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ABSTRACT

TOWARDS END-TO-END SEMI-SUPERVISED DEEP LEARNING FOR DRUG

DISCOVERY

Xiaoyu Zhang, M.S.

The University of Texas at Arlington, 2018

Supervising Professor: Dr. Junzhou Huang

Observing the recent progress in Deep Learning, the employment of AI is surging

to accelerate drug discovery and cut R&D costs in the last few years. However, the

success of deep learning is attributed to large-scale clean high-quality labeled data,

which is generally unavailable in drug discovery practices.

In this thesis, we address this issue by proposing an end-to-end deep learning

framework in a semi-supervised learning fashion. That is said, the proposed deep

learning approach can utilize both labeled and unlabeled data. While labeled data is

of very limited availability, the amount of available unlabeled data is generally huge.

The proposed framework, named as seq3seq fingerprint, automatically learns a

strong representation of each molecule in an unsupervised way from a huge training

data pool containing a mixture of both unlabeled and labeled molecules. In the

meantime, the representation is also adjusted to further help predictive tasks, e.g.,

acidity, alkalinity or solubility classification. The entire framework is trained end-

to-end and simultaneously learn the representation and inference results. Extensive

experiments support the superiority of the proposed framework.
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CHAPTER 1

INTRODUCTION

1.1 Neural Network and Deep Learning

Over the past decade, deep learning has achieved significant success in various

areas. The most impactful event is AlphaGo knocked out Lee Sedol in 2016. Actu-

ally, deep learning has already begin to change our daily life, such as self-driving car

and video surveillance. There are multiple reasons why Artificial intelligence is so

successfully applied into modern industrial manufacturing. First, a huge amount of

high quality data is available from multiple resources, which makes the complex model

training available in order to give accurate enough predictions. Today, the information

from internet are growing exponentially every year, a huge amount of data are being

collected from almost all the aspects of human life and saved to economic storage

with large capacity. Secondly, the appearance of computational powerful CPUs and

GPUs make the large scale computation affordable for the industry. The tensor pro-

cessing unit(TPU) and many GPU friendly software packages such as Tensorflow[1],

Pytorch[37] and Caffe[24] are available for research purpose and industrial produc-

tion. All these make deep learning become practical. Obviously, deep learning related

technologies have and will continue to benefit our daily life, especially in the era of

big data.

The deep learning algorithm is based on neural network that non-linearly com-

bine a number of layers as shown in 1.1, each layer contains a number of connected

neurons, each neurons also connects with neurons within the neighboring layers. This

kind of architecture is all artificial neural network(ANN). The combination of all the
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Figure 1.1: Architecture of artificial neural networks

layers of ANN can finally extract high-level features and model the nonlinear propa-

gation of input data with the help of activation function g in 1.1. By adjusting the

weights according to the data, non-linear model can be updated gradually and we use

the converged solution to classify the data with discrete label or predicting properties

with continuous number.

Yi = g
〈∑

j

Wij ∗ aj
〉

(1.1)

where aj refers to input variables, W is the weight matrix, Y is output, and g is an

activation function which can be rectified linear unit(ReLU), Sigmoid, Hyper Tangent

or even Linear.

Convolution neural network(CNN)1.21 has become the most popular neural

network in the past decade, especially in image recognition. Usually, it contains

many inceptions that made up of some various types of layers in one neural network,

1https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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Figure 1.2: ConvNet Architecture

which includes convolution layers, pooling layers, drop out layers and fully connected

layers. The convolution layers use a set of filters, which greatly reduce the number of

intermediate parameters since they share the same weights. In addition, the pooling

layers re-sample previous layers and decrease the size of intermediate layers. Thus,

CCN is much more efficient compared with the traditional artificial neural network.

Besides, the drop out layers can suppress over-fitting that is inherited from traditional

artificial neural network. Many detection or imaging problems can be solved by deep

learning with CNN, such as image recognition[39, 15], medical imaging[51, 68, 67, 48,

58, 21, 55, 57] and seismic imaging[65, 63, 64].

Recurrent Neural Network(RNN) is widely used in Nature Language Processing

(NLP) [12]. Unlike feedforward neural networks, the output of RNN not only depends

on the current inputs but also the output of previous node within the same layer

as shown by 1.2. It’s usually used for sequence model to keep sequential features.

Assume that RNN computes sequence of outputs (y1, . . . , yT ) from the input sequences

(x1, . . . , xT ) by iterating This type of NN can be used to process time-serious signals

since it holds hidden memory that keeps the sequential features of the inputs. One well

known variant is called Long short memory(LSTM)[19]. There are many successful

applications of RNN in various areas such as object detection[60], action recognition,

text recognition, and drug discovery[11, 56, 62].

3



a〈t〉 = g
(
Waaa

〈t−1〉 +Waxx
〈t〉 + ba

)
y〈t〉 = g

(
(Wyaa

〈t〉 + by

) (1.2)

where Waa is the weight for activation at−1, Wax is the weight for inputsxt, g is the

activation function.

1.2 Deep Learning for drug discovery

Recently, the application of some advanced Artificial Intelligence(AI) technolo-

gies in drug discovery has become significant and increasingly popular[6, 25]. Observ-

ing the most recent rapid growth of a key technology in AI, namely deep learning

(or deep neural network), the whole industry and academia are looking towards

AI to speed up the drug discovery, cut R&D cost and decrease the failure rate in

potential drug screening trials [7]. In fact, most of NN models have been applied to

drug discovery, such as CNN[46], RNN[59, 61] and Generative Deep Neural Network

and reinforcement learning technology[23, 29]. RNN has the advantage of processing

sequential models, which is suitable for drug analysis. It’s not easy to train GANs

and the reinforcement learning model due to model collapse issue, researchers are

currently making a lot of efforts to optimize the model and improve those technology

for drug discovery.

