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Abstract 

 
TOPOLOGICAL AND FEATURE BASED IDENTIFICATION OF HOLE BOUNDARIES IN 

POINT CLOUD DATA AND DIFFERENTIATION BETWEEN  

SURFACE AND PHYSICAL HOLES 

 

Aaqif Muhtasim, MS 

 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Manfred Huber 

With the advent of autonomous agents becoming prominent in everyday lives, the 

importance of processing the surroundings into understandable features becomes more 

and more important. 3D point clouds play a major role in the perception of such agents and 

thus having the ability to correctly decipher features from point clouds is crucial to the 

planning of actions that the agent would need to undertake. 

This thesis analyzes holes found in point clouds. Based on two approaches that 

center around topological data analysis and local point set features respectively. It studies 

how each of the methods works and how a combination of the two can be used to ascertain 

important information that may not have been obtainable from just one of them. Moreover, 

it studies how distinctions between different types of holes in point clouds can be made. 

The thesis contributes in two ways in the feature extraction from point cloud holes. 

The first contribution is the constriction of the minimal 1-cycle generated by the 

addition of edges to the minimum spanning graph generated. These edges are detected 

using local surface geometry for the points and allow elimination of vertices from the hole 

boundary thus providing a tighter hole boundary. 
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The second contribution is the classification of the type of hole whose boundary 

has been detected. This involves calculating a normal to the surface approximated by the 

boundary and detecting a chain of vertices on the boundary whose surface normal are 

either orthogonal or parallel to the normal of the boundary points. 

This thesis approaches the abstract notion of a hole and tries to provide a boundary 

in order to allow for planning of actions that might involve it, such as determination of further 

sensing actions or determination of interaction points for object manipulation. We have 

provided algorithms that calculate the necessary features and have provided results that 

show their effectiveness in real-world scenarios. 
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Chapter 1  

INTRODUCTION 

Modern society is inundated with technologies that utilize sensors in order to 

gather information about the world around them. These sensors usually gather data about 

the intensity of light, noise, temperature etc. in order to get a sense of their environment. 

One of the common ways to represent and store sensory information about the 

environment is in a spatial form in terms of Cartesian coordinates within a 3-dimensional 

(3D) map. As the number of technologies dependent on a mapping of their 3D environment 

grows so does the number of sensors that are dedicated to the 3D representation of the 

world. This influx of sensors bringing with them a large amount of 3D data thus requires 

more algorithms that can process such data and ascertain meaningful features from them 

in order to make the data useful. 

 
Point Cloud Data 

Point clouds are a common way to represent 3D data for further processing in 

robot applications. Point cloud data is data collected by sensors such as LIDAR (Light 

Detection and Ranging), stereo, structured light, and ToF (Time-of-Flight) cameras. This 

data by providing 3D coordinates of points on a surface allows for the accurate mapping of 

shapes of objects. Depending on the sensor source, 3D points in a point cloud can also 

contain additional information such as signal intensity, color or surface normal at the point. 

However, many sensors do not naturally provide this information, leaving frequently only 

the actual location of the surface points. Point Cloud Data generally contains no point 

connectivity information and is usually unorganized, as it can be merged from multiple 

sensors as well as from multiple measurements taken by these sensors, and thus lacks 

the easy detection of the neighborhood. This is in contrast to 2D images or single depth 
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images from 3D cameras where the layout of the imager provides a natural structure for 

the pixel positions. Sample 2D snapshots of point cloud data of various objects are 

provided in    

 

Point Cloud Features 

A point cloud with n-points will contain at a minimum nx3 numbers with each row 

of 3 numbers indicating a point in the 3D coordinate system. As indicated above, points in 

a point cloud can contain additional information (e.g. color) depending on the sensor that 

  
 

Figure 1-1  Point Cloud Examples 
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generated the data but these additional features can be heterogeneous across data points 

and absent, e.g. in the case of many LIDAR sensors. Extracting meaning through 

combination and manipulation of these numbers in order to allow for other systems to use 

the data is known as feature extraction. For point cloud data this may come from 

segmenting a given point cloud into different objects in order to assign the resulting objects 

to their respective labels. One significant issue when extracting features or objects from 

point clouds is that while the point cloud represents points on the surface of the object, the 

points generally do not cover the entire surface either due to occlusions, reflections or 

surface properties that prevented the sensor from observing a part of the surface, or 

because no sensor has been in a position from which particular parts of the object surface 

would have been visible. This leads to holes in the point cloud data which might either 

correspond to holes present in the object surface or to the absence of information at a 

location. This significantly complicates the identification of surfaces and the segmentation 

problem, making the detection of these itself a feature detection problem in point clouds. 

 

Hole Definition and Boundary Accuracy 

A hole in the physical sense is defined as “a hollow place in a solid body or 

surface”. The problem arises when transferring this definition to point cloud data and trying 

to identify a hole boundary feature. A common representation for a hole boundary feature 

is a chain of points that would indicate the boundary of said hole. This, however, can 

become problematic in point cloud data. For a hole in a truly 2D surface (i.e. a surface – 

and thus a hole - that has no depth), this issue is relatively simple since the opening is on 

a 2D surface and is thus consistent from multiple perspectives. For a hole in a 3D object, 

the fact that the hole has depth and is surrounded by a 2D surface makes the problem 

much more prominent since the boundary would appear different from different 
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perspectives and thus there would be multiple correct answers. Due to this fact, no easy 

accuracy measure for surface holes has been developed and thus the quality of the feature 

detector results is generally judged solely by visual inspection. 

