖𝑠𝑡0 , k = 0
• J(obs)
• Model
• Constraints

Navigation Function generation

yes

yes

yes

no

no
no

𝑙𝑖𝑠𝑡𝑘
𝑒𝑚𝑝𝑡𝑦?

𝑓𝑟𝑒𝑒 && 𝐽(𝐱𝟎 𝑗)not
evaluated

End

Model

Linear or
Nonlinear?

Check constraints:
𝒖 ≤ 𝑢𝑚𝑎𝑥 && 𝑑 ≤ 𝑑𝑒𝑓𝑓

Complete the state
ሶ𝐱 = ሶ𝐱𝐿

Workspace

Obstacles

Compute

𝐮 𝐱𝟎 𝑗 , 𝐱𝐟 𝑖 = 𝐮𝐍𝐋

Compute

𝐮 𝐱𝟎 𝑗 , 𝐱𝐟 𝑖 = 𝐮𝐋

Free positions

Linear Nonlinear

Reference Path

no

no yes

yes

Figure 3.1: Control effort based navigation function algorithm.

In this chapter, the algorithm will first be described in general without specify-

ing which method is used. Then, the specific details involved with each method will

be discussed followed by some example simulation results for each case.

29

3.1 Navigation Function Generation

3.1.1 Initialization Block

The first step of the algorithm takes place with the initialization block, as

shown in figure 3.1. The initialization block of this numerically constructed potential

field begins by discretizing the workspace into an evenly spaced grid. This grid can

be scaled to fit over any two-dimensional working environment. The discrete grid

and the obstacle positions are then used to form a bitmap representation of the

environment, as illustrated in figure 3.2. This allows the free points to be identified

and extracted. Note that the free space is denoted as qfree in the algorithm flowchart

in figure 3.1, where q in general represents a configuration in the workspace. In the

two-dimensional workspace considered in this research, q ∈ <2, and is denoted by the

vector q = [x, y]T .

1 1 1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

Obstacle

Obstacle

Goal Goal

Given Environment Discrete Bitmap Representation

Figure 3.2: Bitmap representation of working environment.

30

Also, during initialization, the obstacle potential levels are set uniformly to a

large number and these configurations are separated for the rest of the algorithm.

The potential level of the desired final state is then set to zero, to ensure that it is

the global minimum, and these values are inserted into a list, listk, where the index

k = 0 initially, i.e. list0 (xgoal, 0).

Another attribute that is set during initialization is the model to base the

navigation function generation. The model will motivate how to set the final objective

state, xgoal, how the state is approximated in the neighboring points and how the cost

associated with the control effort is computed. For the results in this dissertation,

the model is defined based on the linear and nonlinear kinematic equations for a two-

wheel differential drive mobile robot. The models and their nuances are described in

sections 3.2 and 3.3.

3.1.2 Main Block

Once set, the information from the initialization block is passed into the al-

gorithm’s main block to generate the navigation function. Within the algorithm,

the states and potentials within listk are used to evaluate the potential values of

their neighbors, x0(j), where the index j denotes the jth neighbor point. For two-

dimensional workspace examples, the algorithm considers each of the 2-neighbors of

the ith state, xf (i), in listk. The 2-neighbors are defined as the configurations in the

grid that have at most two coordinates differing from the central point. There are

eight 2-neighbors for a configuration when considering a two-dimensional grid [12].

An illustration of this procedure, as well as the grid representation for the mobile

robot model is shown in figure 3.3.

Next, it must be determined if the neighbor point is in the free space and if

the potential has not yet been computed. If the neighbor point is both free and has

31

𝑳𝟑 𝑳𝟐 𝑳𝟏 𝑳𝟏 𝑳𝟏 𝑳𝟐

𝑳𝟑 𝑳𝟐 𝑳𝟏 𝑳𝟏 𝑳𝟐

𝑳𝟑 𝑳𝟐 𝑳𝟏 𝑳𝟏 𝑳𝟏 𝑳𝟐

𝑳𝟑 𝑳𝟐 𝑳𝟐 𝑳𝟐 𝑳𝟐 𝑳𝟐

𝑳𝟑 𝑳𝟑 𝑳𝟑

Goal

Wavefront expansion through 𝒒𝑓𝑟𝑒𝑒 Local grid environment with nodes representing cells

Figure 3.3: Wavefront expansion cost propagation.

not been visited by the wavefront expansion, then the algorithm continues; otherwise

that point is disregarded and the next neighbor point, x0(j + 1), is considered. This

step ensures that there are no overlapping values and that the navigation function is

only evaluated in the free space.

Also, for the free neighbor points, the algorithm completes the state information

of x0(j), since the only information known at this point is the position in the discrete

grid. Additionally, the control effort to go from x0(j) to xf (i), is computed based on

the method chosen (Minimum Control Energy or Inverse Dynamic). And the value

for this control effort, u (x0(j), xf (i)), is calculated using either eq. (3.5) or eq. (3.9).

The resulting control vector and position information are compared with the

constraints

||u0|| ≤ umax (3.1)

d ≤ deff (3.2)

32

where u0 = u (x0(j), xf (i)), and umax ∈ < and deff ∈ < are scalar parameters

denoting the maximum control limit and effective distance respectively which are set

during initialization. The value of d, in eq. (3.2), represents the Euclidean distance

of the corresponding neighbor point, x0(j), to the final desired position in the grid,

xgoal.

Effectively, the deff term in eq. (3.2) does make this method partially de-

pendent on a measure of distance. However, the deff term is associated solely with

the maximum control effort constraint, umax. The combination of the constraints in

eqs. (3.1) and (3.2) are used to enforce the notion that it would be cost prohibitive

to approach the final desired state from certain configurations, such as facing the

opposite direction at close proximity. The deff parameter in this sense restricts the

umax constraint to only affect grid points within a certain neighborhood of the goal

and has no bearing on the potential levels through the rest of the free space.

Now, if the constraints in eqs. (3.1) and (3.2) are violated at a given neighbor

point, x0(j), then its associated cost is set equal to that of the obstacle configurations,

i.e. J(x0(j)) = J(obs). But, if the cost for the neighboring states do not violate the

constraints, then it is computed by

J (x0(j)) =
1

2

(
u0

Tu0

)
δt+ J (xf (i)) (3.3)

where δt is a time step set during initialization for the maneuver to occur. The

cost computed in equation (3.3) is used to create the contour levels making up the

navigation function.

There are a couple of considerations with the cost function in eq. (3.3). The

first is that the cost is always increasing from one level to the next with the wavefront

expansion, this feature is what enables us to claim that there is a unique and global

minimum at the goal. Second, the choice of grid resolution, or the spacing between

33

the grid points, and the time-step parameter δt, does affect the magnitude of the cost

through the grid; however, they do not affect the overall shape of the potential field

and its resulting path plan.

Finally, when the cost for x0(j) is computed, it is appended to the bottom of a

new list, indexed at k+1, written as

listk+1 (x0(j), J (x0(j)))

in figure 3.1. This process is continued for each neighboring configuration of xf (i).

If all the neighbors have been visited, then the next final state and cost in listk

are used, i.e. xf (i + 1) and J (xf (i+ 1)). However, if all the elements in listk have

been used, then the values from the next list, listk+1 are considered. The algorithm

continues until listk is empty. When listk is empty, then all the points in qfree that

are connected to the objective position have been visited by the wavefront expansion

and the navigation function generation is finished.

Once the navigation function algorithm finishes, the reference path, xr, is ob-

tained through a best-first graph search following the negative gradient of the resulting

potential field from a given initial location to the objective location. Through this

method, the paths are attained by observing the potential values of the neighboring

points and then choosing the neighbor with the lowest value. This is done in an

iterative manner until the objective is found. In other words, the path is found by

starting at some initial location in the environment and continuing along a path of

minimal control effort until it reaches the goal.

34

3.2 Minimum Control Energy Approach

The minimum control effort based path plan is designed considering the solution

to the optimal control problem for finding the minimum energy controller. The cost

function associated with this problem is given by

min
u∈<m

J =
1

2

∫ tf

t0

uTu dt (3.4)

subject to

ẋ = Ax + Bu

x (t0) = x0

x (tf) = xf

Within the context of the grid-based path planner, the above represents the cost

going from one grid point at t0 to a neighboring grid point at tf (denoted as x0 and

xf respectively). The solution to this problem can be found in most optimal control

textbooks such as reference [64]. The analytic solution for the open-loop, minimum

energy controller for a linear model is given by

uL = BTΦT (tf , t) W−1
R (t0, tf) [δxf −Φ (tf , t0) δx0] (3.5)

where δxf and δx0 are perturbations of the state about the nominal trajectory at tf

and t0 respectively. Also, WR (t0, tf) is the reachability Gramian and Φ (tf , t) is the

state transition matrix of the system [64]. The state transition matrix is computed

as

Φ (tf , t) = eA(tf−t)

and the reachability Gramian is computed by

WR (t0, tf) =

∫ tf

t0

Φ (tf , τ) BBTΦT (tf , τ) dτ (3.6)

35

which needs to be non-singular in order for the state at tf to be reachable.

Solving for the reachability Gramian using eq. (3.6) is not straightforward;

however, there are simplifications to find a solution which exist in the linear systems

literature, such as reference [65]. One method to find a solution to eq. (3.6) is to look

at the analytic solution of the differential Lyapunov equation. The solution to the

differential Lyapunov equation of the form

Ṗ = AP + PAT + BR−1BT (3.7)

is given by

P(t) = Φ (t, t0) P (t0) ΦT (t, t0) +

∫ t

t0

Φ (t, τ) BR−1BTΦT (t, τ) dτ (3.8)

Therefore, by taking P (t0) = 0 and setting R equal to the identity matrix, the

right hand side of eq. (3.8) is equal to the right hand side of eq. (3.6). Hence, the

reachability Gramian can be found by integrating the differential Lyapunov equation

from t0 to tf , in eq. (3.7), assuming WR (t0, t0) = 0.

Additionally, the aspect of reachability for the system being studied is formally

addressed with the following remark. The motivation for this assertion can be found

in the discussions of chapter 6 from reference [65] and chapter 3 in reference [66]

involving the concept of a system’s controllability and its implications with regards

to reachability. The aim is to show that if the linear system is controllable, then it

can be directed to successive local reachable states, with each one leading the system

to the final objective reachable state at the end of the path plan.

Remark 1. Consider the nonlinear system in eq. (2.1) and it’s linearization in

eq. (2.6) about the nominal state, xn and un. If the linear system is controllable,

then the nonlinear system is locally controllable in the neighborhood of (xn, un). The

linear and the nonlinear system are also locally reachable. Thus, successive state tran-

sitions of the linear system from controllable to controllable configurations, ensures

36

that the nonlinear system is transferred through locally reachable states to the goal

location [65, 66].

In eq. (3.5) the input vector, uL ∈ <2, is defined as uL = [δu1, δu2]T , where

δu1 and δu2 are the commanded heading angle turn rate and forward acceleration

respectively.

A and B for the linear kinematic model are obtained using the nominal trajec-

tory. The values for the nominal trajectory xn are computed by specifying a sampling

time, ∆t, and assume it is a straight line maneuver between the node position from

x0 (i.e. the values x0 and y0) and the node position from xf (i.e. the values xf and

yf) within a grid as illustrated in figure 3.4. Then, the nominal heading angle is taken

as the direction pointing from the node position of x0 to the node position of xf (i)

within the grid, given by

ψn = tan−1

(
yf − y0

xf − x0

)
And the nominal velocity is computed as

vn =

√(
xf − x0

∆t

)2

+

(
yf − y0

∆t

)2

To compute the control effort from equation (3.5), the state information at t0

and at tf needs to be determined. Within the path planning algorithm, the final state

at each level is taken as the ith state extracted from the kth list, i.e. xf (i), which is

initially set as the desired final reachable state. The final objective reachable state

is denoted as the vector xMCE
goal = [xg, yg, ψg, vg]

T . And figure 3.4 illustrates how the

state is interpreted for the kinematic model within a discrete grid environment as

considered in this algorithm.

At t0, the state information is denoted as x0. And the state vector, x0, is found

by considering the 2-neighbor points of xf (i) and is completed assuming that the

vehicle at the neighbor location is approaching the state at tf . In other words, the

37

Figure 3.4: Grid set up in two dimensional space for a mobile robot model.

position information for x0 is gathered from its position in the discrete grid. And

the values that need to be computed in order to complete the state, x0, are the

heading angle (ψ0) and velocity (v0). The heading angle for the neighboring points is

computed by

ψ0 = tan−1

(
ẏ0

ẋ0

)
and the velocity as

v0 =
√
ẋ2

0 + ẏ2
0

Where the directional velocities are calculated as

ẏ0 = vf sin (ψf) +
yf − y0

δt

ẋ0 = vf cos (ψf) +
xf − x0

δt

where δt = tf − t0.

Finally, in order to make use of the solution to the minimum energy controller

in eq. (3.5), the state perturbations δxf and δx0 need to be set. The values are

38

determined by taking the difference between the state at tf , or t0, and the nominal

values, xn, as

δxf = xf − xn

δx0 = x0 − xn

This procedure is done for each of the free neighbors of xf (i). This approach

will ultimately influence the shaping of the navigation function’s contours based on

the final desired reachable state that considers the linear kinematic model of a mobile

robot with the minimum energy controller solution.

3.3 Inverse Dynamics Approach

If the model is chosen as the nonlinear kinematic model during initialization,

then an inverse dynamics based method for finding the control effort is used. The

robot’s state vector is given by x = [x, y, ψ, v]T which represents the position, head-

ing angle and velocity taken at a given instant. The nonlinear kinematic model is

considered as

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = u1

v̇ = u2

for this approach with the path plan algorithm. The control terms are found in the

heading angle turn rate and the acceleration of the system (u1 and u2). The control

values can be rewritten as

u1 = α1 (ψc − ψ)

u2 = α2 (vc − v)

39

where α1 > 0, α2 > 0 are scalar constants and ψc and vc are the guidance commands

for the heading angle and velocity of the system. Then, the two-dimensional control

effort vector is

uNL =

 α1 (ψc − ψ)

α2 (vc − v)

 (3.9)

The control effort computed using equation (3.9) is motivated by the stable nonlinear

trajectory tracking guidance design detailed in chapter 6 along with a proof of its

stability.

The actual commanded heading angle and velocity values are computed based

on the stability analysis of the system. However, for the navigation function algo-

rithm, it is assumed that the commanded heading angle and velocity values are set as

constants in the state at the end of a maneuver, at time tf . Therefore, it is included

as part of the final state, denoted as xf . The final state, xf , is initially set as the

desired reachable state given by xIDgoal = [xg, yg, ψg, vg]
T .

In order to compute the control effort using equation (3.9), the state for the

neighboring points must be completed based on the model. The position information

is extracted from the discrete workspace, but the heading angle and velocity values

still need to be calculated in order to complete the neighbor’s state x0. Figure 3.4

illustrates how the heading and velocity values are found for the mobile robot model.

The values for ψ0 and v0 at the neighbor points to xf are found assuming an

approaching maneuver from x0 to xf over a fixed time step, δt = tf − t0. From

figure 3.4, the heading angle at the neighboring point is taken as an approach angle

directed towards the desired final position, and it is measured positively from the

inertial x-axis in a counter-clockwise direction. So, the heading angle can be found

by

ψ0 = tan−1

(
ẏ0

ẋ0

)
40

where

ẏ0 = vf sin (ψf) +
yf − y0

δt

ẋ0 = vf cos (ψf) +
xf − x0

δt

And the velocity at the neighboring point is found using

v0 =
√
ẋ2

0 + ẏ2
0

These values are computed for each of the free neighboring points of xf . This approach

will influence the shaping of the navigation function’s contours based on the final

reachable state that is given based on the nonlinear kinematic model and the inverse

dynamics approach.

3.4 Simulation Results

The examples presented in this chapter are based in a two-dimensional, flat,

Euclidean workspace. It is assumed that knowledge of the workspace such as the

obstacle regions, model properties, and the objective reachable state are fully available

to the vehicle.

There will be two example environments shown. The first will have no obstacles

present, this example will illustrate the features of the potential field’s formation with

this algorithm. Then, the second example will have some obstacles present, which

will be used to demonstrate the obstacle avoidance capability of the algorithm. The

two methods with this algorithm, the minimum control energy and inverse dynamics

approaches, will be applied to the given scenarios.

3.4.1 Case 1: No obstacles present

For the first example, the final desired reachable state is xMCE
goal = xIDgoal =[

30, 30, π
4
, 0.5

]T
. This results in a path plan that would approach the objective

41

location with a heading angle pointing towards the upper right hand corner of the

workspace.

The navigation function algorithm is used with both of the methods described

in this chapter. The first set of results are shown in figures 3.5 and 3.6. The minimum

control energy approach is shown in figure 3.5 and the inverse dynamics approach in

figure 3.6. The results both direct the path to the final desired reachable state.

Figure 3.5: Minimum control energy path plan and potential field.

The value of umax is set as umax = 7 for both approaches. The effects of the

constraint of umax is seen in both figures as the crescent shape peaked in the potential

contours. This demonstrates that it will block paths from being formed that approach

the objective state from unfavorable directions.

42

Figure 3.6: Inverse dynamics approach, path plan and potential field.

3.4.2 Case 2: Obstacles Present

The following examples demonstrate the obstacle avoidance capability of the

path planner with multiple obstacles present. The final desired reachable state for

these examples is taken as xMCE
goal = xIDgoal =

[
30, 35, π

2
, 0.5

]T
. This objective reachable

state would direct the path to a position in between two obstacles with a resulting

heading angle pointed in the north direction, i.e. ψg = π/2. The resulting path plans

and potential contour levels are shown in figures 3.7 and 3.8.

The results with the path planner show that the paths generated avoid collisions

and direct the vehicle to a state in between two obstacles. The resulting path plans

are different because of the different models being observed.

For the results shown in figures 3.7 and 3.8, the value for umax is set differently.

For the minimum control energy approach, the value is set at umax = 7 and for the

inverse dynamics approach, the value is umax = 10.

43

Figure 3.7: Minimum control energy path plan and potential field.

Figure 3.8: Inverse dynamics approach, path plan and potential field.

Also, from the results shown here and in the previous subsection, it can be seen

that the potential fields only possess one global minimum. This is a result that comes

44

from the wavefront expansion construction method used. This also implies that a

path plan can be formed to the final reachable state from any free configuration in

the given environment. This also implies that the navigation function only needs to

be generated once for the given environment, or if new information is obtained, and

the path can be found as needed.

3.4.3 Effects of Changing umax

The value of umax in the path planning algorithm is set as a user defined pa-

rameter to design the path plans that best approach the final desired state. Finding

a proper value of umax can help shape both the path plan and the potential field,

which is illustrated in figures 3.9-3.12.

Note that the figures which contain white space depict the effects of setting

the value of umax too small. When this is done, the potential field will not be fully

formed as the spaces around the final desired state are deemed too costly and violate

the constraints set.

Overall, the results in figures 3.9-3.12 depict the effects of changing umax for the

given scenarios. The plots reveal the potential level contours in the given environment.

It can be seen from the contour levels that the final approach of the path plan to the

reachable state is affected by the changing the value of umax.

45

Figure 3.9: Effects of tuning umax with MCE approach, first example.

Figure 3.10: Effects of tuning umax with MCE approach, second example.

46

Figure 3.11: Effects of tuning umax with ID approach, first example.

Figure 3.12: Effects of tuning umax with ID approach, second example.

47

CHAPTER 4

Path Planning Extensions

This chapter presents extensions of the work discussed in chapter 3 with the

minimum control effort-based approach. The results in this chapter make use of

modified versions of RRT* and D* to generate path plans with a control effort-

based metric. References [8] and [25] provide a full description of the RRT* and D*

algorithms, respectively, and insight into their ability to find optimal path plans in

the presence of uncertainty since they are special cases of dynamic programming [27].

This chapter will present a summary of the algorithms with added changes to make

use of the minimum control effort metric discussed in section 3.2 of this dissertation.

The objective with this aspect of the dissertation is to explore different con-

struction methods with the minimum control effort metric. The RRT* construction

method was chosen due to its ability to rapidly explore a given environment without

knowledge of the objective. Also, RRT* eliminates the issues with resolution and

curse of dimensionality that arise with grid-based planners such as the method out-

lined in chapter 3. The D* algorithm is chosen because it can account for uncertainty

in the terrain and can be used to quickly regenerate path plans when new information

is acquired. This chapter will summarize both algorithms and give simulated path

planning results demonstrating the desired capabilities.

Similar to the numerical navigation function planner in chapter 3, these ap-

proaches will consider the kinematics of a wheeled mobile robot with a state vector

x = [x, y, ψ, v]T denoting the vehicle’s x and y position coordinates, its heading

angle, ψ and its forward velocity v.

