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Abstract 

 

DIRECT NUMERICAL SIMULATION OF HOMOGENEOUS  

ISOTROPIC TURBULENCE – A METHODOLOGY AND APPLICATIONS 

 

Sarah Moussa Hussein, Ph.D. 

The University of Texas at Arlington, 2018 

 

Supervising Professor: Frank K Lu, Ph.D. 

Turbulence has been a topic of scientific research for years. Characterized by 

unorganized chaotic motion and irregular fluctuations, it persists as one of the most 

challenging topics in fluid mechanics despite volumes of documented research and 

crucial findings. This begs the question: What is turbulence and why is it so 

challenging? 

Turbulence research studies cover a wide spectrum of branches from fundamental 

flow propagation to different turbulence interactions. This research project investigates 

the simplest class of turbulent flow studies, homogeneous isotropic turbulence. In a 

quest to advance the fundamental understanding of turbulence physics, a direct 

numerical simulation tool is developed. The tool generates a turbulent periodic cube 

with vortical fluctuations and three interaction case studies. The evolution of the velocity 



ix 
 

in time is derived from the Navier–Stokes equations. These governing equations are 

integrated, along with initial and boundary conditions, to formulate turbulence. Fully-

developed turbulence is achieved when the Tavoularis (1978) criterion of axial velocity 

variation is met. Output data sets are collected for numerical analysis.  

The turbulence periodic cube geometry is assessed for its applicability in this study. 

The simplified structure is found to be efficient and facilitated. The interaction case 

studies of shock–turbulence and detonation–turbulence are compared to an unforced 

flow interaction. The case studies are statistically analyzed and visualized yielding 

important conclusions on the effects of the fluctuations, heat release, detonation 

inherent length scale, and detonation intrinsic instability on the flow behavior. A mutual 

interaction is found between the turbulence structures and the strong detonation wave. 

An extension of the long‐standing Tavoularis velocity skewness factor is suggested. The 

proposed velocity skewness vector quantifies the variation of the three velocity 

components in the three Cartesian coordinates. This comprehensive expression 

highlights the contribution of the three–dimensional velocity fluctuations to the 

turbulence state.  
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1. Introduction 

Turbulence is the most important unsolved problem of classical physics. 

- Richard P. Feyman 

Along the coast of the Mediterranean Sea, the ancient Phoenician civilization 

emerged in c. 3200 BCE in land that corresponds to present-day Lebanon and coastal 

parts of neighboring countries (Khalaf, 2018). The birthplace of the alphabet saw the 

rise of glass‐making, dye production, trade, and ship‐building (Mark, 2009). The 

Phoenicians’ location encouraged exploring the sea, as they employed their ships in 

trade, Figure 1.1, and military pursuits.  

 

 

 

 

 

 

The building and sailing of these ships required knowledge of fluid mechanics, 

among other skills. Fluid mechanics is the field of study of fluids: liquids and gases, at 

rest under the subset of fluid statics, and in motion under the subset of fluid dynamics. 

Fluid mechanics, thus, has been a topic of research since the ancient days of exploring 

sailing ships as well as development of irrigation systems. It persists today in 

applications ranging from biological operations of breathing and blood flow, to 

 

 Figure 1.1 Side and front view sketches of a Phoenician wind and human-
powered trading ship (Bašić, 𝟐𝟎𝟏𝟔) 
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engineering applications such as windmills, heating and air-conditioning systems, as 

well as engines.  

Most fluid concepts have theories to describe their phenomena and whenever 

possible having experiments to support the theories. However, the theories may 

represent idealized flow properties and geometries. It can be difficult to reproduce 

theoretical results in realistic experimental setups accurately. One dominant research 

topic in fluid mechanics is turbulent flow. Despite years of documented work and 

important findings, it remains a subject that has challenged the greatest minds in 

science and engineering for years. What is turbulence and why is it so challenging? 

A fluid can flow in a continuous motion in a laminar or turbulent manner. In a laminar 

flow, the fluid moves in layers or “laminae,” smoothly, in an orderly manner, with no 

disturbances. The planes of the fluid slide past each other without mixing. In a turbulent 

flow, described by Leonardo da Vinci early in the 16th century as “turbulenza” (Lesieur, 

1987), the fluid shows unorganized, chaotic, complex patterns in its motion. Pope 

(2000) defines turbulence as a fluid field with irregular, chaotic, unsteady, seemingly 

random, and certainly unpredictable small-scale behavior. The difference between 

laminar and turbulent flow fields is shown in a simplified sketch in Figure 1.2. 

Turbulence is also defined as a three–dimensional chaotic process (Davidson, 2004). 

The small-scale unorganized regions of the turbulent flow carrying energy are 

commonly referred to as eddies, although the definition is subjective. The challenge, 

thus, lies in the fact that no theory, until today, has been able to outline and explain the 

behavior of turbulent flows. So, experiments and numerical methods are heavily relied 

on to introduce new knowledge.     



3 
 

 

 

 

 

 

 

 

 

 

 

 

Laminar flows are not very common. In fact, most naturally occurring flows are 

turbulent. Laminar flow can occur internally in pipes and channels or externally such as 

past a sphere or a flat plate. The flow remains laminar as long as the velocity is low or 

the viscosity is high. At higher velocities, and lower viscosities, the flow transitions to 

turbulence. For example, the air flowing through breathing lungs, like the water coming 

out of a faucet, starts in a laminar manner and then becomes turbulent. Turbulence in 

the external air flow around an aircraft frame is a source of concern and discomfort to 

the passengers at different speeds and altitudes. The passengers can sense the 

translation of the turbulent velocities onto the airframe, which may affect the 

acceleration at the center of gravity, Figure 1.3.  When an aircraft is crossing through a 

Figure 1.2 A simple sketch of the difference between internal laminar and turbulent fluid 
field flows in a pipe as adopted from CFDSupport (𝟐𝟎𝟏𝟑) 

Laminar Flow 

Turbulent Flow 
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patch of atmospheric turbulence, the airframe must be strong enough to withstand the 

gusts preventing overstressing and stalling (Zbrozek, 1958). 

 

 

 

 

 

The smoke emerging from a fire is turbulent, and so is the wake produced by a moving 

ship. Turbulence in large-scale atmospheric and oceanic flows partly dictates the 

weather. Turbulence maintains the terrestrial magnetic field against natural decay 

(Davidson, 2004). While turbulence persists as one of the most difficult problems in fluid 

mechanics today (Liepmann, 1979), better understanding of the structure and 

mechanics of turbulent flow will allow engineers to enhance the design of systems and 

improve the quality of life for many. Such improvements include: better flight 

performance, quieter airplanes, fuel‐efficient combustion engines, less expensive wind 

farms, better weather prediction, amongst other technological applications. 

One of the earliest flow visualizations is that of water flow patterns moving from a 

channel to a lower body of water by da Vinci, shown in Figure 1.4. The water leaves a 

square hole in a wall and strikes the bottom surface with chaotic, unstructured, swirling 

behavior. It depicts laminar flow and its transition to turbulence. It is documented that da 

Vinci described the motion of the water as that of a hair: “Being pulled down by the 

weight of the hair and turned by the direction of the curl” (Gad-el-Hak, 2000). The water, 

Input 

Incoming gust velocity 
Aircraft center of gravity 

Figure 1.3 Aircraft flying through atmospheric turbulence as adopted from 
Bendat (𝟐𝟎𝟏𝟎)  

Output 
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Figure 1.4 Leonardo da Vinci’s visualization of water 
patterns flowing from a channel and striking a lower body 
(Monaghan, 𝟐𝟎𝟏𝟒) 

thus, is being directed by the current and deviated by the random reverse motion in 

eddy behavior.  

 

 

 

 

 

 

 

In turbulent flows, eddies are swirls characterized by the energy they carry due to 

their velocity. Large eddies form reference length scales for flow analysis; while small 

eddies formulate the lower limit of experimental and computational grid size resolution. 

The energy cascade can be thought of as a map of energy flux. The large eddies 

transfer their energy to smaller eddies; which in turn transfer their energy to even 

smaller eddies, until the smallest size is reached where energy transfer ends and 

energy dissipation takes place. Energy dissipation occurs due to the small eddies’ 

sensitivity to the flow viscosity. The statement written by Richardson in 1922 paints a 

clear picture of the energy cascade: “We thus realize that: big whirls have little whirls 

that feed on their velocity, and little whirls have lesser whirls and so on on to viscosity – 

in the molecular sense.” However, the term cascade was coined by Onsager in the 

1940s (Sagaut, 2008).  A schematic representation of the energy cascade is shown in 
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Figure 1.5. This hierarchical breakup of turbulence structures is a simplified outline of 

the energy flux due to velocity and viscosity. It is important to note that in physical 

turbulence, the energy cascade is not that structured, involving additional stretching, 

folding/rolling up, and blob reconnection (Sagaut, 2008).   

 

 

 

 

 

 

 

 

 

The factors governing whether a flow is laminar or turbulent are primarily the velocity 

and viscosity, combined in the non‐dimensional Reynolds number. The Reynolds 

number is an expression of the ratio of inertial forces to viscous forces (White, 2011). At 

low Reynolds number, the fluid flow is laminar, while at high Reynolds number, the flow 

is turbulent. There exists a transitional phase between the two states, a laminar–

turbulent transition region, whose parameters depend on the flow type. It is found that at 

high Reynolds number, decelerating a flow produces vortices that are sensitive to initial 

Figure 1.5 Simplified schematic representation of the energy cascade as adopted from Frisch 
(𝟏𝟗𝟗𝟓) and Davidson (𝟐𝟎𝟎𝟒) 

 

Large eddies: 
carrying energy 

Energy flux 

Viscosity 

Smallest eddies:  
energy dissipation 
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conditions and result in stochastic flow patterns (Liepmann, 1979). The stochastic flow 

patterns have random probability distributions that call for statistical analysis of 

turbulence instead of accurate predictability. A turbulent field with varying velocities has 

vortical fluctuations. A turbulent field with varying temperatures has entropic fluctuations 

and one with varying pressures has acoustic fluctuations. These fluctuations are often 

coupled within the same fluid field (Massa, 2011a). 

The simplest class of turbulent flows to study is homogeneous turbulence (Pope, 

2000). A fluid field is homogeneous when it is invariant spatially (Batchelor, 1953); when 

the mean quantities of a fluid property are invariant under translation in time and space 

(Lesieur, 1987). Generally, a homogeneous turbulent field is also isotropic. A fluid field 

is isotropic when it is invariant with rotation and reflection (Pope, 2000); when the mean 

quantities of a fluid property are invariant under simultaneous arbitrary rotation of the 

set of points and of the coordinate axes (Lesieur, 1987). Some may argue that real 

turbulent flow is neither homogeneous nor isotropic at large scales; but these 

assumptions facilitate the statistical analysis of turbulent flows with slight Gaussian 

deviation (Lesieur, 1987). A Gaussian distribution is a theoretical normal distribution 

with random variables following a perfectly symmetrical bell-shape within set intervals, 

as shown in Figure 1.6. The random variables are distributed where: 68% occur within 

one standard deviation of the mean, 95% occur within two standard deviations of the 

mean, and 99.7% occur within three standard deviations of the mean (Lane, 2013). A 

flow with slight deviation from the Gaussian distribution can have variations in the 

velocity, temperature, or pressure properties of the flow. The flow distribution shown in 
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Figure 1.6 alongside the Gaussian distribution has velocity variations. It can be seen 

that the flow distribution no longer follows the symmetry of the bell curve. 

 

 

 

 

 

 

 

 

 

There is not much debate any longer that turbulence can be described by the non-

linear Navier–Stokes equations (Lesieur, 1987). Classically, the Navier–Stokes 

equations referred to the momentum equations of Newtonian fluid behavior; where the 

viscosity remains constant under applied shear stress. Nowadays, the Navier–Stokes 

equations refer to the conservation equations of mass, momentum, and energy in fluid 

fields. They are considered the core of fluid flow modelling describing the complex fluid 

flow properties from the largest to the smallest length and time scales (Pope, 2000). For 

the three–dimensional system of non-linear equations under set initial conditions, 

mathematicians have not been able to prove that smooth solutions always exist. They 

have not been able to verify that if they do exist, they have bounded energy per unit 

Figure 1.6 Normal Gaussian distribution function compared to the 
distribution function of flow with velocity deviation 
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mass (Bašić, 2016); that they are unique. This is called the Navier–Stokes Existence 

and Smoothness problem. The Clay Mathematics Institute in May 2000 assigned this 

problem as one of the seven Millennium problems. The Institute offers a $1,000,000 

prize for the first person to provide a solution for the problem. The problem remains 

unsolved today.   

Turbulence theories are based on experiments, thus leading to a mix of semi-

empirical laws and deterministic but highly simplified methods (Davidson, 2004). 

Turbulence mixing and transport properties dominate the fluid mechanics in most large-

scale engineering applications (George, 1989). In a turbulent flow, an initial small 

disturbance amplifies to render a deterministic prediction of evolution properties very 

difficult (Lesieur, 1987). Turbulence research in the 1970s thus split to two approaches, 

namely, the statistical approach and the coherence among chaos approach (Lesieur, 

1987). The first approach follows Taylor and Kolmogorov and uses average quantities 

to study cascades without coherence or order in turbulence. The second is associated 

with experimental work studying the behavior of dynamical systems and flow stability to 

identify coherent structures in shear flows (Lesieur, 1987). Up until the mid-1970s, key 

advancements in turbulence studies were achieved experimentally. After that, 

development involved massive computational power (Davidson, 2011). The level of 

turbulence research has been increasing at an astounding rate since the 1970s 

(George, 1989). Large main frame computer hardware allows the numerical setup of 

turbulence research experiments with a level of detail far more than that which can be 

achieved in physical experiments (George, 1989). Advancement in analysis tools allows 

theoreticians to better understand turbulence as well. Turbulence research will continue 
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to influence drag reduction, noise control, mixing, combustion, and a variety of other 

engineering applications (George, 1989). 

Turbulence research in fluid mechanics and mathematics has been formulated by 

many great minds over the years. Turbulence research consists of many branches 

which cannot all be covered in this review. Some of the main scientific contributions in 

fluid analysis, theory development, wind tunnel testing, computational development, and 

computational fluid dynamics are summarized in Appendix A, from 1628 until 2017 

(Davidson, 2011, Bašić, 2016). This is a summarized, brief list and is not intended as a 

comprehensive evaluation of all turbulence theoretical, experimental, and numerical 

works of this time frame; the amount of research work is too grand to fit in this 

document. Focus is placed on the historical events that led to the current topic of 

interest: the interactions of homogeneous isotropic turbulence with shock and 

detonation wave fronts. 

The interaction of turbulence with a strong shock has shaped the field of 

investigation and pioneering research work of many engineers. A shock wave is a thin 

region, typically of order 10−5 cm under standard conditions, across which flow 

properties change drastically (Anderson, 2011). The changes experienced by the flow 

pressure, density, temperature, and three velocity terms across a shock wave have 

been studied and are documented as shock relations in fluid dynamics literature. A 

visual representation of the fixed wave and the flow properties’ variations through the 

shock are in shown in Figure 1.7.  
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Upstream flow 
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o Density 
o Temperature 
o Velocity 

  

Downstream field past the 
shock wave 

o Pressure 
o Density 
o Temperature 
o Velocity 

Shock wave 
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o Thin interface 

Figure 1.7 Schematic view of the flow properties’ variations 
through a fixed shock wave front as adopted from Sagaut (𝟐𝟎𝟎𝟖) 

 

 

 

 

 

 

 

 

 

 

Consider next, a detonation which is a continuous combustion that expands and 

propagates after initiation due to exothermic chemical reactions. In the 20th century, 

Chapman and Jouguet developed a simple algebraic theory representing the detonation 

wave as a propagating shock wave accompanied by heat release. The exothermic heat 

release is confined to an infinitesimally thin shock wave region. Their theory was later 

developed to a more complex detonation model during World War II by Zel’dovich, von 

Neumann, and Döring to include a finite reaction rate (Austin, 2003). The advanced 

theory assumes the shock wave is a thermodynamic process.   

Shock–turbulence interaction has been studied as a canonical problem (Lele, 2009). 

A canonical problem is basic and essential. A basic study contributes to physical 

understanding while an essential study lays the foundation for more complex cases to 

follow. Detonation–turbulence interaction extends shock–turbulence interaction studies 
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to include the effects of rapid chemical energy release via a detonation front (Massa, 

2011a). The simplest detonation–turbulence interaction problem is the evolution of a 

compressible homogenous isotropic turbulent field when subjected to initiation by a 

strong shock wave. A fluid field is compressible when the density changes significantly 

with changes in pressure. The strong shock triggers an exothermic chemical reaction to 

result in the detonation wave. Detonation–turbulence interaction differs from shock–

turbulence interaction by three factors: 

 The detonation is exothermic, with added heat release complexity. 

 The detonation structure has an inherent length scale, while the shock does not. 

 The detonation wave has intrinsic fluctuations that cause instability in the 

detonation front, which are not present in shock waves.  

With the scientific advancement we have today, we are still unable to answer the 

questions that turbulence generates. As a result of such unanswered questions, 

incidents occur where combustion is unexpected and therefore unaccounted for in 

safety protocols. This combustion, due to the detonation–turbulence interaction, can 

occur in highly aerodynamic bodies and rocket engines. It can also occur in handling of 

combustible gaseous fuels such as hydrogen and biogas. The nuclear power plant 

explosion in Fukushima, Japan in March of 2011 drew attention to the detonation–

turbulence interaction problem. Some of the questions that arise are: 

 How does the detonation propagate through the disaster zone? 

 Can the detonation, once initiated from the dissociation of the water molecules, 

be mitigated? 
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 Does turbulence play a role in destabilizing the detonation wave to make it 

difficult to control? 

These questions on safety, if properly answered, will help improve the design of nuclear 

and chemical reactors, as well as develop safety precautions and potentially disaster 

mitigation techniques. The topic of detonation–turbulence interaction inspired this 

research work.  
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2. Literature Review and Research Objectives 

The study of turbulence allows the improvement of our understanding of 

fundamental fluid mechanics and the development of better turbulence models. The 

topic of interest in this research work is homogeneous isotropic turbulence with initial 

vortical fluctuations when it is subjected to a strong shock wave, which later evolves into 

a detonation wave upon heat release. A simple low-order model of idealized 

homogeneous isotropic turbulence also assumes that the flow is fully-developed. A 

turbulent flow is said to be fully-developed when the propagating flow is independent of 

constraints, such as boundary conditions, external forces, and viscosity (Lesieur, 1987). 

The velocity skewness factor of the fluctuating terms is a statistical expression used to 

quantitatively determine when turbulence has reached fully-developed state. Studies 

have documented different skewness factors for different types of turbulent flows 

(Tavoularis, 1978).  

In isotropic turbulence, a factor of the streamwise velocity derivative is defined and 

used to show when turbulence has reached a fully-developed state. The skewness 

factor of streamwise velocity derivative is defined by Tavoularis (1978) and utilized in 

various experimental setups as a statistical quantity. 

 

𝑆 ≡ −
(
𝜕𝑢
𝜕𝑥

)
3̅̅ ̅̅ ̅̅ ̅̅

[(
𝜕𝑢
𝜕𝑥

)
2̅̅ ̅̅ ̅̅ ̅̅
]

3 2⁄
 (2.1) 

In Equation (2.1), the partial derivative of the streamwise velocity 𝑢 is found with respect 

to the axial direction. The over bar represents the average quantity of the calculated 

velocity derivatives. Using the expression in Equation (2.1), it can be shown that a flow 
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with velocities that are distributed symmetrically about the mean will have zero 

skewness and cannot be shown to have turbulence properties. A Gaussian distribution 

has zero skewness. Historically, the streamwise velocity in the axial flow direction has 

been used in skewness studies because it is the velocity measured by probes.  

Experimental data from nearly isotropic grid turbulence by Batchelor and Townsend 

(1949), Stewart and Townsend (1951), Mills (1958), Frenkiel and Klebanoff (1971), Kuo 

and Corrsin (1971), Betchov and Lorenzen (1974), Bennett and Corrsin (1978), and 

Tavoularis (1978) show that when the negative value of the velocity skewness reaches 

a measure between 0.4 and 0.5, within a 0.05 margin, then the flow is said to have 

reached a fully-developed turbulent state. This is shown in Figure 2.1 and 

corresponding Table 2.1. This range became the reference value for turbulence velocity 

skewness factor calculations.  
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Figure 2.1 Measurements of the velocity-derivative skewness in various turbulent flows 
plotted vs. the turbulent Reynolds number (symbols are documented in Table 2.1) 
(Tavoularis, 𝟏𝟗𝟕𝟖) 

Table 2.1 Velocity-derivative skewness diagram symbols (Tavoularis, 𝟏𝟗𝟕𝟖) 
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With the advancement of computational power and resources, the numerical simulation 

of turbulence emerged. Gotoh (1993), Mahesh (1997), Pope (2000), and Massa (2011) 

numerically simulated homogeneous isotropic turbulence and used the reference value 

of S = −0.5 to decide when their turbulence has reached a fully-developed state. Note 

that Tavoularis (1978) dropped the negative skewness sign in his plot, Figure 2.1. 

Calculation of the velocity derivative to find the turbulence skewness factor requires 

defining the turbulence field geometry. Computationally, simple and periodic shapes are 

preferred for computational efficiency and accuracy. The periodic cube has been a 

geometry used by researchers investigating the fundamental structure of turbulence 

(Davidson, 2004), and is shown in Figure 2.2. It is a cube divided into an infinite number 

of smaller cubes in which the fluid behavior is identical, within a certain prescribed 

confidence level.  

