
SIMULATION AND DEVELOPMENT OF NANOSCALE

DEPOSITION TECHNIQUES USING

KINETIC MONTE

CARLO

by

COREY CLARK

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

ACKNOWLEDGMENTS

I would like to express my appreciation and gratitude to Dr. Choong-Un Kim as

well as the rest of my committee for their guidance. I thank them for the opportunity and

experience I gained while working on my dissertation at the University of Texas at

Arlington. I would also like to thank God as well as my wife for their support and help

throughout the entire graduate program, with out them I would have never made it through

to the end.

December 11, 2006

 ii

ABSTRACT

SIMULATION AND DEVELOPMENT OF NANOSCALE

DEPOSITION TECHNIQUES USING

KINETIC MONTE

CARLO

Publication No._________

Corey Clark, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Choong-Un Kim

 Modeling of deposition processes has become of extreme importance due to the

small scale of devices and features as well as the reduction of time to market required by

industry. Current modeling procedures have focused on individual aspects of growth as

well as made assumptions that cause simplification of the problem to the point the models

usefulness is limited. The Kinetic Monte Carlo (KMC) model developed in this work

combines rate transitions that have been commonly found in KMC simulation along with

energy density equations that help explain the transitions and formations of island in

alloy deposition.

Specifically the model developed in this study, analyzes both the surface energy

and strain energy of the film, which are incorporated to show the dependence of strain

iii

relaxation to surface energy during island formation. The developed model also

incorporates the anisotropy of crystalline structures to accommodate for the changes in

growth rate and morphology based upon crystal orientation. This leads to a more

versatile model that will accommodate multiple material sets as well allow for quick

simulation results for the development of new devices. Work was also done in

increasing the randomness of site selection while minimizing errors due to standard

uniform number generators. The developed KMC model incorporates a pseudo random

number generator for the purpose of site selection, which reduce the amount of cluster

processing that can occur with random number generators. A focus was also placed on

the ability to describe flux distributions that are not commonly found in semiconductor

device manufacturing. This was done to allow for the expansion of this model into non-

planar environments that might be found in industries such as MEMS/NEMS. This

extension also allows for evaluation of non-planar deposition process such as via

deposition.

The expansion done in this model allow for a wider variety of applications with in

the semiconductor field. Accounting for crystal orientation allows for increased accuracy

as well as further insight into its affect on island formation within alloy growth. The

changes in random surface site selection during simulation have helped reduce cluster

processing which allows for an accurate depiction of surface morphology.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF FIGURES viii

LIST OF GRAPHS x

Chapter

 1. INTRODUCTION 1

 1.1 Need for Growth Simulation Tool 1

 1.2 Common Modeling Techniques 2

 1.2.1 Molecular Dynamics 2

 1.2.2 Statistical Simulations 3

 1.2.3 Kinetic Monte Carlo 4

 1.3 Dissertation Contributions 5

 2. GROWTH KINETICS AND THEORY 7

 2.1 Introduction 7

 2.2 Growth Stages 8

 2.2.1 Impact Stage 9

 2.2.2 Physisorption/Chemisorption Stage 10

 2.2.3 Incorporation Stage 13

v

 2.3 Growth Process Rates 15

 2.3.1 Growth Isotherms 15

 2.3.2 Adsorption Rate 18

 2.3.3 Desorption Rate 19

 2.3.4 Surface Diffusion Rate 20

 2.4 Growth Regimes 21

 2.4.1 Frank-van der Merwe (FM) 22

 2.4.2 Volmer-Weber (VW) 23

 2.4.3 Stranski-Krastanov (SK) 24

 3. KINETIC MONTE CARLO MODEL SIMULATION
 THEORY AND DEVELOPMENT 26

 3.1 Introduction 26

 3.2 Model Overview 27

 3.3 Surface Initialization and Site Selection 30

 3.4 Growth Processes 33

 3.4.1 Adsorption 34

 3.4.2 Desorption and Diffusion 34

 3.4.3 Strain Driven Island Formation 36

 3.4.3.1 Surface Energy Calculations 40

 3.4.3.2 Strain Energy Calculations 41

 3.4.4 Process Selection 45

 3.5 Time Incrementing 46

 3.6 3D Surface Plotting Software (SPS) 48

vi

 3.6.1 Interpreting 3D SPS 51

 4. KINETIC MONTE CALRO VALIDATION 52

 4.1 Introduction 52

 4.2 Foundation Model Results 53

 4.3 Model Extension 60

 4.3.1 Foundation vs. Extended 61

 4.3.2 Sobol Random Number Generator 66

 4.3.3 Simulation with Non Planar Surface 69

 5. APPLICATION OF KMC GROWTH MODEL 76

 5.1 Introduction 76

 5.2 Alloy Deposition Model 76

 5.2.1 Energy Considerations 77

 5.2.2 Island Topologies 79

 5.2.3 Island Locations and Shapes 90

 6. CONCLUSIONS AND FUTURE WORK 93

APPENDIX

A. VB.NET CODE FOR SURFACE PLOTTING SOFTWARE 96

B. CODE FOR KINETIC MONTE CARLO SIMULATION 161

REFERENCES 373

BIOGRAPHICAL STATEMENT 378

vii

LIST OF FIGURES

Figure Page

 2.1 Deposition lifecycle for impinging atoms 8

 2.2 Chemisorption Curve (a)non-activated (b)activated 12

 2.3 Graphical representation of lateral growth of GaN on Si substrate 16

 2.4 Graphical representation of the Frank-van der Merwe growth process 22

 2.5 Graphical representation of the Volmer-Weber growth process 23

 2.6 Graphical representation of the Stranski-Krastanov growth process 24

 3.1 Flowchart for KMC simulation 29

 3.2 Visualization of the silicon crystal lattice structure created for simulation 30

 3.3 Shows the valid transitions that are possible for different adatoms 33

 3.4 Example of SPS for a surface plot of a nano scale rectangular feature 59

 3.5 Example of SPS in interactive mode, rotating the surface via the mouse 50

 3.6 Topographical view and side view of data set loaded in 3D SPS 51

4.1 Snapshots from 3D SPS during the simulation preformed to produce the results
shown in Graph 4.2 57

 4.2 STM image of surface topology during mulitlayer growth using MBE 59

4.3 Snapshots taken during KMC simulation at T = 650K and P = 1e-5Torr,which
depicts the change in surface during growth, which correlates to the surface
roughens calculations presented. 63

4.4 Continuation of snapshots taken during KMC simulation at T = 650K and P = 1e-

5Torr,which depicts the change in surface during growth, which correlates to the
surface roughens calculations presented. 64

viii

4.5 Depiction of surface after a single KMC iteration using Sobol RNG for site
selection 67

4.6 Depiction of surface after a single KMC iteration using a uniform RNG for site

selection 68

4.7 Depiction of the initial non planar surface used to analyze surface morphology

with a step edge 71

4.8 Depiction of the island located on test surface used to analyze surface

morphology with step edge 71

4.9 Snapshot of the surface morphology during the step edge growth analysis

preformed with the KMC simulation at T = 950K and P = 1e-5Torr 73

4.10 Side depiction of the surface morphology during the step edge growth analysis

preformed with the KMC simulation at T = 950K and P = 1e-5Torr 74

5.1 Depiction of island formation at 450K and pressure of 1.5E-5 Torr. The island

formation are huts with smaller diameters 85

5.2 Depiction of island formation at 550K and pressure of 1.5E-5 Torr. The island

formations have both skinny and fat islands 85

5.3 Depiction of island formation at 650K and pressure of 1.5E-5 Torr. The island

formations are fatter with dome shaped top (flat top) 86

5.4 Depiction of island formation at 650K and pressure of 1.5E-5 Torr. The

produced islands are fatter and shorter as well as the second tier island have the
majority of dome shape (flat top) 87

5.5 Depiction of island formation at 450K and pressure of 1.5E-5 Torr. The

produced islands are skinner and taller as well as the second tier islands have the
majority of hut shape (pointed top) 87

5.6 Shows topographical view of side by side comparison of physical and simulated
results for island shape and placement on the surface during deposition at
T=550K and P=1e-5Torr 92

5.7 Shows angled view of side by side comparison of physical and simulated results

for island shape, placement and coalescence on the surface during deposition
T=550K and P=1e-5Torr 92

ix

LIST OF GRAPHS

Graph Page

3.1 Plot of 500 randomly selected points using a uniform RNG 32

3.2 Plot of 500 randomly selected points using a Sobol RNG 32

4.1 Depiction of surface roughness produced from foundation model at an equivalent
growth condition of T = 650K and P = 1e-5Torr 54

4.2 Depiction of surface roughness from KMC simulation tool with foundation

assumptions only at T = 650K and P = 1e-5Torr 55

4.3 Published laboratory results showing the surface roughness during growth

obtained via in situ STM at various growth temperatures [86] 58

4.4 Comparison of Surface Roughness outputs from foundation KMC simulation with

extended KMC simulation at T = 650K and P = 1e-5Torr 61

4.5 Output of KMC simulation surface roughness at various growth temperatures 65

4.6 Surface roughness output from KMC for non planar surface with island at T =

950K and P = 1e-5Torr 72

5.1 Depiction of normalized surface and strain energies which shows transition from

strain drive to surface driven growth 78

5.2 Depiction of island densities by diameter fro various growth temperatures 80

5.3 Distribution of island diameters for KMC simulation with a growth temperature

of 450K and pressure of 1.5E-5 Torr 82

5.4 Distribution of island diameters for KMC simulation with a growth temperature

of 550K and pressure of 1.5E-5 Torr 83

 x

5.5 Distribution of island diameters for KMC simulation with a growth temperature

of 650K and pressure of 1.5E-5 Torr 83

5.6 Depiction of normalized surface and strain energies which shows transition from

strain drive to surface driven growth with 5% Ge content and pressure of 1.5E-5
Torr 88

5.7 Depiction of normalized surface and strain energies which shows transition from

strain drive to surface driven growth with 20% Ge content and pressure of 1.5E-5
Torr 89

5.8 Depiction of normalized surface and strain energies which shows transition from

strain drive to surface driven growth with 50% Ge content and pressure of 1.5E-5
Torr 89

 xi

CHAPTER 1

INTRODUCTION

Modeling of deposition process has become of extreme importance due to the

small scale of devices and features as well as the reduction of time to market required by

industry. An interest has been shown in industry for a model that can quickly and

accurately describes surface features during deposition along with the flexibility to be

used for multiple applications. Currently growth models focus on a single growth

parameter and apply simplification that can often limit the usefulness of the model in

other applications. A need has been demonstrated for a model that can couple the affects

of multiple growth parameters and describe the surface morphology. The work done in

this study will show the driving forces of various types of growth and how variations of

those parameters will cause variations in the surface. Work has also been done to

increase the effectiveness and accuracy of random site selection. This led to a reduction

in cluster processing that can be found when uniform random number generators are

exclusively used throughout the model.

1.1 Need for Growth Simulation Tool

Growth simulation work is critical in device development. A tool is needed that

can analyze multiple growth experiments in both monatomic and alloy deposition

scenarios. Alloy material sets have become of extreme importance for current device

research and development. Nanoscale deposition techniques used in the formation of

 1

Self Aligned Quantum Dots (SAQDs) is an area of considerable interest. A

simulation tool is required that can accurately depict the formation of island structures

during alloy growth. This study will look at the feasibility of forming SAQDs during

deposition as well as how growth parameters such as mixture concentration and

temperature affect island growth and topology.

1.2 Common Modeling Techniques

 Two major groups of simulations are currently being developed. Each technique

has its strengths and weakness. In this section molecular dynamics and statistical

processing will be compared to explain there similarities and limitations, as well as

showing why Kinetic Monte Carlo was implemented for this model.

1.2.1 Molecular Dynamics

Molecular Dynamics is a numerical solution technique for the time dependent

equations of motion for a molecular system. Molecular dynamics requires the coupling

of multiple closed form equations that can accurately describe atom-to-atom interactions.

These equations will be from several fields such as quantum and Newtonian physics,

thermodynamics, and chemistry. The coupling of the equations is a very time intensive

process and usually requires a very time intensive calculations. The models created with

molecular dynamics usually have a high correlation with the experimental results yet

some experimental systems are too complex to describe in a single closed form solution

model. Molecular dynamics (MD) can also have the ability to reverse the results of an

 2

experiment or simulation output and determine starting conditions and parameters. The

major downfall of MD is the complexity and computation time of simulations.

 The complexity of the models can often prevent multiple parameters being

evaluated at once. MD models will often analyze a single feature of surface morphology

and will only be valid for the specific application in which it was designed for. Changing

portions of the experiment can require extensive changes to the model. Processing time

for MD simulations is often much longer than there statistical counterparts. This is due

the large amount of computations that must be calculated. This leads to the second type

of simulations that will be considered in this dissertation, statistical simulations

1.2.2 Statistical Simulations

 Statistical simulations differ from MD in many ways. These models are derived

by the statistics and probabilities of surface morphologies. This allows for a dramatic

simplification in the governing model equations. With this simplification comes some

limitations. Statistical models usually can not describe surface reactions with the detail

that is found in MD. This is due to the nature of the governing equations. In MD the

governing equations were closed form solution that would describe atomic movement

from start to finish. Statistical models calculate the probabilities for atomic movement

and then randomly select a movement based upon the output of a random number

generator (RNG). This simplification allows for the introduction of error, since the

selections are based upon probabilities and RNG. The error introduced is usually

acceptable if overall surface features is what is desired from the simulation, not

individual atomic movement.

 3

 Another disadvantage of statistical simulations is that they are not reversible. The

model can take a set of results and reverse them back to starting conditions. This is also

due to the nature of not having closed form governing equations. This can often be

worked around or possibly not of interest depending on the application. Although

statistical models cannot reverse a process they can perform a simulation multiple times,

while changing parameters slightly and determine a possible starting parameters based

upon the output that has the highest correlation. Which leads to the advantages of

statistical processing.

 Statistical processing often has a dramatically lower computation time than MD.

This allows for multiple simulations to be calculated in the time one MD simulation is

completed. This can often be a huge advantage and excellent reason to pursue this

simulation methodology. Another advantage of statistical processing is the flexibility and

ability of adding multiple parameters and being able to change readily change them. This

is due to the fact that all of governing equations do not have to be coupled together, yet

only the probabilities for an event occurring need to be determined. This allows for

multiple parameters to be evaluated in a single model with a considerable reduction in

complexity from MD.

 For the purposes of this research a statistical processing technique of Kinetic

Monte Carlo was selected which allowed quick simulations that could couple multiple

growth parameters in a single model and allow for changes in the experiment.

1.2.3 Kinetic Monte Carlo

 Kinetic Monte Carlo (KMC) is a statistical process used in modeling that is from

the conventional Monte Carlo (MC) family. Monte Carlo processing is a popular

 4

modeling technique that takes its name from the town of Monte Carlo in Morocco where

which made determining probabilities famous via gambling. KMC is an extension of MC

that incorporates time. KMC will use Poisson process to help determine time probability

densities that will evaluate the time associated with the actual simulation.

 A second type of MC simulations are referred to density based Monte Carlo.

These simulations use probability density functions to help increase processing time

during simulation. This extension can cause an increase in error, but can be managed if

implemented properly.

1.3 Dissertation Contributions

The research done for this dissertation has led to the development of a Kinetic

Monte Carlo (KMC) software package that accounts for the surface reactions during

growth. These affects have been modeled using growth equation developed form kinetic

gas theory as well as surface reaction theory. The surface reactions have been coupled

into the appropriate equation to give a final set of 6 governing equations; five for growth

process and one for time. The research performed has increased the accuracy and

flexibility of KMC simulations by adding and changing various portions.

One advantage of the developed KMC model is its ability to accept alloy

deposition as well as homogenous deposition. This has increased the flexibility of the

model dramatically. Alloy deposition is used in many applications in industry such as

optics where Al is used to increase band gap size of devices. Upon including alloys the

model will determine the film strain and transition the growth regime accordingly. The

work presented in this study will show the results from SiGe/Si and how the transition to

 5

island growth occurs as well as the ability to address the island changes based upon

growth parameters.

The model was also created to allow for the incorporation of various crystal

orientations. This allows for the user to see how changing the initial substrate orientation

will change the overall surface morphology. This is an extension that will allow great

insight into various aspects of growth, such as island formation due to strain relaxation.

This will also allow for a change in material sets, by defining a new lattice structure in

the surface library.

Work was also performed in the random processing of the KMC simulation.

Pseudo RNG such as Sobol RNG were evaluated and implemented to reduce the cluster

processing that can occur when uniform RNG are used. Sobol RNG has a memory,

which helps create a uniform selection of surface sites to evaluate. Chapter 3 will show

how clustering can be found if a uniform RNG is used in determining which site to

evaluate on the surface.

One final advancement of the model was to include the ability to model surfaces

that are non planar. This allows for nontraditional semiconductor systems such as

MEMS and NEMS to be modeled as well as traditional systems such as via deposition.

The ability to evaluate how via or step edge could the overall surface or device is

becoming more important as the feature and device sizes shrink.

 6

CHAPTER 2

GROWTH KINETICS AND THEORY

2.1 Introduction

The fabrication of semiconductor devices and structures can be accomplished

using various deposition techniques; the following kinetic theory will be based upon the

Molecular Beam Expitay (MBE) processing technology. MBE allows for a high degree

of control during the deposition process, which allows for a more precise growth with

fewer defects. Epitaxil growth is a process where impinging molecules that are deposited

on a crystalline surface are influenced by the initial surface. The deposited material is

compatible with the underlying material, and the temperature is high enough to allow fro

reorganization of the deposited atom then the deposited film can be crystalline and be

aligned with the underlying layer. This high precision comes from the low impurity

count caused by the ultra high vacuum (UHV) in which the growth changer can achieve.

MBE can deposit in chambers that have a vacuum as low as 1e-12 Torr. Chemical Vapor

Deposition can usually achieve vacuums from 1e-5 to 1e-8 Torr while evaporation

chambers can achieve levels of 1e-5 Torr. With the increased vacuums comes increased

processing time, which greatly limits MBE use in industry.

 7

Figure 2.1 Deposition lifecycle for impinging atoms [5].

The chapter discusses various aspects of the surface interactions that take place

during deposition. The process of impinging atoms being incorporated to the

semiconductor surface happens over a few different steps. Each step has different

probabilities for success or failure. Figure 2.1 shows the complete lifecycle of an

impinging atom onto the surface of a substrate. The growth control equations used by the

Kinetic Monte Carlo Simulation described in the following chapter will be derived from

the foundation described in this chapter.

2.2 Growth Stages

To better understand the growth process, it will be broken into four stages

(impact, physisorption/chemisorptions and incorporation). Each of these stages will be

described in detail to allow a better understanding of the KMC model formulation

developed later.

 8

2.2.1 Impact Stage

During the impact stage a vapor molecule will strike the deposition surface. We

will consider one of two possible outcomes for this stage, either the atom will stick on the

surface and move to the following stage or will reflect from the surface. The probability

for either event is determined based upon the energy of the incoming molecule as well as

the cross section of adsorption.

The molecule will reflect from the surface if its energy or the surface energy is

too great. This energy is related to growth kinetics through temperature. The

temperature of the incoming atom derives its thermal energy. This energy level can then

be equated with the atoms kinetic energy. This property can be calculated based upon gas

theory using Maxwell’s speed distribution. Using this distribution the root mean square

velocity of an atom at vacuum can be calculated using Equation 2.1.

m
Tkb

rms
3

=υ ⎥⎦
⎤

⎢⎣
⎡

s
m 2.1

Where:

bk = Boltzmann’s constant = 1.3806503E-23 ⎥
⎦

⎤
⎢
⎣

⎡
Ks
kgm

2

2

T = Temperature [K]

m = Mass of particle [kg]

 The temperature of impinging molecules is if often uncontrollable. This

temperature is often set based upon melting points. The temperature of the substrate on

 9

the other hand can often be controlled by use of substrate heaters. Deposition chambers

for process such as MBE and Chemical Vapor Deposition (CVD) often have substrate

heaters that can be used to alter the surface energy level. Less precise deposition process,

such as evaporation, will often not have any such means of altering the surface

temperature.

 Having a surface with a higher temperature allows for more motion on the surface

(i.e. a higher energy level). While this can be advantageous to avoid growth defects, if

this level becomes too high it can cause atoms to reflect as well as desorb from the

surface during later stages. Proper temperature levels are often determined by using

experimental data or other growth modeling software. Once the atom has attached to the

surface the impact stage is complete and the Phsisoroption/Chemisorption stage begins.

2.2.2 Physisorption/Chemisorption Stage

When the impinging molecule strikes the surface there are two main adsorption

states that normally occur. The first state is the physisorption state. Physisorption occurs

when the impinging molecule sticks to the surface due to the weak van der wall forces.

This weak form of adhesion to the surface may not last. Figure 2.1 shows the trapping

probability (δ), which is the ratio of impinging molecules that physissorb to the

molecules that are reflected from the surface. The ability of the surface to accept

molecules for physisorption is dependent on the ability of the surface to absorb the

kinetic energy of the impinging molecules and thereby making the energy of the van der

wall forces greater than that of the remaining energy of the impinging molecule.

 10

There is a residence time parameter that can be calculated to help determine how

long a molecule might stay in the physisorption state before either desorbing or

incorporating into the surface through the next adsorption state, Equation 2.2 shows the

residence time equation that was determined trough experimental data obtained by

Ruediger Held[4].

kT
E

e
0

0

−

= ττ [s] 2.2

Where:

oτ = pre exponential factor

oE = Activation Energy in eV

The only parameter that may be controlled on the surface of the substrate during

growth with the MBE system is the temperature. This is how the activation energy as

well as residence time are controlled. A high energy level at the surface corresponds to a

high temperature of the substrate. As temperature of the surface increases, this also

means that the average random kinetic energy of the surface increases. This increase in

kinetic energy can thereby be transferred to atoms in the physisorption state. The

bonding force in the physisorption state is weak, therefore if too much energy is

transferred to the physisorbed atom its kinetic energy can increase higher than the

bonding force and thereby desorb from the surface.

If a molecule in the physisorption state becomes chemically bonded to the

surface, it is then refereed to as chemisorption. Figure 2.2 shows a graph of energy

versus distance from surface. This figure shows the different states that can occur during

 11

deposition of a material onto a substrate.

Figure 2.2 Chemisorption curve (a)non-activated (b) activated

The deep wells in Figure 2.2 show the chemisorption state while the smaller well show

 12

the physisorption state (the deeper the well, the stronger the bond). As the molecule

approaches the surface its energy will decrease until it reaches the physisorption state.

Once physisorption has been reached the atomic lattice structure will need to stretch to

allow for chemisorption to occur. For this reasons their will be an increase in energy

required allowing for chemisorption. Once the bonds of the neighboring atoms have

stretched there will be a sharp drop off of the energy to enter the chemisorbed state. The

level of this increase in energy will determine the rate at which chemisorption will occur

at the surface of the substrate. In Figure 2.2(a) the zoomed portion shows how the energy

required to enter the chemisorption state is lower than the zero level energy of the

surrounding area. This type of energy diagram shows a nonactivated chemisorption state.

Figure 2.2(b) shows the activation energy to be above the zero level energy of the

surrounding area and therefore is called an activated chemisorption state. If a reaction is

found to have a nonactivated chemisorption state, incorporation of the molecules to the

surface should occur quickly since there is no energy required to go from physisorption to

chemisorption.

2.2.3 Incorporation Stage

Once chemisorption and physisorption states can been understood and

mathematically modeled the sticking coefficient can be determined for the surface. The

sticking coefficient is a ratio of the impinging flux to the number of molecules that

incorporate into the surface. Once a molecule has reached incorporation it will not be

deorbed. At this stage the molecule has actually become the new growth surface and a

second impinging molecules could be deposited as a neighbor. Equation 2.3 shows the

relationship for the sticking coefficient[5].

 13

i

r
c J

RS = 2.3

rR = Chemisorption Rate

iJ = Impinging Flux of Molecules

If the temperature is kept in the proper window described above then the chemisorption

can be assumed to only occur in one direction (i.e. not atoms desorb from the

chemisorption state). If we assume that the impinging flux is small then the sticking

coefficient is approximately equal to chemisorption reaction probability (ζ). This basic

assumption comes from the fact that all molecules that undergo chemisorption will be

incorporated into the surface. These assumptions lead to the chemisorption rate equation

shown below[31].

i
RT

EEir J
e

JR
s

dr

r

d

ζ

υ
υ

δ
=

+

= −−]
1

[)(

0

0
 ⎥⎦

⎤
⎢⎣
⎡
s
1 2.4

Where:

δ = Trapping Probability

sT = Temperature at Substrate

koυ = Frequency Factor, Pre-Exponential

kE = Activation Energy

 14

2.3 Growth Process Rates

With the foundations laid in Section 2.1 focus can now be turned to growth

process rates. Several possible surface morphologies can occur during a given deposition,

based upon the growth parameters (Temperature, Pressure, Material Set, etc.). Growth

methods can range from common vertical growth to nucleation layer that lead to

horizontal selective growth.

The deposition of a material on a substrate through MBE, or any process, is a very

complex problem to study analytically. One common approach is to use growth

isotherms that help describe the reactions on the surface of the substrate when an

impinging species is present. Two different isotherms will be described here[29].

2.3.1 Growth Isotherms

The first growth isotherm is the Langmuir isotherm which has three assumptions

that limit its effectiveness for describing growth on the surface of the substrate[29]. The

first assumption is that the adsorption of the impingement flux will not be greater than

one monolayer. This is not necessarily the case. During deposition the energy of the

surface along with the adsorption states could allow for incorporation of the molecule

below one monolayer. The time required to incorporate the molecule into the surface

will greatly depend on the time it is located at surface and the probability of desorption

from the surface of the substrate. Using the Langmuir description a molecule will only

have time to adsorb through one monolayer before the next layer is being deposited on

top.

Another assumption of the Langmuir isotherm is that all sites are equivalent and

 15

the surface is uniform. This is one of the most limiting assumptions. During deposition

the material may not grow as a perfectly smooth surface on an atomic scale. One

common growth practice is a nucleation of the substrate to help induce growth.

Nucleation layers act as a seed layer for the rest of the material to grow from. One such

depostion process is called a selective lateral growth technique. In this process a small

seed layer of molecules are deposited on the substrate, which form the small islands from

which the impinging molecules will then grow laterally across the substrate. Figure 2.3

shows a graphical representation of the lateral growth.

Figure 2.3 Graphical representation of lateral growth of GaN on Si substrate

This assumption also requires all sites to be equivalent which will not be the case if

grown laterally. With lateral growth some sites will be occupied while others will be

unoccupied.

One final assumption of the Langmuir isotherm is that the probability for a

molecule to adsorb at a given location will have no dependence of the vacancies of

neighboring adsorption sites. This will also not be the case once deposition has started.

As the surface morphology changes during deposition the probability for adsorption at

any site will change continuously. This assumption is one that has to be incorporated due

the random kinetics involved in the growth. The adsorption statistics change

 16

continuously during growth and therefore do not allow for a mathematical representation

that can accurately predict the adsorption at sites on the substrate surface. For this reason

a superposition approach is taken that allows for each site to act independent of all others

and thereby decoupling the mathematical model for each adsorption site at the substrate

surface.

To use the Langmuir isotherm the rates for adsorption and for desorption must be

determined. The values are usually found by experimental means. The rate constants

will follow the Arrhenius equation show in Equation 2.5[3].

RT
E

da

k

k
ek
−

= 0, υ ⎥⎦
⎤

⎢⎣
⎡
s
1 2.5

Where:

dak , = Rate of adsorption /desorption

koυ = Frequency factor, pre-exponential

kE = Reaction activation energy

The second isotherm is the BET isotherm. This isotherm is named after the three

men who developed it (Stephen Brunauer, Paul Emmett, and Edward Teller). The BET

isotherm is one of the most complex isotherms for multiplayer adsorption. The BET

isotherm takes into account the material surface changing on which adsorption occurs,

therefore allow for more accurate model of multiplayer deposition processes. There are

many curve fitting parameters needed to able to properly apply this isotherm for a growth

model. These parameters are usually extracted from empirical data obtained through

 17

experiments. Due to the empirical values needed for curve fitting parameters a different

approach was taken for the development of the adsorption rate equation used in this

study.

2.3.2 Adsorption Rate

For the development of the adsorption rate a derivation from the kinetic theory of

gases is used. The adsorption rate can be determined by comparing the arrival rate of

impinging molecules with the molecules that either deflect from the surface or desorb

from the surface. This sticking coefficient () is the gives the percentage of molecules

that strike the surface that enter the chemisorption stage. Therefore by combing arrival

rate with the sticking coefficient an adsorption model can be defined.

cS

 The arrival rate of molecules from a gas can be expressed in the form shown in

equation 2.6.

nvr
4
1

= 2.6

Where:

n

v

 = Gas number density per unit volume

 = Average velocity

Equating the kinetic energy of the particle mass m with a root mean square

velocity vrms to their thermal energy determined by the absolute temperature T and

Boltzmann's constant () gave equation 2.1. Using the relationship between the two

velocities gives equation 4.7

bk

rmsvv 2/1)
3
8(
π

= 2.7

 18

Using the relationship of pressure shown in equation 2.8 as well as equation 2.7,

equation 2.6 can be rewritten in the form show in equation 2.9.

TnkP B= 2.8

Tmk
Pr

Bπ2
= . 2.9

As stated earlier in this section combing the arrival rate with the sticking

coefficient will give the adsorption rate shown in equation 2.10[21].

Tmk
PSk

B
cads π2

= . ⎥⎦
⎤

⎢⎣
⎡

sm2

1 2.10

2.3.3 Desorption Rate

The desorption and diffusion rate calculation will be based around Arrhenius

equation show in Equation 2.5 with nearest neighbor affect included. The desorption rate

can be calculated by determining the strength of the molecules bond to the surface along

with the energy being transferred to the molecule from the temperature of the surface.

Using these characteristics the desorption rate equation will take the activation energy for

desorption along with the energy added by bonded neighboring atoms and combine it

with the effect of surface temperature. Equation 2.11[21] shows the form of desorption

rate developed.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
−=

Tk
EiE

h
Tk

k
b

desb
de

0,exp ⎥⎦
⎤

⎢⎣
⎡
s
1 2.11

Where:

 19

0,desE = Desorption Activation Energy

EΔ = Energy Added by Bonded Neighbor

i = Number of Bonded Neighbors

The above equation uses the Maxwell’s distribution since we are dealing with identical

but distinguishable particles and the thermal frequency pre-exponential term. The nearest

neighbor bonding method is the fundamental basis for desorption rate equation. This

model does not account for account for surface anomalies such as step edge potential

affects. This assumption will be valid in this model as long at temperature is sufficiently

high enough.

2.3.4 Surface Diffusion Rate

The diffusion rate equation has the same form as equation 2.11 and is shown

below.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
−=

Tk
EiE

h
Tk

k
b

difb
di

0,exp ⎥⎦
⎤

⎢⎣
⎡
s
1 2.12

Where:

0,difE = Diffusion Activation Energy

EΔ = Energy Added by Bonded Neighbor

i = Number of Bonded Neighbors

All of the constants and variable in equation 2.12 are identical to 2.11 except for the

diffusion activation energy. During surface diffusion the molecule has enough energy to

 20

break the surface bond, but not enough to desorb from the surface. This allows the atom

to move around on the surface to find a lower energy state without thereby reducing

defects on the surface. This is an imperative step in expitaxial growth. The surface

temperature is the main via for energy exchange to the surface molecule. Often during

the end of a deposition procedure an annealing phase will occur where the surface

temperature is increased to allow for surface reconstruction through surface diffusion.

This allows for surface atoms to rearrange in the lowest achievable energy level for the

current conditions, which will often remove surface defects such as dislocations, slips and

grain boundaries.

The nearest neighbor bonding method is the fundamental basis for diffusion rate

equation. This model does not account for account for surface anomalies such as step

edge potential affects. This assumption will be valid in this model as long at temperature

is sufficiently high enough and flux rates are large enough to limit long range surface

diffusion.

2.4 Growth Regimes

 Three distinct growth regimes exist for thin film growth. This section will

describe the Frank-van der Merwe (FM), Volmer-Weber (VW) and Stranski-Krastanov

(SK) growth processes. The determination of which growth will occur on the surface

depends on different energy calculations along with the lattice mismatch that causes

strain in the depositing layers.

 21

2.4.1 Frank-van der Merwe (FM)

 The FM growth process describe a layer by layer surface morphology. In this

process the underlying layer must be complete before the second layer begins developing

on top. Figure 2.4 shows a graphical representation of the surface morphology for the

FM regime.

Figure 2.4 Graphical representation of the Frank-van der Merwe growth process

FM growth occurs when the interface energy and film energy have to be lower than the

surface energy. Equation 2.13 shows the relationship that must be satisfied for FM

growth to occur.

SFI γγγ ≤+ 2.13

Where:

Iγ = Interface Energy

Fγ = Film Energy

Sγ = Surface Energy

Defects at the surface or within the film during growth will cause a change in the

interface energy which could cause a change in the growth mode. VM growth will

 22

describe such a case.

2.4.2 Volmer-Weber (VW)

 VM growth describes the formation of 3D islands on the surface from nucleation

sites that occurring during deposition. This form of deposition is linked to defect sites on

the surface such as kink, dislocations or step edges. This causes a change in the film and

interface energy. Growth systems such as heteroepitaxy would cause such an increase in

the interface energy that could lead to VM growth. Figure 2.5 shows a graphical

representation of the VM growth process.

Figure 2.5 Graphical representation of the Volmer-Weber growth process

The condition that must exist for VM growth is described in Equation 2.14

SFI γγγ >+ 2.14

The last growth regime is described below which is a mix of FM and VW modes.

 23

2.4.3 Stranski-Krastanov (SK)

 SK growth is a mixed mode surface morphology that starts with thin film layer

usually 1-2 ML thick called a wetting layer. This layer follows the FM growth regime

and usually a coherently strained thin film. The stress in the film causes a need for

equalization of the total energy of the system which causes the VW morphology to begin.

The island formations allow for the surface to relax and thereby lower the overall energy

of the system. This model is seen in alloy deposition techniques such as SiGe/Si. This is

the same type of growth that occurs during the formation of Self Aligned Quantum Dots

(SAQD) from SiGe/Si material system. Figure 2.6 shows a graphical representation of

the SK growth regime.

Figure 2.6 Graphical representation of the Stranski-Krastanov growth process

Equation 2.15 shows the relationship that shows when SK growth is mostly likely to

occur.

SFI γγγ >+ 2.15

 24

The model developed in this study uses SK growth to describe the SAQD that form

during SiGe/Si growth. The formation and morphology of the islands are determined via

growth parameters such as temperature and strain and surface energy calculations. Other

affects such as Ge segregation and island composition, which have shown to have an

affect on island morphology and formation, have not been included in this simulation.

 25

CHAPTER 3

KINETIC MONTE CARLO MODEL SIMULATION
THEORY AND DEVELOPMENT

3.1 Introduction

 The development of a model that can accurately depict the overall surface of a

deposition process is an extremely useful tool in development as well as manufacturing

stages. Two main schools of thought are used in development of various growth models.

The first is based upon molecular dynamics. These models couple closed form solutions

of various fields of physics such as Newtonian, quantum and thermal. The models

developed for these simulations can be very complex and require a large amount of

computational power. Molecular dynamic models, if developed properly, can have a low

error rate which gives outputs that have a high correlation to actual growth results.

Usually such models are developed to study only a few of the growth parameters to help

minimize the complex nature of the coupled growth equations.

 The second school of thought follows a path, which provides results based upon

statistical calculations that are of somewhat simpler nature than that of molecular

dynamics simulations. These models are often referred to as Monte Carlo (MC)

simulations. MC simulations are based around a set of governing equations along with

statistical probabilities for different events. The coupling of the equations and

 26

probabilities has shown to give a high correlation between simulated results and physical

results.

Although the error produced by MC simulations is higher than that of a molecular

dynamic simulation, it still proves useful in understanding and developing different

growth phenomena and procedures. The computational requirements of a MC simulation

are much less than its molecular dynamic counterpart, thereby allowing for quicker

results with less overhead cost.

 Within the MC simulation arena time is often neglected or removed from the

simulation. Kinetic Monte Carlo (KMC) simulations on the other hand account for time

through its governing equations. Simulating time in a random process in which several

outcomes are possible, requires a more complex view of the experiment. The model

described below takes into account the growth process discussed in Chapter 2 as well as

processing time thereby giving a true KMC simulation.

3.2 Model Overview

The KMC simulation is broken into several different procedural steps. The

simulation starts with definition and initialization of the growth surface under test (SUT).