 

Approach 

The aspect of hole features and their classification in terms of physical, 3-

dimensional holes, 2D surface holes, or data holes resulting from missing observations, 

has not been a well-defined topic in algorithms that process point cloud data. Even though 

detection of surface holes has been an active area of research, accurate identification of 

the presence and boundary of physical holes surrounded by a surface has still not been 

sufficiently explored.  

The main approach for this thesis extends on and combines previous approaches 

for hole identification in 3D point clouds and revolves around applying the topological 

calculation of the minimal 1-cycle with curated parameters to get a base boundary for the 

hole. To improve the compactness of the resulting boundary feature, the final boundary is 

created by adding edges based on local geometry to other points inside the initial 

boundary. Based on the resulting feature, a type classification is defined by finding a chain 

of points along the boundary whose surface normal are consistently orthogonal or parallel 

to the surface normal of the hole and have a degree of parallelism with each other. 

 

Contributions  

The contributions made by this thesis in understanding the features of a hole are: 

• Providing an algorithm that calculates the minimal hole boundary and thus 

produces a series of connected vertices that mark the inside of a hole. 
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• Classifying the type of hole whose boundary has been detected thus allowing for 

better characterization of the point cloud object. 

 

Thesis Organization 

In the remainder of the Thesis, Chapter 2 first introduces the fundamental 

mathematical background for hole identification before discussing the related work in the 

area of hole identification in 3D point cloud data. In Chapter 3 we talk about two previously 

explored approaches to hole boundary detection and try to combine them to achieve better 

boundary extraction as well as provide some metrics which might be used to evaluate the 

quality of a given hole boundary. Chapter 4 introduces a surface normal based approach 

to classify between surface and physical holes. We conclude with mentions of future work 

that can be performed in Chapter 5. 
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Chapter 2  

BACKGROUND 

 

Topological and Geometric Properties in Point Clouds 

Since points in a point cloud do not naturally form surfaces and do not contain 

connectivity information, one essential task when analyzing the data, and thus when trying 

to identify hole features, is to establish connectivity and surface characteristics within the 

data. For this, topological and geometric properties are generally used. 

 
Simplex and Simplicial Complex 

A k-simplex σ where 0 ≤ k ≤ n is defined as the complex hull of a set of k+1 

independent points in ℝn. The convex hull is the solid polyhedron determined by the k+1 

points. Some examples of Simplices in different dimensions are the vertex, the edge, the 

triangle, and the tetrahedron as shown in Figure 2-1. 

 
A simplicial complex is a collection of simplexes such that if σ and σ’ are Simplices 

in a simplicial complex K, then σ ∩ σ’ is either null or a face τ such that τ ∈ K, τ ∈ σ’ and τ ∈ 

σ. A face of a k-simplex is defined as the set of k-1 simplices obtained by removing each 

of the points in the k-simplex one at a time. An example can be seen by removing each of 

the points from the tetrahedron (3-dimensional simplex) in Figure 2-1 to obtain a set of 4-

face triangles.  An example of a simplicial complex is seen in Figure 2-2. 

 

 
Figure 2-1 Simplices in Different Dimensions, From 0 (left) to 3 (right) 

 

 

 
Figure 2-2  Simplicial Complex 
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Vietoris-Rips Complex 

A Vietoris-Rips Complex M in ℝn is an abstract simplicial complex such that for 

each simplex σ ∈ M and for all vertices v0,…,vn ∈ σ the distance between each pairwise 

vertex in σ is less than some predefined radius r. Figure 2-3 shows a sample Vietoris-Rips 

Complex where the radius for each point is shown in blue. 

 

Chains, Cycles, and Boundaries  

A k-chain is a subset of k-simplices in K, where K is a simplicial complex in ℝn. The 

sum of two chains a,b is defined by the symmetric difference between the two, 

  a + b = (a ∪ b) – (a ∩ b)  

and is commutative. Ck is the group of all k-chains together with addition. For a complex in 

ℝ3 the only non-trivial groups are for 0 ≤ k ≤ 3.  

The boundary ∂k(σ) of a k-simplex σ is the set of its (k-1)-faces and is a (k-1)-

chain. The boundary of a k-chain is found by summing the boundaries of its simplices,  

 
Figure 2-3  Vietoris-Rips Complex [1] 
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∂k(c) = ∑σ∈c  ∂k(c). The boundary operator is a homomorphism such that ∂k: Ck → Ck-1 and 

the collection of the operators on the chain groups form a chain complex. 

 

 · · · → ∅ → C3 →C2 →C1 →C0 → ∅ · · ·. 

The kernel of ∂k is a subgroup of Ck and is defined as the set of k-chains whose 

boundaries are empty under ∂k and are also known as the k-cycles. The image of ∂(k+1) 

is also a subgroup of Ck and is defined as the set of k-chains which are boundaries of (k+1)-

chains and are also known as k-boundaries. 

 

ker ∂k = {c ∈ Ck | ∂k(c) = ∅} 

img ∂k = {d ∈ Ck−1 | ∃c ∈ Ck : d = ∂k(c)}. 