 

 

 

 

 

 

 

 

 

Figure 2.2 Sketch of a turbulence periodic cube composed of 
smaller identical cubes 
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Cubes 

Turbulence 
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Periodicity governs that the properties on one face of the cube are also on the opposite 

face in a statistical sense. The cube periodicity is a simplified representation of the 

turbulence and may be criticized as unrepresentative of realistic physical turbulence. 

However, it allows facilitated and rapid computational simulations. The over-

simplification and periodicity are kept in mind in this low-order study and are accepted 

for the fundamental understanding of turbulence. Higher accuracy models are 

suggested for following works that represent more realistic turbulence in industrial 

applications.  
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2.1 Turbulence Interactions 

With the specified topic of interest, all the possible combinations of turbulence and 

wave front case studies are evaluated to direct the research. The combinations are 

those with and without turbulence fluctuations, a shock wave, and a detonation wave; 

which total eight case studies are displayed in Table 2.2. 
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Table 2.2 List of all possible flow interaction case study combinations between turbulence, a shock 
wave, and a detonation wave 

 

 

 

 

Case Flow Type Wave Front Interaction Output 

1 Non-turbulent No shock wave Flow travels with no fluctuations, continues 

downstream with no change 

2 Non-turbulent No detonation wave 

3 
Non-turbulent Shock wave 

Flow travels with no fluctuations, experiences normal 

shock relations 

4 

Non-turbulent Detonation wave 
Flow travels with no fluctuations, experiences normal 

shock relations, effects of the heat release, and 

instability of the detonation wave front Unforced–detonation interaction 

5 Turbulent No shock wave Flow with initial fluctuations continues downstream 

with no change; fluctuations may die off 

6 Turbulent No detonation wave 

7 

Turbulent Shock wave 
Flow with initial fluctuations experiences normal 

shock reactions, amplifications and dampening due 

to the shock–turbulence interaction Shock–turbulence interaction 

8 

Turbulent Detonation wave 
Flow with initial fluctuations experiences normal 

shock reactions, effects of the heat release, 

instability of the detonation front, amplifications and 

dampening due to the detonation–turbulence 

interaction 

Detonation–turbulence interaction 
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The first two cases show the base studies where the initial flow has no turbulent 

fluctuations and there is no interaction with a wave front. The flow travels with no 

change. In the third case of non-turbulent interaction with a shock wave, the normal 

shock relations are applied to the flow, as previously shown in Figure 1.7. The shock 

relations are well-known; this case does not require additional study. However, the 

fourth case of non-turbulent flow interacting with a detonation wave is a case study 

worth looking into. The normal shock relations are experienced by the flow, with 

additional effects of the heat release and the intrinsic instability of the detonation wave. 

The case study is called the unforced–detonation interaction; it is investigated as a 

control for the detonation–turbulence interaction. The term “unforced” refers to the flow 

having no vortical fluctuation forcing. 

The fifth and sixth cases have incoming turbulent flows with set fluctuations and no 

wave interaction. The turbulence continues to travel with no change due to a wave 

interaction. The only change that may occur is reduction of the fluctuations or 

turbulence decay.  The seventh case is that of shock–turbulence interaction in which the 

flow experiences the normal shock relations (as in the third case) in addition to effects 

due to the imposed turbulent forcing. The flow experiences amplifications and 

dampening. The case will be investigated and the downstream behavior will be studied 

in more detail. The eighth and final case is that of detonation–turbulence interaction in 

which the flow experiences the shock relations as in the third and fourth cases. In 

addition, as in the fourth case, the flow experiences the effects of the heat release and 

the instability of the detonation wave front. The flow in the detonation–turbulence 

interaction experiences amplification, dampening, and other behavior that will be further 
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investigated. It is expected that there will be a mutual interaction between the 

detonation wave and the turbulence (Massa, 2011a) 

Thus, from the list in Table 2.2, the three case studies that will be the center of this 

work’s research are the unforced–detonation, shock–turbulence, and detonation–

turbulence interactions. The unforced–detonation case is studied to compare against 

the detonation–turbulence interaction as a control eliminating the turbulent fluctuations’ 

effects.  
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2.2 Shock–Turbulence Interactions 

 Shock waves and turbulence are completely disparate gas dynamics phenomena. 

Understanding the interaction of turbulence with shock waves is essential for 

applications (Lee, 1992) in high–speed flows around aerodynamic bodies and through 

propulsion systems (Lele, 2009). Much research has been conducted in the study of 

shock–turbulence interactions, shown in Figure 2.3, where the incoming turbulence with 

imposed fluctuations interacts with a moving or stationary shock wave and continues to 

propagate downstream past the wave front.  

 

 

 

 

 

Figure 2.3 Schematic view of a shock–turbulence interaction as adopted from Sagaut (𝟐𝟎𝟎𝟖) 
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Shock–turbulence interactions have been studied theoretically (Ribner, 1987, Gavrilyuk, 

2006), numerically (Zang, 1984, Lee, 1992a, Lee, 1997, Mahesh, 1997, Bermejo-

Moreno, 2010, Grube, 2011, Larsson, 2013), and experimentally (Barre, 1996, 

Andreopoulos, 2000, Agui, 2005). The idealized homogeneous isotropic turbulence 

interaction with a shock wave was studied by Andreopoulos (2000) who found that the 

interaction effects were mutual with the shock exhibiting unsteadiness and deformation 

following the turbulence interaction. Computational simulation studies of shock–

turbulence interactions show amplification of the turbulent kinetic energy, change in 

turbulent length scales across the shock, and distortion of the shock (Lele, 2009). 

Shock–turbulence interaction visualizations by Lele (2009), Figure 2.4, depict the 

turbulent eddies through the interaction and the shock front wrinkling.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Shock–turbulence interaction: (a) turbulent eddies (green structures, flowing from left 
to right) are compressed and amplified upon passing through a stationary shock (thin blue sheet) 
(b) strongly wrinkled shock in the nonlinear regime with strong incoming turbulence, with colors 
indicating regions of high (red) and low (blue) streamwise velocity (Lele, 𝟐𝟎𝟎𝟗)  

(a) (b) 
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 While the interaction of homogenous isotropic turbulence is referred to as a canonical 

problem in the study of shock–turbulence interactions (Lele, 2009), the interest shifts to 

the role of the detonation structure on the amplification of the turbulence emanating 

from a detonation wave (Massa, 2011c) when considering reactions with heat release.  

 When shock–turbulence interaction models were previously used to analyze 

disasters such as explosions in coal mines, grain silos, oil and gas industries, and 

power plants, the causes of the explosions remained mysterious. That is because the 

models do not take the chemical reaction into consideration. The detonation–turbulence 

interaction studies add the complexity of the heat release making such models more 

accurate for disaster mitigation techniques. The detonation–turbulence interaction 

studies are employed to establish an understanding of turbulence effects on detonation 

wave stability and the effects of the heat release. The properties these interactions 

embody reveal important turbulent flow characteristics such as the mutual effects 

between the turbulence and the intrinsic detonation wave instability.  
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2.3 Detonation–Turbulence Interactions 

 With the added complexity of heat release through combustion (Massa, 2009), 

shock–turbulence interactions evolve into detonation–turbulence interactions. 

Detonation–turbulence interactions are employed to establish an understanding of the 

effect of heat release on the propagation of the turbulent flow, the effects of the 

detonation inherent length scale, and the turbulence effects on wrinkling of the 

inherently unstable detonation front. Shown in Figure 2.5, a detonation–turbulence 

interaction occurs when incoming flow with set fluctuations interacts with a traveling or 

stationary detonation wave and continues downstream of the wave front.  
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Figure 2.5 Schematic view of a detonation–turbulence interaction as adopted from Sagaut 
(𝟐𝟎𝟎𝟖) 
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While much research has been conducted in the topic of shock–turbulence interactions, 

there are very limited studies in the field on detonation–turbulence interactions (Massa, 

2011a). Detonation–turbulence interactions add the complexity of the presence of an 

exothermic reaction, the inherent length scale associated with the detonation structure, 

and the intrinsic instability of the detonation front (Massa, 2011a). The detonation–

turbulence interaction of weak homogeneous isotropic turbulence has been studied by 

Jackson (1993). The single‐step Arrhenius law was adapted in detonation–turbulence 

studies by Short (1998), Jaberi (2000), and Massa (2009, 2011a) to simulate the effects 

of chemistry on turbulence. Massa extended Jackson’s studies (2011c) by considering 

the effects of the heat release length scale. Conceptual findings of detonation–

turbulence interaction studies, such as the instability of the detonation wave (Massa, 

2011a), can be utilized to better understand the phenomena occurring during 

explosions, in the development of detonation engines, and in the safe handling of 

gaseous fuels such as hydrogen. Detonation–turbulence interaction visualization by 

Chauhan (2011) shows vortex stretching in detonation–turbulence interaction with high 

heat release. The visualization, Figure 2.6, depicts small-scale flow motion and 

detonation wave instability.   
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Figure 2.6 Detonation–turbulence interaction: small-scale flow motion showing intense  
straining and rotation (red) and energy dissipation (green) where the flow travels from 
left to right, visualization utilizes VisIT through the Texas Advanced Computing Center 
resources (Chauhan, 𝟐𝟎𝟏𝟏)  
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2.4 Framework of turbulence interaction research 

The theoretical framework of this study begins with the evaluation of the turbulence 

field governing equations. The homogeneous isotropic turbulence field behavior is 

governed by the Navier–Stokes equations. The five coupled non-linear partial 

differential equations in space and time are the laws of conservation of mass 

(continuity), conservation of momentum (in 𝑥, 𝑦, 𝑧), and conservation of energy. 

Additional assumptions of isotropy and imposed fluctuations are specified. The problem 

lacks closure with five governing equations and six dependent variables: velocity in 

three spatial coordinates (𝑢, 𝑣, 𝑤), pressure, temperature, and fluid density. The solution 

requires an additional equation of state and constitutive relations for viscosity and 

thermal conductivity for non-reactive systems. The specific heats at constant pressure 

and at constant volume are defined as well as their ratio γ. All the dependent variables 

are expressed in terms of the independent variables of space and time (𝑥, 𝑦, 𝑧, 𝑡). 

Solving the conservation of mass and momentum equations for particular boundary 

conditions allows the prediction of velocity and pressure information in the given 

geometry. Solving the energy equation leads to the prediction of the flow field 

temperature. With increased complexity of the geometry, the equations need to be 

solved numerically (Pope, 2000).   
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2.5 Turbulence Modelling and Simulation Techniques 

 

Turbulence models are essential to close forms of time-dependent Navier–Stokes 

governing equations for compressible or incompressible flows in two or three–

dimensional form (Cebeci, 2004). The equations for turbulent motion are well known. 

Thus, a sufficiently large computer should be able to produce sets of possible solutions 

(Liepmann, 1979). Several methods of modelling and simulation have been developed 

over the years to enhance our grasp of turbulence and facilitate flow measurement, 

analysis, and prediction. It is an interpolation procedure to connect information from 

experimental setups (Liepmann, 1979). Turbulence simulations are not meant to 

capture physical phenomena but to perform controlled studies that allow better insight, 

scaling laws, and turbulence models. The geometry of the studied turbulence is 

generally not complex as in real configurations. Industrial applications of the turbulence 

problem require complex geometries that render the idealized simplified solutions of the 

governing flow equations insufficient. In turbulence simulations, the equations are 

solved for velocity in time and position for a single occurrence of the turbulence; while in 

turbulence models, the equations are solved for average velocity, among other flow 

properties (Pope, 2000). The difficulty in applying turbulence modelling techniques lies 

in the non-linearity of the governing equations (Liepmann, 1979). Turbulence models 

and simulation techniques are divided into four main types: Reynolds-averaged Navier–

Stokes (RANS) based equations, large eddy simulation, detached eddy simulation, and 

direct numerical simulation; they are summarized in Figure 2.7. 
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Figure 2.7 Turbulence models and simulation tools as adopted from CFD online (𝟐𝟎𝟎𝟗) 
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RANS-based turbulence models are used to compute the Reynolds stresses through 

eddy viscosity and Reynolds stress models (CFD online, 2009) by averaging the 

Navier–Stokes parameters. Linear eddy viscosity models are algebraic, one and two 

equation models. Large eddy simulation is a technique for generating turbulent flows 

following the Kolmogorov (1941) theory of self–similarity (Muller, 2014). In large eddy 

simulation, the large scales are considered to be flow dependent while the small scales 

are universal. Thus, the large scales are resolved while the small scales are modeled. 

Large eddy simulation faces difficulties in the near-wall regions leading to the 

development of the detached eddy simulation method that is a hybrid between RANS-

based turbulence models and large eddy simulation (Spalart, 1997). Finally, in direct 

numerical simulation, the Navier–Stokes equations are solved numerically and all 

spatial and temporal scales are resolved with no need for turbulence modelling 

(Nagarajan, 2009a, Coleman, 2010). 
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2.6 Research Approach 

Turbulence simulations give approximate solutions in space and time for the non-

linear Navier–Stokes equations, while turbulence models are used to give solutions for 

mean quantities of the dependent variables. For this case study of homogeneous 

isotropic turbulence aiming to improve our understanding of turbulent structures, the 

accuracy of the simulations is favored over the average modelling outcomes. Direct 

numerical simulation and also large eddy simulation can be applied to study the physics 

of simple turbulent flows at moderate Reynolds numbers. However, it is found that direct 

numerical simulation provides a direct approach to solving the Navier–Stokes equations 

(Pope, 2000), acquiring the flow data for turbulence analysis, and resolving all the 

length and time scales. It is a turbulence simulation technique that allows the numerical 

solution of the flow governing equations without resorting to turbulence modelling while 

capturing the whole range of spatial and temporal scales (Pope, 2000, Nagarajan, 

2009a, Massa, 2011a). Direct numerical simulation is utilized as an idealized simulation 

in this study. Large eddy simulation is recommended as a following research step for 

more complex geometry and realistic turbulence applications. 

Pope (2000) suggests a list of factors to be considered when evaluating the different 

simulation and modelling tools. The factors are summarized in Table 2.3 starting with 

the level of description of the tool.  
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A high level of description is achieved when the tool completely characterizes the 

turbulence phenomenon. The simulation tools have a level of description that is higher 

than modelling tools since they provide instantaneous velocity information and not 

average velocity values. The second appraisal factor is the completeness of the tool. A 

turbulence simulation is considered complete when the constituent equations are 

independent of the flow specifications. Turbulence models do not give information on 

        

Appraising Factors 
 

Details 

1. Level of description High when a complete characterization of the turbulence is present                  

2. Completeness 

Complete when constituent equations are free from flow-dependent 

specifications 

3. Cost Dependent on time and computational power requirements 

4. Ease of use 
Difficulty is increased with non‐stationarity, reduced with use of boundary 

layer equations 

5. Range of applicability Complete model does not make implicit assumptions about flow geometry 

6. Accuracy 

Compared to experimental work, often computational models possess 

numerical errors dominated by spatial truncation error 

 

Table 2.3 Factors for appraising turbulence modelling and simulation tools as adopted from 
Pope (𝟐𝟎𝟎𝟎) 
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probability density functions of the velocity, single-point correlations, or turbulence 

structures. Thus, they are incomplete due to flow dependence. The cost of the tool is 

the third factor taken into account. The cost increases with time and computational 

power required for running the tool. Computational cost of direct numerical simulation 

increases with the cube of Reynolds number. Code development with certain boundary 

conditions depends on the complexity of the geometry and the software/algorithms 

used. The code execution depends on the computational resources available. The ease 

of use of the tool is the next factor considered. The difficulty increases with non-

stationarity of the flow and can be reduced by employing boundary layer equations. The 

fifth factor considered is the range of applicability of the tool. A complete model will not 

make implicit assumptions about the flow geometry and thus becomes more applicable. 

Direct numerical simulation is applicable in low to moderate Reynolds number flows. 

Finally, the accuracy of the tool is appraised. Direct numerical simulation gives 

approximate solutions to the governing equations that, when compared to experimental 

data, will have idealized values but show numerical and spatial truncation errors.  

Direct numerical simulation studies of homogeneous isotropic turbulence have been 

documented and published over the past 20 years (Moin and Mahesh, 1998, Massa, 

2011a). A direct numerical simulation code is written for this research using references 

from previous research work in the aspects of flow description, setup of the Navier–

Stokes equations, initial and boundary conditions, shock wave structure, and chemical 

reaction. MATLAB is the coding environment selected for its facilitated coding, analysis, 

and visualization tools. The code is run through personal and high-performance 

computers which require memory allocations and computational power. However, these 
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technical challenges are manageable in this age of computational advancement and 

through allocations from the University of Texas at Austin Texas Advanced Computing 

Center (TACC). The MATLAB direct numerical simulation code is applied for the 

turbulence periodic cube, unforced–detonation interaction, shock–turbulence 

interaction, and detonation–turbulence interaction studies. Direct numerical simulation is 

performed as a technique to efficiently acquire data sets for analysis. Using this 

methodology, a model is built. Hence all the acquired data are strictly computer 

generated. The approach has several advantages as well as disadvantages. 

The advantages of direct numerical simulation over other modelling and simulation tools 

include: 

 The absence of approximations, exact inputs give exact outputs 

 The simulation captures broadband spatial and temporal scales 

 The chemical properties are simplified, where no real reactants are simulated 

and no real gases are used 

Some disadvantages of utilizing direct numerical simulation: 

 Heavy computational requirements for large data sets, longer run time 

 The simulation does not produce realistic flow due to heavier computational 

requirements 
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2.7 Research Objectives 

After surveying the literature and evaluating the different turbulence modelling and 

simulation techniques, the doctoral research project is outlined.  

 Develop a MATLAB direct numerical simulation tool. The tool is employed to 

generate a periodic cube of homogeneous isotropic turbulence and the three 

interaction case studies: unforced–detonation, shock–turbulence, and 

detonation–turbulence. Output data from the case studies are collected for 

analysis.    

 Statistically analyze the properties of homogeneous isotropic turbulence. 

The direct numerical simulation computational outputs are analyzed for ensemble 

velocity averages, root mean square averages, turbulent kinetic energy, and 

Reynolds stresses. In the interaction case studies, the individual and mutual 

effects of the turbulence, the shock wave, and the unsteady detonation wave are 

investigated.  

 Extend shock–turbulence and detonation–turbulence interaction studies to 

show flow behavior downstream of the front. While previous studies have 

shown the effects on the flow velocity fluctuations across the shock, they missed 

the non-linear dynamics of the energized and highly anisotropic flow downstream 

of the front. The simulated cuboid computational domain allows the turbulence to 

travel towards the shock or detonation wave front, interact with the wave, and 

propagate downstream. Enough space is provided downstream for the flow to 

experience the direct effects of the shock and the heat release in the near zone 

then return to isotropy in the far field. The interaction case studies’ velocities are 
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visualized throughout the computational domain to depict different flow behavior 

and wave properties.  

 Investigate the flow physics of numerically generated turbulence. The 

velocity fluctuations in the turbulence are generated numerically using a random 

number generator algorithm, keeping in mind the statistical property of turbulence 

velocity skewness factor which defines fully-developed turbulence. The long‐

standing turbulence velocity skewness factor definition is determined, confirmed, 

and extended to include components acquired computationally, which could not 

have been obtained experimentally before.  
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2.8 Research Contribution Summary 

The original contributions of this research work are the (1) development of a direct 

numerical simulation tool producing simple low-order models of a turbulence periodic 

cube, unforced–detonation interaction, shock–turbulence interaction, and detonation–

turbulence interaction case studies, (2) extending the detonation–turbulence interaction 

studies to cover dynamics downstream of the wave front, (3) challenging the long‐

standing turbulence velocity skewness factor definition by increasing the degrees of 

freedom to evaluate the change of the flow velocity in all three Cartesian coordinates.  
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3. Direct Numerical Simulation Code Desciption 

In building the tool for direct numerical simulation of a simple low-order turbulence 

field, the simplified geometry of the periodic cube, introduced in Figure 2.2, is selected. 

This simplified geometry has been used by previous researchers for examining the 

fundamental structures of turbulence. The turbulence periodic cube is, theoretically, 

divided into an infinite number of smaller identical cubes called unit cubes in this study, 

and is shown in Figure 3.1.  

The periodicity condition states that whatever happens on one face of the cube 

happens on the opposite face (Davidson, 2004). The turbulence periodic cube is a 

simplified, idealized form of turbulence in which the periodicity is numerically imposed 

and the fluid field is not representative of naturally occurring turbulence. It is a 

simplification that is accepted for this low-order study of turbulence physics and can be 

Constant pressure 
Constant temperature 
Varying velocity 

Lcube 

Lunit 

Turbulence 
Periodic Cube 

Constituent  
Unit Cube 

Figure 3.1 Turbulence periodic cube and unit cube visualizations as adopted from Davidson (𝟐𝟎𝟎𝟒) 
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extended to cover more realistic turbulence properties in following studies. This 

simplification leads to more efficient and faster numerical algorithms in the 

computational simulations. Efficient simulations, thus, come at the cost of artificial 

periodicity.  

Cube Size and Resolution 

Figure 3.1 presents the periodic cube geometry, as described by Davidson (2004). 

