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ABSTRACT

BUILDING A VERSATILE DEDUPLICATION SYSTEM

Zhichao Yan, Ph.D.
The University of Texas at Arlington, 2018

Supervising Professor: Hong Jiang

With the development of the Internet and information technology, a large amount of
unstructured data is generated and stored in various storage systems. In particular, data
reduction techniques such as compression and deduplication have become an effective way
to address the combined challenges of explosive growth in data volume but lagging net-
work bandwidth growth to increase the space and bandwidth efficiency of various storage
systems. However, we have found that existing deduplication systems cannot effectively
process compressed data and image data because existing deduplication systems only ana-
lyze the hash value of the bitstream to detect redundant data. At the same time, we found
that it is hard to integrate deduplication in resource-constrained solid-state drives (SSDs)
due to their internal structure although it is worthwhile because deduplication not only can
expand their logical capacity but also extend their lifetime by reducing the program and
erase (P/E) operations. Inspired by these problems, this thesis will focus on building a
versatile deduplication system to addressing these issues.

With respect to the problem of deduplicating compressed data, we propose Z-dedup
approach, which leverages the existing invariable metadata such as original file’s length
and checksum within the compressed packages to help detect and eliminate the potential
duplicated files across all compressed packages. Moreover, for the complicated solid com-
pression mode, Z-dedup injects such metadata into the solid compressed packages to make
their internal contents to be analyzed by our versatile deduplication system.

With respect to the problem of deduplicating image data, we propose WM-dedup
approach, which injects an invariable chunking and content description information in the
form of a steganographic watermark to help identify and remove the perceptible redundant
image data. This is a lossy deduplication scheme that may tolerate some information losses
while the super-resolution and impaint techniques can help recover the perceptible equiva-
lent image data to enable deduplicating image data in our versatile deduplication system.

v



With respect to the problem of efficiently integrating deduplicating in SSDs, we pro-
pose SES-dedup, which bypasses the data scrambler module to enable the low-cost ECC-
based data deduplication. Specifically, we propose two design solutions, one on the host
side and the other on the device side, to enable ECC-based deduplication. Based on our ap-
proach, we can effectively exploit SSD’s built-in ECC module to calculate the hash values
of stored data for data deduplication in our versatile deduplication system.
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CHAPTER 1

INTRODUCTION

In the big data era, the world’s most valuable resource is no longer oil, but data [20].
For example, look at the companies with the highest market capitalization in twenty years
ago, all of which are energy companies like General Electric and ExxonMobil; in 2018,
they are big data companies like Apple, Amazon, Microsoft, Alphabet, and Facebook. In
particular, big data are associated with five key concepts: volume, variety, velocity, ve-
racity and value, whose challenges include but not limit to capturing data, data storage,
data analysis, and data security. Nowadays, the biggest challenge is how to manage ex-
ponential growth data. Moreover, the quantity of newly generating data will continue to
outpace the ability to manufacture all kinds of storage devices to store all of the data since
2007 [21] [48]. Fortunately, there exist a lot of redundant contents in the digital universe,
which makes the data reduction technology become a much-have feature in those big data
storage environment to store more unique data. In this thesis, we work on improving an im-
portant data reduction technology, deduplication, and demonstrate how to build a versatile
deduplication system that can efficiently store those data previously cannot be processed
by the traditional deduplication approaches.

1.1 Problem Description
Data deduplication is a specialized lossless data compression technique that elimi-

nates duplicate copies of repeating data at the file or subfile level. It incurs less compu-
tation and dictionary overheads than traditional sliding window compression algorithms,
thus making it adopt to detect and eliminate the duplicate chunks across the whole storage
system. Nowadays, besides being used to improve storage efficiency, it can also be applied
to improve the low-bandwidth network transmission efficiency by reducing the number of
bytes that must be sent to the remote receiver.

As shown in Figure 1.1, a deduplication system generally divides the incoming
file/stream into a serial of fixed-size or variable-size chunks, which is called as chunk-
ing, calculating each chunk’s cryptographically secure fingerprint (i.e., collision-resistant
hash), which is called hashing, identifies duplicate content by querying its hash signature
in the existing hash table, which is called querying, and eliminates redundant data at the
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Figure 1.1: Deduplication workflow.

chunk granularity by using the reference pointer to the unique chunk, which is called updat-
ing. Finally, each file will maintain the corresponding mapping to locate all of its chunks
and each unique chunk will be stored in different containers to optimize the data layout for
the future accesses.

The chunking phase calculates the chunk’s boundaries. There are two major classes
of chunking algorithms, fixed-size chunking and content-defined chunking (i.e., variable-
size chunking), while the former obtains a serial of chunks with the uniform length (i.e.,
4KB or 8KB) at invisible computation cost but having the potential content-shifting prob-
lem, and the latter determines each chunk’s boundaries based on its contents to meet the
predefined anchor points at non-trivial computation costs. Because the content-defined
chunking algorithm can find the most proper content-based anchor points to detect most
duplicate contents, so it is often used in latency-insensitive scenarios such as backup and
archive storage systems to maximize the deduplication ratio. How to further exploit more
anchor points and reduce the computation costs is the main optimization direction for the
chunking phase.

The hashing phase calculates each chunk’s cryptographically secure fingerprint (i.e.,
SHA-1 or SHA-256), which is used as the unique identification within the deduplication
system. If two chunks have the same fingerprint, we assert they have the same contents
without the costly byte-to-byte comparison and can eliminate the duplicated chunk by the
salient collision-resistant feature of cryptographic hash, which is the core idea of dedupli-
cation. However, there is an inevitable hash collision in the real world, whose probability p
can be estimated by formula 1.1, where n is the total number of chunks and b is the length
of the fingerprint. In Venti [47], it estimated that an exabyte (1018 bytes) data stored as 8
Kbyte chunks (n = 1014) and using the SHA-1 hash function (b = 160), the probability of a
collision p is less than 10−20, which is far lower than the hardware error rate. That is why
compare-by-hash has been accepted by deduplication systems. NowadaysïijŇ SHA-1 is no
longer considered secure enough because it will suffer from practical collision attacks [52],
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and SHA-256 with even lower collision probability is widely used in the deduplication sys-
tems. In order to guarantee the reliability of deduplication, it is time to think about how to
efficiently detect a hash collision and how to upgrade the fingerprint algorithms when the
existing algorithms are no longer secure.

p ≤ n(n− 1)

2
× 1

2b
(1.1)

The querying phase looks up the hash table to check the existence of corresponding
fingerprint in the fingerprint index. For each incoming chunk: (1) if its fingerprint can
be found, this is a duplicate chunk and can be eliminated; (2) if its fingerprint cannot be
found, this is a new chunk and its fingerprint will be added to the fingerprint index. All
fingerprints are organized in a key-value store, whose querying latency will directly add to
the deduplication system’s critical path. How to organize the fingerprint index to exploit
the locality in the limited CPU, DRAM and SSD resources is the main research topic of
deduplication system.

The updating phase replaces the duplicate chunk with the reference pointer to the
corresponding unique chunk and generates all necessary metadata information. Moreover,
it organizes the chunks in different containers and implements different policies to opti-
mizing the actual data layout to make the proper trade-off among deduplication ratio, write
performance and read performance.

Figure 1.2: Decoupling examples of contents and bitstreams.

Driven by the data backup application, existing deduplication systems have made a
lot of optimizations for the above four aspects. There is an implicit assumption, which is
a unique content is closely coupled with its bitstream’s fingerprint, in all existing dedupli-
cation systems. However, as shown in Figure 1.2, there are some common scenarios that
contents and bitstreams are decoupled, like lossless compression, data randomization and
image processing. For example, when the bistream 0 is compressed by zip and rar tool
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to generate bistream 1 and bistream 2, all these three different bitstreams will share the
same content but existing deduplication system cannot identify the duplicate contents. The
same thing happens in data randomization and image processing, which will lead to a lot
of duplicate contents cannot be processed by existing deduplication systems, thus wasting
not only the storage capacity but also the corresponding operational costs associated with
the unnecessary redundant data. In order to detect and eliminate these duplicate contents,
we propose several approaches that can be used to build a versatile deduplication system.

1.2 Our Technologies
Inspired by the problem that unique content may decouple from its bitstream in some

specific applications, which means that there will be many different bitstreams sharing with
the same content. In general, a bitstream is the carrier of the content. For most users, the
content is valuable data, and the form of the specific carrier is often not as important as the
actual content. As a result, an efficient deduplication system should have the capability to
detect and eliminate such duplicate contents, which motivate the technologies in this thesis.

First, we propose Z-dedup, an approach that exploits the invariant metadata exist-
ing in the compressed packages to help detect the duplicate files among these different
compressed packages. It is inspired by our observation that in most compression algo-
rithms, each compressed file will maintain its checksum and original length information
that will be used to verify the data integrity on decompressing the file. As a result, this in-
formation will be invariant across different compressed packages when they share the same
checksum algorithm. Based on this observation, we propose how to leverage this metadata
information to help detect and eliminate the compressed files across different compressed
packages. Moreover, we not only focus on the simple non-solid compression mode but
also propose an extended method to process the duplicate files in the complicate solid com-
pressed packages. In a non-solid compression, each file is compressed and maintains its
metadata independently, it is easy to extract such information by parsing the metadata of
the compressed packages to detect and remove the potential duplicate files. On the other
hand, in a solid compression package, all files are concatenated together and compressed
as a whole file. It will only contain the checksum and original length information for this
concatenated file. In order to process with this case, Z-dedup suggests injecting the per-file
checksum and original length information into the solid compressed packages to help detect
the potentially similar contents to determine whether to perform deduplication operation or
not. More details about Z-dedup are described in Chapter 2.

Secondly, we propose WM-dedup, an approach that combines injecting and extract-
ing the chunking and content description information in the form of a steganographic wa-
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termark to help detect and remove the perceptible redundant image contents. It is inspired
by our observation that unlike computers, which can evolve in a short time to acquire more
computation power, there are some obvious limitations to human’s capability that cannot
improve in a short time to perceive information contained in images. In general, users
will not find the subtle differences between an image with the steganographic watermark
and its original copy. Meanwhile, we also notice that there will be a lot of similar images
derived from the same original image by applying some different image processing opera-
tions, which may share significant duplicate perceptible contents that can be identified by
extracting the steganographic watermark embedded in these images. Moreover, with the
advancement in computer vision, it is easy to inject the steganographic watermark in an
image and extract it from the image. Once we verified the perceptible equivalent image
contents, it is safe to remove the duplicate contents and the super-resolution and impaint
technologies can help WM-dedup to recover the perceptible equivalent image to tolerate
some data loss without impacting the user’s experience to perceive the same content from
the image. More details about WM-dedup are described in Chapter 3.

Thirdly, we propose SES-dedup, an approach that bypasses the data randomization
modules widely integrated in SSDs to enable the low-cost ECC-based deduplication. It is
inspired by our deep analysis on existing SSD’s internal architecture, which usually adopts
a data randomization (scrambler) module to prevent the very similar data patten writing
to the NAND flash chip to significantly increase its raw bit error rate. As a result, the
same data will be randomized to different bitstreams based on their logical block addresses,
thus resulting in generating different ECCs for these bitstreams. Therefore, it will prevent
manufacturer from integrating the low-cost ECC-based deduplication in SSD. However,
deduplication will not only enlarge the SSD’s logical capacity but also reduce the program
and erase operations to NAND flash chips to significantly improve both liability and life
time, which make deduplication become an attractive feature. We have explore two design
solutions, one is on the host side only and the other is on the device side only, to enable the
low-cost ECC-based deduplication in SSD. More details about SES-dedup are described in
Chapter 4.

1.3 Thesis Overview
As shown in Figure 1.3, we provide the overview of the versatile deduplication sys-

tem proposed in this thesis. Besides the existing deduplication approaches, we have pro-
posed three new deduplication appraoches that can help to detect and eliminate the dupli-
cate contents, which existing approaches cannot handle with. In particular, we describe
the Z-dedup approach in Chapter 2 to enable the versatile deduplication system process the
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Figure 1.3: Overview of the versatile deduplication system.

lossless compressed files across different compressed packages. In Chapter 3, we describe
the WM-dedup approach to show how to perform the lossy chunk-level deduplication on
lossy compressed image files. We describe the SES-dedup approach in Chapter 4 to demon-
strate how to bypass the randomization module in SSD to enable the low-cost ECC-based
deduplication. As the ending, Chapter 5 draws our conclusions of the thesis, where we
summarize the presented versatile deduplication system with our three novel approaches
and highlight their contributions in practice and provide some future research directions on
building the versatile deduplication system.
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CHAPTER 2

MOTIVATION

From the perspective of technological development, there are mainly three different
trends that motivate our research. First, the ever-wider gap between the data and storage
capacity requires the novel data reduction technologies that can help alleviate the deficit
of available storage capacity. Secondly, migrating data to the cloud has posed a lot of
challenge to existing deduplication approaches that were initially designed for the backup
application, whose data type is much simpler than the popular files stored in the cloud.
Finally, new and emerging storage devices with different characteristics require necessary
co-design mechanism to help deploy deduplication in these new devices at fairly low-cost.
In this chapter, we will first review existing technologies, discuss the need to develop new
technologies, and summarize our new technologies under the existing data reduction frame-
work.

2.1 Storage Capacity Deficit
Big data are envisioned to deliver value, which makes them be considered the new

oil in the big data era. However, one notable difference is that oil either already exists
underground or slowly transformed by the resources that exist underground, but the data
are generated as users are using new technologies, which is unstoppable, and its growth
rate is getting faster with technological advancements such as the Internet, social media,
internet of things, etc. In another word, there already exists a big enough container, which
is the earth, to store all the oil, but there is no system that can help us store all the data.

Data are ubiquitous around us and become the key component in this information
age. It is because the big data science will help us unveil the mysteries of nature, provide
detailed insight into processes, and predict events that may not only be useful to the science,
but also important to the business. As shown in Figure 2.1, due to the technological lim-
itations of storage technology employed in data centers, there is a significantly increasing
gap between storage demand and supply [6].

On the storage demand part, more and more institutions have recognized the im-
portance and feasibility of the fourth paradigm, which was formally proposed by Jim
Gray [29], that requires a large amount of big data to be stored before analyzing and ex-
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Figure 2.1: Inevitable data-capacity gap.

ploiting the value from these voluminous data, which has posed a big challenge in current
and future storage technology to hold such voluminous data. For example, IDC has pre-
dicted that the amount of data generated globally will reach 44 zettabytes (ZBs) in 2020
and 163 ZBs in 2025 [48]. Moreover, the available storage capacity could hold around 1/3
of the digital universe in 2013, and it will reduce to 1/7 by 2020. From this report, there is
a clear trend that the gap between storage demand and supply is acceleratingly expanding.

