
TOPOLOGICAL AND FEATURE BASED IDENTIFICATION OF HOLE BOUNDARIES IN

POINT CLOUD DATA AND DIFFERENTIATION BETWEEN

SURFACE AND PHYSICAL HOLES

by

AAQIF MUHTASIM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2018

ii

Copyright © by Aaqif Muhtasim 2018

All Rights Reserved

3

Acknowledgements

First and foremost I would like to convey my most sincere of gratitude to Dr.

Manfred Huber for being my supervising professor and providing support and direction to

my research whenever I required. His vast knowledge and insight have guided me quite a

few times when I was at a loss about which direction to navigate my research towards.

Secondly, I would like to thank Dr. Beksi for being on my committee and more

importantly for sharing his research with me. His assistance has provided a very necessary

acceleration to my research and have played a major role in its conclusion.

I would also like to thank Dr. Kamangar for agreeing to be on my committee.

I would also like to thank Sandeep Chahal and Sreesha Kashyap my friends and

lab mates who have provided moral support during times of despair.

I would like to thank my parents for supporting me in my endeavors as I journeyed

through both undergraduate and graduate school. My academic career would have been

drastically different without it.

Finally, I would like to thank Dr. Roger Walker, my first supervisor. He has provided

a lot of support at the start of my graduate program and it is unfortunate that he is absent

during its completion.

Nov 19, 2018

4

Abstract

TOPOLOGICAL AND FEATURE BASED IDENTIFICATION OF HOLE BOUNDARIES IN

POINT CLOUD DATA AND DIFFERENTIATION BETWEEN

SURFACE AND PHYSICAL HOLES

Aaqif Muhtasim, MS

The University of Texas at Arlington, 2018

Supervising Professor: Manfred Huber

With the advent of autonomous agents becoming prominent in everyday lives, the

importance of processing the surroundings into understandable features becomes more

and more important. 3D point clouds play a major role in the perception of such agents and

thus having the ability to correctly decipher features from point clouds is crucial to the

planning of actions that the agent would need to undertake.

This thesis analyzes holes found in point clouds. Based on two approaches that

center around topological data analysis and local point set features respectively. It studies

how each of the methods works and how a combination of the two can be used to ascertain

important information that may not have been obtainable from just one of them. Moreover,

it studies how distinctions between different types of holes in point clouds can be made.

The thesis contributes in two ways in the feature extraction from point cloud holes.

The first contribution is the constriction of the minimal 1-cycle generated by the

addition of edges to the minimum spanning graph generated. These edges are detected

using local surface geometry for the points and allow elimination of vertices from the hole

boundary thus providing a tighter hole boundary.

5

The second contribution is the classification of the type of hole whose boundary

has been detected. This involves calculating a normal to the surface approximated by the

boundary and detecting a chain of vertices on the boundary whose surface normal are

either orthogonal or parallel to the normal of the boundary points.

This thesis approaches the abstract notion of a hole and tries to provide a boundary

in order to allow for planning of actions that might involve it, such as determination of further

sensing actions or determination of interaction points for object manipulation. We have

provided algorithms that calculate the necessary features and have provided results that

show their effectiveness in real-world scenarios.

6

Table of Contents

Acknowledgements .. 3

Abstract ... 4

List of Illustrations .. 9

List of Algorithms ..11

Chapter 1 INTRODUCTION ..12

Point Cloud Data...12

Point Cloud Features ..13

Hole Definition and Boundary Accuracy ..14

Approach ..15

Contributions ..15

Thesis Organization ..16

Chapter 2 BACKGROUND ..17

Topological and Geometric Properties in Point Clouds ..17

Simplex and Simplicial Complex ...17

Vietoris-Rips Complex ..18

Chains, Cycles, and Boundaries ...18

Homology Groups and Betti Numbers ...20

Filtration ...21

Best Fit Plane and Surface Normal ...21

Minimum Spanning Tree ...22

Ray Casting ..23

Chapter 3 HOLE BOUNDARY EXTRACTION ...24

Approach ..24

Related Work ..24

7

Topological Hole Boundary Extraction ...25

Vietoris-Rips Complex Calculation ..26

Betti Number Calculation ..27

Betti – 0 ..28

Betti – 1 ..28

Minimum Spanning Tree ...30

Minimal 1-Cycle Extraction ..32

Local Feature-based Boundary Extraction ...33

Symmetric kε-Nearest Neighbors ..33

Boundary Probability ...34

Angle Criterion..34

Half disc Criterion ...35

Shape Criterion ..37

Criterion Weights ..38

Point Classification ...39

Valid Edge Extraction ..39

Minimum Spanning Tree ...40

Loop Extraction ...40

Combination of Topological and Geometric Hole Boundary Extraction41

Loop Constriction ..43

Accuracy Metrics ..45

Chapter 4 HOLE CLASSIFICATION ..47

Approach ..47

Related Work ..47

Hole Surface Normal...48

8

Boundary Normal Orthogonality ..48

Thresholding and Classification...49

Chapter 5 CONCLUSION ..52

Conclusion ..52

Future Work ..52

References ...53

Biographical Information ..55

9

List of Illustrations

Figure 1-1 Point Cloud Examples ...13

Figure 2-1 Simplices in Different Dimensions, From 0 (left) to 3 (right)17

Figure 2-2 Simplicial Complex ..17

Figure 2-3 Vietoris-Rips Complex [1] ..18

Figure 2-4 Chains, Cycles, and Boundary groups ...20

Figure 2-5 1-Cycle Addition ...21

Figure 2-6 Point Surface Normal ..22

Figure 2-7 Minimum Spanning Tree Example ..23

Figure 2-8 Raycasting Example ...23

Figure 3-1 Fixed-radius Nearest Neighbors ...26

Figure 3-2 A point with all of associated triangles ..27

Figure 3-3 Filtration Example ..29

Figure 3-4 HashTable for the Filtration ..30

Figure 3-5 Spanning Tree Resulting from Standard Betti-0 Union Operation (Top) and

