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ABSTRACT

Sensor Tasking for Satellite Tracking Utilizing Observability Measures

MITCHEL THOMAS MCDONALD, M.S

The University of Texas at Arlington, 2018

Supervising Professor: Kamesh Subbarao

In this thesis, novel observability-measure based sensor tasking methods are

studied for satellite tracking applications. The tasking is performed by first comput-

ing the Hellinger Distance between ground/space based sensors and space objects,

and then the measure is utilized for selecting the sensors that maximize observability.

Several other measures such as the Fisher Information Gain, Largest Lyapunov Ex-

ponent, and Shannon Information Gain have also been utilized and the performance

of these measures are computed against each other. The object’s state estimates

are obtained using nonlinear estimation techniques. The Extended Kalman Filter,

Unscented Kalman Filter, and Bootstrap Particle Filter are compared within in this

framework. Representative numerical simulations are performed to evaluate the effi-

cacy of the new tasking approach. The proposed tasking approach is also compared

with some baseline approaches.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Space object tracking has been of strategic interest to the United States since

the launch of Sputnik. Since then, the U.S. Space Surveillance Network has evolved

to handle a variety of objectives [1]. This includes working with commercial space

operations to mitigate orbital collisions, as well as monitor developments in anti-

satellite systems [2],[3].

A recent estimate found that the U.S. Space Surveillance Network tracks up to

20, 000 objects [2]. This is done at a sensor-to-object ratio that is relatively small [1].

Given this situation, an issue may arise when multiple objects may be within view

of a sensor, but only a few can be chosen since they contain the most information of

the objects’ positions in the measurements. This requires ‘sensor tasking’, a method

to prioritize tracked objects in a manner that leads to an enhancement in the quality

of the estimate of the space object based on the obtained measurements.

This thesis presents a new sensor tasking method for satellite tracking via a

nonlinear estimation algorithm. This is performed utilizing stochastic observabil-

ity measures. Several measures are identified and compared for their utility to the

problem. Certain measures are then applied to space object tracking problem and

compared to established methodologies.
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1.2 Related Work

This thesis builds the basic framework using the problem definition established

by Erwin [4]. In this work the authors use an Extended Kalman Filter (EKF) to

estimate the state of the satellite, assuming the sensors know their position and can

communicate with other sensors. The specific sensor tasking solution is based on two

approaches, i.e. Fisher Information based, and a modified approach that accounts

for the size of the covariance estimate. The modified approach uses a pareto variable

that trades between a Fisher information gain solution and a pure covariance forecast

approach. An additional scaling gain is utilized to normalize the relative sizes of the

covariance matrices present in the fusion equation.

Williams [5],[6] builds directly off the developments of Erwin. Ref. [5] identifies

the myopic nature of a Fisher Information based approach, and proposes a tasking

solution based on Lyapunov Exponents as an alternative. Additionally, an Unscented

Kalman Filter (UKF) is introduced due to its robust handling of nonlinear systems

[21]. This is compared to the prior EKF implementation. In Ref. [6], Williams

introduces Shannon Mutual Information as a measure information gain relative to

an object’s state. This is described in contrast to Fisher Information, which found

to be just an absolute gain in information. Additionally, an AEGIS Kalman Filter

is also implemented. This is based on a UKF estimator, with additional features

for nonlinear detection and handling. Notably, Ref. [6] demonstrates that tasking

using Shannon Mutual Information outperforms Fisher Information and Lyanpunov

Exponent tasking in the numerical simulation case presented in Ref. [5].

More recent approaches to sensor tasking applied to Space Situational Aware-

ness (SSA) includes the use of Deep Reinforcement Learning (DRL) that solves the

Sensor Management Problem (SMP) by translating the SSA goals to sensors and re-

source allocation [7]. The primary reason for the choice of the algorithms in Ref. [7]
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is to be able to work with large scale space object catalogs. Since large numbers of

objects need to be continuously tracked with limited number of sensors, the asso-

ciated challenge is to optimally manage the resources (Refs. [8–10] which is further

aggravated due to the nonlinearity present in the object dynamics as well as the

measurements. The use of nonlinear estimation approaches for tracking the objects

makes the entire problem computationally very intensive [11]. DRL in this case is pro-

posed as an alternative especially with the use of methods such as the Asynchronous

Advantage Actor-Critic (A3C) method [12].

Within the context of the tasking solutions mentioned earlier, it is to be noted

that the measures used (such as Shannon Mutual Information) are not true metrics

and do not lead to well defined objective functions in an optimization or task prioriti-

zation framework. To address this issue, several observability measures are proposed

but focus on one that is a bounded metric. Following along the lines as in Ref. [13–15],

a Squared Hellinger Distance based tasking gain is computed and compared with the

measures mentioned earlier such as the Fisher Information, largest Lyapunov Expo-

nent, and Shannon Mutual Information. The tasking solutions are implemented in a

high fidelity simulation with parameters similar to Ref. [5] and Ref. [6].

1.3 Problem Description

This thesis seeks to develop a estimator/tasking method with the lowest possible

position error for each space object. To enable analysis of these methods, models of

spacecraft/sensor dynamics and sensor detection are employed from Ref. [4]. These

have been simplified to 2D motion. This is considered reasonable, since the imple-

mentation of a 3D model is trivial and does not contribute significantly to the analysis

of estimator/tasking methods [4],[5]. The models are implemented in a software sim-
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ulation, which generates the needed information for an estimator/tasking method to

run.
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Fig. 1.1. Illustration of a sensor/object tracking simulation. In this case,
5 sensors and 100 space objects are modeled. Each sensor field of regard
is outlined in red.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, the governing equa-

tions of motion of the space objects, and ground/space sensors, and the measurement
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model are presented. In Chapter 3, the nonlinear estimation methods used in the

analysis are described. This includes EKF, UKF, and Bootstrap Filter implemen-

tations. In Chapter 4, tasking methods are discussed. Observability measure based

tasking is discussed in detail, and a summary of the various observability measures is

presented. A new method of deriving a observability measure for a Bootstrap Filter

is presented and verified in this section. Chapter 5 presents the simulation analysis

of the methods described. Lastly, Chapter 6 provides the concluding remarks for this

work.
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CHAPTER 2

SYSTEM DYNAMICS

2.1 Space Object Dynamics

Consider a system of N space objects in random Geocentric orbits. These are

observed by M sensors, which can be located on either the Earth’s surface or in orbit.

The semi-major axis of the ith space object, ai, is generated by a uniform distribution

bounded by alower and aupper. Eccentricities are generated by utilizing the following

function:

ei =
(ai − alower)(aupper − ai)

(aupper − alower)2
(2.1)

This function maps the eccentricity to a parabolic function such that the resulting

value is constrained between between 0 and 0.25. This also ensures that orbits signif-

icantly closer to LEO (alower) and GEO (aupper) are more circularized. These orbital

elements are then converted to a state vector for initialization in the simulation. This

system is modeled in a plane (Inertial Reference: {OI , XI , YI}, where OI is the origin

of the frame) in discrete time, where measurements are only available at t = k∆t,

where k is the time interval [5]. The state of the ith object is given as:

Xi,k =



xi,k

yi,k

ẋi,k

ẏi,k


(2.2)
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Where an object’s equation of motion is modeled:

Ẋi,k =



ẋi,k

ẏi,k

ẍi,k

ÿi,k


+Gwi =



ẋi,k

ẏi,k

−µexi,k
[(xi,k)2+(yi,k)2]3/2

−µeyi,k
[(xi,k)2+(yi,k)2]3/2


+



0 0

0 0

1 0

0 1


wi (2.3)

Where µe is Earth’s gravitational parameter. The lumped system uncertainty, wi,

typically accounts for any un-modeled orbital pertubations such as drag and J2 effects.

G ∈ R4×2 is the input distribution matrix. For this work, these disturbances are

modeled as purely additive zero-mean process noise wi ∼ N (0,Q) with covariance

Q ∈ R2×2.

2.2 Sensor Dynamics

The governing equations of motion for the sensors are summarized in this sec-

tion. Similar to the state of the objects to be tracked, the state of a sensor is modeled

as:

sj,k =



xsj,k

ysj,k

ẋsj,k

ẏsj,k


(2.4)

Where a ground sensor’s equation of motion is modeled:

ṡj,k =



ẋsj,k

ẏsj,k

ẍsj,k

ÿsj,k


=



ẋsj,k

ẏsj,k

−ω2
ex

s
j,k

−ω2
ey

s
j,k


(2.5)
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Where ωe is the average rotational speed of the Earth. A space based sensor’s equa-

tions of motion are:

ṡj,k =



ẋsj,k

ẏsj,k

ẍsj,k

ÿsj,k


=



ẋsj,k

ẏsj,k
−µexsj,k

[(xsj,k)2+(ysj,k)2]3/2

−µeysj,k
[(xsj,k)2+(ysj,k)2]3/2


(2.6)

Which matches (2.3) without the inclusion of wi. It is assumed that sensor objects

are perfectly known, with no uncertainty.