48

4.1 Modified-RRT* Algorithm

The optimal rapid exploring randomized tree algorithm (RRT*) expands a tree

of nodes over the configuration space of the system. Each node in the tree, q, has a

cost J(q), a heading angle, velocity and an edge pointer E(q) which denotes a pointer

to the node it’s connected to in the tree. The pointers are used in the end to traverse

the tree and synthesize a minimum cost path plan. The modified-RRT* algorithm is

presented in flowchart form in figure 4.1 and is summarized in this section in terms

of the original algorithm in reference [8].

Initialize
Set the following parameters:
𝒒𝑖𝑛𝑖𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒
𝐸 𝒒𝑖𝑛𝑖𝑡 = 𝐸𝑚𝑝𝑡𝑦
Insert 𝒒𝑖𝑛𝑖𝑡 into node_list
N = number of samples
Δ𝒒 = maximum step size
𝛿𝑡 = time step to go Δ𝒒
𝜖𝑛𝑒𝑎𝑟 = range to gather
nearest nodes
𝑖 = 0

Main Block

Start 𝑖 = 𝑖 + 1 End𝑖 > 𝑁

𝒒𝑟𝑎𝑛𝑑 = 𝑆𝑎𝑚𝑝𝑙𝑒(𝑖) 𝒒𝑛𝑒𝑎𝑟𝑒𝑠𝑡 =Nearest(node_list, 𝒒𝑟𝑎𝑛𝑑)

𝒒𝑛𝑒𝑤 = 𝑠𝑡𝑒𝑒𝑟 𝒒𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝒒𝑟𝑎𝑛𝑑

Free(𝒒𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝒒𝑛𝑒𝑤)
𝑿𝑛𝑒𝑎𝑟 = Near(node_list, 𝒒𝑛𝑒𝑤, 𝜖𝑛𝑒𝑎𝑟)

Get 𝑗𝑡ℎ node from 𝑿𝑛𝑒𝑎𝑟

𝑿𝑛𝑒𝑎𝑟 𝑗
j = 1, …, m

Free(𝑿𝑛𝑒𝑎𝑟(𝑗), 𝒒𝑛𝑒𝑤)j= 𝑗 + 1

𝐽′ =
1

2
𝒖𝑇𝒖 𝛿𝑡 + 𝐽(𝑿𝑛𝑒𝑎𝑟(𝑗))𝐽 𝒒𝑛𝑒𝑤 > 𝐽′

𝒒𝑚𝑖𝑛 = 𝑿𝑛𝑒𝑎𝑟 𝑗
𝐽 𝒒𝑛𝑒𝑤 = 𝐽′

Set 𝒒𝑚𝑖𝑛 = 𝒒𝑛𝑒𝑎𝑟𝑒𝑠𝑡

Insert 𝒒𝑛𝑒𝑤 into node_list
set E(𝒒𝑛𝑒𝑤) = 𝐪min 𝐽 𝒒𝑛𝑒𝑤 =

1

2
𝒖𝑇𝒖 𝛿𝑡 + 𝐽(𝒒𝑛𝑒𝑎𝑟𝑒𝑠𝑡)

Check if a smaller
cost path exists in
the node_list

Get 𝑗𝑡ℎ node from 𝑿𝑛𝑒𝑎𝑟

𝑿𝑛𝑒𝑎𝑟 𝑗
j = 1, …, m

𝑿𝑛𝑒𝑎𝑟 𝑗 = 𝒒𝑚𝑖𝑛?

j= 𝑗 + 1

Free(𝒒𝑛𝑒𝑤, 𝑿𝑛𝑒𝑎𝑟(𝑗))
𝐽′′ = 𝐽 𝒒𝑛𝑒𝑤 +

1

2
𝒖𝑇𝒖 𝛿𝑡

𝐽 𝑿𝑛𝑒𝑎𝑟 𝑗 > 𝐽′′

𝐸 𝑿𝑛𝑒𝑎𝑟 𝑗 = 𝒒𝑛𝑒𝑤
𝐽 𝑿𝑛𝑒𝑎𝑟(𝑗) = 𝐽′′

Rewire edges
connecting
nodes in 𝑿𝒏𝒆𝒂𝒓

No

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Figure 4.1: Flowchart of modified RRT* algorithm.

Modified-RRT* - Initialization

The initialization block sets several parameters which influence the resulting

tree generated. The number of uniformly distributed samples (N) is used to determine

how much of the given environment is explored by the algorithm. A higher value of

49

N leads to a larger portion of the environment being explored. Also, as N →∞, the

minimum cost path approaches the optimal value with a probability of 1 [8].

Other quantities set during initialization are the maximum step size (∆q) and

the maximum time step (δt) required to go that distance from a node. The time step

is used to complete the state of the node and compute its cost. The maximum search

range (εnear) is used to find the nodes in the neighborhood that can be rewired to

find an optimal traversal.

The starting point and state (qinit) is also set during initialization, with a cost of

0, and placed within the node list with an empty edge pointer (E(qinit) = Empty).

The node list is used in the algorithm to keep track of the nodes in the tree and their

associated cost and edge pointers.

Modified RRT* - Main Block

The first step is to extract the ith sample of the environment, denoted as qrand.

The random sample is sent to the Nearest(node-list, qrand) procedure which extracts

the nearest node qnearest from the node list. The nearest node and the random node

are used to find the new node, denoted as qnew which lies within ∆q of qnearest using

the steer(qnearest, qrand) procedure.

An illustration of how qnew is obtained using the steer procedure is given in

figure 4.2. Essentially, if the distance between qnearest and qrand is greater than

∆q, then the position of qnew is found by interpolating along the line connecting

qnearest and qrand and the time step (δt) is associated to travel from qnearest to qnew.

Conversely, if the distance from qnearest to qrand is smaller than ∆q, then qnew = qrand

and δt is found through interpolation.

50

Figure 4.2: Steer procedure within RRT* algorithm.

Once qnew is obtained, it is checked by the Free(q1,q2) procedure, which is

used to determine if the edge connecting two nodes, say q1 and q2, intersects with

any obstacles present. If the line segment is free, then the set of neighboring nodes

(within a range εnear of qnew) from the node list is obtained, denoted by Xnear. Each

of the nodes in Xnear is checked to find if a less costly connection can be made to

qnew. The optimal connection to qnew is denoted as qmin in the algorithm flowchart.

This procedure is done a second time to ‘rewire’ the connections in the tree if it is

more optimal for them to connect through the new node, i.e. if E(Xnear(j)) = qnew

is cheaper than the previous connection.

After the rewiring phase is complete, the node qnew is inserted into the node list

with an edge pointer to qmin, i.e. E(qnew) = qmin and its associated cost is obtained

as

J(qnew) =
1

2
(uTu)δt+ J(qmin)

51

which is the same form as equation 3.3 in chapter 3. The control effort vector (u) is

obtained using the minimum control energy approach as

u = BTΦT (tf , t) W−1
R (t0, tf) [δxf −Φ (tf , t0) δx0] (4.1)

which is the same control effort in equation 3.5, with δt = tf−t0. The main difference

in this algorithm, to what was covered in chapter 3, is that the state is completed by

assuming a maneuver going from the state at node qmin to the state at qnew, denoted

as the initial state x0 and the final state xf , respectively, in eq. (4.1).

The main block is executed until the number of random samples has been

exhausted. At the end of the algorithm, a goal location is chosen and is connected

to the closest node within the generated tree. Then, the edge pointers are used to

find the minimum cost path within the generated tree. Simulation results using this

procedure are shown at the end of this chapter.

4.2 Modified D* Algorithm

The modified D* algorithm is the next path planning procedure covered in this

dissertation. The modified-D* algorithm is very similar to the wavefront expansion

method from chapter 3. The key difference lies in how each grid point is sorted

through the process and through the use of back-pointers to rewire and connect

optimal traverses over the grid. Otherwise, the method to assign a cost between

two nodes and complete the state information is the same as the approach covered in

section 3.2. The modified-D* algorithm is presented in flowchart form through figures

4.3 and 4.4 and is summarized in this section in terms of the original algorithm from

reference [25].

Within the D* algorithm, each node q in the grid has the following properties

associated with it: A tag (t(q)) which can be set to New, Open or Closed; a cost

52

(h(q)), a key value (k(q)) for sorting the nodes, and a back-pointer (b(q)) which

connects q to the node with the smallest cost as well as an associated heading angle

and velocity to complete its state. Note, that the tag of a node represents whether it

has been assigned a cost value, i.e. whether it is New or Open, and if that cost value

is considered optimal then it is set to closed.

To add the minimum control energy approach with the D* algorithm, the path

costs for traversing between two nodes say q1 and q2, denoted by c(q1, q2) in the

flowchart depicted in figure 4.4, is evaluated as

c(q1, q2) =
1

2
(uTu)δt

where

u = BTΦT (tf , t) W−1
R (t0, tf) [δxf −Φ (tf , t0) δx0] (4.2)

and x0 denotes the state at node q1 and xf is the state of node q2. And the state of

a node is completed based on the same approach outlined in section 3.2.

Main D* Procedure

An illustration of the main D* algorithm in flowchart form is given in figure

4.3, also called Move-Robot in reference [25].

53

Initialize

Costmap

Workspace

Obstacles

Set the tag for each free node as

𝑡 𝒒𝑓𝑟𝑒𝑒 = 𝑁𝐸𝑊

𝐼𝑛𝑠𝑒𝑟𝑡(𝒒𝑔𝑜𝑎𝑙 , 0) – Insert the goal into

the open list with cost = 0

Val = 0
Set 𝛿𝑡
Set 𝒒𝑠𝑡𝑎𝑟𝑡 - Starting node for path plan

Note that each node q has the
following properties:

t(q) – Node tag = New, Open, Closed
h(q) – Cost
K(q) – Key value
b(q) – Backpointer

Start

Val = Empty OR
𝑡 𝒒𝑠𝑡𝑎𝑟𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑑

val = Process_State()

Add 𝒒𝑠𝑡𝑎𝑟𝑡to the path plan
and set 𝒒𝑅 = 𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑅 = 𝒒𝑔𝑜𝑎𝑙?

Output Path Plan

Find the 2-neighbors of
𝒒𝑅

Get 𝑗𝑡ℎneighbor point
𝒒𝑁 𝑗 , j = 1, …, 8

𝑠 𝒒𝑅, 𝒒𝑁 𝑗 ≠ 𝑐 𝒒𝑅, 𝒒𝑁 𝑗

Val = Modify_Cost 𝒒𝑅 , 𝒒𝑁 𝑗 , 𝑠 𝒒𝑅 , 𝒒𝑁 𝑗𝑣𝑎𝑙 < ℎ(𝒒𝑅)val = Process_State()

Stop

𝒒𝑅 = 𝑏 𝒒𝑅
Add 𝒒𝑅 to the path plan

𝑗 = 𝑗 + 1

If new information obtained, then
rewire costs in affected areas

𝒒𝑓𝑟𝑒𝑒

Main Block

No

No

No

Yes

Yes

Yes

Start forming path plan

No

Yes

Figure 4.3: Main algorithm flowchart for the modified/original D* algorithm.

From the flowchart in figure 4.3, the initialization block is nearly identical to

the initialization of the navigation function from chapter 3. The goal state is set,

with a cost of 0 and the environment is discretized and the free space, denoted as

qfree is separated from the obstacle areas. Also, for this algorithm, the tag for each

of the nodes in the free space is set to New, i.e. t(qfree)= New. The operation

Insert(q, h(q)) in the algorithm sets the tag of node q to open, i.e. t(q)=Open, and

assigns the node a cost and key value of h(q). Within the initialization, the goal

node, denoted as qgoal, is set to open and given a cost and key of zero.

Also, during initialization, the time step to traverse between two nodes in the

grid (δt) is set and the starting node is identified and the parameter val is set to not

be empty. Setting the start node and the parameter val are conditions to determine

when the main process stops. The D* algorithm is designed to stop when the starting

54

node has been visited and assigned a tag of t(qstart)=Closed or if the parameter val

is empty.

The propagation of the cost to each of the nodes in the grid is handled by

the Process-State procedure, illustrated in figure 4.4. The process-state procedure is

iterated upon, assigning costs to each node, and stops when either it has processed

the starting node qstart or if it returns an empty value. Once the process-state loop

has been evaluated, the main block in figure 4.3 starts to find a path plan. The

path plan is generated from the starting node, qstart, following back-pointers until it

reaches the goal.

The main block of the algorithm has a built in mechanism such that whenever a

change in the sensed cost between two nodes, say node q1 to node q2, is different from

the cost associated with the planned cost. Then, the grid points in the affected areas

are ‘rewired’ to find the optimal path. Note that the sensed cost in the flowchart is

denoted by s(q1,q2) and the current path cost between the two nodes is c(q1,q2).

When this discrepency occurs, the Modify-Cost procedure is employed to change

the cost in the affected areas and then run the process-state procedure until the path

is optimally ‘rewired.’ This mechanism is what makes the D* algorithm attractive

in that it only makes changes to the cost in the affected areas and doesn’t need to

completely regenerate the cost map over the grid to find the path plan.

Process-State Procedure

The process-state procedure is at the center of the D* algorithm and is given

in flowchart form in figure 4.4 and is based on reference [25]. It is integral to how

the nodes are processed, sorted and assigned costs. At the start of the process-state

procedure, the node with the minimum key value and that has its tag set to open is

55

extracted, denoted by X in figure 4.4. The neighboring nodes of X are gathered and

denoted by Y(j) where the index j denotes the jth neighbor node.

Start

X = Min_State()

End

X = Empty

𝑘𝑜𝑙𝑑 = 𝑘(𝑿)
Find neighbors Y of X

Get 𝑗𝑡ℎneighbor Y(j),
j = 1, …, 8

𝑗 = 𝑗 + 1𝑗 > 8

𝑡 𝒀 𝑗 = 𝑁𝑒𝑤 𝑂𝑅

𝑏 𝒀 𝑗 = 𝑋 && ℎ 𝒀 𝑗 ≠ ℎ 𝑿 + 𝑐 𝑿, 𝒀 𝑗

𝑏 𝒀 𝑗 ≠ 𝑿 &&

ℎ 𝒀 𝑗 > ℎ(𝑿) + 𝑐 𝑿, 𝒀 𝑗

ℎ 𝑿 > 𝑘𝑜𝑙𝑑

𝑏 𝒀 𝑗 ≠ 𝑿 &&

ℎ 𝑿 > ℎ 𝒀 𝑗 + 𝑐 𝒀 𝑗 , 𝑋b(Y(j)) = X
Insert(Y(j), h(X) + c(X,Y(j)))

Yes

No

Val = Process_State()

No
(Lower State)

No

No

Yes
(Raised State)

Yes

Yes

No
t(X)=Closed

Insert(X, h(X))

Yes

Yes

Yes

No

No

No

t(Y(j) = Closed ℎ 𝒀 𝑗 > 𝑘𝑜𝑙𝑑

𝑗 = 𝑗 + 1

b(X) = Y(j)
Insert(X, h(Y) + c(Y(j), X))

Insert(Y(j), h(Y(j)))
Yes Yes

No

Output
Val = Min_Val()

Figure 4.4: Process-State procedure of D* algorithm.

Through process-state, the path costs of Y(j) are evaluated and checked if its

path cost h(Y(j)) can be reduced. The process directs the back-pointers of Y(j)

such that they direct the plan along an optimal path cost route. This is done for each

neighbor of X. The output of the process-state procedure is the value of the key of

X, denoted as k(X). This procedure is invoked to reduce or change the costs in the

environment.

4.3 Simulation Results

The simulation results in this chapter are presented for each algorithm with a

similar environment setup. In both scenarios, there is a single obstacle present in

56

the middle of the environment and a path plan is generated to an objective in the

far-upper corner of the two-dimensional environment. The only difference is that the

modified-D* algorithm considers an environment discretized into a 60x60 grid and

the modified-RRT* algorithm considers a 30mx30m environment.

4.3.1 Modified RRT* Path Plan Results

The results using the modified RRT* algorithm are presented in this subsec-

tion. In the simulation examples given, the same environment is used but with a

different number of samples taken of the 2D environment. For each case the following

parameters are set as ∆q = 0.5 m, δt = 1 sec., εnear = 2 m, and the initial state is

set as qinit = [0, 0, 45 deg., 0 m/s]T . The first case has 500 samples taken and the

second has 1000. The change in the number of samples is chosen to illustrate how it

affects the exploration of the given environment.

The resulting tree expanded through the given environment is shown in figures

4.5 and 4.6 for the 500 sample and 1000 sample cases respectively.

Figure 4.5: Exploring Tree using modified-RRT* with 500 samples

57

Figure 4.6: Exploring Tree using modified-RRT* with 1000 samples

From the results, it is evident that when the number of samples increases, so

does the area of exploration. Also, from the figures, the tree is expanded without

any knowledge of where the goal is located making this approach suitable for cases

when the destination is not entirely obvious or given. One potential drawback of

this approach is that as the number of samples increase, so does the computational

burden of the algorithm.

The resulting path plans are given in figures 4.7, 4.8 for the case with 500

samples and in figures 4.9 and 4.10 for the case with 1000 samples. It is important

to note that since this is a random sampling based method, the path plans generated

will rarely be the same. The green x marks in the figures represent the uniformly

distributed random samples of the 2D configuration space.

58

Figure 4.7: Exploring tree with generated path plan overlayed using 500 samples.

0 5 10 15 20 25 30
X (m)

0

5

10

15

20

25

30

Y
 (

m
)

Modified RRT* Path Plan through 500 iterations
Start
Goal
Path Plan
data1

Figure 4.8: Generated path plan using modified-RRT* with 500 samples.

59

Figure 4.9: Exploring tree with generated path plan overlayed using 1000 samples.

0 5 10 15 20 25 30
X (m)

0

5

10

15

20

25

30

Y
 (

m
)

Modified RRT* Path Plan through 1000 iterations
Start
Goal
Path Plan
data1

Figure 4.10: Generated path plan using modified-RRT* with 1000 samples.

60

4.3.2 Modified D* Path Plan Results

This section provides the simulated path plans generated using the modified D*

algorithm. For these results, the objective goal state is set as qgoal = [50, 50, 0, 0.5]T ,

the time step is δt = 10 seconds. There are two sets of results presented. The first

result has just the single obstacle in the middle of the environment. The result for

the first case is shown in figure 4.11 and shows that the path plan is formed to the

objective state. An important feature of D*, evident in figure 4.11, is that the cost

contours in the right-hand figure show that a cost value is not assigned to all the

points in the environment. This result is indicative of the fact that the modified-D*

algorithm stops once it processed the starting node qstart and then generated its path

plan.

Figure 4.11: Modified-D* path plan with no change in terrain detected.

The case presented in figure 4.11 is also representative of a situation before

any change in the terrain is detected. However, say that a change in the terrain was

61

detected in the area where the original path plan was formed, portrayed in figure 4.12.

And that the terrain was considered rough to traverse. Hence, this area is assigned

an increased cost penalty. Then, the modify-cost mechanism of the D* algorithm is

implemented. This allows for the cost map in the affected area to be rewired and the

path plan is regenerated.

This scenario is illustrated in figure 4.12 with a modified cost map and path

plan. It is evident that area most affected by the new information on the cost map lie

in the vicinity of the rough terrain, and the rest of the costs remain the same. This is

demonstrative of how the D* algorithm can quickly adapt to uncertain terrain types

and apply newly sensed information in an optimal fashion.

Figure 4.12: Modified-D* path plans with a change in terrain traversability detected.

4.3.3 Comparing the Path Plan Algorithms

An example scenario is used to compare the different path planning algorithms

presented in this dissertation. This scenario has multiple obstacles present in the

62

environment. The resulting path plans are illustrated in figure 4.13. The results were

obtained using the modified wavefront expansion based navigation function (WFE)

from chapter 3, and the modified RRT* and D* algorithms in this chapter. The main

parameters set for each of the algorithms are summarized in table 4.1.

0 10 20 30 40 50 60
X (m)

0

10

20

30

40

50

60

Y
 (

m
)

Path Plan Comparison

Start
Goal
RRT*
WFE
D*

Figure 4.13: Comparative example with the different planning algorithms.

Table 4.1: Main parameters used with respective algorithms.

RRT* 2000 samples, ∆q = 1m, εprox = 20m
WFE and D* 60x60 grid, δt = 10 sec., xgoal = [30, 35, π/2, 0.5]T

From the results illustrated in figure 4.13, it is evident that each of the al-

gorithms can form a direct path plan to the objective. The modified D* and the

63

modified wavefront expansion based navigation function, denoted as WFE in the fig-

ure, produce similar results. The difference between the D* and WFE path plans can

be attributed to the methodology involved with their respective algorithms.