Meanwhile, on the storage supply part, because of current HHD’s storage density is
approaching the super-paramagnetic limit and the repeatedly delayed adopting of advanced
technologies such as heat-assisted magnetic recording (HAMR) and bit patterned media
(BPM) due to both the technical and commercial issues, which lead to the slowing down
the growth in areal density and magnetic storage capacity. Moreover, SSD’s capacity den-
sity increases around 40% annual growth by incorporating the TLC, QLC and 3D-stacking
technologies, however, it will also approach its scaling limitation by 2020 due to the relia-
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bility and heating reasons. As a result, we will face the inevitable data-capacity gap in the
big data era, and it is important to reduce the volume of storage demand by applying the
data reduction technologies.

2.2 Technical Trends
2.2.1 Data Reduction Technologies

Data reduction technologies such as compression and deduplication are typical so-
lutions to storage capacity optimization, which can reduce the volume of storage demand
without losing meaningful contents. In most cases, data reduction technologies have the
potential to reduce the storage demand by optimizing capacity and reducing data footprint
via applying non-trivial computation costs. As a result, it is necessary to analyze the trade-
off between capacity savings and extra computation costs.

Compression can be treated as an encoding procedure that use fewer bits to repre-
sent the original content. It can be either lossy or lossless, while the former will reduce
bits by removing unnecessary or less important information and the latter reduces bits by
identifying and eliminating statistical redundancy that is widely used in the storage sys-
tems to optimize the storage efficiency. Besides reducing the data footprint, compression
can also reduce the random I/O operations that may incur non-trivial disk access overhead
on HDDs. From this aspect, lossless compression will reduce disk’s energy consumptions
and enhance disk’s throughput, in addition to reducing the overall disk’s capacity demand.
However, there is no free lunch. Lossless compression has to encode every possibly longest
string within the compression window by its dictionary, which is usually automatically
generated by scanning the strings. Besides the computation costs incurred by scanning and
encoding the strings, compression dictionary’s size is usually proportional to the size of
the sliding window and the maximum length of the possible string without considering the
statistical characteristic of input files. As a result, current compression algorithms usually
find the string containing up to hundreds of bytes to balance the costs among CPU, memory
and disk. Unfortunately, lossless compression usually suffers from the low data reduction
ratios (around 1:2) that are limited by its feature of only removing the statistical redundancy
within a small range.

Nowadays, deduplication is considered to be the most effective data reduction tech-
nology because its data reduction ratio is usually around 1:10 in common business work-
loads. One of its key difference from traditional compression is that deduplication tries to
searches for duplicate data and then removes the duplicates at the global range, thus guar-
anteeing the whole storage system will only have one instance of a particular data chunk.
However, its effectiveness is also highly dependent on the workloads. For example, the
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reduction ratios are huge for the backup application, while they are smaller for a broader
range of applications, which is more likely in the cloud storage environment. Furthermore,
besides the necessary metadata information to be maintained by deduplication, dedupli-
cation also shifts the burden from network and storage to CPU, which leads to greater
computation costs and energy consumptions that constitute an improtant part of the data
center’s total cost of ownership (TCO).

2.2.2 Migration to Cloud
In the big data era, every institution has to keep the operational data in its information

system. For small and medium-sized businesses, their computer systems are becoming
more and more complicated, and their maintenance costs are gradually exceeding budgets.
As a result, the cloud computing model is proposed to provide a shared pool of configurable
computer system resources and higher-level services that can be rapidly provisioned with
minimal management effort over the Internet at the "pay-as-you-go" model. Cloud storage
is the most popular cloud application that stores data to a cloud computing provider who
manages and operates data storage as a service.

There are at least five incentives for migrating data from a local storage system to a
cloud storage environment. First, it can reduce the total cost of ownership with the cloud
storage because no hardware is needed to purchase while users can add or remove the
storage capacity on demand. Secondly, there are no over-provision costs because users will
only pay the cost what they actually use. Thirdly, users are saved from the complicated
work of maintaining an efficient, reliable and secure storage system. Fourthly, it provides
fast deployment service by considering of a lot of other users’ experiences. Fifthly, it is
easy to interact with other cloud services to analyze big data and exploit their values in a
more efficient way.

As more and more data is moved to the cloud, the data in the cloud storage envi-
ronment presents these four features: 1) there are a lot of file types generated by various
applications, 2) data are mixed with various compressed files; 3) redundant data are pro-
portional to the total number of users that use cloud storage serviceïijŇ thus resulting in
a high data redundant ratio on the cloud storage environment, 4) there are a lot of social
media files like images and videos. Furthermore, to accelerate the data access, cloud stor-
age system usually have a fast storage layer supported by SSDs. As a result, how to make
deduplication system adapt to these new cloud storage characteristics become an interested
topic that motivate our work.
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Figure 2.2: Taxonomy of data reduction

2.3 Advancements of Our Technologies
As illustrated in Figure 2.2, we list the taxonomy of data reduction technologies like

compression and deduplication. In particular, plaintext files usually adopt lossless com-
pression for data reduction so that they can be exactly restored upon decompression, while
multimedia files like images tend to adopt lossy compression to significantly reduce a file’s
size without noticeable quality degradation but at the cost of not being able to restore to
the original files. In fact, data deduplication can be viewed as a special computation effi-
cient way to compress data, where all existing fingerprint-based deduplication methods are
lossless data reduction capable of exactly recovering the original files. However, for most
multimedia files, lossy data reduction is considered an acceptable tradeoff for significant
space savings.

In this dissertation, we first consider how to deal with the duplicated contents com-
pressed by various lossless compression tools. We propose the Z-dedup approach, which
is designed for the cloud storage environment where aggregating a lot of compressed pack-
ages with huge data redundancy sealed in the compressed packages.

Secondly, we propose to explore a new category of “lossy deduplication” inspired by
the concept of lossy compression algorithms, by designing WM-dedup to show how lossy
deduplication can be deployed to reduce the redundant data of image files.

Finally, unlike the traditional deduplication work either optimizing its disk access
operation on HDD or directly deploying deduplication on SSD, we show a low-cost SES-
dedup approach to integrating deduplication on SSD to exploit its internal architecture by
reusing its ECC engine and bypassing its data randomization module.
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CHAPTER 3

Z-dedup:A Case for Deduplicating Compressed Contents in Cloud

In order to enable deduplication system to detect the potentially redundant contents
wrapped by various compressed packages, we propose the Z-dedup approach, which lever-
ages the invariable metadata information to help perform the file-level deduplication across
the duplicate contents in different compressed packages.

3.1 Introduction
Information explosion has significantly increased the amount of digital contents in

the big data era [26] [21]. For example, the world’s technological capacity to store infor-
mation grew from 2.6 (optimally compressed) exabytes (EB) in 1986 to 15.8 EB in 1993,
over 54.5 EB in 2000, and to 295 (optimally compressed) EB in 2007. In fact, we create
2.5 quintillion bytes (EB) of data every day, and 90% of the current world’s digital data
are created in the last two years alone [57]. These ever-increasing digital contents require
a large amount of storage capacity to keep them available for future accesses. Besides the
storage capacity requirement, network bandwidth also becomes a bottleneck, and the up-
load bandwidth is usually an order of magnitude smaller than the download bandwidth. To
meet performance, reliability, availability, power, and cost efficiency requirements, cloud
storage service is becoming a core infrastructure to host these data. Therefore, how to man-
age such incredible growth in storage demand has become the most important challenge to
the cloud storage service providers [21].

Lossless data reduction techniques, most notably, compression and deduplication,
have emerged to be an effective way to address this challenge by improving both space
and bandwidth efficiency in the cloud storage environment. We compare compression and
deduplication in Table 3.1. Compression finds repeated strings within a specific range of
a given file and replaces them with a more compact coding scheme with intensive com-
putations. For example, the deflation algorithm used in gzip checks the repeated strings
within a limited 32KB window and the longest repeated string’s length is limited to 258

bytes [18]. On the other hand, deduplication divides a file into fixed-size (e.g., 4KB or 8KB
in fixed chunking) or variable-size chunks (e.g., content defined chunking), identifies (i.e.,
lookup the hash table) and removes the duplicate chunks across all existing files by com-
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Table 3.1: A comparison between compression and deduplication.
Compression Deduplication

Granularity Strings (100s bytes) Chunks (KBs)
Domain Within a file Across all files
Lookup A sliding window A fingerprint table
Bottleneck Computation and Memory Fingerprint lookup I/O

paring chunks’ unique fingerprints (e.g., secure hash values), and reassembles the chunks
to serve the subsequent access operations on the corresponding file. Therefore, compres-
sion can achieve the best data reduction ratio but at both high computation and memory
costs, rendering it most suitable for reducing individual files and data items at small vol-
umes locally, while deduplication can remove redundant data at a much coarser granularity
to obtain a good data reduction ratio with a much lower computation cost, thus making it
most effective in eliminating much larger volumes of redundant data across files and data
items globally. In order to design an efficient cloud storage system, designers need to com-
bine these two techniques to detect and remove redundant data by exploiting both global
and local redundancies with acceptable computation costs.

However, existing deduplication approaches cannot detect and remove the redun-
dancy wrapped by different compression approaches because they only rely on bitstream
fingerprint-based redundancy identification. As a result, they are unable to identify redun-
dant data between the compressed and uncompressed versions of the exact same contents
as the compressed contents, being encoded by a compression algorithm, will have very
different bitstream patterns from their uncompressed counterparts. In fact, our extensive
experimental study indicates that they also cannot detect any redundant data compressed
by different compression algorithms because the latter will generate different compressed
data at the bitstream level of the same contents. Furthermore, different versions or input
parameters of the same compression tool may generate different bitstreams of the same
contents (e.g., different metadata information or compressed bitstream will be embedded
in the compressed files), whose redundancy cannot be identified by fingerprint-based de-
tection. Finally, very similar but slightly different digital contents (e.g., different versions
of an open source software), which would otherwise present excellent deduplication oppor-
tunities, will become fundamentally distinct compressed packages after applying even the
same compression algorithm.

In a multi-user cloud storage environment, the aforementioned compression scenar-
ios are arguably widespread, which prevent the cloud servers from detecting and removing
any data redundancy among these compressed packages. For example, in Figure 3.1, two

13



Figure 3.1: A simple cloud storage use case.

different users, A and B, choose a public cloud storage service to store their data and apply
compression to reduce the transmission time before sending the data to the cloud. They
share substantial contents between their individual local folders, as a result of, for example,
taking the same courses, working on the same projects, having similar tastes in movies,
music, etc.

(1) User A directly stores his/her folder to the cloud, while user B chooses a com-
pression software (i.e., zip) to compress his/her local folder before storing it to the cloud.

(2) User A sends a package compressed by zip to user B while user B decompresses
it, slightly adds/removes some files and re-compresses it by another compression tool such
as rar.

(3) User A sends a package compressed by rar to user B while user B decompresses
it, slightly adds/removes some files and re-compresses it by his/her rar program whose
version number is different from that of user A’s rar program.

(4) User A sends a package compressed by zip to user B while user B decompresses
it, slightly adds/removes some files and re-compresses it by the exact same zip program as
user A but with a different set of compression parameters.

There are more complicated scenarios that chain multiple compression algorithms
and pre-processing filters together to gain higher compression ratios [45]. All these s-
cenarios indicate that several factors limit the applicability of deduplication in the cloud
storage environment, leading to failures in identifying and removing potentially significant
data redundancy across different compressed packages. These factors include compres-
sion algorithms, compression parameters, input file stream, etc. In general, two users can
generate the same compressed packages only when they compress the same files with the
same compression parameters by the same version of a compression tool. Obviously, it is
impractical to assign the exact same specific compression mode to all the users in the cloud
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storage environment. This is also the reason why traditional data deduplication systems
try to skip deduplicating compressed archives because they may share little redundant data
in their binary representations with the original uncompressed or other differently com-
pressed files, even though they may have the same semantic contents [54]. If there are 10

compression tools that are widely used for a cloud storage environment, where each has
10 versions and 5 sets of compression parameters, then a given file can in theory have up
to 500 different compressed instances in the cloud, yet with no redundancy detectable by
conventional deduplication. Moreover, if this file is compressed in conjunction with other
different files (e.g., by solid compression detailed in Section 3.2.2.1), we can expect even
more compressed instances of this particular file stored in the cloud. This kind of data
redundancy is concealed by different compressed packages. As cloud storage is poised to
become a digital content aggregating point in the digital universe, it is arguable that this
type of hidden data redundancy already exists widely in deduplication-based storage sys-
tems and will likely increase with time. Thus, it is necessary to detect and remove this kind
of data redundancy for a more efficient cloud storage ecosystem.

In this paper, we propose Z-dedup to support deduplicating the compressed data.
Recently, compression tools begin to support cryptographic hash function, such as MD5,
SHA-1, RIPEMD-160, SHA-256, SHA-512 or BLAKE2, as their checksum generators.
Z-dedup extends the data format of each compressed package to incorporate the SHA-
256 checksum information, which makes it possible to be integrated in existing file-level
deduplcation systems. Meanwhile, Z-dedup adds an ownership verification module by
piggybacking some extra verification metadata for the client side deduplication to address
the security threat in which a client might upload fake metadata to illegally obtain data from
the cloud server. Our experimental results show Z-dedup can significantly improve both
space and bandwidth efficiency over traditional approaches by eliminating up to 98.75%
more redundant data among compressed packages.

3.2 Motivation
3.2.1 Background

There are two main motivations for both users and cloud storage providers to com-
press their data, leading to more compressed packages in the cloud. One is to reduce the
amount of data actually stored in the system and the other is to reduce the time spent trans-
ferring a large amount of data over the networks. While the former helps reduce cost, both
hardware and operational, the latter improves performance, both upload and download, and
network bandwidth utilization.
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Table 3.2: Broadband speed greater than 10 Mbps, 25 Mbps and 100 Mbps (2015-
2020) [17].

Region
>10 Mbps >25 Mbps >100 Mbps
2015 2020 2015 2020 2015 2020

Global 53% 77% 30% 38% 4% 8%
Asia Pacific 53% 83% 30% 52% 4% 8%
Latin America 27% 39% 10% 15% 1% 2%
North America 64% 88% 38% 52% 5% 9%
Western Europe 54% 74% 32% 43% 5% 11%
East-Central Europe 58% 83% 33% 41% 3% 6%
Middle East & Africa 17% 20% 7% 8% 0.3% 1%

3.2.1.1 Cloud Storage in Face of Slow Networks

Studies by IDC and EMC have shown a continuously expanding, increasingly com-
plex digital universe [26] [21]. For example, the size of the digital universe will grow from
130 exabytes to 40, 000 exabytes from 2005 to 2020. Within these 16 years, the size will
increase by a factor of 300. On a per capita basis, there will be about 5, 200 gigabytes
digital contents for each person on earth by 2020.

Table 3.2 lists the percentages of broadband connections faster than 10 Mbps, 25
Mbps, and 100 Mbps by region in 2015 and 2020, indicating that the global broadband
speeds are still quite low considering that each person accounts for a considerable amount
of digital contents. Moreover, upload and download bandwidths are usually asymmetric,
with the former being one order of magnitude smaller than the latter. As a result, network
bandwidth remains one of the main limiting factors in using cloud storage.