2.3 Measurement Model

A sensor’s field-of-regard Γj has a length ray ∆j and half-angle Ψj. The ray

and angle measurements for an object/sensor pair are given by the nonlinear model

[4],[5]:

y(i,j),k =

ρij
ψij

+ vj,k =


√

(xi,k − xsj,k)2 + (yi,k − ysj,k)2

tan−1

(
yi,k − ysj,k
xi,k − xsj,k

)
− tan−1

(
ysj,k
xsj,k

)
+

νjρ
νjψ

 (2.7)

Where vj,k is the sensor noise vector represented as N ∼ (0, R) with covariance

R =

νj2ρ 0

0 νj2ψ

 [4],[5]. An illustration of the sensor model is shown in Figure 2.1.
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Fig. 2.1. Illustration of ground-based sensor model.

9



CHAPTER 3

ESTIMATION METHODS

The two most commonly employed nonlinear estimators, the Extended Kalman

Filter (EKF) and the Unscented Kalman Filter (UKF) are implemented for this prob-

lem. A Bootstrap Particle Filter (BPF) is also implemented for a comparative analy-

sis. Each estimator determines an optimal estimate for the state X+
i,k and covariance

P i+
k .

3.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) estimates the state of a nonlinear system

using the available state dynamics and measurement models, as well as the actual

measurements. This is performed by linearizing the dynamics of the system and

applying the result to the traditional Kalman Filter [16]. The state update after a

measurement is processed is given by:

X̂+
i,k =



x̂+
i,k

ŷ+
i,k

ˆ̇x+
i,k

ˆ̇y+
i,k


(3.1)

and the updated covariance is given by:

P i+
k = E[Xi,k − X̂+

i,k][Xi,k − X̂+
i,k]

T (3.2)

The EKF, implemented from Ref. [4] and Ref. [5], is shown in Figure 3.1:

10



Prediction
˙̂
Xi,t = f(X̂i,t), X̂i,t(0) = X̂i(0)

Ṗ i
t = F i

tP
i
t + P i

tF
i
t
T

+Qi
t, P i

t (0) = P i(0)

Kalman Gain

Ki
k+1 = P xy

k+1

[
P yy
k+1 +Ri

k+1

]−1

Where:
P yy
k+1 = H i

k+1P
i−
k+1[H i

k+1]T

P xy
k+1 = P i−

k+1[H i
k+1]T

Update
X̂+

i,k+1 = X̂−
i,k+1 +Ki

k+1

(
y(i,j),k+1 − ŷ(i,j),k+1

)
P i+
k+1 = P i−

k+1 −Ki
k+1[P yy

k+1 +Ri
k+1][Ki

k+1]T

Fig. 3.1. Graphic of the EKF nonlinear estimator.

In the prediction step,
˙̂
Xi,t and Ṗ i

t are integrated from t ∈ [tk, tk+1] from the

state X̂+
i,k and covariance P i+

k . The resulting values, X̂i,t+1 and P i
t+1 are set as the

predicted state X̂−
i,k+1 and covariance P i−

k+1. F i
t and H i

k+1 are Jacobians of the form:

F i
t =

(
∂f

∂X

)
X=X̂i,t

, H i
k+1 =

 ∂ρij
∂X

∂ψij

∂X


X=X̂−

i,k+1

3.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a newer approach to nonlinear estima-

tion using a Kalman Filter. This method works by modeling the Gaussian distribution

of the state [21]. This distribution is modeled by generating a set of sigma points χi,t.

These are then integrated t ∈ [tk, tk+1] from the initial condition state χ+
i,k and co-

variance P i+
k . The resulting sigma points can then be used to construct the predicted

state, the predicted covariance, the cross-covariance of the state and measurement,

and the innovation covariance of the measurements. These then can be used to per-

form a Kalman Filter update. The UKF is an attractive alternative to the EKF, as

it can be shown to have a lower estimated error for a nonlinear system [16]. However,

this comes at an additional computational cost compared to the EKF [16].
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The UKF utilizes a set of tuning parameters. Parameters α, β, γ, Λ, and κ are

set to the following [16],[5]:

10−4 ≤ α ≤ 1

β = 2

γ =
√
L+ Λ

Λ = α2(L+ κ)− L

κ = 3− L
For this implementation, both noise and uncertainty are assumed to be additive

zero-mean Guassian noise. This allows χi,t to only need propagate the state and sets

n = L = 4 [16]. This UKF, implemented from Ref. [5], is shown in Figure 3.2:

Prediction Step

P̂ i
CH = chol(P i+

k )

χi,t = [X̂−
i,0]1×(2n+1) +

√
L+ λ

[
0n×1 P̂ i

CH − P̂ i
CH

]
χ̇i,t = f(χi,t)

Wmean
γ =

{
Λ

(n+Λ)
,

1
2(n+Λ)

,
γ = 0
γ = 1, . . . , 2n

X̂−
i,k+1 =

∑2n
γ=0W

mean
γ χ(γ,i,k+1)

W cov
γ =

{
Λ

(n+Λ)
+ (1− α2 + β),

1
2(n+Λ)

,
γ = 0
γ = 1, ..., 2n

P i−
k+1 =

∑2n
γ=0W

cov
γ

[
χ(γ,i,k+1) − X̂−

i,k+1

] [
χ(γ,i,k+1) − X̂−

i,k+1

]T
+Qi

k

Kalman Gain

Ki
k+1 = P xy

k+1

[
P yy
k+1 +Ri

k+1

]−1

Where:

P xy
k+1 =

∑2n
γ=0W

cov
γ

[
ζ(γ,i,k+1) − ŷ−

i,k+1

] [
χ(γ,i,k+1) − X̂−

i,k+1

]T
P yy
k+1 =

∑2n
γ=0W

cov
γ

[
ζ(γ,i,k+1) − ŷ−

i,k+1

] [
ζ(γ,i,k+1) − ŷ−

i,k+1

]T
ζi,k+1 =

[
ρij(χi,k+1)
ψij(χi,k+1)

]
ŷi,k+1 =

∑2n
γ=0W

mean
γ ζ(γ,i,k+1)

Update Step
X̂+

i,k+1 = X̂−
i,k+1 +Ki

k+1 (yi,k+1 − ŷi,k+1)

P i+
k+1 = P i−

k+1 −Ki
k+1

[
P yy
k+1 +Ri

k+1

]
[Ki

k+1]T

Fig. 3.2. Graphic of the UKF nonlinear estimator.
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3.3 Bootstrap Particle Filter

The Bootstrap Particle Filter (BPF) from Ref. [16] is a implementation of a

particle filter. This filter performs estimation through the direct simulation of the

state and measurement distributions through a set of particles. These are used to

directly model the posterior distribution p(ỹ(i,j),k+1|X(p)
i,k ), which is used in a function

to weight the importance of a given particle. This estimator can then be used to

determine the optimal estimate X+
i,k and covariance Pi+

k .

The direct modeling of the state probability distribution provides the BPF an

attractive feature over the EKF or UKF. This makes no assumption on the distribu-

tion modeled, which may allow for the estimator to capture information about the

state otherwise lost to an EKF or UKF. However, the accuracy of this distribution is

dependent on the number of particles modeled. Since each particle requires numerical

integration, the computational cost of this estimator may be significant compared to

the prior estimators presented.

The implemented BPF is shown in the Figure below:

Prediction Step
Ẋ

(p)
i,k = f(X

(p)
i,k ,w

(p)
i,k )

y(i,j),k+1
(p) = h(X̂

(p)
i,k+1)

Update Step

e
(p)
i,k+1 = ỹ(i,j),k+1 − y(i,j),k+1

(p)

P
e(p)
i,k+1 = E{e(p)

i,k+1(e
(p)
i,k+1)T}

p(ỹ(i,j),k+1|X(p)
i,k ) = det(2πP

e(p)
k+1 )−

1
2 exp (−1

2
(e

(p)
i,k+1)T (P

e(p)
i,k+1)−1e

(p)
k+1)

wi,k+1 = wi,kp(ỹ
(p)
(i,j),k+1|X

(p)
i,k )

w
(p)
i,k+1 =

w
(p)
i,k+1∑Np

p=1 w
(p)
i,k+1

Estimate Construction X̂i,k ≈
∑Np

p=1 wi,k+1X
(p)
i,k

Covariance Construction Pi+
k ≈

∑Np
p=1 wi,k+1(X

(p)
i,k − X̂i,k)(X

(p)
i,k − X̂i,k)

T

Fig. 3.3. Graphic of the Bootstrap Filter nonlinear estimator.
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A known issue with particle filter estimation is that a repeated sequence of

importance sampling may continuously reduce the number of particles with non-

negligible weighting until one particle remains [16]. A solution to this is monitoring

the “Effective Sample Size” Neff and to resample the particles to return the set to

equal weighting.