While the path plans are each able to reach the objective, it is important to note

the difference in computation time required to generate these results. A summary of

the computation time with each algorithm is given in table 4.2

Table 4.2: Computation time to generate path plan.

Algorithm Time
Modified-WFE 6.76 sec.
Modified-D* 35.7 sec.

Modified-RRT* 30 min.

From table 4.2, it is shown that the navigation function path planning algorithm

is the quickest. This is due to the fact that it has no ‘re-wiring’ steps to check

for optimal traverses, since it is using the wavefront expansion (WFE) construction

method. Also, note that the modified D* and RRT* algorithms take more time due to

the approach used to determine the path costs. By using the minimum control energy

approach with these algorithms to find the path costs, the computational burden

associated with checking for optimal paths is increased. Moreover, the parameters

used with the modified RRT*, specifically setting εprox = 20m, meant that a larger

portion of the nodes in the exploring tree needed to be searched for ‘re-wiring’ which

increases the computation time.

A subject for future research into these algorithms can be posed as an inquiry

into the conditions where the resulting path plans are identical. However, the results

put forth in this dissertation serve as an introduction to the algorithms with insight

into their capabilities. Ultimately, the main differences demonstrated in this disserta-

64

tion can be attributed to the different nuances involved with generating the resulting

path plans.

65

CHAPTER 5

State Dependent Coefficient Based Nonlinear Model Predictive Control

The primary guidance technique discussed in this dissertation uses a nonlinear

model predictive control (NMPC) approach and is presented in this chapter. The

procedure is motivated by the work discussed in [45] where the performance of the

traditional approach of NMPC is compared with that of a state dependent coefficient

(SDC) approach. The objective in this dissertation is to present this method for an

autonomous mobile robot and to verify its trajectory tracking capability.

5.1 State Dependent Coefficient Representation of the Vehicle Kinematics

Given a general nonlinear system of the form

ẋ = f(x) + g(x)u

a state-space representation of the system is obtained wherein the system matrices

are given as functions of the current state of the system as

ẋ = A(x)x + B(x)u

y = C(x)x + D(x)u (5.1)

where x ∈ <n, u ∈ <m, y ∈ <no are respectively the state, input and output vectors

and A(x) ∈ <n×n, B(x) ∈ <n×m, C(x) ∈ <no×n, D(x) ∈ <no×m are the continuous

state dependent system matrices in the SDC factored form. The pairs (A(x),B(x))

and (A(x),C(x)) are considered controllable and observable ∀x ∈ <n respectively.

66

In general, the formation of SDC matrices for the system are not unique unless

observing a scalar system [30–33]. Therefore, different SDC forms may be obtained

for a given system and solutions to the optimization problems posed may vary.

Two particular SDC factorizations of the kinematics are derived for the results

in this chapter. The nonlinear kinematic equations for a mobile robot, also given in

eq. (2.1), are

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = u1

v̇ = u2

(5.2)

For the results, it is assumed that the full state is available at each instant, i.e.

the system output matrix C(x) = C is considered as the constant identity matrix,

i.e. I ∈ <4×4. Also, from the kinematic equations, it is evident that D(x) = 0 and

the input matrix B(x) = B is a constant matrix given by

B =

0 0

0 0

1 0

0 1

(5.3)

And one possible solution for the SDC factored A (x) matrix can be given by

A (x) =

02×2 A12 (x)

02×2 02×2

where

A12 (x) =

 v
(
ψ3

4!
− ψ

2!

)
1

v cos
(
ψ
2

) (
1
2
− ψ2

233!
+ ψ4

255!

)
sin
(
ψ
2

)
cos
(
ψ
2

)
 (5.4)

67

This result is derived using the following trigonometric identity and expansions

sin (2ψ) = 2 sin (ψ) cos (ψ)

sin (ψ) = ψ − ψ3

3!
+
ψ5

5!
− ...

cos (ψ) = 1− ψ2

2!
+
ψ4

4!
− ...

The above derivation of the A12 quadrant in eq. (5.4) has some issues in implemen-

tation where the heading angle is limited from −π
2
≤ ψ ≤ π

2
. Therefore, another

formulation of the A12 quadrant is derived as

A12 (x) =

 v
(
ψ3

4!
− ψ

2!

)
1

v
(
−ψ2

3!
+ ψ4

5!

)
ψ

 (5.5)

Note that with both SDC matrix results from eqs. (5.4) and (5.5), the psuedo-linear

system A(x) matrix becomes rank deficient when v = 0. This complication can

be addressed by adding a state constraint on the velocity so that v > 0 in the

solution. Also, note that if ψ = 0, the resulting SDC matrix with A12 coming from

eq. (5.5) becomes uncontrollable. Therefore, in implementation, the A(x) matrix

is switched from using the A12 quadrant from eq. (5.5) to using the formulation in

eq. (5.4) whenever ‖ψ‖ ≤ ψtol. Where ψtol is a tolerance value defined in the interval

[−π/2, π/2].

Next, a discrete-time equivalent of the system shown in eq. (5.1) can be obtained

by introducing a zero-order-hold (ZOH) with a specified sample time (∆t). With the

ZOH, a sampled point is held constant over a sampled time interval. The smaller

the sample time, the more accurate the approximation of the continuous signal. The

discrete-time equivalent system is given in the following form

xk+1 = Φ(xk)xk + Γuk

yk = Cxk (5.6)

68

where Φ(xk) and Γ are discrete approximations of the continuous A(x) and B ma-

trices respectively. The discrete system matrices in eq. (5.6) are of the SDC form and

can be considered as constants over the sampling time, ∆t = tk+1 − tk, where the

interval is given by [tk, tk+1).

The discrete-time system in eq. (5.6) can be placed in batch form for a N-step

prediction horizon as

Xk = F(xk)xk + H(xk)Uk (5.7)

where Xk, F(xk), H(xk), Uk are defined as:

Xk =

xk

xk+1

...

xk+N−1

, Uk =

uk

uk+1

...

uk+N−1

, F(xk) =

I

Φ(xk)

...

ΦN−1(xk)

H(xk) =

0

Γ 0

Φ(xk)Γ Γ 0

...
...

.

ΦN−2(xk)Γ ΦN−3(xk)Γ . . . Γ 0

And the terminal state at the end of the prediction horizon is defined as

xk+N = ΦN(xk)xk + Γ̄(xk)Uk (5.8)

where

Γ̄(xk) ,

[
ΦN−1(xk)Γ ΦN−2(xk)Γ · · · Φ(xk)Γ Γ

]

69

5.2 Nonlinear Model Predictive Control Design

The guidance commands are obtained as the solution to the minimization of

the finite-horizon linear quadratic tracking cost function with free-final state and is

subject to both state and input constraints. The cost function is given as

J(xk,x
r
k,uk) =

N−1∑
j=0

[
(xk+j − xrk+j)

TQ(xk+j − xrk+j) + uTk+jRuk+j

]
+(xk+N−xrk+N)TQf (xk+N−xrk+N)

(5.9)

where xrk ∈ <n in general denotes the reference trajectory at the kth time step. The

above cost function can be placed into batch form for the SDC system as

J(xk,x
r
k,uk) = (Xk −Xr

k)
T Q̄N (Xk −Xr

k)+UT
k R̄NUk+

(
xk+N − xrk+N

)T
Qf

(
xk+N − xrk+N

)
where

Xr
k =

xrk

xrk+1

...

xrk+N−1

is the batch form of the reference trajectory over the N-step horizon and Q̄N =

diag {Q, · · · , Q} and R̄N = diag {R, · · · , R} are block diagonal matrices consist-

ing of the state and input weighting matrices respectively.

After proper substitution, the objective function can be rewritten in a quadratic-

like form as

J(xk,x
r
k,uk) = UT

k

(
H(xk)T Q̄NH(xk) + R̄N + Γ̄(xk)

T
Qf Γ̄(xk)

)
Uk

+ 2
[
(F(xk)xk −Xr

k)
T Q̄NH(xk) + (Φ(xk)Nxk − xrk+N)TQf Γ̄(xk)

]
Uk

+ (F(xk)xk −Xr
k)
T Q̄N(F(xk)xk −Xr

k)

+ (Φ(xk)Nxk − xrk+N)TQf (Φ(xk)Nxk − xrk+N) (5.10)

70

The objective function depends on the current state of the system and is calculated

at the beginning of every sample interval. Also, the weight matrix for the final state,

Qf , is obtained by solving the state-dependent discrete algebraic Riccati equation

(SDDARE) at time instant k. The SDDARE is of the form

P(xk) = Φ(xk)
TP(xk)Φ(xk)−Φ(xk)

TP(xk)Γ
(
R + ΓTP(xk)Γ

)−1
ΓTP(xk)Φ(xk)+Q

(5.11)

where Qf is set equal to the solution P(xk). The solution to eq. (5.11) is found at

each sample instant k.

5.3 Input and State Constraints

The constraints are used in this formulation to ensure that the tracking capa-

bilities of the system are feasible. The nonlinear kinematic equations for the vehicle

represented in eq. (5.2) enable constraints to be placed on the heading angle turn

rate and acceleration of the vehicle without added complication. Overall, the form

of the kinematics chosen enables constraints to be placed on the system’s velocity,

heading angle, its turn rate and its forward acceleration. In general, the input and

state constraints are represented by the following inequalities

ulb ≤ uk+j ≤ uub, j = 0, 1, · · · , N − 1

glb ≤ Gxk+j ≤ gub, j = 0, 1, · · · , N
(5.12)

71

where the subscripts lb and ub denote the lower and upper bounds respectively of the

constraints and the matrix G is considered as an output matrix for the states that

are constrained. The constraints can be placed in batch form as

ulb

ulb
...

ulb

≤ Uk ≤

uub

uub
...

uub

,

glb

glb
...

glb

≤ ḠN (Fxk + HUk) ≤

gub

gub
...

gub

(5.13)

where ḠN = diag {G, · · · , G} is a block diagonal matrix formed by the output

matrix G. Then, the constraints of the system need to be incorporated into a single

matrix equation of the form

M(xk)Uk ≤ Υ(xk) (5.14)

where

M(xk) =

 MU

ḠNH(xk)

 , Υ(xk) =

 Ub

g − ḠNF(xk)

and

MU =

 Im×m

−Im×m

 Im×m

−Im×m

. . . Im×m

−Im×m

72

where Im×m is the m×m identity matrix. Also,

Ub =

 uub

−ulb

 uub

−ulb

... uub

−ulb

, g =

 gub

−glb

 gub

−glb

... gub

−glb

The guidance commands are synthesized by minimizing the quadratic cost function

in eq. (5.10), subject to the input and state constraints in eq. (5.14) using quadratic

programming.

5.4 Guidance Command Synthesis Using the Linear Matrix Inequality (LMI) Form

For readability with the following LMI formulation, the notation for state de-

pendence is changed from using brackets to a subscript, in other words (·)(xk) will

be cast as (·)k. First, note that the quadratic-like cost function in eq. (5.10) can be

decomposed into the following form

J(xk,x
r
k,uk) = J1(xk,x

r
k,uk) + J2(xk,x

r
k,uk)

where

J1(xk,x
r
k,uk) = UT

kWkUk + ωTk Uk + [Fkxk −Xr
k]
T Q̄Nk [Fkxk −Xr

k]

J2(xk,x
r
k,uk) =

(
ΦN
k xk + Γ̄kUk − xrk+N

)T
Qfk

(
ΦN
k xk + Γ̄kUk − xrk+N

)

73

and Wk and ωk are defined as

Wk = HT
k Q̄NkHk + R̄N

ωk = 2HT
k Q̄T

Nk [Fkxk −Xr
k]

Then, for each xk, there must exist a set of (Qfk, Qk, Rk, Uk) that satisfy the

following conditions

J1(xk,x
r
k,uk) ≤ γ1

J2(xk,x
r
k,uk) ≤ γ2 (5.15) γ1 − 2xTkFT

k Q̄NkHkUk − xTkFT
k Q̄NkFkxk UT

k

Uk (HT
k Q̄NkHk + R̄Nk)

−1

 ≥ 0 (5.16)

 γ2 [ΦN
k xk + Γ̄Uk]

T

ΦN
k xk + Γ̄Uk Q−1

fk

 ≥ 0 (5.17)

Q−1
fk (ΦkQfk − ΓYk)

T (√
QkQ

−1
fk

)T (√
RkYk

)T
ΦkQfk − ΓYk Q−1

fk 0n×n 0n×n
√

QkQfk 0n×n In×n 0n×n
√

RkYk 0n×n 0n×n In×n

≥ 0 (5.18)

M(xk)Uk ≤ Υ(xk) (5.19)

where Yk = KkQ
−1
fk , and In×n, 0n×n denote the n× n identity matrix and n× n null

matrix respectively. The set of LMIs given above are used to establish the feasibility

of the control design and are important for proving stability. When a suitable set

of (Qfk, Qk, Rk) satisfying the above conditions are obtained, the input over the

N-step horizon, U∗K , can then be found through the following quadratic programming

problem:

U∗k = min
Uk

γ1 + γ2

74

subject to the constraints in eqs. (5.16), (5.17), (5.18) and (5.19). And upon solving

the quadratic programming problem, u∗k can be obtained by

u∗k = [Im×m 0m×m · · · 0m×m]U∗k (5.20)

which will extract the guidance commands corresponding to the kth time step to the

system in eq. (5.2). The stability of the closed loop system using the SDC-based

NMPC guidance law is given in the next section.

5.5 Stability of Constrained, Sampled-Data, SDC-based NMPC

Without loss of generality, the stability for a general regulator system is pre-

sented. In other words, the cost function in eq. (5.9) is rewritten in SDC form as

J(xk,uk) =
N−1∑
j=0

[
xTk+jQ(xk)xk+j + uTk+jR(xk)uk+j

]
+ xTk+NQf (xk)xk+N (5.21)

or in batch form as

J(xk,Uk) = XT
k Q̄N(xk)Xk + UT

k R̄N(xk)Uk + xTk+NQf (xk)xk+N

Then, in order to show stability for the constrained sampled-data NMPC formulation,

the cost monotonicity relation must be satisfied and the system must be feasible at

the start of each sample interval [29, 45]. The left hand side of the cost function can

be written to include information of the current time step, k, and prediction horizon,

N , as J(xk,Uk, k,N). Then, the optimal cost can be represented as J∗(xk,U
∗
k, k,N).

Then, the cost monotonicity relation for an optimal cost J∗(xk,U
∗
k, k,N) is given by

J∗(xτ ,U
∗
τ , τ, N + 1) ≤ J(xτ ,U

∗
τ , τ, N) (5.22)

for any τ ≤ N and where U∗τ is the optimal control derived from the cost function.

The theorem used to prove that a system satisfies the cost monotonicity relation in

eq. (5.22) is given below and can be found in reference [29].

75

Theorem 1. If the system is feasible, and if the matrix Qf (xk) ∈ <n×n in eq. (5.21)

satisfies the following inequality

Qf (xk) ≥ Q(xk)+K(xk)TR(xk)K(xk)+(Φ(xk)− ΓK(xk))T Qf (xk) (Φ(xk)− ΓK(xk))

(5.23)

for some matrix K(xk) ∈ <m×n, then the optimal cost satisfies the cost monotonicity

relation in eq. (5.22) [29].

Notice that by having Qf (xk) as the solution to the SDDARE in eq. (5.11), it

can be shown that the inequality in equation (5.23) holds by letting

K(xk) =
(
R(xk) + ΓTQf (xk)Γ

)−1
ΓTQf (xk)Φ(xk)

Additionally, the linear matrix inequalities (LMI) given in eqs. (5.16)-(5.19) are

formed to establish feasibility of the system. Note that eq. (5.18) is the LMI form for

the cost monotonicity condition [29].

5.6 Simulation Results

For the results presented, the navigation function path plan results from chapter

3 are used. And the reference trajectory is generated along the path plan as described

in section A.5.1 with a desired time to reach the goal set at tgoal = 180 seconds (or 3

minutes). The sampling time used to discretize the SDC system is chosen as ∆t = 0.1

seconds and the prediction horizon length is chosen as N = 20 time steps. Also, the

input and state weighting matrices are chosen as

R =

 0.5 0

0 0.5

 , Q =

5 0 0 0

0 5 0 0

0 0 5 0

0 0 0 5

(5.24)

76

The input constraints chosen for the simulation are chosen as

−0.5 (rad/s) ≤ ψ̇ ≤ 0.5 (rad/s)

−0.15 (m/s2) ≤ v̇ ≤ 0.15 (m/s2)
(5.25)

for the heading angle turn rate and forward acceleration respectively. The state, or

output, constraints are placed on the heading angle and velocity respectively as

−π (rad) ≤ ψ ≤ π (rad)

0.001 (m/s) ≤ v ≤ 1 (m/s)
(5.26)

These constraints are chosen based on experiments conducted with the experimental

platform in the Aerospace Systems Laboratory at the University of Texas at Arling-

ton. However, the lower bounds of 0.001 m/s for the robot’s velocity is chosen due

to the lack of controllability with the SDC form of the kinematic equations (from

eq. (5.1)) when the velocity is equal to zero.

The simulation results with the above mentioned information illustrate the con-

strained trajectory tracking control’s ability to follow the designed trajectories leading

to the objective in each case. Furthermore, the results demonstrate the performance

of the guidance law design to act within the limitations set by the input and state

constraints of the system.

77

Figure 5.1: Example 1 constrained trajectory tracking with SDC based NMPC guid-
ance commands and an MCE path plan.

Figure 5.2: Example 2 constrained trajectory tracking with SDC based NMPC guid-
ance commands and an MCE path plan with obstacles.

78

Figure 5.3: Example 3 constrained trajectory tracking with SDC based NMPC guid-
ance commands and an ID path plan.

Figure 5.4: Example 4 constrained trajectory tracking with SDC based NMPC guid-
ance commands and an ID path plan with obstacles.

The results show tracking of the path plan in the x and y position plots and

also show the tracking of the velocity and heading angle reference signals during

the simulation. It is evident that the spikes present in the tracking of the velocity

79

correspond to the sudden change of the heading angle as the vehicle moves along the

trajectory. Also, in figure 5.3 it can be seen that the tracking performance is less

accurate, this is due to the small sudden changes in the path plan as it shapes its

approach to the objective and the controller is tracking subject to the input and state

constraints.

Also, note that the spikes in the reference signals, evident in figures 5.2 and 5.4,

result from the linear interpolation method used to generate the trajectory to track.

Even though these spikes in the reference signals occur, they do not appear to affect

the tracking performance of the SDC based nonlinear model predictive control design

implemented on the mobile robot model.

80

CHAPTER 6

Nonlinear Guidance Law Design

Integrator backstepping is one of the nonlinear guidance design techniques cho-

sen for a mobile robot to close the loop in the framework in combination with the

navigation function path planner. The nonlinear kinematic model is described in

section 2.2.1, and it is evident that the position elements of the state are directly

influenced by the velocity and heading angle. Thus, the guidance commands derived

in this chapter are designed to directly influence the velocity and heading angle with

the overall objective of achieving stable trajectory tracking along a reference path

generated by the navigation function algorithm.

This chapter will discuss the guidance law design and prove its stability using

Lyapunov stability theory. The first section will detail the initial guidance law de-

sign, which influences the inverse dynamic approach used by the navigation function

path planner, outlined in section 3.3. Then, the guidance law implemented within

the framework, is derived. After the guidance law derivations, the stability of the

resulting system is shown with extensions toward considering the presence of exter-

nal disturbances. Finally, this chapter will conclude by presenting and discussing

the simulation results. Experimental results on a mobile robot platform using this

guidance design are summarized in chapter 8.

81

6.1 Guidance Law Design for Path Plan Algorithm

The kinematic equations for the vehicle considered in the path plan algorithm

are given in section 2.2.1 in eq. (2.1) as

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = u1

v̇ = u2

The guidance commands u1 and u2 are for the turn rate and forward acceleration of

the robot. The guidance commands that result from eq. (2.1) are considered only for

the path planning algorithm and their stability is shown to prove their feasibility.

Proposition 1. Given a 2-D, C2 trajectory with references values, [xr, yr, ẋr, ẏr, ẍr, ÿr].

Then, the guidance commands in equations (6.1), and (6.2) along with the kinemat-

ics defined in equation (2.1) will guarantee that ||x − xr|| → 0, and ||y − yr|| → 0 as

t→∞

u1 = ψ̇d − λψeψ (6.1)

u2 = v̇d − λvev (6.2)

where λψ > 0, λv > 0, and where ψd, vd, ψ̇d and v̇d are nonlinear functions of the

reference trajectory, the state and the state tracking errors; also, eψ = ψ − ψd and

ev = v − vd.

The guidance commands are formulated to guarantee stability, in the sense of

Lyapunov, with a backstepping-like approach. Note, the position tracking errors are

given by ex = x − xr, ey = y − yr and their time derivatives are ėx = ẋ − ẋr and

ėy = ẏ − ẏr. The desired heading and velocity signals, ψd and vd respectively, are

82

prescribed such that the position tracking error dynamics decay exponentially, i.e.