Spanning Tree from Modified Union Operation (Bottom) ..31

Figure 3-6 Initial Boundary Points (Orange). Minimal 1-Cycle boundary (Yellow). Their

intersection (Purple). ...32

Figure 3-7 Minimal 1-cycle example ..32

Figure 3-8 Symmetric Neighborhood Example ...33

Figure 3-9 Max angle criterion ...34

Figure 3-10 Neighborhood average deviation for boundary point (top) and internal Point

(bottom) ..36

Figure 3-11 Correlation ellipsoids for neighborhood points surface point (top left), crease

point (Bottom left), boundary point (top right), and corner point (bottom right)[5]38

file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709647
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709648
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709649
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709650
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709651
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709652
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709653
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709654
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709655
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709656
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709657
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709658
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709659
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709660
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709660
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709661
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709661
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709662
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709663
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709664
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709665
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709665
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709666
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709666

10

Figure 3-12 Breadth-First Search with the starting node (yellow), the search stops when it

reaches the node(green) and detects the grey node(red) as a neighbor. The extracted

loop is shown (left). ...41

Figure 3-13 Unseeded boundary (left) vs Seeded boundary (right)42

Figure 3-14 Bar chart of the time taken to extract loops using the combined algorithm

(left) and the feature-based algorithm alone (right). ...43

Figure 3-15 Minimal 1-Cycle Boundary (Left) Constricted Boundary (Right)44

Figure 3-16 Boundaries for physical holes (Bottom) and Surface Holes (Top) with their

accuracy metrics. ..46

Figure 4-2 The surface normal for a Surface Hole (Left) and Physical hole (Right) marked

in purple and the surface normal for the boundary points in yellow.................................49

Figure 4-1 Orthogonal Chain Extraction ...50

Figure 4-3 Hole Boundaries and their classification information51

file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709667
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709667
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709667
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709668
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709669
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709669
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709670
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709671
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709671
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709672
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709672
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709673
file:///C:/Users/aaqif/Documents/Google%20Drive/Spring%202018/Research.py/Thesis%20Materials/Latest%20Draft/Draft_v5.docx%23_Toc531709674

11

List of Algorithms

Algorithm 3-1 Adding extra edges to Topological Graph ..44

Algorithm 4-1 Orthogonal Chain Extraction ..50

12

Chapter 1

INTRODUCTION

Modern society is inundated with technologies that utilize sensors in order to

gather information about the world around them. These sensors usually gather data about

the intensity of light, noise, temperature etc. in order to get a sense of their environment.

One of the common ways to represent and store sensory information about the

environment is in a spatial form in terms of Cartesian coordinates within a 3-dimensional

(3D) map. As the number of technologies dependent on a mapping of their 3D environment

grows so does the number of sensors that are dedicated to the 3D representation of the

world. This influx of sensors bringing with them a large amount of 3D data thus requires

more algorithms that can process such data and ascertain meaningful features from them

in order to make the data useful.

Point Cloud Data

Point clouds are a common way to represent 3D data for further processing in

robot applications. Point cloud data is data collected by sensors such as LIDAR (Light

Detection and Ranging), stereo, structured light, and ToF (Time-of-Flight) cameras. This

data by providing 3D coordinates of points on a surface allows for the accurate mapping of

shapes of objects. Depending on the sensor source, 3D points in a point cloud can also

contain additional information such as signal intensity, color or surface normal at the point.

However, many sensors do not naturally provide this information, leaving frequently only

the actual location of the surface points. Point Cloud Data generally contains no point

connectivity information and is usually unorganized, as it can be merged from multiple

sensors as well as from multiple measurements taken by these sensors, and thus lacks

the easy detection of the neighborhood. This is in contrast to 2D images or single depth

13

images from 3D cameras where the layout of the imager provides a natural structure for

the pixel positions. Sample 2D snapshots of point cloud data of various objects are

provided in

Point Cloud Features

A point cloud with n-points will contain at a minimum nx3 numbers with each row

of 3 numbers indicating a point in the 3D coordinate system. As indicated above, points in

a point cloud can contain additional information (e.g. color) depending on the sensor that

Figure 1-1 Point Cloud Examples

14

generated the data but these additional features can be heterogeneous across data points

and absent, e.g. in the case of many LIDAR sensors. Extracting meaning through

combination and manipulation of these numbers in order to allow for other systems to use

the data is known as feature extraction. For point cloud data this may come from

segmenting a given point cloud into different objects in order to assign the resulting objects

to their respective labels. One significant issue when extracting features or objects from

point clouds is that while the point cloud represents points on the surface of the object, the

points generally do not cover the entire surface either due to occlusions, reflections or

surface properties that prevented the sensor from observing a part of the surface, or

because no sensor has been in a position from which particular parts of the object surface

would have been visible. This leads to holes in the point cloud data which might either

correspond to holes present in the object surface or to the absence of information at a

location. This significantly complicates the identification of surfaces and the segmentation

problem, making the detection of these itself a feature detection problem in point clouds.

Hole Definition and Boundary Accuracy

A hole in the physical sense is defined as “a hollow place in a solid body or

surface”. The problem arises when transferring this definition to point cloud data and trying

to identify a hole boundary feature. A common representation for a hole boundary feature

is a chain of points that would indicate the boundary of said hole. This, however, can

become problematic in point cloud data. For a hole in a truly 2D surface (i.e. a surface –

and thus a hole - that has no depth), this issue is relatively simple since the opening is on

a 2D surface and is thus consistent from multiple perspectives. For a hole in a 3D object,

the fact that the hole has depth and is surrounded by a 2D surface makes the problem

much more prominent since the boundary would appear different from different

15

perspectives and thus there would be multiple correct answers. Due to this fact, no easy

accuracy measure for surface holes has been developed and thus the quality of the feature

detector results is generally judged solely by visual inspection.

Approach

The aspect of hole features and their classification in terms of physical, 3-

dimensional holes, 2D surface holes, or data holes resulting from missing observations,

has not been a well-defined topic in algorithms that process point cloud data. Even though

detection of surface holes has been an active area of research, accurate identification of

the presence and boundary of physical holes surrounded by a surface has still not been

sufficiently explored.