3.2.1.2 Compressions Are Increasingly Common

In order to deal with the incredible digital explosion, the application of data compres-
sion technologies, especially lossless data compression, is expected to become a common-
place throughout the life cycle of digital contents. In fact, a lot of systems and applications
already perform compression and decompression without the users even being aware that
it has occurred. However, from a storage perspective, this also means that there will be
increasingly more compressed packages as more compressions of different formats and
algorithms are performed.

Table 3.3 shows the compiled results by Calicrates Policroniades and Ian Pratt [46] of
popular files’ extensions and their relative popularity in an Internet server, indicating that
a significant amount of different compressed contents occupy most of the storage space.
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Table 3.3: Data profile of sunsite.org.uk [46].

Rank
Popularity Storage Space
Ext. % Occur. Ext. % Storage

1 .gz 32.50 .rpm 29.30
2 .rpm 10.60 .gz 20.95
3 .jpg 7.54 .iso 20.40
4 .html 4.83 .bz2 6.26
5 .gif 4.43 .tbz2 5.65
6 - 4.16 .raw 4.44
7 .lsm 3.74 .tgz 2.66
8 .tgz 2.90 .zip 2.53
9 .tgz2 2.35 .bin 2.00
10 .Z 2.12 .jpg 0.94
11 .asc 1.84 .Z 0.65
12 .zip 1.59 .gif 0.43
13 .rdf 1.39 .tif 0.31
14 .htm 1.21 .img 0.21
15 .o 1.06 .au 0.19
Total - 82.26 - 96.92

This is consistent with our observation and the reason lies in the fact that the network
bandwidth, particularly of wide-area networks, has become much more expensive than
computing resources, leading more and more data being compressed before transmitting
to the cloud. Besides saving the storage space, compression also converts a lot of random
I/O operations to some sequential I/O operation when transferring a lot of small files to the
cloud.

With the increasing numbers of compressed packages of different formats in the
cloud, there will be even greater numbers of redundant files concealed in different com-
pressed packages. How to organize and store these compressed packages becomes a chal-
lenge as we face a mounting demand to further reduce storage capacity requirement in light
of the explosive growth of digital contents.

3.2.2 Data Compression and Deduplication
3.2.2.1 Dictionary-Based Compression

We focus on dictionary-based compression, especially the sliding dictionary com-
pression algorithms (LZ77 and LZ78), which were proposed by Abraham Lempel and Ja-
cob Ziv [63] [64]. These two algorithms form the basis for a plethora of their variations,
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Figure 3.2: Sliding dictionary compression.

including LZW, LZSS, LZMA and others, that are collectively referred to as the LZ-family
algorithms. As a result, dictionary-based compression has become the de facto standard
for general-purpose data compression in almost every computer system [44].

By their initial designs, compression tools only compress individual files because the
compression algorithm only focuses on a single input data stream. Then some compression
tools allow for the compression of a directory structure that contains multiple files and/or
subdirectories into a single compressed package. There are two common ways to compress
the directory structure, namely, compressing each file independently and concatenating a
group of uncompressed files into a single file for compression. The former is called non-
solid compression and widely supported by the zip format [33], while the latter is called
solid compression and natively used in the 7z and rar formats [45] [50]. Solid compression
is also indirectly used in tar-based formats such as .tar.gz and .tar.xz, where users archive a
directory containing multiple files first as a single file that is then compressed. In this paper,
we only focus on these two common compression schemes while considering out of scope
schemes that chain multiple compression algorithms and filters to gain higher compression
ratios.

As shown in Figure 3.2, a compressed archive is organized in a data package consist-
ing of an archive header, an optional archive header, several compressed blocks with the
corresponding file metadata and optional block metadata, and optional archive information.

18



Archive header maintains the basic information on this compressed package. Block is the
basic, atomic unit of compression, which can be of variable size and contain either some
parts of a file or some files. Optional archive information contains the necessary informa-
tion about directory’s structure. A cursor will scan the input block and some parts of an
already processed block to constitute a dictionary window that is used for the subsequent
read buffer to find the longest repeated literal bytes. This process will generate an adaptive
dictionary, as illustrated in Algorithm 1. After the cursor has scanned a whole block, it will
generate another table containing literal bytes and a table containing pointers to duplicated
literal bytes. Finally, these two tables will be compressed into a compressed block.

Algorithm 1 Adaptive dictionary compression.
while Not the end of block do

Word = readWord( InputFile )
DictionaryIndex = lookup( Word, Dictionary )
if (DictionaryIndex IS VALID) then

output( DictionaryIndex, OutputFile )
else

output( Word, OutputFile )
addToDictionary ( Word, Dictionary )

end if
end while

3.2.2.2 Deduplication

Deduplication is a special kind of lossless data compression, which aims to detect
and remove the extremely long repeated strings/chunks across all files. It becomes popular
in storage systems, particularly in backup and archiving systems, because of the datasets in
these systems have significant amount of duplicative data redundancy.

Deduplication’s basic idea is to divide the data stream into independent units, such
as files or data chunks, and then use some secure hash values of these units, often referred
to as fingerprints, to uniquely represent them. If the fingerprints of any two units match,
these two data units are considered duplicate of each other. With this compare-by-hash
approach, duplicate contents within a single storage system or across multiple systems can
be quickly detected and removed.

Obviously, deduplication relies on secure hash algorithms to limit the hash collision
rate to avoid false positives, where units of different data contents produce the same hash

19



values and thus are mistakenly considered duplicates. It also adds some extra operations,
such as hash computation and hash index table lookup, to the I/O critical path. Another
key issue of deduplication is its heavy reliance on the format of the digital content itself for
the hash value calculation. For example, two identical files in different formats (e.g., due
to compression or encryption) will generate essentially different hash values, completely
preventing their data redundancy being detected and removed.

3.2.3 Research Problems
In above analysis, more and more compressed archives are expected to be stored in

the cloud. In fact, some systems, such as ZFS and Flash Array, have already integrated
compression and deduplication [10] [53]. Meanwhile, the cloud will be a convergence
point to which increasing numbers of end users and systems upload their compressed pack-
ages. Within these compressed archives, there can be a great number of redundant files
across different users, particularly if they happen to have similar interests in certain specif-
ic topics. However, due to the different ways in which compressed archives are generated,
which can substantially hide the data redundancy detectable by the conventional dedupli-
cation technology, these problems arise when dedupication interplays with compression to
motivate this work. First, how to construct a fingerprint for each compressed file across the
different compressed packages to help detect redundant files? Second, how to remove such
redundant files compressed in different packages? Third, how to integrate it into existing
data deduplication system to detect and remove redundant data between compressed pack-
ages and uncompressed files? Fourth, how to deduplicate the redundant files among solid
compression packages?

3.2.4 Related Works
Deduplication was proposed to remove redundant data in backup application [62].

As more and more data migrates to the cloud, it has been integrated within the cloud plat-
form [56]. Different from the backup storage systems where chunk-level deduplication
dominates, there exists strong evidence indicating that file-level deduplication can achieve
comparable compression ratio to chunk-level deduplication in the cloud environment [42].
However, it remains a challenge to find redundant data within a compressed package or
among different compressed packages because conventional methods for detecting data
redundancy usually scan the compressed bitstream itself without touching its internal in-
formation. Migratory compression [40] and Mtar [39] try to reorganize data to improve
space efficiency. X-Ray Dedup [60] has correctly identified the problem of the hidden re-
dundancy among compressed packages and proposed a preliminary solution that combines

20



file’s size and CRC-32 metadata as its signature to detect and remove potential redundan-
t files. However, it fails to provide a complete and generalizable system design. More
importantly, it lacks an in-depth and comprehensive study of the collision problem and
completely ignores the security issue. For example, we find that the 32-bit CRC checksum
is not sufficient to avoid the collision for a large-scale system. By the birthday paradox
theory, the collision rate will be 0.1% when there are 1.9× 108 different files stored in the
system. Z-dedup can scan and extract metadata information to further help identify and
remove redundant files across the compressed files and uncompressed files.

3.3 Design and Implementation
3.3.1 Main Idea

A compression algorithm will encode an input stream into an essentially different
output stream, which makes it difficult to generate a simple but unique indicator for map-
ping between the input stream and the output stream. However, a critical observation we
gained through our analysis is that most compression algorithms will pack files’ metada-
ta information within the compressed packages and, importantly, some metadata, such as
original file’s size and checksum, will be invariant across all compressed packages. There-
fore, the main idea here is to combine this file-level invariant information as a new and
unique indicator for the mapping to help detect redundant files across all the compressed
packages globally.

This approach can be integrated into existing deduplication systems to help remove
redundant files if these files are compressed in the non-solid compression method (Sec-
tion3.2.2.1). For solid compression, we can leverage this feature to estimate the content
similarity with any existing compressed packages. If the incoming compressed package is
considered sufficiently similar to existing compressed packages, meaning that many (but
not all) of the individual files within the packages are possibly identical to the files in
existing stored compressed packages, then the system can decide to deduplicate by first
uncompressing and then detecting and removing redundancy in the conventional way. This
approach helps data deduplication system quickly find out the solid compressed packages
that contain significant data redundancy. Otherwise, the system will either ignore dedu-
plicating solid compressed packages or uncompressing every solid compressed package to
perform deduplication work.
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Figure 3.3: Z-dedup’s main modules and workflow.

3.3.2 System Design and Implementation
3.3.2.1 An System Overview of Z-dedup

In Z-dedup, once a compressed package is ready to be uploaded to the cloud, the
client and the cloud server will exchange some metadata information and perform dedu-
plication at the client side, which will generate a deduplicated compressed package. This
scheme not only decreases the cloud capacity requirement, but also reduces the upload time
from the client to the cloud server.

Figure 3.3 shows 7 main functional modules of Z-dedup, each enclosed by a dashed
gray box. The numerical numbers next to them both label them and indicate the order
in which they process the incoming compressed package. Package Parser is responsible
for parsing each compressed package to extract its file-level signature metadata list. Re-
dundant File Filter detects duplicate files by looking up the file metadata signature store,
and for solid package, it also helps query its similar package list. Client Side Deduplica-
tor is responsible for either removing compressed files in a non-solid package or deciding
whether or not to decompress a solid package and duplicate redundant files at the client
side. Compressed Package Recipe Constructor books the necessary information for recov-
ering a deduplicated compressed package back to its original format. Ownership Verifier
verifies the client’s ownership to prevent an attacker from illegally accessing the file by
uploading a fake metadata list. File Chunker and Chunk-level Deduplicator perform con-
ventional chunk-level deduplication.
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3.3.2.2 Deduplicating Non-Solid and Solid Packages

Figure 3.3 also describes an overview of how Z-dedup handles different packages
generated by the non-solid or solid compression method to remove the redundant files. We
list the main functional modules’ labels (numbers) next to the structure maintained by Z-
dedup to indicate the interactive relationship between a particular functional module and
its different operational steps. More details are discussed in Figure 3.4.

For the non-solid compression, each individual file is compressed independently. As
a result, a non-solid compressed package has already embedded sufficient metadata infor-
mation (i.e., each file’s original length and checksum information) to easily locate a specific
compressed file within the compressed package. Z-dedup can directly detect and remove
the redundant files within such a compressed package. On the other hand, for the solid com-
pression scheme, multiple files are first combined into a single file by concatenating them
in a certain order, then compression is performed on the single file to store the compressed
stream into a compressed block. As such, a solid compressed package lacks adequate in-
formation to locate a specific compressed file within its compressed block because multiple
files are scattered across the compressed block and boundaries between files are blurred at
best. As a result, Z-dedup can not directly detect and remove the redundant files within the
solid compressed package.

In Z-dedup, we inject metadata information (i.e., each file’s original length and
checksum information) per file into each compressed block, as detailed in Section 3.3.2.4,
so as to help estimate the content similarity between any two different compressed packages
by the percentage of the shared redundant files, (e.g., the higher the percentage the more
similar to the two packages are to each other). The similarity detection in Z-dedup entails
estimating the likelihood of finding many duplicate files between the incoming package and
those already stored in the cloud. Since extracting and separating the compressed stream
of a specific file from a solid package incur very high overheads, Z-dedup’s similarity de-
tection of solid compressed packages aims to ensure that an incoming solid compressed
package is uncompressed only if it is likely to contain a sufficient number of duplicate
files.

3.3.2.3 Workflow and Key Operations

Figure 3.4 illustrates an example of deduplicating and restoring a non-solid com-
pressed package without considering the security issue that is discussed in Section 3.3.3.2.
Initially, two non-solid compressed packages, P1 and P2, are stored in the cloud server,
and their invariant metadata is stored in the File Metadata Signature Store. Now, a non-
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Figure 3.4: An example on a non-solid package’s deduplication and restoration.

solid package P3 is ready to be stored to the cloud. P3 is parsed by the Package Parser
to extract its files’ metadata. Moreover, it also detects the locally redundant file (i.e., E)
within P3. Meanwhile, files’ compression order is implicitly maintained by the Metadata
List. Based on File Metadata Signature Store, the Redundant File Filter can divide files
into two different groups: redundant files’ list (i.e., B, C and E) and unique files’ list (i.e.,
A and D), where the former also records each file’s order and pointer of the corresponding
file. The Client Side Deduplicator will remove duplicated files to generate a Deduplicated
Compressed Package that only contains A and D. At the server side, the compressed pack-
age recipe is generated and appended to the end of package by the Compressed Package
Recipe Constructor. Finally, it will update the File Metadata Signature Store to incorporate
P3’s metadata information.

In order to restore a deduplicated non-solid package, Z-dedup must reassemble a
package whose files’ order is the same as the original compressed package. It will scan
from both sides of a deduplicated compressed package, in which the left side contains
compressed unique files within itself and the right side contains the order and pointer in-
formation of the redundant files. These redundant files can be decompressed from other
packages. Then based on files’ order information, the original data stream will be recon-
structed, and then compressed by the original set of compression parameters to restore the
originally uploaded non-solid compressed package. We have summarized the main restora-
tion process in Algorithm 2.

Now we assume that the incoming package P3 is a solid compressed one, whose
file-level metadata information is already injected at the end of the package as described
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in Section 3.3.2.4. Once the redundant files’ information is obtained, Z-dedup will decide
whether to remove the redundant files or not. This is done by estimating how much redun-
dant data is contained within the incoming package P3 after querying the already stored
contents in the cloud (Section 3.3.2.2). Based on the characteristics of source code pack-
ages, which are chosen to evaluate the effectiveness of Z-dedup approach in handling the
solid compression scenario, we find that it is simple but effective to find the most similar
solid compressed packages to help remove the redundant files (i.e., find the most recent
source code package to help remove redundant file). However, there is no way of quickly
locating the compressed stream of a particular file in a solid package. Different from di-
rectly removing the redundant files within a non-solid package, once we have verified that
the incoming solid package contains sufficient redundancy with the existing contents stored
in the cloud, we need to decompress the solid package to locate and remove the redundant
files first and then re-compress the remaining content into a solid package to send it to the
cloud server. Moreover, it also maintains the concatenation order of compressed files in the
original solid package. During the restore process, similar to the non-solid case, Z-dedup
will first restore the file stream and then solid compress these files to restore the original
solid package.