ėx = −λxex and ėy = −λyey for λx > 0, andλy > 0. It follows that

vd cos (ψd) = ẋr − λxex

vd sin (ψd) = ẏr − λyey
(6.3)

Then, using equation (6.3), the desired heading and velocity signals are obtained as

ψd = tan−1

(
yr − λyey
xr − λxex

)
(6.4)

vd =

√
(ẋr − λxex)2 + (ẏr − λyey)2 (6.5)

The guidance commands are derived such that the heading and velocity tracking

error dynamics, eψ = ψ − ψd and ev = v − vd, also decay exponentially. Thus, the

error dynamics are prescribed as ėψ = −λψeψ and ėv = −λvev. The time derivatives

of these state tracking errors are given by ėψ = ψ̇ − ψ̇d and ėv = v̇ − v̇d. Combining

equation (2.1) with the state tracking error time derivatives leads to

u1 = ψ̇d − λψeψ

u2 = v̇d − λvev

which are the control terms introduced in equations (6.1) and (6.2).

The time derivatives for the desired heading angle and velocity values are ob-

tained by differentiating eqs. (6.4) and (6.5) with respect to time, leading to

ψ̇d =
1

vd
[cos (ψd) (ÿr − λyėy)− sin (ψd) (ẍr − λxėx)] (6.6)

v̇d = cos (ψd) (ẍr − λxėx) + sin (ψd) (ÿr − λyėy) (6.7)

where ėx = v cos (ψ)− ẋr and ėy = v sin (ψ)− ẏr.

Note that when vd = 0, ψ̇d is not defined. Therefore, a singularity avoidance

scheme must be in place to handle this situation in practice. However, since the

83

kinematics in eq. (2.1) are only implemented in the path planner, the singularity

avoidance is disregarded for now.

The closed loop stability of the system is verified through a Lyapunov stability

analysis. For a function to be considered a valid Lyapunov function it must be

positive definite, its derivative must be negative definite and both the function and

its derivative must be equal to zero at the equilibrium points (i.e. the origin) [67].

With that in mind, a candidate Lyapunov function is chosen as

V1 =
1

2

(
e2
x + e2

y + e2
ψ + e2

v

)
(6.8)

which is positive definite and is only equal to zero at the equilibrium. The time

derivative of V1 is

V̇1 = exėx + eyėy + eψėψ + evėv (6.9)

The stability of the system will be shown without considering a singularity avoidance

algorithm for the kinematics given in equation (2.1).

Proof. (No singularity, vd 6= 0)

Using the guidance commands given in equations (6.1) and (6.2), it can be

shown that equation (6.9) simplifies to

V̇1 = −λxe2
x − λye2

y − λψe2
ψ − λve2

v (6.10)

which is negative definite and only equal to zero at the origin. Therefore, equation

(6.8) is a valid Lyapunov function and the system given in equation 2.1 with the

guidance commands in equations (6.1) and (6.2) is asymptotically stable [67].

84

6.2 Framework Guidance Law Design

To implement the guidance law on the robot, the input terms (u1 and u2) in

equations (6.1) and (6.2) may also be rewritten as

u1 = α1 (ψc − ψ) (6.11)

u2 = α2 (vc − v) (6.12)

with α1 > 0, α2 > 0 and where ψc and vc are guidance command values. Thus, ψc

and vc are obtained as

ψc = ψ +
u1

α1

(6.13)

vc = v +
u2

α2

(6.14)

with the values for u1 and u2 being computed from equations (6.1) and (6.2). The

kinematic equations of the robot are thus recast as,

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = α1 (ψc − ψ)

v̇ = α2 (vc − v)

as mentioned in section 2.2.1, eq. (2.2). The above along with the guidance commands

ψc, and vc are used by the robot to track the reference trajectory.

As previously mentioned, there is a singularity present in equation (6.6), for

ψ̇d, when vd = 0, which needs to be addressed to implement the guidance commands

given in equations (6.13) and (6.14). In order to avoid this situation, the following

singularity avoidance algorithm is implemented. First, take ψ̇d = 0 when vd ≤ ε, for

some ε � 1. Also, assume that ψd is held constant as a reference value computed

based on the reference position values the vehicle is traveling in-between (call it ψr

85

which can be obtained from the path plan or waypoints). Formally, the following

algorithm is used to avoid the singularities and keep the vehicle on the path.

if vd ≤ ε then

ψ̇d = 0;

ψr = tan−1
(

∆y
∆x

)
;

ψd = ψr

end if

The values of ∆y and ∆x are computed as a cell difference from the reference position

values as

∆y = yr(i+ 1)− yr(i)

∆x = xr(i+ 1)− xr(i), ∀i = 1, ..., n− 1

where n is the number of position points in the reference trajectory and the ordered

pair (xr(i), yr(i)) denotes the (x, y) location of the ith point of the reference path.

Proposition 2. Given a 2-D, C2 trajectory with references values, [xr, yr, ẋr, ẏr, ẍr, ÿr].

Then, the guidance commands in equations (6.13) and (6.14) along with the kinemat-

ics defined in equation (2.2) will guarantee that ||x− xr|| → 0, and ||y− yr|| → 0 and

are otherwise bounded during the singularity avoidance phase.

To prove the closed loop stability of the system with the guidance commands

in equations (6.13) and (6.14) and the kinematics given in equation (2.2), we begin

with the same candidate Lyapunov function as before,

V2 =
1

2

(
e2
x + e2

y + e2
ψ + e2

v

)
(6.15)

which is positive definite and is only equal to zero at the origin. And its time derivative

is

V̇2 = exėx + eyėy + eψėψ + evėv (6.16)

86

Two proofs will be given, one will show asymptotic stability of the system without

the singularity avoidance, and the second will demonstrate the boundedness of the

tracking errors during the singularity avoidance phase.

Proof. (No singularity, vd 6= 0)

For the case when vd 6= 0, the time derivative of V2 can be shown to be

V̇2 = −λxe2
x − λye2

y − λψe2
ψ − λve2

v, (6.17)

which is negative definite and only equal to zero at the origin. Therefore, equation

(6.15) is a valid Lyapunov function. Furthermore, the system given in equation (2.2)

with the guidance commands in equations (6.13) and (6.14) is asymptotically stable

and the errors will decay to the origin [67].

As soon as vd ≤ ε for some ε � 1, the singularity avoidance algorithm is

implemented. With this algorithm, the state of the system is considered with ψd = ψr

and the desired velocity vd ≤ ε.

Proof. (Singularity avoidance, vd ≤ ε for some ε� 1)

With the candidate Lyapunov function defined in equation (6.15), its time

derivative can be evaluated along with the guidance commands from equations (6.13)

and (6.14). First, consider the eψėψ term in eq. (6.16) which simplifies as

eψėψ = eψ

(
ψ̇ − ψ̇d

)
= eψ (α1 (ψc − ψ)− 0)

= eψ

[
α1

(
ψ +

1

α1

(0− λψeψ)− ψ
)]

= −λψe2
ψ (6.18)

87

since ψ̇d = 0 and eψ = ψ−ψd, with ψd being equal to the reference value ψr. Similarly,

evėv = ev (v̇ − v̇d) = ev [α2 (vc − v)− v̇d]

= ev

[
α2

(
v +

1

α2

(v̇d − λvev)− v
)
− v̇d

]
= −λve2

v (6.19)

And

v̇d = cos (ψr) (ẍr − λxėx) + sin (ψr) (ÿr − λyėy)

by taking the derivative of equation (6.5) and considering ψ → ψr.

To show that the position errors are bounded during the singularity avoidance

phase, the following relationships are established. Recall,

vd =

√
(ẋr − λxex)2 + (ẏr − λyey)2

with vd ≤ ε. Also, define εx and εy as

εx = ẋr − λxex

εy = ẏr − λyey

Then, from the definition of vd, we note ‖εx‖ ≤ vd and ‖εy‖ ≤ vd.

Consider the following,

Vx =
1

2
e2
x

whose time derivative is given by

V̇x = exėx = ex (v cos (ψ)− ẋr) (6.20)

Equation (6.20) can be rewritten as

V̇x = ex (v cos (ψ)− λxex + λxex − ẋr)

= ex (vd cos (ψr)− λxex) + ex (λxex − ẋr) (6.21)

88

for v → vd and ψ → ψr. With vd = ε, equation (6.21) becomes

V̇x = −λxe2
x + ex (ε cos (ψr)− (ẋr − λxex))

= −λxe2
x + ex (ε cos (ψr)− εx) (6.22)

Then, by taking the norm of the right hand side of equation (6.22), we get

V̇x ≤ −λx‖ex‖2 + ‖ex‖ (ε+ ‖εx‖)

≤ −λx‖ex‖2 + ‖ex‖ (ε+ vd)

≤ −λx‖ex‖2 + ‖ex‖ (2ε) (6.23)

since ‖εx‖ ≤ vd ≤ ε, and ‖ε cos (ψr) ‖ ≤ ε. Finally, equation (6.23) can be further

simplified as

V̇x ≤ − (λx − 1) ‖ex‖2 + ε2 (6.24)

since 2‖ex‖ε ≤ ‖ex‖2 + ε2.

In a similar fashion, the y position error can be shown to be bounded during

the singularity avoidance phase by considering the term,

Vy =
1

2
e2
y

And by following a similar approach as outlined for the x position error, it can be

shown that

V̇y ≤ − (λy − 1) ‖ey‖2 + ε2 (6.25)

Therefore, the time derivative of the candidate Lyapunov function in eq. (6.15)

can be reformed as

V̇2 ≤ −(λx − 1)‖ex‖2 − (λy − 1)‖ey‖2 − λψe2
ψ − λve2

v + 2ε2 (6.26)

Note, the above can be re-written in the following form

V̇2 ≤ −γV2 + 2ε2 (6.27)

89

where, γ = 2µ (Q), µ(·) is the spectral radius (maximum eigenvalue) operator, and

Q = diag [(λx − 1), (λy − 1), λψ, λv]. Clearly, we have V̇2 ≤ 0 whenever V2 ≥ V20 ,

1
(γ/2)

ε2 , 1
µ(Q)

ε2; thus implying boundedness of all the errors and the terms in the

guidance laws during the singularity avoidance phase.

6.3 Guidance Design with Disturbance in the Acceleration

During a typical maneuver, it is safe to assume that a mobile robot will en-

counter diverse terrain types and varying levels of landscape topology. Therefore, it

is practical to consider how this may have an impact on the vehicle’s ability to track

the reference trajectories with the given guidance commands.

The main consideration in this section pertains to the stability of the guidance

law in the presence of external disturbances applied to the forward acceleration of the

robot. The disturbance in the acceleration may be considered in scenarios when the

robot is traveling up-hill or down-hill during a maneuver. Or it may be considered

when the vehicle encounters terrain types that are less than ideal, which may cause

added friction or slippage.

With this in mind, the kinematic equations for a mobile robot with external

disturbance in the acceleration is given by

ẋ = v cos (ψ)

ẏ = v sin (ψ)

ψ̇ = α1 (ψc − ψ)

v̇ = α2 (∆u− v) + d(t)

(6.28)

where α1 > 0, α2 > 0, and ψc is the guidance command given in eq. (6.13). The quan-

tity ∆u is a guidance input composed of the commanded velocity, vc from eq. (6.14),

90

and an additional guidance input ud; hence, ∆u = vc + ud. Also, the disturbance in

eq. (6.28), denoted as d(t), is assumed to be bounded by dmax, i.e. ‖d(t)‖ ≤ ‖dmax‖.

Proposition 3. Given a 2-D, C2 trajectory with references values, [xr, yr, ẋr, ẏr, ẍr, ÿr].

Then, the guidance commands in equations (6.13), (6.14) and (6.29) along with the

vehicle kinematics given in equation (6.28) will guarantee that the tracking errors are

bounded.

Recall, the guidance commands ψc and vc are given by

ψc = ψ +
u1

α1

vc = v +
u2

α2

And the additional guidance input, ud, is defined as

ud = −κvev (6.29)

where κv > 0. There will be two proofs given. One where there is no singularity

in the equation for ψ̇d, i.e. when vd 6= 0. The second will be considered during a

singularity avoidance phase in the maneuver, i.e. when vd ≤ ε for some ε� 1, similar

to the proof given in section 6.2.

To prove the closed loop stability of the system with external disturbance in

the acceleration, a candidate Lyapunov function is chosen as

V3 =
1

2

(
e2
x + e2

y + e2
ψ + e2

v

)
(6.30)

whose time derivative is

V̇3 = exėx + eyėy + eψėψ + evėv (6.31)

Proof. (No Singularity, vd 6= 0)

91

The components of the time derivative of the candidate Lyapunov function in

eq. (6.31) are evaluated with the guidance commands in equations (6.13), (6.14) and

(6.29). First, the eψėψ term simplifies as

eψėψ = eψ

(
ψ̇ − ψ̇d

)
= eψ

[
α1 (ψc − ψ)− ψ̇d

]
= eψ

[
α1

(
ψ +

1

α1

(
ψ̇d − λψeψ

)
− ψ

)
− ψ̇d

]
= −λψe2

ψ (6.32)

Then, to consider the boundedness of the velocity tracking error, consider the follow-

ing

Vv =
1

2
e2
v

whose time derivative is

V̇v = evėv = ev (v̇ − v̇d) (6.33)

Equation (6.33) can be simplified as

V̇v = ev [α2 (vc − v) + d(t) + α2ud − v̇d]

= ev

[
α2

(
v +

1

α2

(v̇d − λvev)− v
)

+ d(t)− α2κvev − v̇d
]

= ev (−λvev + d(t)− α2κeev) (6.34)

By defining κ = λv + α2κv, eq. (6.34) simplifies to

V̇v = −κe2
v + d(t)ev (6.35)

Taking the norm of the right hand side of eq. (6.35), the following is established

V̇v ≤ −κ‖ev‖2 + ‖d(t)‖‖ev‖

≤ −κ‖ev‖2 + ‖dmax‖‖ev‖

≤ −
(
κ− 1

2

)
‖ev‖2 +

1

2
‖dmax‖2 (6.36)

92

since ‖d(t)‖ ≤ ‖dmax‖.

Next, considering when ψ → ψd and v → vd, the position error terms in

eq. (6.30) can be shown to be

exėx = −λxe2
x

eyėy = −λye2
y

Thus, the time derivative of the candidate Lyapunov function in eq. (6.30) is

found to be

V̇3 ≤ −λxe2
x − λye2

y − λψe2
ψ −

(
κ− 1

2

)
‖ev‖2 +

1

2
‖dmax‖2 (6.37)

The above can be rewritten as

V̇3 ≤ −γV3 +
1

2
‖dmax‖2 (6.38)

where, γ = 2µ (Q), µ(·) is the spectral radius (maximum eigenvalue) operator, and

Q = diag
[
λx, λy, λψ,

(
κ− 1

2

)]
. Clearly, we have V̇3 ≤ 0 whenever V3 ≥ V30 ,

1
2γ
‖dmax‖2 , 1

4µ(Q)
‖dmax‖2, thus implying boundedness of all the errors and the terms

in the guidance laws. Furthermore, the effects of the disturbance on the tracking

errors are limited by dmax and can be lessened by choosing sufficiently large control

gains.

The singularity avoidance implications in section 6.2 are also considered when

the external disturbance is present. As mentioned in the previous section, when vd ≤ ε

for some ε� 1, the singularity avoidance algorithm is implemented. The state of the

system is considered with ψd = ψr and the desired speed vd ≤ ε.

Proof. (Singularity avoidance, vd ≤ ε for some ε� 1)

With the candidate Lyapunov function defined in eq. (6.30), its time derivative

is evaluated by combining the procedure from the singularity avoidance proof in

93

section 6.2 with the bounded stability proof in this section. Through the analysis

conducted with the previous proofs, it can be shown that the time derivative of the

candidate Lyapunov function in eq. (6.31) will lead to

V̇3 ≤ − (λx − 1) ‖ex‖2 − (λy − 1) ‖ey‖2 − λψ‖eψ‖2 −
(
κ− 1

2

)
‖ev‖2 + 2ε2 +

1

2
‖dmax‖2

(6.39)

Furthermore, equation (6.39) can be given in the following form

V̇3 ≤ −γV3 +

(
2ε2 +

1

2
‖dmax‖2

)
(6.40)

where, γ = 2µ (Q), µ(·) is the spectral radius (maximum eigenvalue) operator, and

Q = diag
[
(λx − 1), (λy − 1), λψ, (κ− 1

2
)
]
. Hence, we have V̇3 ≤ 0 whenever V3 ≥

V30 , 1
(γ/2)

(
ε2 + 1

4
‖dmax‖2

)
, 1

µ(Q)

(
ε2 + 1

4
‖dmax‖2

)
, thus implying boundedness of

all the errors and the terms in the guidance laws. Additionally, the effects of the

disturbance and the singularity avoidance are bounded by dmax and the tolerance

limit, ε, respectively. Furthermore, the effects can be further limited with a larger

value coming from µ (Q), which results from choosing sufficiently large control gains.

6.4 Simulation Results

The results presented in this section are found by simulating the kinematics,

given in eq. (2.2), with the guidance commands designed in sec 6.2, eqs. (6.13) and

(6.14). The guidance commands are designed to track a smooth trajectory that

is defined along path plans generated by the navigation function algorithm results

presented in chapter 3. Additionally, the trajectory along the path plans is designed

according to the methodology described in section A.5.1.

94

6.4.1 Trajectory Tracking

For the results presented, the control gains are chosen as constants where λx =

λy = 2, and λψ = λv = 5 and α1 = α2 = 5. Also, for the trajectory generation,

the goal time to reach the objective destination in the path plan is 180 seconds (3

minutes).

The results for each of the examples considered demonstrate the effectiveness

of the nonlinear backstepping guidance design in following the desired trajectory.

Notice that within the position error plots, there are spikes in the errors at

certain times. These spikes correlate to the times when the vehicle reaches a point

where it must turn to continue on the trajectory. Even as the spikes occur, the errors

quickly decay to zero as expected based on the stability analysis of the guidance law.

A cause of this phenomena could be due to the fact that the trajectory design does

not consider a desired heading profile for the robot to track at the turn points.

Additionally, there is a small amount of terminal state error present in the

position tracking towards the end of the simulations. The source of this error can

be attributed to the singularity avoidance algorithm. In these instances, the heading

angle is locked to the reference value due to the desired velocity being small, vd ≤ ε,

as the robot approaches its objective and is therefore not able to adjust accordingly.

This behavior is predicted with the stability proof given in section 6.2.

95

Figure 6.1: Example 1, position tracking with backstepping guidance commands and
MCE path plan.

Figure 6.2: Example 2, position tracking with backstepping guidance commands and
MCE path plan.

96

Figure 6.3: Example 3, position tracking with backstepping guidance commands and
ID path plan.

Figure 6.4: Example 4, position tracking with backstepping guidance commands and
ID path plan.

6.4.2 Trajectory Tracking with Disturbance Present

The results in this subsection detail an example with the presence of an external

disturbance in the forward acceleration of the robot. The results will be presented

with an example using the framework design, that is a path plan generated by the

navigation function, which is then tracked by the backstepping guidance commands

as outlined in section 6.3.

97

For the following results, it is assumed there is a constant disturbance in the

vehicle’s acceleration. This illustrates an example of the robot executing a maneuver

going up-hill in a given environment. It is assumed that the disturbance is d(t) =

−2m/s2. Also, the extra guidance command for the velocity, is set as ud = −κvev,

with κv = 10. The other control gains are chosen as, λx = λy = 2, and λψ = λv = 5

and α1 = α2 = 5. Also, for the trajectory generation, the goal time to reach the

objective destination in the path plan is 180 seconds (3 minutes).

The scenario for the robot is illustrated in figure 6.5 along with its tracking of

the trajectory reaching the goal. Plots of the tracking errors are given in figures 6.6,

6.7 and 6.9, since the effect of the disturbance cannot be fully visualized in figure 6.5.

The tracking error plots give the results for the vehicle’s performance both with and

without the disturbance effects.

The effects of the acceleration disturbance have little effect on the vehicle’s

heading angle tracking, as demonstrated by the heading angle error plot in figure 6.9.

However, the position and velocity tracking error plots show there is a slight increase

in the errors with the disturbance present. And as predicted, the tracking errors

are ultimately bounded. The presence of some terminal state errors are also shown

in figures 6.6 and 6.7, which result from a combination of the external disturbance

and the singularity avoidance algorithm, described in section 6.2. Additionally, the

velocity error, in figure 6.7, exists as the simulation concludes; however, it is important

to note that the robot has stopped, as evident by the velocity plot going to zero in

figure 6.8.