An effective sample size can be determined by the following relationship:

Neff ≈
1∑N

j=1 w
(j)
k+1

(3.3)

Multiple resampling methods are avilable, with Multinomial Resampling being

the method of choice [16]. This is initialized by taking a cumulative summation of

the particle set:

z
(pe)
i,k =

(pe)∑
p=1

w
(p)
(i,k)

A single uniform sample u(p) is then drawn from Np uniform samples on the

interval of (0, 1] for p = 1, 2, ..., Np. The the index of the new particle set is then

iterated:

while z
(pe)
i,k < u(p) do

pe ← pe + 1

end

Where ← indicates replacement. This index is then used to replace the particle set

X
(p)
i,k with X

(pe)
i,k and all values in the importance weights set are reset to 1

Np
. Notably,

system observability is a critical aspect of the methodologies being implemented. As

a result, resampling must be judiciously applied to avoid observability losses [16]. For

this instance, resampling only occurs if Neff is less than half the size of the particle

set.
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Using the particle set y(i,j),k+1
(p), the density p(ŷ(i,j),k+1|X(p)

i,k ) can be generated

from a Gaussian Kernel function. To determine the appropriate bandwidth for a

given vector element, Silverman’s ‘Rule of Thumb’ can be employed [17]:

bL = σL

(
4

d+ 2
Np

) 1
d+4

, L = 1, 2, ..., d (3.4)

Where bL and σL are the bandwidth and standard deviation of the Lth random

variable of the particle set y(i,j),k+1
(p) of dimension d. From this, Np probability values

are generated for each particle set. This is an important development, as it will be

used to determine sensor tasking measures in subsequent sections.
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CHAPTER 4

TASKING METHODS

Since the objective of this thesis is to compare alternative observability measures

to a previously published tasking solution, we adopt the same framework for the sensor

tasking of space objects as in Ref. [4] . If the ith object is being considered by the

jth sensor, the sensor tasking solution is solved in the form of the following linear

programming problem:

max

(
N∑
i=1

M∑
j=1

µijξij

)
, ξij ∈ {0, 1} (4.1)

Where µij is the sensor gain for an object-sensor pair and ξij is the tasking solution.

The tasking solution is subject to the constraint [4], [5]:

N∑
i=1

ξij ≤ 1, j = 1, . . . ,M (4.2)

The solution to the above will ensure that a single sensor observes only one object at

any instant and the selected sensor-object pair is the one with the largest µij value.

4.1 Previous Tasking Methods

There have been some established methods to determine an appropriate value of

µij, which include the use of the trace of the Fisher Information for an object-sensor

pair from the Kalman Filter (EKF or UKF) covariance update step [4], [5]:

µijF = Tr(Ωij
k ) (4.3)

Where Ωij
k is the Fisher-Information for an object-sensor pair at a sample-instant k.

The resulting gain µijF is referred to as the Fisher Information Gain or FIG.
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While the FIG tasking method can be shown to manage uncertainty, it does

so at the cost of values with a low FIG measure. This could result in estimates not

receiving an adequate amount of updates [5]. Another method introduced in Ref. [5] is

intended to work around this and utilizes an approximation of the Largest Lyanpunov

Exponent (LLE):

µijL =
1

tk
ln2

√
Tr(P i+

k )

Tr(P i
0)

(4.4)

Where P i
0 is the estimation error covariance at initialization, and P i+

k is the updated

covariance of the estimate. This method essentially measures the stability of the

system, where a higher value indicates a greater difficulty predicting the estimate [5].

This was shown to be an improvement over FIG sensor tasking [5].

4.2 Observability Measure based Tasking

From the tasking methods presented, it is seen that some form of prioritization

scheme is used on objects that are visible to the sensor set. Since a stochastic system is

modeled, a reasonable extension of the sensor tasking framework would be to utilize a

measure of stochastic observability. In this manner, the tasking measure also provides

the most amount of information about the system to the estimator at each time

step. Ref. [15] identifies Mutual Information, Bhattacharya Distance, and the Squared

Hellinger Distance as candidates for observability measures.

An implementation of Mutual Information as a sensor tasking measure has been

previously implemented by Ref. [6]. This was referred to as the Shannon Informa-

tion Gain or SIG [6]. This is performed by deriving the Mutual Information (MI)

between two continuous Gaussian random variables, and applying the assumptions of

a Kalman Filter for a nonlinear system [6],[15]:

µijS = MI(xik, ỹ
ij
k ) =

1

2
ln

(
det
(
P i−
k

)
det
(
P i+
k

)) (4.5)
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Like LLE tasking, SIG tasking has been shown to be an improvement over FIG tasking

[6]. Notably, both SIG and FIG measures are directly related to the Kullback-Leibler

(KL) divergence. For a pair of continuous random variables, Mutual Information is

solved as a special case of the Kullback-Leibler divergence [13]. Whereas, Fisher In-

formation is the curvature of the KL divergence with respect to the random variables.

Given that MI is an established means to measure the distance between distributions,

it is intuitive that the curvature of a statistical distance provides less information [15].

It is also seen that SIG tasking can perform better than LLE tasking under certain

sensor noise conditions [6].

Consider that the tasking solution in Eq. (4.1) evaluates a set of µij values,

where each value is assumed to be an objective measure of prioritization. To correctly

synthesize µij, it is imperative that a stochastic observability measure is consistent

with the definition of a distance function or metric. Consider that the properties of

the distance function d(x, y) are [18]:

1. It is nonnegative: d(x, y) > 0, when x 6= y and d(x, x) = 0

2. Satisifies Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

3. Satisfies Symmetry: d(x, y) = d(y, x)

However, to compare stochastic observability measures such as the ‘distance’ be-

tween two pdfs is not trivial. While KL divergence is typically employed to judge the

closeness of two pdfs, it is not a metric. It doesn’t satisfy the triangle inequal-

ity and is not symmetric either. This is clearly seen from the definition of the

KL divergence for two multivariate Gaussian distributions p1(x,µ1,Σ1) p2(x,µ1,Σ1)

i.e. DKL(p1, p2) =
∫
p1 ln

(
p1

p2

)
dx. While there are other statistical distance mea-

sures, two are focused on, namely the Bhattacharya Distance (BD), and the Squared

Hellinger Distance (HD). Ref. [15] also identifies that BD is a bounded metric, but

does not satisfy the Triangle Inequality, but HD does and is a bounded metric. The
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following section derives the Bhattacharya Distance and Squared Hellinger Distance

observability measures based on the same assumptions that were applied to the Mu-

tual Information to derive the SIG. A simplified analysis is performed using scalar

random values to compare the MI, BD, and HD.

4.2.1 Mutual Information (MI), Bhattacharya Distance (BD) and the Squared Hellinger

Distance (HD) Observability Measures:

Given the joint density h(x,y) of two continuous random variables, theMI(x,y)

is computed as [13]:

MI(x,y) =

∫ ∫
h(x,y) ln

(
h(x,y)

h(x)h(y)

)
dxdy (4.6)

Note, the above is a special case of the KL divergence defined in the previous section.

Now, consider the definition of Bhattacharya Distance (BD), which measures the

distance between the densities f(x) and g(x) [14],[19]:

BD(f(x), g(x)) = − ln (BC (f(x), g(x)) 0 ≤ BD ≤ ∞ (4.7)

where, BC is the Bhattacharya Coefficient and is defined as,

BC(f(x), g(x)) =

∫ √
f(x)g(x)dx 0 ≤ BC ≤ 1 (4.8)

Consider the densities f(x) and g(x) to be a set of multivariate Gaussian distribu-

tions, f(x) ∼ N (µ1,Σ1) and g(x) ∼ N (µ2,Σ2). It can be shown that the Bhat-

tacharya Distance between the two distributions is [19]:

BD(f(x), g(x)) =
1

8
(µ1 − µ2)T

(
Σ1 + Σ2

2

)−1

(µ1 − µ2) +
1

2
ln

det
(

Σ1+Σ2

2

)√
det (Σ1) det (Σ2)

(4.9)

Note: The BD is symmetric as opposed to the KL divergence, but does not satisfy

the triangle inequality.
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The Squared Hellinger Distance for the two densities mentioned above is defined as:

HD2(f(x), g(x)) =
1

2

∫ (√
f(x)−

√
g(x
)2

dx 0 ≤ HD ≤ 1 (4.10)

It has been shown in Ref. [14] that HD obeys the triangle inequality, and thus is the

only measure to satisfy the properties of the distance function.