1.3 Problems & Challenges in Drug Discovery

The previous success of deep learning in multiple applications, e.g., image un-

derstanding [10, 45], medical imaging [21, 52, 32, 48], video understanding [2, 69],

bioinformatics [56, 58, 66], and machine translation [27], etc., has implied a reliance

on large-scale high-quality labeled data-sets. The training procedure of those deep-

learning-based state-of-the-art models generally involve millions of labeled samples.
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In the meantime, however, for the drug discovery tasks, the scale of labeled data-set

stays around only thousands of examples due to the insanely high cost of obtaining the

clean labeled data through the biological experiments. The available amount of the

labeled training data is absolutely insufficient to secure the success of the application

of deep learning in the drug discovery [36]. This huge gap between the requirement

and availability of the labeled data in drug discovery has become a bottleneck of ap-

plying deep learning techniques into drug discovery. Given the high cost of obtaining

sufficient labeled data points, it seems impractical to increase the labeled data-set

scale to a satisfactory level. To address this issue, we propose a semi-supervised deep

learning modeling strategy. In simple terms, the proposed deep learning framework

can learn from both labeled and unlabeled data, while the unlabeled data is almost

infinitely available. For instance, the ZINC data-set [22] is publicly available and con-

tains over 35 million unlabeled molecule data. With such scale of data being used,

the deep learning model is expected to be trained with enough representation power

to help the inference task.

1.4 Goal of Thesis

In this thesis, we propose a semi-supervised data-driven multi-task deep-learning-

based drug discovery method, named as seq3seq fingerprint. The reasons behind

this naming are two-fold: 1) this is the next-generation seq2seq fingerprint [56],

whose major upgrade is that the original two-stage pipeline has been combined into

an multi-task one-stage end-to-end pipeline to ensure much more decent inference

performance; 2) the seq3seq fingerprint framework contains three ends with one in-

put and two outputs while the seq2seq fingerprint contains two ends with one input

and one output.

5



Figure 1.3: The examples of SMILE representations.

N
H

N+

Flavopereirin: CCc(c1)ccc2[n+]1ccc3c2Nc4c3cccc4
H

HN

OC3

HN

O

CH3

Melatonin: CC(=O)NCCC1=CNc2c1cc(OC)cc2

H C3

NH2

N+

S
N

NH C3

OH

Thiamine: OCCc1c(C)[n+](cs1)Cc2cnc(C)nc2N

To briefly introduce the proposed seq3seq fingerprint framework[62], the seq3seq

fingerprint network can be considered as a pipeline with one input and two outputs.

The designed neural network can take the molecule inputs for training, with or

without labels. The input is the raw sequence representation of a molecule, namely

SMILE representation. Examples are referred in Figure 1.3. The two outputs will

correspond to the two tasks inside this network. The first one is the self-recovery.

The network is expected to be able to generate a vector representation which is able

to be recovered back to original raw sequence representation. The second task is the

inference whenever the label is available. For instance, it can be a task to predict the

acidity, alkalinity or solubility of a single molecule. The two tasks are trained within

the same network in an end-to-end fashion. As a result, in a specific inference task,

6



the vector representation will be able to provide both good recovery performance and

inference performance. Also, the network can be trained inside a mixture data pool

with both labeled and unlabeled data, which is sufficient enough to ensure the fine

training of the neural network.

The benefits of the seq3seq fingerprint are three folds: 1) the training phase of

seq3seq fingerprint takes both labeled and unlabeled data into consideration, which is

able to provide both strong vector representation and good inference performance. 2)

it is data-driven, eliminating the reliance on expert’s subjective knowledge. 3) since

the unlabeled data is almost unlimited in practice, it will significantly complement

the sole training with labeled data, ensuring a final good inference performance.

The technical contributions of this thesis are summarized as: 1) the seq3seq

fingerprint method is obviously the first attempt to utilize both labeled data and

unlabeled data for sequence-based end-to-end deep learning in drug discovery. 2)

several important features are enabled in the seq3seq fingerprint to help inference:

• this is the first end-to-end framework coupling both the recovery and inference

task.

• the proposed framework is general enough to suit different prediction tasks,

e.g., classification, regression, etc.

• it is feasible to use different inference network structures, e.g., Convolu-

tional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), etc.

3) extensive experiments demonstrate the superior performance on different tasks

over both supervised and unsupervised state-of-the-art fingerprint methods.

The rest of the paper is organized as follows. We summarize several related

work in drug discovery, in Section 2. In Section 3, we describe our entire pipeline

in details. We show our experiment results in Section 4, demonstrating the superior

7



performance of our method. We conclude and discuss the future direction of our

paper in Chapter 5.
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CHAPTER 2

CLASSICAL APPROACHES FOR DRUG DISCOVERY

In this section, we briefly introduce several related works. First, we present the

raw representation of molecules, namely SMILE representation, i.e., the persistence

form of the molecular data in the cold data storage. Second, we list a few state-of-

the-art fingerprint methods, including the ones using human-designed and hash-based

features.. Finally, we briefly describe some most recent deep learning based methods,

e.g., neural fingerprint [5], seq2seq fingerprint [56].