  

Ck is formed by the set of k-cycles Zk and the set of k-boundaries   Bk under addition. 

Since an essential property of the boundary operator is that the boundary of a boundary is 

empty, ∂k1 ◦ ∂k(c) = ∅, the groups are thus nested Bk ⊂ Zk ⊂ Ck. Z0 = C0 since the boundary 

of a vertex is empty and thus every 0-chain is also a 0-cycle. Z3 = B3 = {∅} is a consequence 

of the complex being in ℝ3 and thus having no non-empty 3-cycles or 3-boundaries. Figure 

2-4 shows the relations between Chains, Cycles, and Boundaries. 

∂3 ∂2 ∂1 
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Homology Groups and Betti Numbers 

The kth homology group Hk is defined as the quotient of the kth cycle group by the 

kth boundary group: Hk = Zk/Bk. Homology Groups Hk(X) will have their dimensions 

correspond to the number of k-dimensional holes in X where X is a simplicial complex.  

Hk(X) is a quotient vector space with its dimension equal to its number of 

generators and whose elements are a linear combination of its generators. Assuming a 

group with generators {a,b}, a typical element in the group would be αa+βb and the 

dimension of the group would be 2. 

This definition allows for all bases to have the same size which corresponds to the 

rank of the group. Since taking the symmetric differences is similar to adding modulo 2, the 

size of a group is 2 raised to the power of its rank. An example of adding two 1-cycles is 

shown in Figure 2-5.  

 
Figure 2-4  Chains, Cycles, and Boundary groups 

with their images under the boundary operator 
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The kth Betti number of X is calculated as the rank of the kth homology group βk = 

rank Hk = rank Zk – rank Bk. 

 Complexes in ℝ3 can only have non-trivial Betti numbers for 0 ≤ k ≤ 2. Β0 

measures the number of connected components in X, β1 measures the number of holes 

(tunnels) in X, and β2 measure the number of voids in X. 

 

Filtration 

A filter is defined as an ordering of simplices such that each prefix contains the 

simplices of a subcomplex. The corresponding filtration is defined by taking successively 

prefixes. Filtration can be described as the evolution of a complex under the element of 

growth. 

 

Best Fit Plane and Surface Normal 

Given points on a surface, it is sometimes useful to have a model of the underlying 

surface. Given a point and its neighborhood we can use the data to fit a plane and thus 

allow us to model the underlying surface. The method used in this thesis uses eigenvalue 

 
Figure 2-5   1-Cycle Addition 
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decomposition to provide a point and a surface normal when provided with a matrix of point 

coordinates. Figure 2-6 shows an example of the surface normal representation for a point 

cloud. 

 

 
 

Minimum Spanning Tree 

 
A minimum spanning tree is defined by a subset of a weighted, connected graph 

that connects all of the vertices without cycles such that the sum of edge weights is 

minimized. A minimum spanning tree also defines a connected component. There are 

multiple algorithms that can be used to calculate the minimum spanning tree of a graph 

with some of the more commonly used ones being Prim’s algorithm and Kruskal’s 

algorithm. An example of a minimum spanning tree is shown in Figure 2-7.  

 
Figure 2-6  Point Surface Normal 
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Ray Casting 

 
A minimal 1-cycle requires determining whether any vertices are present inside the 

provided boundary. The ray casting algorithm allows us to detect whether a point is inside 

the boundary by first modeling the boundary as a polygon and then by finding out how 

many times a ray, starting from the point and going in any fixed direction, intersects the 

edges of the polygon. The parity of the intersections determines whether the point is inside 

or outside the polygon (even = inside). A sample ray passing through a polygon is shown 

in Figure 2-8. 

 
 

 
Figure 2-7 Minimum Spanning Tree Example 

 

 
Figure 2-8 Raycasting Example 
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Chapter 3  

HOLE BOUNDARY EXTRACTION 

Approach 

As explained before, defining the boundary of a hole in point clouds remains as 

one of the more challenging aspects of point cloud feature detection. This chapter looks 

first at two existing approaches that calculate the boundary of a hole. The two techniques 

do so in very different ways with the first [1] taking a topological approach while the second 

[3] takes a local point feature approach to determine the likelihood of boundary points and 

then combines them. Considering the different strengths and weaknesses of the methods, 

this thesis then proposes a way to combine aspects of the two techniques into a method 

that can achieve tighter hole boundary features. The combination allows for the generation 

of multiple boundaries each with its benefits and drawbacks can yield a decrease in the 

time taken to compute one of the boundaries. Finally, we discuss issues in the evaluation 

of hole boundary features and try to provide heuristics as an initial attempt to define the 

accuracy of a hole boundary. 

. 

Related Work 

Hole boundary detection is an area of research that has been sparsely explored. 

NGUYEN et al. [6] used organized point clouds to detect the k-ring neighborhood for each 

point using an 8-connected neighborhood and extracts a boundary using region growing. 

Bendels et al. [3] calculates features of points and combines the features to calculate the 

probability of points being on the boundary. The boundary is then extracted using a graph 

and Best-First Search (BFS).  

A topological approach to hole boundary extraction is used in [1] by Beksi to create 

a simplicial complex of the point cloud which is then used to calculate a minimum spanning 
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tree and an edge that represents the hole boundary. The boundary is then extracted by 

finding the shortest path between the vertices of the edge detected.  