Algorithm 2 Restore a deduplicated compressed package.
FileCursor = 0
while FileStream is NOT FULL do

Left = decompressFile(Package[LeftIndex])
Right = findRedundantFile(Package[RightIndex])
if (toMerge(Package[RightIndex]) is LEFT) then

FileStream[FileCursor++] = Left
LeftIndex++

else
FileStream[FileCursor++] = Right
RightIndex++

end if
end while
Parameter = getCompress(Package)
RestoredPackage = Compress(FileStream, Parameter)
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Figure 3.5: Extending data layout of a compressed package.

3.3.2.4 Extending Compressed Packages’ Layout

In most compression algorithms, files’ metadata information such as the sizes of the
original files and their checksums is already packed within the compressed packages for
the purpose of data integrity. In Z-dedup’s implementation, we choose the combination of
a file’s SHA-256 value and its size to construct the file’s signature. For those compressed
packages that do not pack this information, we need to extend their data layout to record
this information. It can be implemented by adding an optional feature to the compression
tools to calculate and store this information in the compressed packages.

As shown in Figure 3.5, there are two different ways to pack this information. One is
inserting it to file’s metadata slot for each compressed file, which is similar to the structure
of some compression algorithms that have already packed such metadata in their packages.
The other is appending it at the end of a compressed package with a reverse order of the
input stream. We choose the second way to pack files’ metadata in this paper because it
does not incur extra data movements within a compressed stream, which is compatible with
existing compressed packages. Moreover, at the server side, each deduplicated compressed
package will append its package recipe at the end of the deduplicated compressed package
to help recover the compressed package, where more details are given in Section 3.3.2.1.

3.3.3 Other Design Issues
3.3.3.1 Collision Analysis

Data deduplication requires a hash function that can generate a unique fingerprint for
each unique data block. Suppose that a system contains N different files where each file
is represented by a b-bit hash value with a uniform distribution, the probability p that there
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Table 3.4: Collision rates for fingerprints of various lengths.
fingerprint number of hashed elements such that {probability of at least one hash collision ≥ p}

checksum length p=10−18 p=10−15 p=10−12 p=10−9 p=10−6 p=0.1% p=1% p=25%

32 64 6.1 1.9 × 102 6.1 × 103 1.9 × 105 6.1 × 106 1.9 × 108 6.1 × 108 3.0 × 109

64 96 4.0 × 105 1.3 × 107 4.0 × 108 1.3 × 1010 4.0 × 1011 1.3 × 1013 4.0 × 1013 2.0 × 1014

128 160 1.7 × 1015 5.4 × 1016 1.7 × 1018 5.4 × 1019 1.7 × 1021 5.4 × 1022 1.7 × 1023 8.5 × 1023

160 192 1.1 × 1020 3.5 × 1021 1.1 × 1023 3.5 × 1024 1.1 × 1026 3.5 × 1027 1.1 × 1028 5.6 × 1028

224 256 4.8 × 1029 1.5 × 1031 4.8 × 1032 1.5 × 1034 4.8 × 1035 1.5 × 1037 4.8 × 1037 2.4 × 1038

256 288 3.2 × 1034 1.0 × 1036 3.2 × 1037 1.0 × 1039 3.2 × 1040 1.0 × 1042 3.1 × 1042 1.6 × 1043

384 416 5.8 × 1053 1.8 × 1055 5.8 × 1056 1.8 × 1058 5.8 × 1059 1.8 × 1061 5.8 × 1061 2.9 × 1062

will be at least one collision is bounded by the number of pairs of blocks multiplied by the
probability that a given pair will collide, which is p ≤ N(N−1)

2
× 1

2b
[47].

Table 3.4 shows our estimated lower bounds on the numbers of hashed elements with
different collision rates under various lengths of the checksum. For example, we can expect
that, if the total number of unique files (i.e., hashed elements) is around several millions and
the fingerprint is of 64 bits in length (32-bit chechsum plus 32-bit file length), the collision
rate will be less then 10−6. From this table, we can deduce that in a large-scale system,
we might need to choose a checksum value whose length is larger than 128. In Z-dedup,
we propose to store files’ SHA-256 checksum information at the end of each compressed
package, which is explained in Section 3.3.2.4. The extra space overhead is negligible
as explained in the example next. Assuming that the average file size is 32 KB with an
average compression rate of 4, a 288-bit signature only adds 0.45% extra space overhead to
the compressed package. Moreover, we can integrate the file metadata signature store into
the existing lookup table of deduplication systems.

3.3.3.2 Security of Client Side Dedup

Z-dedup performs deduplication at the client side without transferring all compressed
data to the server side, which exposes a common security vulnerability in which an untruth-
ful client may submit a faked metadata list to mislead the cloud server into believing that it
owns the specific duplicated files already stored in the cloud server, enabling it to illegally
access such duplicated files.

In order to overcome this security problem, the Ownership Verifier is added to verify
if the client really owns the duplicated files as indicated by its metadata list. The key
idea is to test whether the client really has the digital contents of the redundant files by
asking the client to send a randomly selected sample segment of each claimed redundant
file as follows. In Step 2 of Figure 3.4, when a server has identified redundant files that are
claimed by a client’s metadata list, it will randomly generate an address range within the
size of each redundant file, i.e., a randomly selected sample segment of the file, and send
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this address information to the client. Meanwhile, it will decompress the corresponding
sample data of the redundant files at the server side. In Step 3 of Figure 3.4, in addition
to performing client side deduplication, the client needs to decompress the corresponding
sample data of the redundant files specified by the sample segment address information,
and send this data to the cloud server to verify the ownership of the corresponding files. A
last step is to compare the sample data at the server side, where a match indicates the true
ownership of the client and a fraudulent claim to ownership otherwise. Once the client has
passed this test, its deduplicated compressed package will be accepted by the server.

3.4 Evaluation
3.4.1 Experimental Environment

We use three desktops to simulate a cloud storage environment, with details listed in
Figure 3.1. Two different clients run under Ubuntu14.04 and Windows7 with EXT4 and
NTFS file systems respectively. Both have installed some common compression tools that
are listed in Table 3.5. One server runs under Ubuntu16.04 with all necessary compression
tools to access the compressed packages received from different clients. All these three ma-
chines are equipped with one i7− 6700K processor, four 16GB DDR4 main memory, and
one 6TB WD black HDD. We use Destor [24] as the traditional chunk-level deduplication
engine. It is designed for backup applications with various chunk-level data deduplication
algorithms. We have added a file-level deduplication process to implement Z-dedup in this
simulated environment.

Due to the privacy issue, we are not able to collect any real users’ data in the cloud
storage environment. In order to proof our Z-dedup concept, we have collected several
publicly available source code packages (i.e., coreutils, gcc, Linux kernel and Silesia cor-
pus) plus some binary files, which include jpg, pdf, mp3, ppt, doc, and exe files, to form
our datasets to test the effectiveness of integrating Z-dedup into an existing deduplication-
based storage system to detect and remove the data redundancy concealed by differently
compressed packages. The reason why we collect these binary files is because these source
code packages have a large number of small files, lack large files and all are represented by
English characters, whose features make it suitable for them to be compressed into a solid
compression package. Moreover, we randomly select some binary files to synthetically
generate a compressed package workload (syn_data) to represent the scenario of multi-
ple users sharing various types of files compressed by different tools. These binary files
are usually used to comprise the lossless data compression corpora, which include various
types of files in different sizes, to evaluate the effectiveness of compression algorithms. We
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Table 3.5: Compression tools in the two client sites.
tar gzip xz zip 7z rar

windows 7 1.28-1 1.6 5.2.2 3.0 15.09β 5.31
ubuntu 14.04 1.27.1 1.6 5.1.0α 3.0 9.20 4.20
ubuntu-16.04 1.27.1 1.6 5.1.0α 3.0 9.20 5.30β2

Table 3.6: Sizes (KiB) of different compression formats under the Ubuntu and Windows
platforms.

coreutils-8.25 gcc-5.3.0 linux-4.5-rc5 silesia corpus
tar 49990/49990 601480/601480 642550/642550 206980/206990
xz 5591/5591 73815/73815 86287/86287 48047/48054
gz 12784/12784 121432/120154 132608/132609 66636/66640
7z 6169/5723 72256/71434 93561/89437 48563/48279
rar 12402/12401 148255/148177 156310/155135 53454/53451

use several common compression tools to translate these compressed packages into various
compression formats, which include both non-solid and solid compression schemes.

3.4.2 Results and Analysis
In this section, we evaluate data redundancy among different compression formats,

estimate how much redundant data can be deduplicated by the Z-dedup approach, and
evaluate the overheads incurred by Z-dedup.

3.4.2.1 Analysis on Compressed Content

Table 3.6 lists the various sizes of different formats for a specific version of selected
datasets under both the Ubuntu and Windows platforms. We use the default parameters
to convert the data package downloaded from the Internet into different package formats.
We find that compression tools can significantly reduce the original digital contents’ sizes.
Especially, rar generates the non-solid compressed packages by default while 7z generates
the solid compressed packages. Solid compression has achieved significantly higher com-
pression ratios than non-solid compression. Moreover, source code packages have gained
much higher compression ratios than binary files.

We use a chunk-level data deduplcation engine to study data redundancy among the
compressed packages. As shown in Table 3.7, we find that nearly all pairs of compressed
packages have 0% data redundancy between them, a few pairs have 0.05%-7.63% data re-
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Table 3.7: Comparison of redundancy ratio (in percentage) between different compressed
packages between the same content, whose row is Ubuntu and column is Windows.

coreutils linux
xz gz 7z rar xz gz 7z rar

coreutils

xz 100 0 0 0 0 0 0 0.05
gz 0 7.6 0 0 0 0 0 0.05
7z 0 0 0 0 0 0 0 0.05
rar 0 0 0 1.0 0 0 0 0.05

linux

xz 0 0 0 0 100 0 0 0.05
gz 0 0 0 0 0 5.6 0 0.05
7z 0 0 0 0 0 0 0 0.05
rar 0 0 0 0 0 0 0 0.24

dundancy. The only exception is “tar.xz”, which has generated 100% identical compressed
packages from both the Ubuntu and Windows platforms, indicating xz-5.2.2 and xz-5.1.0α
share the same core algorithm. We further verify that these packages share 0% redundancy
with the compressed packages generated by xz-5.0.8. Although most packages have similar
sizes across the two platforms, our study shows that: (1) except for “tar.xz”, the compressed
packages are fundamentally different from one another even under the same compression
algorithm; (2) for the same digital contents, different compression algorithms will generate
fundamentally different data streams; (3) a compressed package itself has very low data
redundancy (0-0.05%) at the chunk level. All these results indicate that traditional data
deduplication methods cannot detect data redundancy in the compressed packages.

3.4.2.2 Hidden Content Redundancy in Compressed Packages

In order to evaluate the real data redundancy among different compressed packages,
we decompress various versions of compressed packages and apply the chunk level dudu-
plication engine on them. As shown in Figure 3.6, we plot both local and global data
redundancies, where the former represents the redundancy within the current version and
the latter represents the redundancy among all versions. We find that most packages have
very low local data redundancy within themselves. Although both the local and global data
redundancy rates vary over different versions, the global data redundancies are very high
across different versions, indicating that high data redundancy exists among these pack-
ages. All these results indicate that there are a lot of duplicate files within these compressed
packages, which can be detected and removed by Z-dedup.
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Figure 3.6: Real data redundancy throughout different versions of decompressed packages.

3.4.2.3 Performance of Z-dedup

File level redundancy ranges from 1.39% to 26.46% in coreutils, 95.21% to 97.55%

in gcc, 9.04% to 55.55% in Linux, and 48.50% to 90.75% in syn_data. Z-dedup is designed
to identify and remove this kind of hidden redundant data. Our experiments show that
Z-dedup is able to reduce the size of compressed packages by 1.61%-35.78% in coreutils,
83.12%-98.75% in gcc, 11.05%-65.59% in Linux and 38.28% to 84.25% in syn_data with
its file-level data deduplication. We find that some coreutils versions have major modifica-
tions made to most files, leading to a very low file-level redundancy. As a result, Z-dedup
can scan an incoming compressed package, to estimate the level of redundancy in the pack-
age by checking its metadata information and opt out performing file level deduplication
when there is very little file level redundancy for this package. However, extracting meta-
data information from these low-redundancy compressed packages is still necessary and in
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Table 3.8: Various checksum algorithms’ computation overheads with Intel 6700K proces-
sor.

Algorithms CRC32 MD5 SHA-1 SHA-256 SHA3-256 RIPEMD-160 RIPEMD-256 BLAKE2b
MiB Per Second 610 742 695 341 453 302 584 1128
Cycles Per Byte 6.3 5.1 5.5 11.2 8.4 12.6 6.5 3.4

fact important because there could be high file-level redundancy in the compressed pack-
ages of the subsequent versions.

After evaluating the effectiveness of the Z-dedup approach, we want to evaluate the
extra overheads that come with this approach. In Table 3.8, we obtain the computation
overheads of several popular hash algorithms used to generate the checksum values within
the compressed packages with Intel’s 4GHz 6700K processor. We find that SHA-256 incurs
1.79× computation overhead than the traditional CRC32 algorithm. By choosing SHA-256
as the checksum algorithm for Z-dedup, we can also reuse the existing fingerprint table,
which contains the SHA-256 hash values, in existing data deduplication systems.

We use the source code packages that contain a large number of small files to eval-
uate the overheads on maintaining and processing the necessary metadata in the Z-dedup
approach. In general, using a source code package as a target to simulate deduplicating a
non-solid compressed package can incur the worst overheads in deduplicating compressed
contents because it requires a number of operations proportional to the number of files in
the package but saving very little space because all the files are small in size. At the same
time, we use the synthesized packages that contain various types of large size files to more
realistically evaluate the overheads on deduplicating non-solid compressed packages. We
find that Z-dedup will slightly increase the size of compressed packages because it need-
s to inject the SHA-256 checksums within the compressed packages. In fact, this space
overhead is found to be less than 0.45% of the total compressed package’s size. All these
results indicate that Z-dedup can reduce a significant amount of redundant data in com-
pressed packages in a traditional deduplication-based storage system without significant
overheads.

3.4.2.4 Network Traffic Reduction

We show the amounts of data transferring to the server side under different workloads
in Figure 3.7, while each data is normalized to its corresponding uncompressed package’s
size on both non-solid and solid compression modes to learn the benefits of data reduction
for network transmission. In particular, the 7z and rar compressions will reduce the amount
of coreutils data to 10.69% and 23.76% of their original sizes in geometric average, while
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Figure 3.7: Data to be sent to the cloud server, while each number is normalized to the total
size of its uncompressed package’s size.