Once the surface is initialized the simulation begins by randomly selecting a growth site

on the SUT via Sobol random number generator (RNG). The probabilities for each of the

growth processes occurring at that site are then calculated by using the governing growth

equations. One growth process is then selected through the use of a uniform RNG. Upon

process selection the site is updated and process count is incremented, thereby allowing

 27

for time calculation. At this point the KMC counter is incremented and the process

continues until the surface has been completely analyzed for the current KMC step. At

the end of a KMC step physical time step is calculated and the KMC counter is reset and

thereby allowing the process to start again for a new KMC cycle. The process will

continue until the KMC cycle reaches a user defined value or the physical time reaches a

user defined value. Figure 3.1 shows the overall flow chart for the KMC simulation.

 28

Begin
t=0; T=0

Randomly Select
Surface Site

(RNG1)

Is Site
Occupied

Calculate PDF for
Adsorbtion

(Pad)
NO

Select Random
Number (r)
0 < r < 1
(RNG2)

Is r < Pad

Update Site

YES

Is T > N

NO

Update Time
t = t +1

YES

Calculate PDF for
Adsoprtion (Pad)
Desoprtion (Pde)

Diffusion (Pdi)

YES

Select Random
Number (r)
0 < r < 1
(RNG2)

Update T
T =T + 1

Update T
T =T + 1

Update Time
t = t +1

Is T > N NO

YES

Use r to determine
Transition

Update Site

Figure 3.1 Flowchart for KMC simulation

 29

3.3 Surface Initialization and Site Selection

 The KMC simulation begins by obtaining user specified parameters. In that

parameter set is the size definition of the SUT. The simulation then dynamically creates

a three dimensional surface that corresponds to the crystal lattice structure of the SUT. In

this simulation the SUT is always defined as silicon, therefore silicon’s lattice constant is

used for the surface definition (This can be altered for different material sets by changing

global variables in the source code). The generated three-dimensional surface is created

to show the physical bonding between neighboring atoms. The simulation places gaps on

surface planes to allow for the physical representation of silicon’s diamond lattice

structure. Figure 3.2 shows a visualization of the silicon lattice.

Figure 3.2 Visualization of the silicon crystal lattice structure created for simulation view

from <100> direction

 30

Once the SUT has been created it is initialized by voiding every atomic site in the three

dimensional surface. This allows for the program to differentiate from sites that are

occupied and sites that are vacant. This portion of the software can require a large

amount of memory depending on the size of the SUT. Larger surfaces require more

growth sites and therefore require a larger amount of memory.

 Once the SUT is initialized the software begins the KMC simulation. The first

step in the simulation is to select a valid growth site on the SUT. This site is selected by

randomly selecting an x an y coordinate in the SUT. The z coordinate is found by

locating the lowest unoccupied site for that coordinate pair. A Sobol RNG was chosen

for this portion of the simulation.

 Sobol RNG are considered to be a pseudo RNG due to the fact that it has a

memory and is not completely random. The idea behind using a Sobol RNG was to

allow for a uniform selection of growth sites and to eliminate cluster selections. Figure

3.3 and 3.4 show 500 randomly selected data points generated using a Uniform RNG and

a Sobol RNG developed by Burkardt at Florida State Computational Science Department

[22].

 31

Uniform Data 500pts

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Series1

Graph 3.1 Plot of 500 randomly selected points using a uniform RNG

Sobol Data 500pts

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Series1

Graph 3.2 Plot of 500 randomly generated points using a Sobol RNG

The difference in coverage is easy to see and a uniform coverage was desired for site

selection, therefore the Sobol RNG is used for this portion of the KMC simulation.

 32

3.4 Growth Processes

 The growth process equations developed in Chapter 2 will be the governing

equations for the KMC simulation. The rate at which each process can occur will govern

which process has the highest probability of occurring for a given set of conditions.

Therefore the rate equations will be normalized to give the probability for a selected site

to enter a second configuration (i.e. adsorption, desorption or surface diffusion) [21].

Upon each iteration only specific transitions will be analyzed. Figure 3.3 shows all of

the possible transitions that can occur once an atom has adsorbed to the surface. The

transitions depicted in Figure 3.3 follow those defined by Wolf-Villian MBE simulation

techniques[53].

Figure 3.3 Shows the valid transitions that are possible for different adatoms

 Each possible transition that can occur in the KMC simulation will be determined

via the various equations described below. These equations are evaluated to determine

the probability of an event occurring as well as the amount of time that occurred during

the event transition. The probability for the different transitions will be determined via

the rate equations developed in Chapter 2.

 33

3.4.1 Adsorption

 The adsorption rate equation developed in Chapter 2 will be used in the KMC

simulation to determine probability and timing for an adsorption event. Equation 3.1 is a

reproduction of Equation 2.10. Upon selection of a growth site, if it is determined by the

KMC simulation that an atom will adsorb to the site the program will update the site to

show it is now occupied.

Tmk
Sk

b
cads π2

1
= 3.1

Where:

cS = Sticking Coefficient

m = Mass of silicon

T = Temperature of Substrate

bk = Boltzmann’s constant

3.4.2 Desorption and Diffusion

The reaction rates calculated in Chapter 2 are the same used in the KMC

simulation model. They are reproduced below for convenience, no changes have been

made.

 34

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
−=

Tk
EiE

h
Tk

k
b

desb
de

0,exp 3.2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
−=

Tk
EiE

h
Tk

k
b

difb
di

0,exp 3.3

Where:

0,difE = Diffusion Activation Energy [3.02E-19J]

0,desE = Desorption Activation Energy [2.64E-18J]

E = Energy Added by Bonded Neighbor [7.59E-20J] Δ

i = Number of Bonded Neighbors

 After a site has been selected the KMC simulation will determine the total number

of bonded neighbors and calculate the diffusion and desorption rates. If the selected site

will undergo desorption then the program will remove the atom from the SUT and

reinitialize the spot to vacant. The diffusion and desorption rate equations only account

for nearest neighbor affects. These neighbors must be located on the same monolayer as

the current adatom to have an affect. This model will ignore the potential barriers

associated with diffusing up a layer, since an upward diffusion is not allowed in this

simulation per the Wolf-Villian model used as a foundation. This assumption is valid for

cases where the temperature imparted to the system allows for the bonding energy of

atom at step edge is sufficiently large enough to prevent the jump of diffusing atom to

higher level. In this case the step edge potential can be neglected.

 35

Another assumption made by the KMC simulation is that only one atom at a time

is evaluated. This removes the possibility of dilmer surface diffusion. This should only

introduce a small margin of error, since only overall surface features are being examined

and not individual atomic movements.

 If a selected site is chosen to undergo surface diffusion then the program will

reinitialize the current site to vacant as well. The program then enters a subroutine to

determine which site the diffused atom will transition too. The routine will determine

how many neighbors, if any, are bonded to the site. The routine determines which of the

neighbor sites are valid for surface diffusion. Once the valid neighbor diffusion sites

have been determined a value provided by a uniform RNG is used to determine which of

the neighboring sites the atom will transition too.

3.4.3 Strain Driven Island Formation

 During alloy deposition a few adjustments are made to the model to incorporate a

mixed specie material system. Once a site has been selected on the surface to undergo

analysis via the Sobol RNG the KMC simulation must determine which atomic specie is

impinging on the surface. This is determined through a uniform RNG and the atomic

mixture variable x ([). For example using SiGe material set if the random

number is less than x, Si will be selected otherwise Ge will be selected. Once the

appropriate atomic material has been selected the possible growth process for that site

will be determined. The same growth process and transitions that were described above

]xxGeSi −1

 36

will be examined.

 Alloy deposition causes increased complexity in surface morphology. The mixed

alloy material causes a strain to become present in the surface film. This strain causes the

growth regime to change either to VM or SK growth. This effect is caused by the

increased energy departed to the system due to the strain introduced by the alloy material.

The overall energy in the system is always trying to maintain the lowest possible level for

the current configuration. This leads to the 3D island formation found at low temperature

SiGe growth.

 In SiGe alloy systems SK growth occurs due to the competition between

anisotropy strain energy and anisotropy surface energy. During deposition island

formations occur as a way to relax the strain energy created during deposition. As strain

energy is relaxed through island formation, surface energy is increased due to the

increased surface area of the system. These two processes conflict with each other and

cause a balancing act during the growth morphology.

 In the model used for alloy growth the total energy of the system is comprised of

strain and surface energy together. The model minimizes the overall system energy

during growth by evaluating both strain and surface energy contributions. For instance,

the island formed on the surface will continue to grow in height until the reduction in

strain energy caused by increased height is negated by the increase in surface energy

caused by the increase number of dangling bonds.

 Alloy composition and temperature and the modeling equations will account for

both affect both strain and surface energies. As temperature increases, the strain energy

 37

lowers due to the thermal expansion caused in the lattice. This expansion helps relax the

strain caused by the alloy and thereby decreases the overall film strain. Surface energy

has the opposite affect due to the increased thermal energy departed to the surface as

surface temperature increases.

 The affects of temperature and alloy composition will cause changes in the island

formation shapes. At lower temperatures the island formations will have smaller

diameters but taller heights, most commonly denoted as "huts". This is caused by the

decrease in the antistrophic surface energy and increase in antistrophic strain energy at

lower temperatures. The lower temperature requires a taller island for relaxation and the

decreased surface energy allows for a higher surface area.

 As temperature increases the island huts will transform to a shorter wider island

commonly referred to as "domes". The height is lowered due to the decrease in strain

energy caused by increased temperature. The widening occurs due to the increased

surface energy caused by increased surface temperature.

The shape transitions are also influenced by interactions of neighboring islands.

Coalescence of islands occurs during growth as the island widths begin to increase. This

phenomena is not directly found in the simulation equations, rather it is an affect that

occurs naturally through the competition of surface and strain energy.

The final surface of SiGe/Si system shows a bimodal distribution of islands,

which are randomly distributed on the surface. The distribution is based upon the

coalescence that occurs during growth along with the minimization of total energy of the

film during growth. The surface transitions are governed by the mass transport of

 38

adatoms via a response from the surface gradients in the chemical potential. Equation 3.4

shows a simple form for the chemical potential.

w++= ωγμ 3.4

Where:

μ: Chemical potential

γ: Surface energy contribution term

ω: Strain energy contribution term

w: Surface interaction between film and substrate term

 As the film becomes thick the surface interaction between film and substrate can

be neglected and the chemical potential will be determined directly from surface and

strain energy terms. Surface interaction term (w) helps describe the transition between

wetting and island growth. The approach taken in this model was to implement a

boundary condition solution that shows while the surface is below the critical thickness

for coherently strained thing films the wetting layer contribution is accounted for and

thickness larger that the critical thickness this term is ignored. The gradients in the

chemical potential caused by the anisotropy of the crystal will govern the mass transport

properties such as surface diffusion.

 The monotonically decreasing chemical potential shows that any distribution of

islands will coarsen with larger islands growing at the expense of smaller islands. This is

one of the driving forces behind the coalescence of surface islands can be seen in

 39

experimental results.

3.4.3.1 Surface Energy Calculations

 The surface energy describes the ability of the surface to accommodate incoming

adatoms. Higher surface energies correlate to easier surface adhesion while lower

surface energies are associated with more difficult adhesion. The surface energy follows

the same basic laws of energy states found in nature, in that the lowest energy state for

the given configuration is the most desirable. This one assumption is the key to surface

morphology during coherently strained films found in SK and VW growth regime. The

KMC simulation will correlate the surface energy directly with the number of dangling

bonds available on the surface. As the number of dangling bonds increases, the surface is

more susceptible to surface adhesion. When the number of dangling bonds decreases, the

number of bonding sites decreases and therefore the surface energy also decreases.

 The KMC model also accounts for temperature affects in surface energy

calculations. As the surface temperature increases, thermal energy is departed to the

surface and increases the overall surface energy. Equation 3.4 shows the equation that

the KMC simulation uses to determine a relationship for surface energy. The equation

incorporates the number of available bonding sites with the bonding energy of a surface

site along with an exponential term that accounts for temperature affects.

 40

Tk
E

bond
b

bond

enE
−

=γ 3.4

Where:

n = Number of dangling bonds on surface

bondE = Energy of dangling bond on surface [J]

T = Temperature of Surface [K]

bk = Boltzmann’s constant

 Equation 3.4 will be used along with the strain energy equation derived in the

following section to determine the total energy at any given configuration.

3.4.3.2 Strain Energy Calculations

The determination of strain energy is developed by the use of Hooke's law shown in

Equation 3.5 below.

klijklij ελσ = 3.5

Where:

ijσ = Stress Tensor

ijklλ = Stiffness Tensor (or Elastic Moduli)

 41

klε = Strain Tensor

Equation 3.5 can be expanded into the anisotropic matrix form shown below.

For cubic structures the above matrix representation can be reduce into Voigt notation

which produces a matrix relationship in the following form.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

23

13

12

33

22

11

44

44

44

111212

121112

121211

23

13

12

33

22

11

00000
00000
00000
000
000
000

ε
ε
ε
ε
ε
ε

σ
σ
σ
σ
σ
σ

C
C

C
CCC
CCC
CCC

the Voigt notation allows Hooke's Law to be rewritten in the form shown in equation 3.6,

which includes Lame' coefficients.

nnijijij ελδμεσ += 2 3.6

Where:

λ = Lame' coefficient

 42

μ = Lame' coefficient

δ = Deformation

Where the Lame' coefficients are:

11

44

12

2 C
C
C

=+
=
=

μλ
μ
λ

Equation 3.6 allows for the calculation on the strain in any direction based upon material

properties and deformation. The deformation is assumed to be a constant level as defined

in Equation 3.7 below.

s

sf

a
aa −

=δ 3.7

Where:

fa = lattice constant of alloy

sa = lattice constant of substrate

 The amount of strain produced in the film is directly proportional to the

concentration of the alloy material. As the concentration of alloy material increases a

higher percentage of alloy atoms will occupy growth sites. Each alloy site induces strain

caused by its size differentiation from the substrate material. This change in size is the

direct cause for strain production in the film, therefore the more growth sites that are

 43

occupied by alloy material the higher the strain in the film. For this reason Equation 3.6

will be multiplied by the alloy concentration percentage to account the appropriate

amount of strain. This assumes a linear relationship between the amount of strain in the

film and the alloy concentration. Equation 3.6 can be used to calculate the initial amount

of strain in the film, but as the height of the film increases relaxation of the film occurs

and therefore the strain reduces. Equation 3.8 describes the relaxation of the surface

through the formation of islands based upon island thickness [85]. Equation 3.8 is

implemented in a discrete fashion in which the strain is calculated at each growth site on

the surface. The variables in Equation 3.8 are related to the specifics at the current site

under test.

ij
Tk
nEE

o xe
h
Cw b

bondbond

σ
−

=
4

3 ⎥⎦
⎤

⎢⎣
⎡

ms
kg
2 3.8

Where:

oC = Material-dependent, stress- and temperature independent constant []3001.0 m [85]

h = Height of test site

x =Alloy concentration

 The model being used will assume no voids are produced in the crystal and a

coherently strained thin film will be produced. These assumptions should still allow for

usable results when analyzing the overall surface structure properties such as island

density and surface roughness.

 44

3.4.4 Process Selection

 Every iteration of the KMC simulation a site is selected and the process transition

rates are calculated with the above equations. Once rates have been calculated they are

normalized so one process can be selected for the site to undergo. Equation 3.9 shows

the normalization and selection equation used to determine process transition of a growth

site.

∑

∑

∑

∑

=

=

=

−

= ≤≤ R

j j

r

j
j

R

j j

r

j
j

k

k
rand

k

k

0

0
1

0

1

0 3.9

Where:

R = The total number of processes

r = Process

The transition rates are normalized with respect to sum of the transition

rates to determine probabilities. The three probabilities will be placed on a

continuous scale and a uniform random number will then be selected that will

choose a transition process. The process r that makes equation 3.9 true will be

the transition that occurs. The site will then be updated with the choice and the

Monte Carlo counter will be increased.

 45

In the case of island formation surface transition is determined via

energies rather than transition rates. The total system energy will be determined

for each possible transition. These energies will be normalized and the transition

with the lowest energy will be given the highest probability for occurring. This

process will be done identically as that for FM growth via equation 3.9 above.

3.5 Time Incrementing

 Once the Monte Carlo counter has reached the number of counts per step,

the actual time, t, will be incremented. To keep the Monte Carlo simulation

accurate a Poisson Process must be modeled using the following derivation. Let

N be a random variable that counts the number of events that occur during a time

interval t. The probability that n event will occur is given by the binomial

distribution shown below in Equation 3.10

() () nnnt trr
n
n

nNP −−⎟
⎠
⎞

⎜
⎝
⎛== δδ 1)(3.10

Where:

tn = Total number of sample taken in interval

δ = Length of time sampled

r = Probability rate of an event occurring

 46

 In the limit of the length of time sampled approaching 0, the binomial

distribution shown in Equation 3.10 approaches that of a Poisson distribution

shown in Equation 3.11.

() rt
n

e
n

rtnNP −==
!

)(3.11

Further analysis of Equation 3.11 will lead us to an expression for the probability

density of times between event occurring. This relation ship is shown in 3.12

below

() rt
e retf −= 3.12

Evaluation of 3.12 shows that the mean time between successive events is ,

which then leads to the time incrementing equation shown in 3.13. Noting this,

the time interval increment will not be a constant rather will be calculated based

upon the transition rates there were calculated in each Monte Carlo step. The

evolution in time will follow the following equation.

r/1

∑ =

−=Δ R

j jk
randt

0

2ln [s] 3.13

Equation 3.13 is based from the Poisson process time for a single event to occur

along with the average of all possible transitions that occurred within the Monte

 47

Carlo step. The random variable produced in equation 3.13 is derived from a

uniform RNG.

 3.6 3D Surface Plotting Software (SPS)

The model results produced by the KMC simulation required a software package

that could handle large data sets. The common software packages available would not

load the entire data files created as an output, which in turn would not allow for a clear

picture of what the model produced. The ability to view the results as well as having a

stand alone package that would allow anyone to view the results led to the development

of the 3D Surface Plotting Software (SPS).

The 3D SPS viewer allows for rotation of the surface via the mouse as well as

zooming by using CNTRL and left mouse button simultaneously. Panning of the surface

can be accomplished by using the Shift and left mouse button simultaneously. SPS can

also have the ability to take snap shots of the growth surface during the simulation. This

is accomplished by calling SPS through the command prompt during simulation. Upon a

command prompt call SPS will load a data set take a snap shot of the surface and store as

a jpeg using a user defined file name. These snap shots can later be strung together to

show an animation of the surface growth. For large data sets, this will limit the speed at

which the simulation runs, for upon each call SPS will load the data set, create a jpg and

save to the hard drive. SPS has three views to analyze the surface with; bar chart, scatter

chart and surface chart. The code for the graphical software is located in Appendix B.

 48

Figure 3.4 and 3.5 show screen shots of the Surface Plotting Software (SPS).

.

Figure 3.4 Example of SPS for a surface plot of a nano scale rectangular feature

 49

 Figure 3.5 Example of SPS in interactive mode, rotating the surface via the
mouse

3D SPS also has the ability to rotate the surface automatically as well as show the

mesh used to calculate the primitives used to construct the 3D surface. Once a data set is

loaded 3D SPS can also take snap shots of the current view and save in any of the

conventional image formats(jpg, bmp, gif).

A second application was developed to help with the loading and conversion

speed of SPS for large data sets. An application called conversion.exe was developed

and can be called by 3D SPS to help eliminate unnecessary data in the surface. This

application will measure the growth surface in its textual format and remove unoccupied

space around the deposition surface. This helps eliminate a large amount of data that has

no affect on the results. This application has increased processing time by 2-3 times.

 50

3.6.1 Interpreting 3D SPS

 Upon execution of 3D SPS the software will automatically look for a file called

surface.dat and load it accordingly. If there is not surface.dat file then a default image

will loaded. Once a data set has been loaded the default parameters will show the data in

a topographical view (birds eye of the surface) that is rotating about the z axis. The

rotation can be terminated by unchecking the box next to the z coordinate. The default

graph will be a surface plot. Changing of colors will represent the surface heights. The

color scheme will start with dark green and transition to lighter greens as the height

increases. The color scheme will then jump to yellow and then red. Figure 3.6 show the

default topographical view of a surface as well as the side view so the color variation can

be visualized.

Figure 3.5 Topographical view and side view of data set loaded in 3D SPS

 51

CHAPTER 4

KINETIC MONTE CARLO MODEL VALIDATION

4.1 Introduction

 Model validation is an important step in simulation design. In the case of the

work presented the validation process will be shown in several steps. The first step will

be to show the ability of the current KMC model to produce results of a high correlation

with a foundation model from which the overall execution and foundation physics were

derived from. These results will be compared with laboratory results to show the ability

of the simulations to model actual surface events.

 Once the KMC simulation has shown to have agreement with the foundation

model, a second set of results will be produced with the KMC tool that incorporates the

model additions. The results from the expanded model will be evaluated to show the

validity of the model with the added enhancements.

 Finally, result from a non planar simulation will be analyzed. These results will

show the ability for the KMC tool to handle surface morphology produced through step

edge growth. These results will show how the tool can accurate analyze a non planar

surface with multi levels of growth.

 52

. To show the validation of the KMC model surface roughness was calculated via

the KMC model developed for this study as well as the KMC model which was used as a

foundation [21]. Surface roughness is a vital parameter in thin film deposition

discussions. The ability to accurately describe the roughness of the surface during the

different stages of surface morphology demonstrates the ability of a model to capture the

complex nature of deposition process.

 Surface roughness evolution during deposition shows the formation and

completion of monolayers which leads to the ability for growth rate calculations . These

results also show the models ability to describe the multiple reactions that are occurring

on the surface throughout the deposition process.

4.2 Foundation Model Results

 The foundation model calculated the surface roughness as function of KMC

cycles, there results are shown in Graph 4.1. The results show an initial kinetic

roughening of surface with oscillations around a steady state roughness level. The

oscillations represent the formation and completion of monolayers.

 53

Graph 4.1 Depiction of surface roughness produced from foundation model at an
equivalent growth condition of T = 650K and P = 1e-5Torr

 Graph 4.1 shows a maximum surface roughness of approximately 0.4mL, which

occurs approximately at 0.5 seconds. The surface roughness value then falls to a lower

level with a slight oscillation. The oscillation is compressed in Graph 4.1, but if analyzed

closely a local maximum approximately around 1.5 seconds can be seen. The surface

roughness graph produced in Graph 4.1 describes the surface morphology seen during

deposition The surface roughness increases through kinetic roughening and then reaches

a steady state roughness value in which it oscillates around as growth continues. Graph

4.2 shows the results obtained via the KMC simulation developed in which no extensions

have been added

 54

Surface Roughness Evolution

0

0.2

0.4

0.6

0.0
0

0.1
4

0.2
7

0.4
1

0.5
5

0.6
8

0.8
2

0.9
5

1.0
9

1.2
3

1.3
6

1.5
0

Time (s)

R
ou

gh
ne

ss
 (m

L)

Series1

Graph 4.2 Depiction of surface roughness from KMC simulation tool with foundation
assumptions only at T = 650K and P = 1e-5Torr

 Graph 4.2 shows an initial kinetic roughening that reaches a maximum value of

just under 0.4mL at approximately 0.5 seconds. The oscillation then produced in Graph

4.2 has a maximum value around 1.42 seconds. The general shape shown in Graph 4.2

has the same general shape as that shown in Graph 4.1. There are slight discrepancies

from Graph 4.1 and Graph 4.2 such as slight increase in around 1 second in Graph 4.2

that is not see in Graph 4.1. The nature of KMC simulation is that of random processing

so the exact replication of a data set would be unlikely due to the random nature of the

processing. Therefore the overall shape and general trends must be analyzed to show

there correct depiction of surface evolution. Therefore the discrepancies shown from

Graph 4.1 to Graph 4.2 are minor and therefore show strong correlation between each

 55

other.

 Graph 4.2 shows the surface roughness output produced by the KMC simulation

tool developed in this study. The surface roughness was calculated using equation 4.1

below.

()
N

hh
W

N

∑ −
= 1

2

 4.1

Where:

h = Height of selected site

h = Averaged height of entire film

N = Number of sites selected for testing

 Sites were selected via a uniform RNG. Initially the surface is sampled to find the

average height of the film. This average value is saved and then used in the calculation

of surface roughness. Once the average height has been determined the site is sampled a

second time. Upon selection of a surface site, the height is determined and then the

surface roughness is calculated using equation 4.1.

 Snap shots during the growth of the simulation for Graph 4.2 were taken

to show the overall transformation of the surface during the simulation. Screen captures

of the surface during the deposition process is possible via the 3D SPS graphical software

developed for this study. The screen shots are taken at the end of every MC cycle. This

allows the user to watch the shape formation of the surface at every step. The snapshots

 56

are taken as a topographical view. The color representation is the same as the one

explained in section 3.6.1. When analyzing the screen shots from the 3D SPS one must

remember that the KMC simulation is an overall model for the surface reactions and not a

detailed MD simulation. Therefore the snapshots are only useful for an overall of view of

what is happening at the surface, not a detailed description of individual atomic

movements.

Figure 4.1 Snapshots from 3D SPS during the simulation preformed to produce

the results shown in Graph 4.2

 57

Graph 4.3 shows the published lab results for surface roughness [86]. These

results depict the same trending shape as that for the foundation as well as the developed

KMC model depicted in Graph 4.1 and 4.2 respectively. The results shown in Graph 4.3

were obtained via in situ STM.

Su
rf

ac
e

R
ou

gh
ne

ss

Graph 4.3 Published laboratory results showing the surface roughness during growth
obtained via in situ STM at various growth temperatures [86]

 The results in Graph 4.3 show the overall trending of surface roughness during

surface deposition processes. The overall trending effect is compared to that of Graph

4.1 and 4.2 which show a good correlation. The physical date for Graph 4.3 was not

available so the only analysis that can be done is the comparison of the overall trending

effect that is present during growth. This result agrees with the physics that describes the

surface reactions occurring during surface growth. The initial kinetic roughening is

caused by adatoms formation, which then leads to a step edge location from which

growth will occur. The surface edge continues to propagate which causes the completion

of a monolayer. This then leads to another layer being formed, which is the growth

 58

described by the BET growth isotherm discussed in Chapter 2. Figure 4.1 shows an STM

micrograph of the surface described in Graph 4.3. This figure shows the formation of

multiple layers, which is described by the BET growth isotherm.

Figure 4.2 STM image of surface topology during mulitlayer growth using MBE

The conclusion of the comparison between foundation model results shown in

Graph 4.2 and KMC simulation results shown Graph 4.2 show a close resemblance in the

overall trend, values of surface roughness, timing scale and location of maximum values.

This correlation shows the ability of the KMC simulation tool to reproduce the

foundation model results, which have been shown to have a true likeness to laboratory

results.

4.3 Model Extension

 59

Several extensions were applied to the foundation model to enhance its capabilities

in being applied in a wider range of applications as well as increasing accuracy in

describing surface morphology. The ability to use different crystal orientations for the

substrate was added. This allows for the evaluation of the affects crystal orientation has

on the surface morphology during deposition. Enhancements were made in the site

selection process for the overall KMC model simulation. This allowed fro a decrease in

cluster processing. Cluster processing occurs when portions of the surface are over

analyzed by repeatingly being selected from the RNG. The incorporation of a pseudo

RNG such as a Sobol RNG decreases the cluster processing and gives a higher degree of

uniformity across site selection. Another alteration was the use of probability functions

to describe the incoming flux distribution. This allows another increase in expandability

by describing irregular surface distributions that could be caused during aperture or via

deposition. This allows for a view of the incoming flux that can be altered from uniform

to other distributions such as Gaussian. This feature is not used in the current simulations

preformed in this study. The ability to incorporate alloy growth systems was another

extension applied to this model. The KMC simulation has the ability to accept multiple

impinging atomic specie and describe the surface transformation. The last addition to the

model was the calculation and incorporation of surface and strain energy, which was used

to describe the strain driven Stranski-Krastanow growth that produced island during

SiGe/Si deposition. This effect will be described in the model application in Chapter 5.

The following section shows the comparison of the foundation model results produced

 60

via the KMC tool to the results produced via the KMC tool with developed extensions

4.3.1 Foundation vs. Extended

 The extension applied to the KMC model have not altered the foundation physical

governing equations derived in Chapter 2 and used in section 4.2. Graph 4.4 shows a

comparison of the foundation model results produced in Graph 4.2 with the KMC

simulation with added extensions.

Surface Roughness Ouputs from Extended and Foundation
Models

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

KMC Cycles

Su
rf

ac
e

R
ou

gh
ne

ss
 (m

L)

500
1250

Graph 4.4 Comparison of Surface Roughness outputs from foundation KMC simulation
with extended KMC simulation at T = 650K and P = 1e-5Torr

 Graph 4.4 shows different effects caused by adding the extension to the KMC

 61

simulation tool. The first and most noticeable change is the increased surface roughness

for the extended model. This can be explained by the change in the surface structure

used for simulating. The surface analyzed in the foundation model assumes a flat grid

like surface for the initial deposition. This is apparent by the initial surface roughness

value set to 0. The extended model accounts for various crystal orientations by

initializing the substrate surface to account for the various bonding sites that are available

in the specified orientation ([100] for this simulation). This causes an initial surface

roughness, which is apparent from the initial value shown for the extended model. This

also causes a larger variation in the average height of the film as well as a variation of the

height for a selected site. The combination of these affects causes a higher surface

roughness with larger oscillations for the given calculation methodology, but does not

change the physics governing the surface reactions. Therefore the change in shown in the

absolute scale does not correspond to a change in the actual film morphology; rather it

shows the inclusion of the physical crystal surface compared to that of a flat grid.

 A small change is also noticeable in maximum location but as discussed before

this is due to the inherent randomness of the MC process. The exact locations of any

given transformation can only be approximated with any MC process since it uses

random simulation processes. To achieve higher accuracies on actual values the KMC

simulation would have to be repeated several times and then all data would be averaged.

Using the law of central tendency the averaged values of at least 30 or more KMC

simulations will show a normal distribution whose mean approaches the value obtained

from physical results.

 62

 The following figures show the screen shots taken during the extended KMC

growth simulation shown in Graph 4.4. The screen shot shows how the surface evolves

during deposition, which is in agreement with the previous discussion as well as the

physical lab result presented in Graph 4.3.

Figure 4.3 Snapshots taken during KMC simulation at T = 650K and P = 1e-5Torr,which

depicts the change in surface during growth, which correlates to the surface roughens
calculations presented.

 63

Figure 4.4 Continuation of snapshots taken during KMC simulation at T = 650K and P =

1e-5Torr,which depicts the change in surface during growth, which correlates to the
surface roughens calculations presented.

Graph 4.5 is presented to show the correlation between surface roughness and

 64

growth temperature.

Surface Roughness at Various Growth Temperatures

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Time (s)

R
ou

gh
ne

ss
 (m

L)

500K
825K
950K

Graph 4.5 Output of KMC simulation surface roughness at various growth temperatures

The data presented in Graph 4.5 shows how the surface will grow under smoother

conditions as temperature rises. This is noted by the decrease in surface roughness at

higher temperatures. This is due to the increased thermal energy departed to adatoms

from the surface. This increased energy enhances the ability of surface diffusion and is

captured in the diffusion model equation via the exponential term. The decrease in

surface roughness shows that an increase in lateral diffusion has occurred which in

 65

limiting the increase in height of the film. This result correlates with the physics that

describe film morphology under varying temperatures.

The next section describes the addition of a pseudo RNG into the KMC

simulation. This leads to higher degree of uniformity of site selection. This change, once

again, has not altered the governing physics equations and showed no effect in the overall

surface transition calculations.

4.3.2 Sobol Random Number Generator

 One of the first step that is required in every KMC cycle is the ability to randomly

select a site on the surface to test. This site should be random to eliminate any

computational dependence that may arrive and the site selections should be uniform

across the surface. In chapter 3 an example was shown that demonstrated the difference

between a uniform RNG and a Sobol RNG. The uniform RNG did not sample evenly

across the surface, in fact clustering was found which left some areas over sampled while

other areas where never evaluated. This can lead to "cluster processing" on the surface.

This can cause the results to be skewed and not correctly depict surface reactions. Figure

4.5 shows the result after a single KMC was executed on the surface under test.

 66

Figure 4.5 Depiction of surface after a single KMC iteration using
Sobol RNG for site selection

The surface in Figure 4.5 shows an evenly distributed pattern on the surface. The cluster

formations are minimized and the black spaced not analyzed on the surface has also been

minimized. In contrast Figure 4.6 shows the surface after a single KMC iteration under

the same growth conditions, but using a uniform RNG to select sites for evaluations.

 67

Figure 4.6 Depiction of surface after a single KMC iteration using
a uniform RNG for site selection

 Figure 4.6 shows a dramatically difference that is obtained by using a uniform

RNG. The cluster is much more apparent, which can be seen by the red coloring in

Figure 4.6. The red island in Figure 4.6 shows an increase in surface height. This means

these areas have at minimum 2 atoms stacked on each other. This is a direct result of

"cluster processing" associated with uniform RNGs. In addition to the increased in

processing in some areas on the surface, areas can also be found on the surface where no

processing has occurred. These areas are denoted by black. The black spacing found

within the circle shows how portions of the surface can be neglected and thereby can

 68

cause a skew in modeling results.

 In comparison the Sobol RNG surface pattern seems to have a reduced amount of

"randomness" than its uniform counterpart. This is due to its memory function, which

helps eliminate selecting the same site more than once. The pattern produced by the

pseudo RNG should have little to no affect on the overall performance of the KMC

simulation. The only goal of the Sobol RNG was to randomly select sites on the surface

uniformly, therefore a pattern on the surface will not affect the processing as long as the

pattern is not formed in the same order in every KMC iteration.

 In the case where a random number is selected to account for a random event or to

select a random process, a pseudo RNG such as a Sobol RNG would not be the correct

choice. In these applications a uniform RNG is required. These process require a

number selection in which every number has the same probability of being selected,

which is not the case in a RNG with a memory. Therefore, for every case where a

random number is required for process or transition selection a uniform RNG will be

used.

4.3.3 Simulation with Non Planar Surface

 This section will analyze the growth kinetics involved with surface morphology

with a non-planar initial growth surface. The developed KMC model will simulate an

initial island on the surface and show the surface roughness over time as well as the

surface morphology at high and low temperatures.

 69

 The island structure will cause a larger swing in the initial kinetic roughening of

the surface, due the average height of the film will now include the island height. As the

films grows and approaches the height of the island the surface roughness will fall. The

surface roughness will eventually reach a steady state value that it will oscillate around as

before once the island has been completely consumed by the film.

 This simulation will show how the step edge will affect the growth of the film as

well as show how the KMC simulation accurately depicts the overall surface morphology

of the film. The surface is not analyzed on the atomic scale rather as the energetic

average and probabilities of surface transitions. For this reason the periodic surface

potentials seen by surface diffusion adatoms is not accounted for. The only possible

transitions for the surface adatoms are those shown in Figure 3.3[53]. These transitions

and assumptions will not allow for an understanding of individual atomic movement as a

MD simulation would, rather it will show the overall characteristic of the surface and

describe the overall film parameters such as surface roughness.

 Stating that, the step edge will collect adatoms as they diffuse on the surface. The

diffusion process will increase at higher temperatures due to the increase in thermal

energy added to the adatoms. This increased energy will cause more surface diffusions

and thereby cause the step edge to smooth over the growth at a higher temperature.

Figure 4.7 shows the surface being tested after the first KMC cycle has been completed

and Figure 4.8 shows a close up of the island that is located on the test surface.

 70

Figure 4.7 Depiction of the initial non planar surface used to analyze surface
morphology with a step edge.

Figure 4.8 Depiction of the island located on test surface used to analyze surface
morphology with step edge

Graph 4.6 shows the surface roughness plot from the KMC simulation.

 71

Surface Roughness on Non Planar Surface

0.7

0.75

0.8

0.85

0.9

0.95

1

0.0
8

0.2
5

0.4
2

0.5
8

0.7
5

0.9
2

1.0
8

1.2
5

1.4
2

1.5
8

1.7
5

1.9
2

2.0
8

2.2
5

2.4
2

2.5
8

2.7
5

2.9
2

3.0
8

3.2
5

3.4
2

3.5
8

3.7
5

3.9
2

Time (s)

R
ou

gh
ne

ss
 (m

L)

Graph 4.6 Surface roughness output from KMC for non planar surface with island at T =
950K and P = 1e-5Torr

Graph 4.6 shows a higher initial surface roughness than before due to the height

of the island. The kinetic roughening for the initial maximum occurs around 0.6 seconds.