Wang et al. [8] uses a triangular mesh created from the input point cloud to find a 

boundary edge which is an edge belonging to a single triangle. The boundary vertices are  

found by tracking these boundary edges. A heuristic based on the area of the connected 

triangles and the number of points is then used to filter out vertices to get a subset of the 

vertices as boundary vertices.  

Mineo et al. [9] uses a two-step method to identify boundary points. If for a query 

point there exists a circle that passes through it and two of its neighbors such that the 

radius of the circle is greater than or equal to B, where B is an approximation of the local 

resolution, and that a sphere with the same radius and center does not contain any other 

points in the neighborhood of the query point, then we mark the query point as a boundary 

point. A secondary filtration is done by projecting the query point and its neighbors onto a 

tangent plane and tries to find a path through all the neighbors such that the path does not 

encircle the query point. If such a path is found then the query point is identified as a 

boundary point. 

 

Topological Hole Boundary Extraction 

Beksi [1] introduced a method to determine hole boundaries using point cloud 

topology. Topology can be used to calculate features such as Betti numbers which indicate 

the number of holes in a simplicial complex with the k-th Betti number representing the 

number of k-dimensional holes in the complex. A hole boundary can thus be calculated by 

using the 1-simplex representing the 1-hole in a complex. a hole boundary can be 

calculated. 
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Vietoris-Rips Complex Calculation 

A Vietoris-Rips complex is calculated by first sorting the input points according to 

their x, y, and z coordinates respectively. This allows for an initial ordering of the vertices 

to create the initial 0-simplex ordering for the filter. This sorting carries over to higher 

dimension simplex ordering since the edges (1-simplices) are processed according to the 

ordering of the points and the triangles (2-simplices) are processed according to the 

ordering of the edges. Each simplex thus contains an index specifying their ordering with 

lower dimensional simplices being ordered earlier. 

A KD-tree is created using the input points in order to calculate the neighborhood 

for each point. A fixed-radius neighborhood which collects the set of neighbors around a 

point contained in a sphere of radius ε, is used. Each point only accepts neighbors with 

higher index values from the set created. Figure 3-1 shows the radius used for a point 

(blue).  

 

The calculation of the 0-simplices (points) is trivial since all of the points in the point 

cloud are 0-simplices. The 1-simplices (edges) are calculated by first creating a list of 

 
Figure 3-1 Fixed-radius Nearest Neighbors 
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edges associated with each point. This is done by adding edges from a point to all of its 

neighbors. The 2-simplices (triangles) are calculated by going through each pair of points 

for an edge and finding out the intersection of points in their neighborhood. Each 

intersection with a higher index point indicates a 2-simplex. This can be further explained 

by saying that for edge {u, v}, if w is in the neighborhood of u and w is in the neighborhood 

of v, {u, v, w} is a triangle. Figure 3-2 shows the set of triangles originating from a point. 

 
Betti Number Calculation 

The calculation of Betti numbers is an essential part of the extraction of the hole 

boundary. Betti-1 indicates the number of detected holes in the point cloud based on the 

input radius. This number also indicates the positive edges that do not form part of a 

boundary of a triangle and thus gives us the basis to start our search for the boundary of 

the hole. Since Betti-1 requires the edges to be labeled as either positive or negative, we 

need to run the algorithm to compute Betti-0 beforehand which labels the edges necessary 

for Betti-1 calculation. 

Betti number Bk is the number of k-cycles that are not part of the boundary of (k+1)-

simplex. We call a (k+1)-simplex σ positive if it belongs to a (k+1)-cycle and negative if it 

 
Figure 3-2 A point with all of associated triangles 
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destroys a k-cycle. For Betti-0 this is trivial since every point belongs to a 0-cycle and thus 

we just have to determine the number of negative edges. An edge belongs to a 1-cycle if 

both of its endpoints belong to the same component. Thus Bk is defined as: 

   Bk = posk – negk+1 

Where posk = number of positive k-simplices and negk+1 = number of negative 

(k+1)-simplices. 

Betti – 0 

The calculation for Betti-0 requires the use of a disjoint-set dataset where the 

elements are the points in the complex. Each element starts off by being its own parent. 

The set of edges are then iterated over and for each edge {u, v} the parents of its endpoints 

are found using the find operation and joined if they are different using the union operation. 

The find operation recursively looks at the parent of the given element until an 

element is detected who is its own parent. 

The union operation first finds the element with the higher index according to the 

initial sorting of the points and selects it as the element to be added if it is not already a 

part of another set, that is it has a death index of 0. This element is then added to the set 

by setting its death index to the current edge being processed. Assuming the youngest 

element is v and the edge connects u to v, the parents are then labeled as u_root and 

v_root. If v_root is older (has a lower index) we add u_root as the parent of v_root and vice 

versa. 

 

Betti – 1 

The basis for Betti-1 calculation is similar to Betti-0 in the sense that it involves 

finding the positive edge that is destroyed by a negative triangle. The algorithm thus goes 
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through each triangle in the complex and finds λ representing the set of positive edges 

belonging to that triangle. 

A hash table T is used where T[i] is the index of the ith simplex in the filter and 

stores the λi, which for an edge is the set of positive edges belonging to the triangle that 

destroyed it. The hash table for the filtration in Figure 3-3 is shown in Figure 3-4 where ∞ 

indicates a positive k-simplex with no negative (k+1)-simplex that destroys it. 