Z-dedup can further reduce these to 4.16% and 9.82% by exploiting the data redundancy
embedded in these compressed packages. Moreover, the 7z and rar compressions will
reduce the amount of gcc data to 11.30% and 23.28%, linux data to 13.32% and 23.01%,
syn_data data to 36.83% and 41.37% in geometric average; while Z-dedup can further
reduce these data to 0.62% and 1.28% in gcc, 4.69% and 8.30% in linux, and 4.16% and
4.70% in syn_data. Note, binaries files in syn_data show different redundant data curves
than source code packages because these data usually have lower compression ratios than
plain-text files. From this evaluation, we further verify that Z-dedup can reduce most data
transferring to the network

Besides the reduced data network traffics, we have also evaluated Z-dedup’s total
processing times that include the local processing time and network transmission time. Z-
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dedup can reduce the processing time by 10.71% to 31.52% without verifying file’s owner-
ship. It will reduce this time by 2.74% to 21.32% after adding the ownership verification.

3.5 Conclusion
With the exponentially expanding digital universe, compressed packages of files are

poised to become an important form of storing and transmitting data in the cloud storage
environment, for obvious economical and performance reasons. In this paper, we designed
and implemented Z-dedup, a novel deduplication technique designed to detect and remove
data redundancy in compressed packages for which conventional chunk-fingerprint based
deduplication approaches have failed. The main idea of Z-dedup is to exploit some key in-
variant information embedded in the metadata of compressed packages, such as file-based
checksum and original file lengths, as the unique signatures of individual compressed files.
The design and implementation of Z-dedup also address a potential security vulnerabil-
ity due to client-site compression, as well as packages generated by both non-solid and
solid compression methods. Our evaluation of a Z-dedup prototype shows that it reduces
up to 98.75% more redundant data in compressed packages than traditional deduplication
system.
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CHAPTER 4

WM-dedup:A Case for Watermark-based Chunk-level Lossy Image D-
eduplication

With the rise of mobile social media, various image editing and sharing applica-
tions will generate a large number of similar images, including a lot of redundant image
contents. However, traditional data deduplication methods cannot detect such redundant
image contents. As a result, we propose the WM-dedup approach, which leverages the
steganographic watermark injecting and detecting to help perform the chunk-level image
deduplication to improve the efficiency of the image storage systems.

4.1 Introduction
In social media applications, images are used to illustrate anecdotes or statuses that

cannot be easily conveyed through words to express or emphasize the emotions or opinion-
s. Therefore, it is easy to derive a lot of similar images from a single original image during
a propagation of that image because users tend to modify the image to express their feel-
ings. Meanwhile, an image can be compressed by several dozens of popular compression
algorithms with different compression levels, thus resulting in a lot of compressed copies
with same perceptual contents but totally different bitstream contents. In addition, the pop-
ular photo editing tools may also generate a lot of highly similar images, which share a
lot of redundant perceptual contents. These application scenarios pose a challenge to the
back-end storage of these social media or cloud storage service providers, which is how to
efficiently organize and store such image data with very high semantic/perceptual content
redundancy [30].

Similarity-based deduplication (SIM-dedup) approaches are proposed to filter out
the near-duplicate images to save storage space [43] [19] [31]. They share a common
workflow: 1) extracting features from images; 2) quantifying these features; 3) indexing
features by a clustering algorithm; 4) querying an image’s feature vector to detect the sim-
ilarity. With a high similarity threshold, SIM-dedup approaches can select approximately
duplicate images as image deduplication candidates that are then either deduplicated or re-
tained based on the verification of their content equivalency. They work well on eliminating
the perceptually identical images in their entirety, which amounts to the file-level dedupli-
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Figure 4.1: Examples of redundant image contents on the Internet.

cation, but cannot remove the partial perceptually identical contents. While the removal
of perceptually identical images in their entirety amounts to the file-level deduplication,
the partial removal of perceptually similar images is analogous to the chunk-level dedupli-
cation but at a significant computation cost on dividing the candidate images to perform
sub-image deduplication. Moreover, for subsequent access operations, non-trivial costs are
needed to store the sub-image’s metadata. As a result, existing image deduplication ap-
proaches typically only adopt the file-level whole-image deduplication while ignoring the
chunk-level sub-image deduplication.

With the plethora of ways in which images are produced, modified, shared, and s-
tored, a large amount of redundant image contents will be introduced. As shown in Fig-
ure 4.1, which comes from the partial result snapshot of an image reverse search operation
from Google, these images obviously share a large amount of human-observable redundant
contents, which is the panda’s photograph. However, there exist a lot of image instances
with different aspect ratios and some of them have some slightly different logos embedded
in the images by some users. The image storage system will incur more than 1000× space
to store all of these images without considering their redundant image contents. And it
can reduce the storage overheads from more than 1000× to around 100× by removing the
perceptually identical images in their entirety. In WM-dedup, we will further to detect and
remove the sub-image content redundancy to improve the storage efficiency.
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(a) original image (b) rounded image (c)  framed image (d) posterized image (e) watermarked image

(f) edited by request My family and I went to a concert, and I wore obnoxiously short shorts. 

My legs completely ruined this awesome photo? Please help (I'm the ginger on the left.)

(g) edited by request Can you make it look like the striped shirt guy 

isn't staring at the back of my head? I'm the dad

Figure 4.2: Examples of images with redundant perceptual contents, where fig.(b)-fig.(e)
are results of applying simple picture editing operations upon fig.(a) and fig.(f)-fig.(g) show
more sophisticated image editing operations.

In this paper, we propose WM-dedup, which leverages the embedded steganographic
watermark [15] as a unique content tag to detect the redundant perceptual image contents.
The main idea is that when a device or application generates a new image, certain descrip-
tive information (e.g., user, device/application, date, location information) associated with
this image will be injected into each chunk of an image generated by a predefined image
chunking operation. This information will remain invariant in different variants derived
from the original image without causing users to discern any perceptible differences, thus
allowing WM-dedup to easily extract it to detect the redundant contents without excessive
computation costs. We experimentally observe that WM-dedup reduces the image data
size by 28.6% to 70.6% and increases the throughput by 4.5× compared to SIM-dedup,
by exploiting the chunk-level image redundancy. Moreover, as the first lossy chunk-level
image deduplication system of its kind, all recovered images after WM-dedup do not have
noticeable degradation in image quality.

4.2 Motivation
Currently, little research efforts have been spent on image deduplication because it is

difficult to identify the equivalent perceptual image contents in a computationally efficient
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manner. With respect to this work, the most relevant related work is SIM-dedup frame-
work [43] previously mentioned in Section 4.1. SIM-dedup’s foundation is based on the
notion of reverse image search engine (RISE) [2] [1] or content based image indexing and
retrieval (CBIR) [61] [19] [59].

4.2.1 Limitations of SIM-dedup
Usually, SIM-dedup framework comprises of two parts, one is to querying the im-

age’s similarity and another is to performing image deduplication. Before performing im-
age deduplication operation, SIM-dedup validates the equivalent perceptual contents once
detecting some potential redundant images. We implement a simplified SIM-dedup with
image hash [35] to represent an image’s perceptual contents. Image hash resizes the input
image into a specific size before calculating the digital signals to obtain a hash value. To
deduplicate redundant images, a threshold on a predefined similarity distance measure is
used to allow for limited variances in perceptual contents. Table 4.1 shows hash values of
fig.(a)-fig.(e) of Figure 4.2 generated by four image hash algorithms. The similarity among
fig.(a)-fig.(e) cannot be detected by hash values, even though they share significant redun-
dant perceptual contents. As a result, in our later evaluation, we implement SIM-dedup by
extracting the high-dimension feature [51] and using the image hash to verify the content
equivalent.

Based on our study, we also find that an image’s aspect can significantly impact the
accuracy detecting the equivalent image contents. As a result, image hash algorithms that
only focus on a specific feature are only effective at detecting the exact or nearly duplicate
image. They are not effective at detecting the redundant image contents of similar images.
In other word, they work well on distinguishing the different image contents fail to effec-
tively identify the redundant image contents. In this work, both SIM-dedup and WM-dedup
employ image hash as an efficient way to verify image file/chunk content equivalent after
they choose the potential redundant image file/chunk candidates. The reason of adopting
image hash as the content equivalency checker are two-folded, first, its computation cost
is low, second, distinct chunks will not generate the same image hash especially with the
requirement of passing the first-round selecting of the potential redundant image file/chunk
candidates without considering the intentional attacks from malicious users.

In order to defend against the intentional attacks, WM-dedup increases the diffi-
culty of passing the first-round candidate selection procedure by encrypting the metadata
information before injecting the metadata watermark. Moreover, we can adopt a set of im-
age hashes in the second-round image content-equivalency verification stage to avoid the
possible hash collision from distinct image files/chunks. Finally, existing image impaint
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techniques can tolerate missing contents to restore the original image by the overall image
style extracted from its chunks, which will be added to our enhancement model in future.

Table 4.1: Image Hash Values of fig.(a)-fig.(e) in Figure 4.2.
aHash pHash dHash wHash

fig.(a) b69c3d890b0b8f8c 99c6562d7533a296 7670795b33135a38 be98bd890b0b8f8c
fig.(b) f7838d01018183ef bbc6f425c133c698 8e33795b33131b9e ff898d89818183ef
fig.(c) ff9d9d89890b0f0e bbce94297133a296 6631795b33131a3c ff999d89890b0e0e
fig.(d) 007e7e7e7e7e0000 91c46e342d6b936e eeb4f89a96b8bc80 007e7e7f7f7e0000
fig.(e) b61c3d09090b0f8f 99c6946d7533a296 7670795b33135a3c b6989d890b0b8f8f

While other image features can be used in SIM-dedup implementation, they tend to
be very computationally costly. Large-scale image retrieval systems use high-dimensional
feature descriptors such as SIFT [41], SURF [5] for image analysis and retrieval. Howev-
er, non-trivial SIFT variances exist in Figure 4.3 between the original and edited images
even though they share a lot of redundant contents. It requires a significant amount of
computation to detect the SIFT, SURF or other feature descriptors and run random sample
consensus (RANSAC) algorithms to form a consensus feature set to check the redundant
perceptual image contents [22].

Existing SIM-dedup approaches share the following drawbacks: 1) difficult to find
panacea features at any first attempt; 2) re-extracting new features from all existing images
and rebuilding the index when a new feature is added; 3) some simple image editing oper-
ations can lead to dramatic changes in the feature vector of an image although most parts
remain intact; 4) lacking a practical method to perform subimage-level deduplication; and
the sheer number of images, constantly on the rise, will exacerbate these problems.

These drawbacks can lead to at least three potential problems. First, they cannot
identify complicated redundant images because it only focuses on the local image features
while lacking sufficient global information despite of steps 2 and 3 that can blend in some
global descriptors. Second, excessive computational overheads make them unsuitable for
image dedup. Third, they only target near-duplicate images, images with most features
being identical, while ignoring the non-trivial redundancy.

4.2.2 Case Study of Redundant Image Data
An image is typically generated by an electronic image sensor to record light as a set

of electronic data for each pixel. The data is then electronically processed and stored in a
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Figure 4.3: SIFT features, where the dotted circles contain the SIFT variances between the
original and edited images.
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digital image file for subsequent displaying or processing, making it a highly manipulative
medium. As a result, users can easily edit the same digital image to meet their personal re-
quirements and tastes, leading to a large number of perceptually redundant contents among
these derived image files, especially in the era of social media.

Near-duplicate image detection has been studied for many years [23]. These studies
found that vast numbers of images on the web are duplicates or near-duplicates derived
from the same original images. Specifically, a near-duplicate statistics study on 70K im-
ages randomly selected from 2 billion images has shown that 22% web images have near
duplicates [58], where images with similar/identical semantic contents are considered near-
duplicate images. However, existing research does not show how much redundant percep-
tual contents exist in these images, let alone eliminating such redundant image contents
among these similar images.

In this work, we have randomly selected 585 original images from the Internet and
used Google’s image reverse search engine to obtain all searchable copies with similar
contents, resulting in about 275K images that we refer to as “all copies”. We analyzed these
images to learn various distributions of redundant image contents. As shown in Figure 4.4,
there exist a large number of fully identical images, about 200K out of the 275K images,
of which most have more than 200 copies and some have more than 1000 copies. After
filtering out the exactly identical images, we obtained the distribution of similar but non-
identical copies, which resulted in about 75K images that we refer to as “similar copies”,
as shown in Figure 4.5, where most images have more than 100 copies, which are mainly
caused by compressing or cropping an image into a series of different size images(e.g.,
cropping a 1920×1080 image to 1919×1079). Moreover, we filter out these similar copies
by a similarity threshold of 0.95 to obtain the distribution of similar but distinguishable
copies, which resulted in about 15K images that we refer to as “distinguishable copies”,
with different perceptual contents shown in Figure 4.6. We find out that most images
have at least 10 distinguishable copies. Finally, Figure 4.7 shows the distribution of the
fraction of the modified image’s perceptual contents in those distinguishable copies, and we
have observed that most of these copies have only less than 30% their perceptual contents
modified, which means that a lot of perceptually equivalent image contents exist among
these distinguishable images.

This case study strongly suggests that (1) significant perceptual content redundancy
exists in image data generated in the Internet and (2) a substantial amount of this redundan-
cy cannot be detected and removed by traditional image deduplication approaches such as
SIM-dedup.
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4.2.3 Lossy Image Deduplication and Recovery
Unlike computers, which can evolve in a short time to acquire more compute powers,

there are some obvious limitations to human’s capability to perceive information contained
in images. These limitations stem from the physical structures of human eyes and brains to
process visual signals, which evolve very slowly. Rapid technology advances have helped
produce large volumes of images that are beyond human’s perception limits, which provide
an opportunity that machine can help process the images with human’s indistinguishable
changes to assist image deduplication. Lossy compression algorithms have already exploit-
ed this fact to reduce the image size significantly before image quality degradation is no-
ticed by the end-users. Moreover, recent advances in machine learning have led to a series
of techniques that can be employed to enhance the image perceptual contents. Specifically,
there exist some techniques that can produce high-quality versions of low-resolution im-
ages, eliminate the undesired noisy signals and inpaint the whole image with some partial
contents [49] [55] [32]. As a result, we believe that lossy image deduplication would be
acceptable if a deduplicated image can be recovered by a combination of these techniques
to be perceptually equivalent to its original image.

4.3 WM-dedup Design and Implementation
Existing SIM-dedup approaches perform image dedup at the file-level by identify-

ing near duplicate images. However, their restore process only returns the near duplicate
images, instead of truly restoring the eliminated images preferred by the end users. WM-
dedup, on the other hand, contains both processes to deduplicate and recover images. SW-
dedup is designed to restore deduplicated images to their original form or sufficiently close
in that there will be no end-user discernable degradation in perceptual content quality. In
particular, WM-dedup has three main functional components, watermark generation, dedu-
plication and recovery, shown in Figure 4.8, to support its various operations.