4.2.2 Application of the MI, BD, and HD to a dynamical system

Consider an ensemble of N agents where each agent is governed by nonlinear

dynamics as in Eq. (4.11). We also assume there are M sensors where each sensor

(j) observes one agent (i) at any instant (k) and the corresponding measurement ỹijk

is given by Eq. (4.12).

xik = f(xik−1) +wk wk ∼ N (0, σ2
q ) (4.11)

ỹijk = h(xik) + νk νk ∼ N (0, σ2
r) (4.12)

The error between the estimate and actual state is ex = x̂ik−xik and the residual

between the measurement and the predicted measurement is ey = ỹijk − ŷ
ij
k . The

covariance of the estimation errors is given by P exex
k = E{exexT} and the innovations

covariance is given by P
eyey
k = E{eyeyT}. Additionally, the cross-covariance between

the predicted state and the measurement is defined as, P
eyex
k = E{eyexT}. Consider

the joint distribution of xik and ỹijk , which is denoted as p(xik, ỹ
ij
k ). Consider that

covariance of the joint distribution is of the form:

P Jxy =

 P exex
k P J

n×m

P J
n×m

T
P
eyey
k


Where P J

n×m describes how xik and ỹijk correlate with each other. However, if

xik and ỹijk were independent from one another, it is known that:
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p(xik, ỹ
ij
k ) = p(xik)p(ỹ

ij
k ) (4.13)

If xik ∈ Rn and ỹijk ∈ Rm, the covariance of this distribution would be of the

form:

P Ixy =

P exex
k 0n×m

0m×n P
eyey
k


Since there is no correlation between the random variables, there is nothing the

measurement ỹijk could add to the estimate of xik. In effect, this joint distribution

represents an un-observable system at a given time k.

If some distance measure was obtained between the “true” joint density and

the “independent” joint density, it would describe how far the former was from the

completely un-observable independent density.

Given this, it is already known the Mutual Information is a special form of

the Kullback-Leibler divergence that measures the distance between the joint and

independent densities of two variables [13]:

MI(xik, ỹ
ij
k ) =

∫ ∫
p(xik, ỹ

ij
k ) ln

(
p(xik, ỹ

ij
k )

p(xik)p(ỹ
ij
k )

)
dxikdỹ

ij
k (4.14)

Bhattacharya and Hellinger distances are generalized probability distribution

distance measurements. The distance between the joint and independent densities

for these distances are of the form:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) = − ln

(
BC

(
p(xik, ỹ

ij
k ), p(xik)p(ỹ

ij
k )
))

0 ≤ BD ≤ ∞

(4.15)
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Where:

BC(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

∫ ∫ √
p(xik, ỹ

ij
k )p(xik)p(ỹ

ij
k )dxikdỹ

ij
k 0 ≤ BC ≤ 1

(4.16)

HD2(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2

∫ ∫ (√
p(xik, ỹ

ij
k )−

√
p(xik)p(ỹ

ij
k )

)2

dxikdỹ
ij
k 0 ≤ HD ≤ 1

(4.17)

Or alternatively:

HD2(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) = 1−BC(p(xik, ỹ

ij
k ), p(xik)p(ỹ

ij
k )) 0 ≤ HD ≤ 1

(4.18)

Which can be utilized as measures of stochastic observability.

4.2.3 Application of Particle Filter Assumptions

A particle filter estimates a system through a set of particles X
(p)
i,k representing

the state and its uncertainty. From this particle set, the densities of the state and

measurement can be directly constructed, even if the distribution is non-Gaussian.

The measurement estimate for a given particle can be modeled as:

y
(p)
(i,j),k = h(X

(p)
i,k )

The particle sets X
(p)
i,k and y

(p)
(i,j),k can then be used to generate approximations

of the densities p(xik) and p(ỹijk+1|xik) respectively. From these, the relationships for

p(ỹijk ,x
i
k) and p(ỹijk ) can be found:

p(ỹijk ,x
i
k) = p(ỹijk |x

i
k)p(x

i
k)

p(ỹijk ) =

∫
p(ỹijk |x

i
k)p(x

i
k)dx

i
k
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Equations (4.14)-(4.18) can then be directly employed using a quadrature tech-

nique. However, this would require a quadrature of order 6 to evaluate for the present

problem. This may significantly affect the computation time due to the curse of di-

mensionality. However, a particle filter generates an importance function w
(p)
k that

can be used to approximate the integral:

Np∑
p=1

w
(p)
i,k f(x

(p)
i,k ) ≈

∫
p(xik)f(xik)dx

i
k

Which can be used to reduce the order of integration for a quadrature technique.

From Ref. [20] it is known that the mutual information can be modified to be of the

form:

MI(xik, ỹ
ij
k ) =

∫ Np∑
p=1

{w(p)
k p(ỹijk |x

i
k = x

(p)
i,k ) ln p(ỹijk |x

i
k = x

(p)
i,k ))}dỹijk

−
∫
{
Np∑
p=1

(w
(p)
k p(ỹijk |x

i
k = x

(p)
i,k ) ln (

Np∑
p=1

w
(p)
k p(ỹijk |x

i
k = x

(p)
i,k ))}dỹijk

(4.19)

Which reduces the quadrature technique needed to order 2 for the problem

presented. Similarly, the Bhattacharya Coefficient can be re-arranged:

BC(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

∫ √
p(ỹijk )

∫
p(xik)

√
p(ỹijk |xik)dx

i
kdỹ

ij
k

Which can be modified to the form:

BC(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

∫ √√√√ Np∑
p=1

(w
(p)
k p(ỹijk |xik = x

(p)
i,k )

Np∑
p=1

{w(p)
k

√
p(ỹijk |xik = x

(p)
i,k )}dỹijk

(4.20)

Similarly, this also will only require a quadrature technique of order 2 to eval-

uate. This can then be directly applied to equations (4.16) and (4.18) to determine

the Bhattacharya and Squared Hellinger distances.
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4.2.4 Application of Gaussian and Kalman Filter assumptions

Under the assumption that the state, measurement, and joint estimate can be

modeled as Gaussian distributions, we obtain:

p(xik) ∼ N (x̂i−k ,P
exex
k ) (4.21)

p(ỹijk ) ∼ N (ŷijk ,P
eyey
k ) (4.22)

Where the “true” joint distribution was a density where some correlation may

occur i.e.

p(xik, ỹ
ij
k ) ∼ N


 x̂i−k
ỹijk


J

,P Jxy

 (4.23)

Eq. (4.13) and Eq. (4.23) are thus utilized to compute the various observability

measures. Substituting the state estimates and covariances into Eq. (4.9), the BD

measure is computed as:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

8


 x̂i−k
ỹijk


J

−

 x̂i−k
ỹijk


I


T [
P Jxy + P Ixy

2

]−1


 x̂i−k
ỹijk


J

−

 x̂i−k
ỹijk


I


+

1

2
ln

 det
[
P Jxy+P Ixy

2

]
√

det [P Jxy] det [P Ixy]

 (4.24)

Under the assumptions of a Kalman Filter, it is known that the estimate of the joint

density and the independent density at a given time k are the same: x̂i−k
ỹijk


J

=

 x̂i−k
ỹijk


I

This reduces BD in (4.24) to:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

 det
[
P Jxy+P Ixy

2

]
√

det [P Jxy] det [P Ixy]

 (4.25)
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The assumption of a Kalman Filter allows the usage of a Gaussian Joint Distribution,

with the covariance P Jxy of the form:

[
P Jxy

]
=

 P exex
k P

exey
k(

P
exey
k

)T
P
eyey
k


From Eq. (4.25) we see:

[
P Jxy + P Ixy

2

]
=

 P exex
k

1
2
P
exey
k

1
2

(
P
exey
k

)T
P
eyey
k


Where the determinant of this relationship can be reduced to:

det

[
P Jxy + P Ixy

2

]
= det

[
P
eyey
k

]
det

[
P exex
k − 1

4
P
exey
k [P eyey ]−1

k

[
P
exey
k

]T]
(4.26)

Similarly, it can be seen that the determinant of P Jxy is of the form:

det
[
P Jxy

]
= det

[
P
eyey
k

]
det
[
P exex
k − P exey

k [P eyey ]−1
k

[
P
exey
k

]T]
(4.27)

And the determinant of P Ixy is:

det
[
P Ixy

]
= det [P exex

k ] det
[
P
eyey
k

]
(4.28)

Subsituting (4.26), (4.27) and (4.28) into (4.25) and reducing terms, it is found:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

 det
[
P exex
k − 1

4
P
exey
k [P eyey ]−1

k

[
P
exey
k

]T]√
det
[
P exex
k − P exey

k [P eyey ]−1
k

[
P
exey
k

]T]
det [P exex

k ]


(4.29)

Alternately,

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

det
[

3
4
P exex
k + 1

4

(
P exex
k − P exey

k [P eyey ]−1
k

[
P
exey
k

]T])√
det
[
P exex
k − P exey

k [P eyey ]−1
k

[
P
exey
k

]T]
det [P exex

k ]


(4.30)
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Again, applying the Kalman Filter assumptions, we recognize that the predicted error

covariance is:

P i−
k = P exex

k

and the updated error covariance is:

P i+
k = P exex

k − P exey
k [P eyey ]−1

k

[
P
exey
k

]T
(4.31)

Substituting these relationships into (4.30), we obtain:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

 det
[

3
4
P i−
k + 1

4
P i+
k

]√
det
[
P i+
k

]
det
[
P i−
k

]
 (4.32)

which is the same as the one found in Ref. [15]. Since HD can be determined directly

from the BD, we obtain [15]:

HD(f(x), g(x)) =
√

1− exp (−BD(f(x), g(x)) (4.33)

The Hellinger Distance observability measure is simply:

HD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

√√√√√1−
4

√
det
[
P i+
k

]
det
[
P i−
k

]√
det
[

3
4
P i−
k + 1

4
P i+
k

] (4.34)

which is again the same as the one obtained in Ref. [15].