2.1 SMILE Representations of Molecules

Initially, the molecules are stored in the form of a sequence representation,

namely the Simplified Molecular-Input Line-Entry system (SMILE) [49], which is a

line notation for describing the structure of chemical species using text strings. The

SMILE system represents the chemical structures in a graph-based definition, where

the atoms, bonds and rings are encoded in a graph and represented in text sequences.

Simple examples of SMILE representations are 1) dinitrogen with structure N ≡ N

(N#N), 2) methyl isocyanate with structure CH3 −N = C = O (CN=C=O), where

corresponding SMILE representations are included in the brackets. Simply speaking,

the letters, e.g., C,N , generally represent the atoms, while some symbols like −,=,#

represent the bonds. We show some more complicated examples in Figure 1.3.

9



2.2 Fingerprint Methods

1. Hash-based Fingerprints Many hash-based methods has been developed to

generate unique molecular feature representation [20, 16, 33]. One important

class is called circular fingerprints. Circular fingerprints generate each layer’s

features by applying a fixed hash function to the concatenated features of the

neighborhood in the previous layer. One of the most famous ones is Extended-

Connectivity FingerPrint (ECFP) [40]. However, due to the non-invertable

nature of the hash function, the hash-bashed fingerprint methods usually do

not encode enough information and hence result in lower performance in the

further predictive tasks.

2. Biologist-guided Local-Feature Fingerprints

Another mainstream of traditional fingerprint methods is designed based on

the biological experiments and the expertise knowledge and experience, e.g.,

[35, 41]. Biologists look for several important task-related sub-structures (frag-

ments), e.g., CC(OH)CC for pro-solubility prediction, and count those sub-

structures as local features to produce fingerprints. This kind of fingerprint

methods usually work well for specific tasks, but poorly generalize for other

tasks.

2.3 Deep-learning-based Models

The growth of deep learning [51, 28] has provided the great flexibility and

performance to create the molecular fingerprint from data samples, without explicit

human guide, [11, 47, 26, 42, 3, 56]. In this subsection, we discuss two major classes,

namely supervised and unsupervised learning models.

1. Supervised Models

10



Many of deep learning-based fingerprint methods are still trained in a supervised-

learning fashion [42, 50], which is using only labeled molecular data samples as

inputs and adjusting model weights according to their labels [30]. However, as

mentioned earlier, the performance of the deep supervised learning models are

generally limited by the availability of the labeled data. The state-of-the-art

work is the neural fingerprint [11]. The neural fingerprint mimics the process

of generating circular fingerprint but instead the hash function is replaced by

a non-linear activated densely connected layer. This method is based on the

deep graph convolution neural network [17, 31, 34, 30]. There are also few

attempts that address the insufficient label issue by using few-shot learning

strategies, e.g., [4]. To secure a satisfactory performance and acquire enough

labeled data, biologists need to perform a sufficiently large number of tests on

chemical molecules, which is prohibitively expensive.

2. Unsupervised Models

Recently, few unsupervised fingerprint methods, e.g., seq2seq fingerprint [56],

are proposed to alleviate the issue brought by the insufficient labeled data.

These models generally train deep neural networks to provide strong vector

representations using a big pool of unlabeled data. The vector representation

model is thereafter used for supervised training with other models, e.g., Ad-

aboost [13], GradientBoost [14], and RandomForest [18], etc. Since the deep

models are trained with a sufficiently large data-set, the representation is ex-

pected to contain enough information to provide good inference performance.

However, this type of methods are not trained end-to-end, meaning that the

representation only adjusts to the recovery task of the original raw representa-

tion. It is robust to the specific labeled task, but might not provide optimal

inference performance for each task.

11



CHAPTER 3

Methodology

3.1 Overview

In this chapter, we describe the details of our semi-supervised seq3seq fingerprint

model[62]. First, an overview of the proposed seq3seq fingerprint model is given. The

proposed semi-supervised model is trained in an end-to-end fashion by completing

two tasks, a self-recovery task for molecule (without any label) and an inference task

(with specific classification/regression label). After that, we describe the recovery

task and the inference task in detail, their loss functions and how the two tasks are

trained. Then the semi-supervised loss is described. In the end, we offer a multi-task

scaffolding view from frame-semantic parsing [44] in natural language processing area

to explain the proposed model.

Different from traditional models [5, 56], the proposed seq3seq fingerprint model

works in a semi-supervised fashion. It means that our training data comes from two

sources, the labeled data, for classification/regression, as well as the unlabeled data.

The labeled data contains the SMILE strings for molecule data and their labels, such

as acidity or other molecular activities. The unlabeled data contains just molecular

SMILE strings and the unlabeled data is almost infinitely available. The proposed

seq3seq fingerprint model takes the mixture of the labeled data and unlabeled data

together as training inputs to the network. The work flow is depicted in Figure 3.1.

The semi-supervised training is done by two tasks: the self-recovery task and the

inference task. The whole pipeline is illustrated in Figure 3.2.

12



Figure 3.1: This figures shows how semi-supervised training is used for our proposed
model. We mix the unlabeled data and labeled data together to train our proposed
model. The SMILEs with label 0/1 come from labeled dataset and the SMILEs
without labels (N/A in the figure) come from unlabeled dataset.