The cube on the left is the periodic cube of homogeneous isotropic turbulence. It is 

composed of many smaller cubes, displayed on the right. The size of the smaller cube, 

referred to as the unit cube, is one unit of measure of distance in the computational 

setup (since the computational domain does not have a physical length scale). The size 

of the periodic cube is based on the number of unit cubes in it. The legend shows that 

each unit cube carries information on the turbulence pressure, temperature, and velocity 

properties. In this particular study of vortically forced turbulence, the velocity properties 

vary while the pressure and temperature are held constant in every unit cube and in the 

periodic larger cube. Each unit cube is a unique turbulence case, but the information 

carried in the unit cubes are considered to be identical (within a certain confidence 

level). In this study, limited by computational power and runtime, the turbulence periodic 

cube consists of 163 units in each coordinate. The turbulence cube, thus, is a 163 ×

163 × 163 matrix consisting of 4,330,747 unit cubes each carrying a set of properties: 

temperature, pressure, and velocity fluctuation information. The size of the unit cubes 

sets the resolution of the code and limits the computations. The grid must be small 

enough to capture the smallest structure within the turbulence. When at least three 



42 
 

points of the structure are captured, the smallest eddy is resolved, as shown in Figure 

3.2.  

 

 

 

 

 

In this case, from 1 to 1 163⁄  grid can be resolved in every coordinate of the cube and 

the grid is spatially regular. The smaller the grid required to capture the eddy structures, 

the higher the computational requirements. The same applies to the simulation’s time 

resolution where the shortest eddy life-span must be captured to resolve all the data in 

the time scale. 

Length and Time Scales 

The fluid in this study is a perfect gas that acts as air in atmospheric conditions of 

standard temperature and pressure. Unlike air whose ratio of specific heats γ is 1.4, this 

fluid’s γ is set to 1.2 to allow matching with the Chapman–Jouguet detonation speed of 

stoichiometric methane/air and propane/air at 1800m/s (Massa, 2011a). These 

conditions are representative of the detonation and the flow speed of interest in this 

study. The fluid has a mean time between the successive collisions of molecules under 

atmospheric conditions of 10−10s, average spacing between molecules of 𝑥 = 3 ×

10−9m, and mean free path 𝜆0 = 6 × 10−8 m (Pope, 2000). The generated turbulence is 

Figure 3.2 Grid sizing diagram showing the (a) smallest eddy 
not resolved and (b) smallest eddy resolved examples 

(a)  
Eddy is not resolved by 

the defined grid 

(b)  
Eddy is resolved by the 

defined grid 
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treated as a continuum with the smallest geometric length scale of 𝑙 = 6.135 × 10−3m 

acquired from the grid resolution of 1 to 1 163⁄ .  The imposed vortical fluctuations reach 

up to 51  m/s, corresponding to 1 % of the desired flow speed and up to three standard 

deviations away from the zero mean. The time scale, thus, is 𝑡 = 1.20 × 10−4 s which is 

two orders of magnitude larger than the mean time of constituent molecular collisions. 

The length scale is four orders of magnitude larger than the intermolecular spacing. The 

non-dimensional Knudsen number  

 

𝐾𝑛 =
𝜆0

𝑙
 

 

(3.1) 

for this fluid is calculated as 9.78 × 10−6. This validates the continuum approach which 

is applicable when the Knudsen number is much smaller than unity; 𝐾𝑛 ≪ 1 (Pope, 

2000).  
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3.1 Governing Equations 

Now that the geometry is clearly defined and the continuum approach is verified, the 

turbulence governing equations are stated. The turbulence cube is that of a perfect gas 

with ratio of specific heats 𝛾 = 1.2, a specific heat at constant pressure 𝑐𝑝 = 1005 

J/kgK, and imposed vortical fluctuations at standard temperature 𝑇0 = 293.15 K and 

pressure 𝑃0 = 1 atm. The Navier–Stokes equations are the laws used to describe the 

turbulence properties through the conservation of mass, momentum, and energy 

expressions.  

The Navier–Stokes Equations 

The governing equations are based on the physical laws describing the moving fluid 

(Currie, 2013) and are the foundation of the numerical simulation of the homogeneous 

isotropic turbulence in this study.  

The conservation of mass leads to the continuity equation, which implies the flow 

velocity is continuous, namely, 

 𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗) = 0 

(3.2) 

In the conservation of mass equation, ρ is the fluid density calculated using the ideal 
gas law,  

 

 
𝜌 =

𝑃

𝑅𝑇
 

(3.3) 

where the universal gas constant is 𝑅 = 0.0821 Latm /molK. The variable t, in Equation 

(3.2) represents time while xj and uj represent the tensor notation of the three Cartesian 
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coordinates (x, y, z) and velocity components (u, v, w), respectively. The partial 

derivatives, with respect to time and space, are evaluated using the central differencing 

method (here and in all the following equations including partial derivatives). Central 

differencing is employed to find the variation of a property between adjacent unit cubes: 

(1) i − 1, (2) i,and (3) i + 1 as shown visually in Figure 3.3.  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

The variation of any fluid property in a unit cube, say u velocity in cube 𝑖, is found by 

taking the difference of the velocity in the unit cube after, 𝑖 + 1, and the unit cube 

before, 𝑖 − 1, then dividing by twice the time or spatial increment in the flow travel 

direction. The time increment is the difference of the time at 𝑖 + 1 and 𝑖 − 1 over the 

total time of travel covering the length of the three unit cubes. The spatial increment is 

calculated using the length occupied by each unit cube divided by the total length of the 

cube side in the direction of interest. In Figure 3.3, the spatial increment 𝑑𝑥 is 
2

3
 because 

i-1 i i+1 

1 unit 

Figure 3.3 Visual representation of the central differencing method between 
adjacent cells in a cube structure 

x 

y 

z 
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𝑖 − 1 is assigned as zero in the 𝑥-direction, 𝑖 is one, and 𝑖 + 1 is two. The total length of 

the side is three units. The central differencing method for the 𝑢 velocity gradient in the 

𝑥-direction is thus, 

 𝑑𝑢

𝑑𝑥
≈

𝑢(𝑖 + 1) − 𝑢(𝑖 − 1)

2𝑑𝑥
 

(3.4) 

The conservation of momentum is a relationship based on the Newton’s second law 

of motion applied to an element of fluid: 

 𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗 − 𝜎𝑖𝑗) = 0 

 

(3.5) 

The partial derivatives are evaluated using the central differencing method shown in 

Equation (3.4). The velocity vectors 𝑢𝑖 and 𝑢𝑗 both represent the three velocity 

components in the Cartesian coordinates for {𝑖, 𝑗} = 1, 2, 3. The fluid pressure 𝑃 is 

constant in this study, while Kronecker’s delta 

 

𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 

          

(3.6) 

is either zero or unity depending on 𝑖 and 𝑗. The stress tensor is 

 
𝜎𝑖𝑗 =

𝜇

𝑅𝑒
{[(

𝜕

𝜕𝑥
𝑢) 𝑖 + (

𝜕

𝜕𝑦
𝑣) 𝑗 + (

𝜕

𝜕𝑧
𝑤)𝑘]

+ (𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
) −

2

3
𝐼33 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)} 

(3.7)              
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In Equation (3.7), 𝜇 is fluid viscosity and is calculated using Sutherland’s law for an ideal 

gas (Sutherland, 1893) in terms of temperature. 

 

𝜇 = 𝜇0

𝑇0 + 𝐶

𝑇 + 𝐶
(
𝑇

𝑇0
)

3
2⁄

 (3.8) 

The constant 𝐶 is set to 120 K based on the fluid properties. The input viscosity 𝜇0 and 

temperature  𝑇0 are employed in the Sutherland’s viscosity calculation. The non-

dimensional Reynolds number is  

 
𝑅𝑒 =

𝜌𝑢𝑙

𝜇
=

𝑢𝑙

𝜐
 

(3.9) 

 

defined with 𝑙 being the length that the turbulent fluid travels, and 𝜐 the kinematic 

viscosity. The 3 × 3 identity matrix is: 

 

𝐼33 = [
1 0 0
0 1 0
0 0 1

] 

(3.10) 

The conservation of energy equation is the application of the first law of 

thermodynamics to a fluid field (Currie, 2013). The thermal relation is expressed as: 

 𝜕𝐸𝑡

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝐸𝑡𝑢𝑗 + 𝑢𝑗𝑃 + 𝑞𝑗 − 𝑢𝑖𝜎𝑖𝑗) = 0 

 

(3.11) 

While most of the other terms have been previously defined, the total energy 𝐸𝑡 is 

calculated for the fluid.  
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𝐸𝑡 =
𝑃

𝛾 − 1
+ 𝜌(

𝑢𝑖
2

2
− �̃�𝜆) 

(3.12) 
 

The non-dimensional heat release Q̃ and reaction progress λ terms vanish due to 

absence of heat release in shock–turbulence interaction. In the case of detonation–

turbulence interaction, however, the heat release 𝑄 is calculated and normalized 

(Massa, 2011a).  

 

𝑄 =
�̃�

𝑃0
𝜌0

⁄
=

𝛾(𝑀2 − 1)2

2𝑀(𝛾2 − 1)
 

 
 

(3.13) 
 

The reaction progress λ is a variable used to indicate the beginning of the reaction 

(λ = 0) and the end of the chemical reaction (λ = 1).  In Equation (3.13), the Mach 

number 𝑀 is defined as the ratio of the fluid flow velocity in the direction of interest to 

the speed of sound under the same conditions.  

 
𝑀𝑖 =

𝑢𝑖

𝑎
 (3.14) 

The speed of sound at the given conditions is 

 
𝑎 = √𝛾R𝑔𝑎𝑠𝑇 (3.15) 

where the universal gas constant 𝑅 = 0.0821 Latm /molK is related to the specific gas 

constant and the gas molar mass. 
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Figure 3.4 Thermal conductivity of air vs. temperature plot using data points from 
Bouteloup (𝟐𝟎𝟏𝟖) 
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𝑅𝑔𝑎𝑠 =

𝑅

𝑀𝑚𝑔𝑎𝑠
 

(3.16) 

From the conservation of energy equation, the heat flux 𝑞𝑗 is 

 
qj = −

γ

γ − 1

μ

RePr
∇T (3.17) 

where the Prandtl number is defined as 

 
𝑃𝑟 =

𝑐𝑝𝜇

𝐾
 (3.18) 

and the fluid’s specific heat at constant pressure 𝑐𝑝 is 1005 J/kgK. The fluid thermal 

conductivity 𝐾 is found from a trend study of the variation of air thermal conductivity with 

change in temperature (Bouteloup, 2018), shown in Figure 3.4. 

 

 

 

 

 

 

 

 



50 
 

The best cubic polynomial fit is used with the temperature at different points of the fluid 

flow to determine the thermal conductivity. The del operator ∇, used with the fluid 

temperature in the heat flux equation, is elaborated for scalar and vector quantities in 

Appendix B.  

Normal Shock Relations 

In the turbulence cube, the smallest length is set to be the unit of measure in the 

computational setup. A stationary normal shock wave, even though infinitesimally thin 

theoretically, in this application is set to occupy unit length in computational coding. The 

normal shock relations are used to define the post-shock pressure, density, 

temperature, and Mach number namely 

 𝑃𝑝𝑠

𝑃
=

2𝛾𝑀2 − (𝛾 − 1)

𝛾 + 1
 

(3.19) 
 

 𝜌𝑝𝑠

𝜌
=

(𝛾 + 1)𝑀2

(𝛾 − 1)𝑀2 + 2
 (3.20) 

 

 

𝑇𝑝𝑠

𝑇
=

[2𝛾𝑀2 − (𝛾 − 1)]((𝛾 − 1)𝑀2 + 2)

(𝛾 + 1)2𝑀2
 (3.21) 

 

𝑀𝑝𝑠 = [
(𝛾 − 1)𝑀2 + 2

2𝛾𝑀2 − (𝛾 − 1)
]

1 2⁄

 

 
(3.22) 

 
 

using the properties of the flow ahead of the shock wave (White, 2011). A 

representation of the shock front, incoming flow, and flow traveling past the shock wave 

is shown in Figure 1.7. The normal shock relations are applicable to both shock–

turbulence and detonation–turbulence interaction case studies. In the detonation–

turbulence interaction, an additional heat release relation is defined.  
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Single‐Step Arrhenius Law for Heat Release 

The thermodynamic properties of the detonation wave can be calculated by detailed 

chemical reactions or single‐step reaction mechanisms. For this low-order study of 

homogeneous isotropic turbulence, the chemistry of the detonation–turbulence 

interaction case study is simplified. The Arrhenius law is used to describe the single‐

step mechanism of heat release. The Arrhenius law reaction rate 

 

𝑟(𝑇) = 𝑘0𝑒
−
�̃�
𝑇 

(3.23) 

depends on temperature. The pre‐exponential factor that sets the temporal scale is 

𝑘0 = 1.2 for this fluid’s properties, as has been previously studied by Massa (2011a). 

The activation energy 𝐸 is normalized by the ratio of input pressure to density. 

 

𝐸 =
�̃�

𝑃0
𝜌0

⁄
 

 

(3.24) 

 

The activation energy is found using the reference activation energy vs. heat release 

diagram, Figure 3.5, from Massa’s (2011a) detonation–turbulence interaction study for a 

perfect gas with 𝛾 = 1.2. The heat release factor is previously calculated in Equation 

(3.13). 
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This concludes the specification of the numerical simulation governing equations. The 

direct numerical simulation tool development is discussed next.  

Figure 3.5 Activation energy vs. heat release plot for a detonation–turbulence 
interaction based on work by Massa (𝟐𝟎𝟏𝟏a) 
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3.2 Tool Development 

Direct numerical simulation is the turbulence computational method chosen for this 

study as it provides a direct approach to solve the governing equations and acquire data 

for analysis. In direct numerical simulation, all the spatial and temporal scales are 

resolved with no need for a turbulence model. MATLAB is the software selected for the 

direct numerical simulation coding. Its desktop environment allows design of the fluid 

geometry and behavior, iteration of the governing equations, data analysis, and 

visualization. The MATLAB programming language allows coding in matrix and array 

mathematics directly (Mathworks, 2018a) and is compatible with the University of Texas 

at Austin’s TACC supercomputers. Two direct numerical simulation codes are 

developed: (1) to generate the turbulence periodic cube, (2) to generate the three 

interaction case studies of unforced–detonation, shock–turbulence, and detonation–

turbulence interactions. The generated turbulence periodic cube is used as turbulent 

flow input in the interaction case studies. It is important to note that the turbulence flow 

input velocity of interest in this study corresponds to Mach 5.5. This high speed is 

selected because in the detonation–turbulence case study, such a speed allows the 

heat release parameter to sustain an adiabatic flame, without gaining or losing heat, as 

in small paraffins in stoichiometric air (Massa, 2011a). The output data for analysis is 

deemed sufficient based on trade studies by Chauhan (2011). 

A code outline is presented for each of the two direct numerical simulations in Figure 

3.6 and Figure 3.7, where the flowchart shape references are documented in Appendix 

C. The code components are discussed in detail in the following two sections. 
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Figure 3.6 Direct numerical simulation code 
outline for the turbulence periodic cube 
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Figure 3.7 Direct numerical simulation code outline for the three 
interaction case studies: unforced–detonation, shock–turbulence, and 
detonation–turbulence 
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Direct Numerical Simulation Code for the Turbulence Periodic Cube 

The direct numerical simulation of the turbulence 

periodic cube, shown in Figure 3.6, begins with the driver 

program, or main driver. It is the Main program that 

initiates the code whether it is being run on a personal 

computer or through a high performance supercomputer 

interface. It is the one program that is accessed directly 

by the user and edited between different runs. 

Subsequent subroutines can be included or excluded 

from the Main driver to change the conditions of the run. 

Following the Main driver, three programs are defined. In 

the Initial Conditions- Input Parameters program, the 

initial conditions and input parameters of the fluid are 

defined. The initial conditions impose the fluid properties 

of homogeneity and isotropy. In this program, the input 

parameters are set for velocity, temperature, pressure, 

and other fluid defining properties (such as the ratio of 

specific heats). The next program is that of 

Computational Domain Generation, where the periodic 

cube shape, previously shown in Figure 3.1, is 

generated. The spatial coordinates and grid resolution are assigned in this program. 

The temporal scale and time steps are defined in the following program, 

Computational Time and Time Step. The computational time is fixed using the fluid 

Table 3.1 Direct numerical 
simulation of the turbulence 
periodic cube: code components- 
Part I 

Process 

Manual Input 

Predefined Process 

Manual Input 
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Preparation 

Process 

Table 3.2 Direct numerical 
simulation of the turbulence 
periodic cube: code components- 
Part II 

parameters of reaction half length, input density, and input pressure. Initial time is zero, 

the end time is calculated using  

𝑡𝑒𝑛𝑑 = 50 × 𝐿1 2⁄ × (
𝜌0

𝑃0
)
1 2⁄

     (3.25) 

where the reaction half length 𝐿1 2⁄  is 1 for fully-

developed homogeneous isotropic turbulence as defined 

by Massa (2011a). The time step is the incremental 

change in time as the computation progresses. It is fixed 

throughout the computation simulation at 10 steps; small 

enough to capture the flow physics without drastically 

increasing the power requirement. The turbulence 

fluctuations are defined next in the Gaussian 

Distribution Random Number Generation program. In 

this turbulence study, the fluctuations of interest are 

vortical. The fluctuations are initiated by an array of 

normally‐distributed random numbers, following the 

Gaussian distribution shown in Figure 1.6, with mean of 

zero and standard deviation of 1 % of flow velocity. The 

mean is zero at this step because the turbulence cube is 

a still fluid field. In the interaction cases, the turbulence 

is convected and acquires a mean flow velocity, which is 

added to the fluctuations. Next, the array of random 

numbers is run through the governing Navier–Stokes equations of continuity, 

momentum and energy. The non-linearity of the governing equations imparts skew to 
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the Gaussian distributed random numbers. The 

numerical solutions of the Navier–Stokes equations are 

merged together and the turbulence velocity skewness 

is evaluated. The velocity skewness is calculated using 

Equation (2.1), as defined by Tavoularis (1978). 

Previous direct numerical simulation studies of 

turbulence used a skewness value of −0.5 to determine 

when the fully-developed turbulence has been reached 

(Gotoh, 1993, Mahesh, 1997, Pope, 2000, and Massa 

2011). The numerical simulation, thus, is run and 

velocity readings are recorded to evaluate the 

turbulence velocity skewness. Based on the long‐

standing definition, the skewness needs to reach −0.5 

only in the axial direction. This is an important distinction 

since the current work yields a skewness vector. Thus, 

the axial velocity skewness in the streamwise direction 

is calculated and a decision is made whether 

turbulence criterion is met.  If the required skewness 

is met, the temporal evolution of the simulation is 

concluded and the numerical solutions of the Navier–

Stokes equations are collected as data output for 

analysis followed by termination of the code. However, 

if the turbulence skewness criterion is not met in the 

Predefined Process 

Decision 

Data 

Table 3.3 Direct numerical 
simulation of the turbulence 
periodic cube: code components- 
Part III 
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decision process, the program is looped back to the Gaussian Distribution Random 

Number Generation program. A new array of normally‐distributed random numbers is 

generated, run through the Navier–Stokes equations which are solved and the solutions 

are merged, and finally the streamwise velocity skewness is calculated again. This loop 

is repeated until the turbulence skewness criterion is met.   

This code produces an array of numbers that represents numerical fully-developed 

homogeneous isotropic turbulence. Based on the shape of the turbulence periodic cube, 

previously discussed and shown in Figure 3.1, the code output in a single run is used as 

a unique turbulence unit cube. The direct numerical simulation code is run numerous 

times to produce the whole turbulence periodic cube composed of 4,330,747 turbulent 

unit cubes. While the definition of the turbulence periodic cube states that the 

component unit cubes are identical (Davidson, 2004), they are considered to be closely 

related within a certain confidence level. They all have the same initial conditions and 

fluid input parameters. They have velocity fluctuations that are produced by the same 

random number generator from a normal distribution with the same mean and standard 

deviation parameters. The velocity numerical arrays are then run through the same non-

linearity process and evaluated for the same skewness criterion. However, each time 

the random number generator produces an array of velocities; it is slightly different, 

while satisfying the overall requirements. Therefore, even when the same skewness 

criterion is imposed and met by the different runs, the constituent velocity fluctuations 

will vary slightly making the complete periodic cube a continuous turbulent field with no 

repetitive patterns or discontinuities.  
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Direct Numerical Simulation Code for the Interaction Case Studies 

The direct numerical simulation code, shown in 

Figure 3.7, is used to generate the three interaction 

case studies of unforced–detonation, shock–turbulence, 

and detonation–turbulence. The direct numerical 

simulation code is initiated by a Main driver program. 

This program is accessed by the user to define the 

different conditions in the three interactions. Based on 

the interaction case study, the type of incoming flow is 

defined first. A decision is made at this stage about the 

fluid flow of interest, is it turbulent flow? If yes, the 

direct numerical simulation code for the turbulence 

periodic cube is used for periodic cube of turbulence 

generation. The code output data are saved and 

loaded as input to the rest of this current code. This 

step is utilized for the shock–turbulence and 

detonation–turbulence interactions. As for the unforced–

detonation interaction, the decision is that no turbulent 

flow is required. Thus, the turbulence periodic cube data 

are not loaded from the previous simulation. Instead, a 

Non-Turbulence Field Generation program is run. In 

this program, a simple numerical fluid field is generated with an array of constant 

velocity and no fluctuations. Next, a series of four programs are run to define each 

specific interaction case study. First, the computational geometry in which the 

Table 3.4 Direct numerical 
simulation of the interaction case 
studies: code components- Part I 

 Process 

Decision 

Predefined Process 

Predefined Process 
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interaction will take place is specified. A cuboid is 

selected with a cross-sectional area equivalent to the 

size of the periodic cube, and a length that stretches  

four times the length of a single side of the cube, as 

shown in Figure 3.8. The Cuboid Computational 

Domain Generation program creates the domain 

where the flow begins to travel at the inlet, interacts with the wave front about halfway 

through the geometry, and progresses downstream past the wave front.  