After arriving at a negative simplex σj
 at index j in the hash table the algorithm will 

create λ and find index i, where i = max(λ) which is the youngest member of λ. If T[i] is 

empty we store λ and j at T[i]. Else, T[i] already contains a set λi that represents a 

permanently stored 1-cycle. We add λ and λi, as defined previously, to get a new λ that 

produces a k-cycle homologous to the old one and repeat the search with the new λ. 

 
Figure 3-3 Filtration Example 
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Following the filtration example shown above, when we arrive at j=13 we get λ = 

{be, ce, bc} and i = max(λ) = 12. We find T[13] empty and store λ and j there. Following the 

same method for j=14 we get a λ = {ac, ce} stored at T[11]. At j=15 we get λ= {ac, bc} and 

i = max(λ) = 12. However, we already have λi = {be, ce, bc} already stored at T[12]. We 

thus take the symmetric difference between λ and λi resulting in the new λ = {be, ac, ce} 

and get a new i = max(λ) = 11. Again we find T[11] to be occupied and get a new λ = {be} 

and i = 7. Finally we find T[7] to be unoccupied and store j and λ there. 

 
Minimum Spanning Tree 

Since Betti-0 uses the union operation to combine components together, a 

minimum spanning tree is generated in the process. However, since the union operation 

does not take into account distances between the vertices when combining them the tree 

generated does not represent the accurate connectivity between the points. An altered 

version of the union operation is used such that the parent of v_root is changed from u_root 

to u and vice versa. This ensures we only add edges to the tree that maintain the radius 

restriction initially provided to the algorithm. For special cases where the parent of a node 

is younger than the node, we add a special attribute to the point called parent_conn. 

 
Figure 3-4 HashTable for the Filtration 
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parent_conn is used to define an edge that represents a different pathway for an 

element to be connected to a set other than the parent attribute in the union operation. The 

parent_conn of a point is set when connecting two sets of more than one element to each 

other and is used to represent the connectivity information more accurately whereas the 

general union operation will sometime create edges longer than the input parameter. The 

parent_conn of v_root is set to the edge number whenever the parent is set if v_root is 

older than point u and vice versa. The difference in the minimum spanning trees generated 

is shown in Figure 3-5. 

 

 
Figure 3-5 Spanning Tree Resulting from Standard Betti-0 Union Operation (Top) and 

Spanning Tree from Modified Union Operation (Bottom) 
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Minimal 1-Cycle Extraction 

Betti-1 identifies the edge whose addition creates a cycle in the minimum spanning 

tree which is homeomorphic to the hole boundary. By finding a path between the two 

vertices of the edge we can identify an initial boundary. This initial boundary is then used 

to approximate a tangent plane upon which all of the points are projected. The initial 

boundary is then used to approximate a polygon and the set of points that fall inside the 

polygon are discovered. Any unpaired positive edge associated with the points on the 

boundary or interior of the polygon is added to the graph and the shortest path between 

the edges are found again to calculate a Minimal 1-Cycle surrounding the hole. Figure 3-7 

shows an example of the constriction of the hole boundary and Figure 3-6 shows its effects 

on a physical hole boundary. 

 
 

Figure 3-7 Initial Boundary Points (Orange). Minimal 1-Cycle boundary (Yellow). Their 

intersection (Purple). 

 

 

 
Figure 3-6 Minimal 1-cycle example 
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Local Feature-based Boundary Extraction 

Another method to determine hole boundaries is to consider geometric features of 

the points in a local neighborhood. Bendels et al. [3] introduce such a method that uses 

features calculated using the neighborhood of a point to calculate the probability of a point 

being on a boundary and extract a chain of points to indicate the boundary. 

 

Symmetric kε-Nearest Neighbors 

Let P be the set of points found using Fixed-radius Nearest Neighbors and Q be 

the set of points found using k-Nearest Neighbors, Kε-Nearest Neighbors is then defined 

as P ∪ Q.  Symmetric KENN of point p would then be P ∪ Q ∪ R where R is the set of 

        

 
Figure 3-8 Symmetric Neighborhood Example 
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points whose neighborhood includes p. Figure 3-8 shows the construction of the Symmetric 

KENN neighborhood for a fixed radius (indicated by the circles) and k = 5.  

  In the top part of the figure, we can see p as the point with green neighborhood and q as 

a point in R with the blue neighborhood. The bottom part of the figure shows the final KENN 

neighborhood of p in red, which includes the additional points from all points q that would 

have p in their neighborhood. 

 

Boundary Probability 

Each point is assigned a probability of being on a boundary based on three criteria. 

All of the neighborhoods used in calculating each of these criteria uses the Symmetric kε-

Nearest Neighbors method. Each of the criteria measures local geometric features of the 

point and contributes a value towards the total probability of the point being classified as a 

boundary point 

 

Angle Criterion 

For a point p and its neighbors q1,…, qn ∈ Np the algorithm calculates the tangent 

plane and projects the points onto the plane. The points are then sorted according to their 

 
Figure 3-9 Max angle criterion 
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clockwise positions around p, as shown in Figure 3-9. The clockwise pairwise angle 

between each pair of neighbors are calculated and the largest angle g is stored along with 

the pair of vertices that form them. Finally, the boundary probability is calculated according 

to the equation 

𝛱∠(𝑝) = min

(

 
𝑔 − 

2𝜋

|𝑁𝑝|

𝜋 − 
2𝜋

|𝑁𝑝|

 , 1

)

 . 