The main approach for this thesis extends on and combines previous approaches

for hole identification in 3D point clouds and revolves around applying the topological

calculation of the minimal 1-cycle with curated parameters to get a base boundary for the

hole. To improve the compactness of the resulting boundary feature, the final boundary is

created by adding edges based on local geometry to other points inside the initial

boundary. Based on the resulting feature, a type classification is defined by finding a chain

of points along the boundary whose surface normal are consistently orthogonal or parallel

to the surface normal of the hole and have a degree of parallelism with each other.

Contributions

The contributions made by this thesis in understanding the features of a hole are:

• Providing an algorithm that calculates the minimal hole boundary and thus

produces a series of connected vertices that mark the inside of a hole.

16

• Classifying the type of hole whose boundary has been detected thus allowing for

better characterization of the point cloud object.

Thesis Organization

In the remainder of the Thesis, Chapter 2 first introduces the fundamental

mathematical background for hole identification before discussing the related work in the

area of hole identification in 3D point cloud data. In Chapter 3 we talk about two previously

explored approaches to hole boundary detection and try to combine them to achieve better

boundary extraction as well as provide some metrics which might be used to evaluate the

quality of a given hole boundary. Chapter 4 introduces a surface normal based approach

to classify between surface and physical holes. We conclude with mentions of future work

that can be performed in Chapter 5.

17

Chapter 2

BACKGROUND

Topological and Geometric Properties in Point Clouds

Since points in a point cloud do not naturally form surfaces and do not contain

connectivity information, one essential task when analyzing the data, and thus when trying

to identify hole features, is to establish connectivity and surface characteristics within the

data. For this, topological and geometric properties are generally used.

Simplex and Simplicial Complex

A k-simplex σ where 0 ≤ k ≤ n is defined as the complex hull of a set of k+1

independent points in ℝn. The convex hull is the solid polyhedron determined by the k+1

points. Some examples of Simplices in different dimensions are the vertex, the edge, the

triangle, and the tetrahedron as shown in Figure 2-1.

A simplicial complex is a collection of simplexes such that if σ and σ’ are Simplices

in a simplicial complex K, then σ ∩ σ’ is either null or a face τ such that τ ∈ K, τ ∈ σ’ and τ ∈

σ. A face of a k-simplex is defined as the set of k-1 simplices obtained by removing each

of the points in the k-simplex one at a time. An example can be seen by removing each of

the points from the tetrahedron (3-dimensional simplex) in Figure 2-1 to obtain a set of 4-

face triangles. An example of a simplicial complex is seen in Figure 2-2.

Figure 2-1 Simplices in Different Dimensions, From 0 (left) to 3 (right)

Figure 2-2 Simplicial Complex

18

Vietoris-Rips Complex

A Vietoris-Rips Complex M in ℝn is an abstract simplicial complex such that for

each simplex σ ∈ M and for all vertices v0,…,vn ∈ σ the distance between each pairwise

vertex in σ is less than some predefined radius r. Figure 2-3 shows a sample Vietoris-Rips

Complex where the radius for each point is shown in blue.

Chains, Cycles, and Boundaries

A k-chain is a subset of k-simplices in K, where K is a simplicial complex in ℝn. The

sum of two chains a,b is defined by the symmetric difference between the two,

 a + b = (a ∪ b) – (a ∩ b)

and is commutative. Ck is the group of all k-chains together with addition. For a complex in

ℝ3 the only non-trivial groups are for 0 ≤ k ≤ 3.

The boundary ∂k(σ) of a k-simplex σ is the set of its (k-1)-faces and is a (k-1)-

chain. The boundary of a k-chain is found by summing the boundaries of its simplices,

Figure 2-3 Vietoris-Rips Complex [1]

19

∂k(c) = ∑σ∈c ∂k(c). The boundary operator is a homomorphism such that ∂k: Ck → Ck-1 and

the collection of the operators on the chain groups form a chain complex.

 · · · → ∅ → C3 →C2 →C1 →C0 → ∅ · · ·.

The kernel of ∂k is a subgroup of Ck and is defined as the set of k-chains whose

boundaries are empty under ∂k and are also known as the k-cycles. The image of ∂(k+1)

is also a subgroup of Ck and is defined as the set of k-chains which are boundaries of (k+1)-

chains and are also known as k-boundaries.

ker ∂k = {c ∈ Ck | ∂k(c) = ∅}

img ∂k = {d ∈ Ck−1 | ∃c ∈ Ck : d = ∂k(c)}.

Ck is formed by the set of k-cycles Zk and the set of k-boundaries Bk under addition.

Since an essential property of the boundary operator is that the boundary of a boundary is

empty, ∂k1 ◦ ∂k(c) = ∅, the groups are thus nested Bk ⊂ Zk ⊂ Ck. Z0 = C0 since the boundary

of a vertex is empty and thus every 0-chain is also a 0-cycle. Z3 = B3 = {∅} is a consequence

of the complex being in ℝ3 and thus having no non-empty 3-cycles or 3-boundaries. Figure

2-4 shows the relations between Chains, Cycles, and Boundaries.

∂3 ∂2 ∂1

20

Homology Groups and Betti Numbers

The kth homology group Hk is defined as the quotient of the kth cycle group by the

kth boundary group: Hk = Zk/Bk. Homology Groups Hk(X) will have their dimensions

correspond to the number of k-dimensional holes in X where X is a simplicial complex.

Hk(X) is a quotient vector space with its dimension equal to its number of

generators and whose elements are a linear combination of its generators. Assuming a

group with generators {a,b}, a typical element in the group would be αa+βb and the

dimension of the group would be 2.

This definition allows for all bases to have the same size which corresponds to the

rank of the group. Since taking the symmetric differences is similar to adding modulo 2, the

size of a group is 2 raised to the power of its rank. An example of adding two 1-cycles is

shown in Figure 2-5.

Figure 2-4 Chains, Cycles, and Boundary groups

with their images under the boundary operator

21

The kth Betti number of X is calculated as the rank of the kth homology group βk =

rank Hk = rank Zk – rank Bk.

 Complexes in ℝ3 can only have non-trivial Betti numbers for 0 ≤ k ≤ 2. Β0

measures the number of connected components in X, β1 measures the number of holes

(tunnels) in X, and β2 measure the number of voids in X.