 

 

 

 

 

 

 

In Figure 3.8, the incoming fluid flow cube can be 

turbulent or non-turbulent and the wave front can be a 

shock or a detonation wave. Next, the boundary 

conditions and input parameters are specified. The 

computational domain has non-reflective and subsonic 

exit conditions (Massa, 2011a). The input parameters 

are the fluid flow velocity, temperature, pressure, and additional defining properties. 

Lcube 

Lcomputational domain  

Fluid Field, 
Incoming Flow  

M 𝟓.𝟓 

Computational 
Domain  

Wave Front  

Figure 3.8 Computational domain geometry of the three interaction case studies 

Predefined Process 

Table 3.5 Direct numerical 
simulation of the interaction case 
studies: code components- Part II 

 

Manual Input 

Table 3.6 Direct numerical 
simulation of the interaction case 
studies: code components- Part III 
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Once the flow properties and the computational domain 

are outlined, the shock wave properties and heat 

release are set in the following program. The normal 

shock relations, previously shown in Equations (3.19), 

(3.20), (3.21), and (3.22), are applied to both the shock 

and detonation interaction cases. The detonation cases, 

however, have the additional heat release parameters 

defined in Equations (3.23) and (3.24). Finally, the 

simulation computational time and time step follow 

the same guidelines as in the simulation code of the 

turbulence periodic cube, employing Equation (3.25). 

The defined fluid flow properties are run through the 

governing Navier–Stokes equations of continuity, 

momentum, and energy. These balance equations are 

utilized to describe the behavior of the fluid flow as it 

travels through the computational domain. The 

equations are solved numerically, iteratively, and the 

results are merged. This concludes the interaction case 

studies’ description of the flow physics. However, an 

additional step is taken, at this time, to calculate the 

turbulence velocity skewness using in Equation (2.1), as 

defined by Tavoularis (1978). This is not utilized to 

evaluate whether the criterion for fully‐developed 

Manual Input 

Manual Input 

Process 

Table 3.7 Direct numerical 
simulation of the interaction case 
studies: code components- Part IV 
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turbulence has been reached, as in the periodic cube 

simulation code. In this code, the Skewness program is 

employed to extend the skewness analysis and 

evaluate how the velocity variations are affected by the 

interactions with the wave fronts throughout the 

computational domain, past the wave itself. The results 

of the numerical simulation are saved as data output 

for further analysis and visualization. The code is 

terminated.  

 

 

 

 

 

 

 

 

  

Predefined Process 

Data 

Table 3.8 Direct numerical 
simulation of the interaction case 
studies: code components- Part V 
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3.3 Convergence Logic 

In summary, the direct numerical simulation code is structured primarily around the 

flow governing Navier–Stokes equations. The essential input parameters are assigned, 

while other flow parameters are calculated. The fluid flow properties and initial 

conditions are set. The geometry is outlined based on the application of the code, with 

its corresponding necessary boundary conditions. The non‐linear partial differential 

equations are numerically solved iteratively with the spatial and temporal scales 

completely defined.  It is ensured that sufficient time is allocated for the simulation to 

thoroughly process all the information and progress towards arriving at the final output 

file. The question becomes: How it is confirmed that the direct numerical simulation 

logic is correctly converging at the required turbulence or interaction output 

files? Two checks are imposed to validate the accuracy of simulation (1) turbulence 

velocity skewness factor calculation (2) code output data analysis and visualization.  

1. The turbulence velocity skewness factor calculation, previously documented in 

Equation (2.1), is utilized as the checkpoint for assessing the progression of the 

code past the Navier–Stokes equations. If the skewness values, at the end of the 

simulation code, are repeated with no change between runs, if the skewness is 

not reaching the required value (satisfying the Tavoularis (1978) criterion), and if 

the skewness variations between runs are not within a reasonable range, the 

code constituent equations are reevaluated. The turbulence skewness factor 

ensures that the simulation logic has converged to a turbulent field when its value 

reaches 𝑆 = −0.5 (Gotoh, 1993, Mahesh, 1997, Pope, 2000, and Massa 2011). 

As for the interaction case studies, the skewness factor calculation allows the 



65 
 

depiction of the velocity variations throughout the computational domain. It is 

expected that the skewness evolves past the wave front. Once the stretching is 

observed, it is validated that the velocity output data from the interaction case 

studies are accurate.  

2. The output data file, produced by a program at the end of the direct numerical 

simulation code, is analyzed for numerical errors, computational noise, and 

repeated patterns. The accuracy of the output velocities is assessed by ensuring 

the numerical values are within the expected range (with the previously defined 

mean, standard deviation, and flow velocity of interest). The turbulent fluctuations 

are small, when compared to the high speed mean flow velocity. However, as 

long as the fluctuations’ numerical values are consistent with the defined 

standard deviation, the observed chaotic behavior is attributed to the defined 

turbulence and not to machine noise. The velocities’ data are analyzed to ensure 

no bounded error occurs producing a bias solution at the inlet or outlet. Such an 

error would require windowing, as the Blackmanharris, Hanning, Hamming, 

Gaussian, and Taylor windows (Hussein, 2012). Windowing is used to surpass 

the leakage problem at the edges of the plots, taper the time history data, and 

eliminate discontinuities. It is essential in fixing the numerical truncation error. 

The velocity patterns are closely observed to ensure that the flow is 

homogeneous and without discontinuities. The velocity results are statistically 

analyzed and visualized for the turbulence periodic cube and the three interaction 

case studies; documented in the next chapters. The findings are compared to 

similar studies published in the scientific literature to validate accuracy.   
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4. Turbulence Periodic Cube 

In the introduction, a question was posed: What is turbulence and why is it so 

challenging? It is challenging to pinpoint where turbulence initiates from or what its 

origin is. We can, however, characterize the turbulence by its irregularities, diffusivity, 

Reynolds number, three–dimensional vortical fluctuations, dissipation, and continuum 

properties. The characteristics of the turbulence depend on the surrounding 

environment and the turbulence, thus, depends heavily on initial conditions. 

This chapter aims to contribute to the fundamental understanding of turbulence 

using a simple low-order model of idealized homogeneous isotropic turbulence with 

vortical fluctuations, as shown in the visualization by Donati (2011), Figure 4.1. 

Direct numerical 

simulation of a periodic 

cube outputs data for 

statistical analysis of 

turbulence properties. 

Afterwards, the 

turbulence periodic 

cube is utilized as 

incoming flow in the 

interaction case studies 

of shock–turbulence 

and detonation–

turbulence.     

5.0 

2.5 

0.0 

-2.5 

-5.0 

Mach Number 

Figure 4.1 Homogeneous isotropic turbulence: pseudocolor plot for 
dimensionless velocity component 𝒖, 𝟐𝟓𝟔 x 𝟐𝟓𝟔 x 𝟐𝟓𝟔 grid 
(Donati, 𝟐𝟎𝟏𝟏) 



67 
 

4.1 Turbulence Periodic Cube Properties 

The periodic cube, previously shown in Figure 3.1, is the geometry selected to 

examine the fundamental structure of turbulence. The direct numerical simulation code, 

Figure 3.6, produces a unique turbulence occurrence with each run in the shape of a 

unit cube. The unit cubes of turbulence are combined to formulate the larger periodic 

cube. In this study, the turbulence periodic cube has a size of 163 × 163 × 163 units and 

is composed of 4,330,747 unit cubes, all carrying information on the properties of the 

fluid velocity, temperature, and pressure. The output data of the simulation code are 

statistically analyzed to investigate the turbulence properties. 

Davidson (2004) states that in a periodic cube, the smaller unit cubes have plane 

properties that are independent of orientation. Additionally, he outlines three 

assumptions associated with the use of the periodic cube geometry in the direct 

numerical simulation of turbulence:  

1. The constituent unit cubes, forming the periodic cube shape, are identical at any 

instant. 

2. The pressure which one unit cube imposes on the adjacent cube is negligible 

since the size of the unit is much larger than the smallest eddy size for the 

defined fluid.  

3. The unit cubes are aligned and stacked where the discontinuities between the 

edges of the unit cubes do not affect the homogeneity of the turbulence. 
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After statistical analysis of the turbulence properties, the three assumptions are 

assessed in this application to evaluate the validity of using the periodic cube shape in a 

direct numerical simulation of turbulence. 

Note that the statistical analysis of the periodic cube focuses on the velocity 

parameter since the turbulence is characterized by vortical fluctuations. In the direct 

numerical simulation, the vortical fluctuations emerge as a result of running an array of 

normally‐distributed random numbers, Figure 1.6, through the non-linear Navier–Stokes 

equations. Based on the velocity skewness criterion, defined by Tavoularis (1978) and 

others, fully-developed turbulence is achieved when the skewness factor reaches 

𝑆 = −0.5. In this study, the turbulence velocity skewness criterion is assessed for this 

periodic cube application to validate the criterion in direct numerical simulation of a 

simple homogeneous isotropic turbulence field.    
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4.2 Turbulence Periodic Cube Statistical Analysis 

The periodic cube consists of many unit cubes of turbulence. For statistical analysis 

of the direct numerical simulation output data, it is important to define the geometry 

being analyzed: are the statistical properties evaluated over the entire cube, between 

unit cubes, or over a plane? The periodic cube, of size 163 × 163 × 163 units, consists 

of 4,330,747 unit cubes and is divided into 163 turbulence periodic planes of size 

163 × 163 × 1 each, as shown in Figure 4.2.  

 

 

 

Turbulence Periodic Cube 
Size: 163 × 163 × 163 

163 

1 

𝟏𝟔𝟑 Turbulence Periodic Planes 
Size: 163 × 163 × 1 

163 

Figure 4.2 Three–dimensional turbulence periodic cube and constituent 163 three–dimensional turbulence 
periodic planes 

x 

y 
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Statistical averaging of the data output in the 

entire periodic cube yields single point values, 

while statistical averaging of the turbulence 

periodic planes, shown in Figure 4.2, leads to 

trend lines of the turbulence behavior 

throughout the cube. Thus, it is found that the 

most useful information can be extracted from 

statistically averaging the planes of 

turbulence as ensembles. Ensemble 

averaging over time is similarly used in the 

direct numerical simulation of forced isotropic 

turbulence by the Johns Hopkins University 

turbulence research groups, as shown in  

Figure 4.3. 

Average Velocities 

The first step of descriptive statistical analysis in the turbulence periodic cube is 

averaging the output of the direct numerical simulation code. The average quantities are 

then utilized in the calculations of other properties and additional statistical measures. 

Since the turbulence being studied has vortical fluctuations with constant temperature 

and constant pressure, the velocity is the topic of focus.  Note that the fluid field has no 

mean velocity. Thus, statistical analysis is only of the velocity fluctuations. The 

fluctuations are initiated from a set of normally‐distributed random numbers with a zero 

mean and a standard deviation that is 1 % of the flow velocity of interest. The turbulence 

t 

X 
Z 

Y 

Figure 4.3 Forced isotropic turbulence: direct 
numerical simulation visualization, evolution 
over time,  𝟏𝟎𝟐𝟒 x 𝟏𝟎𝟐𝟒 x 𝟏𝟎𝟐𝟒 nodes (Johns 
Hopkins University, 𝟐𝟎𝟏𝟖) 
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periodic cube only becomes a moving flow field in interaction case studies that will be 

discussed later, Figure 3.8.  

The velocity fluctuations are averaged over the turbulence periodic planes as 

ensembles.  

 

〈𝑢〉𝑁 ≡
1

𝑁
∑ 𝑢(𝑛)

𝑁

𝑛=1

 (4.1) 

The side length of the plane is 𝑁 = 163 units. The velocity fluctuations are averaged 

over the entire periodic cube (Pope, 2000) as 

 

〈𝑢(𝑡)〉𝐿 ≡
1

𝐿3
∫ ∫ ∫ 𝑢(𝑥, 𝑡)𝑑𝑥1𝑑𝑥2𝑑𝑥3

𝐿

0

𝐿

0

𝐿

0

 (4.2) 

where the side length of the periodic cube is 𝐿 = 163 units. The ensemble velocity 

averages of the three velocity components (𝑢,𝑣,𝑤) are calculated for each of the 163 

planes and plotted in sequence in Figure 4.4. 
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The line plots in Figure 4.4 (bottom graph) show the average velocity values, for the 

turbulence fluctuations in all three coordinates, varying around the mean of zero. This is 

consistent with the average turbulent velocity fluctuations evolution over time acquired 

experimentally as well as through other modelling techniques (top graph).  

Across the 163 planes in the direct numerical simulation, the three velocity 

components show different average values but similar trends in the varying close to 

zero and in an apparently random manner. It is evident that the direct numerical 

simulation code is producing a homogeneous field without numerically repeating the 
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Figure 4.4 Top: Time series of measured (experimental) and modelled (simulated neural 
network architecture) turbulent velocity fluctuations (Gholamrezaei, 𝟐𝟎𝟏𝟖) - Bottom: Average 
velocities in the direct numerical simulation turbulence periodic planes (current study) 
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Table 4.1 Average velocities in the 
turbulence periodic cube 

uavg -1.195E-02 m/s

vavg -1.486E-02 m/s

wavg -1.458E-02 m/s

Turbulence Cube 

exact values of the velocities. This is important because in later analysis, a distinction is 

made between the different Cartesian planes and their corresponding properties. The 

velocities, on average, fluctuate between ±1 m/s (with a few spikes exceeding 1 m/s 

and reaching 1.5 m/s). 

The data in Table 4.1 show that over the entire 

periodic cube, on average, the three velocity 

components fluctuate close to zero. The slight 

deviation from zero is expected due to the nature 

of the vortical fluctuations and their numerical 

simulation. As shown previously in Figure 1.6, the slight departure of velocity from a 

Gaussian distribution yields a shifted distribution away from the original bell-shape with 

a small non-zero mean.  

Root Mean Square Velocities 

The quantitative average is used in the analysis of two properties of interest: the 

fluctuating term and the standard deviation. In this study of turbulence characterized by 

vortical fluctuations, the fluctuating term is acquired from the decomposition of velocity, 

shown in Figure 4.5.  

 

 

 

 

𝒖′ 

�̅� 

 Figure 4.5 Velocity decomposition into mean and fluctuation terms 
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The velocity is separated into the mean and the fluctuating terms, making the fluctuating 

velocity definition as follows 

 
𝑢′ ≡ 𝑢 − 〈𝑢〉 (4.3) 

where the angle brackets denote ensemble averaging.  Based on the distribution 

function, shown in Figure 1.6, the fluctuations vary from one to three standard 

deviations away from the mean value. The variance is defined as the mean square 

fluctuation; making the square root of the variance the standard deviation (Pope, 2000). 

 

 
𝑣𝑎𝑟(𝑢) ≡ 〈𝑢′2〉 (4.4) 

 
𝑠𝑑𝑒𝑣(𝑢) = √𝑣𝑎𝑟(𝑢) = 〈𝑢′2〉1 2⁄  (4.5) 

The standard deviation, thus, is calculated by finding the root mean square of the 

fluctuations. In the direct numerical simulation code, the imposed vortical fluctuations 

are set to 1 % of the desired flow Mach number of 5.5 making one standard deviation 

about 17.5 m/s.  Once again, due to the nature of the vortical fluctuation generation from 

the slight Gaussian variation, the standard deviation in the root mean square averages 

is expected to vary somewhat from the Gaussian value in all three coordinates.  
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The root mean square velocities are calculated across the 163 periodic planes and 

plotted in Figure 4.6 for the three coordinate components. It is observed that the root 

mean square values vary around 17 m/s within ±1 m/s (with a few spikes and lows 

exceeding 1 and reaching 1.2 m/s variation). The standard deviation, thus, is close to 

the expected value on average. The line plots show variation between the individual 

velocity components (𝑢,𝑣,𝑤) while maintaining the same trend line fluctuations. The 

fluctuations are expected due the nature of the turbulence. 

The root mean square velocity components 

of the entire periodic cube are documented in 

Table 4.2.  It is found that the root mean square 

in the periodic cube is close to 17.5 m/s with 

slight deviation. The slight deviation, as in the 
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Figure 4.6 Root mean square velocities in the direct numerical simulation turbulence 
periodic planes 

Table 4.2 Root mean square velocities in 
the turbulence periodic cube 

urms 16.951 m/s

vrms 16.950 m/s

wrms 16.951 m/s

Turbulence Cube 
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average velocity, is expected due to the numerical simulation of the fluctuations from 

the Gaussian distribution, shown in Figure 1.6, followed by the non-linear Navier-Stokes 

equations. 

Turbulent Kinetic Energy  

Vortical forcing of the turbulence in the periodic cube creates kinetic energy. Thus, 

velocity fluctuations must be studied in detail in the energy analysis (Šavli, 2012).The 

energy is carried within the eddy structures of the turbulence where it is transferred by 

inviscid processes (first) from the larger eddies to the smaller ones successively through 

energy flux, as shown in Figure 1.5. At a small enough Reynolds numbers, the viscosity 

becomes effective, the eddy motion is stabilized. At the level of the smallest eddies, 

according to the Kolmogorov hypothesis, the energy is dissipated as heat due to 

viscosity. The turbulent kinetic energy in the periodic cube can be defined as 

 
𝑇𝐾𝐸 =

1

2
〈𝑢𝑖𝑢𝑖〉 

(4.6) 

The density is not taken into consideration in the calculation of the turbulent kinetic 

energy in this study since the periodic cube of turbulence has constant temperature and 

pressure. Based on the ideal gas law stated in Equation (3.3), constant temperature and 

pressure properties yield a constant density throughout the cube.    
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The three velocity components are added to calculate the total turbulent kinetic 

energy, shown in Figure 4.7. The energy across the turbulence periodic planes (bottom 

graph) varies around a mean of 433.5 m2/s2, within one standard deviation value  ±17.5 

m2/s2. When compared to the normalized total energy profile acquired from the time 

evolution of computationally simulated homogeneous turbulence with anisotropic forcing 

(top graph), similar high frequency variations are observed at the large flow scales.  

Figure 4.7 Top: Total energy in a homogeneous turbulence with anisotropic forcing, time 
evolution in direct numerical simulation with spatial resolution of 𝟐𝟓𝟔𝒙𝟐𝟓𝟔𝒙𝟐𝟓𝟔 (Biferale, 
 𝟐𝟎𝟎𝟏) - Bottom: Turbulent kinetic energy in the direct numerical simulation turbulence 
periodic planes (current study) 
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Table 4.3 Turbulent kinetic energy in the 
turbulence periodic cube 

TKE 430.984 m2/s2

Turbulence Cube 

In the turbulence periodic cube, the turbulent 

kinetic energy is calculated and found to be 

slightly higher than 430 m2/s2, as shown in Table 

4.3.  

While the turbulent kinetic energy in the physical and time domains gives an 

indication of the strength of the turbulence fluctuations (Šavli, 2012), investigating the 

energy in the frequency domain gives information on the energy dissipation and its 

relation to the eddy size. The largest length scale 𝐿 is determined by the geometry of 

the periodic cube and is slightly larger than the integral length scale 𝑙0 of the eddy size 

carrying the most energy. The smaller length scales can be quantified by the Taylor 

microscale in the inertial subrange, where the energy transfer occurs, and by the 

Kolmogorov scale in the dissipation range, as shown in Figure 4.8.  
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For homogeneous isotropic turbulence, however, there is neither production nor 

transport properties (Pope, 2000). So, the evolution of the turbulent kinetic energy 

reduces to an energy dissipation expression in the time domain. 

 

휀(𝑡) = −
𝑑(𝑇𝐾𝐸)

𝑑𝑡
 (4.7) 

Since the dissipation occurs at the smallest eddy size due to viscosity, the smallest 

length scale is calculated using the energy dissipation expression in Equation (4.7) and 

the flow viscosity. The Kolmogorov length scale  𝜂 formed from these quantities is  

 

𝜂 = (
𝜈3

휀(𝑡)
)

1
4⁄

 
(4.8) 

where the fluid kinematic viscosity 𝜈 is defined as 

Dissipation Production 

Universal equilibrium range 

Transfer of energy to 
successively smaller scales 

 

       𝑳               𝒍𝟎                 𝒍𝑬𝑰                                                           𝒍𝑫𝑰              𝜼 

Integral length 
scale 

Taylor 
microscale 

Kolmogorov length 
scale 

Energy containing 
range 

Inertial subrange Dissipation range 

Eddy size 

Figure 4.8 Different length scales and ranges in the turbulence energy cascade as adopted 
from Pope (𝟐𝟎𝟎𝟎) 
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𝜈 =

𝜇

𝜌
 (4.9) 

and the constituent dynamic viscosity μ and density ρ terms are calculated using 

Equations (3.8) and (3.3) respectively. The energy dissipation Equation (4.7) is 

transformed to an expression of frequency using Fourier transform. It is normalized by 

the turbulence integral length scale. The Fourier transform is a mathematical operation 

that takes a property in the time domain and expresses it in the spectral domain. The 

Kolmogorov length scale for this study is calculated using Equation (4.8), inversed to 

give the frequency κ, and normalized by the integral length scale. The normalized 

energy dissipation in the frequency domain is plotted in Figure 4.9 against the natural 

log normalized Kolmogorov scale for the turbulence periodic cube.  