4.3.1 Image Watermark Generation
In the image generation stage, WM-dedup needs to inject a unique steganograph-

ic watermark for each image. This function can be added to a digital camera’s firmware
or embedded in a specific application when it is to generate a new image file. In gener-
al, there are two kinds of watermarks, fragile and robust. A fragile watermark is usually
used to check data integrity while a robust watermark is commonly used to identify own-
ership or copyright [11]. In the case of WM-dedup, we employ the robust watermark. Our
steganographic watermark is a bitmap image for the metadata descriptive information, e.g.,
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Figure 4.8: Architecture of WM-dedup.
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Figure 4.9: Watermarking an image.

user, device/application, date, location, resolution information, associated with this image.
As a result, this steganographic watermark information can uniquely represent the image’s
perceptual contents.

Besides injecting the metadata as steganographic watermark to enable image dedu-
plication, the steganographic watermarking writer module also applies a predefined image
chunking algorithm to divide an image into multiple fixed-size subimages, hereforth re-
ferred to as “chunks". A simple image chunking algorithm is to divide an image into a
series of fixed-size chunks with each chunk being capable of embedding the steganograph-
ic watermark.
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Figure 4.10: Workflow of image dedup

Figure 4.9 shows the process of injecting an invisible watermark of “usenix@phone
ID@San Jose, CA, US 1:23:45am 12/25/2017 3024x4032”. WM-dedup first encodes the
metadata into a mirroring bitmap image, then converts both metadata image and image
chunk into the Fourier transform domain. Finally, it adds their signals in the Fourier trans-
form domain and converts the result back to the original time domain.

4.3.2 Image Deduplication
The steganographic watermarking reader aligns image chunks by the embedded chunk-

ing information. It extracts the watermark embedded in each chunk before recognizing the
unique metadata and uses image hash to verify content equivalency of those potentially
redundant chunks with the same metadata information. In Figure 4.2, (f) and (g) illustrate
a situation that an image been stitched from several different images and each of these im-
ages may have its own image description information. To deal with this case, WM-dedup
can query the chunk description for the possible redundant chunk to perform chunk-level
deduplication directly. Moreover, when storing a unique chunk to image store, WM-dedup
adds 10% redundant contents around its boundaries to help reassemble the corresponding
image from chunks.
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Figure 4.11: Workflow of image recovery.

In Figure 4.10, space can be saved when storing image ‘B’ because of the 8 detected
redundant chunks, which is about half of the perceptual contents of image ‘B’. In order
to detect and eliminate more redundant image contents, an image can perform file-level
deduplication first if all its chunks’ descriptions are homogeneous. For example, image
‘B’ is recognized as a cropped subpart of image ‘A’. The file-level image deduplication
can remove image ‘B’ if there is a record of how the cropping operation was done on
image ‘A’ to produce image ‘B’. Image description store keeps all file-level and chunk-
level description information in the WM-dedup system, plus the corresponding operations
on how to convert existing contents to the eliminated contents. WM-dedup has defined
some simple but common operations to help dedup and recover redundant images, such as
cropping, resizing, rotating, applying a mask, adding a text, changing color channel. With
these operations stored in the image description store, WM-dedup can quickly apply the
corresponding operations to recover the eliminated image file.

Once a query module to the image store returns “true”, the incoming chunk may
have a redundant copy existing in the image store. WM-dedup next verifies the perceptual
content equivalence by comparing their image hashes before replacing the incoming chunk
with the redundant copy and write the corresponding operations to convert the incoming
chunk from the redundant chunk. WM-dedup adopts a high-resolution replacement policy,
which prefers to replace low-resolution chunk with high-resolution chunk. This is because
some low-resolution images may enter in WM-dedup before the high-resolution copies,
due to the asynchronous nature of cloud storage.

4.3.3 Image Recovery
In WM-dedup, image recovery refers to the process of restoring a perceptually e-

quivalent image to the one that was replaced by the redundant copy in the image dedup
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stage. Based on the information stored in the image store and image description store, it
deploys the corresponding operations to restore the image. As shown in Figure 4.11, image
recovery entails three subtasks: transforming, stitching, and enhancing. The transforming
task applies the corresponding operation to restore the chunks. If an image was deduplicat-
ed at file-level, it can bypass this task that tries to combine all the corresponding chunks to
form an image. With the extra 10% redundant contents around each chunk’s boundaries,
WM-dedup can quickly stitch all chunks to generate a candidate image other than spend-
ing a long computation time to align and combine these chunks. Finally, the enhancing
task further optimizes the image by using a super-resolution recovery model to enhance the
quality of the candidate image, especially for the chunk’s boundaries.

4.3.4 Put It All Together
We have introduced the main functional modules of WM-dedup. Here are some spe-

cific implementation parameters of WM-dedup used in this paper: 1) WM-dedup divides
each image into a series of “256 × 256” sized chunks. 2) WM-dedup can inject up to 128

characters as image descriptive information embedded into its steganographic watermark.
3) WM-dedup overlays original and watermark image signals in the Fourier transform do-
main. 4) WM-dedup first filters in the image contents by the image description information
recovered from the watermark, then compare their image hashes to verify the perceptual
content equivalence on dedup. 5) Each chunk adds 10% redundant contents around it to
help with the stitching operation. 6) WM-dedup adopts a super-resolution model to en-
hance the perceptual image contents.

Finally, in order to protect against counterfeit attack, we encoded the metadata into a
specific Fourier transform domain and then combine it with the input image at this feature
domain. As a result, directly slicing, modifying, or cutting the image does not impact the
signal pattern in the specific feature domain. This suggests that the watermark process can
resist such forgery attempts. However, it also indicates a potential attack to watermark,
which is to forge the watermark information to counterfeit the images. WM-dedup uses
encryption to provide the protection against this kind attack. It encrypts the description
information before generating its bitmap image, and WM-dedup decrypts the description
information after recognizing the characters of description information.

47



Figure 4.12: Evaluation system overview.

Table 4.2: Hardware Configuration.
CPU Intel i7-6700K at 4GHz
GPU Nivida GTX 980 Ti 6G
Memory 64GB DDR4 2800
SSD 1TB Samsung 850 EVO
HDD 6TB WD Black 7200 RPM
NIC 1000BASE-T Intel I219-V

4.4 Evaluation
In this section, we first describe the experimental environment used to evaluate WM-

dedup. Next, we describe the image data set used for the evaluation. Finally we present
and analyze our evaluation results.

4.4.1 Evaluation Setup
Figure 4.12 shows the integration of WM-dedup with a cloud based image storage

application, where a user can take a picture and distribute it. The picture can also be edited
prior to being uploaded to the cloud, which is a typical use case of cloud based multi-
tenant image storage services. We use two directly attached workstations to simulate this
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cloud image storage environment and their detailed hardware configurations are listed in
Table 4.2. A standalone software module is running to inject the steganographic watermark.
SIM-dedup can only perform file-level deduplication on near-duplicate images while WM-
dedup can perform both file-level and chunk-level image deduplication.

We have implemented a SW-dedup prototype, which combines a machine learning
model and image hash to construct the two-phase image content redundancy detection de-
scribe in Section 4.3. We have also built a SIM-dedup prototype, which allows 5% per-
ceptual variances at most by setting the similarity threshold to 95% to perform the near-
duplicate deduplication introduced in Section 4.2.1. We compare WM-dedup against SIM-
dedup to evaluate its potential benefits by deduplicating similar but distinguishable images
derived from all the tested datasets.

4.4.2 Data Set
As introduced in Section 4.2.2, we chose 585 different images from the Internet and

used Google’s image reverse search engine to get all searchable copies of each of these
images. The search results, amounting to more than 275K image copies, are analyzed.
Within these copies, there are over 75K similar but non-identical (unique) copies, which
we use to profile image’s redundant perceptual contents in the public network.

Meanwhile, we have also observed that there exist a large number of images that are
stored in private or social networks photo storage applications such as iCloud, Dropbox,
OneDrive, Google Photos, Facebook, and Amazon Prime Photos, which are not allowed
to accessing their repositories to profile image’s redundant perceptual contents in these
private networks. As a result, we tried to get this information using an alternative approach
as follows.

Next, we conducted an investigation to identify commonly used image editing oper-
ations. Initially, we planned to investigate user’s behaviors but this would require accessing
some private image repositories, which is unfortunately but understandably very difficult,
if not impossible.

We analyzed top-rated photo editing applications in Apple Store and Google Play
to learn the most popular photo-editing operations provided by these applications such as
cropping, resizing, stitching, adding a text, adding a frame, adding a sticker, applying a
filter, etc. Besides the image data set directly collected from the Internet, we collect some
private images and run a script that randomly changes each image’s perceptual contents to
some extent (from 0 to 50%) to generate a synthetic image dataset by applying some of the
top-rated photo editing operations to emulate the edited image data existing in private and
social-networks photo storage repositories. Moreover, we also created another synthetic
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Table 4.3: Data Set Summary.
# of Ori Img Ori Img Sz # of Dist Img Dist Img Sz Per Redu Rt

Int_Set 585 1.3 GB 15543 22.8 GB 74.6%
Syn_Set1 220 750 MB 2640 8.2 GB 78.2%
Syn_Set2 102 324 MB 255 735 MB 62.3%

image data set by collecting the images on different “photoshop request” on the Internet.
These two synthetic datasets are used to emulate both simple and complex edited image
contents, whose redundant contents can only be detected and removed by the chunk-level
deduplication function in WM-Dedup.

Because the watermark information is non-existing in these image copies, we resort-
ed to manually comparing them, labeling the perceptually equivalent areas and then adding
steganographic watermarks to these images. These two synthetic datasets are used to em-
ulate the fact that most of the perceptual differences among similar images in the Internet
datasets mainly come from adding some texts or stickers.

Table 4.3 shows a summary about these datasets with the numbers and total sizes
of the original images and similar but distinguishable images, and the estimated percep-
tual content redundancy ratios, where “Int_Set" directly comes from the Internet data,
“Syn_Set1" and “Syn_Set2" represent the simple and complex edited image data. We ap-
proximately estimate the redundancy ratios by a program that aligns each image with its
original image, divides them into multiple 64× 64 chunks ( 1

16
of our fixed-size chunk) and

counts their equivalent perceptual chunks to obtain the redundancy ratios.

4.4.3 Evaluation Results
4.4.3.1 Data Reduction

As shown in Figure 4.13, “Int_Set" has 585 images with a total size of 1.3GB, while
all copies existing on the Internet amounts to 362.5GB. The similar copies need 114.2GB

storage space to store and the final distinguishable copies filtered out by SIM-dedup amount
to 22.8GB. Note that “all copies”, “similar copies” and “distinguishable copies” are de-
fined in Section 4.2.2. WM-dedup, on the other hand, can further reduce the data size to
6.7GB, thus significantly reducing the storage space by 70.6%. We define redundant image
amplification factor as the actual image data size divided by the original image data size
because all of these image contents are derived from the original images. We calculate the
redundant image amplification factors and find that WM-dedup has decreased it from 17.5

to 5.2 as shown in Figure 4.13.
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Figure 4.14 and Figure 4.15 show the storage requirements of “Syn_Set1" and “Syn_Set2".
Their storage sizes can be reduced to 2.9GB and 525MB from 8.2GB and 735MB, re-
spectively after applying WM-dedup. This translates to 64.6% and 28.6% storage space re-
ductions coming from the chunk-level image deduplication enabled by WM-dedup, which
SIM-dedup is incapable of due to its file-level similarity detection. These data reduction
ratios should increase as more redundant image copies continue to accumulate in image
storage systems, on the Internet, the cloud, etc., thus making WM-dedup more appealing
in the new social-media era.
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4.4.3.2 Execution Time

Table 4.4 lists the execution time breakdown by the main operations such as feature
extraction, image hash, query and restore on both SIM-dedup and WM-dedup running in
the single-threaded mode. SIM-dedup spends most of its time on extracting high-dimension
feature vector based on the VGG16 network [51] with ImageNet pre-trained weights to
automatically extract image’s hierarchical features and build the image contents search
engine. Specifically, it generates a 4096-dimension fc6-feature [37] for each image. Image
hash can help quickly verify the image content equivalency. Its query operation is fast and
the restore operation is mainly on the latency of selecting and loading the near-duplicate
image. On the other hand, WM-dedup spends much less time on extracting the watermark,
reading the bitmap image’s content to recognize image description metadata. The boundary
box information of watermarks provides hints to WM-dedup to align the incoming image
to its potentially redundant copy existing in the image storage. Most of its time is spent
on recovering the image by reassembling it with the perceptually equivalent chunks and
applying super-resolution optimization on all boundaries between any two adjacent chunks
to restore the deduplicated image. As a result, WM-dedup’s deduplication throughput is
more than 4.5× higher than SIM-dedup’s although it has provided more complex chunk-
level deduplication operations, thus capable of processing about 10 images/second running
in a single thread.

Our three image datasets have limited numbers of images and their content index can
fit within the main memory, reducing the overhead from accessing data off main memory.
The index query sensitivity study will be our future work, and we can adopt approaches by
similar works on traditional deduplication systems to overcome this bottleneck [38] [62].
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Table 4.4: Execution Time Breakdown.
Ft. Extra. Image Hash Query Dedup Restore

SIM_dedup 482ms 4ms 25us/file 502ms 8ms
WM_dedup 84ms 4ms 12us/chunk 112ms 195ms

Table 4.5: Mean PSNR (dB) Comparison.
Original Injected Restored (without SR) Restored(with SR)

Int_Set 45.2 43.6 38.3 40.5
Syn_Set1 40.4 37.1 32.2 34.1
Syn_Set2 36.7 33.9 28.7 31.2

4.4.3.3 Memory Overhead

In terms of storage overhead, WM-dedup incurs no storage overhead on the water-
marked image because it overlays signal at a specific feature domain. Because our feature
domain is based on Fourier transform, the memory overhead incurred by our watermark is
proportional to the resolution of the input image when loading its content into the mem-
ory. In the JPEG format, each pixel requires 24 bits to store its RGB information. A
12-megapixel JPEG image would require roughly 36 MB of memory to store its contents.
This digital image processing can be treated as the various operations applying on a large
size matrix containing the image contents. As a result, the total memory size of the in-
put matrix, output matrix and watermark matrix is less than 100 MB when we process a
12-megapixel JPEG image. Comparing with the abundant memory resources in today’s
computer systems, this level of memory overhead is arguably acceptable. Given that more
and more applications are poised to access cameras in mobile devices to take photos, it may
be desirable to combine this watermarking process with the original JPEG compression to
further reduce its computation and memory overheads. Besides the memory overhead on
processing each image, there is an overhead of 128 bytes per image as its description plus
the necessary pointers to maintain the index structure of image contents, which is similar
to the index structure in existing deduplication systems whose overheads will be evaluated
as our future work.