Filtration

A filter is defined as an ordering of simplices such that each prefix contains the

simplices of a subcomplex. The corresponding filtration is defined by taking successively

prefixes. Filtration can be described as the evolution of a complex under the element of

growth.

Best Fit Plane and Surface Normal

Given points on a surface, it is sometimes useful to have a model of the underlying

surface. Given a point and its neighborhood we can use the data to fit a plane and thus

allow us to model the underlying surface. The method used in this thesis uses eigenvalue

Figure 2-5 1-Cycle Addition

22

decomposition to provide a point and a surface normal when provided with a matrix of point

coordinates. Figure 2-6 shows an example of the surface normal representation for a point

cloud.

Minimum Spanning Tree

A minimum spanning tree is defined by a subset of a weighted, connected graph

that connects all of the vertices without cycles such that the sum of edge weights is

minimized. A minimum spanning tree also defines a connected component. There are

multiple algorithms that can be used to calculate the minimum spanning tree of a graph

with some of the more commonly used ones being Prim’s algorithm and Kruskal’s

algorithm. An example of a minimum spanning tree is shown in Figure 2-7.

Figure 2-6 Point Surface Normal

23

Ray Casting

A minimal 1-cycle requires determining whether any vertices are present inside the

provided boundary. The ray casting algorithm allows us to detect whether a point is inside

the boundary by first modeling the boundary as a polygon and then by finding out how

many times a ray, starting from the point and going in any fixed direction, intersects the

edges of the polygon. The parity of the intersections determines whether the point is inside

or outside the polygon (even = inside). A sample ray passing through a polygon is shown

in Figure 2-8.

Figure 2-7 Minimum Spanning Tree Example

Figure 2-8 Raycasting Example

24

Chapter 3

HOLE BOUNDARY EXTRACTION

Approach

As explained before, defining the boundary of a hole in point clouds remains as

one of the more challenging aspects of point cloud feature detection. This chapter looks

first at two existing approaches that calculate the boundary of a hole. The two techniques

do so in very different ways with the first [1] taking a topological approach while the second

[3] takes a local point feature approach to determine the likelihood of boundary points and

then combines them. Considering the different strengths and weaknesses of the methods,

this thesis then proposes a way to combine aspects of the two techniques into a method

that can achieve tighter hole boundary features. The combination allows for the generation

of multiple boundaries each with its benefits and drawbacks can yield a decrease in the

time taken to compute one of the boundaries. Finally, we discuss issues in the evaluation

of hole boundary features and try to provide heuristics as an initial attempt to define the

accuracy of a hole boundary.

.

Related Work

Hole boundary detection is an area of research that has been sparsely explored.

NGUYEN et al. [6] used organized point clouds to detect the k-ring neighborhood for each

point using an 8-connected neighborhood and extracts a boundary using region growing.

Bendels et al. [3] calculates features of points and combines the features to calculate the

probability of points being on the boundary. The boundary is then extracted using a graph

and Best-First Search (BFS).

A topological approach to hole boundary extraction is used in [1] by Beksi to create

a simplicial complex of the point cloud which is then used to calculate a minimum spanning

25

tree and an edge that represents the hole boundary. The boundary is then extracted by

finding the shortest path between the vertices of the edge detected.

Wang et al. [8] uses a triangular mesh created from the input point cloud to find a

boundary edge which is an edge belonging to a single triangle. The boundary vertices are

found by tracking these boundary edges. A heuristic based on the area of the connected

triangles and the number of points is then used to filter out vertices to get a subset of the

vertices as boundary vertices.

Mineo et al. [9] uses a two-step method to identify boundary points. If for a query

point there exists a circle that passes through it and two of its neighbors such that the

radius of the circle is greater than or equal to B, where B is an approximation of the local

resolution, and that a sphere with the same radius and center does not contain any other

points in the neighborhood of the query point, then we mark the query point as a boundary

point. A secondary filtration is done by projecting the query point and its neighbors onto a

tangent plane and tries to find a path through all the neighbors such that the path does not

encircle the query point. If such a path is found then the query point is identified as a

boundary point.

Topological Hole Boundary Extraction

Beksi [1] introduced a method to determine hole boundaries using point cloud

topology. Topology can be used to calculate features such as Betti numbers which indicate

the number of holes in a simplicial complex with the k-th Betti number representing the

number of k-dimensional holes in the complex. A hole boundary can thus be calculated by

using the 1-simplex representing the 1-hole in a complex. a hole boundary can be

calculated.

26

Vietoris-Rips Complex Calculation

A Vietoris-Rips complex is calculated by first sorting the input points according to

their x, y, and z coordinates respectively. This allows for an initial ordering of the vertices

to create the initial 0-simplex ordering for the filter. This sorting carries over to higher

dimension simplex ordering since the edges (1-simplices) are processed according to the

ordering of the points and the triangles (2-simplices) are processed according to the

ordering of the edges. Each simplex thus contains an index specifying their ordering with

lower dimensional simplices being ordered earlier.

A KD-tree is created using the input points in order to calculate the neighborhood

for each point. A fixed-radius neighborhood which collects the set of neighbors around a

point contained in a sphere of radius ε, is used. Each point only accepts neighbors with

higher index values from the set created. Figure 3-1 shows the radius used for a point

(blue).

The calculation of the 0-simplices (points) is trivial since all of the points in the point

cloud are 0-simplices. The 1-simplices (edges) are calculated by first creating a list of

Figure 3-1 Fixed-radius Nearest Neighbors

27

edges associated with each point. This is done by adding edges from a point to all of its

neighbors. The 2-simplices (triangles) are calculated by going through each pair of points

for an edge and finding out the intersection of points in their neighborhood. Each

intersection with a higher index point indicates a 2-simplex. This can be further explained

by saying that for edge {u, v}, if w is in the neighborhood of u and w is in the neighborhood

of v, {u, v, w} is a triangle. Figure 3-2 shows the set of triangles originating from a point.