98

Figure 6.5: Scenario setup and trajectory tracking with disturbance present.

Figure 6.6: Position error plots with d = −2m/s2.

99

Figure 6.7: Velocity error plot with d = −2m/s2.

100

Figure 6.8: Plot of rover velocity with d = −2m/s2.

101

Figure 6.9: Heading angle error plot with d = −2m/s2.

102

CHAPTER 7

Cooperative Control with Artificial Potential Functions

The strategy for employing multiple mobile robots cooperatively within the

framework of this dissertation is discussed in this chapter. The objective is to demon-

strate the ability of the numerical navigation function (described in chapter 3) to be

utilized by multiple vehicles in the same environment. The navigation function algo-

rithm can represent the operational environment of the vehicles and can form path

plans leading to the goal from any point in the obstacle free space. Hence, only a sin-

gle potential field needs to be generated for the vehicles to use and it can incorporate

each of their sensed information. The fact that a single potential field can be used

for each vehicle can conceivably decrease the computational burden of the process.

The cooperative control policy described in this chapter will handle tasks con-

cerning vehicle aggregation and social foraging. For cooperative aggregation tasks,

the objective is to bring the vehicles together at a set location while avoiding collisions

among the group. And for social foraging, the objective becomes having the robots

find ‘conflict-free’ trajectories to areas of interest while avoiding collisions with haz-

ards present in the environment [57, 58]. The cooperative control policy will include

different components designed to accomplish each task.

7.1 Artificial Potential Function for ‘Conflict-Free’ Trajectory Synthesis

The cooperative trajectory synthesis for multiple vehicles using artificial poten-

tial functions (APF) is considered in this section. Assume that there are N mobile

robots present in a given environment and ri ∈ <2 is the position vector of each

103

vehicle and rT =
[
r1,T , · · · , rN,T

]
is the vector containing the position vectors for the

group. Then, a steering command for the ith robot, using the APF design can be

given by

ṙipot = −∇riJ (r) (7.1)

where J (r) is a composite potential function consisting of the cooperative potentials,

constraints, the navigation function potential as well as other suitable potentials

employed for the tasks specified.

The composite potential function has the following form

J (r) = δ (Jcoop(r) + Jgoal(r)) + (1− δ)JNF (r) + Jrep(r) (7.2)

where Jcoop(r), Jgoal(r), JNF (r) and Jrep(r) denote the potential functions for swarm

aggregation, goal position, navigation function, and collision avoidance respectively.

The scalar quantity δ is user defined based on the cooperative task assigned to the

group, and is set to either 1 for swarm aggregation at a goal position or 0 for social

foraging using the navigation function. Notice that regardless of the choice of δ, the

collision avoidance potential is always present to ensure the robots do not collide.

Then, the steering command for the ith robot using the composite potential

function in eq. (7.2) is given by

ṙipot = δ (−∇riJcoop(r)−∇riJgoal(r)) + (1− δ) (−∇riJNF (r))−∇riJrep(r)

= δ
(
ṙicoop + ṙigoal

)
+ (1− δ) ṙiNF + ṙirep (7.3)

The design of each component in eqs. (7.2) and (7.3) are detailed in the following

sections.

104

7.1.1 Swarm Aggregation APF Design

This section will detail a suitable potential function used for swarm aggregations

and is based on the work presented in references [57,58,63]. The APF design has the

following form

Jcoop(r) =
N−1∑
i=1

N∑
j=i+1

Jij(‖ri − rj‖) (7.4)

making it a function of the norm of the relative position of the respective robots.

The potential function given in references [57, 58] possess’ both an attractive and

a repulsive component. The potential function is designed to simultaneously draw

the vehicles in the group together while keeping them apart at a safe distance. The

cooperative potential function is defined as

Jcoop(r) =
N−1∑
i=1

N∑
j=i+1

[
a

2
‖ri − rj‖2 +

bc

2
exp

(
−‖r

i − rj‖2

c

)]
(7.5)

where a, b, c ∈ < are scalar shaping parameters for the cooperative potential. The a

and b parameters are used to set the strength of their respective components while

the c parameter sets the region of influence of the repulsive component. The steering

command for the ith robot generated with eq. (7.5) is

ṙicoop = −
N∑

j=1,j 6=i

[
‖ri − rj‖

(
a− b exp

(
−‖r

i − rj‖2

c

))]
(7.6)

The aggregation component of the composite potential function also contains

an attractive potential defined at an objective gathering point. This enables a mis-

sion planner to designate where in the environment the group should converge. The

attractive potential function has the following form

Jgoal(r) =
N∑
i=1

Ji,goal(‖ri − rgoal‖) (7.7)

105

where rgoal ∈ <2 is the position vector of the gathering point. The attractive potential

for the gathering point is given as a parabolic well defined as

Jgoal(r) =
N∑
i=1

[
ka‖ri − rgoal‖2

]
(7.8)

where ka ∈ < is a design parameter to adjust the strength of the potential function.

The steering command for the ith robot generated by the attractive potential is

ṙigoal = −ka‖ri − rgoal‖ (7.9)

The combination of the steering commands in eqs. (7.6) and (7.9) allows for

the collective to travel together and ultimately gather at a desired location. However,

one aspect that was not addressed with this aggregation design is obstacle avoidance.

Thus, the aggregation component of the steering commands in eq. (7.3) assumes the

robots are working in an obstacle free space. The issue of obstacle avoidance leading

to an objective gathering point is addressed by the navigation function in the following

section.

7.1.2 Minimum Control Effort Navigation Function for Social Foraging

In short, the task of social foraging refers to having locations in a given envi-

ronment that are either considered favorable or unfavorable for a group of vehicles

to consider. In this dissertation, these regions are defined through the navigation

function framework discussed in chapter 3. In the navigation function algorithm, the

favorable region is set as the goal location and the unfavorable regions are considered

as obstacles.

It is assumed that the vehicles share information such as obstacle positions

or other constraints with each other. This information is then used to form the

navigation function’s potential field. Hence, each robot knows the potential levels

generated from the navigation function algorithm.

106

The navigation function algorithm in chapter 3 details how to form a numerical

potential field in an evenly spaced grid given knowledge of the operational environ-

ment. The algorithm, as outlined in chapter 3, generates a potential field which

is then used to find a path plan using an iterative graph search method (best-first

search). So, the reference path is found before the robot has the ability to act. This

approach does not allow for a reactive element, i.e. generating steering commands,

directly based on the environment. The task then becomes how to use the resulting

potential field from the algorithm in chapter 3 to generate steering commands allow-

ing a robot to react to its environment. This result will allow the group of mobile

robots to navigate a constrained environment towards a desired gathering point.

Central Difference Approximation to NF Gradient

This section will detail how to find the numerical gradient of the navigation

function and how it is used within the cooperative control policy. The gradient of

the navigation function needs to be generated numerically since it is defined over

a discrete representation of the environment. The method chosen to compute the

gradient of the navigation function is the Central-Difference method [68].

In order to use the grid-based potential function and the central-difference ap-

proximation of the gradient, the position of a robot needs to be defined in terms of the

evenly space grid. With this in mind, let r̃i ∈ <2 denote the approximate position of

the ith robot in the evenly spaced grid. And let x̃i and ỹi be the approximate position

components of r̃i, i.e. r̃i = [x̃i, ỹi]T . Also, let ∆x and ∆y denote the spacing between

grid points in the x and y directions respectively. And since the grid is evenly spaced,

∆x = ∆y. Then, the components of the numerical gradient, computed with the

107

central-difference method, is determined in terms of the robot’s approximate position

in the grid as

∂JNF (r̃i)
∂x

= ∂JNF ([x̃i, ỹi]T)
∂x

≈ JNF ([x̃i+∆x, ỹi]T)−JNF ([x̃i−∆x, ỹi]T)
2∆x

∂JNF (r̃i)
∂y

= ∂JNF ([x̃i, ỹi]T)
∂y

≈ JNF ([x̃i, ỹi+∆y]T)−JNF ([x̃i, ỹi−∆y]T)
2∆y

(7.10)

And the steering command based on the numerical gradient of the navigation function

can be set as

ṙiNF =

 −∂JNF (r̃i)
∂x

−∂JNF (r̃i)
∂y

 (7.11)

7.1.3 APF for Collision Avoidance

Within the cooperative framework, there is an extra collision avoidance poten-

tial denoted as rirep. The collision avoidance term consists of only a repulsive term

designed to prevent the robots from colliding with one another. Note that this re-

pulsive potential function may also be used to avoid collisions with obstacles in the

environment. The collision avoidance potential is of the form

Jrep(r) =
N−1∑
i=1

N∑
j=i+1

Jij(‖ri − rj‖) (7.12)

which is similar to the cooperative potential form in eq. (7.4) and is a function of

the position information of the robots. The repulsive potential chosen for the results

covered is consistent with the repulsive potential component in eq. (7.5) given by

Jrep(r) =
N−1∑
i=1

N∑
j=i+1

[
brcr

2
exp

(
−‖r

i − rj‖2

cr

)]
(7.13)

where the parameters br, cr ∈ < are used to respectively set the strength and region

of influence of the repulsive potential. The subscript r is used to distinguish the

108

parameters in eq. (7.13) from the parameters in eq. (7.5). The resulting steering

command for the ith vehicle is given by

ṙirep =
N∑

j=1,j 6=i

[
br‖ri − rj‖ exp

(
−‖r

i − rj‖2

cr

)]
(7.14)

7.2 Control Design

Typical control designs with artificial potential functions, including cooperative

control designs, are applied to integrator dynamic systems (or sometimes double

integrator). The goal of this work is to apply the control design to a system with the

nonlinear mobile robot kinematics, as described in section 2.2.1. Thus, the kinematics

for the ith vehicle are

ẋi = vi cos
(
ψi
)

ẏi = vi sin
(
ψi
)

ψ̇i = α1

(
ψic − ψi

)
v̇i = α2

(
vic − vi

)
(7.15)

where α1, α2 ∈ < are positive proportional control gains and ψic, v
i
c are the guidance

commands for the ith vehicle’s heading angle and velocity. The control design affects

the robot’s heading angle turn rate and forward acceleration, which are proportional

control laws designed to drive the heading angle and velocity to the commanded

values which are obtained through the steering commands from the APF described

in the previous section.

Let ṙipot,x and ṙipot,y denote the x and y directional components of the gradient

terms that make up the steering command from eq. (7.2). Then, the heading angle

guidance command, ψic, for the ith robot is defined as

ψic = tan−1

(
ṙipot,y
ṙipot,x

)
(7.16)

109

And the velocity guidance command for the ith robot is

vic = ‖ṙipot‖ (7.17)

which is the 2-norm of the steering command vector. It is possible that the velocity

command may give an unfeasible value. Therefore, the velocity command term is

saturated as

This implies that |vic| ≤ vmax where the saturation limit, vmax, is a user defined

quantity for the forward velocity of the vehicle. This signifies that the steering com-

mands will mainly influence the heading angle of the robot. Thus, the vehicles can

continue to travel forward and adjust their heading angles as needed while travers-

ing the environment with the guidance commands generated through the cooperative

control policy.

7.3 Inter-Vehicle Communication

For the results in this dissertation, it is assumed that there is full communication

among the vehicles. A graph representation is used to illustrate the communication

protocol involved in the simulations. In graph theory, a graph is described as a pair

G = (N , E), with N = {N1, · · · ,NN} a set of N nodes and E as a set of edges. The

elements of E are denoted as (Ni,Nj) which is termed as an edge from node Ni to

110

node Nj [56]. In the setting of cooperative control, the nodes represent the vehicles

and the edges represent the communication of information.

An illustration of the communication graph for the cooperative control examples

with three mobile robots is given in figure 7.1. In the examples given, it is assumed

that the navigation function information as well as the position vectors are shared

among the robots through the communication protocol.

Also, the communication graph is assumed to be undirected. Making the graph

undirected implies that the information shared goes in both directions and has equal

importance, i.e. node Ni shares its information with node Nj and vice-versa [56].

Therefore, in figure 7.1, the edges are denoted as Eij = Eji, which represents an

undirected communication link between nodes Ni and Nj,

Figure 7.1: Communication protocol.

7.4 Simulation Results

The simulation results in this chapter consider scenarios involving three vehicles

in a given environment. The cooperative APF parameters for the steering command

111

in eq. (7.6) for the simulation are chosen as a = 0.3, b = 1, c = 10 and the parameter

for the steering command to the goal in eq. (7.9) as ka = 0.5. The collision avoidance

parameters for the steering command in eq. (7.14) are set as br = 1, cr = 2. The

control gains for the guidance command inputs in eq. (7.15) are set as α1 = 0.5

and α2 = 0.5. The maximum velocity for each robot is set at vmax = 0.75 m/s.

The navigation function algorithm method used for the results in this chapter is the

minimum control effort approach, detailed in section 3.2.

The first scenario, shown in figures 7.2 and 7.3, is for an environment with

no obstacles present. This example represents a case where the swarm aggregation

policy can be tested and compared with the social foraging policy to the same goal.

The swarm aggregation policy in enacted by setting δ = 1 in eq. (7.3) and the social

foraging policy in enacted by setting δ = 0.

The results in figures 7.2 and 7.3 show the positions of the robots, starting

in close proximity in the bottom corner and traveling towards the opposite corner

of the environment while avoiding collisions within the group. The robots position

components look similar, but their heading angles fluctuate largely in figure 7.3 with

the social foraging policy. This behavior begins as the robots are approaching the

safety zone around the goal position. When the vehicles enter the safety zone, their

velocities are driven to zero so they stop, but the heading angles are directing the

robots away from eachother. In contrast, the heading angle plot in figure 7.2 shows

the robots smoothly achieving consensus as they enter the safety zone around the

goal.

112

(a) Position plots (b) Heading angle plots

Figure 7.2: Example 1 with swarm aggregation policy, setting δ = 1 in eq. (7.3).

(a) Position plots (b) Heading angle plots

Figure 7.3: Example 1 with social foraging policy, setting δ = 0 in eq. (7.3).

The next two examples are considered only with social foraging behavior, by

setting δ = 0 in eq. (7.3). The steering commands are generated by the navigation

function’s potential field combined with the collision avoidance potential from equa-

113

tions (7.11) and (7.14) respectively. The first set of plots show the given obstacle

laden environment and its associated navigation function potential field. The second

set of plots show the simulation results with the position plots and the heading angle

plots.

The results illustrated in figures 7.4 and 7.5 are for an environment where

multiple scattered hazards lie between the robots and their objective. The simulation

results in figure 7.5 show that the robot’s steering commands allow the vehicles to

avoid colliding with the obstacles and each other while reaching the safety zone near

the objective.

The next set of results illustrated in figures 7.6 and 7.7 are for an environment

where the vehicles must come together through a tight opening before spreading

apart and reaching the goal. The simulation results in figure 7.7 demonstrate that

the robots achieve their task without conflict as they come together to go through the

opening then spread apart in the free space on the other side and ultimately arrive

at the safety zone near the objective.

114

Figure 7.4: Example 2 environment and navigation function potential field.

(a) Position plots (b) Heading angle plots

Figure 7.5: Example 2 with social foraging policy, setting δ = 0 in eq. (7.3).

115

Figure 7.6: Example 3 environment and navigation function potential field.

(a) Position plots (b) Heading angle plots

Figure 7.7: Example 3 with social foraging policy, setting δ = 0 in eq. (7.3).

116

CHAPTER 8

Real-Time Experiment Setup and Results

To validate the results for the nonlinear guidance laws in chapters 5 and 6 as

well as the cooperative control policy outlined in chapter 7, the differential drive

mobile robot testing platforms from the Aerospace Systems Laboratory were used.

An image of the mobile robot platform is given in figure 8.1. A full description,

covering the assembly and component details of the testing platforms, nicknamed the

‘ASL-Gremlin,’ is given in reference [69]. A summary of the important components

and flow of information in the experimental setup is given in this chapter along with

a summary of the experimental results gathered to validate the methods discussed in

this dissertation.

Figure 8.1: ASL-Gremlin Mobile Robot Testing Platform.

117

8.1 Mobile Robot Platform

This section gives a summary description of the hardware and software com-

ponents that makeup the testing platforms. Additionally, this section will detail the

flow of information within the framework for the given tasks.

8.1.1 Hardware Components

The mobile robot platforms consist of a combination of multiple hardware com-

ponents designed to test different guidance, navigation and control techniques. The

main component directing the communication between the different parts of the robot

is the single-board computer (SBC). The SBC is an on-board computer that is used

to interface with the hardware and process information. The SBC used in the exper-

iments presented in this dissertation is an Odroid-XU4 computer. Its main task is

to collect sensor data, relay information and command the input signals to a micro-

controller that handles the actuators (motors attached to wheels) of the vehicle.

Another component used in the mobile robot platform is the Pixhawk autopilot.

The autopilot module for these platforms is a small, light-weight component that is

connected to a suite of sensors used by the mobile robot to localize itself within a

given environment. The main sensors used in this research are a global positioning

system (GPS), which is used to find the local position and velocity of the vehicles

and a compass, used to determine the heading angle of the vehicles. Although the

GPS and compass are the main sensors used in this research, the Pixhawk autopilot

system does come with a 3-axis gyroscope, 3-axis accelerometer and a magnetometer

which can be used in future research to enhance the vehicles autonomous capabilities.

The next important component on the platform is the Arduino micro-controller.

For the types of experiments conducted in this research, the micro-controller is re-

sponsible for digital signal processing and voltage regulation to control the vehicle’s

118

wheels. Specifically, for the differential drive robots, the micro-controller is used to

convert commanded pulse-width-modulation (PWM) signals to a motor input voltage

to control the speed which the motor rotates its attached wheel. The mobile robot

platforms consists of four 6V brushed DC motors which come complete with gear-

boxes and quadrature encoders on the motor’s shaft. Note that the encoders may

also be used to gather position and orientation information for the vehicle through a

technique called “Dead-Reckoning.” For the results in this dissertation, however, the

encoders are not used due to the potential for the drift-error in the information that

is caused by wheel slippage.

An illustration of the top-view of a single mobile robot platform is given in

figure 8.2 which shows the hardware components on-board the vehicle. Then, a chart

depicting the the flow of information between the different components as used for

the results in this dissertation is given in figure 8.3.

Figure 8.2: On-board hardware components for the ‘ASL-Gremlin’ mobile robot plat-
form.

119

Figure 8.3: Flow of information between hardware components for mobile robot plat-
form.

The flow of information, for a single vehicle, illustrating how this architecture is

used within the GNC framework, is given in figure 8.4. The results in this dissertation

make use of a cyber-physical system architecture wherein the main data processing

and guidance commands are generated on a separate ground station computer which

dictates the desired behavior for the physical mobile robot system, as illustrated in

figure 8.3. The information is transmitted between a ground station CPU and the

Odroid on-board CPU through a 4G LTE mobile network hotspot.

120

Mission Design
(Waypoints)

Trajectory
Design

Guidance
Laws

Vehicle Motion
(Hardware)

Navigation
(Sensor Data)

4G LTE
Network

4G LTE
Network

Guidance
Commands

State Feedback

Tracking
Errors

Ground Station
Computer

Mobile Robot

Figure 8.4: Flow of information within the GNC framework for the mobile robot
platform.

8.1.2 Cooperative Platform Setup

For the cooperative control experiments presented in this chapter, two mobile

robot platforms are used in combination with a ground station computer. Similar to

the individual mobile robot tasks, the communication of information will take place

over a 4G LTE mobile network and is considered as a cyber-physical system. The

flow of information for the cooperative tasks presented, is illustrated in figure 8.5.

121

Ground Station

4G LTE
Network

4G LTE
Network

4G LTE
Network

Robot-1
Guidance Commands

Robot-2
Guidance Commands

Sensor Data

Robot-1 Robot-2

Figure 8.5: Flow of information for cooperative control experiments.

Note that the cooperative guidance commands, as derived in chapter 7, are

designed within a decentralized control framework. However, for the experiments in

this dissertation, the guidance commands are synthesized on a centralized ground

station computer and are then transmitted to the individual vehicles to complete

their tasks.

8.1.3 Software

The transmission of data between the different components used in the exper-

iments is handled through the Robot Operating System (ROS). ROS is a flexible

sofware framework that is widely used by a variety of research communities and can

be applied to different robotic platforms 1. This software communication architecture

1www.ros.org

122

is chosen because it simplifies the programming tasks and enables rapid implementa-

tion of theoretical robotics concepts to actual hardware.

Within the mobile robot platforms used in this dissertation, ROS is installed on

both the ground station CPU and the on-board Odroid CPU, both running flavors of

the Ubuntu Linux operating system. ROS is used to gather the sensor information

from the Pixhawk autopilot and make it available for use by the methods discussed

in this dissertation. Additionally, ROS is used to relay the wheel speed commands to

the micro-controller used to move the vehicle.