Oscillations can then be seen occurring periodically as the growth continues. This is

caused by the same effect found in early results where the formation and completion of

monolayers during growth. The initial kinetic roughening causes the increase in surface

roughness, but due to surface diffusion and growth capture at the step edge the surface

roughness decreases as the height of the deposited film approaches that of the initial

island. Around 4 seconds the surface roughness begins to decrease at a slower rate,

which is caused by the film height becoming closer to the height of the island. Figure 4.9

 72

shows the screen shots associated with the step edge growth.

Figure 4.9 Snapshot of the surface morphology during the step edge growth analysis
preformed with the KMC simulation at T = 950K and P = 1e-5Torr

The snapshots show the step edge propagating into the film due to the diffusion

process of adatoms. This process is caused by the surface diffusion of adatoms. As the

adatoms move around the surface they are captured by step edges. The increased bonds

obtained by the step edge cause any further surface diffusion to become difficult. This in

 73

turn causes the step edge to propagate which also acts as sink for surface diffused

adatoms. The figures also show the same kinetic roughening and growth process that

was previously shown in the planar surface results. Figure 4.10 shows a side profile of

the growth morphology of the surface over time for the initial island defect surface high

temperature.

Figure 4.10 Side depiction of the surface morphology during the step edge growth
analysis preformed with the KMC simulation at T = 950K and P = 1e-5Torr

 74

Figure 4.10 shows how the added thermal energy allows for the step edge of the

island to expand and smooth. This process agrees with the governing physics of the

problem and shows a good correlation with experimental results.

 75

CHAPTER 5

APPLICATION OF KMC GROWTH MODEL

5.1 Introduction

 This chapter describes the application of the strain and surface energy extension

added to the KMC model. The driving energy for the growth will be discussed and

analyzed. Data will show the transition that occurs during growth from strain driven to

surface energy driven morphologies. This transition will also cause a change in island

topologies found on the surface. The topologies will be examined along with their

dependence on growth parameters such as temperature and alloy composition. The size

distribution of islands will be analyzed along with its dependence on temperature as well

as the shape and placement of the island on the surface.

5.2 Alloy Deposition Model

 This section will cover the simulation results for alloy growth. The growth

system used for analysis is SiGe/Si. This study analyzes the different energy

consideration that must be accounted for during growth as well as island topologies and

transformations. Analysis of island shape and placement is also discussed.

 76

5.2.1 Energy Considerations

It has been shown that island formation and shape transitions in SiGe/Si growth is

caused by a competition between anisotropy strain energy and anisotropy surface energy

of the evolving surface via Stranski-Krastanow growth. Due to the strained film,

relaxation occurs by roughening of the surface through island formation. As the island

height grows and relaxation occurs the strain energy decreases but the surface energy

increases. Due to the ability of the surface to obtain such a high level of relaxation, the

island will widen once the strain relaxation no longer dominates the total energy of the

system. At this point the system will begin coalescence of the island structures.

The coalescence reduces the surface energy of the system by combing the smaller

islands into the larger islands. The transition from strain energy to surface energy driven

morphology is also the transition between island topologies. Initial island topologies are

considered "hut" shapes. The shapes are taller thinner islands. This is where strain

energy is has the largest affect in the growth process. This is readily understandable from

the increased height, which decreases the strain energy, while the decreased diameter

increases the overall surface energy. Once strain relaxation has occurred the island

topologies change to a "dome" formation. The dome formation is the attempt of the

system to minimize the surface energy that was maximized during hut formation. The

smoothing of the island, also the surface, causes a reduction in the surface energy as well

as the overall system energy. Graph 5.1 shows the normalized surface and strain energy

of the system. The strain and surface energies were normalized with respect to the total

 77

energy of the system. This shows a definite transition from strain driven to surface

driven growth.

Normalized Surface and Strain Energy
Simulation at 650K with 5% Ge Content

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

KMC Cycles

N
or

m
al

iz
ed

 E
ne

rg
y

 Normalized Surface
 Normalized Strain

Graph 5.1 Depiction of normalized surface and strain energies which shows transition
from strain drive to surface driven growth

 Graph 5.6 shows a depiction of the normalized surface and strain energy vs KMC

growth cycles. The graph agrees with the governing physics that describes relaxation

through island formation. As growth continues the islands decrease the strain through

relaxation, which in noted by the decrease in normalized strain energy in Graph 5.1. This

process also causes a change in surface energy. Surface energy increases due to the

increase in bonding sites, which is illustrated in Graph 5.1 as an increase in normalized

surface energy. Between the second and third KMC cycle a transition can be seen

 78

between the dominate energy of the system. This in turn changes the surface reactions

that will occur as deposition continues. The overall energy of the system will continually

try to be minimized. After this transition point occurs the surface morphology will

transition from a vertical growth (increase in island height) to a horizontal spreading of

existing island. This point causes the transition of island topologies found during

deposition. This transition point can be effected by both temperature and alloy

composition, both are described in detail below.

5.2.2 Island Topologies

 The topology of the islands has a high dependence on temperature. At lower

temperatures the island formations have a smaller diameter, 'skinny', and are huts

(depicted as peak islands in 3D SPS). At high temperatures larger diameter, 'fat', domes

(depicted as flat top islands in 3D SPS) are produced. The midrange temperature causes

a mix in the island formations. The topology changes are due to the surface mobility

caused by changes in temperatures as well as the balance between surface and strain

energies. Graph 5.2 shows published laboratory results that depict the island populations

by diameter for various growth temperatures.

 79

Graph 5.2 Depiction of island densities by diameter fro various growth temperatures

 Graph 5.2 shows the bimodality of island diameters that is produced during the

growth of SiGe island structures. This bimodality is a cause of the initial roughening

from seed islands that then grow into hut formations as well as the transformation into

dome islands as the growth continues. The bimodality seems to always be present due to

the seeding nature required to begin island formation. The change in island diameters as

 80

temperature changes is caused by the change in the transition point of strain and stress

energies during deposition. At higher temperatures the transition occurs earlier due to the

increase ability for the film to relax thereby decreasing strain energy as well as the

increased ability for adatoms to diffuse thereby decreasing surface energy. This effect

therefore allows the islands to being transition to dome shapes earlier.

 As temperature increases the islands begin to show a trimodal distribution. This

is due to the increased energy supplied to the surface from thermal energy as well as

coalescence.

 The increased thermal energy allows adatoms to have more mobility and causes a

larger decrease in the overall system energy by minimizing the dangling bonds on the

surface. This causes a smoothing of the surface and the transition of island structures

from hut to dome topologies. This transition is also the cause for coalescence

mechanism.

 Coalescence occurs due to the spreading of the surface island structures. These

islands diameter increase which in turns causes multiple islands to combine. This is also

a leading reason for the decrease in the proportion of seeding islands at higher

temperatures. The larger islands are covering more surface area therefore there is not as

much area exposed where seeding will be required. This process approaches more of the

selective growth process described in Chapter 2. The larger islands grow at the expense

of the smaller islands, which causes a shift in the proportions of island dimension on the

surface.

Graphs 5.3, 5.4 and 5.5 show the island distributions produced from the KMC

 81

simulation at 450K, 550K and 650K growth temperatures respectively. All simulations

preformed at various growth temperatures were done at a constant growth pressure of

1.5E-5 Torr. The graphs show how the population of island diameters changes from

lower temperature to higher temperatures, which is the same as the physical results show

in Graph 5.2.

Distribution of Island Diameters at 450K

0

0.1

0.2

0.3

0.4

0.5

0.6

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Diameter of Island (nm)

%
 o

f i
sl

an
ds

Graph 5.3 Distribution of island diameters for KMC simulation with a growth
temperature of 450K and pressure of 1.5E-5 Torr

 82

Distribution of Island Diameters at 550K

0

0.1

0.2

0.3

0.4

0.5

0.6

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

nm

%
 o

f i
sl

an
ds

Graph 5.4 Distribution of island diameters for KMC simulation with a growth
temperature of 550K and pressure of 1.5E-5 Torr

Distribution of Island Diameters at 650K

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Diameter of Islands (nm)

%
 o

f I
sl

an
ds

Graph 5.5 Distribution of island diameters for KMC simulation with a growth
temperature of 650K and pressure of 1.5E-5 Torr

 Comparison between the Graph 5.3 at 450K and Graph 5.5 at 650K shows how

the KMC simulation accounts for the transition of island formations base upon growth

temperature. The physical results presented in Graph 5.2 show an island diameter of

10nm as the largest population at 450K. This is the same result shown in Graph 5.3.

 83

Graph 5.2 shows a second distribution spike around 40nm, which is present in the

simulation results shown in Graph 5.3, but it is not a local maximum. At 650K Graph 5.2

shows a trimodal distribution with local maximum approximately at 10,40 and 80nm.

Graph 5.2 can also be misleading due to the magnification that occurs at various portion

of the graph. The magnification in the 650K shows a magnification of 20 times. This

was done to show the presence of the increased diameter islands, but the concentration of

those islands is not as large as that of the 10nm islands. Graph 5.5 also shows a trimodal

distribution with local maximum approximately at 10,40,70nm. The transition from

bimodal to trimodal is evident between Graphs 5.3 and 5.5 as it is in the physical results

presented in Graph 5.2. The approximate size distributions between Graphs 5.2, 5.3, and

5.5 also show a correlation. The variance between the simulation and physical results

leads to the belief that other affects such as Ge solute effect at interface along with Ge

segregation need to be accounted for to have a higher accuracy. The assumptions used

ignore these effects but could be added in future work. Although these assumptions have

shown a variance from physical results, the overall changes in topologies and size are

within an acceptable error for simulation results.

Figures 5.1, 5.2 and 5.3 show sample island formations produced by the KMC

model at 450-650K temperature ranges as rendered by 3D SPS. The figures show a

correlation to the physical results obtained as well as the description presented above.

The goal of figures 5.1-5.3 is to show how 3D SPS displays the simulation results so they

can be further analyzed. The hut formations are depicted via a pointed island structure,

while the dome islands have a flat surface. The 3D SPS package uses a triangle meshing

 84

algorithm which causes the sharp transitions on the surface of the islands. This

representation can look somewhat misleading, since the actual island structures do not

correspond to pointed and flat top rather each has more of a smoother topology in the

physical results. The sharpness of the structure depicted in figures 5.1-5.3 is an artifact of

the 3D SPS rendering software.

Figure 5.1 Depiction of island formation at 450K and pressure of 1.5E-5 Torr. The
island formation are huts with smaller diameters

Figure 5.2 Depiction of island formation at 550K and pressure of 1.5E-5 Torr. The
island formations have both skinny and fat islands

 85

Figure 5.3 Depiction of island formation at 650K and pressure of 1.5E-5 Torr. The
island formations are fatter with dome shaped top (flat top)

 The results presented in figure 5.1-5.3 directly correlate to the temperature

dependance discussed earlier. The lower temperature simulation results of Graph 5.1

show hut formations while figure 5.3 shows dome formations. The differences in the

figure 5.1-5.3 are due to the shift caused in the transition point by the change in

temperature described earlier.

Figure 5.5 and 5.5 show a topographical and side profile view at 650K and 450K

respectively. The comparison of 5.5 and 5.5 show that the lower temperature deposition

produced skinner and taller hut formations while the higher temperature produced thicker

and shorter dome formations.

 86

Figure 5.4 Depiction of island formation at 650K and pressure of 1.5E-5 Torr. The
produced islands are fatter and shorter as well as the second tier island have the majority

of dome shape (flat top)

Figure 5.5 Depiction of island formation at 450K and pressure of 1.5E-5 Torr. The
produced islands are skinner and taller as well as the second tier islands have the majority

of hut shape (pointed top)

 The transition from hut to dome shape can also be affected by the content of Ge in

the alloy. This does cause a shift in transition point, but is not as dramatic as that is

shown with changes in temperature. The change in the transition point is due to the

increased stress added by the extra Ge atoms. The added atoms cause an increase in the

overall strain in the island structure. This in turn requires taller island structures to

 87

reduce the strain, which shifts the transition from hut to dome topologies. Graph 5.6, 5.7

and 5.8 show the normalized surface and strain energies vs. KMC cycles for 5%, 20%

and 50% Ge concentrations.

Normalized Surface and Strain Energy
Simulation at 650K with 5% Ge Content

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

KMC Cycles

N
or

m
al

iz
ed

 E
ne

rg
y

 Normalized Surface

 Normalized Strain

Graph 5.6 Depiction of normalized surface and strain energies which shows transition
from strain drive to surface driven growth with 5% Ge content and pressure of 1.5E-5

Torr

 88

Normalized Surface and Strain Energy
Simulation at 650K with 20% Ge Content

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

KMC Cycles

N
or

m
al

iz
ed

 E
ne

rg
y

 Normalized Surface
 Normalized Strain

Graph 5.7 Depiction of normalized surface and strain energies which shows transition
from strain drive to surface driven growth with 20% Ge content and pressure of 1.5E-5

Torr

Normalized Surface and Strain Energy
Simulation at 650K with 50% Ge Content

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

KMC cycles

N
or

m
al

iz
ed

 E
ne

rg
y

 Normalized Surface
 Normalized Strain

Graph 5.8 Depiction of normalized surface and strain energies which shows transition
from strain drive to surface driven growth with 50% Ge content and pressure of 1.5E-5

Torr

 89

 Evaluating the results presented in graphs 5.6-5.8 shows the transition

points shifts from 2.5-7 KMC cycles. The increased amount of Ge atoms causes an

increased amount of strain in the island to surface interface. This in turn requires the

islands to grow taller in order to relax the strain. This is apparent by the shift in transition

point from 2.5-7KMC cycles.

5.2.3 Island Locations and Shapes

 The shape transition of an island from hut to dome can be modeled, yet the actual

shape and location of the islands are completely random. This is due to random

processing that takes place during deposition. This processing leads to a random

placement of islands across the surface during the deposition process. Both experimental

and simulation results agree with this finding. The ability to create self aligned quantum

dots (SAQD) directly from deposition does not seem readily possible with the current

growth conditions and setup. Alignment could be directed via pre placed surface defects

that would increase the adsorption probability of various sites on the substrate surface.

Annealing has also shown promise in the ability to align the island structures once the

deposition process is complete. The current KMC simulation tool does not include an

annealing routine, but has the flexibility for the addition of such a module.

 The shape of the island structures is as random as their placement on the surface.

Island formation show to have various shapes during the deposition process, which is

 90

partially from the random processing as well as the coalescence of island during the

growth process. This irregular shape also greatly limits the ability for SAQD during

deposition. Once again annealing has shown promise in causing not only uniformly

distributed islands on the surface but also uniformly shaped islands as well.

 Figures 5.6 and 5.7 show the model outputs compared to published laboratory

results, which shows the randomness in location and shape of the islands. 5.6 show the

island formation from a topographical view. The shapes of the islands are irregular in

shape due to coalescence and randomly distributed. Figure 5.7 shows an angled view

from a 3D rendered AFM image as well as an angle view from the 3D SPS output of the

KMC simulation of islands. Once again the random shape and location of islands can be

seen as well as the coalescence of islands on the surface. The importance of figure 5.6

and 5.7 is to show the irregular shape and location distribution, it is not meant to be a side

by side comparison of the same scale.

 91

Figure 5.6 Shows topographical view of side by side comparison of physical and
simulated results for island shape and placement on the surface during deposition at

T=550K and P=1e-5Torr

Figure 5.7 Shows angled view of side by side comparison of physical and simulated
results for island shape, placement and coalescence on the surface during deposition

T=550K and P=1e-5Torr

 The KMC model expansion for alloy only assumed growth in the Si[100]

direction and did not account for any defect formation or Ge segregation or Ge solute

affect at SiGe/Si interface. Theses affects can causes changes in surface morphology and

could be added at a later date to give a more accurate depiction of island formation.

 92

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

 The developed KMC allows for a flexible platform that can accurately describe

surface morphology during various growth conditions. The models have expanded the

capabilities of existing simulation tools to account for multiple affects in a single growth

simulation tool. The model included pseudo RNG in the help of site selection and added

the crystalline orientation to allow for an increase in growth simulation accuracy.

 The crystal orientation has shown to have an affect on growth morphology during

strained film growth such as that shown in SiGe/Si. The various crystal orientations

cause a change in surface energy as well as strain energy. The altering of these

parameters can dramatically cause variations in island formation, topology and

transitions.

 The strain energy alloy model shows the different affects various growth

parameters have on SiGe/Si island formations. The model showed the affects Ge

concentration and temperature had on overall island topology and morphology. The

ability to create self-aligned quantum dots (SAQDs) during deposition was analyzed and

determined to be improbable with current growth techniques. The work shows that an

 93

annealing stage will need to present to align islands as well as convert to a uniform

topology of uniform size and shape.

6.2 Future Work

The KMC simulation tool developed in this study has many advantages over

existing modules. One of the most important advantages it the flexibility of the model.

The KMC simulation tool was designed to allow for easy upgrades and additions of

libraries and functions to increase the tools effectiveness in multiple applications. One

such modification could be the addition of an annealing stage.

 An annealing stage would allow further insight into using SiGe/Si

deposition for the formation of self aligned quantum dots (SAQDs). The research results

preformed show the ability to create SAQDs directly during deposition is not feasible

with the current processing techniques being used. By adding an annealing stage further

study could be preformed on analyzing the transition of the random shaped islands into

uniformly shaped as well as uniformly distributed.

Further study is needed in the solute affect found at the SiGe/Si interface with Ge.

Studies have shown that Ge can diffuse into the wetting layer and cause various affects

during growth. Analysis needs to be preformed to account for the governing equations of

this motion. These equations then need to be transformed into a probability density

function that could then be adapted to fit the current KMC engine.

Currently the model does not allow for defect formation during the growth

 94

process. More work should be done to account for defect formation such as grain

boundaries, which can arise during strained growth. These affects will cause changes in

device operations as well overall surface morphology. The current model is limited to

coherently strained modules, by adding the ability to account for defect formation the

models effectiveness could be dramatically increased.

Ge content inside of the island structures is also of interest. The Ge content in

islands affects the materials optical and electrical properties, which in turn can alter

device operations of semiconductor devices. Understanding the mixture and

placement/configuration of Ge atoms inside island formations would lead to a better

understanding of device operations as well as device limitations.

Interest has also been shown in coupling growth models with device models. This

allows for a better understanding in how the growth parameters can directly affect the

operation of semiconductor devices. This could also help in leading to real time analysis

system that will determine device yield prior to completion of the fabrication process.

This in turn can save time and money during the development stages of device

development.

To increase processing time the programming topology could be converted to a

object oriented multithreaded operation to take advantage of the Hyper Threading

technology now available with AMD and Pentium processors. This would allow for

multiple portions of the simulation to be performed simultaneously there by allow for a

dramatic increase in performance time.

 95

APPENDIX A

VB.NET CODE FOR SURFACE PLOTTING SOFTWARE

96

Imports System

Imports System.Drawing

Imports System.Drawing.Imaging

Imports System.Collections

Imports System.ComponentModel

Imports System.Windows.Forms

Imports System.Data

Imports System.Diagnostics

Imports System.Drawing.Printing

Imports System.IO

Imports C1.Win.C1Chart3D

'/ <summary>

'/ Summary description for Form1.

'/ </summary>

Public Class Form1

 Inherits System.Windows.Forms.Form

 WithEvents numericUpDown1 As

System.Windows.Forms.NumericUpDown

 WithEvents numericUpDown2 As

System.Windows.Forms.NumericUpDown

 WithEvents numericUpDown3 As

System.Windows.Forms.NumericUpDown

97

 Private mainMenu1 As System.Windows.Forms.MainMenu

 WithEvents menuItem1 As System.Windows.Forms.MenuItem

 WithEvents menuItem2 As System.Windows.Forms.MenuItem

 WithEvents menuItem3 As System.Windows.Forms.MenuItem

 WithEvents menuItem4 As System.Windows.Forms.MenuItem

 WithEvents menuItem5 As System.Windows.Forms.MenuItem

 WithEvents menuItem6 As System.Windows.Forms.MenuItem

 WithEvents menuItem7 As System.Windows.Forms.MenuItem

 WithEvents timer1 As System.Windows.Forms.Timer

 WithEvents checkBox1 As System.Windows.Forms.CheckBox

 WithEvents checkBox2 As System.Windows.Forms.CheckBox

 WithEvents checkBox3 As System.Windows.Forms.CheckBox

 WithEvents menuItem8 As System.Windows.Forms.MenuItem

 WithEvents menuItem9 As System.Windows.Forms.MenuItem

 WithEvents menuItem10 As System.Windows.Forms.MenuItem

 WithEvents menuItem11 As System.Windows.Forms.MenuItem

 WithEvents menuItem12 As System.Windows.Forms.MenuItem

 WithEvents menuItem13 As System.Windows.Forms.MenuItem

 WithEvents menuItem14 As System.Windows.Forms.MenuItem

 WithEvents menuItem15 As System.Windows.Forms.MenuItem

 WithEvents menuItem16 As System.Windows.Forms.MenuItem

 Private components As System.ComponentModel.IContainer

 WithEvents menuItem17 As System.Windows.Forms.MenuItem

 WithEvents menuItem18 As System.Windows.Forms.MenuItem

98

 WithEvents menuItem19 As System.Windows.Forms.MenuItem

 WithEvents menuItem20 As System.Windows.Forms.MenuItem

 WithEvents menuItem21 As System.Windows.Forms.MenuItem

 WithEvents menuItem22 As System.Windows.Forms.MenuItem

 WithEvents menuItem23 As System.Windows.Forms.MenuItem

 WithEvents menuItem24 As System.Windows.Forms.MenuItem

 Private c1Chart3D1 As C1.Win.C1Chart3D.C1Chart3D

 Private label1 As System.Windows.Forms.Label

 Private label2 As System.Windows.Forms.Label

 Private label3 As System.Windows.Forms.Label

 '

 Private angleIncrement As Integer = 2

 Private setPoint As Chart3DDataSetPoint

 Private setGrid As Chart3DDataSetGrid

 Private setIrGrid As Chart3DDataSetIrGrid

 Private pointData(27) As Chart3DPoint

 Private pointData1(27) As Chart3DPoint

 Private contourData(,) As Double

 WithEvents menuItem25 As System.Windows.Forms.MenuItem

 WithEvents menuItem26 As System.Windows.Forms.MenuItem

 WithEvents menuItem27 As System.Windows.Forms.MenuItem

 WithEvents menuItem28 As System.Windows.Forms.MenuItem

 WithEvents menuItem29 As System.Windows.Forms.MenuItem

99

 WithEvents menuHelpAbout As

System.Windows.Forms.MenuItem

 Private bUpdate As Boolean = True

 Public Sub New()

 InitializeComponent()

 '

 ' TODO: Add any constructor code after

InitializeComponent call

 '

 numericUpDown1.Minimum = - 360

 numericUpDown1.Maximum = 360

 numericUpDown1.Increment = CDec(angleIncrement)

 numericUpDown1.Value =

CDec(c1Chart3D1.ChartArea.View.RotationX)

 numericUpDown2.Maximum = 360

 numericUpDown2.Minimum = - 360

 numericUpDown2.Increment = CDec(angleIncrement)

 numericUpDown2.Value =

CDec(c1Chart3D1.ChartArea.View.RotationY)

 numericUpDown3.Maximum = 360

100

 numericUpDown3.Minimum = - 360

 numericUpDown3.Increment = CDec(angleIncrement)

 numericUpDown3.Value =

CDec(c1Chart3D1.ChartArea.View.RotationZ)

 End Sub 'New

 '/ <summary>

 '/ Clean up any resources being used.

 '/ </summary>

 Public Shadows Sub Dispose(disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

 MyBase.Dispose(disposing)

 End Sub 'Dispose

#Region " Windows Form Designer generated code "

 '/ <summary>

 '/ Required method for Designer support - do not modify

 '/ the contents of this method with the code editor.

101

 '/ </summary>

 Friend WithEvents GroupBox1 As

System.Windows.Forms.GroupBox

 Friend WithEvents Button1 As

System.Windows.Forms.Button

 Friend WithEvents GroupBox2 As

System.Windows.Forms.GroupBox

 Friend WithEvents CheckBox4 As

System.Windows.Forms.CheckBox

 Friend WithEvents CheckBox5 As

System.Windows.Forms.CheckBox

 Friend WithEvents StatusBar1 As

System.Windows.Forms.StatusBar

 Friend WithEvents StatusBarPanel1 As

System.Windows.Forms.StatusBarPanel

 Friend WithEvents StatusBarPanel2 As

System.Windows.Forms.StatusBarPanel

 Friend WithEvents StatusBarPanel3 As

System.Windows.Forms.StatusBarPanel

 Friend WithEvents PictureBox1 As

System.Windows.Forms.PictureBox

 Private Sub InitializeComponent()

 Me.components = New System.ComponentModel.Container

102

 Dim resources As System.Resources.ResourceManager =

New System.Resources.ResourceManager(GetType(Form1))

 Me.c1Chart3D1 = New C1.Win.C1Chart3D.C1Chart3D

 Me.numericUpDown2 = New

System.Windows.Forms.NumericUpDown

 Me.numericUpDown3 = New

System.Windows.Forms.NumericUpDown

 Me.numericUpDown1 = New

System.Windows.Forms.NumericUpDown

 Me.mainMenu1 = New System.Windows.Forms.MainMenu

 Me.menuItem14 = New System.Windows.Forms.MenuItem

 Me.menuItem21 = New System.Windows.Forms.MenuItem

 Me.menuItem22 = New System.Windows.Forms.MenuItem

 Me.menuItem23 = New System.Windows.Forms.MenuItem

 Me.menuItem15 = New System.Windows.Forms.MenuItem

 Me.menuItem16 = New System.Windows.Forms.MenuItem

 Me.menuItem19 = New System.Windows.Forms.MenuItem

 Me.menuItem28 = New System.Windows.Forms.MenuItem

 Me.menuItem24 = New System.Windows.Forms.MenuItem

 Me.menuItem20 = New System.Windows.Forms.MenuItem

 Me.menuItem4 = New System.Windows.Forms.MenuItem

 Me.menuItem27 = New System.Windows.Forms.MenuItem

 Me.menuItem26 = New System.Windows.Forms.MenuItem

 Me.menuItem25 = New System.Windows.Forms.MenuItem

103

 Me.menuItem5 = New System.Windows.Forms.MenuItem

 Me.menuItem6 = New System.Windows.Forms.MenuItem

 Me.menuItem7 = New System.Windows.Forms.MenuItem

 Me.menuItem17 = New System.Windows.Forms.MenuItem

 Me.menuItem18 = New System.Windows.Forms.MenuItem

 Me.menuItem1 = New System.Windows.Forms.MenuItem

 Me.menuItem2 = New System.Windows.Forms.MenuItem

 Me.menuItem12 = New System.Windows.Forms.MenuItem

 Me.menuItem13 = New System.Windows.Forms.MenuItem

 Me.menuItem3 = New System.Windows.Forms.MenuItem

 Me.menuItem11 = New System.Windows.Forms.MenuItem

 Me.menuItem8 = New System.Windows.Forms.MenuItem

 Me.menuItem9 = New System.Windows.Forms.MenuItem

 Me.menuItem10 = New System.Windows.Forms.MenuItem

 Me.menuItem29 = New System.Windows.Forms.MenuItem

 Me.menuHelpAbout = New

System.Windows.Forms.MenuItem

 Me.timer1 = New

System.Windows.Forms.Timer(Me.components)

 Me.checkBox1 = New System.Windows.Forms.CheckBox

 Me.checkBox2 = New System.Windows.Forms.CheckBox

 Me.checkBox3 = New System.Windows.Forms.CheckBox

 Me.label1 = New System.Windows.Forms.Label

 Me.label2 = New System.Windows.Forms.Label

104

 Me.label3 = New System.Windows.Forms.Label

 Me.GroupBox1 = New System.Windows.Forms.GroupBox

 Me.Button1 = New System.Windows.Forms.Button

 Me.GroupBox2 = New System.Windows.Forms.GroupBox

 Me.CheckBox5 = New System.Windows.Forms.CheckBox

 Me.CheckBox4 = New System.Windows.Forms.CheckBox

 Me.StatusBar1 = New System.Windows.Forms.StatusBar

 Me.StatusBarPanel1 = New

System.Windows.Forms.StatusBarPanel

 Me.StatusBarPanel2 = New

System.Windows.Forms.StatusBarPanel

 Me.StatusBarPanel3 = New

System.Windows.Forms.StatusBarPanel

 Me.PictureBox1 = New

System.Windows.Forms.PictureBox

 CType(Me.c1Chart3D1,

System.ComponentModel.ISupportInitialize).BeginInit()

 CType(Me.numericUpDown2,

System.ComponentModel.ISupportInitialize).BeginInit()

 CType(Me.numericUpDown3,

System.ComponentModel.ISupportInitialize).BeginInit()

 CType(Me.numericUpDown1,

System.ComponentModel.ISupportInitialize).BeginInit()

 Me.GroupBox1.SuspendLayout()

105

 Me.GroupBox2.SuspendLayout()

 CType(Me.StatusBarPanel1,

System.ComponentModel.ISupportInitialize).BeginInit()

 CType(Me.StatusBarPanel2,

System.ComponentModel.ISupportInitialize).BeginInit()

 CType(Me.StatusBarPanel3,

System.ComponentModel.ISupportInitialize).BeginInit()

 Me.SuspendLayout()

 '

 'c1Chart3D1

 '

 Me.c1Chart3D1.Anchor =

System.Windows.Forms.AnchorStyles.None

 Me.c1Chart3D1.BackColor =

System.Drawing.SystemColors.Control

 Me.c1Chart3D1.Location = New

System.Drawing.Point(232, 8)

 Me.c1Chart3D1.Name = "c1Chart3D1"

 Me.c1Chart3D1.PropBag = "<?xml

version=""1.0""?><Chart3DPropBag Version=""""><View

/><ChartGroupsCollection><C" & _

 "hart3DGroup><ChartData><Set

type=""Chart3DDataSetGrid"" RowCount=""11"" ColumnCount=" &

_

106

 """11"" RowDelta=""1"" ColumnDelta=""1""

RowOrigin=""0"" ColumnOrigin=""0"" Hole=""3.4028234" & _

 "7E+38""><Data>4.5 3.6 2.89999986 2.39999986 2.1

1.99999988 2.1 2.39999986 2.89999" & _

 "986 3.6 4.5 8.1 7.2 6.5 6 5.7 5.6 5.7 6 6.5 7.2

8.1 10.9 10 9.3 8.8 8.5 8.4 8.5 " & _

 "8.8 9.3 10 10.9 12.9 12 11.3 10.8 10.5 10.4 10.5

10.8 11.3 12 12.9 14.1 13.2 12." & _

 "5 12 11.7 11.6 11.7 12 12.5 13.2 14.1 14.5 13.6

12.9 12.4 12.1 12 12.1 12.4 12.9" & _

 " 13.6 14.5 14.1 13.2 12.5 12 11.7 11.6 11.7 12

12.5 13.2 14.1 12.9 12 11.3 10.8 " & _

 "10.5 10.4 10.5 10.8 11.3 12 12.9 10.9 10 9.3 8.8

8.5 8.4 8.5 8.8 9.3 10 10.9 8.1" & _

 " 7.2 6.5 6 5.7 5.6 5.7 6 6.5 7.2 8.1 4.5 3.6

2.89999986 2.39999986 2.1 1.9999998" & _

 "8 2.1 2.39999986 2.89999986 3.6

4.5</Data></Set></ChartData></Chart3DGroup></Cha" & _

 "rtGroupsCollection><StyleCollection><NamedStyle

Name=""LabelStyleDefault"" ParentN" & _

 "ame=""Control""

StyleData=""BackColor=Transparent;"" /><NamedStyle

Name=""Header"" Par" & _

107

 "entName=""Control"" /><NamedStyle Name=""Legend""

ParentName=""Control"" StyleData=""Wr" & _

 "ap=False;AlignVert=Top;"" /><NamedStyle

Name=""Footer"" ParentName=""Control"" /><Nam" & _

 "edStyle Name=""Area"" ParentName=""Control""

StyleData=""BackColor=Control;AlignVert=" & _

 "Top;"" /><NamedStyle Name=""Control""

ParentName="""" StyleData=""ForeColor=ControlTex" & _

 "t;BackColor=Control;""

/></StyleCollection><LegendData Compass=""East""

/><FooterDa" & _

 "ta Compass=""South"" /><HeaderData

Compass=""North"" /></Chart3DPropBag>"

 Me.c1Chart3D1.Size = New System.Drawing.Size(552,

496)

 Me.c1Chart3D1.TabIndex = 7

 '

 'numericUpDown2

 '

 Me.numericUpDown2.Location = New

System.Drawing.Point(72, 40)

 Me.numericUpDown2.Name = "numericUpDown2"

 Me.numericUpDown2.Size = New

System.Drawing.Size(48, 20)

108

 Me.numericUpDown2.TabIndex = 2

 '

 'numericUpDown3

 '

 Me.numericUpDown3.Location = New

System.Drawing.Point(136, 40)

 Me.numericUpDown3.Name = "numericUpDown3"

 Me.numericUpDown3.Size = New

System.Drawing.Size(48, 20)

 Me.numericUpDown3.TabIndex = 2

 '

 'numericUpDown1

 '

 Me.numericUpDown1.Location = New

System.Drawing.Point(8, 40)

 Me.numericUpDown1.Name = "numericUpDown1"

 Me.numericUpDown1.Size = New

System.Drawing.Size(48, 20)

 Me.numericUpDown1.TabIndex = 2

 '

 'mainMenu1

 '

109

 Me.mainMenu1.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuItem14,

Me.menuItem4, Me.menuItem1, Me.menuItem29})

 '

 'menuItem14

 '

 Me.menuItem14.Index = 0

 Me.menuItem14.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuItem21,

Me.menuItem22, Me.menuItem23, Me.menuItem15, Me.menuItem16,

Me.menuItem19, Me.menuItem28, Me.menuItem24,

Me.menuItem20})

 Me.menuItem14.Text = "File"

 '

 'menuItem21

 '

 Me.menuItem21.Index = 0

 Me.menuItem21.Text = "Open Chart"

 '

 'menuItem22

 '

 Me.menuItem22.Index = 1

 Me.menuItem22.Text = "Save Chart"

 '

110

 'menuItem23

 '

 Me.menuItem23.Index = 2

 Me.menuItem23.Text = "-"

 '

 'menuItem15

 '

 Me.menuItem15.Index = 3

 Me.menuItem15.Text = "Load Data"

 '

 'menuItem16

 '

 Me.menuItem16.Index = 4

 Me.menuItem16.Text = "Save Data"

 '

 'menuItem19

 '

 Me.menuItem19.Index = 5

 Me.menuItem19.Text = "-"

 '

 'menuItem28

 '

 Me.menuItem28.Index = 6

 Me.menuItem28.Text = "Save Image"

111

 '

 'menuItem24

 '

 Me.menuItem24.Index = 7

 Me.menuItem24.Text = "Print Preview"

 '

 'menuItem20

 '

 Me.menuItem20.Index = 8

 Me.menuItem20.Text = "Exit"

 '

 'menuItem4

 '

 Me.menuItem4.Index = 1

 Me.menuItem4.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuItem27,

Me.menuItem26, Me.menuItem25, Me.menuItem5, Me.menuItem6,

Me.menuItem7, Me.menuItem17, Me.menuItem18})

 Me.menuItem4.Text = "Chart"

 '

 'menuItem27

 '

 Me.menuItem27.Index = 0

 Me.menuItem27.Text = "Properties"

112

 '

 'menuItem26

 '

 Me.menuItem26.Index = 1

 Me.menuItem26.Text = "Wizard"

 '

 'menuItem25

 '

 Me.menuItem25.Index = 2

 Me.menuItem25.Text = "-"

 '

 'menuItem5

 '

 Me.menuItem5.Index = 3

 Me.menuItem5.Text = "Bar"

 '

 'menuItem6

 '

 Me.menuItem6.Index = 4

 Me.menuItem6.Text = "Scatter"

 '

 'menuItem7

 '

 Me.menuItem7.Index = 5

113

 Me.menuItem7.Text = "Surface"

 '

 'menuItem17

 '

 Me.menuItem17.Index = 6

 Me.menuItem17.Text = "-"

 '

 'menuItem18

 '

 Me.menuItem18.Index = 7

 Me.menuItem18.Text = "Interacive"

 '

 'menuItem1

 '

 Me.menuItem1.Index = 2

 Me.menuItem1.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuItem2,

Me.menuItem3, Me.menuItem11, Me.menuItem8, Me.menuItem9,

Me.menuItem10})

 Me.menuItem1.Text = "Data"

 '

 'menuItem2

 '

 Me.menuItem2.Index = 0

114

 Me.menuItem2.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuItem12,

Me.menuItem13})

 Me.menuItem2.Text = "Points"

 '

 'menuItem12

 '