4.4.3.4 Image Quality Loss

WM-dedup is the first chunk-level lossy image deduplication system that replaces
a chunk by its perceptually equivalent counterpart. In order to verify the lossy dedupli-
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cation/recovery functionality, we conduct our evaluation using images with common res-
olutions ranging from 0.6 megapixels to 12 megapixels for social media uploads, check
the contents of each lossy restored image, and do not notice any perceptual degradation
between it and the original input image.

We choose the peak signal-to-noise ratio (PSNR) as a metric to evaluate the im-
age quality degradation. PSNR is defined via the mean squared error (MSE). Given a
noise-free m×n monochrome image “I” and its noisy approximation “K”, MSE is de-
fined as 1

mn

∑m−1
i=0

∑n−1
j=0 [I(i, j) − K(i, j)]2; and the PSNR (in dB) is defined as 20 ×

log10(MAXI)− 10× log10(MSE), where MAXI is the maximum possible pixel value of
the image.

PSNR is the most widely used objective measure for image quality assessment, but
the existing work also indicates that the evaluation results of PSNR cannot be exactly the
same as the visual quality seen by the human eye. It is possible that an image with a
higher PSNR may appear to be worse than an image with a lower PSNR. This is because
the human eye’s visual sensitivity to errors is not absolute, the perceived results of many
changing factors. For example, the sensitivity of the human eye to spatial frequencies is
relatively low. The sensitivity of the human eye to the contrast in brightness is higher than
the chroma. The perception of an area by the human eye is affected by the surrounding
areas.

As shown in Table 4.5, we have listed the mean PSNR values of original images,
original images with injected watermark and restored images without or with the super-
resolution optimization of our three different data sets. Injecting steganographic watermark
decreases the PSNR to some extent and the recovery process usually further decreases this
metric. However, we find that PSNR has nearly the same value of injected copy when
WM-dedup restores the deduplicated images. We believed that it may be due to the super-
resolution optimization that can generate the best interpolation values to reduce the MSE.
We plan to add more restore optimization models as our future work to further control the
image quality loss.

4.4.3.5 Study on Predefined Chunking Method

In general, injecting watermark requires a specific size of the receiving chunk to hold
the bitmap of metadata information. If a chunk is smaller than the required minimum size
for injecting watermark, some metadata information could be lost when WM-dedup tries
to extract the watermark. In WM-dedup, we define each chunk as a square and use it to
divide an input image into multiple full chunks and some truncated chunks (e.g., on the
edges of the image), where the latter will be expand to a full chunk with blank filling.
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Figure 4.16: Amplification factor as a function of chunking size.
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Figure 4.17: PSNR value as a function of chunking size.

Specifically, we use a 12×12 bitmap to hold a printable character, and provide a maximum
128 characters to describe the metadata information. With the mirroring operation, the
minimum size of a chunk will need at least 36 kilopixels (“12 × 12 × 128 × 2”) to hold
this bitmap image. As a result, WM-dedup requires that an image chunk must have enough
space to hold at least one chunk watermark (36 kilopixels) at 192 × 192. Fortunately, it
should not impact the target photo storage application because the sizes of high quality
photos tend to be much larger than this required minimum size.

WM-dedup chooses the chunking size of “256 × 256” to divide the images because
it can achieve a balance between high data reduction ratio and image quality loss. As
shown in Figure 4.16 and Figure 4.17, we have listed the final data amplification factors
and the PNSR values changing under 4 different chunking sizes, “192×192”, “256×256”,
“384 × 384” and “512 × 512”. Currently, we have only implemented fixed size image
chunking in WM-dedup, and we plan to explore the variable size image chunking as our
future work.
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4.5 Conclusion
In order to exploit the perceptually redundant contents existing among similar im-

ages, we propose WM-dedup, the first lossy chunk-level image deduplication system,
which embeds an invariable image chunking and content tag by injecting steganograph-
ic watermarks to an image when it is generated. Based on our evaluation, WM-dedup can
further save the image data storage space by 28.6% to 70.6%, compared to the existing
file-level image deduplication approach SIM-dedup, by exploiting the chunk-level redun-
dancy without noticeable degradation of image quality in recovered images. Moreover, it
also outperforms SIM-dedup in deduplication throughput by about 4.5×, owing to its novel
content representation approach.
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CHAPTER 5

SES-dedup: a Case for ECC-based SSD Deduplication

With the decline in unit price and significant advantages in performance, solid state
disks (SSDs) are gradually replacing traditional hard disk drives (HDDs) as the main s-
torage medium for storage systems. So far, their unit price is still around one order of
magnitude higher than unit price of HDD, and they may suffer from the inherent disad-
vantages of a limited number of programming and erasing (P/E) operation, which degrades
their reliability and performance. Therefore, integrating deduplication within the SSD be-
comes an attractive solution. However, SSD’s internal architecture cannot directly employ
the low-cost deduplication engine, we propose the SES-dedup approach, which aims to
overcome this problem to bypass the widely used data randomization module in SSD to
enable the low-cost ECC-based deduplication.

5.1 Introduction
How to manage the explosive growth of data is a top-priority problem in the big

data era. There exists a significant amount of redundant data in the exploding digital uni-
verse [26], which makes data deduplication (dedup), a space and compute efficient solution
for storage capacity optimization, become a standard feature for a lot of storage products
and installations such as backup systems, file systems, all-flash arrays, cloud storage sys-
tems and so on.

Several studies have proposed integrating data deduplication into SSDs to leverage
their internal processing capability to achieve such single-instance storage within the SSD.
These deduplicatable SSDs can not only exploit the benefits of reducing the Program/Erase
(P/E) operations to increase SSD’s lifespan but also proportionally enlarge its logical capac-
ity to improve the performance of its behind-the-scenes tasks such as wear-leveling (WL)
and garbage-collection (GC) [36] [16]. Moreover, deduplication will further improve the
SSD’s reliability because the raw bit error rate will increase sharply with the number of
P/E operations [9] [27]. However, deduplication will incur notable computation and space
overheads [28]. As a result, designers must balance the potential overheads and benefits of
deduplication to make the right design choice.
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Different from traditional data deduplication systems running on general-purpose
computer systems or servers, deduplication within SSD is usually constrained by the very
limited resources within the SSDs (such as embedded processor and DRAM). In tradition-
al deduplication systems, data streams will be dynamically divided into either variable-
length or fixed-size chunks, where a cryptographic hash (such as SHA-256) is calculated
per chunk as the fingerprint to uniquely represent the chunk’s content, and chunks detected
to share the same fingerprint with an already stored unique chunk are considered duplicates
and eliminated by replacing them with a pointer each to the unique chunk. Unfortunate-
ly, dynamically chunking and computing cryptographic hashes will incur a great deal of
computational overhead to SSD’s embedded controller, which will affect its frontend I/O
performance, thereby offsetting deduplication’s advantages. For example, even for some
mid-range all-flash array products with the server-level processors, their performance is
CPU-bound, which is mainly caused by the data reduction tasks of deduplication and com-
pression [3] [34]. Therefore, we believe that may be able to significantly improve the per-
formance of these systems by removing substantial overhead calculating the fingerprints in
their deduplication modules.

Recent studies have proposed some low-overhead approaches such as fixed-size chunk-
ing (at page size) and using a page’s ECC instead of SHA-256 as the fingerprints to help
detect the duplicate chunks, which leverages the SSD’s internal page mapping mechanism
and the page-level ECC without incurring extra computation cost and at a small space cost
other than necessary space to maintain the hash table for data deduplication [36] [16]. Un-
fortunately, on SLC, MLC, TLC or QLC flash chips, different data patterns written have
been proven to exhibit different raw bit error rates because of various electronic interference
effects [12]. To reduce the raw bit error rates induced by these similar data pattern’s distur-
bances, modern SSDs have integrated a data scrambler module to randomize the incoming
data before storing it to the NAND flash chips. As a consequence, ECCs for duplicate data
blocks with different LBAs will be rendered completely different, which makes it impossi-
ble to leverage this built-in ECC function as a content identification function to detect the
duplicate data on flash chips.

In order to solve this problem, we propose a Scrambler-resistant ECC-based SSD
deduplication, called SES-dedup, which can be implemented in either the host or device
side to break through the data scrambler module so as to enable ECC-based deduplication
on modern SSDs. Through extensive evaluations on an simulated SES-dedup system, SES-
dedup is shown to effectively exploit SSD’s built-in ECC module to calculate the hash
values of stored data for data deduplication. Specifically, our SES-dedup approach can
remove up to 30.8% redundant data with up to 17.0% performance improvement by feeding
our collected data traces to the SSD simulator. Through our experiments, we find that when
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Table 5.1: Page-level operation latencies on different flash chips
NAND Type Read Write SHA-256
SLC 23.4 us 262.6 us
MLC-1 33.5 us 390.0 us 226.5 us
MLC-2 43.3 us 1084.4 us

stored data has a redundancy ratio larger than 11.0%, this approach can increase SSD’s
storage density without sacrificing performance and reliability.

5.2 Motivation
Continued capacity growth and lower unit prices have made SSDs a mainstream

storage device. However, future increases in density will result in a significant drop in per-
formance and reliability. As a result, SSD manufacturers and users will carefully weigh the
cost, performance, capacity, and reliability. In this work, we propose to integrate dedupli-
cation in SSD to exploiting its built-in ECC engine to help detect the potentially redundant
data at fairly low computation cost.

Redundant data are prevalent in the digital universe, which makes data deduplication
and compression viable and profitable. Given the minimum chunking cost of fixed-size
chunking in deduplication, it is widely used in flash-based consumer electronics, and we
want to know the most effective fixed-size chunking granularity to help detect the dupli-
cate data in these consumer electronics such as laptops and desktops. As such, we have
collected the daily office-workload data from two laptops and four desktops applied dif-
ferent fixed chunking sizes to the data, and analyze their data redundancy ratios through a
data deduplication engine. As illustrated by Figure 5.1, we have obtained two important
observations: one is that there exists a lot of redundant data in these laptops and desktops,
which is up to 37.0% on desktop 4; the other is that most redundant data are found in 8
KB chunks, whose size is close to modern SSD’s page size. This study affirms that using
SSD’s page size as the fixed chunking size can detect most redundant data, which in part
motivates this work.

Table 5.1 lists the page-level read and write operation latencies on several typical
NAND flash chips, and the latency of calculating one SHA-256 hash of an 8KB page on
ARM Contex processor running at 400 MHz. Obviously, this hashing operation will add
non-trivial latency to the write latency if we adopt traditional SHA-256 as the fingerprint
for SSD deduplication. Moreover, the longer write operation may also increase the read
latency, which will degrade both the read and write operations if SHA-256 is used as the
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Figure 5.1: Data redundancy rates of fixed-size chunking.

fingerprint for SSD deduplication. As shown in Figure 5.2, the SSD performance drops
after enabling SHA-256 based deduplication on different NAND flash chips, because the
SHA-256 hashing overhead is incurred on the critical path of every write operation. These
mixed read-and-write workloads are generated by the FIO tool to process the input data
without any deduplicatable pages to learn its deduplication overheads mainly caused by
calculating SHA-256. When we feed our collected datasets with up to 30.7% redundant
pages at our selected 8 KB page size, this SHA-256 deduplicatable SSD can slightly im-
prove the baseline SSD’s write performance up to 5.8%. By this test, we find that SHA-256
based deduplication in SSDs incurs non-trivial overheads (up to 17.3%), that will signif-
icantly offset the most benefits of deduplication and make it unattractive to be integrated
within the SSDs.

Meanwhile, NAND flash chips usually face much more transient failures caused
by program disturb, read disturb, over-programming or charge loss due to their inherent
device-level characteristics. As a result, ECC has become a mandatory feature integrated
into SSDs to detect and correct these transient failures to make SSDs useable. The SSD
controller will first divide a page into one or more blocks when a host writes a page of data
to SSD. Then, its encoding module will generate a codeword consisting of the block and
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Figure 5.2: SSD performance degradation after adding SHA-256 based deduplication on
different types of NAND flash chips with different mixed random read-and-write workloads
on fixed chunking of size 8 KB.

ECC for each block by its generator matrix. A page’s ECC can be treated as the concate-
nation of all block ECCs within that page.

In this work, we argue that this kind of ECC information sealed within SSD can be
leveraged as the content identification of the stored data in lieu of the costly cryptographic
hash computation of the stored data for the purpose of redundancy detection. In general, the
computation overhead of calculating ECC is much lower than SHA-256, which motivates
us to reuse this ECC as the first-round fingerprint to filter out the most distinct data for SSD
deduplication that is backed up by a second-round byte-to-byte comparison to verify the
duplicate contents for possible false positives (due to hash collisions). This can help filter
out most distinct contents in an efficient way since there is no false negative in ECC value
comparisons.
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Moreover, within a single SDD, its total number of data pages is not that high (i.e., a
1-TB SSD with 8-KB page will have 1.25×108 data pages at most compared with the 1014

data pages in an exabyte data store) and we can generally expect a much lower potential
hash collision probability by Formula 1.1 in Chapter 1. Meanwhile, we can further exploit
the asymmetric latency of read and write operations, which is shown in Table 5.1, to support
the byte-to-byte comparison operation. For each write operation, we filter out the distinct
data pages whose ECCs don’t exist in the fingerprint table, and for those data pages sharing
the same ECCs, we will read these already stored data pages and compare them with the
currently written data pages byte-by-byte to avoid the possible false positive by adopting
ECC as the content hash. In particular, the data deduplication ratio is in the range of 12.6%
and 30.8% at the fixed chunking granularity of 8-KB in our collected data from laptops
and desktops, which means that most distinct data pages will be filtered out by the first-
round ECC comparison, and the second-round byte-to-byte comparison will add an extra
page read operation to those write operations that the written pages need a second-round
comparison, which is a small portion of total write operations.

5.3 SES-dedup System Design
In this Section, we show the basic design of SES-dedup, which can be implemented

at either host-side or device-side plus some necessary modifications in device’s FTL.
We observe that the scrambler module usually adopts a Linear Feedback Shift Reg-

ister (LFSR) to generate a scrambling vector by using the LBA of the scrambled data block
as the randomization seed [13] [14]. This scrambling vector will then be XORed with the
origin data to generate the scrambled data. Upon a read request, the scrambled data will
be descrambled by the same logic because the XOR operation is reversible. Therefore, we
can break through this scrambler module by generating the scrambled data at the host-side,
so as to perform the on-demand deduplication on SSDs by exploiting their built-in ECCs,
whose dataflow view is shown in the lower part of Figure 5.3.