 

Half disc Criterion 

The half-disc criterion evaluates the deviation of a point from the average µp of its 

neighbors. The understanding is that points on the border will deviate significantly from the 

average while interior points will have a significantly lower deviation. A Gaussian kernel is 

used to reduce the influence of sampling density. µp is thus calculated as a weighted 

average of Np using the kernel  

gσ(d) = exp(
−𝑑2

𝜎2
) 

where σ =
1

3
 rp and rp is the average distance to the neighboring points. µp is then 

calculated by: 

𝜇𝑝 = 
∑ 𝑔𝜎(||𝑞 − 𝑝||)𝑞𝑞𝜖𝑁𝑝

∑ 𝑔𝜎(||𝑞 − 𝑝||)𝑞𝜖𝑁𝑝

.  

    

The points are then projected onto the tangent plane and the projection µ̅p of µp is 

used to calculate the boundary probability 

 

                  𝛱𝜇(𝑝) = min(
||𝑝−(𝜇̅𝑝)||

4

3𝜋
𝑟𝑝

, 1). 
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The difference in deviation between the point and the neighborhood average for a 

boundary point and an internal point is shown in Figure 3-10. 

 

 
Figure 3-10 Neighborhood average deviation for boundary point (top) and internal 

Point (bottom) 
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Shape Criterion 

The shape of the correlation ellipsoid formed by the KENN of p, Np, approximately 

defines the form of the neighborhood and is itself encoded in the eigenvalues, λi, of the 

weighted covariance matrix Cp  

 

𝐶𝑝 =  ∑ 𝑤(𝑞)(𝜇𝑝 − 𝑞)(𝜇𝑝 − 𝑞)
𝑡

𝑞∈𝑁𝑝

 

Using the first 3 eigenvalues, a decision vector Λp = (
𝜆0

𝛼
,
𝜆1

𝛼
,
𝜆2

𝛼
) is then generated 

where α = λ0 + λ1 + λ2. 

The four characteristic situations representing different neighborhood shape 

characteristics are shown in Figure 3-11. 

• Φ = Boundary and Λφ = (
2

3
,
1

3
, 0) 

• Φ = Interior and Λφ = (
1

2
,
1

2
, 0) 

• Φ = Corner and Λφ = (
1

3
,
1

3
,
1

3
) 

• Φ = Line and Λφ = (1, 0,0) 

We define TΛ to be the triangle formed by the three vertices of Φ when Φ = {Interior, 

Corner, Line} and extract potential classification probabilities 𝛱̃𝜑 of each situation using a 

Gaussian kernel gσ where σ = 
1

3
||𝛬𝜑 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑇𝛬)||

2. 𝛱̃𝜑  is then calculated as 

𝛱̃𝜑(𝑝) = 𝑔𝜎𝜑(||𝛬𝑝 − 𝛬𝜑||) 

and normalized as  

𝛱𝜑(𝑝) = 
𝛱̃𝜑(𝑝)

∑ 𝛱̃𝜑(𝑝)𝜑∈𝛷

 

The correlation ellipsoid formed by the neighborhood of points in each situation is 

shown in Figure 3-11. 
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Criterion Weights 

The probabilities from the criteria can be combined in different ways and it is 

suggested that for noisy data the weight of the shape criterion should be higher since it is 

less affected by noise. All of the results in this thesis uses a uniform weighting scheme 

resulting in the final probability equation 

 

 
Figure 3-11 Correlation ellipsoids for neighborhood points surface point (top left), 

crease point (Bottom left), boundary point (top right), and corner point (bottom right) 

[5] 
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𝛱(𝑝) = 𝑤∠𝛱∠(𝑝) + 𝑤µ𝛱µ(𝑝) + 𝑤φ𝛱φ(𝑝) 

 

where  w∠ + wµ + wφ = 1 and w∠ = wµ = wφ.  

 
Point Classification 

A classification threshold is provided as an input and a point is only classified as a 

boundary point in the scenario where both of its max angle vertex neighbors calculated 

during the angle criterion are also classified as boundary points. This means that the 

boundary probability of all three points will need to exceed the provided threshold in order 

for the point being processed to be declared a boundary point. All of the results shown 

uses a classification threshold between 0.2 and 0.35. 

 

Valid Edge Extraction 

A subset of all of the edges identified is extracted based on if they are part of the 

max angle vertices for any border point. For each valid edge connecting points pi and pj, 

we calculate an associated edge weight using the equation 

 

𝑤𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗) = 𝑤𝑝𝑟𝑜𝑏(𝑖, 𝑗) + 𝑤𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗) 

    

  where  

𝑤𝑝𝑟𝑜𝑏(𝑖, 𝑗) = 2 −  𝛱(𝑝𝑖) −  𝛱(𝑝𝑗) 

  and 

𝑤𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑖, 𝑗) =  
2||𝑝𝑖− 𝑝𝑗||

𝑟𝑝𝑖
+ 𝑟𝑝𝑗

 . 
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A valid edge is only eligible to be added to the tree if both wtotal and wprob are below 

pre-defined thresholds. A combination of 3 and 1.1 for the respective thresholds was used 

for all the results displayed on this thesis. 