Betti Number Calculation

The calculation of Betti numbers is an essential part of the extraction of the hole

boundary. Betti-1 indicates the number of detected holes in the point cloud based on the

input radius. This number also indicates the positive edges that do not form part of a

boundary of a triangle and thus gives us the basis to start our search for the boundary of

the hole. Since Betti-1 requires the edges to be labeled as either positive or negative, we

need to run the algorithm to compute Betti-0 beforehand which labels the edges necessary

for Betti-1 calculation.

Betti number Bk is the number of k-cycles that are not part of the boundary of (k+1)-

simplex. We call a (k+1)-simplex σ positive if it belongs to a (k+1)-cycle and negative if it

Figure 3-2 A point with all of associated triangles

28

destroys a k-cycle. For Betti-0 this is trivial since every point belongs to a 0-cycle and thus

we just have to determine the number of negative edges. An edge belongs to a 1-cycle if

both of its endpoints belong to the same component. Thus Bk is defined as:

 Bk = posk – negk+1

Where posk = number of positive k-simplices and negk+1 = number of negative

(k+1)-simplices.

Betti – 0

The calculation for Betti-0 requires the use of a disjoint-set dataset where the

elements are the points in the complex. Each element starts off by being its own parent.

The set of edges are then iterated over and for each edge {u, v} the parents of its endpoints

are found using the find operation and joined if they are different using the union operation.

The find operation recursively looks at the parent of the given element until an

element is detected who is its own parent.

The union operation first finds the element with the higher index according to the

initial sorting of the points and selects it as the element to be added if it is not already a

part of another set, that is it has a death index of 0. This element is then added to the set

by setting its death index to the current edge being processed. Assuming the youngest

element is v and the edge connects u to v, the parents are then labeled as u_root and

v_root. If v_root is older (has a lower index) we add u_root as the parent of v_root and vice

versa.

Betti – 1

The basis for Betti-1 calculation is similar to Betti-0 in the sense that it involves

finding the positive edge that is destroyed by a negative triangle. The algorithm thus goes

29

through each triangle in the complex and finds λ representing the set of positive edges

belonging to that triangle.

A hash table T is used where T[i] is the index of the ith simplex in the filter and

stores the λi, which for an edge is the set of positive edges belonging to the triangle that

destroyed it. The hash table for the filtration in Figure 3-3 is shown in Figure 3-4 where ∞

indicates a positive k-simplex with no negative (k+1)-simplex that destroys it.

After arriving at a negative simplex σj
 at index j in the hash table the algorithm will

create λ and find index i, where i = max(λ) which is the youngest member of λ. If T[i] is

empty we store λ and j at T[i]. Else, T[i] already contains a set λi that represents a

permanently stored 1-cycle. We add λ and λi, as defined previously, to get a new λ that

produces a k-cycle homologous to the old one and repeat the search with the new λ.

Figure 3-3 Filtration Example

30

Following the filtration example shown above, when we arrive at j=13 we get λ =

{be, ce, bc} and i = max(λ) = 12. We find T[13] empty and store λ and j there. Following the

same method for j=14 we get a λ = {ac, ce} stored at T[11]. At j=15 we get λ= {ac, bc} and

i = max(λ) = 12. However, we already have λi = {be, ce, bc} already stored at T[12]. We

thus take the symmetric difference between λ and λi resulting in the new λ = {be, ac, ce}

and get a new i = max(λ) = 11. Again we find T[11] to be occupied and get a new λ = {be}

and i = 7. Finally we find T[7] to be unoccupied and store j and λ there.

Minimum Spanning Tree

Since Betti-0 uses the union operation to combine components together, a

minimum spanning tree is generated in the process. However, since the union operation

does not take into account distances between the vertices when combining them the tree

generated does not represent the accurate connectivity between the points. An altered

version of the union operation is used such that the parent of v_root is changed from u_root

to u and vice versa. This ensures we only add edges to the tree that maintain the radius

restriction initially provided to the algorithm. For special cases where the parent of a node

is younger than the node, we add a special attribute to the point called parent_conn.

Figure 3-4 HashTable for the Filtration

31

parent_conn is used to define an edge that represents a different pathway for an

element to be connected to a set other than the parent attribute in the union operation. The

parent_conn of a point is set when connecting two sets of more than one element to each

other and is used to represent the connectivity information more accurately whereas the

general union operation will sometime create edges longer than the input parameter. The

parent_conn of v_root is set to the edge number whenever the parent is set if v_root is

older than point u and vice versa. The difference in the minimum spanning trees generated

is shown in Figure 3-5.

Figure 3-5 Spanning Tree Resulting from Standard Betti-0 Union Operation (Top) and

Spanning Tree from Modified Union Operation (Bottom)

32

Minimal 1-Cycle Extraction

Betti-1 identifies the edge whose addition creates a cycle in the minimum spanning

tree which is homeomorphic to the hole boundary. By finding a path between the two

vertices of the edge we can identify an initial boundary. This initial boundary is then used

to approximate a tangent plane upon which all of the points are projected. The initial

boundary is then used to approximate a polygon and the set of points that fall inside the

polygon are discovered. Any unpaired positive edge associated with the points on the

boundary or interior of the polygon is added to the graph and the shortest path between

the edges are found again to calculate a Minimal 1-Cycle surrounding the hole. Figure 3-7

shows an example of the constriction of the hole boundary and Figure 3-6 shows its effects

on a physical hole boundary.

Figure 3-7 Initial Boundary Points (Orange). Minimal 1-Cycle boundary (Yellow). Their

intersection (Purple).

Figure 3-6 Minimal 1-cycle example

33

Local Feature-based Boundary Extraction

Another method to determine hole boundaries is to consider geometric features of

the points in a local neighborhood. Bendels et al. [3] introduce such a method that uses

features calculated using the neighborhood of a point to calculate the probability of a point

being on a boundary and extract a chain of points to indicate the boundary.

Symmetric kε-Nearest Neighbors

Let P be the set of points found using Fixed-radius Nearest Neighbors and Q be

the set of points found using k-Nearest Neighbors, Kε-Nearest Neighbors is then defined

as P ∪ Q. Symmetric KENN of point p would then be P ∪ Q ∪ R where R is the set of

Figure 3-8 Symmetric Neighborhood Example

34

points whose neighborhood includes p. Figure 3-8 shows the construction of the Symmetric

KENN neighborhood for a fixed radius (indicated by the circles) and k = 5.