3.2 The Duo Tasks in Seq3seq Fingerprint Model

The Self-recovery Task The self-recovery task is to learn a vector represen-

tation (usually noted as fingerprint in the drug discovery literature) for each input

molecular SMILE string. This task also requires the SMILE string of the molecule

can be recovered from its fingerprint vector. It is an unsupervised learning problem

since no label information is required in training. As shown in Figure 3.2, this task

contains a perceiver network and an interpreter network. This structure is motivated

by the seq2seq model [56, 43]. The original seq2seq model is used in machine trans-

lation [43]. It is to learn a vector representation from a sentence in a given language,

e.g., English, then translate the learned representation into another language such as

French. Seq2seq fingerprint [56] combines the idea from seq2seq learning and the idea

of auto-encoder to learn the vector representation for molecule.

We generalize the idea of seq2seq [5, 56] in two views. First, the perceiver

network and the interpreter network in the proposed seq3seq fingerprint model can

be any recurrent deep neural networks such as LSTM, GRU neural networks. The

only limitation is that the perceiver network could map the string tokens into a

vector representation and the interpreter could map the vector back into string tokens.

13



Second, we introduce unlabeled molecule data into our training process to learn better

representations. Instead of using the SMILE strings of only the labeled molecule data,

we take advantage of the almost infinite unlabeled data and use both unlabeled and

labeled data for the self-recovery task to learn a more accurate vector presentation

than those models which only use labeled data or unlabeled data separately. The

loss function in our proposed model follows the one in [56]. It is the sum of multiple

cross-entropy loss and we denote it as Lunsup.

The Inference Task The inference task in the proposed seq3seq fingerprint

model is to predict the activity of molecules. In the proposed model, the inference

task includes the perceiver network and the inference network. The perceiver network

is shared in both self-recovery and inference tasks. It is trained by both labeled and

unlabeled data in an end-to-end fashion. The inference network maps the seq3seq

fingerprint to a final inference result on a certain prediction task. The structure

of the inference network can be any trainable network which maps the vector into

a inference value. It allows huge flexibility for the choice of the inference network.

For instance, it could be a Convolution Neural Network (CNN), a Multi-Layer Per-

ceptron (MLP) or even a single fully-connected layer. Depending on whether the

inference task is classification or regression, the loss for the inference task Lsup could

be either classification loss (usually a cross entropy loss) or regression loss (usually

a `1 smooth/`2 distance loss). Since computing the Lsup needs labels, the inference

task is only trained on labeled data.

3.3 GRU Units

We implement our method with the Gated Recurrent Unit (GRU) though, out

algorithm can be generalized to take advantage of other RNN units such as LSTM.
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Given a sequence of input sequences (x1, . . . , xT ), the outputs (y1, . . . , yT ) can be

calculated by:

zt = σg(Wzxt + Uzyt−1 + bz)

rt = σr(Wrxt + Uryt−1 + br)

ht = tanh(Uhxt +Wh(yt−1 ◦ rt))

yt = (1− zt) ◦ ht−1 + zt ◦ yt−1. (3.1)

Two gates are used, one is the update gate z, the other is the reset gate r. W,U, b

can be gradually adjusted in the learning process for both of the two gates . We often

choose sigmoid function as the transfer function σ. GRU use a smaller number of

parameters so it’s faster than LSTM, the performance is comparable though[9].

3.4 Loss Function

The cross-entropy loss is used in our classification experiments, the inputs of

which are predictions and labels. It calculates the probability error for the classi-

fication task which requires each data point is exclusively belong to one class3.2.

Specifically, it’s the negative log-likelihood of true label given predictions. For binary

classification, given true label y ∈ 0, 1, and estimated probability p=Pr(y=1), the log

loss per sample is the negative likelihood given the true label:

Llog(y, p) = −LogPr(y|p) = −(ylog(p) + (1− y)log(1− p)) (3.2)

Another loss function for regression is Mean Square Error(MSE)3.3, which com-

putes the mean of the sum of squares errors between continuous predictions and the

corresponding labels. It a measure of how predictions are close to real value targets.

MSE and its variant are robust and widely used in machine learning algorithm.

MSE(y, ŷ) =
1

nsample

nsample−1∑
i=0

(y − ŷ)2 (3.3)

15



where y denote labels, ŷ denote predictions, nsample is the number of samples.

3.5 End-to-end Semi-supervised Learning

As shown in Figure 3.2, the semi-supervised loss Lsemi combines the unsuper-

vised loss Lunsup and the supervised loss Lsup together as

Lsemi = Lunsup + λLsup. (3.4)

where λ is a hyper-parameter of the proposed model to balance the two tasks. The

proposed model is trained with both supervised data and unsupervised data. When

the data is unlabeled, the supervised loss Lsup will be zero. Thus, in this case, only the

part of the model in self-recovery task will be trained. While the data is labeled, both

the part of the model in self-recovery and inference will be trained. The end-to-end

training avoids the multi-stage training, i.e., pre-trained model training or separated

classifier training [56]. As a result, the proposed end-to-end model is expected to

provide an optimal inference performance as well as shorter training time for specific

task than that in a multi-stage model from [56].