 Me.menuItem12.Index = 0

 Me.menuItem12.Text = "1 series"

 '

 'menuItem13

 '

 Me.menuItem13.Index = 1

 Me.menuItem13.Text = "2 series"

 '

 'menuItem3

 '

 Me.menuItem3.Index = 1

 Me.menuItem3.Text = "Grid"

 '

 'menuItem11

 '

 Me.menuItem11.Index = 2

 Me.menuItem11.Text = "IrregularGrid"

115

 '

 'menuItem8

 '

 Me.menuItem8.Index = 3

 Me.menuItem8.Text = "-"

 '

 'menuItem9

 '

 Me.menuItem9.Index = 4

 Me.menuItem9.Text = "Holes"

 '

 'menuItem10

 '

 Me.menuItem10.Index = 5

 Me.menuItem10.Text = "4D"

 '

 'menuItem29

 '

 Me.menuItem29.Index = 3

 Me.menuItem29.MenuItems.AddRange(New

System.Windows.Forms.MenuItem() {Me.menuHelpAbout})

 Me.menuItem29.Text = "&Help"

 '

 'menuHelpAbout

116

 '

 Me.menuHelpAbout.Index = 0

 Me.menuHelpAbout.Text = "&About"

 '

 'timer1

 '

 Me.timer1.Interval = 20

 '

 'checkBox1

 '

 Me.checkBox1.Location = New

System.Drawing.Point(56, 40)

 Me.checkBox1.Name = "checkBox1"

 Me.checkBox1.Size = New System.Drawing.Size(16, 24)

 Me.checkBox1.TabIndex = 3

 Me.checkBox1.Text = "checkBox1"

 '

 'checkBox2

 '

 Me.checkBox2.Location = New

System.Drawing.Point(120, 40)

 Me.checkBox2.Name = "checkBox2"

 Me.checkBox2.Size = New System.Drawing.Size(16, 24)

 Me.checkBox2.TabIndex = 4

117

 Me.checkBox2.Text = "checkBox2"

 '

 'checkBox3

 '

 Me.checkBox3.Location = New

System.Drawing.Point(184, 40)

 Me.checkBox3.Name = "checkBox3"

 Me.checkBox3.Size = New System.Drawing.Size(16, 24)

 Me.checkBox3.TabIndex = 5

 Me.checkBox3.Text = "checkBox3"

 '

 'label1

 '

 Me.label1.Location = New System.Drawing.Point(8,

24)

 Me.label1.Name = "label1"

 Me.label1.Size = New System.Drawing.Size(48, 16)

 Me.label1.TabIndex = 8

 Me.label1.Text = "Rot X"

 '

 'label2

 '

 Me.label2.Location = New System.Drawing.Point(72,

24)

118

 Me.label2.Name = "label2"

 Me.label2.Size = New System.Drawing.Size(48, 16)

 Me.label2.TabIndex = 9

 Me.label2.Text = "Rot Y"

 '

 'label3

 '

 Me.label3.Location = New System.Drawing.Point(136,

24)

 Me.label3.Name = "label3"

 Me.label3.Size = New System.Drawing.Size(48, 16)

 Me.label3.TabIndex = 10

 Me.label3.Text = "Rot Z"

 '

 'GroupBox1

 '

 Me.GroupBox1.Controls.Add(Me.Button1)

 Me.GroupBox1.Controls.Add(Me.label1)

 Me.GroupBox1.Controls.Add(Me.numericUpDown1)

 Me.GroupBox1.Controls.Add(Me.checkBox1)

 Me.GroupBox1.Controls.Add(Me.label2)

 Me.GroupBox1.Controls.Add(Me.numericUpDown2)

 Me.GroupBox1.Controls.Add(Me.checkBox2)

 Me.GroupBox1.Controls.Add(Me.numericUpDown3)

119

 Me.GroupBox1.Controls.Add(Me.label3)

 Me.GroupBox1.Controls.Add(Me.checkBox3)

 Me.GroupBox1.Location = New System.Drawing.Point(8,

96)

 Me.GroupBox1.Name = "GroupBox1"

 Me.GroupBox1.Size = New System.Drawing.Size(208,

112)

 Me.GroupBox1.TabIndex = 12

 Me.GroupBox1.TabStop = False

 Me.GroupBox1.Text = "VIEW"

 '

 'Button1

 '

 Me.Button1.Location = New System.Drawing.Point(8,

72)

 Me.Button1.Name = "Button1"

 Me.Button1.Size = New System.Drawing.Size(192, 23)

 Me.Button1.TabIndex = 11

 Me.Button1.Text = "Topological View"

 '

 'GroupBox2

 '

 Me.GroupBox2.Controls.Add(Me.CheckBox5)

 Me.GroupBox2.Controls.Add(Me.CheckBox4)

120

 Me.GroupBox2.Location = New System.Drawing.Point(8,

216)

 Me.GroupBox2.Name = "GroupBox2"

 Me.GroupBox2.Size = New System.Drawing.Size(208,

56)

 Me.GroupBox2.TabIndex = 13

 Me.GroupBox2.TabStop = False

 Me.GroupBox2.Text = "Mesh"

 '

 'CheckBox5

 '

 Me.CheckBox5.Location = New

System.Drawing.Point(96, 24)

 Me.CheckBox5.Name = "CheckBox5"

 Me.CheckBox5.Size = New System.Drawing.Size(64, 24)

 Me.CheckBox5.TabIndex = 2

 Me.CheckBox5.Text = "Row"

 '

 'CheckBox4

 '

 Me.CheckBox4.Location = New

System.Drawing.Point(16, 24)

 Me.CheckBox4.Name = "CheckBox4"

 Me.CheckBox4.Size = New System.Drawing.Size(64, 24)

121

 Me.CheckBox4.TabIndex = 1

 Me.CheckBox4.Text = "Column"

 '

 'StatusBar1

 '

 Me.StatusBar1.Location = New

System.Drawing.Point(0, 523)

 Me.StatusBar1.Name = "StatusBar1"

 Me.StatusBar1.Panels.AddRange(New

System.Windows.Forms.StatusBarPanel() {Me.StatusBarPanel1,

Me.StatusBarPanel2, Me.StatusBarPanel3})

 Me.StatusBar1.ShowPanels = True

 Me.StatusBar1.Size = New System.Drawing.Size(792,

22)

 Me.StatusBar1.TabIndex = 14

 '

 'StatusBarPanel1

 '

 Me.StatusBarPanel1.AutoSize =

System.Windows.Forms.StatusBarPanelAutoSize.Spring

 Me.StatusBarPanel1.Width = 258

 '

 'StatusBarPanel2

 '

122

 Me.StatusBarPanel2.AutoSize =

System.Windows.Forms.StatusBarPanelAutoSize.Spring

 Me.StatusBarPanel2.Width = 258

 '

 'StatusBarPanel3

 '

 Me.StatusBarPanel3.AutoSize =

System.Windows.Forms.StatusBarPanelAutoSize.Spring

 Me.StatusBarPanel3.Width = 258

 '

 'PictureBox1

 '

 Me.PictureBox1.Image =

CType(resources.GetObject("PictureBox1.Image"),

System.Drawing.Image)

 Me.PictureBox1.Location = New

System.Drawing.Point(8, 32)

 Me.PictureBox1.Name = "PictureBox1"

 Me.PictureBox1.Size = New System.Drawing.Size(208,

50)

 Me.PictureBox1.SizeMode =

System.Windows.Forms.PictureBoxSizeMode.StretchImage

 Me.PictureBox1.TabIndex = 15

 Me.PictureBox1.TabStop = False

123

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5,

13)

 Me.BackColor = System.Drawing.SystemColors.Control

 Me.ClientSize = New System.Drawing.Size(792, 545)

 Me.Controls.Add(Me.PictureBox1)

 Me.Controls.Add(Me.StatusBar1)

 Me.Controls.Add(Me.GroupBox2)

 Me.Controls.Add(Me.GroupBox1)

 Me.Controls.Add(Me.c1Chart3D1)

 Me.Menu = Me.mainMenu1

 Me.Name = "Form1"

 Me.StartPosition =

System.Windows.Forms.FormStartPosition.CenterScreen

 Me.Text = "Interactive 3D Surface Plotting Software

(SPS)"

 CType(Me.c1Chart3D1,

System.ComponentModel.ISupportInitialize).EndInit()

 CType(Me.numericUpDown2,

System.ComponentModel.ISupportInitialize).EndInit()

 CType(Me.numericUpDown3,

System.ComponentModel.ISupportInitialize).EndInit()

124

 CType(Me.numericUpDown1,

System.ComponentModel.ISupportInitialize).EndInit()

 Me.GroupBox1.ResumeLayout(False)

 Me.GroupBox2.ResumeLayout(False)

 CType(Me.StatusBarPanel1,

System.ComponentModel.ISupportInitialize).EndInit()

 CType(Me.StatusBarPanel2,

System.ComponentModel.ISupportInitialize).EndInit()

 CType(Me.StatusBarPanel3,

System.ComponentModel.ISupportInitialize).EndInit()

 Me.ResumeLayout(False)

 End Sub 'InitializeComponent

#End Region

 '/ <summary>

 '/ The main entry point for the application.

 '/ </summary>

 <STAThread()> _

 Shared Sub Main()

 Application.Run(New Form1())

 End Sub 'Main

125

 Private Sub OnValueChanged1(sender As Object, e As

System.EventArgs) Handles numericUpDown1.ValueChanged

 If bUpdate Then

 c1Chart3D1.ChartArea.View.RotationX =

CInt(numericUpDown1.Value)

 End If

 End Sub 'OnValueChanged1

 Private Sub OnValueChanged2(sender As Object, e As

System.EventArgs) Handles numericUpDown2.ValueChanged

 If bUpdate Then

 c1Chart3D1.ChartArea.View.RotationY =

CInt(numericUpDown2.Value)

 End If

 End Sub 'OnValueChanged2

 Private Sub OnValueChanged3(sender As Object, e As

System.EventArgs) Handles numericUpDown3.ValueChanged

 If bUpdate Then

 c1Chart3D1.ChartArea.View.RotationZ =

CInt(numericUpDown3.Value)

 End If

 End Sub 'OnValueChanged3

126

 Sub createTestData()

 Dim i, j As Integer

 Dim x, y As Single

 ' init point dataset

 setPoint = New Chart3DDataSetPoint()

 Dim ix As Integer

 For ix = 0 To 2

 Dim iy As Integer

 For iy = 0 To 2

 Dim iz As Integer

 For iz = 0 To 2

 pointData((ix + 3 * iy + 9 * iz)).X = ix

 pointData((ix + 3 * iy + 9 * iz)).Y = iy

 pointData((ix + 3 * iy + 9 * iz)).Z = iz

 pointData1((ix + 3 * iy + 9 * iz)).X = 3 + 2

* ix

 pointData1((ix + 3 * iy + 9 * iz)).Y = 2 *

iy

 pointData1((ix + 3 * iy + 9 * iz)).Z = 2 *

iz

 Next iz

 Next iy

127

 Next ix

 setPoint.AddSeries(pointData)

 setPoint.AddSeries(pointData1)

 'float[,] gridData = new float[11, 11];

 Dim gridData As Single(,) =

CType(Array.CreateInstance(GetType(Single), 11, 11),

Single(,))

 For i = 0 To (gridData.GetLength(0)) - 1

 For j = 0 To (gridData.GetLength(1)) - 1

 x = - 5 + i

 y = - 5 + j

 gridData(i, j) = 0.1F * x * x - 0.4F * y * y

 Next j

 Next i

 setGrid = New Chart3DDataSetGrid(- 5, - 5, 1, 1,

gridData)

 ' contour data for 4d chart

 contourData =

CType(Array.CreateInstance(GetType(Double),

setGrid.ColumnCount, setGrid.RowCount), Double(,))

 For i = 0 To setGrid.ColumnCount - 1

 For j = 0 To setGrid.RowCount - 1

128

 contourData(i, j) = i + j

 Next j

 Next i

 ' init irregular grid dataset

 Dim xdata As Single() = {1, 2, 6, 8, 9, 13, 15}

 Dim ydata As Single() = {1, 2, 4, 8, 11, 12, 15}

 Dim vals As Single(,) =

CType(Array.CreateInstance(GetType(Single), xdata.Length,

ydata.Length), Single(,))

 setIrGrid = New Chart3DDataSetIrGrid(xdata, ydata,

vals)

 If (True) Then

 x = CSng(setIrGrid.ColumnOrigin)

 For i = 0 To setIrGrid.ColumnCount - 1

 x += CSng(setIrGrid.ColumnDeltaArray(i))

 y = CSng(setIrGrid.RowOrigin)

 For j = 0 To setIrGrid.RowCount - 1

 y += CSng(setIrGrid.RowDeltaArray(j))

 Dim val As Single = 0.1F * x * x - 0.4F * y

* y

 setIrGrid.SetValue(i, j, val)

 Next j

129

 Next i

 End If

 ' starting dataset

 c1Chart3D1.ChartGroups(0).ChartData.Set = setGrid

 ' adding labels to chart

 Dim labelC As Chart3DLabel =

c1Chart3D1.ChartLabels.LabelsCollection.AddNewLabel()

 labelC.Text = "Label(Coordinate)"

 labelC.LabelCompass = LabelCompassEnum.SouthEast

 labelC.AttachMethodData.X = 20

 labelC.AttachMethodData.Y = 20

 labelC.Visible = True

 Dim labelD As Chart3DLabel =

c1Chart3D1.ChartLabels.LabelsCollection.AddNewLabel()

 labelD.Text = "Label(DataCoordinate)"

 labelD.LabelCompass = LabelCompassEnum.SouthEast

 labelD.Offset = 50

 labelD.Connected = True

 labelD.AttachMethod = AttachMethodEnum.DataCoordinate

 labelD.AttachMethodData.X = 0

 labelD.AttachMethodData.Y = 0

 labelD.AttachMethodData.Z = 0

130

 labelD.Visible = True

 Dim labelI As Chart3DLabel =

c1Chart3D1.ChartLabels.LabelsCollection.AddNewLabel()

 labelI.Text = "Label(DataIndex)"

 labelI.LabelCompass = LabelCompassEnum.SouthWest

 labelI.Offset = 25

 labelI.Connected = True

 labelI.AttachMethod = AttachMethodEnum.DataIndex

 labelI.AttachMethodData.SeriesIndex = 2

 labelI.AttachMethodData.PointIndex = 4

 labelI.Visible = True

 ' adding data labels

 c1Chart3D1.DefaultLabelStyle.BackColor =

Color.MistyRose

 c1Chart3D1.DefaultLabelStyle.Border.BorderStyle =

BorderStyleEnum.Solid

 For i = 0 To setGrid.RowCount - 1

 Dim lab As Chart3DDataLabel =

c1Chart3D1.ChartGroups.RowLabels.AddNewLabel()

 lab.Index = i

 lab.Text = "Row " + i.ToString()

 Next i

131

 For j = 0 To setGrid.ColumnCount - 1

 Dim lab As Chart3DDataLabel =

c1Chart3D1.ChartGroups.ColumnLabels.AddNewLabel()

 lab.Index = j

 lab.Text = "Col " + j.ToString()

 Next j

 ' adding labels to axis

 Dim axis As Chart3DAxis

 For Each axis In c1Chart3D1.ChartArea.Axes

 Dim alab1 As Chart3DAxisLabel =

axis.ValueLabels.AddNewLabel()

 alab1.Value = - 1

 alab1.Text = "minus one"

 Dim alab2 As Chart3DAxisLabel =

axis.ValueLabels.AddNewLabel()

 alab2.Value = + 1

 alab2.Text = "plus one"

 Next axis

 ' set bar colors

 c1Chart3D1.ChartGroups(0).Bar.SetBarColor(1, 1,

Color.Red)

132

 c1Chart3D1.ChartGroups(0).Bar.SetBarColor(1, 2,

Color.Red)

 c1Chart3D1.ChartGroups(0).Bar.SetBarColor(- 1, 3,

Color.Blue)

 c1Chart3D1.ChartGroups(0).Bar.SetBarColor(3, - 1,

Color.Green)

 End Sub 'createTestData

 Private Sub FormLoad(ByVal sender As Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Try

 Dim ApplicationPath As String

 ApplicationPath =

CurDir(Application.ExecutablePath) + "\"

 Dim sfg As String = ""

 sfg = ApplicationPath & "surface.dat"

c1Chart3D1.ChartGroups(0).ChartData.LoadDataFromFile(sfg)

 Me.StatusBarPanel1.Text = "surface.dat"

133

 'createTestData()

 AddHandler

c1Chart3D1.ChartArea.View.AfterRotate, AddressOf

RotateHandler

 'Me.propertyGrid1.Anchor = AnchorStyles.Top Or

AnchorStyles.Bottom Or AnchorStyles.Left

 Me.c1Chart3D1.Anchor = AnchorStyles.Top Or

AnchorStyles.Bottom Or AnchorStyles.Left Or

AnchorStyles.Right

 ' Setup Form1

 c1Chart3D1.ChartArea.View.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.Style.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.View.View3D =

View3DEnum.XY_2D_Pos

 ' c1Chart3D1.ChartArea.View.RotationX

= 25

 ' c1Chart3D1.ChartArea.View.RotationY

= 1

134

c1Chart3D1.ChartGroups(0).Surface.IsColumnMeshShowing =

False

c1Chart3D1.ChartGroups(0).Surface.IsRowMeshShowing = False

 c1Chart3D1.ChartGroups(0).Contour.IsZoned =

True

 Dim ZMax As Integer

 Dim Stp As Integer

 Dim i As Integer

 ZMax =

c1Chart3D1.ChartGroups(0).ChartData.Set.MaxZ

 Stp = 200 / ZMax

 c1Chart3D1.ChartGroups(0).Contour.NumLevels =

ZMax * 3

 c1Chart3D1.ChartArea.AxisZ.Min = ZMax * 5

135

 '

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(0).Style.Fill

Color = _

 '

System.Drawing.ColorTranslator.FromWin32(RGB(0, 0, 0))

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = System.Drawing.Color.Black

 For i = 1 To ZMax Step 1

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = _

System.Drawing.ColorTranslator.FromWin32(RGB(i * Stp + 50,

i * Stp + 50, 0))

 Next

 c1Chart3D1.Refresh()

 Me.Refresh()

136

 c1Chart3D1.ChartArea.View.IsInteractive = True

 Me.menuItem18.Checked = True

 'Check if a parameter was passed

 Dim passFilename As String =

Microsoft.VisualBasic.Command()

 If passFilename <> "" Then

 sfg = ApplicationPath & passFilename

 c1Chart3D1.SaveImage(sfg, ImageFormat.Jpeg)

 Application.Exit()

 End If

 Me.checkBox3.Checked = True

 Catch ex As Exception

 End Try

137

 End Sub 'FormLoad

 'c1Chart3D1.DumpModel();

 Private Sub menuItem3_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem3.Click

 c1Chart3D1.ChartGroups(0).ChartData.Set = setGrid

 End Sub 'menuItem3_Click

 Private Sub menuItem5_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem5.Click

 c1Chart3D1.ChartGroups(0).ChartType =

Chart3DTypeEnum.Bar

 End Sub 'menuItem5_Click

 Private Sub menuItem6_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem6.Click

 c1Chart3D1.ChartGroups(0).ChartType =

Chart3DTypeEnum.Scatter

 End Sub 'menuItem6_Click

138

 Private Sub menuItem7_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem7.Click

 c1Chart3D1.ChartGroups(0).ChartType =

Chart3DTypeEnum.Surface

 End Sub 'menuItem7_Click

 Private Sub timer1_Tick(ByVal sender As Object, ByVal e

As System.EventArgs) Handles timer1.Tick

 If checkBox1.Checked Then

 c1Chart3D1.ChartArea.View.RotationX +=

angleIncrement

 If c1Chart3D1.ChartArea.View.RotationX >= 360

Then

 c1Chart3D1.ChartArea.View.RotationX = 0

 End If

 numericUpDown1.Value =

CDec(c1Chart3D1.ChartArea.View.RotationX)

 End If

 If checkBox2.Checked Then

 c1Chart3D1.ChartArea.View.RotationY +=

angleIncrement

139

 If c1Chart3D1.ChartArea.View.RotationY >= 360

Then

 c1Chart3D1.ChartArea.View.RotationY = 0

 End If

 numericUpDown2.Value =

CDec(c1Chart3D1.ChartArea.View.RotationY)

 End If

 If checkBox3.Checked Then

 c1Chart3D1.ChartArea.View.RotationZ +=

angleIncrement

 If c1Chart3D1.ChartArea.View.RotationZ >= 360

Then

 c1Chart3D1.ChartArea.View.RotationZ = 0

 End If

 numericUpDown3.Value =

CDec(c1Chart3D1.ChartArea.View.RotationZ)

 End If

 End Sub 'timer1_Tick

 Private Sub checkBox1_CheckedChanged(ByVal sender As

Object, ByVal e As System.EventArgs) Handles

checkBox1.CheckedChanged, checkBox2.CheckedChanged,

checkBox3.CheckedChanged

140

 timer1.Enabled = checkBox1.Checked OrElse

checkBox2.Checked OrElse checkBox3.Checked

 End Sub 'checkBox1_CheckedChanged

 Sub setHoles(ByVal grset As Chart3DDataSetGrid, ByVal

enable As Boolean)

 Dim i, j As Integer

 If enable Then

 For i = 0 To grset.ColumnCount - 1

 For j = 0 To grset.RowCount - 1

 Dim x As Single

 Dim y As Single

 If TypeOf grset Is Chart3DDataSetIrGrid

Then

 Dim s As Chart3DDataSetIrGrid =

CType(grset, Chart3DDataSetIrGrid)

 x = CSng(s.GetColumnValue(i))

 y = CSng(s.GetRowValue(j))

 Else

 x = CSng(grset.MinX + i *

grset.RowDelta)

141

 y = CSng(grset.MinY + j *

grset.ColumnDelta)

 End If

 Dim val As Single = 0.1F * x * x - 0.4F

* y * y

 If i = j OrElse i = grset.RowCount - j

Then

 grset.SetValue(i, j, val)

 End If

 Next j

 Next i

 Else

 For i = 0 To grset.ColumnCount - 1

 For j = 0 To grset.RowCount - 1

 ' holes

 If i = j OrElse i = grset.RowCount - j

Then

 grset.SetValue(i, j, grset.Hole)

 End If

 Next j

 Next i

 End If

 End Sub 'setHoles

142

 Private Sub menuItem9_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem9.Click

 setHoles(setGrid, menuItem9.Checked)

 setHoles(CType(setIrGrid, Chart3DDataSetGrid),

menuItem9.Checked)

 menuItem9.Checked = Not menuItem9.Checked

 End Sub 'menuItem9_Click

 Private Sub menuItem10_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem10.Click

 If c1Chart3D1.ChartGroups(0).ChartData.ContourData

Is Nothing Then

 c1Chart3D1.ChartGroups(0).ChartData.ContourData

= contourData

 c1Chart3D1.ChartGroups(0).Contour.IsZoned =

True

 Else

 c1Chart3D1.ChartGroups(0).ChartData.ContourData

= Nothing

 c1Chart3D1.ChartGroups(0).Contour.IsZoned =

False

 End If

143

 c1Chart3D1.Refresh()

 End Sub 'menuItem10_Click

 Private Sub menuItem11_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem11.Click

 c1Chart3D1.ChartGroups(0).ChartData.Set =

Me.setIrGrid

 End Sub 'menuItem11_Click

 Private Sub menuItem13_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem13.Click

 If setPoint.SeriesCollection.Count = 1 Then

 setPoint.AddSeries(pointData1)

 End If

 c1Chart3D1.ChartGroups(0).ChartData.Set = setPoint

 c1Chart3D1.ChartGroups(0).ChartType =

Chart3DTypeEnum.Scatter

 End Sub 'menuItem13_Click

144

 Private Sub menuItem12_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem12.Click

 If setPoint.SeriesCollection.Count = 2 Then

 setPoint.RemoveSeries(1)

 End If

 c1Chart3D1.ChartGroups(0).ChartData.Set = setPoint

 c1Chart3D1.ChartGroups(0).ChartType =

Chart3DTypeEnum.Scatter

 End Sub 'menuItem12_Click

 Private Sub c1Chart3D1_MouseMove(ByVal sender As

Object, ByVal e As System.Windows.Forms.MouseEventArgs)

 End Sub 'c1Chart3D1_MouseMove

 'float x=0, y=0, z=0;

 'c1Chart3D1.ChartGroups[0].ChartData.CoordToDataCoord(

e.X, e.Y, ref x, ref y, ref z);

 'c1Chart3D1.ChartLabels[0].Text = String.Format(" {0},

{1}, {2}", x, y, z);

 Private Sub RotateHandler(ByVal sender As Object, ByVal

e As RotateEventArgs)

 bUpdate = False

145

 numericUpDown1.Value = CDec(e.RotationX / Math.PI *

180)

 numericUpDown2.Value = CDec(e.RotationY / Math.PI *

180)

 numericUpDown3.Value = CDec(e.RotationZ / Math.PI *

180)

 bUpdate = True

 End Sub 'RotateHandler

 Private Sub menuItem15_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem15.Click

 Dim ofd As New OpenFileDialog

 ofd.DefaultExt = ".dat"

 ofd.FileName = "surface"

 ofd.Filter = "SPS data files(*.dat)|*.dat|All

files(*.*)|*.*"

 If ofd.ShowDialog() = DialogResult.OK Then

c1Chart3D1.ChartGroups(0).ChartData.LoadDataFromFile(ofd.Fi

leName)

 Me.StatusBarPanel1.Text = ofd.FileName.ToString

146

 c1Chart3D1.ChartArea.View.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.Style.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.View.View3D =

View3DEnum.XY_2D_Pos

 ' c1Chart3D1.ChartArea.View.RotationX

= 25

 ' c1Chart3D1.ChartArea.View.RotationY

= 1

c1Chart3D1.ChartGroups(0).Surface.IsColumnMeshShowing =

False

c1Chart3D1.ChartGroups(0).Surface.IsRowMeshShowing = False

 c1Chart3D1.ChartGroups(0).Contour.IsZoned =

True

 Dim ZMax As Integer

 Dim Stp As Integer

 Dim i As Integer

147

 ZMax =

c1Chart3D1.ChartGroups(0).ChartData.Set.MaxZ

 Stp = 200 / ZMax

 c1Chart3D1.ChartGroups(0).Contour.NumLevels =

ZMax * 3

 c1Chart3D1.ChartArea.AxisZ.Min = ZMax * 5

 '

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(0).Style.Fill

Color = _

 '

System.Drawing.ColorTranslator.FromWin32(RGB(0, 0, 0))

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = System.Drawing.Color.Black

 For i = 1 To ZMax Step 1

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = _

148

System.Drawing.ColorTranslator.FromWin32(RGB(i * Stp + 50,

i * Stp + 50, 0))

 Next

 c1Chart3D1.Refresh()

 Me.Refresh()

 'Dim ZMax As Integer

 'Dim Stp As Integer

 'Dim i As Integer

 'ZMax =

c1Chart3D1.ChartGroups(0).ChartData.Set.MaxZ

 'Stp = 200 / ZMax

 'c1Chart3D1.ChartGroups(0).Contour.NumLevels =

ZMax

 'c1Chart3D1.ChartArea.AxisZ.Min = ZMax * 5

149

 'For i = 0 To ZMax - 1 Step 1

 '

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = _

 '

System.Drawing.ColorTranslator.FromWin32(RGB(i * Stp + 50,

i * Stp + 50, 0))

 'Next

 c1Chart3D1.Repaint = True

 c1Chart3D1.Refresh()

 Me.Refresh()

 Me.Refresh()

 End If

 End Sub 'menuItem15_Click

 Private Sub menuItem16_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem16.Click

 Dim sfd As New SaveFileDialog

150

 sfd.DefaultExt = "dat3xml"

 sfd.FileName = "doc1"

 sfd.Filter = "Chart3D.Net xml data

files(*.dat3xml)|*.dat3xml|C1Chart7 data

files(*.dat)|*.dat"

 If sfd.ShowDialog() = DialogResult.OK Then

c1Chart3D1.ChartGroups(0).ChartData.SaveDataToFile(sfd.File

Name)

 End If

 End Sub 'menuItem16_Click

 Private Sub menuItem18_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem18.Click

 c1Chart3D1.ChartArea.View.IsInteractive = Not

c1Chart3D1.ChartArea.View.IsInteractive

 menuItem18.Checked =

c1Chart3D1.ChartArea.View.IsInteractive

 End Sub 'menuItem18_Click

 Private Sub menuItem20_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem20.Click

151

 Me.Close()

 End Sub 'menuItem20_Click

 Private Sub menuItem21_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem21.Click

 Dim ofd As New OpenFileDialog

 ofd.DefaultExt = "chart3dxml"

 ofd.FileName = "doc1"

 ofd.Filter = "Chart3D xml

files(*.chart3dxml)|*.chart3dxml|All files (*.*)|*.*"

 If ofd.ShowDialog() = DialogResult.OK Then

 c1Chart3D1.LoadChartFromFile(ofd.FileName)

 Me.StatusBarPanel1.Text = ofd.FileName.ToString

 Dim ZMax As Integer

 Dim Stp As Integer

 Dim i As Integer

 ZMax =

c1Chart3D1.ChartGroups(0).ChartData.Set.MaxZ

 Stp = 200 / ZMax

152

 c1Chart3D1.ChartGroups(0).Contour.NumLevels =

ZMax

 c1Chart3D1.ChartArea.AxisZ.Min = ZMax * 5

 For i = 0 To ZMax Step 1

c1Chart3D1.ChartGroups(0).Contour.Levels.Item(i).Style.Fill

Color = _

System.Drawing.ColorTranslator.FromWin32(RGB(i * Stp + 50,

12, 0))

 Next

 c1Chart3D1.Refresh()

 Me.Refresh()

 Me.Refresh()

 End If

 End Sub 'menuItem21_Click

153

 Private Sub menuItem22_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem22.Click

 Dim sfd As New SaveFileDialog

 sfd.DefaultExt = "chart3dxml"

 sfd.FileName = "doc1"

 sfd.Filter = "Chart3D xml

files(*.chart3dxml)|*.chart3dxml|All files (*.*)|*.*"

 If sfd.ShowDialog() = DialogResult.OK Then

 c1Chart3D1.SaveChartToFile(sfd.FileName)

 End If

 End Sub 'menuItem22_Click

 Private Sub menuItem24_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem24.Click

 Dim pd As New PrintDocument

 AddHandler pd.PrintPage, AddressOf Me.pd_PrintPage

 Dim preview As New PrintPreviewDialog

 preview.Document = pd

 preview.ShowDialog()

 End Sub 'menuItem24_Click

154

 Private Sub pd_PrintPage(ByVal sender As Object, ByVal

ev As PrintPageEventArgs)

 Me.c1Chart3D1.Draw(ev.Graphics, ev.MarginBounds)

 End Sub 'pd_PrintPage

 Private Sub menuItem26_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem26.Click

 c1Chart3D1.ShowWizard()

 End Sub 'menuItem26_Click

 Private Sub menuItem27_Click_1(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem27.Click

 c1Chart3D1.ShowProperties()

 End Sub 'menuItem27_Click_1

 Private Sub menuItem28_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuItem28.Click

 Dim sfg As New SaveFileDialog

 sfg.Filter = "Metafiles (*.emf)|*.emf|" + "Bmp

files (*.bmp)|*.bmp|" + "Gif files (*.gif)|*.gif|" + "Jpeg

155

files (*.jpg;*.jpeg)|*.jpg;*.jpeg|" + "Png files

(*.png)|*.png"

 sfg.DefaultExt = "jpg"

 sfg.FileName = "image1"

 sfg.OverwritePrompt = True

 sfg.CheckPathExists = True

 sfg.RestoreDirectory = False

 sfg.ValidateNames = True

 If sfg.ShowDialog() = DialogResult.OK Then

 Dim imgfmt As ImageFormat = Nothing

 Select Case Path.GetExtension(sfg.FileName)

 Case ".emf"

 imgfmt = ImageFormat.Emf

 Case ".bmp"

 imgfmt = ImageFormat.Bmp

 Case ".gif"

 imgfmt = ImageFormat.Gif

 Case ".jpeg", ".jpg"

 imgfmt = ImageFormat.Jpeg

156

 Case ".png"

 imgfmt = ImageFormat.Png

 Case Else

 Return

 End Select

 c1Chart3D1.SaveImage(sfg.FileName, imgfmt)

 End If

 End Sub 'menuItem28_Click

 Private Sub menuHelpAbout_Click(ByVal sender As Object,

ByVal e As System.EventArgs) Handles menuHelpAbout.Click

 MessageBox.Show(Me, [Text], "About",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 End Sub 'menuHelpAbout_Click

 Private Sub GenerateZones()

 End Sub

 Private Sub Button1_Click(ByVal sender As

System.Object, ByVal e As System.EventArgs)

157

 End Sub

 Private Sub CheckBox4_CheckedChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

CheckBox4.CheckedChanged

 If Me.CheckBox4.Checked = True Then

c1Chart3D1.ChartGroups(0).Surface.IsColumnMeshShowing =

True

 Else

c1Chart3D1.ChartGroups(0).Surface.IsColumnMeshShowing =

False

 End If

 c1Chart3D1.Refresh()

 End Sub

 Private Sub CheckBox5_CheckedChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

CheckBox5.CheckedChanged

 If Me.CheckBox4.Checked = True Then

c1Chart3D1.ChartGroups(0).Surface.IsRowMeshShowing = True

158

 Else

c1Chart3D1.ChartGroups(0).Surface.IsRowMeshShowing = False

 End If

 c1Chart3D1.Refresh()

 End Sub

 Private Sub Button1_Click_1(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

Button1.Click

 c1Chart3D1.ChartArea.View.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.Style.BackColor =

System.Drawing.Color.DarkGray

 c1Chart3D1.ChartArea.View.View3D =

View3DEnum.XY_2D_Pos

 'c1Chart3D1.ChartArea.View.RotationX = 30

 'c1Chart3D1.ChartArea.View.RotationY = 1

c1Chart3D1.ChartGroups(0).Surface.IsColumnMeshShowing =

False

159

 c1Chart3D1.ChartGroups(0).Surface.IsRowMeshShowing

= False

 c1Chart3D1.Refresh()

 End Sub

160

 161

APPENDIX B

CODE FOR KINETIC MONTE CARLO SIMULATION

 162

include <cstdlib>

include <iostream>

include <iomanip>

include <ctime>

include <stdio.h>

include <stdlib.h>

include "growth.h"

include "sobol.h"

using namespace std;

int main(void)

{

 ofstream GrowthSite("GrowthSites.txt", ios::out);

 ofstream FinalReport("GrowthReport.txt", ios::out);

 ofstream W("Roughness.txt", ios::app);

 GrowthSite <<"x,y,z"<<endl;

 float lattice = 0.543; // lattice constant for Silicon in

Nanometer

 float data[11];

 int **history;

 int leng,wid,hei; //length, width, of template window; hei is

time

 int x,y,z;

 int x_max, y_max, z_max;

 int layers;

 163

 int inital_out = 1; //Variable used to determine if

inialized array

 // is to outputed for review

 int plot_out = 0;

 int i,j,k,a,b,c; //index variables

 int ***volume; //3D crystal structure

 float pdf[3]; //probability density functions for

transition

 int coord[3]; //x, y coordinate on surface

 int index[3]; //size of x,y,z inicicies of SUT

 int nano[3]; //size of x,y,z indicies of nano

window

 static int sobol_i = 0; // index used to increament sobol

generator

 int select = -1; //used to determine which process was

selected (Adsopr,Desorp,Diff)

 float KMC_percentage = 0; // percentage of surface that will be

sampled each period

 int KMC_period = 0; // number of KMC trials in each

time step

 int time_period = 0; // total time period to be modeled

 int valid_site = 0;

 double pressure;

 double temprature;

 double area;

 double mass = 28.0855;

 164

 int adjacent = 0;

 int side[4];

 int layer_limit; //total number of layers created in 3D

space(size of array)

 float deviations;

 int defect;

 double clock = 0;

 int transistions[3] = {0,0,0};

 double adsorp_trans = 0;

 double desorp_trans = 0;

 double diff_trans = 0;

 float temp;

 double *field;

 double params[4];

 float pattern[2];

 double rough;

/**

Start up menu:

Ask user for simulation paramters:

 window dimensions

 KMC period

 Time period

 Temprature

 165

**/

 setup(data);

 optic_setup(params,pattern);

 field = Fresnel(pattern,params);

 KMC_percentage = data[5];

 time_period = data[6];

 deviations = data[9];