 In the top part of the figure, we can see p as the point with green neighborhood and q as

a point in R with the blue neighborhood. The bottom part of the figure shows the final KENN

neighborhood of p in red, which includes the additional points from all points q that would

have p in their neighborhood.

Boundary Probability

Each point is assigned a probability of being on a boundary based on three criteria.

All of the neighborhoods used in calculating each of these criteria uses the Symmetric kε-

Nearest Neighbors method. Each of the criteria measures local geometric features of the

point and contributes a value towards the total probability of the point being classified as a

boundary point

Angle Criterion

For a point p and its neighbors q1,…, qn ∈ Np the algorithm calculates the tangent

plane and projects the points onto the plane. The points are then sorted according to their

Figure 3-9 Max angle criterion

35

clockwise positions around p, as shown in Figure 3-9. The clockwise pairwise angle

between each pair of neighbors are calculated and the largest angle g is stored along with

the pair of vertices that form them. Finally, the boundary probability is calculated according

to the equation

𝛱∠(𝑝) = min

(

𝑔 −

2𝜋

|𝑁𝑝|

𝜋 −
2𝜋

|𝑁𝑝|

 , 1

)

 .

Half disc Criterion

The half-disc criterion evaluates the deviation of a point from the average µp of its

neighbors. The understanding is that points on the border will deviate significantly from the

average while interior points will have a significantly lower deviation. A Gaussian kernel is

used to reduce the influence of sampling density. µp is thus calculated as a weighted

average of Np using the kernel

gσ(d) = exp(
−𝑑2

𝜎2
)

where σ =
1

3
 rp and rp is the average distance to the neighboring points. µp is then

calculated by:

𝜇𝑝 =
∑ 𝑔𝜎(||𝑞 − 𝑝||)𝑞𝑞𝜖𝑁𝑝

∑ 𝑔𝜎(||𝑞 − 𝑝||)𝑞𝜖𝑁𝑝

.

The points are then projected onto the tangent plane and the projection µ̅p of µp is

used to calculate the boundary probability

 𝛱𝜇(𝑝) = min(
||𝑝−(�̅�𝑝)||

4

3𝜋
𝑟𝑝

, 1).

36

The difference in deviation between the point and the neighborhood average for a

boundary point and an internal point is shown in Figure 3-10.

Figure 3-10 Neighborhood average deviation for boundary point (top) and internal

Point (bottom)

37

Shape Criterion

The shape of the correlation ellipsoid formed by the KENN of p, Np, approximately

defines the form of the neighborhood and is itself encoded in the eigenvalues, λi, of the

weighted covariance matrix Cp

𝐶𝑝 = ∑ 𝑤(𝑞)(𝜇𝑝 − 𝑞)(𝜇𝑝 − 𝑞)
𝑡

𝑞∈𝑁𝑝

Using the first 3 eigenvalues, a decision vector Λp = (
𝜆0

𝛼
,
𝜆1

𝛼
,
𝜆2

𝛼
) is then generated

where α = λ0 + λ1 + λ2.

The four characteristic situations representing different neighborhood shape

characteristics are shown in Figure 3-11.

• Φ = Boundary and Λφ = (
2

3
,
1

3
, 0)

• Φ = Interior and Λφ = (
1

2
,
1

2
, 0)

• Φ = Corner and Λφ = (
1

3
,
1

3
,
1

3
)

• Φ = Line and Λφ = (1, 0,0)

We define TΛ to be the triangle formed by the three vertices of Φ when Φ = {Interior,

Corner, Line} and extract potential classification probabilities �̃�𝜑 of each situation using a

Gaussian kernel gσ where σ =
1

3
||𝛬𝜑 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑇𝛬)||

2. �̃�𝜑 is then calculated as

�̃�𝜑(𝑝) = 𝑔𝜎𝜑(||𝛬𝑝 − 𝛬𝜑||)

and normalized as

𝛱𝜑(𝑝) =
�̃�𝜑(𝑝)

∑ �̃�𝜑(𝑝)𝜑∈𝛷

The correlation ellipsoid formed by the neighborhood of points in each situation is

shown in Figure 3-11.

38

Criterion Weights

The probabilities from the criteria can be combined in different ways and it is

suggested that for noisy data the weight of the shape criterion should be higher since it is

less affected by noise. All of the results in this thesis uses a uniform weighting scheme

resulting in the final probability equation

Figure 3-11 Correlation ellipsoids for neighborhood points surface point (top left),

crease point (Bottom left), boundary point (top right), and corner point (bottom right)

[5]

39

𝛱(𝑝) = 𝑤∠𝛱∠(𝑝) + 𝑤µ𝛱µ(𝑝) + 𝑤φ𝛱φ(𝑝)

where w∠ + wµ + wφ = 1 and w∠ = wµ = wφ.

Point Classification

A classification threshold is provided as an input and a point is only classified as a

boundary point in the scenario where both of its max angle vertex neighbors calculated

during the angle criterion are also classified as boundary points. This means that the

boundary probability of all three points will need to exceed the provided threshold in order

for the point being processed to be declared a boundary point. All of the results shown

uses a classification threshold between 0.2 and 0.35.

Valid Edge Extraction

A subset of all of the edges identified is extracted based on if they are part of the

max angle vertices for any border point. For each valid edge connecting points pi and pj,

we calculate an associated edge weight using the equation

𝑤𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗) = 𝑤𝑝𝑟𝑜𝑏(𝑖, 𝑗) + 𝑤𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗)

 where

𝑤𝑝𝑟𝑜𝑏(𝑖, 𝑗) = 2 − 𝛱(𝑝𝑖) − 𝛱(𝑝𝑗)

 and

𝑤𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗) =
2||𝑝𝑖− 𝑝𝑗||

𝑟𝑝𝑖
+ 𝑟𝑝𝑗

 .

40

A valid edge is only eligible to be added to the tree if both wtotal and wprob are below

pre-defined thresholds. A combination of 3 and 1.1 for the respective thresholds was used

for all the results displayed on this thesis.

Minimum Spanning Tree

After identifying all eligible edges, the edges are processed in an ascending order

according to wtotal. The edges are then connected to the graph if they join two distinct

components of the graph together.