Figure 5.3 shows a high-level architectural view of host-side SES-dedup design. Its
right upper part shows the major functional components integrated within a typical SSD
controller. In particular, the incoming data will be scrambled before calculating their ECCs,
and then written to the chips. This makes ECC-based deduplication impossible because
the ECC values of duplicate data blocks with different LBAs will be completely different
after passing through the scrambler module. In this case, a deduplicatable SSD must keep
extra information, such as the fingerprints, to help deduplication, which will incur both
computation and space overheads. As shown in the left upper part of Figure 5.3, we add a
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Figure 5.3: Architecture of host-side SES-dedup system.

software scrambler module at the host side to help SSD reverse the randomized data to the
original data written by the host and store them on the flash chips.

For a specific SSD controller, we can easily recreate the scrambler in software by
writing some predefined data patterns (like all ‘0’) to the SSD. In this case, we know the
content of the input data and its LBA, and we can dump the chip’s image to obtain the
scrambled version of the input data so as to reverse the scrambler function and recreate
the software scramble module at the host-side. By this approach, we can perform the
on-demand deduplication on SSD by enabling the host-side software scramble module to
randomize the data before writing to the SSD, then it will be scrambled again in SSD, and
finally storing the origin data on NAND flash chips. Thus leveraging its ECC to detect the
duplicate content to perform the fix-sized chunk data deduplication algorithm on SSD.

Host-side SES-dedup system can selectively bypass the embedded scramble module
in SSD, but it will store the data without scrambling on the NAND flash chips, which might
increase the raw data error rates, although we can modify FTL to help redirect writing the
original data to different physical units to avoid/limit writing similar patterns in the same
block. In order to overcome this issue, we have proposed the device-side SES-dedup sys-
tem, which is based on the distributive property of matrix multiplication. In particular, as
shown in Equation 5.1, ECC vector is usually calculated by a generator matrix multipli-
cation operation, whose input is a scrambled data vector obtained by origin data XOR the
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scramble vector. Based on Equation 5.2, we can obtain the original data’s ECC as its con-
tent identification because the generator matrix and all scramble vectors are known, which
can be integrated within the firmware to support dedup in SSD. As a result, we can im-
plement the device-side SES-dedup system without storing the origin data on NAND flash
chips. Once we read the ECC from NAND flash chips, SSD controller can further calculate
its origin data’s ECC and use it as the fingerprint to detect the duplicate data.

([VData]⊕ [VScrambler])× [MEncoding] = [ECC] (5.1)

[VData]× [MEncoding] = [ECC]⊕ [VScrambler]× [MEncoding] (5.2)

In SES-dedup system, an ECC-based fingerprint is used as the first-level filter to
identify the potential duplicate page, then this page will be processed by a byte-to-byte
comparison with the other page’s 32-byte sampled data stored in the Out-of-Band area to
verify the redundancy. Because the FTL has a lot of other functions (e.g., logical block
mapping, wear leveling, garbage collection, write amplification, bad block management,
etc.) to perform, there is very limited computation power and memory space left in the
SDD controller that can be used for in-line deduplication. As a result, we believe that post-
processing deduplication will be a must-have option for SSDs to deduplicate the redundant
contents. That is, periodically scanning the SSD to identify and remove the redundant
data in the background or during idle periods by leveraging the ECC information as it-
s fingerprint, which saves a lot of costs associated with computing SHA-256 to support
deduplication on SSDs.

The integration of the data deduplication feature in FTL will change SSD’s logical-
to-physical mapping from 1-to-1 to n-to-1. Multiple LBAs will be mapped to a single
Physical Block Address (PBA), which is fine for normal read/write operations. However,
this will not work for the GC task, because it must notify all associated LBAs that their
corresponding PBA’s content will be moved to another PBA. As a result, SES-dedup adds
a reverse lookup mechanism to check all LBAs associated with a specific PBA for garbage
collection.

Host-side and device-side SES-dedup systems are designed for different applica-
tion scenarios. The host-side design is suitable for personal usage that provides a flexible
on-demand interface to enable the deduplication feature on SSDs. There are two main
reasons for this application scenario. First, different data generated by different applica-
tions have shown to exhibit significantly different data redundancy characteristics, i.e., very
little redundancy exists among data generated by different applications [25], making it un-
necessary to deduplicate data generated by fundamentally different applications. Second,
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applications or file systems may write the same metadata to multiple logical blocks to avoid
potential data loss due to single-block failures, which means that devices should not elimi-
nate such intentional data redundancy by the deduplication feature to reduce the risk of data
loss. On the other hand, the device-side design is more suitable for large-scale data center,
which contains a lot of different SSDs, whose host may not have sufficient computation
power to running the software scramble module to support a lot of SSDs simultaneously.
Moreover, it can seal the dedup function within the device that provides better compatibil-
ity.

Some SSD controllers may integrate a data compression engine to compress the in-
coming data before writing it to the flash chips. If the compression is performed after
SSD’s data scrambler module, there is no impact on our host-side SES-dedup design al-
though it will hurt the compression ratio because the data has been randomized. When the
compression module is placed before the scrambler module, we should disable the software
scrambler module at the host side and write some extra ECC data, leveraging the compres-
sion algorithm’s ECC as the content’s fingerprints rather than the NAND flash’s ECC [60],
to the Out-of-Band space to help perform data deduplication on SSDs. On the other hand,
in our device-side SES-dedup design, compression will not impact its function because all
necessary work can be processed within the device.

A page has several codewords, which can provide a finer deduplication granularity
at an ECC codeword other than a whole page. It will be especially useful for large flash’s
page size because we find that the most predominate fixed-size chunking granularity that
can detect most duplicate data is around 8 KB. We leave this as our future work.

5.4 Evaluation
In this section, we will introduce the experiment environment, present and analyze

our experiment results.

5.4.1 Experimental Environment
We evaluate SES-dedup on GEM5 full system simulator [7], whose SSD model is

ported from the extended FlashSim simulator [8] and integrates with ECC-based dedupli-
cation functions. We set the major parameters of the host as a 1.6 GHz X86 CPU plus
an eight-bank 8 GB DDR3-1600 DRAM. The SSD configurations are listed in Table 5.2,
while the read and write latencies on different flash chips are listed in Table 5.1. We shrink
stimulated SSD size to 32 GB with 64 MB DRAM to make our collected data easily satu-
rate its capacity. Each codeword of 1 KB is protected by a code rate of 32/33 LDPC code
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Table 5.2: Configurations of SSD simulator.
Description Configuration
Flash Page Size 8 KB
Pages per Block 256
Block per Plane 256
Plane per Package 8
Number of Packages 8
Garbage Collection Threshold 5%
Flash Erase Latency 1.8 ms

(i.e., the coding redundancy is 256 B per 8 KB data page). In particular, calculating SHA-
256 hash will take 226.5 us, host-side SES-dedup will not incur extra hashing computation
cost on the SSD device and recalculating LDPC ECC will be 14.5 us on a 400 MHz ARM
processor for device-side SES-dedup system.

Our data sets are collected from two laptops and four desktops, which contain the
typical office workloads, such as coding, file editing, Internet surfing, emailing, file sharing,
running virtual machine, etc. These data sets have normal redundancy ratios, which vary
from 12.3% to 30.8% at 8KB fixed chunking size. We use the FIO tool [4] to create the
synthetic data access traces based on these data sets to evaluate the performance of SES-
dedup system.

5.4.2 ECC-based Fingerprint Filter
First of all, we must design a Fingerprint Filter to help reduce the size of the in-

memory fingerprint table because SSD’s embedded DRAM capacity is limited and cannot
hold all fingerprints. In SES-dedup design, we truncate each codeword’s ECC from 32 B to
4 B to form a page’s ECC fingerprint, which has the total length of 32 B (256-bit). We do
not observe any hash false positives by replacing SHA-256 with this 256-bit ECC because
an SSD’s capacity is small. Specifically, for a 32 GB capacity SSD with 8 KB page size, it
only contains 4 M pages, and the 256-bit fingerprint length has provided enough hash space
to avoid any collisions, which can even fully meet 8 TB SSD’s requirement. However,
4 M 256-bit ECC fingerprints will occupy 128 MB memory, which is larger than the total
simulated SSD’s DRAM capacity (64 MB).

As shown in Table 5.3, the distribution of duplicated pages is highly skewed in these
data sets. We have observed that 12.7% to 18.8% hot duplicated pages, whose reference
count is larger than 2, have occupied about 72.1% to 89.3% of total redundant data. In
other words, it provides an opportunity to optimize the fingerprint table, thus making it
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Table 5.3: Skew-distributed duplicated pages
Hot Fingerprint Ratios Ratios in Redundant Data

laptop1 17.6% 74.1%
laptop2 13.8% 86.3%
desktop1 15.8% 79.8%
desktop2 14.9% 81.1%
desktop3 18.8% 72.1%
desktop4 12.7% 89.3%

small enough while containing most duplicated fingerprints. In order to achieve this goal,
we have designed a fingerprint table that can store 15.0% of SSD’s total number of the
fingerprint. By this approach, the fingerprint table shrinks from 128 MB to 19.2 MB,
but still occupying a lot of DRAM capacity because most DRAM is used to store FTL’s
mapping table. We further reduce each fingerprint entry’s length to shrink the fingerprint
table’s size. In this design, we sample a quarter of the ECC-based fingerprint, which reduce
fingerprint table size to 4.8 MB that can be fit within the limited DRAM (around 7.5% space
overhead).

Figure 5.4 shows various random write performance improvements on simulated
SLC SSD with different fingerprint table size ratio while 10% means this fingerprint ta-
ble can store 10% of all possible fingerprints (0.4 M in this test), the MLC results with
the same trend are omitted due to the space limit. From this test, we find that different
data sets exhibit different random write performance improvements due to their different
duplicated data distributions. When this table size ratio increases from 15% to 20%, the
performance gains are diminishing, thus indicating 15% of max table size can obtain the
best price/performance ratio, which is mainly determined by the skew distribution of du-
plicated pages. Specifically, SES-dedup system can improve up to 17.0% random write
performance under this setting.

5.4.3 Effectiveness of Deduplication
SES-dedup can in-line deduplicate every redundant page (up to 30.8% duplicate data

at 8 KB fixed chunking size) without considering the limited computation power of embed-
ded SSD controller. In order to reduce the performance interferences caused by the in-line
deduplication processing, both host-side and device-side SES-dedup systems try their best
to processing deduplication in-line while leaving the other pages to be processed off-line.
As a result, we want to know how much redundant data can be detected by in-line dedupli-
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Figure 5.4: Study of write performance improvements on different fingerprint table size

cation because it will let us know several important metrics like how many P/E operations
are saved, how much space can be reclaimed by post-processing deduplication, and so on.

The host-side SES-dedup system is controlled by the host-side module, which will
limit the contents to be deduplicated on SSDs. It adds negligible overheads to check the
fingerprint table for deduplication. We have collected the in-line and off-line deduplication
processing ratios in Table 5.4. For example, 52.9% to 59.8% duplicated data is processed by
in-line deduplication under SLC SSD. In other words, it can directly reduce write 6.5% to
18.2% data to SLC chips, which will reduce the corresponding P/E operations. Meanwhile,
those remained duplicated page to be processed by off-line (post-processing) deduplication
will further increase about 5.5% to 12.6% storage capacity on SLC SSD. In this case, we
don’t compare it with SHA-256 based deduplication because we don’t change the device by
adding extra hardware/software module to calculate SHA-256 except for some necessary
deduplication changes, such as adding the fingerprint table and modifying FTL’s mapping
table. From this test, the MLC SSDs process less in-line deduplication data because its
inherent access latency is higher than SLC device, which prolongs its write latency.
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Table 5.4: In-line and off-line deduplication processing redundancy data ratios on the host-
side SES-dedup system with 100% random write workload.

Data Set
In-line Dedup Off-line Dedup

Duplicate Ratio
SLC MLC-1 MLC-2 SLC MLC-1 MLC-2

laptop1 7.1% 6.5% 5.4% 5.5% 6.1% 7.2% 12.6%
laptop2 17.4% 16.1% 12.9% 12.5% 13.8% 17.0% 29.9%

desktop1 11.0% 9.9% 8.1% 7.7% 8.8% 10.6% 18.7%
desktop2 13.7% 12.1% 9.9% 9.2% 10.8% 13.0% 22.9%
desktop3 6.5% 6.1% 5.2% 5.8% 6.2% 7.1% 12.3%
desktop4 18.2% 16.9% 13.6% 12.6% 13.9% 17.2% 30.8%

Different from the host-side approach, the device-side SES-dedup system will add
the ECC processing latency to support its deduplication function. As shown in Figure 5.5,
we draw the geometric means of in-line deduplication ratios of different data sets under
different mixed read-and-write workloads. We find that majority of duplicated pages can
be detected and removed inline while leaving some pages to be processed off-line in ECC-
based SES-dedup approach, which means it will reduce the corresponding duplicate writes
to the NAND flash chips. Specifically, it can process 19.9% to 42.8% more duplicated data
in-line than SHA256-based approach, which means a lot of P/E operations can be saved by
this ECC-based approach.

5.5 Conclusion
In this work, we propose the SES-dedup system to help bypass the data scrambler

module within SSD to enable the low-cost ECC-based data deduplication on SSD. Our
experimental results show it can extend the flash space by a factor of up to 30.8% with up
to 17.0% write performance improvement than baseline SSD with our collected real-world
data sets.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we will summarize our main contributions of the technologies pro-
posed in this thesis and discuss the possible future work that can further strengthen the
versatile deduplication system.

6.1 Contributions
The main contributions of this dissertation can be summarized as these four aspect-

s. First, it tries to enable the deduplication system to process the popular cloud storage
workloads such as compressed file and images to optimize the cloud storage efficiency.
Secondly, besides the traditional bitstream’s fingerprint-based redundancy-identification,
it tries to exploit the deeper metadata information to assist the deduplication. Thirdly,
unlike all existing lossless deduplication approaches, this dissertation proposes the first
lossy deduplication approach to process the redundant image contents by eliminating their
perceptual-equivalent contents at the user’s perspective. Finally, it deeply analyzes the ex-
isting SSD’s architecture and reuses the built-in ECC module to enable the deduplication
at fairly low-cost on SSDs.

6.2 Future Work
This dissertation open a new dimension to make the deduplication system be able to

process the files previously ignored by existing deduplication approaches. The main pain
point lies in the inherent drawbacks on existing redundancy-identification mechanism. In
this dissertation, we find that different kinds of data may have their own unique features that
can be exploited to help detect the duplicate contents. As a result, it is necessary to analyze
the popular data types and to enable the deduplication to process these data. We believe it
may obtain some amazing results by combing the deep learning techniques to automatically
learn the redundancy-identification mechanism from the raw data. Moreover, since the data
will finally be stored on the storage media, as more new storage media, such as shingled
magnetic recording (SMR), magnetoresistive random access memory (MRAM) and XPoint
appeared to be the future storage devices, it is necessary to consider how to deploy the
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low-cost deduplication on these new storage devices. Especially for the NVMe-based low-
latency storage devices, it is critical to reducing the deduplication latency to fully exploit
these high-performance storage devices.
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