 

 

 

 

 

 

 

Turbulence in the periodic cube structure needs a continuous supply of energy to 

make up for the viscosity losses. Otherwise, the turbulence rapidly decays. The energy 

dissipation vs. Kolmogorov scale plot, shown in Figure 4.9, portrays the energy 

dissipation from the largest turbulence eddies to the smallest ones. The normalized 

0

5

10

15

20

25

30

35

40

𝐿 𝑙0 η 

𝜺(𝜿)

𝒍𝟎 
 

𝐥𝐧 (𝜿𝒍𝟎) 

Figure 4.9 Energy dissipation in the turbulence periodic cube 
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energy spectrum, based on Kolmogorov’s second similarity hypothesis, is not seen in 

this periodic cube because homogeneous isotropic turbulence does not have production 

or transport properties. The energy can only be dissipated. The high frequency 

variations seen in the large flow scales in Figure 4.7 are absent at the small scales of 

energy dissipation.  

In addition, the plot shows that the turbulence in the periodic cube is not in 

equilibrium; as seen by the irregularities in the line graph. Once the turbulence cube 

acquires mean flow axial velocity, then the turbulence will be in equilibrium since the 

mean travel velocity sustains the turbulence energy. Only then will the energy cascade 

properties appear clearly.   

Reynolds Stress Components 

The turbulent kinetic energy relation, shown in Equation (4.6), is a single–point 

correlation. A single–point correlation is the simplest statistical directionally dependent 

measure used to determine a relation between two quantities in the turbulence field. 

This correlation is defined as follows. 

 
𝑅𝑖𝑗(𝑟, 𝑥, 𝑡) ≡ 〈𝑢𝑖(𝑥, 𝑡)𝑢𝑗(𝑥 + 𝑟, 𝑡)〉  (4.10) 

Single–point correlation also leads to information regarding the vortical fluctuations’ 

contribution to the momentum flux frequently referred to as Reynolds stress. 

 
𝑅𝑆𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 

(4.11) 

The density is not considered in the Reynolds stress Equation (4.11), as in the turbulent 

kinetic energy Equation (4.6), because it is constant throughout this ideal gas in the 

periodic cube. The Reynolds stress nine component tensor has three diagonal 
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components: 𝑅𝑆𝑢𝑢, 𝑅𝑆𝑣𝑣, 𝑅𝑆𝑤𝑤, which are referred to as normal stress terms, and six off‐

diagonal components: 𝑅𝑆𝑢𝑣, 𝑅𝑆𝑢𝑤, 𝑅𝑆𝑣𝑢, 𝑅𝑆𝑣𝑤, 𝑅𝑆𝑤𝑢, 𝑅𝑆𝑤𝑣, which represent tangential or 

shear stress terms. The tensor is symmetrical across the diagonal components since 

〈𝑢𝑖𝑢𝑗〉 = 〈𝑢𝑗𝑢𝑖〉 and reduces to six terms: three diagonal and three unique off-diagonal 

components. The three diagonal Reynold stress components 𝑅𝑆𝑢𝑢, 𝑅𝑆𝑣𝑣, 𝑅𝑆𝑤𝑤 represent 

the turbulent kinetic energy constituent terms, are calculated across the periodic planes 

and plotted in Figure 4.10.  
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The normal stress terms (bottom graph) vary around 289 m2/s2 within one standard 

deviation value ±17.5 m2/s2, as in the turbulent kinetic energy line graph shown in 

Figure 4.7 (with a few spikes and lows reaching up to 43.3 m2/s2 variation). When 

compared to the diagonal components of the normalized Reynolds stress in velocity 

forced turbulence closely following direct numerical simulation studies (top graph), the 
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Figure 4.10 Top: Time evolution of the diagonal components of the normalized Reynolds 
stress in velocity forced turbulence closely following direct numerical simulation (Gravanis, 
𝟐𝟎𝟏𝟏) - Bottom: Diagonal components of the Reynolds stress in the direct numerical 
simulation turbulence periodic planes (current study)   
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three components are seen to follow the same trend; varying around a mean value 

between higher and lower disturbances.  

The three normal stress diagonal terms are 

calculated for the entire periodic cube and shown 

in Table 4.4. All three components at 287.3 m2/s2 

are close to the mean value of the periodic cube 

line graphs. Thus, it can be seen that the 

correlation of the velocity fluctuations in the diagonal Reynolds stress terms is high 

formulating the momentum in the turbulent kinetic energy.  

The final step in the statistical analysis of the turbulence periodic cube is the 

calculation of the three unique off-diagonal Reynolds stress components 

𝑅𝑆𝑢𝑣, 𝑅𝑆𝑢𝑤, 𝑅𝑆𝑣𝑤 across the periodic planes. These terms are plotted in Figure 4.11.  

 

 

 

 

 

 

 

 

RSuu 287.330 m2/s2

RSvv 287.314 m2/s2

RSww 287.323 m2/s2

Turbulence Cube 

Table 4.4 Diagonal components of the 
Reynolds stress in the turbulence periodic 
cube 
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The shear stress terms are the off-diagonal components of Reynolds stress. In the 

turbulence periodic cube, they fluctuate around the mean of zero within one standard 

deviation value ±17.5 m2/s2, similar to the normal stress line graphs’ trend shown in 

Figure 4.10 (with a few spikes and lows reaching up to 23 m2/s2). The velocity 

fluctuations, thus, are weakly contributing to the momentum flux in the cross planes.   

The three shear stress terms are calculated 

for the entire periodic cube and shown in Table 

4.5. The three components are between 1.7 

m2/s2 and 1.8  m2/s2. The correlation between 

the different velocity fluctuation terms in the 

off-diagonal Reynolds stress components is low compared to that of the diagonal 

components.   

RSuv 1.761 m2/s2

RSuw 1.810 m2/s2

RSvw 1.822 m2/s2

Turbulence Cube 

Table 4.5 Off-diagonal components of the 
Reynolds stress in the turbulence periodic 
cube 

Figure 4.11 Off-diagonal components of the Reynolds stress in the turbulence periodic planes 
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Numerically, the significant different in the Cartesian coordinate correlations 

between the diagonal and the off-diagonal Reynolds stress components can be 

attributed to the nature of the velocity fluctuation distribution, as shown in Figure 1.6. 

The distribution dictates that each velocity value falls one, two, or three standard 

deviations away from the mean of zero. When one velocity component is correlated to 

itself, the variation from the mean is squared and leads to large numerical values of the 

correlation. When one velocity component is correlated to another Cartesian coordinate 

component, the variation between the two terms drives the correlation value closer to 

the mean of zero. It is recommended that future research investigates the single–point 

correlation in the polar coordinates using coordinate transformation relations outlined by 

Currie (2013). These correlations could lead to better physical understanding of the 

Reynolds stress terms and corresponding fluid characteristics.  
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4.3 Assessment of the Periodic Cube Assumptions 

The periodic cube, shown in Figure 3.1, is the shape selected for the direct 

numerical simulation of homogeneous isotropic turbulence. This simplified geometry 

facilitates the computational simulation and speeds up the numerical algorithms solving 

the Navier–Stokes equations.  Its use is based on a set of assumptions by Davidson 

(2004) listed in Section 0. After the statistical analysis of the turbulence periodic cube’s 

vortical fluctuation properties, the three assumptions are assessed in this application.  

1. The constituent unit cubes, forming the periodic cube shape, are identical at any 

instant. 

In this study, a 163 × 163 × 163 turbulence periodic cube is simulated. It is 

composed of 4,330,747 unit cubes. The unit cubes are the same size, with the same 

initial and boundary conditions. They carry the same fluid input properties. Each 

cube has vortical fluctuations that are numerically simulated by a random number 

generator from a Gaussian distribution with the same mean and standard deviation. 

The same random number generator is utilized in the generation of each unit cube. 

They are run through the same non-linearity process and evaluated for the same 

skewness criterion. However, each time the random number simulation algorithm is 

run, a different array of random numbers is generated, still satisfying the turbulence 

requirements. Thus, the unit cubes are identical in their properties and turbulence 

criteria but unique in the constituent numerical vortical fluctuation values. The plots 

of ensemble average velocities, root mean square velocities, velocity correlations, 

and energy dissipation between the turbulence planes in Section 0 show that the 

velocities across the periodic planes vary within set intervals without repeated 
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patterns. This shows that the velocity fluctuations are not identical within the unit 

cubes. Therefore, while the definition by Davidson (2004) states that the constituent 

unit cubes are identical at any instant, in this application they are considered to be 

closely related within a certain confidence level. 

2. The pressure which one unit cube imposes on the adjacent cube is negligible 

since the size of the unit is much larger than the smallest eddy size for the 

defined fluid. 

The pressure in this direct numerical simulation of homogeneous isotropic 

turbulence is constant. The turbulence is characterized by vortical fluctuations and 

not acoustic fluctuations. The shape of the periodic cube consists of the grouping of 

constituent unit cubes. Each unit cube is generated by the simulation outlined in 

Figure 3.6. Each unit cube has a constant pressure which is the same as that of the 

entire periodic cube. Based on the numerical algorithm, there is no pressure 

imposed by one unit cube on the other because the pressure values are not varying 

based on the unit cube location. The corner cubes, center cubes, and the very 

bottom ones all have the same pressure. Based on Davidson’s (2004) assumption, 

the lack of pressure transfer between the cubes can be shown by comparing the 

size of the unit cube to the size of the smallest eddy in the fluid. In the energy 

dissipation analysis, in Section 0, the different turbulence scales are calculated. The 

largest eddy scale 𝑙0is found to be 9.1961 m while the smallest eddy size, based on 

the Kolmogorov scale, is found to be 0.0379 m using Equation (4.8). The size of the 

largest eddy is slightly smaller than the characteristic length of the geometry 

structure 𝐿 which is found to be 10.3258 m. When these physical lengths are 
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matched to the non-physical unit length measurements in the periodic cube, a unit 

becomes equivalent to 0.06335 m, which is larger than the smallest eddy size of 

0.0379 m. Thus, the cubes are not communicating through the pressure field with the 

size of the unit cube being larger than the smallest eddy in the defined fluid. 

3. The unit cubes are aligned and stacked where the discontinuities between the 

edges of the unit cubes do not affect the homogeneity of the turbulence. 

The periodic cube consists of individual unit cubes each acquired from a numerical 

simulation run. The generated 4,330,747 cubes are aligned and stacked to give the 

periodic cube of size 163 × 163 × 163 units, as shown in Figure 2.2. The statistical 

analysis of the turbulence periodic cube is performed over the periodic planes, 

shown in Figure 4.2, and the line graphs are evaluated to assess the unit cube edge 

effects. First, the line graphs in Section 0 are investigated for possible pattern 

repeatability that may indicate that the unit cubes are not unique. Any repeatability 

shows that the field is no longer homogeneous because the mean quantities are no 

longer spatially invariant. The graphs are assessed for discontinuities indicating that 

the structural combination of the periodic cube leaves traces of rough edges 

between the constituent unit cubes. The analysis plots do not show repeated 

patterns, discontinuities, or sharp edges. The plots consistently show no indication 

that the edges of the unit cubes affect the data distribution in the periodic cube. 

Thus, based on the statistical analysis of the turbulence periodic cube with vortical 

fluctuations, it is verified that the unit cubes are stacked and aligned where their 

edges are not affecting the homogeneity of the turbulence. 
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4.4 Assessment of the Turbulence Velocity Skewness Criterion  

The velocity skewness factor is used in the direct numerical simulation of the 

homogeneous isotropic turbulence periodic cube. The skewness factor definition was 

set by Tavoularis in 1978 as shown in Equation (2.1) and still stands as the reference 

expression used to determine when turbulence has reached fully-developed state. 

Previous experimental and computational 

research have shown that a value of −0.5 is 

the velocity skewness factor required in the 

case of isotropic turbulence to reach fully-

developed state. Pan (2017) documents the 

time evolution of the velocity skewness in 

two simulation studies of homogeneous 

isotropic turbulence, shown in Figure 4.12. 

In both cases, the skewness converges to 

the desired −0.5 value in time.  

This criterion is employed in the direct numerical simulation code of this study to 

generate the unit cubes of turbulence, as shown in Figure 3.6. The documented 

skewness value of −0.5 is sought in the streamwise direction. Since the definition 

shows the variation of the streamwise velocity in the 𝑥-direction, it will be referred to as 

𝑆𝑢𝑥 and the velocity skewness expression in Equation (2.1) is updated to 

Figure 4.12 Convergence study for simulations of the 
decay of compressible homogeneous isotropic 
turbulence: the evolution of the skewness of the 
velocity derivative in time (Pan, 𝟐𝟎𝟏𝟕) 
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𝑆𝑢𝑥 ≡ −
(
𝜕𝑢
𝜕𝑥

)
3̅̅ ̅̅ ̅̅ ̅̅

[(
𝜕𝑢
𝜕𝑥

)
2̅̅ ̅̅ ̅̅ ̅̅
]

3 2⁄
 (4.12) 

When evaluating the skewness of the velocity fluctuations in the turbulence periodic 

cube in this application, the shape geometry and fluid properties are considered. The 

periodic cube is a still fluid field. Thus, there is no significance to the coordinate 

assignment since there is no direction of travel and subsequent transverse planes. The 

periodicity of the cube dictates that what occurs on one face of the cube occurs on the 

opposite side, Figure 2.2. The homogeneity and isotropy of the turbulence ensure that 

the mean quantities of a fluid property are invariant under translation and 

rotation/reflection respectively. The lack of directional preference in the cube geometry 

and fluid properties brings to light the question: Is the streamwise velocity variation 

the important skewness factor to consider in the turbulence assessment? 

Proposing Additional Velocity Skewness Components  

The velocity skewness components in the 𝑦 and 𝑧-directions are defined following 

the Tavoularis (1978) expression in Equation (4.12) as follows. 

 

𝑆𝑣𝑦 ≡ −
(
𝜕𝑣
𝜕𝑦

)
3̅̅ ̅̅ ̅̅ ̅̅

[(
𝜕𝑣
𝜕𝑦

)
2̅̅ ̅̅ ̅̅ ̅̅
]

3 2⁄
 

 

(4.13) 

 

𝑆𝑤𝑧 ≡ −
(
𝜕𝑤
𝜕𝑧

)
3̅̅ ̅̅ ̅̅ ̅̅

[(
𝜕𝑤
𝜕𝑧

)
2̅̅ ̅̅ ̅̅ ̅̅
]

3 2⁄
 

 

(4.14) 



92 
 

This study evaluates all three velocity skewness components for the periodic turbulence 

cube. Similarly, Nagarajan (2009a) evaluated the time evolution of the three velocity 

skewness components for homogeneous isotropic turbulence in two direct numerical 

simulation studies, Figure 4.13. Starting at zero velocity skewness, the simulations are 

allowed to progress until all three skewness components converge to the desired value 

of −0.5. 

 

The three skewness components for this study are evaluated for 163 unit cubes, not 

over time, and shown in Figure 4.14. Note that the central differencing method, shown 

in Figure 3.3 and Equation (3.4), is used in the differential calculations of the skewness 

components and yields the same values for 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 since the spatial distribution in the 

cube is the same in all three coordinates. 

 

 

Figure 4.13 Time evolution of the three velocity skewness components in two direct numerical 
simulations of homogeneous isotropic turbulence (Nagarajan, 𝟐𝟎𝟎𝟗) 
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Sux 0.03011

Svy 0.03021

Swz 0.02999

Turbulence Cube 

Table 4.6 Velocity 
skewness components in 
the turbulence periodic 
cube 
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Figure 4.14 Velocity skewness components for a sample of 𝟏𝟔𝟑 unit cubes 

 

 

 

 

 

 

 

 

 

 

  Figure 4.14 shows that within the periodic cube, the skewness components vary in 

magnitude between −1 and 1 (with a few spikes reaching up to 1.5 and dips reaching 

up to −1.8 variation) over a set of 163 unit cubes. The periodic cube consists of many 

unit cubes, however only 163 are selected for this analysis for better visual 

representation of the skewness values and to match the statistical analysis in the 

periodic planes’ graphs, shown in Section 0.  

The three velocity skewness components are averaged 

over the entire periodic cube and found to be close to zero, 

as documented in Table 4.6.  
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The analysis in Figure 4.14 shows that two additional graphs are required. The first 

is the velocity skewness components’ distribution diagram over the entire periodic cube 

to document the numerical values of the skewness components in all the unit cubes. 

The second is the plot of the skewness components’ occurrence frequencies in the 

entire periodic cube. 

 

 

 

 

 

 

 

 

 

Since the plot in Figure 4.14 only shows the velocity skewness components 

corresponding to 163 unit cubes, the distribution of all the unit cubes’ skewness 

components is plotted in Figure 4.15. The distribution graph shows that the highest 

skewness reached is 1.5 and the lowest is −1.8. The distribution also highlights the 

mean velocity skewness in the periodic cube around zero, which agrees with the 

documented values in Table 4.6.  

Figure 4.15 Velocity skewness components’ distribution in the turbulence periodic cube 
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Figure 4.16 shows the frequencies of occurrence of the different velocity skewness 

values, shown in the distribution diagram in Figure 4.15. It is found that all three 

skewness components behave similarly; the frequencies of occurrence are very close 

within each set interval. It is found that the most occurring velocity skewness measure is 

the desired value of −0.5. This is expected as it is the requirement for code termination. 

The vortical fluctuations in this direct numerical simulation study may have a higher or 

lower skewness value based on the array of random numbers generated within the unit 

cube during the run; the simulation advances and loops until the desired skewness is 

reached in at least one direction. 

For truly isotropic turbulence, the three velocity skewness components should be the 

same for a large enough geometry. But with the numerically simulated and non‐

linearized random numbers, the velocity fluctuations’ arrays are not exactly the same. 

While some may say they are the same within a set confidence interval, in this 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Frequency in the 
Turbulence 

Periodic Cube 

Velocity Skewness 

Sux

Svy

Swz

Figure 4.16 Velocity skewness frequencies in the turbulence periodic cube 
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application, the differences are studied to evaluate their significance and uniqueness. 

This is crucial in determining their importance when addressing the question regarding 

the skewness long‐standing definition.  

In the unit cubes, the velocity fluctuations are averaged to give a single skewness 

value for each component. When the velocity skewness is reached in at least one 

coordinate, the simulation terminates. However, sometimes the required skewness is 

reached in two and even three coordinates before the end of the simulation. Thus, due 

to computational advancements, all three skewness factor coordinates are assessed in 

this study for each unit cube and used to characterize the turbulence state. So, what 

happens when the velocity skewness criterion is reached in one, two, or three 

coordinates? Is one case more turbulent than another or more developed? Three 

case studies in which the skewness criterion in a unit cube is reached in: (a) one, (b) 

two, and (c) three coordinates are documented in Figure 4.17. 
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Figure 4.17 Case studies in which the skewness criterion is reached in (a) one (b) 
two and (c) three coordinates in unit cubes of turbulence 
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In each unit cube, a single skewness value is obtained for each component by 

averaging the velocity in a defined coordinate. In Figure 4.17, the velocity skewness 

measures are not documented, but rather the distribution of the velocity fluctuations 

leading to the skewness values are plotted against the reference Gaussian distribution. 

The three case studies show unit cubes in which:    

(a) The skewness criterion is reached in one of the three coordinates, 𝑆𝑣𝑦 

(b) The skewness criterion is reached in two of the three coordinates, 𝑆𝑢𝑥 and 𝑆𝑣𝑦 

(c) The skewness criterion is reached in all three coordinates, 𝑆𝑢𝑥,  𝑆𝑣𝑦, and 𝑆𝑤𝑧 

The numerical simulation yields millions of such distributions for the unit cubes. The 

three shown in Figure 4.17 are selected as representative samples to display the 

observed trends. In this numerical simulation code, it is found that the most occurring 

case is that of the velocity skewness reaching the Tavoularis criterion in two 

coordinates. The least occurring case is that of the velocity fluctuations in all three 

coordinates reaching the desired skewness. This is strictly due to the computational 

simulation time previously defined in Equation (3.25). For a turbulent field, the velocity 

skewness is expected to shift from the normal distribution of the Gaussian plot slightly 

away from the mean, but still maintain the shape and the intervals of standard 

distribution, as shown Figure 1.6.  

This expected trend is in fact observed in (a). In the one coordinate where the 

skewness criterion is met, the plot shape is the closest to the Gaussian distribution, with 

a slight deviation. In the other two coordinates, irregular shapes are observed. The 

velocity fluctuation plots are shifted away from the Gaussian distribution, but do not 
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maintain the bell-shaped curve. When the desired skewness is reached in two 

coordinates, drawing such clear distinctions is not as easy. In (b) the two plots 

corresponding to the velocities reaching the desired skewness maintain the bell-shape 

and are closer to the Gaussian distribution height than the one case that has not 

reached skewness yet. However, the third case does not show irregular behavior. 

Finally, when the skewness criterion is reached in all three coordinates, the trends are 

even more challenging to depict. In (c) all three plots resemble the Gaussian distribution 

with slight deviation. However, velocity distributions in different coordinates may shift 

farther away from the mean and not reach the highest point, as in the reference bell 

curve.  

It is found that when the skewness criterion is reached in one coordinate and the 

simulation terminates, the other two are underdeveloped and show clear disturbances. 