The methods derived in this dissertation were applied to the mobile robot plat-

forms using MATLAB, Simulink and the Robotics System Toolbox. The Robotic Sys-

tem Toolbox allows for the integration of ROS software within the MATLAB/Simulink

environment.

8.2 Real-Time Experiment Results

This section covers real-time experiment results using the guidance command

techniques from chapters 5 and 6 and the cooperative control steering commands

from chapter 7. First, to use the mobile robot platforms, a relationship between the

guidance commands and the wheel speeds is established. The relationships between

the wheel speeds of the differential drive vehicles and the forward velocity and heading

angle turn rate are given by

v =
r

2
(ωR + ωL) (8.1)

ψ̇ =
r

b
(ωR − ωL) (8.2)

where ωL and ωR respectively denote the left and right wheel speeds, b is the base

length of the vehicle and r is the radius of the wheel. The physical parameter dimen-

sions of the vehicles used in these experiments are r = 0.0686 m for the wheel radius

123

and b = 0.3358 m for the base-length. Equations (8.1) and (8.2) can be solved

simultaneously to give the wheel speeds in terms of the velocity and turn rate as

ωL =
1

2

(
2

r
v − b

r
ψ̇

)
(8.3)

ωR =
1

2

(
2

r
v +

b

r
ψ̇

)
(8.4)

If the guidance commands, from chapters 6 and 7, are generated in terms of

the commanded velocity (vc) and heading angle (ψc), then the velocity and turn rate

values in eqs. (8.3) and (8.4) are determined by

v = vc

ψ̇ = α1 (ψc − ψ)

where α1 is the scalar control gain used for the guidance command and ψ is the

vehicle’s current heading angle. But, if the guidance commands are generated in

terms of the vehicle’s acceleration (u2) and heading angle turn rate (u1), as in chapter

5, then the velocity and turn rate values in eqs. (8.3) and (8.4) are determined by

v = v0 + u2∆t

ψ̇ = u1

where v0 is the vehicle’s current velocity and ∆t is the given sample time used with

the NMPC formulation.

The experiment results are given in two sets. The first set will consist of the

results coming from the nonlinear guidance methods from chapters 5 and 6. These

results will consider a single mobile robot traversing multiple given waypoints using

the guidance commands to follow a trajectory. The second set of results will be

obtained using the APF cooperative control policy detailed in chapter 7. These

results will consider two mobile robots performing cooperative aggregation and social

foraging tasks.

124

8.2.1 Individual Mobile Robot Results

For the individual mobile robot tasks, a series of waypoints are given for the

vehicle to reach while using the two guidance techniques from chapters 5 and 6. A

polynomial trajectory is designed between each of the waypoints for the vehicle to

track, accoring to the approach given in appendix A.5.2. There are two different

experiment setups used to test the guidance laws. The setups provide the waypoints

in patterns with different angles and distances between them. The maximum accel-

eration used to define the trajectory between the waypoints is amax = 0.08 m/s2.

The input and state constraints used for the NMPC guidance law are ‖u1‖ ≤

150 deg/s, ‖u2‖ ≤ 0.08 m/s2, 0.0001 m/s ≤ v ≤ 1 m/s, and ‖ψ‖ ≤ π rad, respec-

tively. The input and state weight matrices are defined as diagonal matrices with

R = diag(0.2, 0.2) and Q = diag(5, 5, 5, 5), respectively. Also, a waypoint prox-

imity is defined so that once the vehicle is within this proximity to a waypoint, it

can switch to approaching the subsequent waypoint in the given set. The waypoint

proximity used in these experiments is εprox = 0.8 m.

Individual Experiment 1

The first experiment, using the nonlinear guidance laws, has three waypoints

defined to form a C-shape in the environment. This example is comparable to a

vehicle needing to go around an obstacle to get to a destination on the other side.

The setup for this experiment is illustrated in figure 8.6.

125

-2 0 2 4 6 8 10 12
X (m)

0

2

4

6

8

10
Y

 (
m

)
Experiment 1 Setup

Start Goal

Waypoint 1 Waypoint 2

Figure 8.6: Waypoint setup for individual experiment 1.

And the resulting trajectories of the mobile robot using both guidance laws is

shown in figure 8.7. The robot’s resulting positions in figure 8.7 is given based on

the GPS position measurements. The spacing between data points in the position

data represents a loss of information either due to communication delay or some other

miscue. In both instances, the robot is able to reach each waypoint and arrives at

the goal point at the end of the experiment.

While both guidance laws reach each of the desired waypoints, the trajectory

of the robot with the nonlinear backstepping guidance law seems more direct. In

comparison, the NMPC guidance law result shows the robot gradually aligning itself

with the desired waypoints. This difference in behavior can be attributed to the

126

constraints being explicitely enforced in the NMPC guidance law synthesis whereas

these same constraints are not considered for the backstepping design.

-2 0 2 4 6 8 10 12
X (m)

0

2

4

6

8

10

Y
 (

m
)

GPS Position, Experiment 1

NMPC
Nonlinear Guidance
Waypoints

Figure 8.7: Robot’s waypoint traversal for individual experiment 1.

The result in figure 8.8 illustrates the heading angle of the vehicle as it moves

between the waypoints. The behavior displayed in figure 8.8 shows that with the

NMPC guidance design, there is a gradual change in the heading angle attributed to

the constraints on the system. Additionally, the changes in the heading angle from

the backstepping guidance law result are sudden and direct.

127

0 20 40 60 80 100
Time (s)

-100

-50

0

50

100

150
(t

)
(d

eg
)

Compass Heading, Experiment 1
NMPC
Nonlinear Guidance

Figure 8.8: Robot’s heading angle for individual experiment 1.

Figure 8.9 shows the vehicle’s velocity for experiment 1. The velocity profiles

using both guidance laws show interesting behavior. Both velocity profiles show

gradual changes in the velocity of the vehicle, but the NMPC result has a few more

obvious peaks compared to the backstepping design. The jumps in the vehicle’s

velocity, with the NMPC result, occur as the vehicle is coming to a stop-and-go near

the waypoint proximity limit. This behavior, with the NMPC guidance law, could

be attributed to having the wheel speed commands not being sufficiently large to

overcome the friction force on the vehicle and then jumping as the tracking errors

accumulate to get back near the desired trajectory.

128

0 20 40 60 80 100
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
V

(t
)

(m
/s

)
Velocity, Experiment 1

NMPC
Nonlinear Guidance

Figure 8.9: Robot’s velocity profile for individual experiment 1.

The commanded wheel speeds used for each guidance law are given in figure

8.10. One of the main differences with the two guidance commands can be seen in

the results from figure 8.10. In this set of results, it can be seen that the back-

stepping guidance law generates wheel speed commands that change suddenly and

even exhibits some “chattering” behavior at some intervals. In contrast, the wheel

speed commands coming from the NMPC design show smooth, gradual changes being

applied to the vehicle to track the trajectory between the waypoints.

129

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-10

0

10

20

L
 (

ra
d/

s)

Left Wheel Speed Command, Experiment 1

NMPC
Nonlinear Guidance

0 10 20 30 40 50 60 70 80 90 100
Time (s)

-20

0

20

R
 (

ra
d/

s)

Right Wheel Speed Command, Experiment 1

Figure 8.10: Robot’s wheel speed commands for individual experiment 1.

Individual Experiment 2

The waypoint setup for the second experiment using the guidance laws for an

individual mobile robot is given in figure 8.11. For this experiment, the waypoints

were chosen to give the vehicle a varying set of heading angles and distances to reach.

130

-5 0 5 10
X (m)

0

2

4

6

8

10

Y
 (

m
)

Experiment 2 Setup

Start

Waypoint 1

Waypoint 2 Waypoint 3

Goal

Figure 8.11: Waypoint setup for individual experiment 2.

The resulting trajectories of the mobile robot using both guidance laws for the

second experiment is shown in figure 8.12. Same as the first experiment, the robot’s

resulting positions in figure 8.12 are given based on the GPS position measurements.

The spacing between data points in the position data represents loss of information

either due to communication delay or some other issue. With both guidance laws,

the robot is able to reach each waypoint and arrives at the goal point at the end of

the experiment.

131

-5 0 5 10
X (m)

0

2

4

6

8

10
Y

 (
m

)

GPS Position, Experiment 2

NMPC
Nonlinear Guidance
Waypoints

Figure 8.12: Robot’s waypoint traversal for individual experiment 2.

The result in figure 8.13 illustrates the heading angle of the vehicle as it moves

between the waypoints. The behavior shown in the heading angle profiles in figure

8.13 is similar to what is seen in the results from experiment 1 in figure 8.8. There are

sudden changes in the heading angle using the backstepping guidance law whereas

the NMPC guidance law has gradual changes in the heading angle over the course of

the experiment.

132

0 20 40 60 80 100 120
Time (s)

-100

-50

0

50

100

150
(t

)
(d

eg
)

Compass Heading, Experiment 2
NMPC
Nonlinear Guidance

Figure 8.13: Robot’s heading angle for individual experiment 2.

Figure 8.14 shows the vehicle’s velocity for experiment 2. The behavior in

figure 8.14 is simular to the vehicle’s velocities from experiment 1, in figure 8.9. In

experiment 2, there are more waypoints, therefore, there are more peaks in the NMPC

design resulting from the jumps in velocity as it exhibits the stop-and-go behavior

near each waypoint.

133

0 20 40 60 80 100 120
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
V

(t
)

(m
/s

)
Velocity, Experiment 2

NMPC
Nonlinear Guidance

Figure 8.14: Robot’s velocity profile for individual experiment 2.

The commanded wheel speeds used for each guidance law are given in figure

8.15. The results in figure 8.15 also demonstrate the key difference using both guid-

ance laws in that the wheel speed commands over the course of the experiment change

smoothly using the NMPC design compared to sudden, large or chattering changes

in the commands from the backstepping guidance law.

134

0 20 40 60 80 100 120
Time (s)

-20

0

20

L
 (

ra
d/

s)

Left Wheel Speed Command, Experiment 2

NMPC
Nonlinear Guidance

0 20 40 60 80 100 120
Time (s)

-20

0

20

R
 (

ra
d/

s)

Right Wheel Speed Command, Experiment 2

Figure 8.15: Robot’s wheel speed commands for individual experiment 2.

8.2.2 Multiple Robot Cooperative Control Results

For the cooperative control experiments, three different setups are used along

with two mobile robot platforms to demonstrate the effectiveness of the cooperative

control policy outlined in chapter 7. The first two results validate the aggregation

tasks with the cooperative artificial potential functions. And the final result estab-

lishes the social foraging capability of the potential field generated by the navigation

function algorithm from chapter 3.

For the three sets of results, there is an objective location given along with a

proximity safety zone used to stop the experiment when one, or both, of the robots

enters a desired “closeness” to the goal. For the first two experiments, the parameters

for the cooperative potential function are set as a = 0.3, b = 0.8, and c = 10 for the

gains in the attractive and repulsive components. And for all three experiments, the

parameters for the repulsive potential function (from equation 7.14) are br = 1 and

cr = 2.

135

Cooperative Experiment 1

The setup for the first cooperative experiment is illustrated in figure 8.16. For

this experiment, the goal position is located at (20m, 5m) in the local ENU frame.

The maximum velocity constraint on each robot is vmax = 0.65 m/s and the safety

zone proximity is set at εprox = 1.5 m.

0 5 10 15 20 25
X (m)

-2

0

2

4

6

8

10

12

Y
 (

m
)

Cooperative Control Experiment 1 Setup
Robot 1 Start
Robot 2 Start

Goal

Safety Zone

Robot 1

Robot 2

Figure 8.16: Setup for cooperative experiment 1.

In this experiment, the goal is known to both vehicles and the objective is

to have them come together and aggregate near the final position. The resulting

trajectories taken by the two robots is given in figure 8.17. The result has the robots

coming together as each of them approach the objective until robot 2 enters the safety

zone at the end of the experiment. The robots also avoid colliding with one another

with the effect of the repulsive potential evident in the result.

136

0 5 10 15 20 25
X (m)

0

2

4

6

8

10
Y

 (
m

)

Cooperative Control Experiment 1
Robot 1
Robot 2
Goal

Goal

Safety Zone

Figure 8.17: Robot positions for cooperative experiment 1.

The resulting wheel speed commands generated by the cooperative APF guid-

ance method is depicted in figure 8.18. The wheel speed commands show the vehicles

are maneuvering and are also constrained by the saturation involved with setting vmax

within the APF method. While the velocities were constrained, the robots still have

the capability to adjust their headings, as evident by their resulting trajectories in

figure 8.17.

137

0 5 10 15 20 25 30 35
Time (s)

0

5

10

15

L
(t

)
(r

ad
/s

)

Left Wheel Speed Command, Experiment 1

Robot 1
Robot 2

0 5 10 15 20 25 30 35
Time (s)

0

5

10

15

R
(t

)
(r

ad
/s

)

Right Wheel Speed Command, Experiment 1

Figure 8.18: Wheel speed commands for cooperative experiment 1.

The relative distance between each of the vehicles is shown in figure 8.19. From

this result, it can be seen that the two vehicles are approaching eachother and come

within close proximity toward the end of the experiment. While the vehicles do come

within 1 meter of one another, they eventually repel each other using the repulsive

potential function. Furthermore, this result demonstrates that the two vehicles do

not collide over the course of the experiment.

138

0 5 10 15 20 25 30 35 40
Time (s)

0

1

2

3

4

5

6

7

8

9

10

R
el

at
iv

e
D

is
ta

nc
e

(m
)

Distance Between Robots 1 and 2 - Experiment 1

Figure 8.19: Robot’s relative distance for cooperative experiment 1.

Cooperative Experiment 2

The setup for the second cooperative experiment is illustrated in figure 8.20.

For this experiment, the goal position is also located at (20m, 5m) in the local ENU

frame. The maximum velocity constraint on each robot is vmax = 0.65 m/s and the

safety zone proximity is set at εprox = 1.5 m.

139

-5 0 5 10 15 20 25
X (m)

-2

0

2

4

6

8

10

12

Y
 (

m
)

Cooperative Control Experiment 2 Setup
Robot 1 Start
Robot 2 Start

Goal

Safety Zone
Robot 2

Robot 1

Figure 8.20: Setup for cooperative experiment 2.

In this experiment, the goal is known only to robot 1, while robot 2 only knows

to follow, or cooperate with, robot 1. The objective is to have robot 1 go to the

goal and have robot 2 follow; thus demonstrating that the two vehicles are in fact

cooperating.

The resulting trajectories taken by the two robots is given in figure 8.21. This

result depicts robot 1 moving directly to the goal and robot 2 is maneuvering to

follow, as desired.

140

-5 0 5 10 15 20 25
X (m)

-2

0

2

4

6

8

10

12

Y
 (

m
)

Cooperative Control Experiment 2
Robot 1
Robot 2
Goal

Goal

Safety Zone

Figure 8.21: Robot positions for cooperative experiment 2.

The resulting wheel speed commands generated by the cooperative APF guid-

ance method is depicted in figure 8.22. The results from figure 8.22 show that robot 1’s

wheel speed commands are smoothly directing it to the goal whereas the commands

for robot 2 has the vehicle maneuvering to follow.

141

0 5 10 15 20 25 30 35 40
Time (s)

0

5

10

15

L
 (

t)
 (

ra
d/

s)

Left Wheel Speed Command, Experiment 2

0 5 10 15 20 25 30 35 40
Time (s)

0

5

10

15

R
 (

t)
 (

ra
d/

s)

Right Wheel Speed Command, Experiment 2
Robot 1
Robot 2

Figure 8.22: Wheel speed commands for cooperative experiment 2.

The relative distance between each of the vehicles is shown in figure 8.23. From

this figure, it can be seen that the two vehicles do not collide. Also, the distance

between the robots is shrinking suggesting that robot 2 is following and trying to

close the gap.

142

0 5 10 15 20 25 30 35 40
Time (s)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

R
el

at
iv

e
D

is
ta

nc
e

(m
)

Distance Between Robots 1 and 2 - Experiment 2

Figure 8.23: Robot’s relative distance for cooperative experiment 2.

Cooperative Experiment 3

The setup for the third cooperative experiment is illustrated in figure 8.24. For

this experiment, the goal position is located at (20m, 10m) in the local ENU frame.

The maximum velocity constraint on each robot is vmax = 0.60 m/s and the safety

zone proximity is set at εprox = 2 m.

In this experiment, there is an obstacle placed between the vehicles and the

goal. The obstacle is placed at a distance of 9 m from the robots’ starting positions

and their objective is to avoid collisions with each other and the obstacle and arrive

at the objective location. Also shown in figure 8.24 is the potential field generated

by the navigation function algorithm to direct the robots to the goal. Notice that

the constraints for umax and deff for the navigation function were removed, this was

done to enable the vehicles to find their way to the goal from anywhere in the free

space.

143

Figure 8.24: Setup for cooperative experiment 3.

The resulting trajectories taken by the two robots is given in figure 8.25. From

this result, it is evident that both vehicles are repelled by each other at the start and

gradually navigate around the obstacle. Robot 2 comes within close proximity to the

corner obstacle. One drawback of this method is due to the cyber-physical system

architecture employed, as there are inherent delays in the transmission of information

over a 4G LTE mobile network. This leads to the delays in gathering positioning

information and applying the guidance commands to the system. This issue also

leads to close calls such as what is shown in figure 8.25.

144

-5 0 5 10 15 20 25 30
X (m)

-5

0

5

10

15

20

25

30
Y

 (
m

)
Cooperative Control Experiment 3

Robot 1
Robot 2
Obstacle
Goal

Goal

Figure 8.25: Robot positions for cooperative experiment 3.

The resulting wheel speed commands generated by the cooperative APF guid-

ance method is depicted in figure 8.26. The behavior of the wheel speed command

profiles for each robot suggest they are both maneuvering to both avoid colliding with

each other as well as the obstacle present.

145

0 5 10 15 20 25 30 35 40 45
Time (s)

0

10

20

L
(t

)
(r

ad
/s

)

Left Wheel Speed Command, Experiment 3

0 5 10 15 20 25 30 35 40 45
Time (s)

-10

0

10

20

R
(t

)
(r

ad
/s

)

Right Wheel Speed Command, Experiment 3
Robot 1
Robot 2

Figure 8.26: Wheel speed commands for cooperative experiment 3.

The relative distance between each of the vehicles is shown in figure 8.27. This

result illustrates how the two robots start within a close proximity to one another

and then gradually drift apart to go around the obstacle and eventually come back

together and the end of the experiment.

146

0 5 10 15 20 25 30 35 40 45
Time (s)

0

5

10

15

R
el

at
iv

e
D

is
ta

nc
e

(m
)

Distance Between Robots 1 and 2 - Experiment 3

Figure 8.27: Robot’s relative distance for cooperative experiment 3.

147

CHAPTER 9

Summary, Conclusions and Future Work

9.1 Summary and Conclusions

The purpose of this research is to put forth methods to increase the level of

autonomy for wheeled mobile robots. This dissertation presented procedures for

developing a reliable path planning and guidance framework for mobile robots to

accomplish this task. The framework discussed in this dissertation presents a new

model based path planning algorithm in addition to two nonlinear guidance laws that

form a reliable path planning and guidance framework for individual mobile robot

vehicles which was verified in simulation and parts of which hare also validated ex-

perimentally using the mobile robot platforms in the Aerospace Systems Laboratory

at The University of Texas at Arlington.

The path planning algorithm is introduced in this work as a design that is

derived from a numerical navigation function. The novel contribution from the path

planning algorithm is that it is a special form of artificial potential functions that is

constructed based on the minimum control effort to a reachable state. This method

makes use of the wavefront expansion construction procedure to form its potential

contours with a control effort based metric. The end result of this path planning

method is that it can find an obstacle free path that not only guides the robot to its

objective but also takes into account the final approach of the vehicle to a reachable

state. Additionally, this algorithm allows for obstacle free paths to be formed from

anywhere in the environment, making it useful for cooperative tasks.

148

Additionally, extensions of the path planning algorithm’s control effort metric

were applied using modified versions of RRT* and D*. These extensions address the

path planning problem with different kinds of uncertainty.

This dissertation also discusses two nonlinear guidance designs meant to track

trajectories in a given environment. These guidance laws are derived to provide

high-level commands governing the robot’s velocity and heading angle as it tracks a

trajectory. The first guidance design is a state dependent coefficient-based nonlinear

model predictive control formulation. With this method, the robot’s physical con-

straints are taken into account in finding its guidance commands to track the desired

trajectory. Hence, this method provides a constraint-based design ensuring that the

robot will operate within its capabilities. The contribution of this work lies in the

method’s use with a wheeled mobile robot vehicle that is verified in simulation and

also applied to a real-time mobile robot platform for experiment results.