Loop Extraction

During the addition of eligible edges to the tree, a secondary check is performed

to identify which connect vertices of the same component. These edges are still added to

the tree, thus creating a graph, in order to complete the cycle based on a predefined loop

length e which is calculated using the input radius parameter 𝜖 using the equation

𝑒 =
2𝜋𝜖

𝑑

where d is the average edge length of the graph.

Given a graph the loop extraction algorithm maintains a color for each of the

vertices.

• White = Untouched

• Grey = Queued for visitation

• Black = Visited

Given a node the algorithm will add it to a queue and mark it as grey. It will then

pop the queue and for each of the neighbors of the vertex mark it as grey. It will then mark

the current node as black and then pop it off the queue to get the next node to visit. This

process continues until it finds a node with a grey neighbor. The loop will then extract the

41

path by tracing back the steps of the search. Figure 3-12 shows this process on a simple

example.

Combination of Topological and Geometric Hole Boundary Extraction

The feature-based loop extraction method suffers from two major drawbacks.

Firstly, the criteria used cannot indicate the presence of points inside the boundary

detected and sometimes results in inaccurate (or even erroneous) detection of a hole

boundary. Secondly, the loop extraction which is run starting for each point in the point

cloud takes a long time to run. Both of these issues can be solved by limiting the number

of points to run the loop extraction from by providing an initial set of points to run on

extracted from the Minimal 1-cycle boundary, BMin, calculated using the Betti-1 edges found

using the topological boundary method. This allows for a much faster runtime of the

algorithm as well as increasing the accuracy of the hole boundary detected. The advantage

of this combination of methods is that it can take advantage of the efficiency of the

topological methodology while also taking into account local the geometric properties of

the point cloud neighborhood.

Figure 3-12 Breadth-First Search with the starting node (yellow), the search stops

when it reaches the node(green) and detects the grey node(red) as a neighbor. The

extracted loop is shown (left).

42

For the pitcher point cloud displayed above in Figure 3-13, the pictures show the

resulting boundary loop extracted by running the original loop extraction algorithm using

BFS and the combined method using the topological pre-seeding. The displayed model

point clouds have been rotated in order to display the boundary points (displayed in red)

without overlap. The effect of seed points can be seen as the seeded boundary outlines an

actual hole and the unseeded method does not. The effects in runtime can be seen in

Figure 3-14 as the seeded method (shown as the left bar in the bar graph) only has to run

through 94 points and thus takes 81 seconds while producing a boundary which encircles

the opening when compared to 2190 seconds necessary to run the unseeded method that

has to start from all 5820 points in the cloud and fails to provide a correct boundary.

Figure 3-13 Unseeded boundary (left) vs Seeded boundary (right)

43

Loop Constriction

A hole boundary with a lower number of vertices can be achieved by adding the

valid edges determined by their weights to the minimum spanning graph used to calculate

the minimum 1-cycle boundary. This is done by adding max angle edges for each point in

the boundary such that the neighbor which forms the max angle is in the set of points

formed by the initial 1-Cycle boundary, BInitial, and the points inside it, PInterior. The

methodology for adding the edges is shown in Algorithm 3-1. This allows for edges which

might allow for a tighter boundary around the hole to be discovered and added to the graph.

After adding the extra edges, rerunning the pathfinding algorithm provides us with a

boundary with a lower number of vertices as can be seen in Figure 3-15. Constriction

usually helps in paths with a large number of vertices and does not always allow for the

elimination of vertices.

Figure 3-14 Bar chart of the time taken to extract loops using the combined algorithm

(left) and the feature-based algorithm alone (right).

0

500

1000

1500

2000

2500

94 5820

Se
co

n
d

s

Vertices

Time Taken to Extract Loops

44

Figure 3-15 Minimal 1-Cycle Boundary (Left) Constricted Boundary (Right)

Algorithm 3-1 Adding extra edges to Topological Graph

45

Accuracy Metrics

With the multiple methods and approaches taken we are presented with a number

of boundaries for a given hole after the algorithm has concluded running. Since ground

truth for a hole boundary is ambiguous we are left with visual inspection in order to

determine which one fits our requirement the best.

The three boundaries presented in Figure 3-16 are:

• Minimal 1-cycle boundary

• BFS Loop extraction from Kruskal’s minimum spanning graph

• Constricted 1-cycle

The best amongst the three would depend on the use case of the boundary since

each has its benefits and drawbacks. The BFS Loop which usually has the highest

granularity does not always provide a clean chain of points. The Minimal 1-cycle, though

provides a cleaner chain of boundary points, is not as granular as the BFS loop. The

constricted 1-cycle has the lowest number of points, however, has a lower resolution as a

result.

A few heuristics can be calculated which indicate the quality of the boundary being

extracted. We can calculate the average value of the boundary probability of a chain of

vertices to indicate how high the boundary probability of the chain is. A second heuristic

might be the number of points which fall inside the polygon of a given chain of points. A

high number of points might indicate the possibility of further constriction since there might

be points inside the hole boundary surface. Different holes and their boundaries, as well

as the corresponding values for these 3 metrics, are shown in Figure 3-16.

46

Figure 3-16 Boundaries for physical holes (Bottom) and Surface Holes (Top) with their

accuracy metrics.

47

Chapter 4

HOLE CLASSIFICATION

The holes present in point clouds can be categorized into two types, physical

holes, and surface holes. A surface hole is identified by the hole being an opening on the

surface of the point cloud which is approximately a single layer thick. A surface hole could

correspond to a hole in a very thin surface but most of the time will represent the absence

of information about the enclosed region either due to not having been observed or due to

missing sensor signals as a result of reflections or excessive glare at that location. A

physical hole is defined as a hole which is surrounded by a surface of points, such as a

donut. A physical hole is an important feature of an object as it indicates a region of interest

for many tasks such as assembly or grasping.

Approach

The method detailed in this chapter is based on the fact that for a point in a

boundary of a hole the surface normal will either align with or be approximately

perpendicular to the surface normal of the plane approximated by the set of points that

make up the boundary. Thus, we compute the dot product of the surface normal of the hole

with the surface normal of each of the boundary points and use a threshold to classify each

point as either having a surface normal parallel or orthogonal to the hole. A hole is classified

as surface or physical based on the number of points in a chain around the boundary that

have the same classification.