 

Minimum Spanning Tree 

After identifying all eligible edges, the edges are processed in an ascending order 

according to wtotal. The edges are then connected to the graph if they join two distinct 

components of the graph together. 

 

Loop Extraction 

During the addition of eligible edges to the tree, a secondary check is performed 

to identify which connect vertices of the same component. These edges are still added to 

the tree, thus creating a graph, in order to complete the cycle based on a predefined loop 

length e which is calculated using the input radius parameter 𝜖 using the equation 

𝑒 =  
2𝜋𝜖

𝑑
 

where d is the average edge length of the graph. 

Given a graph the loop extraction algorithm maintains a color for each of the 

vertices.  

• White = Untouched 

• Grey = Queued for visitation 

• Black = Visited 

Given a node the algorithm will add it to a queue and mark it as grey. It will then 

pop the queue and for each of the neighbors of the vertex mark it as grey. It will then mark 

the current node as black and then pop it off the queue to get the next node to visit. This 

process continues until it finds a node with a grey neighbor. The loop will then extract the 
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path by tracing back the steps of the search. Figure 3-12 shows this process on a simple 

example. 

 

Combination of Topological and Geometric Hole Boundary Extraction 

The feature-based loop extraction method suffers from two major drawbacks. 

Firstly, the criteria used cannot indicate the presence of points inside the boundary 

detected and sometimes results in inaccurate (or even erroneous) detection of a hole 

boundary. Secondly, the loop extraction which is run starting for each point in the point 

cloud takes a long time to run. Both of these issues can be solved by limiting the number 

of points to run the loop extraction from by providing an initial set of points to run on 

extracted from the Minimal 1-cycle boundary, BMin, calculated using the Betti-1 edges found 

using the topological boundary method. This allows for a much faster runtime of the 

algorithm as well as increasing the accuracy of the hole boundary detected. The advantage 

of this combination of methods is that it can take advantage of the efficiency of the 

topological methodology while also taking into account local the geometric properties of 

the point cloud neighborhood. 

 
 

Figure 3-12 Breadth-First Search with the starting node (yellow), the search stops 

when it reaches the node(green) and detects the grey node(red) as a neighbor. The 

extracted loop is shown (left). 
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For the pitcher point cloud displayed above in Figure 3-13, the pictures show the 

resulting boundary loop extracted by running the original loop extraction algorithm using 

BFS and the combined method using the topological pre-seeding. The displayed model 

point clouds have been rotated in order to display the boundary points (displayed in red) 

without overlap. The effect of seed points can be seen as the seeded boundary outlines an 

actual hole and the unseeded method does not. The effects in runtime can be seen in 

Figure 3-14 as the seeded method (shown as the left bar in the bar graph) only has to run 

through 94 points and thus takes 81 seconds while producing a boundary which encircles 

the opening when compared to 2190 seconds necessary to run the unseeded method that 

has to start from all 5820 points in the cloud and fails to provide a correct boundary. 

 
 

Figure 3-13 Unseeded boundary (left) vs Seeded boundary (right) 
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Loop Constriction 

A hole boundary with a lower number of vertices can be achieved by adding the 

valid edges determined by their weights to the minimum spanning graph used to calculate 

the minimum 1-cycle boundary. This is done by adding max angle edges for each point in 

the boundary such that the neighbor which forms the max angle is in the set of points 

formed by the initial 1-Cycle boundary, BInitial, and the points inside it, PInterior. The 

methodology for adding the edges is shown in Algorithm 3-1. This allows for edges which 

might allow for a tighter boundary around the hole to be discovered and added to the graph.  

After adding the extra edges, rerunning the pathfinding algorithm provides us with a 

boundary with a lower number of vertices as can be seen in Figure 3-15. Constriction 

usually helps in paths with a large number of vertices and does not always allow for the 

elimination of vertices.  

 
 
Figure 3-14  Bar chart of the time taken to extract loops using the combined algorithm 

(left) and the feature-based algorithm alone (right).  
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Figure 3-15 Minimal 1-Cycle Boundary (Left) Constricted Boundary (Right) 

 

 
Algorithm 3-1 Adding extra edges to Topological Graph 
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Accuracy Metrics 

With the multiple methods and approaches taken we are presented with a number 

of boundaries for a given hole after the algorithm has concluded running. Since ground 

truth for a hole boundary is ambiguous we are left with visual inspection in order to 

determine which one fits our requirement the best. 

The three boundaries presented in Figure 3-16 are: 

• Minimal 1-cycle boundary 

• BFS Loop extraction from Kruskal’s minimum spanning graph 

• Constricted 1-cycle 

The best amongst the three would depend on the use case of the boundary since 

each has its benefits and drawbacks. The BFS Loop which usually has the highest 

granularity does not always provide a clean chain of points. The Minimal 1-cycle, though 

provides a cleaner chain of boundary points, is not as granular as the BFS loop. The 

constricted 1-cycle has the lowest number of points, however, has a lower resolution as a 

result. 