Under the same Kalman Filter assumptions used to derive BD and HD, we can

derive the MI measure as [6],[15]:

MI(xik, ỹ
ij
k ) =

1

2
ln

(
det
[
P i−
k

]
det
[
P i+
k

]) (4.35)

4.3 Analysis and Selection of Observability Measures

To analyze the properties of each stochastic observability measure, we consider

the simple scalar case under Kalman Filter assumptions where the covariances P i−
k
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and P i+
k are reduced to the scalar variances (σi−k )2 and (σi+k )2. Then for Mutual

Information, eq. (4.5) can be reduced to:

MI(xik, ỹ
ij
k ) =

1

2
ln

(
σi−k
σi+k

)2

= ln

(
σi−k
σi+k

)
= ln(r) (4.36)

Notably, this allows the ratio r =
σi−
k

σi+
k

to represent the increase or reduction in un-

certainty between the prediction and update of an estimate. If the estimator works

correctly, the updated variance is lower than the predicted, resulting in a ratio that

is greater than one.

Similarly, the Bhattacharya Distance in Eq. (4.32) can be reduced to:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

 3
4
(σi−k )2 + 1

4
(σi+k )2√

(σi+k )2(σi−k )2

 (4.37)

Eq. (4.37) can then be re-arranged into the following form to be a function of the

ratio r =
σi−
k

σi+
k

:

BD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

1

2
ln

(
3r

4
+

1

4r

)
(4.38)

Note: Both measures, MI and BD are unbounded for the highly idealized perfect

estimation process, r →∞, i.e. σi+k → 0

Substituting Eq. (4.38) into Eq. (4.33), a reduced form of the Hellinger Distance

can be similarly found:

HD(p(xik, ỹ
ij
k ), p(xik)p(ỹ

ij
k )) =

√√√√1− 1√
3r
4

+ 1
4r

(4.39)

Note: HD is bounded for the highly idealized perfect estimation process when r →

∞, i.e. i.e. σi+k → 0 Figure 4.1 shows the bounded nature of the HD in comparison

with MI and BD.

It has been shown that HD is the only observability measure presented that

satisfies the properties of a distance function. The fact that HD is bounded also
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Fig. 4.1. Plot of scalar observability measures.

makes it convenient to implement this measure within a sensor tasking and fusion

algorithm without having to check for limits. It can be seen that a tasking solution

based on Hellinger Distance has significant benefit over other observability measures.

Thus, this thesis implements the HD metric as follows:

µijH =

√√√√√1−
4

√
det
[
P i+
k

]
det
[
P i−
k

]√
det
[

3
4
P i−
k + 1

4
P i+
k

] (4.40)

This tasking gain is referred to as the Hellinger Distance Gain (HDG). An esti-

mator/tasking method with HDG is implemented and evaluated in the subsequent

sections.

4.4 Verification and Analysis of Observability Measures for a Particle Filter

Section 4.2.2 derives stochastic observability measures for different estimators.

While the derivations for Mutual Information, Bhattacharya, and Hellinger distance
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are well-established under Kalman Filter assumptions, those derived for particle filters

are not.

To identify relationships between different stochastic observability models for

different estimators, two models were implemented. The first of these, a Linear-

Time-Invariant (LTI) spring-mass-damper system, was used to verify that a given

stochastic observability measure for a particle filter was correctly derived and imple-

mented. The second was a simple nonlinear tracking model. This is used to evaluate a

measure’s ability to observe a nonlinear system. For both models, this was performed

by comparing the results of EKF and UKF estimators to a set of Bootstrap Particle

Filters. Each estimation algorithm was then used to determine a time history of the

Mutual Information (MI) and Hellinger Distance (HD) estimates.

4.4.1 Verification of Observability Measures

It has been shown that the stochastic observability measures derived under

Gaussian and Kalman Filter assumptions are exact if applied to an LTI system [15].

Notably, these measures are a function only of the predicted and posterior covariances.

Given their exactness, one can use these results to verify the correctness of stochastic

observability measures derived for a particle filter.

4.4.1.1 System Dynamics of LTI Spring-Mass-Damper

A spring-mass-damper with stiffness K and a dampling ratio of B was imple-

mented. The motion of the object is defined by the differential equation:

ẍk +Kxk +Bẋk = 0
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Both the stiffness and damping ratios were given a value of 5. This system was

then converted to a discrete time system with a ∆t = 1
5

seconds:

Xk+1 = ΦkXk =

 0.9903 0.1897

−0.0948 0.8955


xk
ẋk



Fig. 4.2. FBD of the linear system.

No process noise is assumed for the system. A measurement given by the sensor

is of the form:

Yk = HkXk + νk =

1 0

1 0


xk
ẋk

+

νS1

νS2


Where νk is the sensor noise vector. In this instance, noise is represented as

additive zero-mean Gaussian noise with a standard deviation of 0.25.
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4.4.1.2 System Analysis of LTI Spring-Mass-Damper

To evaluate the observability measures, the model presented was estimated by

a EKF, UKF and BF for 10 seconds at a timestep of 1
5
th of a second. The EKF,

UKF, and BF implemented follow Figures 3.1-3.3 in Chapter 3. For the EKF, Ft is

a Jacobian of the form:

Ft = Φk (4.41)

For the UKF, the noise is both Gaussian and additive. This allows n = L = 2.

The following tuning parameters are used for the implementation:

α = 0.001

β = 2

γ =
√
L+ Λ

Λ = α2(L+ κ)− L

κ = 3− L
The Bootstrap Filter is ran three times, with 500, 1000, 5000, and 10000 par-

ticles. At each timestep, the Mutual Information and Hellinger Distance between

the object and sensor set is determined. These results are shown in Figures 4.3 and

4.4. From these, it can be seen that the EKF and UKF observability measures are

identical. Since the EKF and UKF are extensions of the Kalman Filter to handle

nonlinear systems, it is known that these results are exact, such that they can be

used as a benchmark for the particle filter results. It can also be seen that the parti-

cle filter observability measures, while of varying quantity, retain the same geometry

as the Kalman Filter results. All measures see an increase in observability after the

system is initially excited, with this observability decreasing as the movement of the

system is damped out. While the selected particle filter results show significantly
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lower observability measures, these results appear to more closely align with the ex-

act EKF/UKF results with increasing particle amounts. This stands to reason, as a

particle set can be seen as a ’container’ used to approximate the distributions of the

state and sensor. The larger this container is, the larger amount of information can

be stored about these distributions. It can be assumed that with a sufficient amount

of particles, the measures created by the EKF and UKF could be well approximated.

However, this comes with increased computational cost, as seen in Table 4.1.
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Fig. 4.3. Time history of LTI Mutual Information measures.
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Fig. 4.4. Time history of LTI Hellinger Distance measures.

Table 4.1. Computation time for LTI System (Intel Core i5-4690K 3.50
GHz processor)

Estimator Time, Seconds
EKF 2.73
UKF 1.40
BF, 500 Particles 30.22
BF, 1,000 Particles 59.10
BF, 5,000 Particles 347.85
BF, 10,000 Particles 839.19

4.4.2 Performance Analysis of Observability Measures

While section 4.4.1 verifies the stochastic observability derivations for a particle

filter, this only evaluates the measures with a linear Guassian system. A key feature
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of the particle filter derivation is that no assumption is made about the distribution

or the linearity of the system. This section provides a performance analysis of the

observability measures for a particle filter when applied to a simple nonlinear, non-

gaussian system.

4.4.2.1 System Dynamics of Simple Nonlinear Tracking Model

Consider an object O flying in a circle about an inertial z axis. The object’s

path is defined by a radius A relative to the inertial z axis, and flies at a constant

altitude. The object is tracked by S1 and S2, which are both range sensors.

Fig. 4.5. FBD of the system modeled.
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The motion of the object is defined by the equation:

Xk =


xo

yo

zo

 =


A cos(ωt)

A sin(ωt)

50

 (4.42)

Where A = 30 and ω = 1.5. No process noise is assumed for this system.

A measurement given by the sensor pair is of the form:

Yk =

ρS1,k

ρS2,k

+ νk =

√(xo − xS1)2 + (yo − yS1)2 + (zo − zS1)2√
(xo − xS2)2 + (yo − yS2)2 + (zo − zS2)2

+

νS1

νS2

 (4.43)

Where νk is the sensor noise vector. In this instance, noise is represented as

additive zero-mean Gaussian noise with variance 0.25.