 // Conversion of length into array indecies of the nano window

 // takes int and stores into float for conversion

 leng = data[1];

 temp = data[1];

 x = ((temp)/(lattice/2));

 wid = data[0];

 temp = data[0];

 y = ((temp)/(lattice/2));

 hei = data[2];

 temp = data[2];

 z = temp;

 //Setting max indices for SUT

 x_max = x * 10;

 166

 y_max = y * 10;

 z_max = data[8];

 inital_out = data[7];

 temprature = data[3];

 pressure = data[4];

 area = data[0] * data[1];

 layer_limit = data[8];

 sobol_i = get_seed();

 //Defines the dimensions of the Surface Under Test (SUT)

 index[0] = x_max;

 index[1] = y_max;

 index[2] = z_max;

 nano[0] = x;

 nano[1] = y;

 nano[2] = z;

timestamp();

cout << "**"<<endl;

cout <<"Initial indicies for nano window and SUT" << endl;

cout <<"nano window"<<endl;

cout << "x = "<<x <<", y = "<<y<<", z ="<<z<<endl;

cout <<"SUT"<<endl;

cout <<"x = "<<x_max<<", y = "<<y_max<<", z = "<<z_max<<endl;

 167

KMC_period = (KMC_percentage) * (x/2) * (y/2);

/**

Create and initalize an array to hold site selection history

**/

 history = array2Dcreate(KMC_period,2);

 array2Dinitial(history,KMC_period,2);

/***

Create 3D growth surface

***/

 cout << "....Creating Growth Surface.....\n";

 volume = array3Dcreate(x_max,y_max,z_max);

/***

Initalize Growth Surface:

site set to -1 if no growth is possible at site (not a bonding site)

site set to 0 if growth can occur

 168

***/

 cout << ".......Initalizing Growth Surface.....\n";

 defect = 0;

 cout <<"Do you want to add an island on inital surface (1:Yes,

0:No)";

 cin >> defect;

 cout<<endl;

 array3Dinitial(volume,x_max,y_max,z_max,defect);

/***

Outputs intialized growth surface for review, can be disabled

**/

 if(inital_out == 1)

 {

 cout << ".......... Outputing Initaialized Growth Surface

......\n";

 smooth(volume, index);

 system("SPS.exe");

 169

 }

/**

Begin KMC simulation process

**/

 cout << "...Starting Simulation ...\n";

 //total number of bonding sites is wid/2 * leng/2

 //volume[] potrays the actual crystal structure with spacing

associated

 //the fcc structure

 KMC_period = (KMC_percentage) * (x/2) * (y/2);

 cout << "\n\n... aproximatley "<<KMC_period<<" out of "<<(x/2) *

(y/2)<<" sites will be examined per KMC cycle\n\n";

 a = 0;

 for(int u = 0; u < z; u++)

 {

 cout << "Entering layer #"<< u << endl;

 GrowthSite << "Entering layer #"<< u << endl;

 array2Dinitial(history,KMC_period,2);

 for(i = 0; i < KMC_period;i++)

 {

 170

 //Calls ValidSite()which updates coord, with a new

site x, y coord on the SUT

 //that falls within valid range crierion

 ValidSite(&sobol_i,x_max,y_max,z_max,nano,coord,volume,deviations

,history, KMC_period);

 //cout<<"Valid Site found on KMC itteration #"<<i<<",

"<<volume[coord[0]][coord[1]][coord[2]]<<endl;

 //***

 //PDF caluclations based upon if site is occupied

 //vacant

 //

 //***

 //Site is vacant

 if((coord[2] == 0) ||(coord[2] == 1))

 { adjacent = -1;

 pdfAdsorp(pdf,coord,temprature,mass,pressure,area,index,deviation

s,adjacent,volume,field,pattern);

 //cout<<"pdf is: "<<pdf[0]<<", "<<pdf[1]<<",

"<<pdf[2]<<endl;

 pdfVacantSelect(pdf, &select,transistions);

 171

 //cout<<"pdf calculated for vacant on KMC

itteration #"<<i<<endl;

 }

 //Site is occupied

 if(coord[2] > 1)

 {

 neighbors(volume,coord,index,&adjacent);

 //cout << "Done with neighbors"<<endl;

 pdfAdsorp(pdf,coord,temprature,mass,pressure,area,index,deviation

s,adjacent,volume,field,pattern);

 //cout << "Done with Adsorp" <<endl;

 pdfDesorp(pdf,temprature,adjacent,area);

 //cout << "Done with Desorp" <<endl;

 pdfDiff(pdf,temprature,adjacent,area);

 //cout << "Done with Diff" <<endl;

 //cout<<"pdf is: "<<pdf[0]<<", "<<pdf[1]<<",

"<<pdf[2]<<endl;

 pdfSelection(pdf,&select,transistions);

 //cout<<"pdf calculated for occupied on KMC

itteration #"<<i<<endl;

 }

 GrowthSite

<<coord[0]<<"\t"<<coord[1]<<"\t"<<coord[2]<<"\t"<<select<<endl;

 172

 history[i][0] = coord[0];

 history[i][1] = coord[1];

 //Updating selected site based upon pdf calculation

and RNGs

 siteUpdate(volume, coord, &select, index,adjacent);

 //cout<<"Site updated "<<coord[2]<< ", on KMC

itteration #"<<i<<" "<<endl;

 }

 adsorp_trans = transistions[0] + adsorp_trans;

 desorp_trans = transistions[1] + desorp_trans;

 diff_trans = transistions[2] + diff_trans;

 timeStep(&clock,pdf,&area, transistions);

 if(data[10] == 1)

 //snapshot(volume, index,u);

 transistions[0] = 0;

 transistions[1] = 0;

 transistions[2] = 0;

 rough = roughness(volume,index,nano,deviations);

 W << rough <<endl;

 //cout << "Roghness = " << rough <<endl;

 /* if((u == 18) || (u == 32))

 {

 smooth(volume, index);

 system("SPS.exe");

 173

 }*/

 }

 cout << "......Simulation Complete\n";

 FinalReport <<"......Simulation Complete\n";

 FinalReport <<"Growth Temp = " <<temprature<<" K\n"<<endl;

 FinalReport <<"Growth Pressure = "<<pressure<<" Torr\n"<<endl;

 FinalReport <<"Standard Deviations = "<<deviations<<" \n"<<endl;

 FinalReport <<"---------------------------------"<<endl;

 FinalReport <<"Nano window diminsions were as follows"<<endl;

 FinalReport <<"X = "<<wid<<" nm, Y = "<<leng<<" nm, Z = "<<hei<<"

nm"<<endl;

 FinalReport <<"Window lies between " << (x_max -x)/2 <<" to " <<

((x_max - x)/2) + x <<endl;

 FinalReport <<"Window lies between " << (y_max -y)/2 <<" to " <<

((y_max - y)/2) + y <<endl;

 FinalReport << "\n\n... aproximatley "<<KMC_period<<" out of

"<<(x/2) * (y/2)<<" sites will be examined per KMC cycle\n\n"<<endl;

 FinalReport <<"----------------------------"<<endl;

 FinalReport <<"Growth took "<<clock <<" sec"<<endl;

 FinalReport <<" or "<<clock/60 <<" min\n"<<endl;

 FinalReport <<"----------------------------"<<endl;

 174

 FinalReport <<adsorp_trans<<" Adsorption Transistions Occured,

"<< (adsorp_trans /(adsorp_trans + desorp_trans + diff_trans)) * 100

<<"% of all Transistions"<<endl;

 FinalReport <<desorp_trans<<" Desorption Transistions Occured "<<

(desorp_trans /(adsorp_trans + desorp_trans + diff_trans)) * 100 <<"%

of all Transistions"<<endl;

 FinalReport <<diff_trans<<" Surface Diffusion Transistions

Occured "<<(diff_trans /(adsorp_trans + desorp_trans + diff_trans)) *

100 <<"% of all Transistions"<<endl;

 FinalReport.close();

 timestamp();

 //cout<<"Do you want to print output to a CSV file for plotting?

(1 = Yes, 0 = No): ";

 //cin>>plot_out;

 //if(plot_out == 1)

 //{

 cout<<"....Converting and saving into CSV file....."<<endl;

 //PlotCSV(volume, index);

 smooth(volume, index);

 free(volume);

 //array3Dout(volume, index[0], index[1], index[2]);

 //}

 //wait();

 if(data[10] == 1)

 // system("Slideshow.exe");

 //else

 175

 {

 system("conversion.exe");

 system("SPS.exe");

 }

 //**********Print out a growth

Summary****************************

return 0;

}

include <cstdlib>

include <iostream>

include <iomanip>

include <fstream>

include <ctime>

include <cmath>

#include <math.h>

#define ACC 40.0 //Make larger to increase accuracy.

#define BIGNO 1.0e10

#define BIGNI 1.0e-10

#define Bessel_max_order 20

#define PI 3.1415926535897932

const float pi = 3.14159265;

 176

using namespace std;

//

#define oops(s) { perror((s)); exit(EXIT_FAILURE); }

#define MALLOC(s,t) if(((s) = malloc(t)) == NULL) { oops("error:

malloc() "); }

#define INCREMENT 10

//

float bessj0(float);

float bessj1(float);

float bessj(int , float);

void nrerror(char *);

double GeoField(double, double, double);

double DifField(double, double);

void FieldNormal(double *,int);

double* Fresnel(float *, double*);

void array2Dinitialgeo(double **, int , int);

double getField(int*, int*, double *, float *);

double** array2DcreateDouble(int ,int);

double roughness(int ***,int *, int*,int);

int topofstack(int ,int ,int , int ***);

void setup(double *,float *);

void optic_setup(double *);

void intArrayClear(int*, int);

void array3Dintial(int***, int, int, int);

void array2Dinitial(int **, int, int,int);

 177

void array3Dout(int***, int,int,int);

void PlotCSV(int ***, int *);

void wait(void);

void pdfAdsorp(float *, int *,int, double , double , double, int *,

float,int,int***, double *, float *);

void pdfDesorp(float *,int,int,double);

void pdfDiff(float *,int,int,double);

void neighbors(int ***,int *,int *,int *);

void smooth(int ***,int *);

void snapshot(int ***,int *,int);

int*** array3Dcreate(int,int,int);

int** array2Dcreate(int ,int);

void optic_setup(double *data,float *pattern)

{

 cout << "\n";

 cout << "These parameters are required for Geometirc \n";

 cout << " affect to be accounted for \n";

/* cout << " Please enter the following parameters: \n";

 cout << " APERTRUE RADIUS: ";

 cin >> data[0];

 cout << "\n";

 cout << " DISTANCE FROM SOURCE TO APERTRUE: ";

 cin >> data[1];

 178

 cout << "\n";

 cout << " DISTANCE FROM APERTRUE TO SUBSTRATE : ";

 cin >> data[2];

 cout <<"\n";

 cout << " WAVELENGTH : ";

 cin >> data[3];

 cout <<"\n";

 cout << " Length of pattern ";

 cin >> pattern[0];

 cout << "\n";

 cout << " pattern resolution: ";

 cin >> pattern[1];

 cout << "\n";

 */

 data[0] = 10e-3;

 data[1] = 10e-2;

 data[2] = 200e-9;

 data[3] = 500e-6;

 pattern[0] = 20e-6;

 pattern[1] = 0.005e-6;

}

void setup(float *data)

{

 cout << "\nKinetic Monte Carlo Simulation for Epitaxial\n";

 cout << "Grown Nanostructures.\n";

 179

 cout << "\n";

 cout << "Model will assume an fcc Si lattice structure for

simulation";

 cout << " Please enter the following parameters: \n";

 cout << " Length of Window (nm): ";

 cin >> data[0];

 cout << "\n";

 cout << " Width of Window (nm): ";

 cin >> data[1];

 cout << "\n";

 cout << " Monte Carlo Simulated Growth Cycles : ";

 cin >> data[2];

 cout << " Growth Temprature : ";

 cin >> data[3];

 cout <<"\n";

 cout << " Growth Pressure : ";

 cin >> data[4];

 cout <<"\n";

 cout << " KMC Coverage Percentage : ";

 cin >> data[5];

 cout <<"\n";/*

 cout << " Time Period : ";

 cin >> data[6];

 cout <<"\n";

 cout << " Would you like to review initalized surface [1 =

yes, 0 = no] : ";

 cin >> data[7];*/

 180

 cout <<"\n";

 cout << " How many layers do you want to be created in 3D

space"<<endl;

 cout << " (process limitation) : ";

 cin >> data[8];

 cout <<"\n";/*

 cout << " How many standard deviations : ";

 cin >> data[9];

 cout <<"\n";

 cout << " Do you want snap shots of the surface [1 = yes, 0

= no]: ";

 cin >> data[10];*/

/*

 data[0] = 20;

 data[1] = 20;

 data[2] = 35;

 data[3] = 500;

 data[4] = 7.5e-5;

 data[5] = 1;*/

 data[6] = 1;

 data[7] = 0;

 //data[8] = 300;

 data[9] = 9;

 data[10] =0;

}

 181

void intArrayClear(int *ptr, int length)

{

 int i;

 for(i = 0; i<length; i++)

 {

 ptr[i] = 0;

 //cout <<" ptr[" << i << "] = " << ptr[i] << "\n";

 }

}

void array3Dinitial(int ***Vol, int x, int y, int z,int defect)

{

 int i,j,k;

 int i_mod, j_mod, k_mod;

 int barrier = 10;

 if(defect == 1)

 {

 cout << "What height do you want for island";

 cin >> defect;

 cout <<"\n"<<endl;

 }

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 {

 182

 for(k = 0; k < z; k++)

 {

 i_mod = i%2;

 j_mod = j%2;

 k_mod = k%2;

 if(k_mod == 0)

 {

 if((i_mod) == (j_mod))

 {

 if (defect ==0)

 Vol[i][j][k] = 0;

 else

 {

 if((k <= barrier) && (i >544)

&& (i < 584)

 && (j >544) && (j <

584))

 {

 Vol[i][j][k] = 1;

 //cout<<"got here on x

= "<<i<<endl;

 }

 else

 Vol[i][j][k] = 0;

 }

 183

 }

 else

 {

 Vol[i][j][k] = -1;

 }

 }

 else

 {

 if((i_mod) != (j_mod))

 {

 if (defect ==0)

 Vol[i][j][k] = 0;

 else

 {

 if((k <= barrier) && (i >544)

&& (i < 584)

 && (j >544) && (j <

584))

 {

 Vol[i][j][k] = 1;

 //cout<<"got here on x

= "<<i<<endl;

 }

 else

 Vol[i][j][k] = 0;

 }

 184

 }

 else

 {

 Vol[i][j][k] = -1;

 }

 }

 }

 }

 if((i % 16) == 0)

 {

 //barrier++;

 //cout << "x = " << i << endl;

 //cout << "barrier = "<< barrier <<endl;

 }

 }

}

void array2Dinitial(int **Vol, int x, int y)

{

 for(int i = 0; i < x; i++)

 {

 for(int j = 0; j < y; j++)

 {

 185

 Vol[i][j] = 0;

 }

 }

}

void array3Dout(int ***Vol, int x, int y, int z)

{

 ofstream outData("3DReview.csv", ios::out);

 outData << "x , y , z ,Site " << endl;

 int i,j,k;

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 {

 for(k = 0; k < z; k++)

 {

 outData << i << "," << j << "," << k << "," <<

Vol[i][j][k] << "\n";

 }

 }

 }

}

void PlotCSV(int ***Vol, int *index)

 186

{

 ofstream outData("3DPlot.dat", ios::out);

 //outData << "x , y , Site " << endl;

 int i,j,k;

 int x_max, y_max, z_max;

 int high = 0;

 x_max = index[0];

 y_max = index[1];

 z_max = index[2];

 outData <<"GRID\t"<<x_max<<"\t"<<y_max<<endl;

 outData <<"-5\t1\t1\t0\t0"<<endl;

 /*for(i = 0; i < y_max; i++)

 {

 outData << i << ",";

 }

 outData <<"\n";

*/

 for(i = 0; i < x_max; i++)

 {

 //outData << i;

 for(j = 0; j < y_max; j++)

 {

 for(k = 0; k < z_max; k++)

 {

 if(Vol[i][j][k] == 1)

 187

 {

 high = k;

 //cout<<"For

Vol["<<i<<"]["<<j<<"]["<<k<<"] k is: "<<k<<endl;

 }

 if(k == (z_max - 1))

 {

 outData << "\t" << high ;

 high = 0;

 }

 }

 }

 outData <<endl;

 }

}

int*** array3Dcreate(int x,int y,int z)

{

 int i,j,k;

 int*** array3D = new int**[x];

 for (i = 0; i < x; i++)

 {

 array3D[i] = new int*[y];

 for (j = 0; j < y; j++)

 188

 {

 array3D[i][j] = new int[z];

 }

 }

 return array3D;

}

int** array2Dcreate(int x,int y)

{

 int i, j;

 int ** array2D = new int*[x];

 for(i = 0; i < x; i++)

 {

 array2D[i] = new int[y];

 }

 return array2D;

}

double** array2DcreateDouble(int x,int y)

{

 int i, j;

 double ** array2D = new double*[x];

 for(i = 0; i < x; i++)

 {

 array2D[i] = new double[y];

 189

 }

 return array2D;

}

/**

Purpose: pdfAdsorp calculates the proablitiy of an adsorption at a

paticular site on the

 surface based upon growth conditions

Var: pdf: the probability density function array that hold the pd for

each possible

 transition that could occur pdf[0] = adsorption

 temp:temprature of molecules, a measure of kinetic energy

(kelvin)

 mass: Molecular Weight of the impinging specie

 pressure: pressur of reactor in Torr

 area: area where impinging flux is subject to (should be

given in nm^2)

 stick: Sticking coefficent

 stdev: standard deveiation associated with shape of flux

comming through template

 stoch: size of the guassian distribution at the selected

site

 flux: Impinging flux in units of atoms(molecules)/nm^2/s

*****************/

 190

void pdfAdsorp(float *pdf, int *site, int temp, double mass, double

pressure, double area, int *max, float standard,int adjacent,int

***volume, double *field, float *pattern)

{

 ofstream outData("PDF_Adsorption.txt", ios::app);

 outData << "***********************"<<endl;

 //outData << "x , y , Site " << endl;

 //pdfAdsorp(pdf,coord,temprature,mass,pressure,area,index,deviati

ons,adjacent);

 /*

 pdf probability function

 coord = site under test

 temp temprature

 mass mass of flux atom

 pressure pressure of chamber

 area area of nano window

 max maximum indicies of area under test

(Substrate indicies)

 standard STD

 adjacent number of neighboring atoms of the site under

test

 191

 */

 double diffraction;

 double cons = 2 * pi;

 double stick = 1;

 double flux;

 double stdev_x,stdev_y ;

 double mean_x, mean_y;

 double zscore_x, zscore_y;

 double exp_x, exp_y;

 double stoch = 1;

 int x,y,z;

 int x_max, y_max, z_max;

 int x_nano, y_nano; //nano window dimension

 int offset_x, offset_y; //offsets used to center the nano window

on SUT

 int x_low, x_limit; //limits for valid x coordinate

 int y_low, y_limit; //limits for valid y coordinate

 x = site[0];

 y = site[1];

 z = site[2];

 x_max = max[0];

 y_max = max[1];

 192

 z_max = max[2];

 x_nano = x_max / 10;

 y_nano = y_max / 10;

 mean_x = x_max / 2;

 mean_y = y_max / 2;

 stdev_x = ((x_nano / 2) + mean_x) / standard; // (2 * Num of

STDEV that the nano window extends too)

 stdev_y = ((y_nano / 2) + mean_y) / standard;

 /*

 offset_x = (x_max - (x_nano))/2;

 offset_y = (y_max - (y_nano))/2;

 x_low = offset_x;

 x_limit = x_max - offset_x;

 y_low = offset_y;

 y_limit = y_max - offset_y;

 */

 zscore_x = (x - mean_x) / (stdev_x);

 if(zscore_x < 0)

 zscore_x = zscore_x * -1;

 zscore_y = (y - mean_y) / (stdev_y);

 if(zscore_y < 0)

 193

 zscore_y = zscore_y * -1;

 exp_x = exp(-0.5 * zscore_x * zscore_x);

 exp_y = exp(-0.5 * zscore_y * zscore_y);

 //((1 / (stdev_x * stdev_y * cons)) *

 /// ((1 / (stdev_x * stdev_y * cons)))

 //stoch = pow(2.718281828459,(-(0.5) * (((x - mean_x) * (x -

mean_x) / (stdev_x * stdev_x)) + ((y - mean_y) * (y - mean_y) /

(stdev_y * stdev_y)))));

 //stoch = exp(-(0.5) * (pow((x - mean_x) / (stdev_x) , 2) +

((pow((y - mean_y) / (stdev_y) , 2)))));

 stoch = exp_x * exp_y;

 outData << "stoch = " << stoch <<endl;

 outData << "zscore x = "<<zscore_x<<", zscore y =

"<<zscore_y<<endl;

 outData << "exp x = "<<exp_x<<", exp y = "<<exp_y<<endl;

 outData <<" std_x = "<<stdev_x<<", std y = "<<stdev_y<<endl;

 outData <<"x mean = "<<mean_x <<", y mean = "<< mean_y <<endl;

 outData <<" x = "<<x<<", y = "<<y<<endl;

 diffraction = getField(site,max, field, pattern);

 outData <<"Field = "<<diffraction<<endl;

 flux = 3.51e8 * pressure / (sqrt(mass * temp));

 194

 stick = 1;

 pdf[0] = stick * flux ; //* area* stoch * diffraction;

 outData<<"flux = "<<flux<<endl;

 outData<<"area = "<<area<<endl;

 outData<<"pdfAdsorp = "<<pdf[0]<<endl;

 outData.close();

 if(z > 1)

 {

 site[2] = site[2] - 2;

 neighbors(volume,site,max,&adjacent);

 if(adjacent == 0)

 {

 pdf[0] = pdf[0] * 0.001;

 }

 site[2] = site[2] + 2;

 }

}

/*

Purpose: pdfDesorp determines the probability of desorption at a

surface site based

 upon current growth parametes

 195

Var: pdf: output, where the transition rate of desorption is

saved pdf[1]

 temp: current temprature of atoms, measure of

kinetic energy (kelvin)

 atoms: Number of side neighbors to site under review

 area: area of surface being simulated (nm^2)

 desorp_energy: Energy of desorption/adsorption (in

Joules) depth of potential

 well

 bond_evergy: Energy required to break bond (used in

side neighbor)

*/

void pdfDesorp(float *pdf,int temp,int atoms,double area)

{

 double desorp_energy = 2.72e-19;//2.64e-18;

 double bond_energy = 7.59e-20;//3.69e-19;

 pdf[1] = ((1.38062e-23)/ (6.6262e-34)) * temp * exp(-

(desorp_energy + (atoms * bond_energy)) / (1.38062e-23 * temp)) *

area * 1e-14;

 //cout<<"Desorp = "<<pdf[1]<<endl;

 //cout<<"temp: "<<temp<<", neighbors: "<<atoms<<", area:

"<<area<<endl;

}

/*

 196

Purpose: pdfDiff determines the probability of diffusion at a surface

site based

 upon current growth parametes

Var: pdf: output, where the transition rate of diffusion is

saved pdf[2]

 temp: current temprature of atoms, measure of

kinetic energy (kelvin)

 atoms: Number of side neighbors to site under review

 area: area of surface being simulated (nm^2)

 desorp_energy: Energy of diffusion (in Joules) depth

of potential

 well

 bond_evergy: Energy required to break bond (used in

side neighbor)

*/

void pdfDiff(float *pdf,int temp,int atoms, double area)

{

 double diff_energy = 2.72e-20;//3.02e-19;

 double bond_energy = 7.59e-20;//3.69e-19;

 pdf[2] = ((1.38062e-23)/ (6.6262e-34)) * temp * exp(-(diff_energy

+ (atoms * bond_energy)) / (1.38062e-23 * temp)) * area * 1e-14;

 //cout<<"Diff = "<<pdf[2]<<endl;

 //cout<<"temp: "<<temp<<", neighbors: "<<atoms<<", area:

"<<area<<endl;

}

 197

void neighbors(int ***Vol,int *site,int *index,int *count)

{

 //neighbors(volume,coord,index,&adjacent);

 int x,y,z;

 int x_max, y_max, z_max;

 *count = 0;

 x = site[0];

 y = site[1];

 z = site[2];

 x_max = index[0];

 y_max = index[1];

 z_max = index[2];

 if(Vol[x][y + 2][z] == 1)

 {

 *count = *count + 1;

 }

 if(Vol[x][y - 2][z] == 1)

 {

 *count = *count + 1;

 198

 }

 if(Vol[x + 2][y][z] == 1)

 {

 *count = *count + 1;

 }

 if(Vol[x - 2][y][z] == 1)

 {

 *count = *count + 1;

 }

}

void smooth(int ***Vol,int *index)

{

 /*

 Vol = 3d array

 site = current site being evaluated

 index = max x,y,z indicies

 */

 ofstream outData("surface.dat", ios::out);

 int i,j,k;

 int high;

 int x,y,z;

 199

 int x_max, y_max, z_max;

 int bonds = 0;

 int site[3];

 int **output;

 int i_mod, j_mod;

 x_max = index[0];

 y_max = index[1];

 z_max = index[2];

 output = array2Dcreate(x_max,y_max);

 for(i = 0; i < x_max; i++)

 {

 for(j = 0; j < y_max; j++)

 {

 for(k = 0; k < z_max; k++)

 {

 if(Vol[i][j][k] == 1)

 {

 high = k;

 }

 200

 if(k == (z_max - 1))

 {

 output[i][j] = high;

 high = 0;

 }

 }

 }

 }

 bonds = 0;

/*

 for(i = 2; i < (x_max - 1); i++)

 {

 for(j = 2; j < (y_max - 1); j++)

 {

 i_mod = i%2;

 j_mod = j%2;

 if((i_mod) == (j_mod))

 {

 if((output[i][j] - output[i][j+1]) > 0)

 {

 bonds++;

 }

 if((output[i][j] - output[i][j-1]) > 0)

 {

 bonds++;

 201

 }

 if((output[i][j] - output[i + 1][j]) > 0)

 {

 bonds++;

 }

 if((output[i][j] - output[i - 1][j]) > 0)

 {

 bonds++;

 }

 if(output[i][j] == 0)

 {

 output[i][j] = output[i][j+1];

 }

 else if(bonds > 1)

 {

 output[i][j]++;

 }

 }

 bonds = 0;

 }

 }

*/

 outData <<"GRID\t"<<x_max<<"\t"<<y_max<<endl;

 outData <<"-5\t1\t1\t0\t0"<<endl;

output[0][0]=0;

 for(i = 0; i < x_max; i++)

 202

 {

 for(j = 0; j < y_max; j++)

 {

 outData << output[i][j] << "\t";

 }

 outData <<endl;

 }

 free(output);

}

void snapshot(int ***Vol,int *index,int layer)

{

 /*

 Vol = 3d array

 site = current site being evaluated

 index = max x,y,z indicies

 layer = current layer under evaluation

 */

 char filename[23];

 char temp;

 filename[0] = 'S';

 filename[1] = 'P';

 filename[2] = 'S';

 filename[3] = '.';

 filename[4] = 'e';

 203

 filename[5] = 'x';

 filename[6] = 'e';

 filename[7] = ' ';

 if(layer <= 9)

 {

 temp = layer;

 filename[8] = 48;

 filename[9] = 48;

 filename[10] = temp + 48;

 filename[11] = 'L';

 filename[12] = 'a';

 filename[13] = 'y';

 filename[14] = 'e';

 filename[15] = 'r';

 filename[16] = '_';

 filename[17] = '1';

 filename[18] = '.';

 filename[19] = 'j';

 filename[20] = 'p';

 filename[21] = 'g';

 filename[22] = 0;

 }

 else if(layer <= 99)

 {

 temp = layer;

 204

 filename[8] = 48;

 filename[9] = (temp / 10) + 48;

 filename[10] = (temp % 10) + 48;

 filename[11] = 'L';

 filename[12] = 'a';

 filename[13] = 'y';

 filename[14] = 'e';

 filename[15] = 'r';

 filename[16] = '_';

 filename[17] = '1';

 filename[18] = '.';

 filename[19] = 'j';

 filename[20] = 'p';

 filename[21] = 'g';

 filename[22] = 0;

 }

 else

 {

 temp = layer / 100;

 filename[8] = temp + 48;

 temp = layer - temp*100;

 filename[9] = (temp / 10) + 48;

 filename[10] = (temp % 10) + 48;

 filename[11] = 'L';

 filename[12] = 'a';

 filename[13] = 'y';

 205

 filename[14] = 'e';

 filename[15] = 'r';

 filename[16] = '_';

 filename[17] = '1';

 filename[18] = '.';

 filename[19] = 'j';

 filename[20] = 'p';

 filename[21] = 'g';

 filename[22] = 0;

 }

 ofstream outData("surface.dat", ios::out);

 int i,j,k;

 int high;

 int x,y,z;

 int x_max, y_max, z_max;

 int bonds = 0;

 int site[3];

 int **output;

 int i_mod, j_mod;

 206

 x_max = index[0];

 y_max = index[1];

 z_max = index[2];

 output = array2Dcreate(x_max,y_max);

 for(i = 0; i < x_max; i++)

 {

 for(j = 0; j < y_max; j++)

 {

 for(k = 0; k < z_max; k++)

 {

 if(Vol[i][j][k] == 1)

 {

 high = k;

 }

 if(k == (z_max - 1))

 {

 output[i][j] = high;

 high = 0;

 }

 }

 }

 }

 207

 bonds = 0;

 for(i = 2; i < (x_max - 1); i++)

 {

 for(j = 2; j < (y_max - 1); j++)

 {

 i_mod = i%2;

 j_mod = j%2;

 if((i_mod) == (j_mod))

 {

 if((output[i][j] - output[i][j+1]) > 0)

 {

 bonds++;

 }

 if((output[i][j] - output[i][j-1]) > 0)

 {

 bonds++;

 }

 if((output[i][j] - output[i + 1][j]) > 0)

 {

 bonds++;

 }

 if((output[i][j] - output[i - 1][j]) > 0)

 {

 bonds++;

 }

 208

 if(output[i][j] == 0)

 {

 output[i][j] = output[i][j+1];

 }

 else if(bonds > 1)

 {

 output[i][j]++;

 }

 }

 bonds = 0;

 }

 }

 outData <<"GRID\t"<<x_max<<"\t"<<y_max<<endl;

 outData <<"-5\t1\t1\t0\t0"<<endl;

 for(i = 0; i < x_max; i++)

 {

 for(j = 0; j < y_max; j++)

 {

 outData << output[i][j] << "\t";

 }

 outData <<endl;

 }

 outData.close();

 system(filename);

 209

 free(output);

}

void wait(void)

{

 while(1)

 {

 }

}

void nrerror(char error_text[])

{

 fprintf(stderr, "...Run-time error....\n");

 fprintf(stderr, "%s\n", error_text);

 fprintf(stderr, "... now exiting to system ... \n");

 exit(1);

}

//Returns the Bessel function J0(x) for any real x.

float bessj0(float x)

{

 float ax,z;

 double xx,y,ans,ans1,ans2; //Accumulate

polynomials in double precision.

 if ((ax=fabs(x)) < 8.0) //Direct rational

function fit.

 {

 y=x*x;

 210

 ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7

 +y*(-11214424.18+y*(77392.33017+y*(-184.9052456)))));

 ans2=57568490411.0+y*(1029532985.0+y*(9494680.718

 +y*(59272.64853+y*(267.8532712+y*1.0))));

 ans=ans1/ans2;

 }

 else

 {

 z=8.0/ax;

 y=z*z;

 xx=ax-0.785398164;

 ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4

 +y*(-0.2073370639e-5+y*0.2093887211e-6)));

 ans2 = -0.1562499995e-1+y*(0.1430488765e-3

 +y*(-0.6911147651e-5+y*(0.7621095161e-6

 -y*0.934945152e-7)));

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-

z*sin(xx)*ans2);

 }

 return ans;

}

 211

//Returns the Bessel function J1(x) for any real x.

float bessj1(float x)

{

 float ax,z;

 double xx,y,ans,ans1,ans2; //Accumulate

polynomials in double precision.

 if ((ax=fabs(x)) < 8.0) //Direct rational

approximation.

 {

 y=x*x;

 ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1

 +y*(-2972611.439+y*(15704.48260+y*(-

30.16036606))))));

 ans2=144725228442.0+y*(2300535178.0+y*(18583304.74

 +y*(99447.43394+y*(376.9991397+y*1.0))));

 ans=ans1/ans2;

 }

 else

 {

 z=8.0/ax;

 y=z*z;

 212

 xx=ax-2.356194491;

 ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4

 +y*(0.2457520174e-5+y*(-0.240337019e-6))));

 ans2=0.04687499995+y*(-0.2002690873e-3

 +y*(0.8449199096e-5+y*(-0.88228987e-6

 +y*0.105787412e-6)));

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);

 if (x < 0.0)

 {

 ans = -ans;

 }

 }

 return ans;

}

//Returns the Bessel function Jn(x) for any real x and n = 2.

float bessj(int n, float x)

{

 int j,jsum,m,itemp;

 213

 double dtemp;

 float ax,bj,bjm,bjp,sum,tox,ans;

 if (n < 2)

 {

 printf("n = %d\n",n);

 nrerror("Index n less than 2 in bessj");

 }

 ax=fabs(x);

 if (ax == 0.0)

 {

 return 0.0;

 }

 else if (ax > (float) n) //Upwards recurrence from J0

and J1.

 {

 tox=2.0/ax;

 bjm=bessj0(ax);

 bj=bessj1(ax);

 for (j=1;j<n;j++)

 {

 bjp=j*tox*bj-bjm;

 bjm=bj;

 bj=bjp;

 214

 }

 ans=bj;

 }

 else //Downwards recurrence

from an even m here computed.

 {

 tox=2.0/ax;

 m=2*((n+(int) sqrt(ACC*n))/2);

 /*

 jsum will alternate between 0 and 1; when it is

 1, we accumulate in sum the even terms in

 (5.5.16).

 */

 jsum=0;

 bjp=ans=sum=0.0;

 bj=1.0;

 for (j=m;j>0;j--) //The downward recurrence.

 {

 bjm=j*tox*bj-bjp;

 bjp=bj;

 bj=bjm;

 if (fabs(bj) > BIGNO) //Renormalize to prevent

overflows.

 215

 {

 bj *= BIGNI;

 bjp *= BIGNI;

 ans *= BIGNI;

 sum *= BIGNI;

 }

 if (jsum)

 {

 sum += bj; //Accumulate the sum.

 }

 jsum=!jsum; //Change 0 to 1 or vice versa.

 if (j == n)

 {

 ans=bjp; // Save the unnormalized answer.