A few heuristics can be calculated which indicate the quality of the boundary being 

extracted. We can calculate the average value of the boundary probability of a chain of 

vertices to indicate how high the boundary probability of the chain is. A second heuristic 

might be the number of points which fall inside the polygon of a given chain of points. A 

high number of points might indicate the possibility of further constriction since there might 

be points inside the hole boundary surface. Different holes and their boundaries, as well 

as the corresponding values for these 3 metrics, are shown in Figure 3-16. 
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Figure 3-16 Boundaries for physical holes (Bottom) and Surface Holes (Top) with their 

accuracy metrics. 
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Chapter 4  

HOLE CLASSIFICATION 

The holes present in point clouds can be categorized into two types, physical 

holes, and surface holes. A surface hole is identified by the hole being an opening on the 

surface of the point cloud which is approximately a single layer thick. A surface hole could 

correspond to a hole in a very thin surface but most of the time will represent the absence 

of information about the enclosed region either due to not having been observed or due to 

missing sensor signals as a result of reflections or excessive glare at that location. A 

physical hole is defined as a hole which is surrounded by a surface of points, such as a 

donut. A physical hole is an important feature of an object as it indicates a region of interest 

for many tasks such as assembly or grasping. 

Approach 

The method detailed in this chapter is based on the fact that for a point in a 

boundary of a hole the surface normal will either align with or be approximately 

perpendicular to the surface normal of the plane approximated by the set of points that 

make up the boundary. Thus, we compute the dot product of the surface normal of the hole 

with the surface normal of each of the boundary points and use a threshold to classify each 

point as either having a surface normal parallel or orthogonal to the hole. A hole is classified 

as surface or physical based on the number of points in a chain around the boundary that 

have the same classification. 

 

Related Work 

Very little work has been performed to identify the characteristics of holes in 3D 

point clouds. In the main work in this area, Nadeer et al. [7] uses multiple images to 

generate depth and visibility maps. These maps are then used in a graph-cut segmentation 
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to detect holes. Intensity and depth measures for hole are then used to classify the hole as 

either real or virtual. 

 
Hole Surface Normal 

In the approach proposed in this thesis, the surface of the hole is first estimated by 

finding the least square fit plane to the chain of border vertices. This gives us a surface 

normal that can be used to ascertain the orthogonality of the surface normal of the 

surrounding points.  

 

Boundary Normal Orthogonality 

Each of the vertices on the boundary will have a surface normal associated with it 

based on its neighborhood. The dot product of the surface normal of the boundary points 

with the surface normal of the hole reveals how orthogonal each of the surface normals of 

the vertices is to the surface normal of the hole. We take the absolute value of the dot 

product allowing us to align the surface normals to a specific direction and thus allow us to 

calculate the chains in the classification step accurately. This information is relevant since 

the boundary points for a physical hole will always have surface normals for a visible 

section of its boundary orthogonal to that of the surface normal of the hole which is not the 

case for surface holes. Figure 4-2 displays the surface normals for a physical and surface 

hole and their boundaries. 
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. 

Thresholding and Classification 

After the dot products are calculated we classify each of the dot products as either 

parallel or perpendicular based on a threshold of angular difference. For the results shown 

in this chapter, the threshold was 20 degrees. A secondary threshold was set to be the 

percentage of the total number of points in a sequence around the border that needed to 

be classified in order for the hole to be classified as surface or physical. The threshold 

calculated was 25% using the predefined dot product threshold. Thus a hole would be 

classified as physical if 25% of the points in a sequence around the border had a dot 

product less than 0.34. The methodology shown in Algorithm 4-1 outlines the approach 

where dotarray contains the dot product of the hole surface normal with the boundary surface 

normals. The orthogonality check adds dot-products to the list if the chain has already 

started and stops if a dot-product exceeding the threshold is observed. The resulting array 

and the extracted chains are shown in Figure 4-1. If the size of the maximum chain 

extracted is 0, we re-run the algorithm with the threshold flipped to calculate the 

 
Figure 4-1 The surface normal for a Surface Hole (Left) and Physical hole (Right) 

marked in purple and the surface normal for the boundary points in yellow 
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characteristics of the surface hole. Finally, in Figure 4-3 we show the results of running the 

algorithm on a physical and a surface hole.  

 

 
Algorithm 4-1 Orthogonal Chain Extraction 

 

 
Figure 4-2 Orthogonal Chain Extraction 
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Figure 4-3 Hole Boundaries and their classification information 
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Chapter 5  

CONCLUSION 

Conclusion 

This thesis focused on the extraction of hole boundaries using a combination of 

two previously explored approaches as well as demonstrating the improvement in each 

approach by using elements from the other. It also classified the hole whose boundary has 

been detected using surface normal information. Accuracy metrics were also provided that 

try to quantify the quality of the hole boundary detected. The effectiveness of the resulting 

algorithm was demonstrated using depth scans of real-world objects for physical holes and 

artificially generated surface holes that represent data holes. 

 
Future Work 

The boundary provided for physical holes fails to represent the true surface that 

surrounds a physical hole and thus a better approach is necessary where surface 

information may be incorporated more effectively. Like [1] which uses topological 

persistence as a descriptor for the classification of point cloud objects, the parameters used 

to calculate hole type can have an extended use case as a descriptor for other classification 

purposes. The geometric approach [3] could be improved by additional criteria during loop 

extraction to indicate the presence of points inside the extracted boundary. 
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