4.4.2.2 System Analysis of Simple Nonlinear Tracking Model

To evaluate stochastic observability performance, the model presented was esti-

mated by a EKF, UKF and BF for 7 seconds at a timestep of 1
5
th of a second. Sensors

were placed at [A 0 0] and [-A 0 0]. The EKF, UKF, and BF implemented follow

Figures 3.1-3.3 in Chapter 3. For the EKF, Ft and Hk are Jacobians of the form:

Ft =


0 −ω 0

ω 0 0

0 0 0

 (4.44)

Hk =

 (xo−xS1)
ρS1,k

(yo−yS1)
ρS1,k

(zo−zS1)
ρS1,k

(xo−xS2)
ρS2,k

(yo−yS2)
ρS2,k

(zo−zS2)
ρS2,k

 (4.45)

For the UKF, the noise is both Gaussian and additive. This allows n = L = 3.

The following tuning parameters are used for the implementation:
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α = 0.001

β = 2

γ =
√
L+ Λ

Λ = α2(L+ κ)− L

κ = 3− L
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Fig. 4.6. Time history of simple nonlinear Mutual Information measures.
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Fig. 4.7. Time History of simple nonlinear Hellinger Distance measures.

The Bootstrap Filter is ran three times, with 500, 1000, 5000, and 10,000 par-

ticles. At each timestep, the Mutual Information and Hellinger Distance between

the object and sensor set is determined. These results are shown in Figures 4.6 and

4.7. From these figures, it can be seen that all but the EKF observability measures

demonstrate some kind of significant sinusoidal activity. To provide insight to the

behavior shown, it should be considered how a filter’s error handling impacts observ-

ability measures. Given that the state can be represented in the form of the random

variable xik = x̂ik + x̃ik, where x̂ik is the state mean and x̃ik is a zero-mean white-noise

sequence [16], the random variable yijk can be represented as yijk = f(x̂ik + x̃ik). This

can be represented by the Taylor series:
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yijk = f(x̂ik + x̃ik) = f(x̂ik) +∇f x̃ik +∇2f
x̃i2k
2!

+∇3f
x̃i3k
3!

+∇4f
x̃i4k
4!

+ ...

Where any sensor noise is assumed to be contained within the function of yijk .

From this, the expectation and residual of yijk can be written as:

ŷijk = f(x̂ik) + E[∇f x̃ik +∇2f
x̃i2k
2!

+∇3f
x̃i3k
3!

+∇4f
x̃i4k
4!

+ ...]

yijk − ŷijk = ∇f x̃ik +∇2f
x̃i2k
2!

+∇3f
x̃i3k
3!

+∇4f
x̃i4k
4!

+ ...

−E[∇f x̃ik +∇2f
x̃i2k
2!

+∇3f
x̃i3k
3!

+∇4f
x̃i4k
4!

+ ...]

Consider that a particle filter does not characterize the distribution of x̃ik, nor

does its derivation explicitly truncate or eliminate terms from the Taylor series of

yijk or its expectation. This allows for the particle filter to account for any nonlin-

earities in yijk . This leaves the accuracy of observability measures derived in section

4.2.3 largely dependent on the number of particles represented. In this instance, the

sinusoidal behavior produced by the particle filter observability measures matches ω,

the frequency of the object moving around the circular path. This shows a relation-

ship between the observability measure and the position of the object relative to the

sensors.

Under the assumptions of a Kalman Filter, x̃ik is a Gaussian zero-mean white-

noise sequence. Since this random variable is symmetric, the odd numbered terms in

the expectation evaluate to zero:

ŷijk = f(x̂ik) + E[∇2f
x̃i2k
2!

+∇4f
x̃i4k
4!

+ ...]
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yijk − ŷijk = ∇f x̃ik +∇2f
x̃i2k
2!

+∇3f
x̃i3k
3!

+∇4f
x̃i4k
4!

+ ...

−E[∇2f
x̃i2k
2!

+∇4f
x̃i4k
4!

+ ...]

Applying the Taylor series residual for a Kalman Filter, consider that P
eyey
k is

of the form [21]:

P
eyey
k = ∇fPexex

k (∇f)T +
1

2× 4!
∇2f(E[x̃i4k ]− E[x̃i2k P

eyey
k ]− E[P

eyey
k x̃i2k ] + P

eyey2
k )(∇2f)T+

1

3!
∇3fE[x̃i4k ](∇f)T + ...

(4.46)

An Unscented Kalman Filter (UKF) is derived to correctly determine the first

and second moments of yijk , allowing it to be accurate up to the fourth order terms

for the assumptions given. From equation (4.46), it can be seen that some of the

nonlinearities of the system are captured through the inclusion of x̃ik in the higher

order terms. An Extended Kalman Filter is derived to only approximate the first

terms of equation (4.46), which aligns with the weak sinusoidal results shown in

Figures 4.6 and 4.7.

Additionally, a number of trends are shown that match the behavior of the

previous section. The particle filter observability measures shown are significantly

lower in value than the EKF/UKF results. However, these results appear to grow

with an increasing amount of particles used. Increasing observability fidelity also

requires an increased computational cost, as shown in Table 4.2.
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Table 4.2. Computation time for a simple nonlinear tracking System (Intel
Core i5-4690K 3.50 GHz processor)

Estimator Time, Seconds
EKF 0.78
UKF 2.45
BF, 500 Particles 51.54
BF, 1,000 Particles 103.35
BF, 5,000 Particles 680.69
BF, 10,000 Particles 1587.27
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CHAPTER 5

SIMULATION ANALYSIS

The following section presents the simulation analysis used to evaluate the es-

timator/tasking methods presented. First, the performance metrics used to compare

tasking methods are summarized. Two analysis cases are then presented. The first of

these provides an overall analysis of all filter-tasker methods presented, utilizing the

Bootstrap Filter set as a baseline case. The second analysis provides a closer analysis

of the EKF/UKF results for better performance discrimination.

5.1 Performance Metrics

To quantify the performance of a given sensor tasking algorithm, several meth-

ods to be used are presented. To evaluate the average overall position error at a

specific time instant k, the following metric is used [5]:

Er
k =

1

N

N∑
i=1

∆ri,k (5.1)

where

∆ri,k =
√

(xi,k − x̂∗i,k)2 + (yi,k − ŷ∗i,k)2 (5.2)

Using Eq. (5.1), average position error for the entire simulation can be found [5]:

Er =
1

(tf/∆t)

tf/∆t∑
k=0

Er
k (5.3)

This can be utilized as a measure of overall sensor tasking algorithm performance.

Another measure is the average estimated error ellipse area for the simulation [5]:

Âerr =
1

N(tf/∆t)

N∑
i=1

tf/∆t∑
k=0

π
√
ζ̂1
i,kζ̂

2
i,k (5.4)
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Where ζ̂1
i,k and ζ̂2

i,k are the eigenvalues of the upper 2×2 matrix of P i+
k [5]. This metric

measures data association. The larger the reported error area, the more uncertain an

estimation algorithm is of its object set.

5.2 Analysis of Overall Performance

Using the performance metrics established in the previous section, a simulation

analysis is performed to compare different tasking measure to Hellinger Distance for

a EKF, UKF, and a 500 particle BPF. To perform this, simulation parameters from

Ref. [5] are utilized.

Table 5.1. Sensor initial states and constraints in space object simulation

Sensor j xsj,0, km ysj,0, km ẋsj,0 km/s ẏsj,0 km/s ∆j km Ψj deg

1 3.9138× 103 6.8712× 103 −8.2702 4.0600 104 180.0
2 4.1925× 103 4.7972× 103 −0.3498 0.3057 4.4157× 104 10.0
3 −3.5957× 103 5.2594× 103 −0.3835 −0.2622 2.5371× 104 20.0
4 5.7576× 103 −2.7277× 103 0.1989 0.4198 8.871× 103 50.0

Table 5.2. Constants in space object simulation

Constant Value
µe 3.986× 105 km3/s2

ωe 7.292× 10−5 rad/sec
σ̂ipos,0 1 km
σ̂ivel,0 10−3 km
ωaccel 10−6 km/s2

tf 172, 328 s
tf/∆t 500
(νj2ρ ) 0.5 km2

(νj2ψ ) 0.1 deg2
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Where the initial estimates and covariance of each object are given by:

X̂ i
0 = X i

0 +



N(0, σ̂ipos,0),

N(0, σ̂ipos,0)

N(0, σ̂ivel,0)

N(0, σ̂ivel,0)



[
P i

0

]
=



σ̂2ipos,0 0 0 0

0 σ̂2ipos,0 0 0

0 0 σ̂2ivel,0 0

0 0 0 σ̂2ivel,0


The continuous process uncertainty covariance Q is given by:

[
Q

]
=

ω2
accel 0

0 ω2
accel


The sensor noise covariance R is given by:

[
R

]
=

νj2ρ 0

0 νj2ψ


For each simulation, N = 100 objects are generated with a semi-major axis

between 20, 000 − 45, 0000 km, and eccentricities varying between 0 − 0.25. Four

ground sensors are generated, with the initial states and constraints presented in

Table 5.1. In addition to the tasking measures presented, each estimator was ran

with a “No Tasking” (NT) case. This case performed no tasking, and accepted all

measurements within a sensor’s field-of-regard. The NT cases were then used as a

baseline case to establish an expected lower error bound. The Unscented Kalman

Filter was tuned to provide the lowest possible error, with α set to a value of 1.
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With the simulation parameters stated, a run was performed to characterize the

performance of each tasking measure under a given estimation method. A typical run

can be seen in Figure 5.1 and Table A.1.
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Fig. 5.1. Plot of Er
k for all tasking methods.