The velocity fluctuations in the one coordinate that reaches the desired criterion are 

locked and cleared of surrounding disturbances. However, as velocity fluctuations reach 

the desired skewness level in additional coordinates within the simulation time, clear 

trends are not as easily observed. The velocity fluctuations continue to be affected by 

the fluctuations in the other coordinates. The fluid field carries more disturbances within 

the different coordinates. If the data that is skewed in more coordinates is considered 

more turbulent, then that is in fact observed in these case studies. When the fully-

developed criterion is sought in multiple coordinates, as proposed in this discussion, it 

must be noted that the data become more disturbed and the computational cost 

increases. Thus, the turbulence becomes more chaotic and inherent instabilities are 

amplified.  
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The question thus becomes: Is the Tavoularis criterion for streamwise velocity 

variation sufficient to characterize the turbulence state? In this discussion, three 

skewness components are introduced and analyzed. For the turbulence interaction case 

studies, the velocity skewness vector is proposed. The three components evaluated in 

the turbulence periodic cube study become the diagonal terms of the nine component 

skewness tensor. 

 

𝑆𝑢𝑖𝑥𝑗
= [

𝑆𝑢𝑥 𝑆𝑢𝑦 𝑆𝑢𝑧

𝑆𝑣𝑥 𝑆𝑣𝑦 𝑆𝑣𝑧

𝑆𝑤𝑥 𝑆𝑤𝑦 𝑆𝑤𝑧

] (4.15) 

The proposed velocity skewness vector takes into consideration all three velocity 

components and their variations in all three Cartesian coordinates. It is a 

comprehensive assessment of the velocity skewness parameter and is used to evaluate 

whether the long‐standing Tavoularis skewness factor is sufficient for characterizing the 

turbulence state or if it can be extended to include more components that carry 

additional information. 
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5. Turbulence Interaction Case Studies 

The turbulence periodic cube, in Figure 3.1, is simulated and statistically analyzed to 

understand the fundamental turbulence structures. The next step is to introduce the 

cube of homogeneous isotropic turbulence into the computational domain, shown in 

Figure 3.8, as incoming flow to the interaction case studies of interest: shock–

turbulence and detonation–turbulence interactions. An assessment of all the possible 

combinations of turbulent flow interactions with wave front types, for this topic of study, 

is documented in Table 2.2. As a result, a third case study is added: unforced–

detonation interaction. A direct numerical simulation code, Figure 3.7, is utilized to 

generate all three case studies and is run through the computational resources of the 

Texas Advanced Computing Center at the University of Texas at Austin due to its high 

computational power requirements. The output data of all three interactions are 

collected and statistically analyzed.  
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5.1 Turbulence Interaction Case Studies’ Properties 

The computational domain of the interaction case studies, shown in Figure 3.8, is 

the cuboid of size 815 × 163 × 163 units. The periodic cube of turbulence of size 

163 × 163 × 163 units and previously defined fluid properties starts at the inlet of the 

domain and travels through the 815 units axially. The thin wave front is placed halfway 

through the domain allowing enough space for the turbulence periodic cube to travel, 

interact with the wave front, and propagate downstream of the wave. In the case of 

shock–turbulence interaction, the wave is a stationary normal shock. In the cases of 

unforced–detonation and detonation–turbulence interactions, it is a normal shock with 

added heat release, creating an inherently unstable detonation wave. Both wave front 

types are fixed and do not propagate once they interact with the traveling flow. The 

turbulence case studies have an incoming periodic cube with vortical forcing, while the 

unforced case has no velocity fluctuations; the velocity is constant in the entire periodic 

cube. In all three case studies, the same velocity of interest is used corresponding to 

Mach 5.5. Based on the fluid field properties, the velocity becomes 1747.77 m/s. This 

velocity is imposed in the axial direction only and is selected as it allows the heat 

release parameter in the detonation case studies to sustain an adiabatic flame as in 

small paraffins in stoichiometric air.  

Unforced–Detonation Interaction 

The first case study is the interaction of an unforced field with a detonation wave. It 

is introduced as a third case study to the two main cases of turbulence interactions as a 

control to compare against the detonation–turbulence and eliminate the turbulence 

effects. A similar unforced–shock interaction is not proposed because it simply 
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represents a flow interacting with a normal shock wave, which has very well understood 

and documented equations. The unforced field has no vortical forcing, and thus the 

velocity is constant, as are the fluid temperature and pressure. All the other fluid 

properties are the same as those in the turbulence periodic cube. The unforced periodic 

cube, shown in Figure 5.1, is introduced to the computational domain, travels at the 

velocity of 1747.77 m/s (Mach 5.5) through the cuboid, interacts with the inherently 

unstable detonation wave, and propagates downstream of the wave front.  

This case study allows the analysis of the effects of the heat release and the detonation 

instability without any additional disturbances from the flow itself. The incoming constant 

flow velocity, temperature, and pressure will experience changes post-shock based on 

the normal shock relations and heat release, outlined in Section 0. However, no 

coupling effects are present. 

 
 

  

Normal, Stationary 
Detonation Wave  

ddetonation  

Unforced Cube with 
no Fluctuations  

MM 𝟓.𝟓 

Unforced–Detonation Interaction 

Constant pressure 
Constant temperature 
Constant velocity 
 

Figure 5.1 Computational domain of the unforced–detonation interaction case study 
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Shock-Turbulence Interaction 

The second case study is the interaction of the homogeneous isotropic turbulence 

periodic cube with a shock wave. Much research has been conducted in this topic for 

flow with vortical fluctuations and its interaction with a moving or stationary shock. Thus, 

it is utilized as a reference to ensure the validity of the direct numerical simulation code 

when the output data is compared to documented literature. In this study, the incoming 

fluid flow has vortical fluctuations and acquires mean travel velocity of 1747.77 m/s in 

the axial direction. Similarly to the unforced–detonation case, the periodic cube starts at 

the computational domain inlet and travels down the cuboid. It interacts with the fixed 

shock wave and continues to travel downstream while the shock wave remains 

stationary, as shown in Figure 5.2. 

 

 

 

 

 

 

 

The flow properties of velocity, temperature, pressure, and density are altered by the 

normal shock relations, as shown in Figure 2.3. The incoming fluid flow with turbulent 

instabilities experiences amplifications and dampening due to the interaction with the 

shock wave.  

Shock–Turbulence Interaction 

dshock  

Normal, Stationary 
Shock Wave  

Periodic Turbulence 
Cube with Velocity 
Fluctuations  

M 𝟓.𝟓 Constant pressure 
Constant temperature 
Varying velocity 

Figure 5.2 Computational domain of the shock–turbulence interaction case study 
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Detonation-Turbulence Interaction 

The third and final case study is the interaction of the homogeneous isotropic 

turbulence periodic cube with a detonation wave. This study differs from the shock–

turbulence interaction in the fact that it has an exothermic reaction with the added heat 

release complexity. Moreover, the detonation structure has a length scale associated 

with it and intrinsic fluctuations that cause instabilities, both which are not present in the 

shock wave. Fewer researchers have investigated the detonation–turbulence interaction 

case study, when compared to the works in shock–turbulence interaction. This study 

aims to establish an understanding of the effects of heat release, the detonation length 

scale, and the intrinsic wave instability on the propagation of the turbulent flow. The 

incoming turbulent flow has vortical fluctuations and travels with a mean axial velocity of 

1747.77 m/s as in the shock–turbulence interaction. The flow starts at the computational 

domain inlet, travels through the cuboid, interacts with the detonation wave, and 

continues to travel downstream of the domain, as shown in Figure 5.3. Throughout the 

interaction, the detonation wave placement remains stationary.  
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Figure 5.3 Computational domain of the detonation–turbulence interaction case study 
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The flow properties of velocity, temperature, pressure, and density are changed by the 

normal shock relations and the single-step Arrhenius law upon the interaction, as shown 

in Figure 2.5. The incoming turbulent fluid flow experiences amplifications and 

dampening due to the interaction with the detonation wave. The effects of the 

turbulence, the detonation structure, and their interaction are assessed in this case 

study.  
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5.2 Turbulence Interaction Case Studies’ Statistical Analysis 

After the computational domain and interaction parameters are defined, the direct 

numerical simulation data output is analyzed. The equations utilized in the statistical 

analysis of the fluid flow properties in the three interaction case studies are the same as 

those used in the turbulence periodic cube statistical analysis. Thus, the equations in 

Section 0 are not stated again. The data in each square plane is averaged into a single 

point. The points are then connected over the 815 planes to create a line plot depicting 

the evolution of the fluid property through the computational domain, as shown in Figure 

5.4. 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 5.4 Averaging fluid properties in individual square planes and combining the averages over 
the computational domain  
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Average Velocities  

The axial flow velocity is set in all three case studies as 1747.77 m/s. The transverse 

velocities in the periodic cubes are different between the turbulent and unforced case 

studies. In the turbulence periodic cube, the transverse velocities are the velocity 

fluctuations with mean of zero and a standard deviation set to 1 % of the incoming travel 

velocity (with slight deviation). In the unforced case study, however, there are no 

velocity fluctuations and thus the transverse velocities are zero. The difference in the 

velocity ranges dictates plotting the average axial and transverse velocities separately.   

The axial velocities of all three case studies are averaged, using the technique 

shown in Figure 5.4, and plotted alongside the normal shock solution and the ideal 

Zel’dovich, von Neumann, Döring (ZND) detonation model, in Figure 5.5. The normal 

shock solution is based on the relations documented in Section 0. It shows the velocity 

drop as a step function. The ideal ZND detonation model is based on the equivalent 

detonation relations (Glassman, 2008), one–dimensional ZND model developed by 

Shepherd (1986), and numerical simulation studies by Massa (2011a). The velocity 

experiences a sharp drop followed by a rise and a return to isotropy farther 

downstream. 
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Figure 5.5 Top left: Normalized shock–turbulence interaction average axial velocity profiles 
at Mach 𝟏.𝟐𝟕,𝟏.𝟓,𝟏.𝟖𝟕, direct numerical simulation study (Larsson, 𝟐𝟎𝟎𝟖) - Top right: 
Normalized unforced–detonation, vortically forced and entropically forced detonation–
turbulence interaction average axial velocity profiles at Mach 𝟓.𝟓, direct numerical 
simulation study (Massa, 𝟐𝟎𝟏𝟏a)- Bottom: Average axial velocity profiles in unforced–
detonation, shock–turbulence, and vortically forced detonation–turbulence case studies at 
Mach 𝟓.𝟓 compared to the normal shock solution and ideal ZND detonation model, direct 
numerical simulation (current study) 
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Larsson (2008) shows that the larger Mach numbers denote larger shock jumps, top 

left diagram. At Mach 5.5, the shock–turbulence average velocity profile, in the current 

study’s bottom diagram, follows the step function shape with a significant jump. 

However, the step is shifted to the right, when compared to the normal shock solution, 

behind the shock wave front and sustains a higher energy level post‐shock. These two 

effects, thus, are attributed to the incoming flow turbulence.  

Massa (2011a) compares the detonation–turbulence interaction average axial 

velocity profiles of two forcing types to the ZND model, top right diagram. The 

detonation–turbulence velocity profile in this current study, bottom diagram, follows the 

general shape of the ZND model solution. The shifting of the velocity profile is observed 

again at the wave front location. However, the downstream behavior is more complex in 

the presence of fluctuations, as is observed in Massa’s (2011a) diagram. The drop in 

velocity does not reach the lowest point that the ZND model proposes. The velocity 

profile rises but fluctuates in an attempt to reach the ZND level and return to isotropy.  

The unforced–detonation case study follows the general shape of the ZND 

detonation model, as in Massa’s (2011a) diagram. It experiences a velocity drop prior to 

any of the other case studies. In the absence of turbulence, this is attributed to the 

unsteadiness of the detonation wave. The velocity profile reaches a minimal in the drop 

that is higher than that predicted by the ZND model and follows the detonation–

turbulence interaction fluctuation pattern downstream. The higher minimum velocity and 

downstream variations are thus attributed to the detonation wave length scale and 

intrinsic instability.  
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Therefore, the average velocity deviation is a stretch in the flow response to the 

shock wave properties and is attributed to the turbulence instabilities present in the 

shock and detonation–turbulence interactions. The unsteadiness of the detonation wave 

causes the unforced–detonation case study to begin to drop ahead of the wave front. 

The detonation length scale and intrinsic instability cause the fluctuations of the flow 

downstream when compared to the ideal ZND model. The flow is attempting to return to 

isotropy but is experiencing dampening due to the detonation effects. Both detonation 

case studies also show the lowest average velocity higher than that in the ideal ZND 

model making all three case studies’ direct post-shock velocities higher than the 

theoretical values. This can be attributed to the numerical simulation and the non-

linearity of the Navier-Stokes equations used to generate the fluid properties in the three 

case studies. 

After analyzing the average axial velocity profiles, the transverse velocity profiles are 

plotted for all three case studies and compared in Figure 5.6.  
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Since the velocities in the transverse planes are low, they never reach Mach 1. 

Thus, the normal shock relations cannot be applied to predict the velocity profile 

downstream. Instead, the mass flow rate relation is used 

 
𝜌𝑣 = 𝜌𝑃𝑆𝑣𝑃𝑆 (5.1) 

where the density term is calculated using the ideal gas law, Equation (3.3). The density 

post shock is calculated using the normal shock relations because it represents the fluid 

properties in the computational domain. Figure 5.6 shows that in the unforced–

detonation case study, the transverse velocities start around zero and continue in the 

same manner across the entire computational domain. However, in the two turbulence 

case studies, the transverse velocities experience amplification and dampening. Even 

Figure 5.6 Average transverse velocities in the three case studies  
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though the velocity values are still on average close to zero, these variations are 

attributed to the turbulent fluctuations not the shock or detonation waves.  

It must be noted that the detonation–turbulence interaction case studies’ transverse 

velocity profiles show more distinct fluctuation patterns post‐shock. The detonation case 

studies in the axial velocity profiles also show fluctuations in the far field of the 

computational domain. So, the detonation structure is consistently causing varying 

patterns downstream of the wave front not present in the shock–turbulence interaction 

case.  

Root Mean Square Velocities 

As previosuly defined in Equation (4.5), the root mean square averages represent 

the square root of the variance; the standard deviation of the velocities. In the 

turbulence case studies, the turbulence vortical fluctuations have a standard deviation 

set to 1 % of the incoming velocity of 1747.77 m/s. Thus the standard deviation is about 

17.5 m/s in all three coordinates. As for the unforced–detonation case study, the flow 

has no vortical fluctuations. Thus, the standard deviation is zero is all three coordinates. 

The root mean square velocities are plotted in all three coordinates for the three case 

studies in Figure 5.7. 
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Figure 5.7 Top left to right: Normalized shock–turbulence interaction velocity variance 
profiles in the streamwise and transverse directions at Mach 𝟏.𝟐𝟕 (dash-dot), 𝟏.𝟓 (solid line), 
and 𝟏.𝟖𝟕 (dash), plus and cross denote turbulent Mach number variations, direct numerical 
simulation study (Larsson, 𝟐𝟎𝟎𝟖) – Middle left to right: Normalized unforced–detonation, 
vortically forced and entropically forced detonation–turbulence interaction longitudinal and 
transversal velocity variance profiles at Mach 𝟓.𝟓, direct numerical simulation study (Massa, 
𝟐𝟎𝟏𝟏a)- Bottom: Root mean square velocity profiles in unforced–detonation, shock–
turbulence, and vortically forced  detonation–turbulence case studies at Mach 𝟓.𝟓, direct 
numerical simulation (current study)  
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Larsson (2008) documents the streamwise and transverse velocity variance profiles 

for the shock–turbulence interaction, while Massa (2011a) documents them for the 

unforced–detonation and detonation–turbulence interaction case studies. The profile 

shapes of the root mean square velocity in the current study diagram can be compared 

to the four other velocity variance diagrams as it is only scaled differently. 

The root mean square velocity profiles, ahead of the wave fronts in the bottom graph 

of Figure 5.7, show consistent standard deviation values in all three cases. The 

turbulent cases have a standard deviation close to expected 17.5 m/s value in all three 

coordinates, while the unforced–detonation case study has a standard deviation close 

to zero in all three coordinates.  

The axial root mean square profiles, in the three case studies, show the patterns of 

rapid rise followed by rapid decline around the wave front position.The shock–

turbulence interaction root mean square velocity profile shows a narrow rise and decline 

while the detonation cases show wider spread distributions. The shock–turbulence 

interaction root mean square velocity profile shows a smooth decay downstream to 

values lower than the initial standard deviation, consistent with Larsson’s (2008) 

observations. However, the detonation case studies show the expected detonation-

induced fluctuations downstream, as in Massa’s (2011a) graph. The effects of the 

detonation are experienced ahead of wave front in the unforced–detonation case study 

due to the instability of the detonation and the absence of the turbulence.  

The transverse root mean square profiles also experience rise and decline around 

the wave front, but the maximum velocities are much lower than those in the axial 
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directions. That is the reason they are plotted separately by Larsson (2008) and Massa 

(2011a). Downstream, all three case studies’ transverse velocities follow the trends of 

the axial velocity profiles. In the shock–turbulence interaction, the transverse velocity 

profiles decay to values lower than the initial standard deviation while the two 

detonation case studies’ transverse velocity profiles experience fluctuations. 

Thus, the detonation causes a wider spread distribution of standard deviation values 

around the wave front, early rise and decline in the absence of turbulence ahead of the 

wave front, and variations downstream. The shock–turbulence interaction velocity 

fluctuations are not as strong and cannot sustain the isotopic velocity levels 

downstream of the wave front.   

Turbulent Kinetic Energy  

The evolution of the turbulent kinetic energy through the computational domain is 

evaluated for all three case studies. The flow’s turbulent kinetic energy in the physical 

and time domain is associated with the root mean square velocities and calculated 

using Equation (4.6). The turbulent kinetic energy profiles of the three case studies are 

plotted and compared in Figure 5.8.   
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Documented direct numerical and large eddy simulation studies often cutt off the rise 

in the velocity profiles across the shock front and focus instead on the shock near zone. 

This is seen in Bermejo-Moreno’s (2010) top turbulent kinetic energy of shock–

turbulence interaction diagram.  
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Figure 5.8 Top: Normalized shock–turbulence interaction turbulent kinetic energy at Mach 𝟏.𝟓, 
direct numerical simulation (solid line), large eddy simulation (dashed line- thickness increasing 
with increasing numerical solution accuracy) (Bermejo-Moreno, 𝟐𝟎𝟏𝟎) - Bottom: Turbulent kinetic 
energy in unforced–detonation, shock–turbulence, and detonation–turbulence case studies at 
Mach 𝟓.𝟓, direct numerical simulation (current study) 
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Ahead of the wave front, the fluid flows show low energy levels especially in the  

unforced–detonation case study where the energy profile is close to zero, as shown in 

bottom graph of Figure 5.8. Upon the flows’ interaction with the shock and detonation 

wave fronts, the turbulent kinetic energy levels spike. In the shock–turbulence 

interaction, the turbulent kinetic energy experiences a sharp rise followed by a sharp 

decline and steady reduction downstream of the shock, consistent with Bermejo-

Moreno’s (2010) visual. The turbulent kinetic energy, thus experiences a spike across 

the shock wave.  

In the detonation case studies however, unforced and turbulent flows experience a 

rise and decline around the detonation wave over a wider region. This is attributed to 

the unsteady detonation wave front. In addition, the detonation causes turbulent kinetic 

energy fluctuations downstream of the wave front. The two case studies maintain higher 

energy levels downstream when compared to the shock–turbulence interaction. The 

detonation is found to energize the flow. The unforced–detonation case study 

experiences the effects of the unsteady detonation wave front ahead of the other two 

case studies due to the absence of the turbulence; a trend observed in the average 

axial velocity and root mean square velocity profiles before. While all three root mean 

square velocity components are involved in the calculation of the flow turbulent kinetic 

energy, the axial velocity plays the biggest role since its numerical values are 

significantly higher than the transverse velocities.  

While the turbulent kinetic energy in the physical and time domain indicates the 

strength of the turbulence fluctuations, it is found that the vortical fluctuations in the 

shock–turbulence interaction are weaker than those in the detonation–turbulence 
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interaction. The shock–turbulence interaction has less turbulent kinetic energy overall 

and the flow is unable to retain higher levels of energy in the computational domain far 

field.  

Reynolds Stress Components 

As the root mean square velocities are employed in the turbulent kinetic energy 

calculations, they are utilized in the correlation relation of the vortical fluctuations to 

evaluate the Reynolds stress components. The three diagonal (𝑅𝑆𝑢𝑢, 𝑅𝑆𝑣𝑣, 𝑅𝑆𝑤𝑤,) and 

the three unique off‐diagonal (𝑅𝑆𝑢𝑣, 𝑅𝑆𝑢𝑤, 𝑅𝑆𝑣𝑤) components are calculated using the 

Equation (4.11) to show the vortical fluctuations’ contribution to the momentum flux. The 

Reynolds stress tensor’s diagonal components forming the normal stresses in the three 

interaction case studies are shown first in Figure 5.9. These are the turbulent kinetic 

energy constituent terms.   
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Figure 5.9 Top left to right: Normalized shock–turbulence interaction streamwise and transverse 
Reynolds stress components at Mach 𝟏.𝟓, direct numerical simulation (solid line), large eddy 
simulation (dashed line- thickness increasing with increasing numerical solution accuracy) (Bermejo-
Moreno, 𝟐𝟎𝟏𝟎) – Middle: Zoomed out view showing the full peak shock–turbulence interaction 
streamwise Reynolds stress at Mach 𝟏.𝟓 (solid line) and at Mach 𝟑.𝟓 (dashed line), direct numerical 
simulation study (Larsson, 𝟐𝟎𝟏𝟑) - Bottom: Normal stress components in unforced–detonation, 
shock–turbulence, and detonation–turbulence case studies at Mach 𝟓.𝟓, direct numerical simulation 
(current study)  

 



121 
 

Bermejo-Moreno (2010) documents the streamwise 𝑅𝑆𝑢𝑢 and transverse 𝑅𝑆𝑣𝑣 

Reynolds stress components in shock–turbulence interaction through direct numerical 

and large eddy simulation studies. Only one transverse component is documented as it 

shows similar trends to 𝑅𝑆𝑤𝑤. Larsson (2013) zooms out of the shock–turbulence 

interaction streamwise Reynolds stress component to depict the full peak and shows 

narrow distrubution for higher Mach number. In the current study, the distribution in all 

three case studies is even narrower at Mach 5.5 and the full peaks are plotted.  