 }

 }

 sum=2.0*sum-bj; // Compute (5.5.16)and use it to

normalize the answer.

 ans /= sum;

 }

 return x < 0.0 && (n & 1) ? -ans : ans;

}

 216

//Geometric Field (Unobstructed Field)

double GeoField(double r, double r0, double k)

{

 double field;

 double temp;

 temp = pow((cos(k * (r + r0))),2) + pow((sin(k * (r + r0))

),2) ;

 field = sqrt(temp) / pow(r0,2) + 2 * r0 * r + pow(r,2);

 return field;

}

//Field modification caused by diffraction

double DifField(double u, double v)

{

 int i,j;

 double M, L;

 double U1, U2;

 double V1, V0;

 double theta;

 double temp;

 double field;

 217

 U1 = 0;

 U2 = 0;

 V1 = 0;

 V0 = 0;

 //Calculation of Bessel Functions

 j = 1; //Used to alternate sign in Bessel expansion

 for(i = 1; i <= (Bessel_max_order * 2); i = i + 2)

 {

 if(i < 2)

 {

 temp = bessj1(v);

 //printf("Bessel1(v=%f) = %f\n",v,temp);

 U1 = U1 + pow((-1.0),(j+1)) * (pow((u/v),i) * temp

);

 }

 else

 {

 temp = bessj(i,v) ;

 U1 = U1 + pow((-1.0),(j+1)) * (pow((u/v),i) * temp);

 //printf("Bessel%d(v=%f) = %f\n",i,v,temp);

 }

 j++;

 }

 218

 j = 1;

 for(i = 2; i <= (Bessel_max_order * 2); i = i + 2)

 {

 U2 = U2 + pow((-1.0),(j+1)) * (pow((u/v),i) * bessj(i,v)

);

 //printf("Bessel%d(v=%f) = %f\n",i,v,temp);

 //printf("u = %e, pow(u/v,i) = %e\n",u,(pow((u/v),i)));

 j++;

 }

 for(i = 0; i <= (Bessel_max_order * 2); i = i + 2)

 {

 if(i < 2)

 {

 V0 = bessj0(v);

 }

 else

 {

 V0 = V0+ pow((-1.0),(j+1)) * (pow((v/u),i) *

bessj(i,v));

 }

 j++;

 }

 for(i = 1; i <= (Bessel_max_order * 2); i = i + 2)

 {

 219

 if(i < 2)

 {

 V1= (v/u) * bessj1(v);

 }

 else

 {

 V1 = V1+ pow((-1.0),(j)) * (pow((v/u),i) *

bessj(i,v));

 }

 j++;

 }

 theta = u / 2;

 if(v > u)

 {

 M = (U1 * sin(theta)) - (U2 * cos(theta));

 L = (U1 * cos(theta)) + (U2 * cos(theta));

 }

 else

 {

 M = cos((v * v)/(2 * u)) + V0*cos(theta) - V1*sin(theta);

 L = sin((v * v)/(2 * u)) + V0*sin(theta) - V1*cos(theta);

 }

 field = pow(M,2) + pow(L,2);

 //printf("field = %e\n",field);

 220

 return field;

}

void plot(int points, double *data)

{

 int i,j,k;

 int y = 11;

 double **graph,temp;

 FILE *fp;

 fp = fopen("Fresnel.dat","a");

 //GRID MAX X MAX Y

 //fprintf(fp,"GRID\t%d\t%d\n",2*points,y);

 //HOLEVALUE XSTEP YSTEP XORIGIN YORIGIN

 //fprintf(fp,"-5\t1\t1\t0\t0\n");

/*

 MALLOC(plot, sizeof(double *) * points * 2);

// plot = (double *) malloc(sizeof(double)*points*2);

 for (i = 0; i < points*2; i++)

 {

 MALLOC(plot[i], sizeof(double) * y);

 }

*/

 graph = array2DcreateDouble(2*points, y);

 array2Dinitialgeo(graph,points,y);

 221

// for(i=1;i < (points-1); i++)

 for(i=0;i < (points-1); i++)

 {

 for(j = 0; j < y; j++)

 {

 //plot[i][j] = data[(points-1)-i];

 graph[i][j] = data[(points-1)-i];

 //printf("data point = %e\n",data[(points-1)-i]);

 }

 }

//for(i=points+2;i < points + points -1; i++)

 for(i=0 ;i < points-1; i++)

 {

 for(j = 0; j < y; j++)

 {

 //plot[i][j] = data[i-points-0];

 graph[(points-1)+i][j] = data[i+1];

 }

 }

//NORMALIZE BASED UPON LARGEST VALUE IN PLOT

 temp = 0;

 for(i = 0; i < points; i++)

 {

 if(data[i] > temp)

 temp = data[i];

 }

 222

 for(i = 0; i < (2*points); i++)

 {

 for(j = 0; j < y; j++)

 graph[i][j] = graph[i][j]/temp;

 }

 for(i = 0; i < 2*points -2; i++)

 {

 for(j=0; j < 1; j++)

 {

 fprintf(fp,"%e",graph[i][j]);

 }

 fprintf(fp,"\n");

 }

 fclose(fp);

}

void FieldNormal(double *field,int size)

{

 int i;

 double temp =0;

//NORMALIZE BASED UPON LARGEST VALUE IN PLOT

 for(i = 0; i < size; i++)

 {

 if(field[i] > temp)

 223

 temp = field[i];

 }

 for(i = 0; i < size; i++)

 {

 field[i]= field[i]/temp ;

 }

}

void array2Dinitialgeo(double **Vol, int x, int y)

{

 int i,j,k;

 for(i = 0; i < 2*x -1; i++)

 {

 for(j = 0; j < y- 1; j++)

 {

 Vol[i][j] = 0;

 }

 }

}

double *Fresnel(float *pattern, double *params)

{

 224

 int i;

 //Prpoblem Geometry Parameters

 float pattern_length ,pattern_resolution;

 pattern_length = pattern[0];

 pattern_resolution = pattern[1];

 double ApRadius,a,dSoA,dASu,lambda,k;

 //Substrate Geometry Parameters

 double r,theta,phi,x,y,z;

 double L,m,n; //double angles

 //Source Geometry Parameters

 double r0,theta0,phi0,x0,y0,z0;

 double L0,m0,n0; //double angles

 //Fresnel intetegral parametrs

 double c,u,v;

 double *field;

 225

 int data_points = pattern_length / pattern_resolution;

 field = (double *) malloc(data_points * sizeof(double));

 //DEFIND THE GEOMETRY AND CONSTANTS OF PROBLEM

//IRRADIANCE PATTERN LENGTH

//APERTRUE RADIUS

 ApRadius = params[0];

 a = ApRadius;

//DISTANCE FROM SOURCE TO APERTRUE

 dSoA = params[1];

//DISTANCE FROM APERTRUE TO SUBSTRATE

 dASu = params[2];

//WAVELENGTH OF WAVE

 lambda = params[3];

 k = (2 * PI) / lambda;

//SOURCE LOCATION

 x0 = 0;

 y0 = 0;

 z0 = -dSoA;

 226

//SUBSTRATE OBSERVATION POINT

 y = 0;

 z = dASu;

 //x is varied to determine diffraction pattern

//GEOMETRY CALCULATIONS

 //Source

 r0 = sqrt(pow(x0,2)+pow(y0,2)+pow(z0,2));

 theta0 = PI/2;

 phi0= PI;

 //theta0 = acos(z0 / r0);

 //phi0= atan(y0 / x0);

 L0 = -1 * sin(theta0);

 m0 = sin(phi0) * sin(theta0);

 n0 = cos(theta0);

//**************************** FIELD CALCULATIONS

***********************//

 x = 0; // Start at origin

 for(i = 0; i < data_points; i++)

 227

 {

 //GEOMETRY CALCULATIONS

 //Substrate

 r = sqrt(pow(x,2)+pow(y,2)+pow(z,2));

 theta = acos(z / r);

 phi = atan(y / x);

 L = cos(phi) * sin(theta);

 m = sin(phi) * sin(theta);

 n = cos(theta);

 //INTERGRAL INPUT CALCULATIONS

 c = r * sqrt(pow((L - L0),2) + pow((m - m0),2));

 u = (k * pow(a,2) * (r0 + r)) / (r0 * r);

 v = (k * a * c) / r;

 field[i] = GeoField(r,r0,k) * DifField(u,v) *

cos(theta0);

 x = x + pattern_resolution;

 }

 FieldNormal(field,data_points);

 plot(data_points,field);

 228

 return(field);

}

double getField(int *site,int *max, double *field, float *pattern)

{

 ofstream outData("getField.txt", ios::app);

 //outData << "x , y , Site " << endl;

 double r;

 float lattice = 0.543; // lattice constant for Silicon in

Nanometer

 float x,y;

 int x_max, y_max;

 int x_index, y_index; //values ussing array index at SUT orgin

 int x_nano, y_nano; //nano window dimension

 int x_low, x_limit; //limits for valid x coordinate

 int y_low, y_limit; //limits for valid y coordinate

 int x_site,y_site, r_int; //array index using nano

window origin

 int x_origin, y_origin; //origin of nanowindow in

array indicies

 float length_SUT, width_SUT; //length of SUT in nm

 float x_length, y_length; //lenght of site from SUT

origin

 float pattern_length, pattern_resolution;

 229

 x_index = site[0]; //array index for x

 y_index = site[1]; //array index for y

 outData<<"**************************"<<endl;

 outData <<"index for site x = "<<x_index<<" ,y =

"<<y_index<<endl;

 x_max = max[0];

 y_max = max[1];

 x_nano = x_max / 10; //size of nano window in array index

 y_nano = y_max / 10; //

 outData<<"size of nano window x = "<<x_nano<<", y =

"<<y_nano<<endl;

 length_SUT = (x_nano * lattice) *5; //total length of SUT in nm

 width_SUT = (y_nano * lattice) *5; //total width of SUT in nm

 outData<<"total length of SUT x = "<<length_SUT<<" ,y =

"<<width_SUT<<endl;

 x_length = x_index * (length_SUT/x_max); //length of site from

SUT origin

 y_length = y_index * (width_SUT/ y_max); //width of site from

SUT origin

 x_origin = x_max / 2; //Origin of nano window

 230

 y_origin = y_max / 2;

 outData <<"Origin of nanowindow is x = "<<x_origin<<", y =

"<<y_origin<<endl;

 x_site = abs(x_index - x_origin); //Distance of point from nano

 y_site = abs(y_index - y_origin); //origin, center of apature.

as array index

 outData<<"Distance from nanowindow origin in indicies x =

"<<x_site<<", y = "<<y_site<<endl;

 x = x_site * (length_SUT/x_max);//Distance of point from

 y = y_site * (width_SUT /y_max);//nano origin, in nm

 outData<<"distance from nano origin in nm x = "<<x<<", y =

"<<y<<endl;

 pattern_length = pattern[0]*1e-2;

 pattern_resolution = pattern[1]*1e-1;

 outData << "pattern length = "<<pattern_length<<endl;

 outData << "pattern resolution = "<<pattern_resolution<<endl;

 //Calculates the corresponding r value of field

 r = (sqrt(x*x + y*y)) * pow(10.0,-9); //Distance from center

of Apreture in meters

 231

 outData<<"calculated r = "<<r<<endl;

 r_int = (r / pattern_resolution); // index in field array for

site

 outData<< "index of r = "<<r_int<<endl;

 outData.close();

 return(field[r_int]);

}

double roughness(int *** Volume, int *index, int*nano,int standard)

{

 ofstream summation("Summation.txt", ios::app);

 int x_max, y_max, z_max;

 int xs,ys,rs;

 int i,j,k=0;

 double sum;

 double avg_height = 0;

 double dif_sq;

 int stack;

 double rough;

 double sum_of_squares = 0;

 double sum_of_heights = 0;

 int height;

 232

 int x_nano, y_nano,r_nano; //nano window dimension

 int offset_x, offset_y,offset_r; //offsets used to center the

nano window on SUT

 int x_low, x_limit; //limits for valid x coordinate

 int y_low, y_limit; //limits for valid y coordinate

 int x_range, y_range; //diffrence between low and limit

 int r_low, r_limit;

 int SUT_r,xr, SUT_rx, SUT_ry;

 x_max = index[0];

 y_max = index[1];

 z_max = index[2];

 xs = x_max;

 ys = y_max;

 x_nano = nano[0];

 y_nano = nano[1];

 offset_x = (xs - (x_nano * (10-standard)))/2;

 offset_y = (ys - (y_nano * (10-standard)))/2;

 r_nano =xs/2 - offset_x;

 xr = xs/2;

 offset_r = xr - r_nano ;

 233

 x_low = offset_x;

 x_limit = xs - offset_x;

 x_range = x_limit - x_low;

 y_low = offset_y;

 y_limit = ys - offset_y;

 y_range = y_limit - y_low;

 r_low =offset_r;

 r_limit = xr - offset_r;

 sum_of_heights = 0;

 sum_of_squares = 0;

 avg_height = 0;

 sum = 0;

 dif_sq =0;

 for(i = x_low; i < x_limit; i++)

 {

 for(j = y_low; j < y_limit; j++)

 {

 SUT_rx = abs(i - xr);

 SUT_ry = abs(j - xr);

 SUT_r = sqrt(double (SUT_rx*SUT_rx + SUT_ry*SUT_ry));

 if(SUT_r <= (r_limit * 0.9))

 234

 {

 stack = topofstack(i,j,z_max,Volume);

 sum = sum + stack;

 sum_of_heights = sum_of_heights + stack;

 sum_of_squares = sum_of_squares + (stack *

stack);

 k++;

 //cout <<"SUM = " <<sum<<", Top of stack:

"<<stack<<endl;

 }

 }

 }

 avg_height = sum / (k);//(r_limit * r_limit);

 //cout << "Average height = " << avg_height <<", SUM:

"<<sum<<endl;

 k = 0;

 for(i = x_low; i < x_limit; i++)

 {

 for(j = y_low; j < y_limit; j++)

 {

 SUT_rx = abs(i - xr);

 SUT_ry = abs(j - xr);

 SUT_r = sqrt(double (SUT_rx*SUT_rx + SUT_ry*SUT_ry));

 if(SUT_r <= (r_limit *0.9))

 {

 height = topofstack(i,j,z_max,Volume);

 235

 //cout <<"Height : "<<height<<" AVG height :

"<<avg_height<<endl;

 dif_sq = dif_sq + ((height - avg_height) *

(height - avg_height));

 summation << height <<"\t"<< avg_height << "\t"

<< dif_sq << endl;

 k++;

 }

 }

 }

 //cout << "Diffrence Square : " << dif_sq <<", K :"<<k<<endl;

 //cout << "R Limit : " << r_limit <<endl;

 rough = sqrt(dif_sq);

 rough = rough / k;

 rough = sqrt(((k * sum_of_squares) - (sum_of_heights *

sum_of_heights)) / (k * k));

 //cout << "Rough : "<< rough << endl;

 //rough = sqrt((4 / (r_limit * r_limit * pi)) * dif_sq);

 return(rough);

}

int topofstack(int x,int y,int max, int ***Vol)

{

 int i,j,k;

 int height;

 height = 0;

 236

 i = 0;

 while(i < max)

 {

 if(Vol[x][y][i] == 1)

 height = i;

 i++;

 }

//cout<<"height - "<<height<<endl;

 return(height);

}

#include <math.h>

#define ACC 40.0 //Make larger to increase accuracy.

#define BIGNO 1.0e10

#define BIGNI 1.0e-10

#define Bessel_max_order 20

#define PI 3.1415926535897932

//

#define oops(s) { perror((s)); exit(EXIT_FAILURE); }

#define MALLOC(s,t) if(((s) = malloc(t)) == NULL) { oops("error:

malloc() "); }

#define INCREMENT 10

//

 237

float bessj0(float);

float bessj1(float);

float bessj(int , float);

void nrerror(char *);

double GeoField(double, double, double);

double DifField(double, double);

void FieldNormal(double *,int);

*double Fresnel(float *, double*);

double getField(int, int, double *, float *);

//int** array2Dcreate(int ,int);

void array2Dinitialgeo(int **, int , int);

void nrerror(char error_text[])

{

 fprintf(stderr, "...Run-time error....\n");

 fprintf(stderr, "%s\n", error_text);

 fprintf(stderr, "... now exiting to system ... \n");

 exit(1);

}

//Returns the Bessel function J0(x) for any real x.

float bessj0(float x)

{

 238

 float ax,z;

 double xx,y,ans,ans1,ans2; //Accumulate

polynomials in double precision.

 if ((ax=fabs(x)) < 8.0) //Direct rational

function fit.

 {

 y=x*x;

 ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7

 +y*(-11214424.18+y*(77392.33017+y*(-184.9052456)))));

 ans2=57568490411.0+y*(1029532985.0+y*(9494680.718

 +y*(59272.64853+y*(267.8532712+y*1.0))));

 ans=ans1/ans2;

 }

 else

 {

 z=8.0/ax;

 y=z*z;

 xx=ax-0.785398164;

 ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4

 +y*(-0.2073370639e-5+y*0.2093887211e-6)));

 ans2 = -0.1562499995e-1+y*(0.1430488765e-3

 +y*(-0.6911147651e-5+y*(0.7621095161e-6

 -y*0.934945152e-7)));

 239

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-

z*sin(xx)*ans2);

 }

 return ans;

}

//Returns the Bessel function J1(x) for any real x.

float bessj1(float x)

{

 float ax,z;

 double xx,y,ans,ans1,ans2; //Accumulate

polynomials in double precision.

 if ((ax=fabs(x)) < 8.0) //Direct rational

approximation.

 {

 y=x*x;

 ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1

 +y*(-2972611.439+y*(15704.48260+y*(-

30.16036606))))));

 ans2=144725228442.0+y*(2300535178.0+y*(18583304.74

 +y*(99447.43394+y*(376.9991397+y*1.0))));

 240

 ans=ans1/ans2;

 }

 else

 {

 z=8.0/ax;

 y=z*z;

 xx=ax-2.356194491;

 ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4

 +y*(0.2457520174e-5+y*(-0.240337019e-6))));

 ans2=0.04687499995+y*(-0.2002690873e-3

 +y*(0.8449199096e-5+y*(-0.88228987e-6

 +y*0.105787412e-6)));

 ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);

 if (x < 0.0)

 {

 ans = -ans;

 }

 }

 return ans;

}

 241

//Returns the Bessel function Jn(x) for any real x and n = 2.

float bessj(int n, float x)

{

 int j,jsum,m,itemp;

 double dtemp;

 float ax,bj,bjm,bjp,sum,tox,ans;

 if (n < 2)

 {

 printf("n = %d\n",n);

 nrerror("Index n less than 2 in bessj");

 }

 ax=fabs(x);

 if (ax == 0.0)

 {

 return 0.0;

 }

 else if (ax > (float) n) //Upwards recurrence from J0

and J1.

 {

 tox=2.0/ax;

 242

 bjm=bessj0(ax);

 bj=bessj1(ax);

 for (j=1;j<n;j++)

 {

 bjp=j*tox*bj-bjm;

 bjm=bj;

 bj=bjp;

 }

 ans=bj;

 }

 else //Downwards recurrence

from an even m here computed.

 {

 tox=2.0/ax;

 m=2*((n+(int) sqrt(ACC*n))/2);

 /*

 jsum will alternate between 0 and 1; when it is

 1, we accumulate in sum the even terms in

 (5.5.16).

 */

 jsum=0;

 bjp=ans=sum=0.0;

 bj=1.0;

 for (j=m;j>0;j--) //The downward recurrence.

 243

 {

 bjm=j*tox*bj-bjp;

 bjp=bj;

 bj=bjm;

 if (fabs(bj) > BIGNO) //Renormalize to prevent

overflows.

 {

 bj *= BIGNI;

 bjp *= BIGNI;

 ans *= BIGNI;

 sum *= BIGNI;

 }

 if (jsum)

 {

 sum += bj; //Accumulate the sum.

 }

 jsum=!jsum; //Change 0 to 1 or vice versa.

 if (j == n)

 {

 ans=bjp; // Save the unnormalized answer.

 }

 }

 244

 sum=2.0*sum-bj; // Compute (5.5.16)and use it to

normalize the answer.

 ans /= sum;

 }

 return x < 0.0 && (n & 1) ? -ans : ans;

}

//Geometric Field (Unobstructed Field)

double GeoField(double r, double r0, double k)

{

 double field;

 double temp;

 temp = pow((cos(k * (r + r0))),2) + pow((sin(k * (r + r0))

),2) ;

 field = sqrt(temp) / pow(r0,2) + 2 * r0 * r + pow(r,2);

 return field;

}

//Field modification caused by diffraction

double DifField(double u, double v)

{

 int i,j;

 245

 double M, L;

 double U1, U2;

 double V1, V0;

 double theta;

 double temp;

 double field;

 U1 = 0;

 U2 = 0;

 V1 = 0;

 V0 = 0;

 //Calculation of Bessel Functions

 j = 1; //Used to alternate sign in Bessel expansion

 for(i = 1; i <= (Bessel_max_order * 2); i = i + 2)

 {

 if(i < 2)

 {

 temp = bessj1(v);

 //printf("Bessel1(v=%f) = %f\n",v,temp);

 U1 = U1 + pow((-1),(j+1)) * (pow((u/v),i) * temp);

 }

 else

 {

 temp = bessj(i,v) ;

 246

 U1 = U1 + pow((-1),(j+1)) * (pow((u/v),i) * temp);

 //printf("Bessel%d(v=%f) = %f\n",i,v,temp);

 }

 j++;

 }

 j = 1;

 for(i = 2; i <= (Bessel_max_order * 2); i = i + 2)

 {

 U2 = U2 + pow((-1),(j+1)) * (pow((u/v),i) * bessj(i,v));

 //printf("Bessel%d(v=%f) = %f\n",i,v,temp);

 //printf("u = %e, pow(u/v,i) = %e\n",u,(pow((u/v),i)));

 j++;

 }

 for(i = 0; i <= (Bessel_max_order * 2); i = i + 2)

 {

 if(i < 2)

 {

 V0 = bessj0(v);

 }

 else

 {

 V0 = V0+ pow((-1),(j+1)) * (pow((v/u),i) *

bessj(i,v));

 247

 }

 j++;

 }

 for(i = 1; i <= (Bessel_max_order * 2); i = i + 2)

 {

 if(i < 2)

 {

 V1= (v/u) * bessj1(v);

 }

 else

 {

 V1 = V1+ pow((-1),(j)) * (pow((v/u),i) * bessj(i,v)

);

 }

 j++;

 }

 theta = u / 2;

 if(v > u)

 {

 M = (U1 * sin(theta)) - (U2 * cos(theta));

 L = (U1 * cos(theta)) + (U2 * cos(theta));

 }

 else

 {

 M = cos((v * v)/(2 * u)) + V0*cos(theta) - V1*sin(theta);

 248

 L = sin((v * v)/(2 * u)) + V0*sin(theta) - V1*cos(theta);

 }

 field = pow(M,2) + pow(L,2);

 //printf("field = %e\n",field);

 return field;

}

void plot(int points, double *data)

{

 int i,j,k;

 int y = 11;

 double **plot,temp;

 FILE *fp;

 fp = fopen("Fresnel.dat","w");

 //GRID MAX X MAX Y

 //fprintf(fp,"GRID\t%d\t%d\n",2*points,y);

 //HOLEVALUE XSTEP YSTEP XORIGIN YORIGIN

 //fprintf(fp,"-5\t1\t1\t0\t0\n");

 MALLOC(plot, sizeof(double *) * points * 2);

// plot = (double *) malloc(sizeof(double)*points*2);

 for (i = 0; i < points*2; i++)

 249

 {

 MALLOC(plot[i], sizeof(double) * y);

 }

 array2Dinitialgeo(plot,points,y);

// for(i=1;i < (points-1); i++)

 for(i=0;i < (points-1); i++)

 {

 for(j = 0; j < y; j++)

 {

 //plot[i][j] = data[(points-1)-i];

 plot[i][j] = data[(points-1)-i];

 //printf("%l\n",data[i]);

 }

 }

//for(i=points+2;i < points + points -1; i++)

 for(i=0 ;i < points-1; i++)

 {

 for(j = 0; j < y; j++)

 {

 //plot[i][j] = data[i-points-0];

 plot[(points-1)+i][j] = data[i+1];

 }

 }

//NORMALIZE BASED UPON LARGEST VALUE IN PLOT

 temp = 0;

 250

 for(i = 0; i < points; i++)

 {

 if(data[i] > temp)

 temp = data[i];

 }

 for(i = 0; i < (2*points); i++)

 {

 for(j = 0; j < y; j++)

 plot[i][j] = plot[i][j]/temp;

 }

 for(i = 0; i < 2*points -2; i++)

 {

 for(j=0; j < 1; j++)

 {

 fprintf(fp,"%e",plot[i][j]);

 }

 fprintf(fp,"\n");

 }

}

void FieldNormal(double *field,int size)

{

 int i;

 251

 double temp =0;

//NORMALIZE BASED UPON LARGEST VALUE IN PLOT

 for(i = 0; i < size; i++)

 {

 if(field[i] > temp)

 temp = field[i];

 }

 for(i = 0; i < size; i++)

 {

 field[i]= field[i]/temp ;

 }

}

void array2Dinitialgeo(int **Vol, int x, int y)

{

 int i,j,k;

 for(i = 0; i < 2*x -1; i++)

 {

 for(j = 0; j < y- 1; j++)

 {

 Vol[i][j] = 0;

 252

 }

 }

}

double *Fresnel(float *pattern, double *params)

{

 int i;

 //Prpoblem Geometry Parameters

 float pattern_length ,pattern_resolution;

 pattern_length = pattern[0];

 pattern_resolution = pattern[1];

 double ApRadius,a,dSoA,dASu,lambda,k;

 //Substrate Geometry Parameters

 double r,theta,phi,x,y,z;

 double L,m,n; //double angles

 //Source Geometry Parameters

 double r0,theta0,phi0,x0,y0,z0;

 double L0,m0,n0; //double angles

 253

 //Fresnel intetegral parametrs

 double c,u,v;

 double *field;

 int data_points = pattern_length / pattern_resolution;

 field = (double *) malloc(data_points * sizeof(double));

 //DEFIND THE GEOMETRY AND CONSTANTS OF PROBLEM

//IRRADIANCE PATTERN LENGTH

//APERTRUE RADIUS

 ApRadius = params[0];

 a = ApRadius;

//DISTANCE FROM SOURCE TO APERTRUE

 dSoA = params[1];

//DISTANCE FROM APERTRUE TO SUBSTRATE

 dASu = params[2];

//WAVELENGTH OF WAVE

 lambda = params[3];

 254

 k = (2 * PI) / lambda;

//SOURCE LOCATION

 x0 = 0;

 y0 = 0;

 z0 = -dSoA;

//SUBSTRATE OBSERVATION POINT

 y = 0;

 z = dASu;

 //x is varied to determine diffraction pattern

//GEOMETRY CALCULATIONS

 //Source

 r0 = sqrt(pow(x0,2)+pow(y0,2)+pow(z0,2));

 theta0 = PI/2;

 phi0= PI;

 //theta0 = acos(z0 / r0);

 //phi0= atan(y0 / x0);

 L0 = -1 * sin(theta0);

 m0 = sin(phi0) * sin(theta0);

 n0 = cos(theta0);

 255

//**************************** FIELD CALCULATIONS

***********************//

 x = 0; // Start at origin

 for(i = 0; i < data_points; i++)

 {

 //GEOMETRY CALCULATIONS

 //Substrate

 r = sqrt(pow(x,2)+pow(y,2)+pow(z,2));

 theta = acos(z / r);

 phi = atan(y / x);

 L = cos(phi) * sin(theta);

 m = sin(phi) * sin(theta);

 n = cos(theta);

 //INTERGRAL INPUT CALCULATIONS

 c = r * sqrt(pow((L - L0),2) + pow((m - m0),2));

 u = (k * pow(a,2) * (r0 + r)) / (r0 * r);

 v = (k * a * c) / r;

 field[i] = GeoField(r,r0,k) * DifField(u,v) *

cos(theta0);

 256

 x = x + pattern_resolution;

 }

 FieldNormal(field,data_points);

 plot(data_points,field);

 return(field);

}

double getField(int *site,int *max, double *field, float *pattern)

{

 double r;

 float lattice = 0.543; // lattice constant for Silicon in

Nanometer

 float x,y;

 int x_max, y_max;

 int x_index, y_index; //values ussing array index at SUT orgin

 int x_nano, y_nano; //nano window dimension

 int x_low, x_limit; //limits for valid x coordinate

 int y_low, y_limit; //limits for valid y coordinate

 int x_site,y_site, r_int; //array index using nano

window origin

 int x_origin, y_origin; //origin of nanowindow in

array indicies

 float length_SUT, width_SUT; //length of SUT in nm

 257

 float x_length, y_length; //lenght of site from SUT

origin

 float pattern_length, pattern_resolution;

 x_index = site[0]; //array index for x

 y_index = site[1]; //array index for y

 x_max = max[0];

 y_max = max[1];

 x_nano = x_max / 10; //size of nano window in array index

 y_nano = y_max / 10; //

 length_SUT = (x_nano * lattice) *5; //total length of SUT in nm

 width_SUT = (y_nano * lattice) *5; //total width of SUT in nm

 x_length = x_index * (length_SUT/x_max); //length of site from

SUT origin

 y_length = y_index * (width_SUT/ y_max); //width of site from

SUT origin

 x_origin = x_max / 2; //Origin of nano window

 y_origin = y_max / 2;

 x_site = abs(x_index - x_origin); //Distance of point from nano

 y_site = abs(y_index - y_origin); //origin, center of apature.

as array index

 258

 x = x_site * (length_SUT/x_max);//Distance of point from

 y = y_site * (width_SUT /y_max);//nano origin, in nm

 pattern_length = pattern[0];

 pattern_resolution = pattern[1];

 //Calculates the corresponding r value of field

 r = (sqrt(x*x + y*y)) *10^(-9); //Distance from center of

Apreture in meters

 r_int = r / pattern_resolution; // index in field array for site

 return(field[r_int]);

} # include <cstdlib>

include <iostream>

include <iomanip>

include <ctime>

using namespace std;

double d_uniform_01 (int *seed);

int i4_bit_hi1 (int n);

int i4_bit_lo0 (int n);

 259

void i4_sobol (int dim_num, int *seed, float quasi[]);//edited

maxcol

int i4_uniform (int b, int c, int *seed);

unsigned int i4_xor (unsigned int i, unsigned int j);

int i8_bit_hi1 (long int n);

int i8_bit_lo0 (long int n);

void i8_sobol (int dim_num, long int *seed, double quasi[]);

unsigned long int i8_xor (unsigned long int i, unsigned long int j);

void timestamp (void);

int get_seed (void);

void timeStep(double * , float *, double *, int *);

void pdfSelection(float *, int*, int*);

void pdfVacantSelect(float *, int *, int*);

void site(int *, int , int , int *);

void siteUpdate(int ***, int *, int *, int*, int);

void ValidSite(int*,int , int, int, int*, int*,int ***,float, int **

,int);

//***

double d_uniform_01 (int *seed)

//***

//

 260

// Purpose:

//

// D_UNIFORM_01 returns a unit double precision pseudorandom number.

//

// Discussion:

//

// This routine implements the recursion

//

// seed = 16807 * seed mod (2**31 - 1)

// d_uniform_01 = seed / (2**31 - 1)

//

// The integer arithmetic never requires more than 32 bits,

// including a sign bit.

//

// If the initial seed is 12345, then the first three computations

are

//

// Input Output D_UNIFORM_01

// SEED SEED

//

// 12345 207482415 0.096616

// 207482415 1790989824 0.833995

// 1790989824 2035175616 0.947702

//

// Modified:

//

// 11 August 2004

 261

//

// Author:

//

// John Burkardt

//

// Reference:

//

// Paul Bratley, Bennett Fox, L E Schrage,

// A Guide to Simulation,

// Springer Verlag, pages 201-202, 1983.

//

// Pierre L'Ecuyer,

// Random Number Generation,

// in Handbook of Simulation

// edited by Jerry Banks,

// Wiley Interscience, page 95, 1998.

//

// Bennett Fox,

// Algorithm 647:

// Implementation and Relative Efficiency of Quasirandom

// Sequence Generators,

// ACM Transactions on Mathematical Software,

// Volume 12, Number 4, pages 362-376, 1986.

//

// P A Lewis, A S Goodman, J M Miller,

// A Pseudo-Random Number Generator for the System/360,

// IBM Systems Journal,

 262

// Volume 8, pages 136-143, 1969.

//

// Parameters:

//

// Input/output, int *SEED, the "seed" value. Normally, this

// value should not be 0. On output, SEED has been updated.

//

// Output, double D_UNIFORM_01, a new pseudorandom variate, strictly

between

// 0 and 1.

//

{

 int k;

 double r;

 k = *seed / 127773;

 *seed = 16807 * (*seed - k * 127773) - k * 2836;

 if (*seed < 0)

 {

 *seed = *seed + 2147483647;

 }

//

// Although SEED can be represented exactly as a 32 bit integer,

// it generally cannot be represented exactly as a 32 bit real number!

//

 263

 r = (double) (*seed) * 4.656612875E-10;

 return r;

}

//***

int i4_bit_hi1 (int n)

//***

//

// Purpose:

//

// I4_BIT_HI1 returns the position of the high 1 bit base 2 in an

integer.

//

// Example:

//

// N Binary Hi 1

// ---- -------- ----

// 0 0 0

// 1 1 1

// 2 10 2

// 3 11 2

// 4 100 3

// 5 101 3

 264

// 6 110 3

// 7 111 3

// 8 1000 4

// 9 1001 4

// 10 1010 4

// 11 1011 4

// 12 1100 4

// 13 1101 4

// 14 1110 4

// 15 1111 4

// 16 10000 5

// 17 10001 5

// 1023 1111111111 10

// 1024 10000000000 11

// 1025 10000000001 11

//

// Modified:

//

// 13 March 2003

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, int N, the integer to be measured.

 265

// N should be nonnegative. If N is nonpositive, I4_BIT_HI1

// will always be 0.

//

// Output, int I4_BIT_HI1, the location of the high order bit.

//

{

 int bit;

 bit = 0;

 while (0 < n)

 {

 bit = bit + 1;

 n = n / 2;

 }

 return bit;

}

//***

int i4_bit_lo0 (int n)

//***

//

// Purpose:

 266

//

// I4_BIT_LO0 returns the position of the low 0 bit base 2 in an

integer.

//

// Example:

//

// N Binary Lo 0

// ---- -------- ----

// 0 0 1

// 1 1 2

// 2 10 1

// 3 11 3

// 4 100 1

// 5 101 2

// 6 110 1

// 7 111 4

// 8 1000 1

// 9 1001 2

// 10 1010 1

// 11 1011 3

// 12 1100 1

// 13 1101 2

// 14 1110 1

// 15 1111 5

// 16 10000 1

// 17 10001 2

// 1023 1111111111 1

 267

// 1024 10000000000 1

// 1025 10000000001 1

//

// Modified:

//

// 13 March 2003

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, int N, the integer to be measured.

// N should be nonnegative.

//

// Output, int I4_BIT_LO0, the position of the low 1 bit.

//

{

 int bit;

 int n2;

 bit = 0;

 while (true)

 {

 bit = bit + 1;

 268

 n2 = n / 2;

 if (n == 2 * n2)

 {

 break;

 }

 n = n2;

 }

 return bit;

}

//***

void i4_sobol (int dim_num, int *seed, float quasi[])

//***

//

// Purpose:

//

// I4_SOBOL generates a new quasirandom Sobol vector with each call.

//

// Discussion:

//

 269

// The routine adapts the ideas of Antonov and Saleev.

//

// Modified:

//

// 03 August 2004

//

// Reference:

//

// Antonov and Saleev,

// USSR Computational Mathematics and Mathematical Physics,

// Volume 19, 1980, pages 252 - 256.

//

// Paul Bratley and Bennett Fox,

// Algorithm 659:

// Implementing Sobol's Quasirandom Sequence Generator,

// ACM Transactions on Mathematical Software,

// Volume 14, Number 1, pages 88-100, 1988.

//

// Bennett Fox,

// Algorithm 647:

// Implementation and Relative Efficiency of Quasirandom

// Sequence Generators,

// ACM Transactions on Mathematical Software,

// Volume 12, Number 4, pages 362-376, 1986.

//

// I Sobol,

// USSR Computational Mathematics and Mathematical Physics,

 270

// Volume 16, pages 236-242, 1977.

//

// I Sobol and Levitan,

// The Production of Points Uniformly Distributed in a

Multidimensional

// Cube (in Russian),

// Preprint IPM Akad. Nauk SSSR,

// Number 40, Moscow 1976.

//

// Parameters:

//

// Input, int DIM_NUM, the number of spatial dimensions.

// DIM_NUM must satisfy 2 <= DIM_NUM <= 40.

//

// Input/output, int *SEED, the "seed" for the sequence.

// This is essentially the index in the sequence of the quasirandom

// value to be generated. On output, SEED has been set to the

// appropriate next value, usually simply SEED+1.

// If SEED is less than 0 on input, it is treated as though it were

0.

// An input value of 0 requests the first (0-th) element of the

sequence.

//

// Output, float QUASI(DIM_NUM), the next quasirandom vector.

//

{

define DIM_MAX 40

 271

 static int atmost = 1073741823;

 static int dim_num_save = 0;

 int i;

 bool includ[8];

 static bool initialized = false;

 int j;

 int j2;

 int k;

 int l;

 static int lastq[DIM_MAX];

 int m;

 static int maxcol;

 int newv;

 static int poly[DIM_MAX] =

 {

 1, 3, 7, 11, 13, 19, 25, 37, 59, 47,

 61, 55, 41, 67, 97, 91, 109, 103, 115, 131,

 193, 137, 145, 143, 241, 157, 185, 167, 229, 171,

 213, 191, 253, 203, 211, 239, 247, 285, 369, 299

 };

 static float recipd;

 static int seed_save = 0;

 int seed_temp;

 static int v[DIM_MAX][30];

//

 if (!initialized || dim_num != dim_num_save)

 272

 {

 initialized = true;

//

// Initialize (part of) V.