From Table A.1, it can be seen that the Unscented Kalman Filter typically out-

performs the Extended Kalman Filter. This aligns with the error analysis described

in section 4.4.2.1 and the observations made in Refs. [5, 6]. With the inclusion of

the Bootsrap Particle Filter, this estimator produces the lowest actual error. This

stands to reason, as using this estimator with the measures derived in section 4.2.3

allows for a sensor tasking algorithm to account for information otherwise lost to

the EKF/UKF. However, this method is also the most computationally expensive,
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Table 5.3. Overall simulation results for a single run

Tasking Filter Er, (km) Âerr, (km2)
(Er)Tasking

(Er)No Tasking

(Aerr)Tasking

(Aerr)No Tasking

All Data EKF 704.006 866.314 - -
FIG EKF 2439.743 3357.538 3.466 3.876
LLE EKF 3486.892 2195.665 4.953 2.534
SIG EKF 896.324 1030.769 1.273 1.190
HDG EKF 896.324 1030.769 1.273 1.190
All Data UKF 523.329 53137.053 - -
FIG UKF 4129.279 88649.729 7.890 1.668
LLE UKF 987.288 101451.393 1.887 1.909
SIG UKF 450.863 71025.170 0.862 1.337
HDG UKF 491.101 70900.292 0.938 1.334
All Data BPF-500 239.625 59652.381 - -
SIG BPF-500 373.096 151024.346 1.557 2.532
HDG BPF-500 371.700 144159.449 1.551 2.417

Table 5.4. Computation time table for NT estimator set (Intel Core i5-
4690K 3.50 GHz processor)

Estimator Time, Seconds
EKF 156.98
UKF 464.94
BF, 500 Particles 19,232.14

as shown in Table 5.4. This table shows the completion times of each “No Tasking”

estimator.

As previously mentioned, a set of “No Tasking” (NT) estimators were imple-

mented to act as a lower error bound to performance. However, it can be seen in

Table A.1 that SIG/HDG tasking for the UKF case achieves a lower error than their

NT counterpart. This suggests that a strategic selection of information based on

an information theoretic approach can improve estimates than utilizing all available

data.

For previously established tasking measures for the EKF/UKF, the results pre-

sented here largely match the observations made in Ref. [5] and Ref. [6]. When
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comparing tasking measures for a given estimator, it is seen that FIG/LLE tasking

are the worst performers and SIG tasking is the best. However, the run presented de-

viates from the prior results in that FIG tasking manages to outperform LLE tasking

for the EKF. Additional instances of prior tasking measures deviating from Refs. [5, 6]

were found. These are presented in Appendix A. Table A.1 also shows a performance

discrepancy between the EKF and UKF for FIG tasking. Results in Appendix A

shows similar occasional deviations in performance for a given filter-tasking method.

With the inclusion of the HDG results, it is shown that HDG tasking outperforms SIG

tasking for the BPF and is tied with SIG tasking as the best performer for the EKF,

but does not outperform SIG tasking for the UKF. However, the SIG/HDG results

are quite comparative across all cases. The competitiveness of SIG/HDG tasking was

replicated over several runs presented in Appendix A. From these results, it is seen

that HDG tasking would outperform SIG on some runs, and SIG would outperform

HDG on others. Considering the deviations in behavior that occur across all tasking

methods and estimators, these are attributable to the myopic aspects of the tasking

methodology. The behavior of the tasking methodology is the result of Equations 4.1

and 4.2 and the tasking gain µij only considering information gained during a given

timestep. A partial exception to this is Largest Lyanpunov Exponent (LLE) based

tasking, which considers prior information, but does not consider future information

[5]. This results in a potential ”lost opportunity” in gaining information about a

system and resulting in the performance discrepancies seen here and in Appendix

A. Overcoming the issue in discriminating performance is the focus of the following

section.
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5.3 Characterization of SIG and HDG Performance for EKF and UKF Estimators

As identified in the previous section, occasional deviations in performance for

tasking measures make it difficult to identify the holistic performance of a given

filter-tasking method over a single run. This is especially the case for SIG and HDG

performances, which are typically comparative regardless of estimator. To better

characterize performance, a Monte Carlo method is used to capture results over 50

EKF/UKF runs. A single run then observed to match the arguments presented in

Chapter 4. For this analysis, the BPF is neglected due to its computational cost.

To perform the analysis described, simulation parameters from Ref. [5] are uti-

lized:

Table 5.5. Sensor initial states and constraints in space object simulation

Sensor j xsj,0, km ysj,0, km ẋsj,0 km/s ẏsj,0 km/s ∆j km Ψj deg

1 3.9138× 103 6.8712× 103 −8.2702 4.0600 104 180.0
2 4.1925× 103 4.7972× 103 −0.3498 0.3057 4.4157× 104 10.0
3 −3.5957× 103 5.2594× 103 −0.3835 −0.2622 2.5371× 104 20.0
4 5.7576× 103 −2.7277× 103 0.1989 0.4198 8.871× 103 50.0
5 −4.9047× 103 −4.0662× 103 0.2965 −0.3577 3.0× 104 15.0

Table 5.6. Constants in space object simulation

Constant Value
µe 3.986× 105 km3/s2

ωe 7.292× 10−5 rad/sec
σ̂ipos,0 1 km
σ̂ivel,0 10−3 km
ωaccel 10−6 km/s
tf 172, 328 s

tf/∆t 500
(νj2ρ ) 0.5 km2

(νj2ψ ) 0.1 deg2
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Where the initial estimates and covariance of each object are given by:

X̂ i
0 = X i

0 +



N(0, σ̂ipos,0),

N(0, σ̂ipos,0)

N(0, σ̂ivel,0)

N(0, σ̂ivel,0)



[
P i

0

]
=



σ̂2ipos,0 0 0 0

0 σ̂2ipos,0 0 0

0 0 σ̂2ivel,0 0

0 0 0 σ̂2ivel,0


For this analysis, process uncertainty covariance Qk was set as a discrete value given

by: [
Qk

]
=

ω2
accel 0

0 ω2
accel


The sensor noise covariance R is given by:

[
R

]
=

νj2ρ 0

0 νj2ψ


For each simulation, N = 100 objects are generated with a semi-major axis be-

tween 20, 000−45, 0000 km, and eccentricities varying between 0−0.25. Four ground

sensors and one space sensor are generated, with the initial states and constraints

presented in Table 5.5. In addition to the tasking measures presented, each estima-

tor was ran with a “No Tasking” (NT) case. This case performed no tasking, and

accepted all measurements within a sensor’s field-of-regard. The NT cases were then

used as a baseline case to establish an expected lower error bound. The Unscented

Kalman Filter was tuned to provide the lowest possible error, with α set to a value

of 0.001.
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Fig. 5.2. CDF of Er values for 50 runs.

To characterize performance, a Monte Carlo Method was used. 50 runs of the

simulation were performed, with the average error and data association area collected

for each run. Since the comparison of SIG and HDG tasking was of interest, a set

of cumulative distribution function plots were made from the average error for these

tasking measures.

From Figure 5.2, both SIG and HDG tasking show close performance regardless

of error size. This is especially seen in the UKF case, where the curves shown are

indistinguishable. For most of the EKF case, both curves show a similar trend.

However, HDG tasking is shown to achieve a higher percentage of lower error in the

300− 500 km error region for the EKF case.

To determine the overall performance of each filter and tasking set, a perfor-

mance metric table was generated for all 50 runs based on the tasking measures

introduced in Ref. [5]. To characterize the dataset, the medians of the average error

and estimated error ellipse for each tasking measure were taken. This method was
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largely informed by Figure 5.2, which showed that the average of the data could be

significantly skewed by a limited number of runs.

From Table 5.7, it can be seen HDG tasking provides the lowest Er value

amongst tasking measures regardless for either filter. This is done with a marginal

difference in Âerr compared to SIG tasking. Notably, these results also align with ob-

servations made about established different tasking measures in Ref. [5] and Ref .[6].