The normal stress components are found to have low momentum values ahead of 

the shock in all three case studies, bottom graph of Figure 5.9. The momentum spikes 

upon the interaction with the shock and detonation waves then declines. Farther 

downstream, the velocity fluctuations vary but do not quite return to the levels of pre‐

shock isotropy. In the unforced–detonation case study, the detonation instability initiates 

the momentum spike in the axial direction ahead of the wave front. The maximum stress 

reached in the axial direction is lower than those reached by the other two turbulence 

case studies.  

In the shock–turbulence interaction, 𝑅𝑆𝑢𝑢 has the highest spike value but the 

narrowest spike shape when compared to the detonation cases. In the transverse 

coordinates, the normal stress components of 𝑅𝑆𝑣𝑣 and 𝑅𝑆𝑤𝑤 experience a small rise 

across the shock followed by steady decline downstream to values lower than the initial 

pre‐shock correlations, as is documented by Bermejo-Moreno (2010). The two 

detonation cases have wider distribution of the 𝑅𝑆𝑢𝑢 normal stress component. The 

detonation contributes to extending the momentum flux and retaining it downstream of 
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the shock through fluctuations. In the transverse coordinates,  𝑅𝑆𝑣𝑣 and 𝑅𝑆𝑤𝑤 reach 

higher correlation values than in the shock–turbulence interaction and retain higher 

momentum in the computational domain far field.  

It is found that the normal stress components carry large momentum flux in the three 

case studies, with the component 𝑅𝑆𝑢𝑢 being the most prominent. The shock–

turbulence interaction shows narrow rise and decline, with continued decay 

downstream. The detonation case studies display wider distributed normal stress 

spikes, and fluctuations downstream. While the shock–turbulence interaction velocity 

fluctuations seem to fade away, the detonation wave front plays an important role in 

energizing the flow and sustaining higher velocity fluctuation strength across the 

computational domain.   

The shear stress components; off‐diagonal Reynolds stress terms in the interaction 

case studies are shown in Figure 5.10. 
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The shear stress components depict the correlation of different velocity terms in the 

Cartesian coordinates. The three tangential stress components 𝑅𝑆𝑢𝑣, 𝑅𝑆𝑢𝑤, 𝑅𝑆𝑣𝑤 are 

shown in Figure 5.10 for all three case studies. When one velocity component is 

correlated with another, the shear stress values drop drastically, compared to the 

normal stresses in Figure 5.9. When the velocity is stretched in the direction of travel, 

the velocities in the transverse directions are compressed following the law of 

conservation of momentum. This phenomenon is portrayed in a diagram shown in 

Figure 5.11. 

Figure 5.10 Shear stress components in the three case studies  
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Based on the law of conservation of momentum, when the velocity in the direction of 

flow travel is amplified, the velocity in the transverse direction is attenuated. Thus, the 

shear Reynolds stress components are expected to yield negative velocity correlations.  

The shear stress components show values close to zero ahead of the shock wave in 

all three case studies. While the unforced–detonation case study maintains tangential 

stress levels close to zero throughout the computational domain, the stresses in the 

𝒖𝟐 

𝒖𝟏 

𝒖𝟐 

𝒖𝟏 

Stretching 

Compression 

(b)  

(a)  

Figure 5.11 Velocity correlations in the flow field: (a) before 
stretching, (b) after stretching as adopted from Tennekes (𝟏𝟗𝟗𝟗) 
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turbulent case studies show some variations. The shock–turbulence interaction shows 

negative correlations across the shock interface. The detonation–turbulence interaction, 

however, shows some positive correlation. This is attributed to the heat release 

parameter.  

The detonation–turbulence interaction is the one case study with the most evident 

fluctuations in the shear stress components. The shear stress components, overall, 

have much lower correlations than the normal stress ones. Since the correlation plots of 

turbulent kinetic energy and normal stresses follow the root mean square trends very 

closely, it is recommended to evaluate the correlations of the velocity fluctuations in the 

polar coordinates next. The polar coordinate transformation can show more information 

leading to better physical understanding of the fluid flow properties and interaction 

evolution.  
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5.3 Turbulence Interaction Case Studies’ Visualizations 

 The computational simulation of the three interaction case studies produces large 

amounts of flow defining data in the space and time domains. Statistical analysis 

designates the data into descriptive and quantitative average properties. Two–

dimensional flow visualizations are introduced in the direct numerical simulation case 

studies to display important flow behavior within the defined geometry. Such flow 

behavior has been previously explored experimentally by using soot foils, for example, 

to depict the propagating detonation cellular structures and transverse waves within a 

channel. The effects of wave confinement are depicted, as well as the instability of the 

detonation wave in the works of Austin (2003), Figure 5.12.   

 

 

 

  

 

 

 

 

 

 

The observed detonation cellular structures in Figure 5.12 are also obtained through 

computational simulation of a detonation wave propagating through a narrow channel. 

The works of Chinnayya (2013) in Figure 5.13 show transverse and incident shock 

Figure 5.12 Sample experimental soot foils from weakly unstable detonation (a) 𝟐𝑯𝟐𝑶𝟐𝟏𝟐𝑨𝒓 and 
(b) 𝟐𝑯𝟐𝑶𝟐𝟏𝟕𝑨𝒓, and from highly unstable detonation (c) 𝑯𝟐𝑵𝟐𝑶𝟏.𝟑𝟑𝑵𝟐 and (d) 𝑪𝟑𝑯𝟖𝟓𝑶𝟐𝟗𝑵𝟐, 
detonation propagates from left to right, foils mounted downstream of the window section of a 
narrow channel (Austin, 𝟐𝟎𝟎𝟑)  
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waves affixed on triple points whose trajectories through the domain govern the cellular 

structures. Different channel heights are explored to determine the effects of scale 

reduction on the dissipative phenomena.  

 

 

 

 

 

 

 

 

 

 

 Thus, for the current study, surface flow visualizations of ensemble averaged 

velocities allow exploration and analysis of the data while depicting the fluid patterns 

through color or texture. Three–dimensional surface plots of the interaction case studies 

display the flow velocity in the 𝑥 and 𝑦 planes. The Mach number is the 𝑧-component 

depicted by color. Since the axial velocity is much larger than the transverse 

components, the surface plots of the different velocities are scaled accordingly. In the 

axial velocity plots, the Mach number is scaled from zero to 5.55; which corresponds to 

the mean incoming flow speed in the 𝑥-direction with the added initial vortical 

fluctuations. In the transverse velocity plots, however, the velocities are not as high and 

Figure 5.13 Computational study of detonation wave propagation through 
different channel heights, Top to bottom channel heights:  
𝟒𝑯𝒓𝒆𝒇,𝟑𝑯𝒓𝒆𝒇,𝟐𝑯𝒓𝒆𝒇 ,𝑯𝒓𝒆𝒇 (Chinnayya, 𝟐𝟎𝟏𝟑) 
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vary between positive and negative values. Thus, the Mach number is scaled from 

−2.22 to 2.22.  

 The direction of the incoming flow is defined, as is the location of the fixed shock and 

detonation waves. Emphasis is placed on the post-shock region of the computational 

domain to capture the far downstream flow behavior. The plots display the turbulent 

fluctuations, velocity changes, in addition to the shock and detonation wave properties 

in a series of nine consecutive frames of the flow propagation. 
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Unforced–Detonation Interaction Surface Plots 

The surface plots capture the flow propagation from the computation domain inlet, 

through the shock/detonation wave front, and in the far downstream region. In the 

unforced–detonation case study, the incoming flow has no turbulent vortical fluctuations 

as it travels towards a fixed detonation wave. Massa (2011a) documents numerical 

schlieren frames of the same unforced–detonation interaction at Mach 5.5. His 

visualizations depict the instability of the detonation wave and the transverse wave 

propagation downstream, Figure 5.14.  

The surface plots of the axial velocity in the unforced–detonation interaction of this 

study are shown in Figure 5.15 as nine consecutive frames.   

Figure 5.14 Numerical schlieren for unforced–detonation at Mach 𝟓.𝟓, different panels refer to the 
same slice but at different times (Massa, 𝟐𝟎𝟏𝟏a) 
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The unforced axial velocities depicted in Figure 5.15 show a solid color ahead of the 

detonation wave front at Mach 5.5 due to the absence of vortical fluctuations. In the 

absence of incoming turbulence, velocity variations are visible downstream of the wave 

front as a result of the detonation exothermic heat release. Symmetry is observed in the 

downstream patterns due to the wave reflection off the imposed computational domain 

walls, as in Massa’s (2011a) numerical schlieren frames. The detonation wave 

instability is evident as the wave structure is seen to travel ahead of the fixed position in 

the consecutive frames.  

The nine consecutive transverse velocity 𝑣 surface plots are shown in Figure 5.16. 

Figure 5.15 Nine consecutive surface plots of the axial velocity in the unforced–detonation 
interaction case study 
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The transverse velocities originate at the computational domain inlet with values 

close to zero. Upon interacting with the unstable detonation wave, the velocities are 

driven to increase or derease. The transverse reaction to the detonation wave, thus, is 

varying. Patterns appear downstream showing symmetry due to the boundary wall 

restriction and irregularity due to the heat release.  A body-shaped structure seems to 

appear in the far downstream area. 

Next, the nine consecutive surface plots of the transverse velocity 𝑤 are investigated 

and shown in Figure 5.17. 

  

Figure 5.16 Nine consecutive surface plots of the transverse velocity, 𝒗, in the unforced–
detonation interaction case study 
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The transverse velocities in these surface plots also start close to zero at the 

computational domain inlet. However, among the consecutive frames shown in Figure 

5.17, symmetry is observed as well as repeated patterns. The blob structures appear  

downstream of the detonation wave front with co-existing positive and negative speeds 

within one frame. The heat release and detonation instability cause this irregularity and 

aggressive tranverse wave reaction.  

  

Figure 5.17 Nine consecutive surface plots of the transverse velocity, 𝒘, in the unforced–
detonation interaction case study 
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Shock–Turbulence Interaction Surface Plots 

The surface plots of the interaction of an incoming turbulent flow with a fixed shock 

wave are explored next. The incoming turbulent flow is characterized by vortical 

fluctuations that drive the mean axial velocity to Mach 5.55. Larsson (2008) reports 

direct numerical simulation flow visualization of the instantaneous streamwise 

momentum 𝜌𝑢 of shock–turbulence interaction at Mach 1.5, with focus on the immediate 

post-shock region. The images depict the high velocity fluctuations ahead and behind 

the shock, as well as the different interaction strengths, Figure 5.18. 

The surface plots of the axial velocity in the shock–turbulence interaction in this 

study are shown next in Figure 5.19, where the flow characteristics are captured in nine 

consecutive frames.  

Figure 5.18 Left: Instantaneous shock–turbulence interaction streamwise momentum in gray scale, 
with dark regions denoting higher momentum at Mach 𝟏.𝟓 - Right: Contours of streamwise velocity 
immediately behind the shock, with darker regions denoting higher velocities, cross (weak 
interaction) plus (strong interaction), direct numerical simulation study (Larsson, 𝟐𝟎𝟎𝟖) 
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The axial velocity surface plots in Figure 5.19 show the incoming flow fluctuations as 

variations in the red color intensity ahead of the shock wave. The shock is fixed and 

appears to retain its stability; stands as a still surface almost unaffected by the incoming 

turbulence. Post-shock, the flow is driven to a minimum velocity with turbulent 

fluctuations still evident, as in Larsson’s (2008) visualization. Neither the shock–

turbulence interaction surface plot frames nor Larsson’s (2008) visuals show the 

symmetry that was visible within the unforced–detonation wave interaction.  

The transverse velocity 𝑣 surface plots of the shock–turbulence interaction are 

shown next in Figure 5.20. 

 

Figure 5.19 Nine consecutive surface plots of the axial velocity in the shock–turbulence 
interaction case study  
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The transverse velocities start around zero, with initial fluctuations and maintain the 

same variation range around zero across the shock and downstream. The fluctuations 

are evident downstream and continue to disturb the velocity. The shock wave structure 

is visible in the sea of velocity variations. Symmetry is not apparent in the consecutive 

frames, but the disturbances due to incoming turbulent flow are prominent downstream 

of the shock and in the computational domain far field.  

The transverse velocity 𝑤 surface plots of the shock–turbulence interaction are 

shown next in Figure 5.21. 

Figure 5.20 Nine consecutive surface plots of the transverse velocity, 𝒗, in the shock–turbulence 
interaction case study  
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The transverse velocities 𝑤 follow the patterns of the transverse velocities 𝑣 in the 

shock–turbulence interaction case study. The observed fluctuations are primarily driven 

by the turbulence and the upstream behavior is extended post-shock. Detialed 

investigation of the fluctuations downstream and the modes of instability can be pursued 

as follow-up research to trace the turbulence vortical fluctuations’ evolution through the 

shock–turbulence interaction.   

Figure 5.21 Nine consecutive surface plots of the transverse velocity, 𝒘, in the shock–turbulence 
interaction case study  
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Detonation–Turbulence Interaction Surface Plots 

In the third and final interaction case study, the incoming turbulent flow interacts with 

a detonation wave. The detonation wave is fixed in the computational domain but has 

intrinsic instability. The turbulent vortical fluctuations drive the mean flow in the direction 

of travel up to Mach 5.55. Massa (2011a) documents numerical schlieren frames of the 

detonation–turbulence interaction at Mach 5.5. His visualizations depict the instability of 

the detonation wave with less structured flow downstream due to the detonation and 

turbulence mutual effects, Figure 5.22. It is evident that the far field symmetry is lost. 

 The surface plots of the axial velocities are shown first in Figure 5.23 where the flow 

and detonation wave characteristics are captured in nine consecutive frames.  

Figure 5.22 Numerical schlieren for vortically forced detonation–turbulence interaction at Mach 𝟓.𝟓, 
different panels refer to the same slice but at different times (Massa, 𝟐𝟎𝟏𝟏a) 
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The incoming flow shows fuctuations in the axial velocities as red color variations 

ahead of the wave front. The detonation wave is unstable. While it is not propagating in 

the computational domain, it shows violent movement ahead and behind the fixed wave 

front position. The velocities are strongly affected by the detonation wave. While 

symmetry is observed in the unforced–detonation case study, it is lost with the 

introduction of incoming turbulent fluctuations. A mutual interaction is identified between 

the detonation and the turbulence. While the flow is affected by the detonation wave 

and heat release, the wave is found to be wrinkled by the incoming turbulence.  

The transverse velocity 𝑣 surface plots of the detonation–turbulence interaction case 

study are shown next in Figure 5.24. 

Figure 5.23 Nine consecutive surface plots of the axial velocity in the detonation–turbulence 
interaction case study 
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Transverse velocities show weaker peak values when compared to the axial 

velocities. The incoming flow is characterized by turbulent fluctuations. The fluctuations 

persist downstream with unorganized and highly disturbed shapes maintaining velocity 

values around zero upon interaction with the detonation wave. The post-detonation 

wave flow symmetry is lost amidst the turbulent fluctuations. The instability and violent 

detonation movement is evident in the transverse velocity profiles.    

The transverse velocity 𝑤 surface plots of the detonation–turbulence interaction case 

study are shown next in Figure 5.25. 

Figure 5.24 Nine consecutive surface plots of the transverse velocity, 𝒗, in the detonation–
turbulence interaction case study  
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Lastly, the transverse velocity surface plots maintain similar maximal Mach scale 

with evident fluctuations both ahead and downstream of the detonation–turbulence 

interaction. In the consecutive frames shown in Figure 5.25, symmetry is lost and blobs 

of different velocities appear within a single frame. It is important to note that different 

flow behavior is depicted in the downstream near zone and far field. Extending the 

computational domain may reveal more flow behavior that is truncated in these 

simulation studies.  

  

Figure 5.25 Nine consecutive surface plots of the transverse velocity, 𝒘, in the detonation–
turbulence interaction case study 
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5.4 Summary of Observations 

The direct numerical simulation of the homogeneous isotropic turbulence periodic 

cube is applied in three case studies: unforced–detonation, shock–turbulence, and 

detonation–turbulence interactions. The three case studies’ velocity profiles are 

analyzed across the computational domain for averages, root mean square averages, 

turbulent kinetic energy, and Reynolds stress components. The computational domain 

size allows assessment of the flow behavior ahead and farther downstream of the wave 

front. This is important since this study captures crucial far field flow behavior. 

It is found that the turbulent flow retains its fluctuating behavior due to vortical forcing 

throughout the shock and detonation interactions. The turbulent fluctuations cause 

stretching in the flow response to the wave front. The shock–turbulence interaction, 

however, shows weaker velocity fluctuations beyond the interaction point. The 

detonation wave’s inherent length scale and heat release parameter yield consistent 

velocity variation trends downstream and energize the flow strengthening the vortical 

fluctuations. The highly energized flow shows non-linear and anisotropic behavior 

downstream of the wave front. The detonation wave’s intrinsic instability causes the 

unforced flow to experience the wave effects ahead of the stationary front position in the 

absence of turbulent fluctuations. The effects of the detonation instability extend ahead 

and beyond the wave front over wider regions than the stationary normal shock wave.  

In conclusion, frame-by-frame visualizations reveal dynamic detonation wave front 

movement, even in the unforced case study, as well as a mutual interaction 

phenomenon between the turbulent flow and the detonation wave. The initially isotropic 

velocity field of turbulence subjected to the strong detonation wave is altered. The flow 
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is longitudinally strained. However, the detonation wave appears highly distorted upon 

interaction with the turbulent instabilities. It is proposed that the turbulence is wrinkling 

the detonation wave front.  

This is a preliminary simple low-order model of the interaction case studies. This 

work is not representative of naturally occurring turbulence and detonation phenomena, 

but rather used to establish fundamental physical understanding of the interactions. It is 

recommended that following research investigates the detonation–turbulence interaction 

with a traveling detonation wave front and detailed chemistry. While coupling effects will 

be present, it is crucial to begin to answer the detonation questions posed in the 

introduction for disaster mitigation applications:  

 How does the detonation propagate through the disaster zone? 

 Can the detonation, once initiated from the dissociation of the water molecules, 

be mitigated? 

 Does turbulence play a role in destabilizing the detonation wave to make it 

difficult to control? 

This completes the statistical analysis and flow visualization of the homogeneous 

isotropic turbulence velocity fluctuations in the three interaction case studies. The 

evolution of the turbulence velocity skewness factor is evaluated next. 
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6. Turbulence Velocity Skewness Vector 

In this study of homogeneous isotropic turbulence, the periodic cube structure and 

its interaction with a shock and a detonation wave are analyzed statistically. The 

turbulence is characterized by vortical fluctuations and is assumed to reach fully-

developed state when the velocity skewness factor, defined by Tavoularis (1978) and 

shown in Equation (4.12), approaches 𝑆𝑢𝑥 = −0.5.  Following the statistical analysis of 

the velocity in the turbulence periodic cube, the skewness factor is evaluated and 

additional skewness components are proposed in Section 4.4. 𝑆𝑣𝑦 and 𝑆𝑤𝑧 quantify the 

variation of the transverse velocity components with respect to their corresponding 

Cartesian coordinates. It is found that the values of the skewness components are in 

fact different but vary within a consistent range. The variations show similar trends in 

the periodic cube. The significance of having multiple components reach the Tavoularis 

criterion within the same unit of turbulence is evaluated and it is concluded that it may 

affect turbulence state. Fully-developed turbulence is characterized by both chaotic 

behavior and instabilities at higher Reynolds numbers (Rose, 1978). It is predicted that 

these two characteristics become amplified by the additional velocity skewness in the 

transverse planes. The study is extended to include all three velocity components’ 

variations with respect to the three Cartesian coordinates. A velocity skewness vector is 

proposed with nine constituent components and assessed in the two turbulence 

interaction case studies. 
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Proposing a Velocity Skewness Vector Definition  

Experimental, theoretical, and numerical works have used the velocity derivative 

definition of the skewness factor, in particular utilizing the axial velocity component, for 

over four decades. This crucial factor is statistically defined as the third moment of the 

velocity derivative normalized by the second moment of the velocity derivative, which is 

variance (MIT, 2007). At present, no equation quantifies the turbulence skewness in 

directions other than the direction of travel and for a component other than the 

streamwise velocity. This study proposes extending the long-standing Tavoularis 

velocity skewness criterion to a nine component tensor, shown in Equation (4.15). The 

nine terms are all the combinations of the skewness variation of the velocity 

components (𝑢, 𝑣, 𝑤) over the three Cartesian coordinates (𝑥, 𝑦, 𝑧) following the original 

definition.   
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While experimentally challenging, with the advancements in computational power 

and resources, calculating all nine skewness components of a turbulent flow is feasible. 