3.6 A Multi-task Scaffolding View of Seq3seq Fingerprint

In [56], the authors viewed seq2seq fingerprint as a machine translation problem

in the Natural Language Processing (NLP) area, with both source and target language

set to be the SMILE representation. Interestingly, the proposed seq3seq fingerprint

model can be viewed, to some extent, as a multi-task scaffolding framework [44]

in the NLP area as well. In [44], the authors focus on solving the frame-semantic

parsing problem, which is basically finding the action (frame) with its associated

objects from a sentence. For example, in sentence ”Alice loves Bob.”, the frame

is ”loves” with its associated objects being ”Alice” and ”Bob”. However, a single
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Figure 3.2: This figure shows the proposed seq3seq fingerprint model. The proposed
model is trained through two tasks: a self-recovery task and an inference task. The
self-recovery task contains a perceiver network and an interpreter network; the infer-
ence task shares the perceiver with self-recover task and has an inference network.
The semi-supervised loss is the sum of supervised loss and unsupervised loss.

sequence-to-frame network model generally performs poorly in this task. In [44],

they proposed to use a multi-task framework to refine the predictions. Besides the

frame parsing task, they also introduce the syntactic parsing task. The second task

is basically predicting the word categories, e.g., nouns, adverbs, adjectives, etc. For

the previous ”Alice loves Bob.” sentence, the result will be that ”Alice” being noun,

”loves” being verb and ”Bob” being another noun. In [44], it is demonstrated that the

second task significantly helps the success of the main (frame parsing) task. To sum

up, the multi-task scaffolding frame parsing framework utilizes a second syntactic
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parsing task to reinforce the main task which is the frame parsing. Our seq3seq

fingerprint can be viewed in a very similar fashion: the self-recovery task serves as

the auxiliary task to augment the main prediction task. This modification is also

further demonstrated superior in our experiments described in Chapter 4.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we first detail the experimental setup, e.g., the data set descrip-

tion, hardware and software settings, etc. Then we report the benchmark performance

of the seq3seq fingerprint methods among state-of-the-art methods, both classification

and regression are implemented and improvements valid our model. Furthermore, to

show the flexibility of our methods and complete our experiments, we offer ablation

studies for the sensitivity of the hyper-parameters of our seq3seq fingerprint models,

e.g., the multi-task balance weight λ, the Recurrent Neural Network (RNN) layer

hidden size and layer number, etc.

4.1 Experiment Setup

Datasets As we mentioned in the introduction, the seq3seq fingerprint can be trained

from a mixture of both unlabeled and labeled data. In practices, we usually use an

unlabeled data set of a much larger size than that of a labeled dataset.

Unlabeled Dataset For (large) unlabeled dataset, we use ZINC drug-like datasets

[22]. ZINC is a free database of commercially-available compounds for virtual screen-

ing. The drug-like dataset from ZINC contains 18,691,354 molecular SMILE repre-

sentations.

Labeled Dataset Two additional datasets, LogP and PM2, were used for semi-

supervised training and test. They are obtained from National Center for Advancing

Translational Sciences (NCATS) at National Institutes of Health (NIH). Each of them

contains around 10,000 molecular SMILE representations with multiple scores, each
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score quantifies some chemical property. Classification was conducted on LogP and

PM2.

• LogP: Totally 10,850 samples were used from LogP, Each sample contains a

pair of a SMILE string and a water-octanol partition coefficient (LogP) value.

A threshold of 1.88 is used to label the data. For those samples with LogP value

smaller than 1.88 were classified as negative samples, the rest were labeled as

positive samples.

• PM2: PM2 dataset contains 200,000 samples of SMILE strings and binary

promiscuous class labels. Similarly, a threshold of 0.024896 was used to classify

each SMILE. Samples with value larger than the threshold were considered as

positive 1; otherwise, labeled as 0.

• NCI: the data collections are produced by major NCI initiatives and other

widely used datasets. The dataset we use contains about 19127 unique sam-

ples of SMILE strings and corresponding continuous float labels. We use eight

properties for our experiments

We mix the ZINC drug-like dataset with the labeled dataset and train the

recovery and inference task simultaneously on the mixed dataset.

Neural Network Structures As we mentioned earlier, the proposed seq3seq finger-

print framework is super flexible in the choice of the network structure. Theoretically,

both perceiver and interpreter network can use any stacked Recurrent Neural Net-

work (RNN) with different layers and layer hidden sizes. Also the RNN cell can be

formed in different types, e.g., LSTM, GRU, etc. Due to the page limit of this paper,

we hereby assume the perceiver and interpreter network always use the same type

of RNN cells with the same number of layers and hidden sizes. In this section, we

only discuss Gated Recurrent Unit (GRU) [8] as the RNN cell. Also, we limit the

discussion of the inference network to a single densely connected layer with the output
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number equaling the number of the classification class number. For simplicity, we use

GRU −L−H to represent the network structure, where GRU is the RNN cell type,

L ∈ N+ is the stacked RNN layer number and H ∈ N+ is the RNN cell hidden size.

For instance, GRU − 2 − 256 represents a seq3seq model where both perceiver and

interpreter network use 2-layer GRU cell with 256 hidden units.

Learning Hyper-parameters For optimization, we use the Stochastic Gradient

Descent (SGD) with a heuristic learning rate decaying schedule. The initial learning

rate is 0.5 for any training models. The learning rate will be decayed by a factor

of 0.99 if the test loss does not decrease after 600 training steps. The training will

automatically halt if the learning rate is smaller than 1e− 7. Under the above hyper-

parameter sets, the training of each model in the semi-supervised setting can generally

finish within a few hours.

Evaluation Metrics Given that we have two tasks of our semi-supervised learning

framework, i.e., recovery and inference task, we report two evaluation metrics for

each model we trained. For recovery task, we use an Exact Match Accuracy (EMA)

for evaluation. This metric measure the portion of the exactly recovered sequence

within the entire set of sequences. Furthermore, we report the classification accuracy

(hereafter SSLA for Semi-Supervised Learning Accuracy) for our classification task.