//

 v[0][0] = 1;

 v[1][0] = 1;

 v[2][0] = 1;

 v[3][0] = 1;

 v[4][0] = 1;

 v[5][0] = 1;

 v[6][0] = 1;

 v[7][0] = 1;

 v[8][0] = 1;

 v[9][0] = 1;

 v[10][0] = 1;

 v[11][0] = 1;

 v[12][0] = 1;

 v[13][0] = 1;

 v[14][0] = 1;

 v[15][0] = 1;

 v[16][0] = 1;

 v[17][0] = 1;

 v[18][0] = 1;

 v[19][0] = 1;

 v[20][0] = 1;

 v[21][0] = 1;

 273

 v[22][0] = 1;

 v[23][0] = 1;

 v[24][0] = 1;

 v[25][0] = 1;

 v[26][0] = 1;

 v[27][0] = 1;

 v[28][0] = 1;

 v[29][0] = 1;

 v[30][0] = 1;

 v[31][0] = 1;

 v[32][0] = 1;

 v[33][0] = 1;

 v[34][0] = 1;

 v[35][0] = 1;

 v[36][0] = 1;

 v[37][0] = 1;

 v[38][0] = 1;

 v[39][0] = 1;

 v[2][1] = 1;

 v[3][1] = 3;

 v[4][1] = 1;

 v[5][1] = 3;

 v[6][1] = 1;

 v[7][1] = 3;

 v[8][1] = 3;

 v[9][1] = 1;

 274

 v[10][1] = 3;

 v[11][1] = 1;

 v[12][1] = 3;

 v[13][1] = 1;

 v[14][1] = 3;

 v[15][1] = 1;

 v[16][1] = 1;

 v[17][1] = 3;

 v[18][1] = 1;

 v[19][1] = 3;

 v[20][1] = 1;

 v[21][1] = 3;

 v[22][1] = 1;

 v[23][1] = 3;

 v[24][1] = 3;

 v[25][1] = 1;

 v[26][1] = 3;

 v[27][1] = 1;

 v[28][1] = 3;

 v[29][1] = 1;

 v[30][1] = 3;

 v[31][1] = 1;

 v[32][1] = 1;

 v[33][1] = 3;

 v[34][1] = 1;

 v[35][1] = 3;

 v[36][1] = 1;

 275

 v[37][1] = 3;

 v[38][1] = 1;

 v[39][1] = 3;

 v[3][2] = 7;

 v[4][2] = 5;

 v[5][2] = 1;

 v[6][2] = 3;

 v[7][2] = 3;

 v[8][2] = 7;

 v[9][2] = 5;

 v[10][2] = 5;

 v[11][2] = 7;

 v[12][2] = 7;

 v[13][2] = 1;

 v[14][2] = 3;

 v[15][2] = 3;

 v[16][2] = 7;

 v[17][2] = 5;

 v[18][2] = 1;

 v[19][2] = 1;

 v[20][2] = 5;

 v[21][2] = 3;

 v[22][2] = 3;

 v[23][2] = 1;

 v[24][2] = 7;

 v[25][2] = 5;

 276

 v[26][2] = 1;

 v[27][2] = 3;

 v[28][2] = 3;

 v[29][2] = 7;

 v[30][2] = 5;

 v[31][2] = 1;

 v[32][2] = 1;

 v[33][2] = 5;

 v[34][2] = 7;

 v[35][2] = 7;

 v[36][2] = 5;

 v[37][2] = 1;

 v[38][2] = 3;

 v[39][2] = 3;

 v[5][3] = 1;

 v[6][3] = 7;

 v[7][3] = 9;

 v[8][3] = 13;

 v[9][3] = 11;

 v[10][3] = 1;

 v[11][3] = 3;

 v[12][3] = 7;

 v[13][3] = 9;

 v[14][3] = 5;

 v[15][3] = 13;

 v[16][3] = 13;

 277

 v[17][3] = 11;

 v[18][3] = 3;

 v[19][3] = 15;

 v[20][3] = 5;

 v[21][3] = 3;

 v[22][3] = 15;

 v[23][3] = 7;

 v[24][3] = 9;

 v[25][3] = 13;

 v[26][3] = 9;

 v[27][3] = 1;

 v[28][3] = 11;

 v[29][3] = 7;

 v[30][3] = 5;

 v[31][3] = 15;

 v[32][3] = 1;

 v[33][3] = 15;

 v[34][3] = 11;

 v[35][3] = 5;

 v[36][3] = 3;

 v[37][3] = 1;

 v[38][3] = 7;

 v[39][3] = 9;

 v[7][4] = 9;

 v[8][4] = 3;

 v[9][4] = 27;

 278

 v[10][4] = 15;

 v[11][4] = 29;

 v[12][4] = 21;

 v[13][4] = 23;

 v[14][4] = 19;

 v[15][4] = 11;

 v[16][4] = 25;

 v[17][4] = 7;

 v[18][4] = 13;

 v[19][4] = 17;

 v[20][4] = 1;

 v[21][4] = 25;

 v[22][4] = 29;

 v[23][4] = 3;

 v[24][4] = 31;

 v[25][4] = 11;

 v[26][4] = 5;

 v[27][4] = 23;

 v[28][4] = 27;

 v[29][4] = 19;

 v[30][4] = 21;

 v[31][4] = 5;

 v[32][4] = 1;

 v[33][4] = 17;

 v[34][4] = 13;

 v[35][4] = 7;

 v[36][4] = 15;

 279

 v[37][4] = 9;

 v[38][4] = 31;

 v[39][4] = 9;

 v[13][5] = 37;

 v[14][5] = 33;

 v[15][5] = 7;

 v[16][5] = 5;

 v[17][5] = 11;

 v[18][5] = 39;

 v[19][5] = 63;

 v[20][5] = 27;

 v[21][5] = 17;

 v[22][5] = 15;

 v[23][5] = 23;

 v[24][5] = 29;

 v[25][5] = 3;

 v[26][5] = 21;

 v[27][5] = 13;

 v[28][5] = 31;

 v[29][5] = 25;

 v[30][5] = 9;

 v[31][5] = 49;

 v[32][5] = 33;

 v[33][5] = 19;

 v[34][5] = 29;

 v[35][5] = 11;

 280

 v[36][5] = 19;

 v[37][5] = 27;

 v[38][5] = 15;

 v[39][5] = 25;

 v[19][6] = 13;

 v[20][6] = 35;

 v[21][6] = 115;

 v[22][6] = 41;

 v[23][6] = 79;

 v[24][6] = 17;

 v[25][6] = 29;

 v[26][6] = 119;

 v[27][6] = 75;

 v[28][6] = 73;

 v[29][6] = 105;

 v[30][6] = 7;

 v[31][6] = 59;

 v[32][6] = 65;

 v[33][6] = 21;

 v[34][6] = 3;

 v[35][6] = 113;

 v[36][6] = 61;

 v[37][6] = 89;

 v[38][6] = 45;

 v[39][6] = 107;

 281

 v[37][7] = 7;

 v[38][7] = 23;

 v[39][7] = 39;

//

// Check parameters.

//

 if (dim_num < 2 || DIM_MAX < dim_num)

 {

 cout << "\n";

 cout << "I4_SOBOL - Fatal error!\n";

 cout << " The spatial dimension DIM_NUM should satisfy:\n";

 cout << " 2 <= DIM_NUM <= " << DIM_MAX << "\n";

 cout << " But this input value is DIM_NUM = " << dim_num <<

"\n";

 exit (1);

 }

 dim_num_save = dim_num;

//

// Find the number of bits in ATMOST.

//

 maxcol = i4_bit_hi1 (atmost);

//

// Initialize row 1 of V.

//

 for (j = 0; j < maxcol; j++)

 {

 282

 v[0][j] = 1;

 }

//

// Initialize the remaining rows of V.

//

 for (i = 1; i < dim_num; i++)

 {

//

// The bit pattern of the integer POLY(I) gives the form

// of polynomial I.

//

// Find the degree of polynomial I from binary encoding.

//

 j = poly[i];

 m = 0;

 while (true)

 {

 j = j / 2;

 if (j <= 0)

 {

 break;

 }

 m = m + 1;

 }

//

// We expand this bit pattern to separate components

 283

// of the logical array INCLUD.

//

 j = poly[i];

 for (k = m-1; 0 <= k; k--)

 {

 j2 = j / 2;

 includ[k] = (j != (2 * j2));

 j = j2;

 }

//

// Calculate the remaining elements of row I as explained

// in Bratley and Fox, section 2.

//

// Some tricky indexing here. Did I change it correctly?

//

 for (j = m; j < maxcol; j++)

 {

 newv = v[i][j-m];

 l = 1;

 for (k = 0; k < m; k++)

 {

 l = 2 * l;

 if (includ[k])

 {

 newv = (newv ^ (l * v[i][j-k-1]));

 284

 }

 }

 v[i][j] = newv;

 }

 }

//

// Multiply columns of V by appropriate power of 2.

//

 l = 1;

 for (j = maxcol-2; 0 <= j; j--)

 {

 l = 2 * l;

 for (i = 0; i < dim_num; i++)

 {

 v[i][j] = v[i][j] * l;

 }

 }

//

// RECIPD is 1/(common denominator of the elements in V).

//

 recipd = 1.0E+00 / ((float) (2 * l));

 }

 285

 if (*seed < 0)

 {

 *seed = 0;

 }

 if (*seed == 0)

 {

 l = 1;

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = 0;

 }

 }

 else if (*seed == seed_save + 1)

 {

 l = i4_bit_lo0 (*seed);

 }

 else if (*seed <= seed_save)

 {

 seed_save = 0;

 l = 1;

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = 0;

 }

 for (seed_temp = seed_save; seed_temp <= (*seed)-1; seed_temp++)

 286

 {

 l = i4_bit_lo0 (seed_temp);

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 }

 l = i4_bit_lo0 (*seed);

 }

 else if (seed_save+1 < *seed)

 {

 for (seed_temp = seed_save+1; seed_temp <= (*seed)-1; seed_temp++

)

 {

 l = i4_bit_lo0 (seed_temp);

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 }

 287

 l = i4_bit_lo0 (*seed);

 }

//

// Check that the user is not calling too many times!

//

 if (maxcol < l)

 {

 cout << "\n";

 cout << "I4_SOBOL - Fatal error!\n";

 cout << " Too many calls!\n";

 cout << " MAXCOL = " << maxcol << "\n";

 cout << " L = " << l << "\n";

 exit (2);

 }

//

// Calculate the new components of QUASI.

// The caret indicates the bitwise exclusive OR.

//

 for (i = 0; i < dim_num; i++)

 {

 quasi[i] = ((float) lastq[i]) * recipd;

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 288

 seed_save = *seed;

 *seed = *seed + 1;

 return;

undef MAX_DIM

}

//***

int i4_uniform (int b, int c, int *seed)

//***

//

// Purpose:

//

// I4_UNIFORM returns an integer pseudorandom number.

//

// Discussion:

//

// The pseudorandom number should be uniformly distributed

// between A and B.

//

// Modified:

//

// 27 February 2005

 289

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, int B, C, the limits of the interval.

//

// Input/output, int *SEED, the "seed" value, which should NOT be 0.

// On output, SEED has been updated.

//

// Output, int I4_UNIFORM, a number between A and B.

//

{

 double d;

 int value;

 if (b <= c)

 {

 d = (double) (b) + (double) (1 + c - b) * d_uniform_01 (

seed);

 value = (int) (d);

 if (value < b)

 {

 290

 value = b;

 }

 if (c < value)

 {

 value = c;

 }

 }

 else

 {

 d = (double) (c) + (double) (1 + b - c) * d_uniform_01 (

seed);

 value = (int) (d);

 if (value < c)

 {

 value = c;

 }

 if (b < value)

 {

 value = b;

 }

 }

 return value;

}

 291

//***

unsigned int i4_xor (unsigned int i, unsigned int j)

//***

//

// Purpose:

//

// I4_XOR calculates the exclusive OR of two integers.

//

// Modified:

//

// 16 February 2005

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, unsigned int I, J, two values whose exclusive OR is

needed.

//

// Output, unsigned int I4_XOR, the exclusive OR of I and J.

//

 292

{

 unsigned int i2;

 unsigned int j2;

 unsigned int k;

 unsigned int l;

 k = 0;

 l = 1;

 while (i != 0 || j != 0)

 {

 i2 = i / 2;

 j2 = j / 2;

 if (

 ((i == 2 * i2) && (j != 2 * j2)) ||

 ((i != 2 * i2) && (j == 2 * j2)))

 {

 k = k + l;

 }

 i = i2;

 j = j2;

 l = 2 * l;

 }

 return k;

 293

}

//***

int i8_bit_hi1 (long int n)

//***

//

// Purpose:

//

// I8_BIT_HI1 returns the position of the high 1 bit base 2 in an

integer.

//

// Example:

//

// N Binary Hi 1

// ---- -------- ----

// 0 0 0

// 1 1 1

// 2 10 2

// 3 11 2

// 4 100 3

// 5 101 3

// 6 110 3

// 7 111 3

// 8 1000 4

 294

// 9 1001 4

// 10 1010 4

// 11 1011 4

// 12 1100 4

// 13 1101 4

// 14 1110 4

// 15 1111 4

// 16 10000 5

// 17 10001 5

// 1023 1111111111 10

// 1024 10000000000 11

// 1025 10000000001 11

//

// Modified:

//

// 03 August 2004

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, long int N, the integer to be measured.

// N should be nonnegative. If N is nonpositive, I8_BIT_HI1

// will always be 0.

//

 295

// Output, int I8_BIT_HI1, the number of bits base 2.

//

{

 int bit;

 bit = 0;

 while (0 < n)

 {

 bit = bit + 1;

 n = n / 2;

 }

 return bit;

}

//***

int i8_bit_lo0 (long int n)

//***

//

// Purpose:

//

// I8_BIT_LO0 returns the position of the low 0 bit base 2 in an

integer.

 296

//

// Example:

//

// N Binary Lo 0

// ---- -------- ----

// 0 0 1

// 1 1 2

// 2 10 1

// 3 11 3

// 4 100 1

// 5 101 2

// 6 110 1

// 7 111 4

// 8 1000 1

// 9 1001 2

// 10 1010 1

// 11 1011 3

// 12 1100 1

// 13 1101 2

// 14 1110 1

// 15 1111 5

// 16 10000 1

// 17 10001 2

// 1023 1111111111 1

// 1024 10000000000 1

// 1025 10000000001 1

//

 297

// Modified:

//

// 03 August 2004

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, long int N, the integer to be measured.

// N should be nonnegative.

//

// Output, int I8_BIT_LO0, the position of the low 1 bit.

//

{

 int bit;

 long int n2;

 bit = 0;

 while (true)

 {

 bit = bit + 1;

 n2 = n / 2;

 if (n == 2 * n2)

 298

 {

 break;

 }

 n = n2;

 }

 return bit;

}

//***

void i8_sobol (int dim_num, long int *seed, double quasi[])

//***

//

// Purpose:

//

// I8_SOBOL generates a new quasirandom Sobol vector with each call.

//

// Discussion:

//

// The routine adapts the ideas of Antonov and Saleev.

//

// Modified:

 299

//

// 03 August 2004

//

// Reference:

//

// Antonov and Saleev,

// USSR Computational Mathematics and Mathematical Physics,

// Volume 19, 1980, pages 252 - 256.

//

// Paul Bratley and Bennett Fox,

// Algorithm 659:

// Implementing Sobol's Quasirandom Sequence Generator,

// ACM Transactions on Mathematical Software,

// Volume 14, Number 1, pages 88-100, 1988.

//

// Bennett Fox,

// Algorithm 647:

// Implementation and Relative Efficiency of Quasirandom

// Sequence Generators,

// ACM Transactions on Mathematical Software,

// Volume 12, Number 4, pages 362-376, 1986.

//

// I Sobol,

// USSR Computational Mathematics and Mathematical Physics,

// Volume 16, pages 236-242, 1977.

//

// I Sobol and Levitan,

 300

// The Production of Points Uniformly Distributed in a

Multidimensional

// Cube (in Russian),

// Preprint IPM Akad. Nauk SSSR,

// Number 40, Moscow 1976.

//

// Parameters:

//

// Input, int DIM_NUM, the number of spatial dimensions.

// DIM_NUM must satisfy 2 <= DIM_NUM <= 40.

//

// Input/output, long int *SEED, the "seed" for the sequence.

// This is essentially the index in the sequence of the quasirandom

// value to be generated. On output, SEED has been set to the

// appropriate next value, usually simply SEED+1.

// If SEED is less than 0 on input, it is treated as though it were

0.

// An input value of 0 requests the first (0-th) element of the

sequence.

//

// Output, double QUASI[DIM_NUM], the next quasirandom vector.

//

{

define DIM_MAX 40

 static long int atmost = 4611686018427387903;

 static int dim_num_save = 0;

 301

 long int i;

 bool includ[8];

 static bool initialized = false;

 long int j;

 long int j2;

 long int k;

 long int l;

 static long int lastq[DIM_MAX];

 long int m;

 static long int maxcol;

 long int newv;

 static long int poly[DIM_MAX] =

 {

 1, 3, 7, 11, 13, 19, 25, 37, 59, 47,

 61, 55, 41, 67, 97, 91, 109, 103, 115, 131,

 193, 137, 145, 143, 241, 157, 185, 167, 229, 171,

 213, 191, 253, 203, 211, 239, 247, 285, 369, 299

 };

 static double recipd;

 static long int seed_save = 0;

 long int seed_temp;

 static long int v[DIM_MAX][30];

 if (!initialized || dim_num != dim_num_save)

 {

 initialized = true;

//

 302

// Initialize (part of) V.

//

 v[0][0] = 1;

 v[1][0] = 1;

 v[2][0] = 1;

 v[3][0] = 1;

 v[4][0] = 1;

 v[5][0] = 1;

 v[6][0] = 1;

 v[7][0] = 1;

 v[8][0] = 1;

 v[9][0] = 1;

 v[10][0] = 1;

 v[11][0] = 1;

 v[12][0] = 1;

 v[13][0] = 1;

 v[14][0] = 1;

 v[15][0] = 1;

 v[16][0] = 1;

 v[17][0] = 1;

 v[18][0] = 1;

 v[19][0] = 1;

 v[20][0] = 1;

 v[21][0] = 1;

 v[22][0] = 1;

 v[23][0] = 1;

 v[24][0] = 1;

 303

 v[25][0] = 1;

 v[26][0] = 1;

 v[27][0] = 1;

 v[28][0] = 1;

 v[29][0] = 1;

 v[30][0] = 1;

 v[31][0] = 1;

 v[32][0] = 1;

 v[33][0] = 1;

 v[34][0] = 1;

 v[35][0] = 1;

 v[36][0] = 1;

 v[37][0] = 1;

 v[38][0] = 1;

 v[39][0] = 1;

 v[2][1] = 1;

 v[3][1] = 3;

 v[4][1] = 1;

 v[5][1] = 3;

 v[6][1] = 1;

 v[7][1] = 3;

 v[8][1] = 3;

 v[9][1] = 1;

 v[10][1] = 3;

 v[11][1] = 1;

 v[12][1] = 3;

 304

 v[13][1] = 1;

 v[14][1] = 3;

 v[15][1] = 1;

 v[16][1] = 1;

 v[17][1] = 3;

 v[18][1] = 1;

 v[19][1] = 3;

 v[20][1] = 1;

 v[21][1] = 3;

 v[22][1] = 1;

 v[23][1] = 3;

 v[24][1] = 3;

 v[25][1] = 1;

 v[26][1] = 3;

 v[27][1] = 1;

 v[28][1] = 3;

 v[29][1] = 1;

 v[30][1] = 3;

 v[31][1] = 1;

 v[32][1] = 1;

 v[33][1] = 3;

 v[34][1] = 1;

 v[35][1] = 3;

 v[36][1] = 1;

 v[37][1] = 3;

 v[38][1] = 1;

 v[39][1] = 3;

 305

 v[3][2] = 7;

 v[4][2] = 5;

 v[5][2] = 1;

 v[6][2] = 3;

 v[7][2] = 3;

 v[8][2] = 7;

 v[9][2] = 5;

 v[10][2] = 5;

 v[11][2] = 7;

 v[12][2] = 7;

 v[13][2] = 1;

 v[14][2] = 3;

 v[15][2] = 3;

 v[16][2] = 7;

 v[17][2] = 5;

 v[18][2] = 1;

 v[19][2] = 1;

 v[20][2] = 5;

 v[21][2] = 3;

 v[22][2] = 3;

 v[23][2] = 1;

 v[24][2] = 7;

 v[25][2] = 5;

 v[26][2] = 1;

 v[27][2] = 3;

 v[28][2] = 3;

 306

 v[29][2] = 7;

 v[30][2] = 5;

 v[31][2] = 1;

 v[32][2] = 1;

 v[33][2] = 5;

 v[34][2] = 7;

 v[35][2] = 7;

 v[36][2] = 5;

 v[37][2] = 1;

 v[38][2] = 3;

 v[39][2] = 3;

 v[5][3] = 1;

 v[6][3] = 7;

 v[7][3] = 9;

 v[8][3] = 13;

 v[9][3] = 11;

 v[10][3] = 1;

 v[11][3] = 3;

 v[12][3] = 7;

 v[13][3] = 9;

 v[14][3] = 5;

 v[15][3] = 13;

 v[16][3] = 13;

 v[17][3] = 11;

 v[18][3] = 3;

 v[19][3] = 15;

 307

 v[20][3] = 5;

 v[21][3] = 3;

 v[22][3] = 15;

 v[23][3] = 7;

 v[24][3] = 9;

 v[25][3] = 13;

 v[26][3] = 9;

 v[27][3] = 1;

 v[28][3] = 11;

 v[29][3] = 7;

 v[30][3] = 5;

 v[31][3] = 15;

 v[32][3] = 1;

 v[33][3] = 15;

 v[34][3] = 11;

 v[35][3] = 5;

 v[36][3] = 3;

 v[37][3] = 1;

 v[38][3] = 7;

 v[39][3] = 9;

 v[7][4] = 9;

 v[8][4] = 3;

 v[9][4] = 27;

 v[10][4] = 15;

 v[11][4] = 29;

 v[12][4] = 21;

 308

 v[13][4] = 23;

 v[14][4] = 19;

 v[15][4] = 11;

 v[16][4] = 25;

 v[17][4] = 7;

 v[18][4] = 13;

 v[19][4] = 17;

 v[20][4] = 1;

 v[21][4] = 25;

 v[22][4] = 29;

 v[23][4] = 3;

 v[24][4] = 31;

 v[25][4] = 11;

 v[26][4] = 5;

 v[27][4] = 23;

 v[28][4] = 27;

 v[29][4] = 19;

 v[30][4] = 21;

 v[31][4] = 5;

 v[32][4] = 1;

 v[33][4] = 17;

 v[34][4] = 13;

 v[35][4] = 7;

 v[36][4] = 15;

 v[37][4] = 9;

 v[38][4] = 31;

 v[39][4] = 9;

 309

 v[13][5] = 37;

 v[14][5] = 33;

 v[15][5] = 7;

 v[16][5] = 5;

 v[17][5] = 11;

 v[18][5] = 39;

 v[19][5] = 63;

 v[20][5] = 27;

 v[21][5] = 17;

 v[22][5] = 15;

 v[23][5] = 23;

 v[24][5] = 29;

 v[25][5] = 3;

 v[26][5] = 21;

 v[27][5] = 13;

 v[28][5] = 31;

 v[29][5] = 25;

 v[30][5] = 9;

 v[31][5] = 49;

 v[32][5] = 33;

 v[33][5] = 19;

 v[34][5] = 29;

 v[35][5] = 11;

 v[36][5] = 19;

 v[37][5] = 27;

 v[38][5] = 15;

 310

 v[39][5] = 25;

 v[19][6] = 13;

 v[20][6] = 35;

 v[21][6] = 115;

 v[22][6] = 41;

 v[23][6] = 79;

 v[24][6] = 17;

 v[25][6] = 29;

 v[26][6] = 119;

 v[27][6] = 75;

 v[28][6] = 73;

 v[29][6] = 105;

 v[30][6] = 7;

 v[31][6] = 59;

 v[32][6] = 65;

 v[33][6] = 21;

 v[34][6] = 3;

 v[35][6] = 113;

 v[36][6] = 61;

 v[37][6] = 89;

 v[38][6] = 45;

 v[39][6] = 107;

 v[37][7] = 7;

 v[38][7] = 23;

 v[39][7] = 39;

 311

//

// Check parameters.

//

 if (dim_num < 2 || DIM_MAX < dim_num)

 {

 cout << "\n";

 cout << "I8_SOBOL - Fatal error!\n";

 cout << " The spatial dimension DIM_NUM should satisfy:\n";

 cout << " 2 <= DIM_NUM <= " << DIM_MAX << "\n";

 cout << " But this input value is DIM_NUM = " << dim_num <<

"\n";

 exit (1);

 }

 dim_num_save = dim_num;

//

// Find the number of bits in ATMOST.

//

 maxcol = i8_bit_hi1 (atmost);

//

// Initialize row 1 of V.

//

 for (j = 0; j < maxcol; j++)

 {

 v[0][j] = 1;

 }

//

 312

// Initialize the remaining rows of V.

//

 for (i = 1; i < dim_num; i++)

 {

//

// The bit pattern of the integer POLY(I) gives the form

// of polynomial I.

//

// Find the degree of polynomial I from binary encoding.

//

 j = poly[i];

 m = 0;

 while (true)

 {

 j = j / 2;

 if (j <= 0)

 {

 break;

 }

 m = m + 1;

 }

//

// We expand this bit pattern to separate components

// of the logical array INCLUD.

//

 j = poly[i];

 313

 for (k = m-1; 0 <= k; k--)

 {

 j2 = j / 2;

 includ[k] = (j != (2 * j2));

 j = j2;

 }

//

// Calculate the remaining elements of row I as explained

// in Bratley and Fox, section 2.

//

// Some tricky indexing here. Did I change it correctly?

//

 for (j = m; j < maxcol; j++)

 {

 newv = v[i][j-m];

 l = 1;

 for (k = 0; k < m; k++)

 {

 l = 2 * l;

 if (includ[k])

 {

 newv = (newv ^ (l * v[i][j-k-1]));

 }

 }

 314

 v[i][j] = newv;

 }

 }

//

// Multiply columns of V by appropriate power of 2.

//

 l = 1;

 for (j = maxcol - 2; 0 <= j; j--)

 {

 l = 2 * l;

 for (i = 0; i < dim_num; i++)

 {

 v[i][j] = v[i][j] * l;

 }

 }

//

// RECIPD is 1/(common denominator of the elements in V).

//

 recipd = 1.0E+00 / ((double) (2 * l));

 }

 if (*seed < 0)

 {

 *seed = 0;

 315

 }

 if (*seed == 0)

 {

 l = 1;

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = 0;

 }

 }

 else if (*seed == seed_save + 1)

 {

 l = i8_bit_lo0 (*seed);

 }

 else if (*seed <= seed_save)

 {

 seed_save = 0;

 l = 1;

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = 0;

 }

 for (seed_temp = seed_save; seed_temp <= (*seed)-1; seed_temp++)

 {

 l = i8_bit_lo0 (seed_temp);

 316

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 }

 l = i8_bit_lo0 (*seed);

 }

 else if (seed_save+1 < *seed)

 {

 for (seed_temp = seed_save+1; seed_temp <= (*seed)-1; seed_temp++

)

 {

 l = i8_bit_lo0 (seed_temp);

 for (i = 0; i < dim_num; i++)

 {

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 }

 l = i8_bit_lo0 (*seed);

 317

 }

//

// Check that the user is not calling too many times!

//

 if (maxcol < l)

 {

 cout << "\n";

 cout << "I8_SOBOL - Fatal error!\n";

 cout << " Too many calls!\n";

 cout << " MAXCOL = " << maxcol << "\n";

 cout << " L = " << l << "\n";

 exit (2);

 }

//

// Calculate the new components of QUASI.

// The caret indicates the bitwise exclusive OR.

//

 for (i = 0; i < dim_num; i++)

 {

 quasi[i] = ((double) lastq[i]) * recipd;

 lastq[i] = (lastq[i] ^ v[i][l-1]);

 }

 seed_save = *seed;

 *seed = *seed + 1;

 318

 return;

undef MAX_DIM

}

//***

long int i8_uniform (long int b, long int c, int *seed)

//***

//

// Purpose:

//

// I8_UNIFORM returns an integer pseudorandom number.

//

// Discussion:

//

// The pseudorandom number should be uniformly distributed

// between A and B.

//

// Modified:

//

// 27 February 2005

//

// Author:

//

// John Burkardt

 319

//

// Parameters:

//

// Input, long int B, C, the limits of the interval.

//

// Input/output, int *SEED, the "seed" value, which should NOT be 0.

// On output, SEED has been updated.

//

// Output, long int I8_UNIFORM, a number between A and B.

//

{

 double d;

 long int value;

 if (b <= c)

 {

 d = (double) (b) + (double) (1 + c - b) * d_uniform_01 (

seed);

 value = (long int) (d);

 if (value < b)

 {

 value = b;

 }

 if (c < value)

 {

 320

 value = c;

 }

 }

 else

 {

 d = (double) (c) + (double) (1 + b - c) * d_uniform_01 (

seed);

 value = (long int) (d);

 if (value < c)

 {

 value = c;

 }

 if (b < value)

 {

 value = b;

 }

 }

 return value;

}

//***

unsigned long int i8_xor (unsigned long int i, unsigned long int j)

 321

//***

//

// Purpose:

//

// I8_XOR calculates the exclusive OR of two integers.

//

// Modified:

//

// 16 February 2005

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Input, unsigned long int I, J, two values whose exclusive OR is

needed.

//

// Output, unsigned long int I8_XOR, the exclusive OR of I and J.

//

{

 unsigned long int i2;

 unsigned long int j2;

 unsigned long int k;

 unsigned long int l;

 322

 k = 0;

 l = 1;

 while (i != 0 || j != 0)

 {

 i2 = i / 2;

 j2 = j / 2;

 if (

 ((i == 2 * i2) && (j != 2 * j2)) ||

 ((i != 2 * i2) && (j == 2 * j2)))

 {

 k = k + l;

 }

 i = i2;

 j = j2;

 l = 2 * l;

 }

 return k;

}

//***

*

void timestamp (void)

 323

//***

*

//

// Purpose:

//

// TIMESTAMP prints the current YMDHMS date as a time stamp.

//

// Example:

//

// May 31 2001 09:45:54 AM

//

// Modified:

//

// 04 October 2003

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// None

//

{

#define TIME_SIZE 40

 324

 static char time_buffer[TIME_SIZE];

 const struct tm *tm;

 size_t len;

 time_t now;

 ofstream FinalReport("GrowthReport.txt", ios::app);

 now = time (NULL);

 tm = localtime (&now);

 len = strftime (time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm

);

 cout << time_buffer << "\n";

 FinalReport << time_buffer << "\n";

 return;

#undef TIME_SIZE

}

int get_seed (void)

//***

//

// Purpose:

//

// GET_SEED returns a random seed for the random number generator.

//

// Modified:

//

 325

// 17 November 2004

//

// Author:

//

// John Burkardt

//

// Parameters:

//

// Output, int GET_SEED, a random seed value.

//

{

define I_MAX 2147483647

 time_t clock;

 int i;

 int ihour;

 int imin;

 int isec;

 int seed;

 struct tm *lt;

 time_t tloc;

//

// If the internal seed is 0, generate a value based on the time.

//

 clock = time (&tloc);

 lt = localtime (&clock);

//

// Hours is 1, 2, ..., 12.

 326

//

 ihour = lt->tm_hour;

 if (12 < ihour)

 {

 ihour = ihour - 12;

 }

//

// Move Hours to 0, 1, ..., 11

//

 ihour = ihour - 1;

 imin = lt->tm_min;

 isec = lt->tm_sec;

 seed = isec + 60 * (imin + 60 * ihour);

//

// We want values in [1,43200], not [0,43199].

//

 seed = seed + 1;

//

// Remap ISEED from [1,43200] to [1,IMAX].

//

 seed = (int)

 (((double) seed)

 * ((double) I_MAX) / (60.0E+00 * 60.0E+00 * 12.0E+00));

 327

//

// Never use a seed of 0.