The nine components are evaluated for the shock–turbulence and detonation–

turbulence interaction case studies to assess the velocity skewness vector constituents: 

their similarities, differences, and significance. Within this framework it is possible to 

address the question posed in Section (4.4): Is the Tavoularis criterion for 

streamwise velocity variation sufficient to characterize the turbulence state?  

The goals of this turbulence velocity skewness vector study are: 

 To calculate the original velocity skewness factor 𝑆𝑢𝑥 and track its evolution 

throughout the computational domain in the shock–turbulence and detonation–

turbulence interactions  

 To find the additional eight skewness components for the shock–turbulence and 

detonation–turbulence interactions 

 To evaluate if the proposed velocity skewness tensor is symmetrical across its 

diagonal components 

 To show if the eight proposed additional components carry physical information 

about the turbulence state 

The calculation methodology of the velocity skewness vector components is outlined 

and the results for the two turbulence interaction case studies are documented next. 
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6.1 Calculation Methodology 

The turbulence skewness expression consists of a velocity derivative and an 

average quantity. The methodology used to acquire both these terms is discussed. The 

computational domain of the interaction case studies is a 815 × 163 × 163 units cuboid. 

Therefore, unlike the turbulence periodic cube, the differential distances (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) are 

not equivalent even though the grid resolution is fixed. The velocity derivatives in the 𝑥-

direction are calculated across the computational domain, as shown in Figure 6.1, and 

averaged over rectangular planes of the cuboid.   

 

 

 

 

 

 

 

 

 

 

The cuboid computational domain is divided into 163 parallel rectangular planes, as 

shown in Figure 6.1. The velocity derivative is calculated by applying the central 

differencing method, shown in Figure 3.3 and Equation (3.4), over unit cubes in the 𝑥-

Averaging Velocities in the  
𝒙-coordinate 

Computational Domain 
Size: 815 × 163 × 163 

𝟏𝟔𝟑 Individual 
Rectangular Planes 

 

815 

Inlet 

163 

163 

Figure 6.1 Averaging velocities in the 𝒙-coordinates in individual 
rectangular planes 
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direction progressively. It must be noted that the rectangular planes are not 

homogenous due to the presence of the wave front. Thus, the averaging cannot be 

taken over the entire row. A short interval averaging technique is employed instead; 

where the average of each ten points is considered separately within the rectangular 

plane. Ten point intervals are selected as they are large enough for the average not to 

be erratic but small enough not to lose the flow physics. These independent values are 

averaged across the other parallel rectangular planes. The averages are then 

connected to show a trend line of the evolution of the velocity skewness term in the 𝑥-

direction throughout the computational domain. The velocity derivatives in the 𝑦 and 𝑧-

directions are calculated in the transverse planes, as shown in Figure 6.2, and averaged 

over the square planes across the length of the computational domain. 
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Figure 6.2 Averaging velocities in the 𝒚 and 𝒛-coordinates in individual 
square planes 

 



148 
 

The computational domain is divided into 815 parallel square planes for the 

skewness calculations in the transverse coordinates, as shown in Figure 6.2. The 

velocity derivative is calculated by applying the central differencing method in the 

specified directions of 𝑦 and 𝑧. The average is then found for the entire homogeneous 

square plane following each direction. This leads to a single skewness point value per 

square plane. The average skewness points of the square planes from the inlet to the 

end of the cuboid are plotted to find the distribution over the computational domain.  
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6.2 Application in the Turbulence Interaction Case Studies 

The skewness is a statistical measure of the velocity fluctuations, thus it is only 

applicable to flow with initial fluctuations. The vortical fluctuations of the flow in the 

shock–turbulence and detonation–turbulence interaction case studies vary in the 

Cartesian coordinates. The fluctuations’ variations are quantified in nine velocity 

skewness vector components, calculated and plotted. First, the standard velocity 

skewness factor 𝑆𝑢𝑥 is evaluated for the case studies in Figure 6.3. 

 

 

 

 

 

 

 

 

 

The variation of the streamwise velocity in the axial direction begins around zero at 

the computational domain inlet. This average quantity is expected from the definition of 

the vortical fluctuations and observed in the skewness analysis of the turbulence 

periodic cube, Figure 4.14  and Table 4.6. The turbulence periodic cube acquires mean 

travel velocity and propagates down the cuboid towards the wave front at Mach 5.5. The 

Figure 6.3 Evolution of the velocity skewness factor 𝑺𝒖𝒙 across the computational 
domain in the two turbulence interaction case studies  
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velocity skewness values continue to vary around zero within the −1 to 1 range. They 

reach a low close to −2 followed by a drastic rise to a maximum above 8. This rise is 

consistent with the axial straining of the turbulence due to the fluctuations’ interaction 

with the wave front, also observed in the statistical analysis of the three case studies in 

Section 0. Downstream, the velocity variation drops to values close to zero returning to 

the original flow state. The two case studies show very similar trend lines. Thus, the 

detonation heat release, inherent length scale, and intrinsic instability do not play a 

significant role in the velocity skewness alteration across the wave front. Next, the 

variation of the two transverse velocity components 𝑣 and 𝑤 in the flow direction of 

travel is evaluated and displayed in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the turbulent flow gains mean velocity in the streamwise direction, the 

transverse velocities are still solely composed of the vortical fluctuations. The 

transverse velocity skewness components vary around zero ahead of the wave front 
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Figure 6.4 Evolution of the velocity skewness vector components 𝑺𝒗𝒙 and 𝑺𝒘𝒙 
across the computational domain in the two turbulence interaction case studies  
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and continue in a similar manner downstream past the interaction. The skewness 

values show a slight reaction to the interaction with the wave front, where the 

fluctuations become more prominent and occupy wider interval values. However, 

overall, the velocity variations continue to maintain values close to zero. The maximum 

and minimum values are still within the turbulence fluctuations’ defined distribution 

interval of −2 to 2, shown in Figure 4.15. As in the plot of the evolution of 𝑆𝑢𝑥, Figure 

6.3, the two case studies continue to show very closely related trend lines with no 

indications of the effects of the detonation heat release or instability on the skewness 

terms. This concludes the evolution of the three velocity components in the axial 

direction. Now, the diagonal velocity skewness components are quantified. Previously 

evaluated for the turbulence periodic cube, the diagonal velocity skewness components 

show the variation of each velocity component in its respective direction. The 

streamwise component evaluation 𝑆𝑢𝑥 is complete, 𝑆𝑣𝑦 and 𝑆𝑤𝑧 calculations are 

displayed in Figure 6.5.  
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The two diagonal skewness terms 𝑆𝑣𝑦 and 𝑆𝑤𝑧, which vary around zero in the 

turbulence periodic cube, Figure 4.14,  do not start around zero in the interaction case 

studies. In Figure 6.5, the two terms show positive skewness ahead of the wave front. 

The skewness is increased under the flow’s own fluctuation instability once the flow 

attains mean travel velocity in the axial direction. The flow is furthermore strained by the 

interaction with the wave front, leading to higher skewness measures reaching a value 

of 6 post-shock. Farther downstream of the wave front interaction, the velocity variations 

return to negative skewness values. 

Thus, the flow shows instability straining effects in the three diagonal skewness 

vector components. On a smaller velocity scale, the differences between the shock–

turbulence and the detonation–turbulence case studies begin to appear showing that 

the two case studies’ velocity skewness values are closely related but not identical. 

Figure 6.5 Velocity skewness vector components 𝑺𝒗𝒚 and 𝑺𝒘𝒛 in the two turbulence 

interaction case studies  
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Finally, the remaining four off-diagonal velocity skewness components are evaluated in 

Figure 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

After evaluating the skewness vector constituents in the axial direction and the 

diagonal terms, four components remain: 𝑆𝑢𝑦, 𝑆𝑢𝑧, 𝑆𝑣𝑧, and 𝑆𝑤𝑦. The off-diagonal 

components vary close to zero ahead of the wave interaction and farther downstream. 

The skewness values occupy a range between −1 and 1, with the most dense 

concentration between −0.5 and 0.5. These trends closely follow the velocity 

fluctuations’ distribution in Figure 4.15 and occurrence frequency within the periodic 

cube in Figure 4.16. The reaction to the wave front interaction is still present, but very 

weak. Once again, on the smaller velocity scale, the differences between the two 

interaction case study velocities are showing, but still following the same behavioral 

trends.  

 

Figure 6.6 Velocity skewness vector components 𝑺𝒖𝒚, 𝑺𝒖𝒛, 𝑺𝒗𝒛, and 𝑺𝒘𝒚 in the two 

turbulence interaction case studies   
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6.3 Summary of Observations 

In this study, an extension of the long‐standing velocity skewness factor definition is 

proposed. The velocity skewness vector consists of nine components quantifying the 

variation of the three velocity terms in all three Cartesian coordinates. It is a 

comprehensive approach to evaluating the effects of the vortical forcing on the state of 

the turbulence field. The nine skewness vector constituents are calculated and graphed 

for the shock–turbulence and detonation–turbulence interaction case studies.  

It is found that the diagonal components (𝑆𝑢𝑥, 𝑆𝑣𝑦, 𝑆𝑤𝑧) show the effects of the vortical 

fluctuations on the evolution of the flow through the computational domain. The inherent 

fluctuation instability causes straining of the flow past the wave front to skewness values 

as high as 8. The fluctuations also cause higher positive skewness values in the 

transverse velocity components ahead of the wave front. The flow instability increases 

in the transverse directions once the flow acquires mean travel velocity in the axial 

direction. The flow returns to the initial conditions farther downstream with the velocity 

variations decreasing to values near zero and showing negative skewness.  

The six off-diagonal components (𝑆𝑢𝑦 , 𝑆𝑢𝑧, 𝑆𝑣𝑥, 𝑆𝑣𝑧 , 𝑆𝑤𝑥, 𝑆𝑤𝑦) show trends of variation 

around zero within the set velocity fluctuation interval. Weak reaction to the wave front 

interaction is observed. Thus, the velocity skewness vector can be considered 

symmetrical for homogeneous isotropic turbulence. It is recommended that following 

research investigates the possible differences within these six off-diagonal terms in non-

homogenous turbulence. 
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The shock–turbulence and detonation–turbulence interaction case studies show 

similar trends in all nine velocity skewness vector components. Thus, the effects of the 

detonation heat release, inherent length scale, or intrinsic instability on the velocity 

fluctuations are not evident in the skewness calculations.  

In conclusion, the axial velocity skewness factor, defined by Tavoularis (1978), 

carries important physical description of the flow behavior. The two additional diagonal 

components of the velocity skewness vector depict important turbulent flow evolution 

properties as well in the interaction of turbulence with a shock and a detonation wave.  

These components should not be overlooked in turbulence interaction case studies.  

The velocity skewness factor, thus, is assessed for the vortically forced turbulence. 

The question that arises is: What skewness expression can be used for the entropic 

and acoustic fluctuations of turbulence? Entropic and acoustic fluctuations are 

related through thermodynamics and through the Strong Reynolds analogy. The fully-

developed state of turbulence is reached beyond the transition to turbulence region. 

Thus, the temperature and pressure fluctuations in a turbulent flow are coupled with the 

velocity and can affect the state of the turbulence. A skewness expression should take 

the coupling effects into consideration.    
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7. Conclusions  

Turbulence is a term used to describe a fluid field characterized by chaotic 

unorganized properties. It has challenged scientific minds for years and its applications 

cover a wide spectrum of topics. In this study, an attempt is made to bring order to the 

chaos while searching turbulent fluctuations for patterns, trends, and physical insight.  

A study of homogeneous isotropic turbulence with vortical fluctuations begins with 

the development of a direct numerical simulation code to generate a turbulent field and 

turbulence interaction applications. The turbulence periodic cube is found to be a 

facilitated and efficient geometry to investigate fundamental turbulence physics through 

direct numerical simulation. The turbulence periodic cube is used as incoming flow to a 

shock and detonation wave in a cuboid computational domain. The interaction case 

studies yield important conclusions about the role of the turbulence fluctuations in 

straining the flow past the wave front. In addition, the heat release, detonation inherent 

length scale, and intrinsic instability are found to cause velocity variations in the flow far 

field and highly energize the flow. A mutual interaction is observed in the detonation–

turbulence case study; while the flow is affected by the strong detonation wave, the 

wave is wrinkled by the turbulent fluctuations.  

The statistical property of turbulence velocity skewness factor is assessed in this 

study to evaluate the turbulence’s fully-developed state. The long‐standing definition in 

terms of the streamwise velocity in the axial domain is extended to a nine component 

vector and applied in the two turbulence case studies. It is found that the additional 

diagonal components carry physical insight regarding the turbulent flow evolution 

throughout the interaction case studies’ computational domain. The proposed tensor is 
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found to be symmetrical for homogeneous isotropic turbulence and a valuable measure 

to consider in fully-developed turbulence studies.   
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7.1 Summary of Scientific Contributions 

The original scientific contributions of this doctoral research work are summarized in 

the following list.  

1. The conduction of a literature review of turbulence research, homogeneous 

isotropic turbulence, turbulence interaction case studies of interest, as well as 

turbulence modelling and simulation techniques. 

2. The documentation of the turbulence Navier–Stokes governing equations, normal 

shock relations, detonation heat release parameters, and velocity fluctuation 

generation technique. 

3. The development of a direct numerical simulation tool that produces simple low-

order models of a turbulence periodic cube with vortical fluctuations as well as 

the three case studies of unforced–detonation, shock–turbulence, and 

detonation–turbulence interactions. The direct numerical simulation tool lays the 

groundwork for upcoming research in direct numerical and large eddy 

simulations of homogeneous isotropic turbulence.  

4. The assessment of the periodic cube geometry in the direct numerical simulation 

of homogeneous isotropic turbulence. The assumptions associated with this 

simplified structure are evaluated. Its constituent velocity fluctuations are 

statistically analyzed for averages, root mean square averages, turbulent kinetic 

energy, and Reynolds stress components.   

5. The analysis of the three interaction case studies and comparison against the 

normal shock solution as well as against the ideal Zel’dovich, von Neumann, 

Döring detonation model to evaluate the effects of the turbulence, the shock 
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wave, and the detonation heat release on the flow evolution. The statistical 

analysis covers velocity averages, root mean square averages, turbulent kinetic 

energy, and Reynolds stress relations. The computational domain is extended to 

investigate the far downstream flow behavior and the flow is visualized in the 

form of surface plots. 

6. The investigation of the velocity skewness factor defined by Tavoularis (1978). 

The skewness factor is evaluated for the turbulence periodic cube and the 

turbulence interaction case studies. A velocity skewness vector is proposed to 

provide a more comprehensive evaluation of the velocity variation in the three 

Cartesian coordinates.  

7. The showcasing of the work in numerous research symposiums through oral 

presentations and posters. Parts of the work have been published as a senior 

honors thesis and conference papers: 

Hussein, S.M., Lu, F.K. “Statistical Analysis of Velocity Fluctuations in a Strong 

Detonation-Turbulence Interaction”, UT Arlington Honors College Senior Thesis, 

April 2012. 

Hussein, S.M., Blaiszik, E.M., and Lu, F.K., “Velocity fluctuations in the 

interaction of homogeneous, isotropic turbulence and a detonation wave” No. 

0246-000173, 29th International Symposium on Shock Waves, Madison, 

Wisconsin, 2013. 
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Hussein, S.M., and Lu, F.K., “Single and two–point analysis of velocity 

fluctuations in a detonation–turbulence interaction” 45th AIAA Fluid Dynamics 

Conference, AIAA Aviation, Dallas, Texas, 2015. 
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7.2 Direct Numerical Simulation Tool Usage 

The direct numerical simulation tool developed in this study is an original MATLAB 

code that is organized and well–documented for use by future researchers. The driver 

file and subroutines can be accessed to build upon the work of this project or to 

investigate other branches of turbulence interaction studies through direct numerical 

simulation. In particular,  

 The initial and boundary conditions can be adjusted for different problem setups.  

 The vortical fluctuations can be replaced by entropic, acoustic, or a combination 

of fluctuation types. 

 The random number generator algorithm can be switched off to eliminate 

turbulent fluctuations and analyze laminar flow.  

 The geometry of the periodic cube can be replaced by a more realistic turbulence 

field. 

 The computational domain size can be increased to depict more shock and 

detonation phenomena, such as shocklets and detonation cells.  

 The shock and detonation waves can be eliminated or replaced by other 

interferences to the turbulent flow.  

 Detailed chemistry can replace the single‐step Arrhenius law to investigate 

detonation, combustion, and explosion phenomena.  

The direct numerical simulation code can be used to validate other direct numerical 

simulation codes, large eddy simulation codes, as well as experimental studies. With 

the coding advancements today, legacy code written in different programming 

languages can be reused within MATLAB in conjunction with this direct numerical 
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simulation tool. Moreover, this MATLAB code can be called as an executable file in 

other programming languages, packaged as a software component and integrated into 

other language-specific applications, or converted to other programming languages that 

are faster and more efficient. MATLAB provides flexible, two-way integration with other 

programming languages (Mathworks, 2018b) as shown in Figure 7.1.   

  

Figure 7.1 MATLAB code usage with other programming 
languages (MATHWORKS, 2018b) 
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7.3 Recommendations 

The work completed in this project opens the doors to further research in the subject 

matter.  

In this research study, the next step is to investigate the energy cascade throughout 

the computational domain in the three interaction case studies of unforced–detonation, 

shock–turbulence, and detonation–turbulence. The statistical analysis of single-point 

velocity correlations evaluated in the polar coordinates can give real insight into the flow 

behavior depicting wave structure, elongation parameters, and cellular detonation 

shapes. Two-point velocity correlation analysis would follow. The properties of vorticity 

and enstrophy should be evaluated. Vorticity is a vector that describes the curl of the 

flow velocity expressed as the cross product of the del operator and the velocity vector. 

𝜔 = ∇ × 𝑢                                                                       (7.1) 

The vorticity describes the spinning motion of a fluid particle near a particular point of 

interest. Enstrophy is the integral of vorticity over a surface representing the dissipation 

effects in a fluid with relation to its kinetic energy. 

𝛺 = |𝜔2|                                                                       (7.2) 

The time evolution of the velocity properties should be analyzed. It is recommended to 

run different flow Mach numbers and heat release parameters to compare outputs. The 

computational domain size ought to be increased to acquire larger data sets for 

numerical analysis and potentially capture more detailed shock and detonation 

properties. The single‐step Arrhenius law must be replaced by detailed chemistry where 

different gaseous combinations are tested and analyzed. Employing advanced flow 

visualization tools in three dimensions can depict interesting flow behavior and 
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interaction properties not traceable through quantitative numerical analysis and surface 

plot visuals. In addition, the modes of the turbulence instabilities can be studied in detail 

to understand the flow evolution in the far field past the shock wave front.   

It is recommended that follow-up research look into eliminating the cube periodicity 

and the fluid field homogeneity and isotropy conditions. For the non-homogeneous 

turbulence, the proposed velocity skewness vector should be evaluated to assess its 

symmetry. Entropic and acoustic fluctuations in turbulence can be studied next, in 

combination with vortical fluctuations. The skewness of the entropic and acoustic 

fluctuations ought to be questioned. The detonation wave must be allowed to propagate 

through the computational domain for more realistic representation. Finally, the 

employment of large eddy simulation will allow the study of more realistic turbulence 

and interaction case studies with industrial applications.    
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Appendix 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Turbulence Research Timeline from 1600 to 2017 
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B. Notation Description 
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Three Term Product Rule 

 𝑑

𝑑𝑥
(𝑓(𝑥)𝑔(𝑥)ℎ(𝑥)) = 𝑔(𝑥)[(ℎ(𝑥)𝑓′(𝑥)) + (𝑓(𝑥)ℎ′(𝑥))] + 𝑓(𝑥)[ℎ(𝑥)𝑔′(𝑥)] 

 

 

Index Notation 

 𝜎𝑖𝑗 = 𝜎33 for i = 1, 2, 3 and j = 1, 2, 3 

 

 

 
𝜎𝑖𝑗 = [

𝜎𝑖1𝑗1 𝜎𝑖1𝑗2 𝜎𝑖1𝑗3

𝜎𝑖2𝑗1 𝜎𝑖2𝑗2 𝜎𝑖2𝑗3

𝜎𝑖3𝑗1 𝜎𝑖3𝑗2 𝜎𝑖3𝑗3

] 

 

 

 
∇= (

𝜕

𝜕𝑥
) 𝑖 + (

𝜕

𝜕𝑦
) 𝑗 + (

𝜕

𝜕𝑧
) 𝑘 

 

 

for f, a scalar function 

∇f = (
𝜕𝑓

𝜕𝑥
) 𝑖 + (

𝜕𝑓

𝜕𝑦
) 𝑗 + (

𝜕𝑓

𝜕𝑧
) 𝑘 

for �⃗� , a vector quantity  

∇�⃗� = (
𝜕

𝜕𝑥
𝑢) 𝑖 + (

𝜕

𝜕𝑦
𝑣) 𝑗 + (

𝜕

𝜕𝑧
𝑤)𝑘 

the transpose function is then defined and results in a scalar quantity 

∇�⃗� 𝑇 = 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
 

the divergence of �⃗� , a vector quantity, results in a scalar quantity 

div(�⃗� ) = ∇. �⃗� =  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
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C. MATLAB Code Flowchart Shapes 
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The following are the shapes and their corresponding coding reference that are used in 

the direct numerical simulation MATLAB code flowcharts, as documented by Lucidchart, 

the online visual communication tool. 
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