The next guidance law is based on a nonlinear backstepping-like approach.

With this design, the contribution comes from proving that the robot is guaranteed

to have bounded tracking errors as it traverses the trajectory leading to its goal. The

ability of this guidance technique to closely follow the trajectory makes it a suitable

choice when the robot needs extra assurance in tracking on its way to the goal. Also,

this guidance law is verified in simulation and applied to a mobile robot platform for

real-time experiment results.

The final contribution covered in this dissertation is the cooperative control for-

mulation with artificial potential functions. This contribution arose when studying

the capabilities of the novel navigation function algorithm. The significant aspect

realized with regards to the navigation function path planner and performing coop-

erative tasks is that it has the capacity to form a path plan from any point within a

known environment. This ability allows the potential field generated by the algorithm

149

to be used by any and all of the robots performing a cooperative task. Hence, the

mobile robots can share their knowledge of the environment among themselves and

form a single potential field for the collective which could potentially decrease the

computational burden required. The contribution from this aspect of the research

is the cooperative control policy outlined for aggregation and social foraging tasks

with the minimum control effort navigation function algorithm. In this dissertation,

the cooperative control policy is verified in simulation and also applied to two mobile

robot platforms to provide real-time experiment results.

The combination of the different aspects described in this dissertation can form

a framework that can be used for path planning and guidance involving a variety of

mobile robot platforms. However, the main contributions covered in this dissertation

lies in the application of the methods described to differential-drive wheeled mobile

robots both in simulation and in real-time experiments.

9.2 Future Work

The research presented in this dissertation emphasizes analytical and exper-

imental results for the path planning and guidance methods employed within the

framework. The results demonstrate the effectiveness of each component within the

framework individually and in combination through simulation and real-time exper-

iments. However, there are still areas within the framework that can be expanded

upon. One area that can be explored further is proving the optimality of the SDC-

based NMPC guidance technique. The optimality of SDC-based control designs is at

this time an open area of research with progress limited to specific applications.

Also, with regards to the path planning algorithms. The results were presented

in a simulated environment and weren’t rigorously tested on the real-time platform.

Hence, one possible extension of the path-planning research would involve applying

150

the planners to a testing platform with virtual obstacles constraining the environ-

ment. Another extension would involve real-time planning of an environment with

the path planning algorithms applied in tandem with other sensors, such as lidar or

sonar, gathering information about obstacles present. These applications can also

include comparisons of the different planning methods presented in this dissertation

to determine which one works best under certain circumstances.

Possible extensions with the cooperative control policy outlined in this disserta-

tion can include adding more vehicles into the given setups. The experiments covered

in this dissertation were limited to two mobile robots, while the simulated results in-

vestigated three robots. Another possible extension of this work would be to remove

the cyber-physical system architecture which constrains the robot’s communication

by way of the ground station computer. This would allow the cooperative control

policy to be validated in a decentralized manner as it was presented in chapter 7.

151

APPENDIX A

Preliminary Material

152

This appendix details some preliminary information and material which influ-

enced the research presented in this dissertation. The first part will cover some notable

definitions used. This is followed by considerations toward stability of dynamical sys-

tems and optimization techniques. Then, a brief overview of the wavefront expansion

is given followed by a section that covers the design of trajectories considered in this

research.

A.1 Definitions

Define the 2-norm of a vector x ∈ <n as

||x|| =
√

xTx

A general configuration in a two dimensional workspace is denoted as the vector

q ∈ <2. For the problems considered, q = [x, y]T , representing a two dimensional

position vector composed of the x and y position coordinates in a grid based workspace

[12].

Given a configuration q in a two dimensional workspace, its 1-neighbors are

defined as the configurations in the grid that have at most one coordinate differing

from q. The amount of difference is equal to one increment in either direction, or

the cell difference in the grid, represented as ∆x in the x-direction and ∆y in the

y-direction. For example, a configuration q′ = [x±∆x, y]T , or q′ = [x, y ±∆y]T , is

a 1-neighbor of q = [x, y]T . In total, there are four 1-neighbors in a two dimensional

workspace [12].

Similarly, given a configuration q in a two dimensional workspace, its 2-neighbors

are defined as the configurations in the grid that have at most two coordinates differ-

ing from q. There are eight 2-neighbors for a configuration when considering a two

dimensional workspace [12].

153

A square n × n matrix Q is considered to be positive definite (p.d.) if given

a vector x ∈ <n, where x 6= 0, then the resulting inequality holds with a quadratic

function

xTQx > 0

Furthermore, the following holds true for a p.d. matrix Q

µmin (Q) ‖x‖2 ≤ xTQx ≤ µmax (Q) ‖x‖2

where µmin (·) is the minimum eigenvalue operator and µmax (·) is the spectral radius

(maximum eigenvalue) operator.

A continuous scalar function V : <n → < is said to be positive definite if

V (0) = 0 and V (x) > 0 over the whole state space. Also, a continuous scalar

function V (x) is considered negative definite if −V (x) is positive definite.

The fundamental or state transition matrix of a continuous system, denoted as

Φ(t, t0) ∈ <n×n, is used to map the state at the initial time, x(t0) ∈ <n to the current

state, x(t) ∈ <n, as [70]:

x(t) = Φ(t, t0)x(t0)

A.2 Stability of Dynamical Systems

The concepts of stability in this dissertation are presented using Lyapunov

stability theory. For a more complete analysis of Lyapunov stability theory, refer

to references [67, 71]. In short, a point in the state space is considered stable if it

starts in a nearby region, and stays nearby. Furthermore, the point is considered

asymptotically stable if the state converges to an equilibrium point as time goes to

infinity.

154

The following notation is adopted, as expressed in reference [67]. A spherical

region denoted by BR, also called a ball, is defined by ‖x‖ < BR in the state-space

of the system.

Now, consider an autonomous system

ẋ = f (x) (A.1)

where the function f : D → <n is a locally Lipschitz mapping from a subset D ⊂ <n

into <n. Then, a state x = 0 is considered an equilibrium point if f(0) = 0. And

the equilibrium point is considered stable in the sense of Lyapunov if given some r,

where 0 < r < R,

‖x(0)‖ < Br =⇒ ‖x(t)‖ < BR, ∀t ≥ 0

Additionally, an equilibrium point x = 0 is considered asymptotically stable if given

some r > 0, then

‖x(0)‖ < Br =⇒ x(t)→ 0 as t→∞

The objective with the stability proofs is to ultimately show that the system’s

energy is continuously dissipated and that it will eventually settle at an equilibrium

point. Then, for a system, of the form in eq. (A.1), the concept of stability is consid-

ered with Lyapunov’s direct method [67]. With this method, a scalar energy function,

V : <n → <, is defined and is considered as a representation of the total energy of

the system. The goal becomes to show that the function V (x) is a valid Lyapunov

function, which will establish the asymptotic stability of the system.

Let V (x) be a non-negative function with its time derivative given by V̇ (x)

along the state trajectories of system (A.1). Then, in order for the function to be

considered a valid Lyapunov function, the following properties must be satisfied

• V (x) is positive definite.

• V̇ (x) is negative definite.

155

• V (x) = 0, if x is an equilibrium point.

When these properties hold, the function V (x) is a Lyapunov function and the system

is considered asymptotically stable [67].

A.3 Optimization

Another important aspect of this research involves optimization. This is par-

ticulary important within the nonlinear model predictive control design outlined in

chapter 5. The presentation and notation used in this section are based on refer-

ences [29,70]. Given an initial state vector x0 and assuming a discrete system model

of the form

xk+1 = Φxk + Γuk (A.2)

where Φ ∈ <n×n, Γ ∈ <n×m, xk ∈ <n and uk ∈ <m are the state transition matrix,

input matrix, state vector and input vector respectively. Then, the optimization

problems concerned in this dissertation are for finite horizon quadratic cost functions

with a free terminal state, constrained optimization and semi-definite (specifically

quadratic) programming.

A.3.1 System and Constraints in Batch Form

The discrete system model in equation (A.2) is placed in the predictive form

(described in reference [29]):

xk+j+1 = Φxk+j + Γuk+j (A.3)

where the index k is the current time and the index j represents the time-distance

from the current time. The input and state constraints are given by

ulb ≤ uk+j ≤ uub, j = 0, 1, · · · , N − 1

glb ≤ Gxk+j ≤ gub, j = 0, 1, · · · , N
(A.4)

156

where the matrix G is considered as an output matrix for the constrained states.

Also, the states in the closed interval [k, k +N] can be defined in batch form as

Xk = Fxk + HUk (A.5)

where Xk, F, H, Uk are defined as:

Xk =

xk

xk+1

...

xk+N−1

, Uk =

uk

uk+1

...

uk+N−1

, F =

I

Φ

...

ΦN−1

H =

0

Γ 0

ΦΓ Γ 0

...
...

.

ΦN−2Γ ΦN−3Γ . . . Γ 0

And the terminal state is defined as

xk+N = ΦNxk + Γ̄Uk (A.6)

where

Γ̄ ,

[
ΦN−1Γ ΦN−2Γ · · · ΦΓ Γ

]
The constraints given in eq. (A.4) can also be placed in batch form as

ulb

ulb
...

ulb

≤ Uk ≤

uub

uub
...

uub

,

glb

glb
...

glb

≤ ḠN (Fxk + HUk) ≤

gub

gub
...

gub

(A.7)

where ḠN = diag {G, · · · , G} is a block diagonal matrix formed by the output

matrix G.

157

A.3.2 Constrained Finite Horizon, Quadratic Cost Regulator with Free Terminal

State

The quadratic cost function for the constrained optimization problem is chosen

as

J(xk,uk) =
1

2

N−1∑
j=0

(xTk+jQxk+j + uTk+jRuk+j) +
1

2
xTk+NQfxk+N (A.8)

with the constraints given in batch form in equation (A.7).

The cost function in equation (A.8) can be separated into two parts as

J(xk,uk) = J1(xk, k) + J2(xk+N , k) (A.9)

where

J1(xk, k) ,
1

2

N−1∑
j=0

(xTk+jQxk+j + uTk+jRuk+j) (A.10)

J2(xk+N , k) ,
1

2
xTk+NQfxk+N (A.11)

The constrained control is obtained by solving the above optimization problem at

time k and repeating it at the next time k + 1.

This problem can be reduced to the following semi-definite programming prob-

lem [29]:

U∗k = min γ1 + γ2 (A.12)

where J1(xk, k) ≤ γ1 and J2(xk+N , k) ≤ γ2, and is subject to γ1 − 2xTkFT Q̄NHUk − xTkFT Q̄NFxk UT
k

Uk (HT Q̄NH + R̄N)−1

 ≥ 0 (A.13)

 γ2 [ΦNxk + Γ̄Uk]
T

ΦNxk + Γ̄Uk Q−1
f

 ≥ 0 (A.14)

where Q̄N = diag {Q, · · · , Q} and R̄N = diag {R, · · · , R} are block diagonal

matrices consisting of the state and input weighting matrices respectively. The op-

158

timal control U∗k can be obtained by solving eq. (A.12) subject to the linear matrix

inequalities in eqs. (A.13) and (A.14).

A.3.3 Linear Matrix Inequalities

The guidance input synthesis involved in this research makes use of linear matrix

inequalities to show stability and feasibility. A matrix F(x) is considered a linear

matrix inequality (LMI) if it has the following form

F(x) = F0 +
m∑
i=1

xiFi > 0 (A.15)

where the variable vector x = [x1, · · · , xm]T ∈ <m and the symmetric matrices Fi ∈

<n×n, for i = 0, · · · ,m are given.

A LMI of the form in Eq. (A.15) is considered convex on x, in other words,

the set defined by {x|F(x) > 0} is convex. The LMI form can be used to represent

nonlinear matrix inequalities such as quadratic inequalities.

In fact, nonlinear matrix inequalities can be represented as LMI’s using the

Schur complement. For example, consider the LMI given by Q(x) S(x)

S(x)T R(x)

 > 0 (A.16)

where Q(x), R(x) are symmetric and Q(x), R(x), and S(x) each depend affinely on

x. Then, the LMI is equivalent to the following matrix inequalities using the Shur

compliment of R(x) and Q(x) respectively

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0. (A.17)

and

Q(x) > 0, R(x)− S(x)TQ(x)−1S(x) > 0. (A.18)

159

A.3.4 Semidefinite Programming

A short introduction to semidefinite programming (SDP) is given here since it

is used to obtain results in this dissertation, shown in chapter 5. The SDP discussion

here is based on information available in reference [29].

SDP is an optimization routine used to minimize a linear function of a variable

x ∈ <m subject to a matrix inequality. Consider the following optimization problem:

minimize cTx

subject to: F(x) > 0

where c ∈ <m and F(x) is a LMI.

The SDP problem can also be used to represent other important optimization

problems, such as a quadratic programming (QP) problem, which will be used in this

proposal. Consider a QP problem given by

minimize
1

2
xTPx + qTx + r (A.19)

subject to: Gx < h

where G ∈ <m×m, P ∈ <m×m, P > 0, q ∈ <m, x ∈ <m, and r ∈ <. The QP problem

in eq. (A.19) can be equivalently represented in SDP form as

minimize t (A.20)

subject to:

 t− r − qTx xT

x 2P−1

 > 0

Gx < h

where t ∈ <. This problem involves the QP subject to linear constraints. However,

in order to solve the kinds of optimization problems required, the QP problem needs

160

to be subject to a quadratic constraint. For example, consider the following convex

quadratic constraint

(Ax + b)T (Ax + b)− cTx− d < 0

which can be rewritten in the following form I Ax + b

(Ax + b)T cTx + d

 < 0 (A.21)

Note that the left hand side in eq. (A.21) depends afinely on x. Furthermore, the

inequality in eq. (A.21) can be placed in the LMI form of eq. (A.15), where values for

F0 and Fi can be defined as

F0 =

 I b

bT d

 , Fi =

 0 ai

aTi ci

 , i = 1, . . . ,m (A.22)

where A = [a1 . . . am] [29].

A.4 Numerical Navigation Functions

The numerical navigation functions which influence this research are described

fully in references [12,13]. The two main numerical navigation functions are the simple

wavefront expansion algorithm and the improved wavefront expansion algorithm [12,

13]. Both methods utilize counting and logic to construct the navigation function’s

potential contours. The simple wavefront expansion algorithm is the main influence

of the work presented in this dissertation and is briefly described in this appendix.

The first step for the wavefront expansion algorithm is to discretize the workspace

into an evenly spaced grid. After the grid representation of the workspace is formed,

there are three main steps to be performed. The steps for the wavefront expansion

algorithm are:

161

1. Identify the free configurations.

2. Set the potential at the goal to zero.

3. Expand the potential within the free space.

The free space is identified by forming a bitmap over the grid where the free config-

urations are represented by 0 and the restricted configurations are represented by 1.

Then, the potential at the goal configuration, denoted as qgoal is set to 0. This is

done to ensure that it will be the global minimum in the potential field.

After the potential at the goal is set, the potential for all the 1-neighbors are set

to 1; and to 2 at every 1-neighbor of these configurations; etc. This process is repeated

until it has visited every free configuration reacheable from qgoal. An example result

of the wavefront expansion algorithm is illustrated in figure A.1 and the full algorithm

is shown in the flowchart in figure A.2.

Ob Ob 5 4 3 2 3 4

Ob Ob 4 3 2 1 2 3

Ob Ob 3 2 1 0 1 2

6 5 4 3 2 1 2 3

7 6 5 4 3 2 3 4

8 7 6 5 4 3 Ob Ob

9 8 7 6 5 4 Ob Ob

10 9 8 7 6 5 Ob Ob

Figure A.1: Example result using the traditional wavefront expansion algorithm.

The result in figure A.1 shows that the potential contour levels are formed by

a metric defined by the distance from the goal. Also, the algorithm shown in figure

162

A.2 shows that after the navigation function’s potential field is formed, it is sent to a

best-first search algorithm to find the reference path from a given initial position.

Figure A.2: Traditional wavefront expansion algorithm.

The reference path, xr, is obtained by following the negative gradient of the re-

sulting potential field from a given initial location to the objective location. Through

the best-first search method, the paths are attained by observing the potential values

of the neighboring points and then choosing the neighbor with the lowest value. This

is done in an iterative manner until the objective is found. Hence, the path is found

by starting at some initial location in the environment and continuing along a path

of minimal potential until it reaches the goal. The best-first graph search algorithm

is fully described in reference [12]. In short, the search algorithm creates a tree of

nodes from the grid that when followed leads to the objective position.

163

A.5 Trajectory Generation

This section describes two different approaches for designing a trajectory for

a mobile robot to track. The first approach is to design a trajectory that is fitted

along a reference path, or set of x and y coordinates, leading to a goal. The second

approach is to define a trajectory between two waypoints.

A.5.1 Trajectory Design Along a Path Plan

For the guidance designs introduced, there needs to be a two dimensional, C2,

trajectory to track. The reference signals needed for the trajectory tracking controller

are [xr, yr, ẋr, ẏr, ẍr, ÿr], which represent the desired position, velocity and acceler-

ation in the x and y directions. The trajectory is designed to fit over the reference

path, xr, that is generated through the navigation function algorithm described in

chapter 3.

In order to generate the trajectory, a desired time to reach the goal needs to

be set. With the goal time set, a time stamp to reach each point can be assigned by

creating a time vector that can be evenly spaced across all the points in the reference

path. In other words the time step, δt, it takes to go from one point to the next along

the path is held constant.

Then, the reference velocities along the path can be computed by

ẋr(i+ 1) =
xr(i+ 1)− xr(i)

δt
,

ẏr(i+ 1) =
yr(i+ 1)− yr(i)

δt
,

164

where i is the index number of the point in the path. And it is assumed that the

initial velocity is zero, i.e. ẋr(0) = 0 and ẏr(0) = 0. The reference acceleration signals

are computed by

ẍr(i+ 1) =
ẋr(i+ 1)− ẋr(i)

δt
,

ÿr(i+ 1) =
ẏr(i+ 1)− ẏr(i)

δt
,

where i is the index number and it is assumed that the initial acceleration is zero, i.e.

ẍr(0) = 0 and ÿr(0) = 0. Finally, when the vehicle is traveling between points in xr,

the references are found by linear interpolation.

For the NMPC design, the reference heading angle and velocity can be found

by

ψr(i+ 1) = arctan

(
ẏr(i+ 1)

ẋr(i+ 1)

)
vr(i+ 1) =

√
ẋ2
r(i+ 1) + ẏ2

r(i+ 1)

A.5.2 Trajectory Design Between Two Waypoints

For the results in this dissertation, a constrained acceleration design is used

to define the trajectory between two waypoints. Hence, a 5th order polynomial is

considered, which will provide sufficient boundary conditions to solve for reference

position, velocity and acceleration profiles in the x and y directions.

The boundary conditions on the position, velocity and acceleration of the robot

can be used to define the coefficients of the polynomial in terms of the final time,

tf . Also, a constraint on the maximum magnitude of the acceleration is used to find

the final time to reach the next waypoint as well as the coefficients of the trajectory

polynomial.

165

The cost function associated with the minimum jerk trajectory problem is given

by

J
(
X(t)

)
=

1

2

∫ tf

t0

[(
d3x(t)

dt3

)2

+

(
d3y(t)

dt3

)2
]
dt, (A.23)

where X(t) = [x(t) y(t)]T is a two dimensional position vector. Through minimizing

the above cost function, the trajectory profiles for the position, velocity and accelera-

tion can be obtained. Furthermore, the coefficients of the polynomials generated can

be found by considering the constraints on the magnitude of the maximum accelera-

tions of the system, i.e. |ẍ(t)| ≤ |ẍmax| and |ÿ(t)| ≤ |ÿmax|.