//

 if (seed == 0)

 {

 seed = 1;

 }

 return seed;

undef I_MAX

}

//***

void timeStep(double *time, float *pdf, double *area, int *trans)

{

 ofstream Timetable("time.txt", ios::app);

 int seed;

 double rand;

 double sum;

 double ln;

 double current_time;

 double time_step;

 current_time = *time;

 seed = get_seed();

 328

 rand = d_uniform_01 (&seed);

 sum = (trans[0]*pdf[0]) + (trans[1]*pdf[1]) + (trans[2]*pdf[2]);

 ln = (-log(rand));

 time_step = ln / sum;

 *time = current_time + time_step;

 Timetable <<"-----------------"<<endl;

 Timetable <<"Current Time = "<<current_time<<endl;

 Timetable <<"Time Step = " << ln/sum << endl;

 Timetable <<"Transition took = "<<*time <<endl;

 Timetable <<"Rand = "<<rand<<endl;

 Timetable << "Pads = " << pdf[0] << ", Pdes = " << pdf[1] << ",

Pdif = " << pdf[2] << endl;

 Timetable <<"Sum of pdf = "<<sum <<endl;

 Timetable <<"-Ln(rand) = "<<ln<<endl;

}

void pdfSelection(float *pdf, int *selection, int *tran)

{

 int seed;

 329

 seed = get_seed();

 double Urand = d_uniform_01 (&seed);

 double total = pdf[0] + pdf[1] + pdf[2];

 double no_event = 0.0 * total;

 total = pdf[0] + pdf[1] + pdf[2] + no_event;

 *selection = -1;

 if(Urand < (pdf[0]/total))

 {

 *selection = 0;

 tran[0]++;

 }

 else if((Urand >= (pdf[0]/total)) && (Urand < ((pdf[0] + pdf[1])

/ total)))

 {

 *selection = 1;

 tran[1]++;

 }

 else if((Urand >= ((pdf[0] + pdf[1]) / total)) && (Urand <

((pdf[0] + pdf[1]+ pdf[2]) / total)))

 {

 *selection = 2;

 tran[2]++;

 }

 330

 else

 {

 *selection = -1;

 }

 //cout<<"selection is: "<<*selection<<endl;

}

void pdfVacantSelect(float *pdf, int *selection, int *tran)

{

 int seed;

 double no_event = pdf[0] * 0.1;

 double stick = pdf[0] + no_event;

 seed = get_seed();

 double Urand = d_uniform_01 (&seed);

 *selection = -1;

 if(Urand < (pdf[0] / stick))

 {

 *selection = 0;

 tran[0]++;

 }

 else

 *selection = -1;

/*

 if(pdf[0] <= 0.5)

 {

 331

 *selection = -1;

 }*/

}

void site(int *seed, int x, int y, int *out)

{

 float r[2];

 int dim_num = 2;

 int num;

 //static int u_seed = 0;

 //double Urand_x,Urand_y;

 num = *seed;

 //if(u_seed == 0)

 // u_seed = get_seed();

 i4_sobol (dim_num, &num, r);

 //cout << "site obtained" << endl;

 //u_seed++;

 //Urand_x = d_uniform_01 (&u_seed);

 //u_seed++;

 //Urand_y = d_uniform_01 (&u_seed);

 //num = num + 2;

 *seed = num;

 //out[0] = Urand_x * x; //r[0] * x;

 332

 //out[1] = Urand_y * y; //r[1] * y;

 out[0] = r[0] * x;

 out[1] = r[1] * y;

}

void siteUpdate(int ***Vol, int *coord, int *selection, int *index,int

count)

{

 //cout << "Entering Site Update"<<endl;

 //siteUpdate(volume, coord, &select, index,adjacent);

 int choice; //Process to be preformed on the surface

site

 int i; //index variable

 int x,y,z; //chosen site on surface

 int seed; //seed used for random number

 double Urand; //Random number used to pick which

neighbor start diffusion with

 int start = 0; //Shows which neighbor to diffuse

 int diffused = 0; //used to show when diffusion had occured

 int next_door = 0; //Number of neighboring atoms

 choice = *selection; //save slection for this itteration

 *selection = -1; //Reset selection for next iterration

 x = coord[0];

 y = coord[1];

 z = coord[2];

 //cout<<"z: "<<z<<endl;

 333

 seed = get_seed();

 Urand = d_uniform_01(&seed);

 //cout<<"Choice was: "<<choice <<", Passed RNG"<<endl;

 switch(choice)

 {

 case -1://No transition occured on site

 {

 break;

 }

 case 0://Adsorption occured

 {

 Vol[x][y][z] = 1;

 break;

 }

 case 1://Desorption occured

 {

 Vol[x][y][z] = 0;

 334

 break;

 }

 case 2://Diffusion occured

 {

 if(Urand < .25)

 {

 start = 0;

 }

 if((Urand >= .25) && (Urand < .5))

 {

 start = 1;

 }

 if((Urand >= .5) && (Urand < .75))

 {

 start = 2;

 }

 if((Urand >= .75) && (Urand <= 1))

 {

 start = 3;

 }

 //cout <<"Start was set to: "<<start<<endl;

 neighbors(Vol,coord,index,&next_door);

 if(next_door < 4)

 {

 for(i = 0; i <=3; i++)

 {

 while((diffused == 0))

 335

 {

 if(start == 0)

 {

 if(Vol[x][y + 2][z] == 0)

 {

 Vol[x][y + 2][z] = 1;

 Vol[x][y][z] = 0;

 diffused = 1;

 }

 }

 if(start == 1)

 {

 if(Vol[x + 2][y][z] == 0)

 {

 Vol[x + 2][y][z] = 1;

 Vol[x][y][z] = 0;

 diffused = 1;

 }

 }

 if(start == 2)

 {

 if(Vol[x][y - 2][z] == 0)

 {

 Vol[x][y - 2][z] = 1;

 Vol[x][y][z] = 0;

 336

 diffused = 1;

 }

 }

 if(start == 3)

 {

 if(Vol[x - 2][y][z] == 0)

 {

 Vol[x - 2][y][z] = 1;

 Vol[x][y][z] = 0;

 diffused = 1;

 }

 }

 start++;

 if(start == 4)

 {

 start = 0;

 }

 }

 }

 }

 else

 {

 Vol[x][y][z] = 1;

 }

 break;

 337

 }

 default://Error

 {

 cout<<"...Invalid Selection in PDF...."<<endl;

 }

 }

}

/**

Valid Site will take the max indicies of the SUT

and return a site that falls within the domain of the SUT

that falls within the valid site domain

**/

void ValidSite(int *seed,int xs, int ys, int zs, int

*nano,int*coord,int***Volume, float standard,int **history, int

history_length)

{

 int SUT_coord[3] = {-1,-1,-1}; //0 - x, 1 - y, 2 - z

 int valid = 0; //set to 1 when valid site has been

found

 int x,y,z; //Valid sites chosen and returned

 int i,j,k,l,q; //indexing variable

 int x_nano, y_nano,r_nano; //nano window dimension

 int offset_x, offset_y,offset_r; //offsets used to center the

nano window on SUT

 int x_low, x_limit; //limits for valid x coordinate

 int y_low, y_limit; //limits for valid y coordinate

 int x_range, y_range; //diffrence between low and limit

 338

 int r_low, r_limit;

 int SUT_r,xr, SUT_rx, SUT_ry;

 int circular = 1;

 // ofstream Report("SobolCalls.txt", ios::app);

 //x_nano = xs / 2;

 //y_nano = ys / 2;

 x_nano = nano[0];

 y_nano = nano[1];

/*

 offset_x = (xs - (x_nano * 8))/2;

 offset_y = (ys - (y_nano * 8))/2;

*/

 offset_x = (xs - (x_nano * (10-standard)))/2;

 offset_y = (ys - (y_nano * (10-standard)))/2;

 r_nano =xs/2 - offset_x;

 xr = xs/2;

 offset_r = xr - r_nano ;

 x_low = offset_x;

 x_limit = xs - offset_x;

 x_range = x_limit - x_low;

 339

 y_low = offset_y;

 y_limit = ys - offset_y;

 y_range = y_limit - y_low;

 r_low =offset_r;

 r_limit = xr - offset_r;

 //cout << " x low = "<< x_low << ", x high = " << x_limit <<

endl;

 //cout << " y low = "<< y_low << ", y high = " << y_limit <<

endl;

 k=0;

 l=0;

 while(valid == 0)

 {

 if(circular == 1)

 {

 SUT_rx = abs(SUT_coord[0] - xr);

 SUT_ry = abs(SUT_coord[1] - xr);

 SUT_r = sqrt(double (SUT_rx*SUT_rx + SUT_ry*SUT_ry));

 //cout<<"SUT_r: "<<SUT_r<<endl;

 //cout<<"r low: "<<r_low<<", r limit: "<<r_limit<<endl;

 while(!((SUT_r < r_limit) &&

 (SUT_coord[0] > x_low) && (SUT_coord[0] <

x_limit)

 340

 && (SUT_coord[1] > y_low) && (SUT_coord[1] <

y_limit)))

 {

 l++;

 //Obtains a site from the Sobol generator

 //function will be called untill a point is selected

 //that falls within the valid region

 site(seed, x_range, y_range, SUT_coord);

 SUT_coord[0] = SUT_coord[0] + x_low;

 SUT_coord[1] = SUT_coord[1] + y_low;

 SUT_rx = abs(SUT_coord[0] - xs/2);

 SUT_ry = abs(SUT_coord[1] - ys/2);

 SUT_r = sqrt(double(SUT_rx*SUT_rx + SUT_ry*SUT_ry));

 //Report << "Sobol Call #" << l <<endl;

 //Report << "x = "<< SUT_coord[0] << ", y = " <<

SUT_coord[1] << endl;

 }

 }

 else

 {

 341

 while(!(((SUT_coord[0] > x_low) && (SUT_coord[0] <

x_limit)) &&

 ((SUT_coord[1] > y_low) && (SUT_coord[1] < y_limit)))

)

 {

 l++;

 //Obtains a site from the Sobol generator

 //function will be called untill a point is selected

 //that falls within the valid region

 site(seed, xs, ys, SUT_coord);

 //cout << "Sobol Call #" << l <<endl;

 //cout << "x = "<< SUT_coord[0] << ", y = " <<

SUT_coord[1] << endl;

 }

 }

 l = 0;

 x = SUT_coord[0];

 y = SUT_coord[1];

 SUT_coord[0] = -1;

 SUT_coord[1] = -1;

 //cout << "Valid x = " << x <<", y = " << y <<endl;

 i = 0;

 342

 while((Volume[x][y][i] != 0) && (i <= zs))

 {

 //cout << "Top of Stack Trial #" << k <<endl;

 //cout << "Array value = " << Volume[x][y][i] <<

endl;

 /*Possible Limitation

 program will only allow you to find an

 avaliable spot that is within the size of the Volume

array

 created to model this growth, if this x,y coordinate

is occupied

 to the top of the Volume array, another x,y

coordinate will be found

 and this site will be skipped*/

 k++;

 i++;

 }

 k = 0;

 //cout << "i = " << i <<", zs = "<< zs << endl;

 if(i <= zs)

 {

 valid = 1;

 z = i;

 }

 for(q = 0; q < history_length; q++)

 343

 {

 if((history[q][0] == x) && (history[q][1] == y))

 valid = 0;

 }

 }

 coord[0] = x;

 coord[1] = y;

 coord[2] = z;

// Report.close();

}

#include "island_header.h"

void main(void)

{

 int **map;

 int x, y;

 int total_islands;

 char choice;

 node list;

//Create map from text file

 map = create_map(&x,&y);

 344

//Normalize map to 0's and -1's

 cout << "Normalizing Map...."<<endl;

 normalize_map(map,x,y);

 cout << "... Normalization Complete"<<endl;

 array_out(map, x, y);

 //cout << "Press any key to continue, The normalized map can be

reviewed ";

 //cin >> choice;

 //cout << "\n" << endl;

//Connects normalized map into islands and returns the total

// number of islands in map

 cout <<"Connecting Islands"<<endl;

 total_islands = connect_map(map,x,y);

 cout <<" Islands Connected"<<endl;

 //array_out(map, x, y);

 cout << "Total number of islands: "<<total_islands<<endl;

 //cout << "Press any key to continue, The connected map can be

reviewed ";

 345

 //cin >> choice;

 //cout << "\n" << endl;

//Create linked list of islands

 list = (node) malloc(total_islands * sizeof(island));

 link_list(list,total_islands);

//Save max and min values and Calculate Diameters in Linked List

 max_and_min(map,list,total_islands,x,y);

//Ouput Linked List for review

 linked_list_out(list,total_islands);

//

}

#include <iostream>

using std::cout;

using std::cin;

using std::ios;

using std::cerr;

 346

using std:: endl;

#include <fstream>

using std::ofstream;

#include <iomanip> // format manipulation

include <stdio.h>

include <stdlib.h>

include <string.h>

using namespace std;

struct data

{

 int x_max;

 int x_low;

 int y_max;

 int y_low;

 float diameter;

 struct data *next;

};

typedef struct data * node;

typedef struct data island;

void save_x_max(node ptr, int x)

 347

{

 ptr->x_max = x;

}

void save_y_max(node ptr, int y)

{

 ptr->y_max = y;

}

void save_x_low(node ptr, int x)

{

 ptr->x_low = x;

}

void save_y_low(node ptr, int y)

{

 ptr->y_low = y;

}

void save_diameter(node ptr, int d)

{

 ptr->diameter = d;

}

void link_list(node list,int length)

{

 int i;

 348

 for(i = 0; i < (length - 1); i++)

 {

 list[i].next = &list[i+1];

 }

 list[i].next = NULL;

}

void max_and_min(int **map,node list,int max_islands,int x,int y)

{

 int i,j;

 int islands = 0;

 int max_x, min_x;

 int max_y, min_y;

 int diameter;

 while(islands < max_islands)

 {

 max_x = 0;

 max_y = 0;

 min_x = x;

 min_y = y;

 diameter = 0;

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 349

 {

 if(map[i][j] == islands)

 {

 if((i < min_x))

 min_x = i;

 if((i > max_x))

 max_x = i;

 if((j < min_y))

 min_y = j;

 if((j > max_y))

 max_y = j;

 }

 }

 }

 diameter = ((max_x - min_x + 1) + (max_y - min_y + 1)) /

2;

 save_diameter(&list[islands],diameter);

 save_x_max(&list[islands],max_x);

 save_y_max(&list[islands],max_y);

 save_x_low(&list[islands],min_x);

 save_y_low(&list[islands],min_y);

 350

 islands++;

 }

}

void linked_list_out(node list,int length)

{

 ofstream outData("linked_list.txt", ios::out);

 int i;

 outData << "X MAX \t X MIN \t Y MAX \t Y MIN \t

DIAMETER"<<endl;

 for(i = 0; i < length; i++)

 {

 outData << list[i].x_max <<"\t" << list[i].x_low

<<"\t"<<list[i].y_max<<"\t"<<list[i].y_low<<"\t"<<list[i].diameter<<end

l;

 }

 outData.close();

}

int** array2Dcreate(int x,int y)

{

 int i, j;

 int ** array2D = new int*[x];

 351

 for(i = 0; i < x; i++)

 {

 array2D[i] = new int[y];

 }

 return array2D;

}

void array2Dinitial(int **Vol, int x, int y)

{

 for(int i = 0; i < x; i++)

 {

 for(int j = 0; j < y; j++)

 {

 Vol[i][j] = 0;

 }

 }

}

int ** create_map(int *dimx, int *dimy)

{

 ifstream fp_in;

 ofstream fp_out;

 fp_in.open("surface.dat",ios::in);

 352

 int **map; //Holds data map from text file

 int x, y; //size of data map

 int i,j,k,trash; //index variables

 char line[80];

 //Stripping Data from file

 fp_in >> line;

 //Size of Grid

 fp_in >> x;

 fp_in >> y;

 cout << "Current "<<line<<" is set to "<<x<<" by "<<y<<endl;

 *dimx = x;

 *dimy = y;

 //Removing unwanted characters from file

 fp_in >>trash;

 cout << trash<<"\t";

 fp_in >>trash;

 cout << trash<<"\t";

 fp_in >>trash;

 cout << trash<<"\t";

 fp_in >>trash;

 353

 cout << trash<<"\t";

 fp_in >>trash;

 cout << trash << endl;

 //Creating and intializing array for map

 map = array2Dcreate(x ,y);

 array2Dinitial(map, x, y);

 //Stripping values from .dat to array

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 {

 fp_in >> k;

 map[i][j] = k;

 //cout << in[i][j];

 }

 //cout <<"\n";

 }

 fp_in.close();

 return(map);

}

 354

void normalize_map(int **map,int x,int y)

{

 //normalize 2D array to 0's and -1's

 //Place an -1 where data is found, everywhere else will be a 0

 int i,j,temp;

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 {

 temp = map[i][j];

 if(temp != 0)

 map[i][j] = -1;

 }

 }

}

void array_out(int **output, int x, int y)

{

 int i,j;

 ofstream outData("island.txt", ios::out);

 outData <<"GRID\t"<<x<<"\t"<<y<<endl;

 outData <<"-5\t1\t1\t0\t0"<<endl;

 output[0][0]=0;

 for(i = 0; i < x; i++)

 355

 {

 for(j = 0; j < y; j++)

 {

 outData << output[i][j] << "\t";

 }

 outData <<endl;

 }

 outData.close();

}

void connections(int *island, int **map,int x, int y)

{

 island[0] = map[x-1][y];

 island[1] = map[x-1][y+1];

 island[2] = map[x][y+1];

 island[3] = map[x+1][y+1];

 island[4] = map[x+1][y];

 island[5] = map[x+1][y-1];

 island[6] = map[x][y-1];

 island[7] = map[x-1][y-1];

}

int straight(int *island)

{

 int test = 0;

 356

 if((island[0] > 0) || (island[0] == -1))

 {

 if((test > 0) && (island[0] == -1))

 test = test;

 if((test > 0) && (island[0] > 0))

 test = island[0];

 if((test < 0) && (island[0] > 0))

 test = island[0];

 if((test < 0) && (island[0] == -1))

 test = island[0];

 if(test == 0)

 test = island[0];

 }

 if((island[2] > 0) || (island[2] == -1))

 {

 if((test > 0) && (island[2] == -1))

 test = test;

 if((test > 0) && (island[2] > 0))

 357

 test = island[2];

 if((test < 0) && (island[2] > 0))

 test = island[2];

 if((test < 0) && (island[2] == -1))

 test = island[2];

 if(test == 0)

 test = island[2];

 }

 if((island[4] > 0) || (island[4] == -1))

 {

 if((test > 0) && (island[4] == -1))

 test = test;

 if((test > 0) && (island[4] > 0))

 test = island[4];

 if((test < 0) && (island[4] > 0))

 test = island[4];

 if((test < 0) && (island[4] == -1))

 test = island[4];

 358

 if(test == 0)

 test = island[4];

 }

 if((island[6] > 0) || (island[6] == -1))

 {

 if((test > 0) && (island[6] == -1))

 test = test;

 if((test > 0) && (island[6] > 0))

 test = island[6];

 if((test < 0) && (island[6] > 0))

 test = island[6];

 if((test < 0) && (island[6] == -1))

 test = island[6];

 if(test == 0)

 test = island[6];

 }

 return(test);

}

 359

int diagonal(int *island)

{

 int test = 0;

 if((island[1] > 0) || (island[1] == -1))

 {

 if((test > 0) && (island[1] == -1))

 test = test;

 if((test > 0) && (island[1] > 0))

 test = island[1];

 if((test < 0) && (island[1] > 0))

 test = island[1];

 if((test < 0) && (island[1] == -1))

 test = island[0];

 if(test == 0)

 test = island[1];

 }

 if((island[3] > 0) || (island[3] == -1))

 {

 360

 if((test > 0) && (island[3] == -1))

 test = test;

 if((test > 0) && (island[3] > 0))

 test = island[3];

 if((test < 0) && (island[3] > 0))

 test = island[3];

 if((test < 0) && (island[3] == -1))

 test = island[3];

 if(test == 0)

 test = island[3];

 }

 if((island[5] > 0) || (island[5] == -1))

 {

 if((test > 0) && (island[5] == -1))

 test = test;

 if((test > 0) && (island[5] > 0))

 test = island[5];

 if((test < 0) && (island[5] > 0))

 361

 test = island[5];

 if((test < 0) && (island[5] == -1))

 test = island[5];

 if(test == 0)

 test = island[5];

 }

 if((island[7] > 0) || (island[7] == -1))

 {

 if((test > 0) && (island[7] == -1))

 test = test;

 if((test > 0) && (island[7] > 0))

 test = island[7];

 if((test < 0) && (island[7] > 0))

 test = island[7];

 if((test < 0) && (island[7] == -1))

 test = island[7];

 if(test == 0)

 test = island[7];

 362

 }

 return(test);

}

int d_valid(int *diag_valid,int **map,int x,int y)

{

 int test = 0;

 diag_valid[0] = 0;

 diag_valid[1] = 0;

 diag_valid[2] = 0;

 diag_valid[3] = 0;

 if((map[x-1][y] != 0) || (map[x][y+1] != 0))

 {

 diag_valid[0] = 1;

 test = 1;

 }

 if((map[x+1][y] != 0) || (map[x][y+1] != 0))

 {

 diag_valid[1] = 1;

 test = 1;

 }

 if((map[x+1][y] != 0) || (map[x][y-1] != 0))

 {

 363

 diag_valid[2] = 1;

 test = 1;

 }

 if((map[x-1][y] != 0) || (map[x][y-1] != 0))

 {

 diag_valid[3] = 1;

 test = 1;

 }

 return(test);

}

void ext_side(int *side, int **map,int x,int y)

{

 *side = 0;

 if(map[x][y+1] == -1)

 {

 ext_side(side,map,x,y+1);

 }

 if(map[x-1][y] > 0)

 *side = map[x-1][y];

}

int connect_map(int **map,int x,int y)

{

 364

 int i,j;

 int total_islands = 0;

 int neighbors[8] = {0,0,0,0,0,0,0,0};

 int diag_valid[4] = {0,0,0,0};

 int s_neigh, d_neigh, ext_s_neigh;

 int test;

 for(i = 0; i < x; i++)

 {

 for(j = 0; j < y; j++)

 {

 if(map[i][j] == -1)

 {

 if(total_islands == 0)

 {//first island

 total_islands++;

 map[i][j] = total_islands;

 }

 else

 {

 //Read values of non diaganol neighbors

 // if any value other than 0 or

-1 is found

 // change map value to the value

of neighbor

 // otherwise, increment

total_islands and update

 365

 // map to total_islands number

 //Loads map value of neighboring sites

 connections(neighbors,map,i,j);

 s_neigh = straight(neighbors);

 d_neigh = diagonal(neighbors);

 if((s_neigh == 0))

 {//single dot with no neighbors,

independent island

 total_islands++;

 map[i][j] = total_islands;

 }

 else if((s_neigh == -1) && (d_neigh == -

1))

 {

 ext_side(&ext_s_neigh ,map,i,j);

 if(ext_s_neigh > 0)

 {//Value is connected to island,

add to existing island

 //do not increment

 map[i][j] = ext_s_neigh;

 }

 366

 else

 {//new island, s_neigh and d_neigh

have no values

 //but island does have

s_neighbors

 total_islands++;

 map[i][j] = total_islands;

 }

 }

 else if(s_neigh != 0)

 {//has a connection on straight side

 //must determine island number

 if(s_neigh > 0)

 {//takes number of island, but does

not increment

 //adds to pre existing island

 map[i][j] = s_neigh;

 }

 else if(s_neigh == -1)

 {//Have to make sure none of side

neighbors later in the

 //island have already

been calculated

 ext_side(&ext_s_neigh

,map,i,j);

 367

 if(ext_s_neigh > 0)

 {//Value is connected to

island, add to existing island

 //do not increment

 map[i][j] =

ext_s_neigh;

 }

 else

 {//new island, s_neigh and

d_neigh have no values

 //but island does have

s_neighbors

 total_islands++;

 map[i][j] =

total_islands;

 }

 }

 else

 {//existing island has not been

determined from

 //straight neighbors, must

evaluate diag neighbors

 if(d_neigh == 0)

 {//no diagonal neighbors, but

has straight neighbors

 368

 //with no island number

-> new island, update total

 //and save value

 total_islands++;

 map[i][j] =

total_islands;

 }

 //need to determine if any of

diagonal neighbors

 //are valid for

identification of connected island

 // diag must be

above or under str neighbor

 test =

d_valid(diag_valid,map,i,j);

 if(!test)

 {//No valid diagonal

neighbors

 //new island, update

total and save value

 total_islands++;

 map[i][j] =

total_islands;

 369

 }

 else

 {

 if(d_neigh > 0)

 {//diag neighbor,

connected to island exist

 //must make sure

that the diag connected to island

 //is a valid diag

for this island, if so will be added to island

 if(

(diag_valid[0] > 0) && (neighbors[1] > 0))

 {//diag is valid

and connected to island

 //added to

existing island

 map[i][j] =

neighbors[1];

 }

 else if(

(diag_valid[1] > 0) && (neighbors[3] > 0))

 {//diag is valid

and connected to island

 //added to

existing island

 370

 map[i][j] =

neighbors[3];

 }

 else if(

(diag_valid[2] > 0) && (neighbors[5] > 0))

 {//diag is valid

and connected to island

 //added to

existing island

 map[i][j] =

neighbors[5];

 }

 else if(

(diag_valid[3] > 0) && (neighbors[7] > 0))

 {//diag is valid

and connected to island

 //added to

existing island

 map[i][j] =

neighbors[7];

 }

 else

 {//valid diag

have not been connected to island

 371

 //therefore

new island, update total and save value

 total_islands++;

 map[i][j] =

total_islands;

 }

 }

 else

 {//no diag neighbord

connected to island exist

 //therefore new

island, update total and save value

 total_islands++;

 map[i][j] =

total_islands;

 }

 }

 }

 }

 }

 }

 372

 }

 }

 return(total_islands);

}

REFERENCES

[1] M. R. Werner and W. r. Fahrner, "Review on Materials, Microsensors, Systems,

and Devices for High Temperature and Harsh-Environment Applications," IEEE
Transactions on Industrial Electronics, vol. 48, pp. 249-257, 2001

[2] J. McMurry and R. C. Fay, Chemistry, Second ed. Upper Saddle River: Prentice
Hall, 1998.

[3] P. Atkins, Physical Chemistry, Sixth ed. New York: Freeman, 1997.
[4] R. Held, "GROWTH KINETICS OF GaN GROWN BY MOLECULAR BEAM

EPITAXY USING Ga AND AMMONIA," University of Minnesota, 1999, pp.
169.

[5] D. L. Smith, Thin-Film Deposition. New York: McGraw Hill, 1995.
[6] D. E. Crawford, "The Effects of Growth Kinetics and Thermodynamics on

Properties of GaN Growth by Molecular Beam Epitaxy," University of
Minnesota, 1996, pp. 160.

[7] Crystal Growth: from fundamental to technology Muller, G, Metois, Jean,
Rudolph, P.; 2004 ;Elsevier

[8] C. Baggio, R. Vardavas, and D. D. Vvedensky. Fokker-Planck equation for
lattice deposition models. Physical Review E, 64(4):art. no. 045103 Part 2, 2001

[9] C. C. Battaile and D. J. Srolovitz. A kinetic Monte Carlo method for the
atomic-scale simulation of chemical vapor deposition: application to diamond.
Journal of Applied Physics, 82:6293–6300, 1997.

[10] K. A. Fichthorn and W. H. Weinberg. Theoretical foundations of dynamical
Monte Carlo simulations. Journal of Chemical Physics, 95:1090–1096, 1991.

[11] D. T. Gillespie. The chemical Langevin equation. Journal of Chemical Physics,
13(1), 2000.

[12] G. H. Gilmer and P. Bennema. Simulation of crystal growth with surface
difusion. Journal of Applied Physics, 43(4):1347–1360, 1972.

[13] M. F. Gyure, C. Ratsch, B. Merriman, R. E. Caflisch, S. Osher, and J. J.
Zinck. Level-set methods for the simulation of epitaxial phenomena. Physical
Review E, 58(6):R6927–R6930, 1998.

[14] B. A. Joyce, D. D. Vvedensky, G. R. Bell, J. G. Belk, M. Itoh, and T. S.
Jones. Nucleation and growth mechanisms during MBE of III-V compounds.
Materials Science and Engineering B, 67:7–16, 1999.

[15] W. W. Mullins. Theory of thermal grooving. Journal of Applied Physics,
28(3):333–339, 1957.

[16] K. Seshan, editor. Handbook of Thin-Film Deposition Processes and Techniques.
Noyes Publications, Norwich, NY, 2002.

 373

[17] D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R. Wilby. Stochastic
equations of motion for epitaxial-growth. Physical Review E, 48:852–862, 1993.

[18] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer-Verlag, New York, 1990.

[19] Paul Bratley and Bennett Fox, Algorithm 659: Implementing Sobol's
Quasirandom Sequence Generator, ACM Transactions on Mathematical Software,
Volume 14, Number 1, pages 88-100, 1988.

[20] Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of
Quasirandom Sequence Generators, ACM Transactions on Mathematical
Software, Volume 12, Number 4, pages 362-376, 1986.

 [21] Gallivan, Martha A., “Modeling and Control of Epitaxial Thin Film Growth”
Technical Report for the Division of Engineering and Applied Science, California
Institute of Technology; Pasadena California, 2003

[22] Burkardt, John. School of Computational Science, Florida State University.
[23] Press, William et al; Numerical Recipes in C, The Art of Scientific Computing.;

Cambride University Press, India 2002
[24] H.-C. Jeong and ED Williams, Surf. Sci. Rep. 34, 171 (1999). Y. Cui, X. Duan,

Y. Huang and C. M. Lieber, "Nanowires as Building Blocks for Nanoscale
Science and Technology" in Nanowires and Nanobelts " Materials, Properties and
Devices, Z.L. Wang, ed. 3-68 (Kluwer Academic/Plenum Publishers, 2003).

[25] Y. Huang, X. Duan, Y. Cui, and C.M. Lieber "Gallium Nitride Nanowire
Nanodevices," Nano Lett. 2, 101-104 (2002).

[26] C.M. Lieber "Nanowire Superlattices," Nano Lett. 2, 81-82 (2002).
[27] M.S. Gudiksen, L.J. Lauhon, J. Wang, D. Smith, and C.M. Lieber "Growth of

Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,"
Nature 415, 617-620 (2002).

[28] C.M. Lieber "The Incredible Shrinking Circuit," Sci. Am. 285, 50-56 (2001).
[29] X. Duan and C.M. Lieber, "General Synthesis of Compound Semiconductor

Nanowires" Adv. Mat. 12, 298-302 (2000)
[30] X. Duan and C.M. Lieber, "Laser-Assisted Catalytic Growth of Single Crystal

GaN Nanowires" J. Am. Chem. Soc. 122, 188-189 (2000).
[31] Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C.M. Lieber, "High Performance

Silicon Nanowire Field Effect Transistors," Nano Lett. 3, 149-152 (2003).
[32] G. Zheng, W. Lu, S. Jin and C.M. Lieber, "Synthesis and Fabrication of High-

Performance n-Type Silicon Nanowire Transistors," Adv. Mater. 16, 1890-1893
(2004)

[33] C.J. Barrelet, A.B. Greytak and C.M. Lieber, "Nanowire Photonic Circuit

Elements," Nano Lett. 4, 1981-1985 (2004).
[34] Balanis, C., Advanced Engineering Electromagnetics, John Wiley and Sons, New

York 1989
[35] Liang, W.L., et al., Micromachining of circular ring micorostructures by

femtosecond laser pulses., Optics and Laser Technology, 35 (2003), pp285-290.

 374

[36] Bonod, Nicolas, et al., Light transmission through a subwavelength
micostructured aperture: electromagnetic theory and applications. Optics
Communications, 245 (2005), pp. 355-361.

[37] Popov, Evgeny, et al., Enhanced transmission of light through a circularly
structured aperture. Optical society of America, 2005, 240.6680.

[38] Sheppard, C.J.R, Fresnel diffraction by a circular aperture with off axis
illumination and its use in deconvolution of microscope images. J. Opt. Soc. Am.
A, Vol. 21, No. 4, April 2004

[39] Xing, Zhang-fan, et al., Efficient method for the calculation of mean extinction.
III. Approximation or representation of particle-size distributions by rational
functions. J. Opt. Soc. Am. A, Vol. 11, No. 2, February 1994.

[40] Guo, Jiang, et al. General integral expressions for on-axis spherical waves
diffracted at a circular aperture. Optics Communications 260 (2006), pp. 57-61.

[41] Romero, Julio et al., Vectorial approach to Huygens’s principle for plane waves:
circular aperture and zone plates. J. Opt. Soc. Am. A, Vol. 23, No. 5, May 2006.

[42] Mielenz, Klaus, Algorithms for Fresnel Diffraction at Rectangular and Circular
Apertures, Journal of Research of the National Institute of Standards and
Technology. 103, 497, September-October 1998.

[43] Rapaort, D. C. , The Art of Molecular Dynamics and Simulation. Cambridge
University Press, New York 2004.

[44] Pedrotti, F, Pedrotti, L. , Introduction to Optics. Prentice Hall, New Jersey, 1987.
[45] Gans, Werner, Fundamental Principles of Molecular Modeling. Plenum Press,

New York, 1996.
[46] Leach, Andrew, Molecular Modeling Principles and Applications. Longman,

England 1996
[47] Campbell, Stephen. The Science and Engineering of Microelectronics

Fabrication. Oxford University Press, New York, 2001.
[48] Young, Hugh. Optics and Modern Physics, McGraw Hill, New York 1968
[49] Press, William, Numerical Recipes in C, The Art of Scientific Computing.

Cambridge University Press, New York , 1996
[50] Hayt, William. Engineering Electromagnetics. McGraw Hill, New York, 1989.
[51] Vvedensky, Dimitri, Low Dimensional Semiconductor Structures: Fundamentals

and Device Applications. Cambridge, New York. 2001.
[52] Hartell, A.D. et al The devlopment of RAS and RHEED as in situ probes to

monitor dopant segregation in GS-MBE on Si (001). J. Crystal Growth 227-228
(2001) 729-734

[53] Liliya A. et al Comparision of numerical algorithms for simulation of molecular
beam epitaxy. Vacuum 69 (2003)411-417.

[54] Einax M. et al. Simulation of MBE-growth of alloy nanoclusters in a magnetic
field. Matr Sci and Engr. C 2006 Article in Press

[55] Pinto N. Strain-driven morphology of Si Ge islands grown on Si(100). Micron
31(2000) 315-321

[56] Zhou, J.J. et al. Virtual control simulator for closed-loop epitaxial growth. J.
Crystal Growth 175-175 (1997) 52-60

 375

[57] Zhao, M. et al. Strain-symmerterized Si/SiGe mulit-quantum well structures
grown by molecular beam epitaxy for intersubband engineering. J.o.
Luminescence 121 (2006) 403-408

[58] Grein, C.H. et al. Epitaxial growth simulation employing a combined molecular
dynamics and Monte Carlo approach. Computational Material Science 6 (1996)
123-126

[59] Liu P. et al. Morphological evolution of heteroepitaxial islands during Stranski-
Krastonov growth. Inte J of Solids and Structures (2006) Article in Press

[60] Yildiz M. et al. A continuum model for the Liquid Phase Diffusion growth of
bulk SiGe single crystals. Int J of Engr Sci 43 (2005)1059-1080

[61] Yu, Q. et al. Molecular dynamics simulation of crystal growth in SiGe/Si (100)
heterostructures. J.o Crystal Growth 149(1995)45-58

[62] Albenze, Erik et al. Molecular Dynamics Study of Explosive Crystallization of
SiGe and Boron Doped SiGe Alloys. Ind Eng. Chem. Res 2006, 5628-5639

[63] Zhang, J. et al. In-situ monitoring of Si and SiGe growth on Si(001) surfaces
during gas-source molecular beam epitaxy using reflectance anisotropy. J o.
Crystal Growth 164(1996)40-46

[64] Kaxiras, E et al. Atomic structure of surfactant monolayres and its role in
epitaxial growth. Materials Science and Engineering B30(1995)175-186

[65] Zhang, Y et al. Three dimensional analysis of shape transitions in strained-
heteroepitaxial islands. Applied Physics Letter Vol 78(18) April 2001

[66] Drucker, J et al. Activated Strain Relief of Ge/Si(100) Islands Surface Review
and Letters, Vol 7(5)2000 527-531

[67] Einfeldt, S. et al. Strain relaxation in AlGaN under tensile plane stress. Journal of
Applied Physics Vol 88(12) Dec 2000

[68] Pinto, N. et al. Cluster size distribution of SiGe alloys grown by MBE. Thin
Solid Films 336(1998) 53-57

[69] Gray, J. et al. Control of surface morphology thorugh variation of growth rates in
SiGe/Si(100) epitaxial films: Nucleation of "quantum fortresses". Applied
Physics Letters Vol 80,13 (2002) September

[70] Obayashi, Y. et al. Directional dependence of surface morphology stability of
heteroepitaxial layer. Journal of Applied Physics Vol 84,6 (1998) September

[71] Spencer, B et al. Dislocation energetics in epitaxial strained islands. Applied
Physics Letters Vol 77,16 (2000) October

[72] Floro, J.A. et al. Dynamic self-organized of strained islands during SiGe epitaxial
growth. Applied Physics Letters Vol 73,7 (1998) August

[73] Chaparro, S. Evolution of Ge/Si(100) islands: Island size and temperature
dependence. Journal of Applied Physics Vol 87,5 (2000) March

[74] Smith, D. et al. Micostructural evolutino of Ge/Si(100) nanoscale islands. J o.
Crystal Growth 259 (2003) 232-244

[75] Spencer, B. et al. Equilibrium Shapes and Properties of Epitaxially Strained
Islands. Physical Review Letters Vol 79,24 (1997) December

 376

[76] Hearne, S. et al. Quantitative determination of tensil stress creation during island
coalescence using selective are growth. Journal of Applied Physics 97,083530
(2005)

[77] LeGoues, F. et al. Relaxation mechanism of Ge islands/Si(001) at low
temperatures. Appl Phys. Lett 67(16) October 1995

[78] Family, F. Scaling of the Droplet Size Distributino in Vapor Deposited Thin
Films Physical Review Letters Vol 64(4) July 1988

[79] Barucca, B. et al. Strain relaxation thorugh islands formation in epitaxial SiGe
thin films. App Surf. Sci 102(1996) 73-77

[80] Chaparro, S et al. Strain relief via trench formation in Ge/Si (100) islands.
Applied Physics Letters Vol 76(24) June 2000

[81] Shchukin, V. et al. Stability of an hexagonal array of coherently strained conical
islands against Ostwald ripening. Annals of Physcis 320(2005) 237-256

[82] Johnson, H. et al. Mechanics of coherent and dislocated island morphologies in
strained epitaxial material systems. J. Appl. Phy. 81(9) May 1997

[83] Bird, D. et al. First Principles Calculation of the Structure and Energy of Si (113).
Physical Review Letters Vol 69(26) December 1992

[84] Zhang, Y. et al. Morphological evolution driven by strain induced surface
diffusion. Thin Solid Films 424 (2003) 9-14

[85] Seel, S et al. Tensile stress evolution during deposition of Volmer-Weber thin
films. J Appl Phy. vol 88(12) December 2000

[86] J. E. Van Nostrand, S. J. Chey, and D. G. Cahill. Low temperature growth
morphology of singular and vicinal Ge(001). Physical Review B, 57(19):12536–
12543, 1998.

 377

BIOGRAPHICAL STATEMENT

Mr. Clark spent three years in the U.S. Navy as a nuclear electrician. His duties

focused on maintaining, monitoring and repairing the electrical distribution equipment

for the nuclear power plant. Upon discharge from the Navy Mr. Clark spent two years

working at the Nanofabrication center at UTA. While at the Nanofab center, his research

focused on development and fabrication of wide band gap (WBG) semiconductors for use

in high power, high temperature, and high frequency electronic device applications. His

WBG semiconductor research focused on modeling of the polarization in GaN

superlattice structures induced by the lattice stress due to mismatch using MATLAB and

C++. Mr. Clark then worked at an R&D engineering firm where he acquired over

$1,00,000 in research funding through several innovative research proposals that ranged

from novel MEMS-based energy harvesting technique to flexible electronic devices. Mr.

Clark than became coordinator for the Semiconductor Manufacturing Program at South

East Tarrant County College. Mr. Clark than obtained an Assistant Professor position at

DeVry University. Mr. Clark also started a small engineering firm that focuses on

embedded development as well as statistical modeling applications. Mr. Clark obtained

his Master of Science in Electrical Engineering in December of 2002 and his PhD in

Electrical Engineering in August of 2006.

 378

	FrontMatter.doc
	
	December 11, 2006
	Publication No._________

	The University of Texas at Arlington, 2007
	Supervising Professor: Choong-Un Kim
	APPENDIX

	LIST OF GRAPHS

	Chapter 1.doc
	Chapter 2.doc
	GROWTH KINETICS AND THEORY

	Chapter 3.doc
	CHAPTER 3
	KINETIC MONTE CARLO MODEL SIMULATION
	THEORY AND DEVELOPMENT

	Chapter 4.doc
	CHAPTER 4

	Chapter 5.doc
	CHAPTER 5
	APPLICATION OF KMC GROWTH MODEL

	Chapter 6.doc
	CONCLUSIONS AND FUTURE WORK

	Appendix A.doc
	APPENDIX A
	VB.NET CODE FOR SURFACE PLOTTING SOFTWARE

	APPENDIX B.doc
	
	
	
	
	
	
	APPENDIX B
	CODE FOR KINETIC MONTE CARLO SIMULATION

	Refrences.doc
	Bio.doc