To investigate this behavior, the differences between SIG and HDG tasking are ob-

served in a single run case. Figure 5.3 shows the tasking measures of Object 12, the

object that had the most tasking differences between SIG and HDG tasking in the

EKF single run case. For Object 12, there were 6 instances in which HDG tasking

performed differently than SIG tasking. These were either observations shifted in

time, or observations that were lost between tasking methods. In this instance, the

SIG measure tasked one more time than the HDG measure.

From Figure 5.3, it can be seen that differences in tasking occurred as the mea-

sure approached the mean for all objects. This indicates that HDG tasking impacted

performance most when gains were close in value. This illustrates the prioritization

Table 5.7. Median of simulation results for 50 simulation runs

Tasking Filter Er, (km) Âerr, (km2)
(Er)Tasking

(Er)No Tasking

(Aerr)Tasking

(Aerr)No Tasking

No Tasking EKF 149.454 821.979 - -
FIG EKF 1808.890 2252.948 12.103 2.741
LLE EKF 1097.118 1136.046 7.341 1.382
SIG EKF 154.043 892.324 1.031 1.086
HDG EKF 144.438 892.321 0.966 1.086
No Tasking UKF 32.974 664.763 - -
FIG UKF 720.705 2315.974 21.857 3.484
LLE UKF 112.344 871.724 3.407 1.311
SIG UKF 38.489 726.549 1.167 1.093
HDG UKF 36.829 726.653 1.117 1.093
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Fig. 5.3. Time history of the EKF SIG and HDG tasking measures for
object 12.

scheme of HDG tasking; as gains become closer in value, HDG tasking can more ac-

curately measure the distance between distributions and task accordingly. Notably,

Object 12 achieved a Er
i of 157.121 kilometers under HDG tasking, where it only

achieved 196.414 kilometers under SIG tasking. With this performance gain being

achieved with one fewer measurement than SIG tasking, this allowed HDG tasking

to prioritize additional objects.

Figure 5.4 illustrates the tasking measures of Object 74, the object that had the

most tasking differences between SIG and HDG tasking in the UKF case. For Object

74, there were 5 instances where tasking differences occurred. All tasking differences

were the result of shifts in time, with no loss of observations for either measure.

The behavior of HDG tasking in Figure 5.4 matches what is seen in Figure 5.3;

HDG tasking differed from SIG tasking as object tasking occurred near the mean

tasking measure. Object 74 achieved a Er
i of 4.752 kilometers under HDG tasking, and

4.806 kilometers under SIG tasking. While HDG tasking experiences a performance
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Fig. 5.4. Time history of the UKF SIG and HDG tasking measures for
object 74.

increase, it is marginal compared to the EKF case. This result, along with no losses

in observation between tasking measures is an indication that SIG tasking retains

more of its competitiveness when a UKF is used.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

This thesis presents a new sensor tasking measure for space object tracking.

This measure tasks sensors by measuring the observability measure between a given

sensor and object using the Hellinger Distance. This measure was chosen for satisfying

the properties of a distance function and to address the unbounded aspects of the

Shannon Information Gain measure in sensor tasking problems.

The Hellinger Distance Gain (HDG) tasking was evaluated against a set of

previously established measures and applied to a EKF, UKF, and BPF. Additionally,

a new derivation was made and verified to evaluate the HDG measure for a Particle

Filter.

Notably, it was observed that HDG tasking has a close performance to SIG

tasking. This close performance and the myopic nature of the tasking solutions im-

pacted the ability to characterize these results. As a result, the EKF and UKF were

evaluated with a Monte Carlo analysis with the median results taken. It was found

that HDG tasking outperformed all other tasking measures for both filters, with a

lower median error than all other measures. This was done with a estimated error

area comparable to the SIG tasking case.

During the analysis of the EKF/UKF Monte Carlo data sets, the largest di-

vergence of performance between tasking methods occurred in the EKF case. This

was observed in both the median error, as well as differences in object tasking. UKF

SIG tasking was much more competitive with UKF HDG tasking. This was observed

through a lower discrepancy in median error, as well as fewer differences in object
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tasking. Since it is known that a UKF is less susceptible to error loss than an EKF,

it appears that SIG tasking retains its competitiveness in an environment with lower

error. It is possible that a greater performance divergence can be seen for either filter

if higher sensor error was experienced.

The close performance between SIG and HDG tasking was also used to illustrate

the differences between the tasking solutions. By investigating the objects that had

the greatest tasking differences between the two measures, it was shown that most

tasking differences occurred as tasking gains became more competitive. This analysis,

along with the lower error shown, illustrated the intended behavior of HDG tasking.

It showed that HDG tasking provided a more accurate means of comparing object

observability than other established measures for the simulation conditions given.

6.1 Future Work

This thesis presents work that shows significant promise in utilizing Hellinger

Distance as a method to compare system observability in the context of space object

tracking. Some future work includes:

� Providing a proof that the linear programming problem presented in Equations

(4.1)-(4.2) is well-defined, as this is not provided by Ref. [4].

� Evaluating and Improving the computational efficiency of a given filter-tasker

algorithm. This includes:

– Evaluating the time complexity of the problem.

– Investigating parallel computing techniques.

� Analysis of information theoretic values in a non-myopic sensor tasking method.

� Applying the problem to a higher fidelity space object tracking environment.

This includes identifying the appropriate process noise size based on orbital

regime and coupling the sensor tasking algorithm with data association tech-
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niques. Shortening the timestep may also provide greater fidelity with orbits at

lower altitudes, however this will come with an additional computational cost.

If made short enough, relativity effects will also need to be accounted for.

� Applying information theoretic based sensor tasking to additional problems

involving object tracking. Autonomous vehicle navigation may be a potential

avenue.
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APPENDIX A

Three Simulation Runs for Overall Performance Analysis
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A.1 Run 1 Results

NOTE: This is the same run presented in section 5.2.
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Fig. A.1. Run 1 plot of Er
k for all tasking methods.
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Table A.1. Overall simulation results for a single run

Tasking Filter Er, (km) Âerr, (km2)
(Er)Tasking

(Er)No Tasking

(Aerr)Tasking

(Aerr)No Tasking

All Data EKF 704.006 866.314 - -
FIG EKF 2439.743 3357.538 3.466 3.876
LLE EKF 3486.892 2195.665 4.953 2.534
SIG EKF 896.324 1030.769 1.273 1.190
HDG EKF 896.324 1030.769 1.273 1.190
All Data UKF 523.329 53137.053 - -
FIG UKF 4129.279 88649.729 7.890 1.668
LLE UKF 987.288 101451.393 1.887 1.909
SIG UKF 450.863 71025.170 0.862 1.337
HDG UKF 491.101 70900.292 0.938 1.334
All Data BPF-500 239.625 59652.381 - -
SIG BPF-500 373.096 151024.346 1.557 2.532
HDG BPF-500 371.700 144159.449 1.551 2.417

A.2 Run 2 Results
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Fig. A.2. Run 2 plot of Er
k for all tasking methods.
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Table A.2. Overall simulation results for run two

Tasking Filter Er, (km) Âerr, (km2)
(Er)Tasking

(Er)No Tasking

(Aerr)Tasking

(Aerr)No Tasking

All Data EKF 533.780 795.425 - -
FIG EKF 2594.792 2656.067 4.861 3.339
LLE EKF 2439.376 1261.589 4.570 1.586
SIG EKF 569.282 874.922 1.067 1.100
HDG EKF 569.282 874.922 1.067 1.100
All Data UKF 295.569 140126.850 - -
FIG UKF 2932.389 191378.428 9.921 1.366
LLE UKF 301.762 276658.305 1.021 1.974
SIG UKF 2463.214 190174.865 8.334 1.357
HDG UKF 2465.346 193051.928 8.341 1.378
All Data BPF-500 190.616 55466.491 - -
SIG BPF-500 310.927 130323.030 1.631 2.350
HDG BPF-500 311.741 130946.963 1.635 2.361

A.3 Run 3 Results
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Fig. A.3. Run 3 plot of Er
k for all tasking methods.
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Table A.3. Overall simulation results for run three

Tasking Filter Er, (km) Âerr, (km2)
(Er)Tasking

(Er)No Tasking

(Aerr)Tasking

(Aerr)No Tasking

All Data EKF 460.443 830.652 - -
FIG EKF 1200.923 2082.009 2.608 2.506
LLE EKF 2795.367 1337.062 6.071 1.610
SIG EKF 500.908 921.069 1.088 1.109
HDG EKF 500.908 921.069 1.088 1.109
All Data UKF 905.944 973387.780 - -
FIG UKF 3216.668 91383.727 3.551 0.094
LLE UKF 2521.739 13336941117.396 2.784 13701.570
SIG UKF 226.601 73131.103 0.250 0.075
HDG UKF 229.560 73172.873 0.253 0.075
All Data BF-500 179.383 57457.141 - -
SIG BF-500 295.986 129777.439 1.650 2.259
HDG BF-500 286.920 129871.827 1.599 2.260
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