To define the resulting trajectory, the position, velocity and acceleration profiles

are given in terms of a generalized coordinate q(t) as

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (A.24)

q̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4, (A.25)

q̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3, (A.26)

where q(t), in general, can represent x(t) or y(t). Then, the boundary conditions on

the position, velocity and acceleration of the robot are given by

q(0) = qi, (A.27)

q(tf) = qf , (A.28)

q̇(0) = q̇(tf) = 0, (A.29)

q̈(0) = q̈(tf) = 0, (A.30)

166

where tf denotes the final time. Substituting the boundary conditions into equa-

tions A.24, A.25 and A.26, the following relations for the polynomial coefficients are

obtained

a0 = q(0), (A.31)

a1 = 0, (A.32)

a2 = 0, (A.33)

qf − qi = a3t
3
f + a4t

4
f + a5t

5
f , (A.34)

0 = 3a3t
2
f + 4a4t

3
f + 5a5t

4
f , (A.35)

0 = 6a3tf + 12a4t
2
f + 20a5t

3
f . (A.36)

And through solving equations A.34, A.35 and A.36 simultaneously, the coeffi-

cients, a3, a4, a5, are obtained in terms of the boundary conditions and the final time,

tf , as

a3 = 10

(
∆q

t3f

)
, (A.37)

a4 = −15

(
∆q

t4f

)
, (A.38)

a5 = 6

(
∆q

t5f

)
, (A.39)

where ∆q = qf − qi. Then, the final time for the maneuver can be determined by

considering the following inequality with the maximum acceleration constraint

|q̈(t)| ≤ |amax| , (A.40)

This leads to the following necessary condition on the jerk of the system,

d(q̈(t))

d(t)

∣∣∣∣
q̈(t)=amax

= 0. (A.41)

167

By defining τ = t
tf

and using equations A.26, and A.37-A.40, the following inequality

in terms of the boundary conditions, current time, final time and maximum acceler-

ation is obtained ∣∣∣∣∣60

(
∆q

t2f

)[
τ(1− 3τ + 2τ 2)

]∣∣∣∣∣ ≤ |amax| . (A.42)

The inequality in equation A.42 is then solved using the necessary condition to find

the value for τ as,

τ =
1

2
± 1√

12
. (A.43)

By using this result for τ along with the inequality in equation A.42, the final time

tf is obtained in terms of the maximum acceleration of the robot and the boundary

conditions as

tf ≥

√
10√

3

∆q

amax
. (A.44)

Using the result for tf in equation A.44, the values for a3, a4 and a5 can be obtained.

Overall, the minimum jerk trajectory design will provide not just reference profiles

for the position, velocity and acceleration, but also a solution for the expected time

it would take for a vehicle to reach a point based on its maximum acceleration.

168

REFERENCES

[1] B. T. Clough, “Metrics, schmetrics! how the heck do you determine a uav’s

autonomy anyway,” Air Force Research Lab, Wright Patterson AFB, Tech. Rep.,

2002, http://www.dtic.mil/dtic/tr/fulltext/u2/a515926.pdf.

[2] T. Huntsberger, H. Aghazarian, Y. Cheng, E. T. Baumgartner, E. Tun-

stel, C. Leger, A. Trebi-Ollennu, and P. S. Schenker, “Rover autonomy for

long range navigation and science data acquisition on planetary surfaces,”

in Proceedings 2002 IEEE International Conference on Robotics and Au-

tomation (Cat. No.02CH37292), vol. 3. IEEE, 2002, pp. 3161–3168, doi:

10.1109/ROBOT.2002.1013713.

[3] M. Ono, T. J. Fuchs, A. Steffy, M. Maimone, and J. Yen, “Risk-aware

planetary rover operation: Autonomous terrain classification and path plan-

ning,” in 2015 IEEE Aerospace Conference. IEEE, 2015, pp. 1–10, doi:

10.1109/AERO.2015.7119022.

[4] M. B. Quadrelli, L. J. Wood, J. E. Riedel, M. C. McHenry, M. Aung, L. A. Can-

gahuala, R. A. Volpe, P. M. Beauchamp, and J. A. Cutts, “Guidance, navigation,

and control technology assessment for future planetary science missions,” Jour-

nal of Guidance, Control, and Dynamics, vol. 38, no. 7, pp. 1165–1186, 2015,

doi: https://doi.org/10.2514/1.G000525.

[5] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory generation for

wheeled mobile robots,” The International Journal of Robotics Research, vol. 26,

no. 2, pp. 141–166, 2007, doi: https://doi.org/10.1177/0278364906075328.

169

[6] T. Howard, C. Green, and A. Kelly, “Receding horizon model-predictive control

for mobile robot navigation of intricate paths,” in Field and Service Robotics:

Results of the 7th International Conference. Springer, Berlin, Heidelberg, 2010,

pp. 69–78, doi: https://doi.org/10.1007/978-3-642-13408-1 7.

[7] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

Iowa State University, Tech. Rep., 1998, computer science dept., tr: 98-11.

[8] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal

motion planning,” in Proceedings of Robotics: Science and Systems, Zaragoza,

Spain, June 2010, doi: 10.15607/RSS.2010.VI.034.

[9] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001,

doi: https://doi.org/10.1177/02783640122067453.

[10] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-

namic motion planning with moving obstacles,” The International Jour-

nal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002, doi:

https://doi.org/10.1177/027836402320556421.

[11] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

in Autonomous Robot Vehicles. Springer, New York, NY, 1990, pp. 396–404,

doi: https://doi.org/10.1007/978-1-4613-8997-2 29.

[12] J.-C. Latombe, Robot Motion Planning. Springer Science & Business Media,

2012, vol. 124.

[13] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field tech-

niques for robot path planning,” IEEE Transactions on Systems, Man and Cy-

bernetics, vol. 22, no. 2, pp. 224–241, 1992, doi: 10.1109/21.148426.

170

[14] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential

functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp.

501–518, 1992, doi: 10.1109/70.163777.

[15] Y. Wang, D. Wang, and S. Zhu, “A new navigation function based decen-

tralized control of multi-vehicle systems in unknown environments,” Jour-

nal of Intelligent & Robotic Systems, vol. 87, no. 2, pp. 363–377, 2017, doi:

https://doi.org/10.1007/s1084.

[16] W. Kowalczyk, M. Przybyla, and K. Kozlowski, “Set-point control of mo-

bile robot with obstacle detection and avoidance using navigation function-

experimental verification,” Journal of Intelligent & Robotic Systems, vol. 85,

no. 3-4, pp. 539–552, 2017, doi: https://doi.org/10.1007/s1084.

[17] W. Kowalczyk, “Rapidly converging navigation function control for differen-

tially driven mobile robots,” in 11th International Workshop on Robot Mo-

tion and Control (RoMoCo). IEEE, 2017, pp. 244–250, doi: 10.1109/Ro-

MoCo.2017.8003920.

[18] M. B. Horowitz and J. W. Burdick, “Optimal navigation functions for non-

linear stochastic systems,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS 2014). IEEE, 2014, pp. 224–231, doi:

10.1109/IROS.2014.6942565.

[19] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using laplace’s equa-

tion,” in IEEE International Conference on Robotics and Automation., vol. 3.

IEEE, 1990, pp. 2102–2106, doi: 10.1109/ROBOT.1990.126315.

[20] A. A. Masoud and M. M. Bayoumi, “Robot navigation using the vector poten-

tial approach,” in IEEE International Conference on Robotics and Automation,

1993., vol. 1. IEEE, 1993, pp. 805–811, doi: 10.1109/ROBOT.1993.292076.

171

[21] S. Garrido, L. Moreno, D. Blanco, and F. Martin, “Smooth path plan-

ning for non-holonomic robots using fast marching,” in IEEE Interna-

tional Conference on Mechatronics, ICM 2009. IEEE, 2009, pp. 1–6, doi:

10.1109/ICMECH.2009.4957121.

[22] E. Ralli and G. Hirzinger, “Fast path planning for robot manipulators us-

ing numerical potential fields in the configuration space,” in Proceedings of

the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems’

94.’Advanced Robotic Systems and the Real World’, IROS’94., vol. 3. IEEE,

1994, pp. 1922–1929, doi: 10.1109/IROS.1994.407663.

[23] Y. Wang and W. Cao, “A global path planning method for mobile robot based

on a three-dimensional-like map,” Robotica, vol. 32, no. 4, pp. 611–624, 2014,

doi: 10.1017/S0263574713000738.

[24] O. Brock, “Generating robot motion: The integration of planning and ex-

ecution,” Ph.D. dissertation, Stanford University, Stanford, CA, USA, 2000,

aAI9961867.

[25] A. Stentz, “The d* algorithm for real-time planning of optimal traverses.”

CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST, Tech.

Rep., 1994, cMU-RI-TR-94-37.

[26] ——, “The focussed d* algorithm for real-time replanning,” in Proceedings of

the 14th International Joint Conference on Artificial Intelligence - Volume 2,

ser. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1995, pp. 1652–1659.

[27] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[28] N. J. Nilsson, Principles of artificial intelligence. Morgan Kaufmann, 2014.

[29] W. H. Kwon and S. H. Han, Receding Horizon Control: Model Predictive Control

for State Models. Springer Science & Business Media, 2006.

172

[30] J. R. Cloutier, “State-dependent riccati equation techniques: An overview,” in

Proceedings of the 1997 American Control Conference., vol. 2. IEEE, 1997, pp.

932–936, doi: 10.1109/ACC.1997.609663.

[31] J. R. Cloutier and D. T. Stansbery, “The capabilities and art of state-dependent

riccati equation-based design,” in Proceedings of the 2002 American Control Con-

ference., vol. 1. IEEE, 2002, pp. 86–91, doi: 10.1109/ACC.2002.1024785.

[32] T. Cimen, “State-dependent riccati equation (sdre) control: a survey,”

IFAC Proceedings Volumes, vol. 41, no. 2, pp. 3761–3775, 2008, doi:

https://doi.org/10.3182/20080706-5-KR-1001.00635.

[33] ——, “Survey of state-dependent riccati equation in nonlinear optimal feedback

control synthesis,” Journal of Guidance, Control and Dynamics, vol. 35, no. 4,

pp. 1025–1047, 2012, doi: https://doi.org/10.2514/1.55821.

[34] A. Heydari and S. Balakrishnan, “Path planning using a novel finite horizon

suboptimal controller,” Journal of Guidance, Control, and Dynamics, vol. 36,

no. 4, pp. 1210–1214, 2013, doi: https://doi.org/10.2514/1.59127.

[35] A. Khamis and D. Naidu, “Nonlinear optimal tracking using finite horizon state

dependent riccati equation (sdre),” in Proceedings of the 4th International Con-

ference on Circuits, Systems, Control, Signals (WSEAS), 2013, pp. 37–42.

[36] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control

Systems, vol. 20, no. 3, pp. 38–52, 2000, doi: 10.1109/37.845037.

[37] G. Klančar and I. Škrjanc, “Tracking-error model-based predictive control for

mobile robots in real time,” Robotics and Autonomous Systems, vol. 55, no. 6,

pp. 460–469, 2007, doi: https://doi.org/10.1016/j.robot.2007.01.002.

[38] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained

model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,

pp. 789–814, 2000, doi: https://doi.org/10.1016/S0005-1098(99)00214-9.

173

[39] J. A. Primbs, “Nonlinear optimal control: a receding horizon appoach,” Ph.D.

dissertation, California Institute of Technology, 1999.

[40] A. Jadbabaie, “Receding horizon control of nonlinear systems: a control lyapunov

function approach,” Ph.D. dissertation, California Institute of Technology, 2001.

[41] M. Sznaier and R. Suarez, “Suboptimal control of constrained nonlinear systems

via receding horizon state dependent riccati equations,” in Proceedings of the 40th

IEEE Conference on Decision and Control., vol. 4. IEEE, 2001, pp. 3832–3837,

doi: 10.1109/CDC.2001.980461.

[42] M. Sznaier, R. Suárez, and J. Cloutier, “Suboptimal control of constrained non-

linear systems via receding horizon constrained control lyapunov functions,” In-

ternational Journal of Robust and Nonlinear Control, vol. 13, no. 3-4, pp. 247–

259, 2003, doi: 10.1002/rnc.816.

[43] D. Gu and H. Hu, “A stabilizing receding horizon regulator for nonholonomic

mobile robots,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 1022–1028,

2005, doi: 10.1109/TRO.2005.851357.

[44] ——, “Receding horizon tracking control of wheeled mobile robots,” IEEE Trans-

actions on Control Systems Technology, vol. 14, no. 4, pp. 743–749, 2006, doi:

10.1109/TCST.2006.872512.

[45] P. Ru and K. Subbarao, “Nonlinear model predictive control for unmanned aerial

vehicles,” Aerospace, vol. 4, no. 2, p. 31, 2017, doi: 10.3390/aerospace4020031.

[46] W. Dixon, D. Dawson, E. Zergeroglum, and F. Zhang, “Robust tracking and

regulation control for mobile robots,” in Proceedings of the 1999 IEEE Interna-

tional Conference on Control Applications., vol. 2. IEEE, 1999, pp. 1015–1020,

doi: 10.1109/CCA.1999.801026.

[47] J. Huang, C. Wen, W. Wang, and Z.-P. Jiang, “Adaptive stabilization and track-

ing control of a nonholonomic mobile robot with input saturation and distur-

174

bance,” Systems and Control Letters, vol. 62, no. 3, pp. 234–241, 2013, doi:

https://doi.org/10.1016/j.sysconle.2012.11.020.

[48] D. G. Wilson and I. Robinett, “Robust adaptive backstepping control for a

nonholonomic mobile robot,” in IEEE International Conference on Systems,

Man, and Cybernetics, vol. 5. IEEE, 2001, pp. 3241–3245, doi: 10.1109/IC-

SMC.2001.972018.

[49] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Back-

stepping kinematics into dynamics,” in Proceedings of the 34th IEEE Con-

ference on Decision and Control., vol. 4. IEEE, 1995, pp. 3805–3810, doi:

10.1109/CDC.1995.479190.

[50] P. Quillen, K. Subbarao, and J. Muñoz, “Guidance and control of a mobile robot

via numerical navigation functions and backstepping for planetary exploration

missions,” in AIAA SPACE 2016, AIAA Space Forum, 2016, no. 2016-5237, doi:

https://doi.org/10.2514/6.2016-5237.

[51] P. Quillen, J. Muñoz, and K. Subbarao, “Path planning to a reachable state using

inverse dynamics and minimum control effort based navigation functions,” in

2017 AAS/AIAA Astrodynamics Specialist Conference in Columbia River Gorge,

Stevenson, WA, August 2017, paper no. AAS 17-849.

[52] A. Godbole, V. Murali, P. Quillen, and K. Subbarao, “Optimal trajectory design

and control of a planetary exploration rover,” in Advances in the Astronautical

Sciences Spaceflight Mechanics 2017, Feb. 2017, vol. 160, 27th AAS/AIAA Space

Flight Mechanics Meeting, AAS 17-481.

[53] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based non-

linear model predictive control to improve vision-based mobile robot path-

tracking in challenging outdoor environments,” in IEEE International Confer-

175

ence on Robotics and Automation (ICRA). IEEE, 2014, pp. 4029–4036, doi:

10.1109/ICRA.2014.6907444.

[54] F. N. Martins, W. C. Celeste, R. Carelli, M. Sarcinelli-Filho, and T. F. Bastos-

Filho, “An adaptive dynamic controller for autonomous mobile robot trajectory

tracking,” Control Engineering Practice, vol. 16, no. 11, pp. 1354–1363, 2008,

doi: https://doi.org/10.1016/j.conengprac.2008.03.004.

[55] D. Buccieri, D. Perritaz, P. Mullhaupt, Z.-P. Jiang, and D. Bonvin, “Velocity-

scheduling control for a unicycle mobile robot: Theory and experiments,”

IEEE Transactions on Robotics, vol. 25, no. 2, pp. 451–458, 2009, doi:

10.1109/TRO.2009.2014494.

[56] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control

of Multi-Agent Systems: Optimal and Adaptive Design Approaches. Springer

Science & Business Media, 2013.

[57] V. Gazi and K. M. Passino, “A class of attractions/repulsion functions for stable

swarm aggregations,” International Journal of Control, vol. 77, no. 18, pp. 1567–

1579, 2004, doi: https://doi.org/10.1080/00207170412331330021.

[58] V. Gazi, B. Fİdan, Y. S. Hanay, and İ. Köksal, “Aggregation, foraging, and

formation control of swarms with non-holonomic agents using potential func-

tions and sliding mode techniques,” Turkish Journal of Electrical Engineering &

Computer Sciences, vol. 15, no. 2, pp. 149–168, 2007.

[59] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and co-

ordinated control of groups,” in Proceedings of the 40th IEEE Conference

on Decision and Control, 2001., vol. 3. IEEE, 2001, pp. 2968–2973, doi:

10.1109/CDC.2001.980728.

[60] R. O. Saber and R. M. Murray, “Flocking with obstacle avoidance: Cooperation

with limited communication in mobile networks,” in 42nd IEEE Conference on

176

Decision and Control, 2003. Proceedings., vol. 2. IEEE, 2003, pp. 2022–2028,

doi: 10.1109/CDC.2003.1272912.

[61] K. D. Do, “Formation tracking control of unicycle-type mobile robots with lim-

ited sensing ranges,” IEEE Transactions on Control Systems Technology, vol. 16,

no. 3, pp. 527–538, 2008, doi: 10.1109/TCST.2007.908214.

[62] D. H. Kim, H. Wang, and S. Shin, “Decentralized control of autonomous swarm

systems using artificial potential functions: Analytical design guidelines,” Jour-

nal of Intelligent and Robotic Systems, vol. 45, no. 4, pp. 369–394, 2006, doi:

10.1007/s10846-006-9050-8.

[63] E. De Vries and K. Subbarao, “Cooperative control of swarms of unmanned

aerial vehicles,” in 49th AIAA Aerospace Sciences Meeting including the New

Horizons Forum and Aerospace Exposition, Orlando, USA, 4-7 January 2011;

AIAA 2011-78. American Institute of Aeronautics and Astronautics (AIAA),

2011, doi: https://doi.org/10.2514/6.2011-78.

[64] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control. John Wiley & Sons,

2012.

[65] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc.,

1995.

[66] R. L. Williams, D. A. Lawrence, et al., Linear state-space control systems. John

Wiley & Sons, 2007.

[67] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice hall Englewood

Cliffs, NJ, 1991, vol. 199.

[68] S. J. Wright and J. Nocedal, Numerical optimization. Springer Science, 1999.

[69] N. V. M. Veerapaneni, “Real-time minimum jerk optimal trajectory synthesis

and tracking for ground vehicle applications,” Master’s thesis, The University of

Texas at Arlington, 2017, isbn: 9780355886504.

177

[70] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. CRC

press, 2011.

[71] H. K. Khalil, Noninear Systems. Prentice-Hall, New Jersey, 1996.

178

BIOGRAPHICAL STATEMENT

Paul Quillen pursued his first undergraduate degree in Applied Mathematics at

Baylor University. Upon completion of his first undergradate degree, Paul pursued

a second baccalaureate in Aerospace Engineering from the University of Texas at

Arlington. After graduating Cum Laude with honors, he enrolled in the bachelor’s to

doctoral program at the same institution. Paul has been a member of the Air Force

Research Laboratory’s Space Scholar program over the course of his doctoral studies

and was awarded the summer 2018 Dissertation Fellowship from the University of

Texas at Arlington. After earning his Ph.D., Paul will be joining AeroVironment Inc.

as a Robotics GNC Engineer working on unmanned aerial vehicles.

179

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Executive Summary
	Introduction and Motivation
	Background
	Path Planning with Control Effort and Navigation Functions
	Nonlinear Guidance Law
	Cooperative Control with Artificial Potential Functions

	Objectives and Contributions
	List of Contributions
	List of Published Works

	Dissertation Outline

	Framework and Problem Description
	Framework Setup
	Mobile Robot Kinematic Model
	Nonlinear Kinematic Equations
	Kinematics in Linear State-Space Form

	Path Planning to a Reachable State using Numerical Navigation Functions
	Navigation Function Generation
	Initialization Block
	Main Block

	Minimum Control Energy Approach
	Inverse Dynamics Approach
	Simulation Results
	Case 1: No obstacles present
	Case 2: Obstacles Present
	Effects of Changing umax

	Path Planning Extensions
	Modified-RRT* Algorithm
	Modified D* Algorithm
	Simulation Results
	Modified RRT* Path Plan Results
	Modified D* Path Plan Results
	Comparing the Path Plan Algorithms

	State Dependent Coefficient Based Nonlinear Model Predictive Control
	State Dependent Coefficient Representation of the Vehicle Kinematics
	Nonlinear Model Predictive Control Design
	Input and State Constraints
	Guidance Command Synthesis Using the Linear Matrix Inequality (LMI) Form
	Stability of Constrained, Sampled-Data, SDC-based NMPC
	Simulation Results

	Nonlinear Guidance Law Design
	Guidance Law Design for Path Plan Algorithm
	Framework Guidance Law Design
	Guidance Design with Disturbance in the Acceleration
	Simulation Results
	Trajectory Tracking
	Trajectory Tracking with Disturbance Present

	Cooperative Control with Artificial Potential Functions
	Artificial Potential Function for `Conflict-Free' Trajectory Synthesis
	Swarm Aggregation APF Design
	Minimum Control Effort Navigation Function for Social Foraging
	APF for Collision Avoidance

	Control Design
	Inter-Vehicle Communication
	Simulation Results

	Real-Time Experiment Setup and Results
	Mobile Robot Platform
	Hardware Components
	Cooperative Platform Setup
	Software

	Real-Time Experiment Results
	Individual Mobile Robot Results
	Multiple Robot Cooperative Control Results

	Summary, Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Preliminary Material
	REFERENCES
	BIOGRAPHICAL STATEMENT