Comparison Methods We compare our semi-supervised method with the unsuper-

vised seq2seq fingerprint method [56] as well as several other state-of-the-art meth-

ods: the ECFP [40] (circular fingerprint) and the neural fingerprint method [11]. We

download the official implementation of the seq2seq fingerprint 1 and carefully follow

the experimental setting of the authors. The circular fingerprint is a hand-crafted

hash-based feature that was generated through RDKit 2. The neural fingerprint

1https://github.com/XericZephyr/seq2seq-fingerprint
2http://www.rdkit.org
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implementation is obtained from https://github.com/HIPS/neural-fingerprint, which

we slightly modify to adapt our dataset file format.

Infrastructure and Software The seq3seq fingerprint method was implemented

through Tensorflow package [1], and our semi-supervised model was trained in a self-

hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00 GHz CPU, 64 Gigabytes

RAM and four Nvidia GTX 1080Ti GPUs on each workstation. The code will be

released upon the acceptance of this paper.

4.2 Classification Tasks

In Table 4.1 and 4.2, we report the 5-fold cross validation average classification

accuracy on LogP and PM2 datasets. The proposed methods are compared with

ECFP (circular) fingerprint [16], neural fingerprint [5] and seq2seq fingerprint [56].

For seq2seq fingerprint, according to their paper, the seq2seq fingerprint with length

1024 + Gradient Boosting always provides best performance, so we only report those

results on our paper.

It is shown that on both datasets, the seq3seq fingerprint always provides best

inference performance. On LogP dataset, our seq3seq model performs significantly

superior than the other state-of-the-art methods, up to 13% in terms of classifica-

tion accuracy (SSLA in the tables). Compared with circular fingerprint, the seq3seq

fingerprint is data-driven and contains enough information to be recovered. The per-

formance of neural fingerprint is generally limited by the availability of the labeled

data. Seq2seq fingerprint is the closest work in terms of accuracy for now since it

can be also trained on the huge pool of unlabeled data, extracting a good represen-

tation and train/infer with a sophisticated classification model. However, seq2seq

fingerprint is, unfortunately, not an end-to-end framework, which means the recovery

and inference training of seq2seq fingerprint are separate. The unsupervised recovery
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training can bring in considerable amount of noise in the representation which limits

further improvements of the inference performance. The seq3seq fingerprint, which

uses the inference task to correct the recovery task during training, can constantly

provide the best performance among all of the comparison methods.

Table 4.1: The comparison of classification accuracy on the LogP data. We report
the average classification accuracy (Mean) and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [40] Neural [11] seq2seq [56] seq3seq (Ours)

Mean 36.74% 60.80% 76.64% 89.72%

StDev 0.74% 1.35% 0.43% 0.41%

Table 4.2: The comparison of classification accuracy on the PM2 data. We report
the average classification accuracy (Mean) and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [40] Neural [11] seq2seq [56] seq3seq (Ours)

Mean 39.38% 52.27% 62.06% 68.45%

StDev 1.14% 1.12% 1.98% 0.80%

4.3 Regression Tasks

We utilize LogP and PM2 data to show the validness of our model. In Table

4.5 and 4.6, the 5-fold cross validation average RMSE on LogP and PM2 datasets

were shown. It’s obvious that our model, seq3seq fingerprint, provides the smallest

RMSE on both datasets. Notice that the RMSE with our method has decreased by

about 55% compared with ECFP (circular) fingerprint [16], and about 50% compared

with neural fingerprint [5] and seq2seq fingerprint [56] for LogP data. This is because
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Table 4.3: The comparison of 5-fold cross validation classification accuracy among
different seq3seq GRU models on the LogP data. Both average (Mean) and Standard
Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.
SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for
self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256

FP Length 256 384 512 640 512 768 1024 1280

SSLA Mean 89.62% 89.12% 89.05% 89.72% 89.48% 89.64% 88.90% 88.11%

SSLA StDev 0.62% 0.22% 0.10% 0.41% 0.44% 0.42% 0.31% 0.40%

EMA Mean 91.39% 85.75% 77.13% 68.64% 96.13% 94.24% 87.99% 83.86%

EMA StDev 0.46% 0.53% 0.56% 0.80% 0.21% 0.31% 0.45% 0.41%

Table 4.4: The comparison of 5-fold cross validation classification accuracy among
different seq3seq GRU models on the PM2 data. Both average (Mean) and Standard
Deviation (StDev) are reported for the 5-fold splits. FP Length: FingerPrint Length.
SSLA: classification accuracy for inference task. EMA: Exact Match Accuracy for
self-recovery task.

GRU-2-128 GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256 GRU-5-256

FP Length 256 384 512 640 512 768 1024 1280

SSLA Mean 65.65% 67.11% 65.80% 67.23% 66.74% 68.08% 68.45% 67.09%

SSLA StDev 0.19% 0.85% 0.61% 0.52% 0.57% 0.35% 0.80% 0.67%

EMA Mean 83.84% 81.24% 78.60% 74.38% 92.49% 91.72% 87.36% 82.64%

EMA StDev 0.45% 0.67% 0.88% 0.88% 0.37% 0.25% 0.29% 0.76%

circular fingerprint generate each layer’s feature by applying a fixed hash function to

the features of the neighborhood in the previous layer, which doesn’t encode complete

information, and seq2seq fingerprint can’t take advantage of labeled data. The way

neural fingerprint generating fingerprint just mimic circular fingerprint which also can

not utilize all the information available. Unfortunately, a large amount of unlabeled

data is not utilizable for neural fingerprint. Similarly, our method still outperforms

the other state-of-the-art methods on PM2 dataset, which further demonstrate the

validness of our method.