Related Work

Very little work has been performed to identify the characteristics of holes in 3D

point clouds. In the main work in this area, Nadeer et al. [7] uses multiple images to

generate depth and visibility maps. These maps are then used in a graph-cut segmentation

48

to detect holes. Intensity and depth measures for hole are then used to classify the hole as

either real or virtual.

Hole Surface Normal

In the approach proposed in this thesis, the surface of the hole is first estimated by

finding the least square fit plane to the chain of border vertices. This gives us a surface

normal that can be used to ascertain the orthogonality of the surface normal of the

surrounding points.

Boundary Normal Orthogonality

Each of the vertices on the boundary will have a surface normal associated with it

based on its neighborhood. The dot product of the surface normal of the boundary points

with the surface normal of the hole reveals how orthogonal each of the surface normals of

the vertices is to the surface normal of the hole. We take the absolute value of the dot

product allowing us to align the surface normals to a specific direction and thus allow us to

calculate the chains in the classification step accurately. This information is relevant since

the boundary points for a physical hole will always have surface normals for a visible

section of its boundary orthogonal to that of the surface normal of the hole which is not the

case for surface holes. Figure 4-2 displays the surface normals for a physical and surface

hole and their boundaries.

49

.

Thresholding and Classification

After the dot products are calculated we classify each of the dot products as either

parallel or perpendicular based on a threshold of angular difference. For the results shown

in this chapter, the threshold was 20 degrees. A secondary threshold was set to be the

percentage of the total number of points in a sequence around the border that needed to

be classified in order for the hole to be classified as surface or physical. The threshold

calculated was 25% using the predefined dot product threshold. Thus a hole would be

classified as physical if 25% of the points in a sequence around the border had a dot

product less than 0.34. The methodology shown in Algorithm 4-1 outlines the approach

where dotarray contains the dot product of the hole surface normal with the boundary surface

normals. The orthogonality check adds dot-products to the list if the chain has already

started and stops if a dot-product exceeding the threshold is observed. The resulting array

and the extracted chains are shown in Figure 4-1. If the size of the maximum chain

extracted is 0, we re-run the algorithm with the threshold flipped to calculate the

Figure 4-1 The surface normal for a Surface Hole (Left) and Physical hole (Right)

marked in purple and the surface normal for the boundary points in yellow

50

characteristics of the surface hole. Finally, in Figure 4-3 we show the results of running the

algorithm on a physical and a surface hole.

Algorithm 4-1 Orthogonal Chain Extraction

Figure 4-2 Orthogonal Chain Extraction

51

Figure 4-3 Hole Boundaries and their classification information

52

Chapter 5

CONCLUSION

Conclusion

This thesis focused on the extraction of hole boundaries using a combination of

two previously explored approaches as well as demonstrating the improvement in each

approach by using elements from the other. It also classified the hole whose boundary has

been detected using surface normal information. Accuracy metrics were also provided that

try to quantify the quality of the hole boundary detected. The effectiveness of the resulting

algorithm was demonstrated using depth scans of real-world objects for physical holes and

artificially generated surface holes that represent data holes.

Future Work

The boundary provided for physical holes fails to represent the true surface that

surrounds a physical hole and thus a better approach is necessary where surface

information may be incorporated more effectively. Like [1] which uses topological

persistence as a descriptor for the classification of point cloud objects, the parameters used

to calculate hole type can have an extended use case as a descriptor for other classification

purposes. The geometric approach [3] could be improved by additional criteria during loop

extraction to indicate the presence of points inside the extracted boundary.

53

References

[1] William Beksi, Topological Methods for 3D Point Cloud Processing. Ph.D. thesis,

University of Minnesota, 2018.

[2] Herbert Edelsbrunner, David Letscher and Afra Zomorodian, Topological Persistence

and Simplification. Discrete and Computational Geometry, 28(4):511-533, 2002.

[3] Gerhard H Bendels, Ruwen Schnabel, and Reinhard Klein. Detecting holes in point set

surfaces. Journal of WSCG, 14, 2006.

[4] Cecil Jose A Delfinado and Herbert Edelsbrunner. An incremental algorithm for Betti

numbers of simplicial complexes on the 3-sphere. Computer Aided Geometric Design,

12(7):771–784, 1995.

[5] Stefan Gumhold, Xinlong Wang, and Rob MacLeod. Feature Extraction from Point

Clouds. 10th International Meshing Roundtable, 295-305, 2001.

[6] Van Sinh Nguyen, Trong Hai Trinh, and Manh Ha Tran. Hole Boundary Detection of a

Surface of 3D point clouds. 2015 International Conference on Advanced Computing

and Applications (ACOMP), Ho Chi Minh City, 2015, pp. 124-129.

[7] Aldeeb N. and Hellwich O. (2017). Detection and Classification of Holes in Point

Clouds. In Proceedings of the 12th International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications - Volume 6: VISAPP,

(VISIGRAPP 2017) ISBN 978-989-758-227-1, pages 321-330.

[8] J. Wang and M. M. Oliveira, "A hole-filling strategy for reconstruction of smooth

surfaces in range images," 16th Brazilian Symposium on Computer Graphics and

Image Processing (SIBGRAPI 2003), Sao Carlos, Brazil, 2003, pp. 11-18.

[9] Mineo, Carmelo & Pierce, Stephen & Summan, Rahul. (2018). Novel algorithms for 3D

surface point cloud boundary detection and edge reconstruction. Journal of

54

Computational Design and Engineering. 10.1016/j.jcde.2018.02.001.

55

Biographical Information

Aaqif Muhtasim completed his Bachelors of Science in Computer Engineering in

Spring of 2016 from the University of Texas at Arlington. He has worked as a Teaching

Assistant for Embedded Systems as well as a full-stack developer for multiple web-based

applications. His interests lie in developing robotic systems that help increase productivity.

He completed his Masters of Science in Computer Engineering in Fall of 2016 with a focus

on Systems/Architecture.