Table 4.7 and 4.8 show the comparisons of 5-fold cross validation regression

among differen seq3seq GRU models on LogP and PM2 data. As expected, larger
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size of GRU units don’t always give us better performance. For both of two datasets,

GRU-4-128 gives us smallest RMSE which is consistent with classification results.

Table 4.5: The comparison of regression results on the LogP data. We report the Root
Mean Square Error(RMSE) for evaluation and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [40] Neural [11] seq2seq [56] seq3seq (Ours)

Mean 1.223 1.149 1.047 0.5399

StDev 0.0076 0.0133 0.0041 0.0043

Table 4.6: The comparison of regression results on the PM2 data. We report the Root
Mean Square Error(RMSE) for evaluation and the corresponding Standard Deviation
(StDev) of 5-fold cross-validation result.

Circular [40] Neural [11] seq2seq [56] seq3seq (Ours)

Mean 0.0944 0.0887 0.0808 0.0535

StDev 0.0026 0.0024 0.0029 0.0010

For multi-task regression, we utilize 19127 SMILEs and 8 properties from NCI

data. Simillarly, the prediction results overperform all the other comparison method.

One advantage of multi-task regression task is that the predictions for the 8 prop-

erties were got with one training process, instead of training separately. A second

benefit which should be noticed is the model converges faster by training 8 properties

simultaneously compared with training each task separately. For some properties, the

final result would be also slightly better than sigle task learning.
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Table 4.7: The comparison of 5-fold cross validation regression among different
seq3seq GRU models on the LogP data. Both the Root Mean Square Error(RMSE)
and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: Fin-
gerPrint Length. EMA: Exact Match Accuracy for self-recovery task.

GRU-3-128 GRU-4-128 GRU-5-128 GRU-3-256 GRU-4-256 GRU-5-256

FP Length 384 512 640 768 1024 1280

RMSE Mean 0.5659 0.5399 0.5998 0.5470 0.5482 0.5945

RMSE StDev 0.0050 0.0075 0.0055 0.0043 0.0039 0.0038

EMA Mean 0.6778 0.6760 0.6743 0.6703 0.6831 0.6346

EMA StDev 0.0120 0.0041 0.0047 0.0036 0.0041 0.0036

Table 4.8: The comparison of 5-fold cross validation regression among different
seq3seq GRU models on the PM2 data. Both the Root Mean Square Error(RMSE)
and Standard Deviation (StDev) are reported for the 5-fold splits. FP Length: Fin-
gerPrint Length. EMA: Exact Match Accuracy for self-recovery task.

GRU-3-128 GRU-4-128 GRU-5-128 GRU-2-256 GRU-3-256 GRU-4-256

FP Length 384 512 640 512 768 1024

RMSE Mean 0.0571 0.0535 0.0541 0.0551 0.0547 0.0542

RMSE StDev 0.0023 0.0010 0.0013 0.0014 0.0047 0.0010

EMA Mean 0.8574 0.8969 0.8689 0.8914 0.9046 0.8941

EMA StDev 0.0094 0.0159 0.0348 0.0073 0.0054 0.0034

4.4 Sensitivity Analysis of Multi-task Weight Balance Parameters

In multi-task machine learning practice, the weight balancing hyper-parameters

among different tasks (in our case, λ in the loss function) are sometimes critical and

sensitive to data. This might not be an intriguing feature in practices. However, our

method is quite robust and tolerant with λ variations. In this section, we report our

sensitivity studies of λ. We choose different scale of λ to see how the final model

performance responds to the variance of λ , showing the robustness of our method

with regard to different weight balancing hyper-parameters.

The balance weight λ control the learning process so we have to answer how it

affect the accuracy performance. Increasing λ value enhances the weight of the su-

pervised learning takes in the total loss functionand vice-versa. A large λ value does’t
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Table 4.9: The comparison of multi-task regression among different state-of-the-art
methods on the NCI data. The Root Mean Square Error(RMSE) are reported for the
5-fold splits.

CCRF HL-60 K-562 RPMI A549 COLO HCC MALME

Seq3seq(Ours) 0.790 0.925 0.934 0.805 1.030 1.021 0.048 0.864

Seq2seq [56] 1.512 1.771 1.787 1.641 1.771 1.754 1.623 1.654

Neural[5] 1.659 1.843 1.862 1.791 1.963 1.914 1.881 1.815

Circular[40] 1.766 1.968 1.988 1.901 2.088 2.068 1.895 1.931

necessarily to generate the best fit models in our experiments since it’s an optimiza-

tion problem how to combine the loss of the unsupervised learning and supervised

learning with a penalty lambda; We train the model with λ values ranging from 1 to

0.001. Unsupervised learning and supervised learn interact with each other to get the

minimum total loss. Since these two learning module share the same weights of the

seq3seq neural network, the SSL and EM accuracy increasing trend also varies with λ.

Among those values, λ value 1(accuracy 0.8631) has the worst accuracy performance;

so λ = 1 is probably not the right choice. The larger the λ value, the earlier the

accuracy of supervised learning start to increase. However, the final EMA and SSLA

results vary little when λ varies within a large range.

In Table 4.10, 4.11 as well as Figure 4.2, we vary λ in the logarithm scale with

a base of 10. We tried 100, 10−1, 10−2, 10−3. On both datasets, it looks that within a

quite wide range of λ, i.e., 10−2 − 100, the performance is quite robust to the change

of λ. The reason behind this robustness might be the huge unlabeled data pool used

in the training process. Given the model has been trained with a sufficiently large

(up to dozens of millions) molecular data pool, the resulting model will automatically

adjust to a small task weight perturbation.
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Table 4.10: The performance variations with λ and GRU model parameters for LogP
data. Layer: the stacked layer number of RNN cells. LD: Latent Dimension (hidden
size) of RNN cells. EMA: Exact Match Accuracy for self-recovery task. SSLA:
classification accuracy for inference task.

Layer LD λ EMA SSLA

2 128 1 86.31% 89.46%

0.1 91.80% 89.62%

0.01 90.23% 81.05%

0.001 91.42% 64.95%

2 256 1 93.59% 90.18%

0.1 94.52% 89.35%

0.01 95.77% 84.65%

0.001 95.48% 69.16%

Table 4.11: The performance variations with λ and GRU model parameters for PM2
data. Layer: the stacked layer number of RNN cells. LD: Latent Dimension (hidden
size) of RNN cells. EMA: Exact Match Accuracy for self-recovery task. SSLA:
classification accuracy for inference task.

Layer LD λ EMA SSLA

2 256 1 87.48% 65.28%

0.1 89.84% 64.85%

0.01 91.73% 62.37%

0.001 91.31% 50.66%

3 256 1 82.40% 64.90%

0.1 87.61% 67.92%

0.01 89.33% 68.24%

0.001 90.25% 50.07%
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4.5 The Ablation Study of Neural Network Structures

In this section, we provide a comprehensive study of the impacts of different

layers and layer hidden sizes of our seq3seq fingerprint models. We report the 5-

fold cross validation Exact Match Accuracy (EMA) and the classification accuracy

(SSLA) in Table 4.3 and 4.4 for each of the two datasets, respectively. Figure 4.1 (a)

and (b) also illustrates the trends when varying the layer numbers and layer hidden

sizes.

Inference Task It is super exciting to reveal the robustness of classification

accuracy to the change of network structures on both datasets. In Figure

4.1, the classification accuracy (blue bars) almost stays at the same height when

varying the layer numbers and layer hidden sizes. This implies the importance of

the representation learning inside the seq3seq fingerprint. This further support the

positive effects of the large-scale (up to dozens of millions) unlabeled data utilization.

When the inference is super robust to the network changes, for self-recovery

task (in terms of EMA), we observe a decreasing trend when increasing the layer

depth (numbers). Meanwhile, the increasing number of hidden units inside each layer

generally yields better EMA. This suggests that the improvement of self-recovery task

has higher reliance on the layer hidden sizes. Deeper network might not always be an

elixir for a simple auxiliary task like self-recovery. This observation might help future

network design. To simultaneously ensure high inference performance and reduce

training time (deeper network generally takes longer to train.), it might be a good

idea to use reasonably deep and wide RNN networks.

There’s no guarantee that highest EM accuracy seq3seq fingerprint model al-

ways results in the best classification accuracy. Longer fingerprints might contain

more information. However, classification accuracy doesn’t increase with EM accu-

racy monotonically due to multiple reasons. First, in order to get high EM accuracy,
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Figure 4.1: Impacts of the network structures on different metrics on both LogP
and PM2 dataset. 1) The robustness of inference performance (SSLA, blue bars) is
revealed. 2) The positive and negative correlations with regard to the self-recovery
performance (EMA, red bars) are observed for RNN network depths and widths,
respectively.

longer fingerprint takes much more time to train than small sized fingerprints. Sec-

ondly, it’s easy for longer fingerprint to bring in noise. In consequence, seq3seq model

GRU-5-128 on LogP data has higher SSLA but not EM accuracy than other even

smaller model for example GRU-4-128. Similarly, PM2 testing results shows seq3seq-

1024 has higher SSLA than seq3seq-768, but not EM accuracy.
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(a) GRU-2-128 on the Logp data.
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(b) GRU-2-256 on the Logp data.
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(c) GRU-2-256 on the PM-2-10k data.
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(d) GRU-3-256 on the PM-2-10k data.
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Figure 4.2: Impacts of the multi-task balance weights on different scales on both LogP
and PM2 dataset. Within a very wide range (usually 10−2 − 100), both self-recovery
(EMA) and inference (SSLA) performance are quite robust to the change of λ.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we discuss a new semi-supervised deep learning based molecular

prediction system, called seq3seq fingerprint. Our model is the first attempt in

sequence-based deep learning method utilizing both unlabeled and labeled data for

drug discovery. The reinforcement from the unlabeled data is demonstrated to signif-

icantly improve the inference performance by enhancing the representation power of

the perceiver network. As a result, the superior inference performance over multiple

state-of-the-art methods is revealed in our extensive experiments.

In the future, a potential direction might be improving the training algorithm

[53, 38, 54]. Furthermore, our seq3seq fingerprint method still share some common

aspects with Natural Language Processing (NLP) area as the seq2seq fingerprint

does [56]. As described in Section 3, it looks that we have found a new direction to

invent new drug discovery methods. In the future, it might be interesting to further

investigate bonds between drug discovery and NLP area, which might bring in many

novel methods to further accelerate drug discovery research.
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