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Transit ridership is at the heart of transportation policy making and the success of 

any transit system. Urban planners have been focusing on the need to reduce car 

dependence and promote more sustainable transportation alternatives. Automobile 

dependence is a concern for many reasons including congestion in urban areas, 

pollution, and environmental damages caused by pollution. Switching to more sustainable 

and environmentally friendly transportation modes such as public transit is likely to be an 

effective solution to most of these problems. As an alternative to the private car, public 

transit is an efficient means to move large numbers of people within cities, and transit 

systems play an important role in combating traffic congestion, reducing carbon 

emissions, and promoting compact, sustainable urban communities (Taylor et al., 2009). 

In recent years, the introduction of intelligent transit information systems (ITIS) 

applications that provide real-time information to transit users created a new hope for 

increased transit ridership, however, its impact in facilitating increased Transit Usage is 

not clear yet.  
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This study explores the factors affecting transit ridership including ITIS and 

selects the Dallas Area Rapid Transit (DART) as a case in a large metropolitan setting for 

this research. In order to achieve this purpose, the research examines the factors 

affecting rail, bus, and transit ridership. In addition, this study attempts to fill some of the 

gaps that exist in the literature by exploring the impact of intelligent transit information 

systems (ITIS) on transit ridership, and how its availability has affected transit ridership 

since 2012. The study adopts a monthly time series perspective (2007 to 2017) to enable 

the researcher to examine changes in transit ridership over a 10-year period and the 

incremental exposure to ITIS technology. This enables the research to capture any 

changes in ridership over this 10-year period, few years before to few years after the 

implementation of ITIS transit applications, in addition to any seasonal changes.  

Most previous studies of transit ridership have not included ITIS as one of the 

variables thought to influence transit ridership. Therefore, the disparities among the 

findings of empirical research completed to date point to the necessity for further study. 

This study addresses these shortcomings by exploring multiple factors measuring 

population, technology, geography, and socioeconomic characteristics. This is examined 

through using Time Series / Multiple Regression methods on the dataset to estimate the 

relationship between the models’ variables to answer the research questions related to 

demand for transit ridership in the DFW area. In this type of research quite frequently, 

one is interested in interpreting the effect of a percent change of an independent variable 

on the dependent variable, which we can achieve through a double-log (log-log) model. 

As such, the elasticity of demand for transit with respect to some of the factors in the 

model such as percent change in fare, income or the research question variable, ITIS 

usage, are explored and policy implications out of these elasticities are discussed. 
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Finally, it has been argued that ITIS reduces negative aspects and cost of using 

transit through providing information, saving time and other attributes, and makes transit 

more competitive with the automobile. Therefore, it behooves us to include also some 

measure of auto ridership in the models. In order to measure the responsiveness of 

demand for transit to a relative change in the price related to auto usage, we examine 

cross-price elasticity of demand for transit and how cross-price elasticity of demand could 

help us in measuring possible shifts from car to transit as an effect of ITIS usage. We 

think this research provides a significant contribution to transportation planning literature. 
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Chapter 1  

Introduction 

1.1 Background 

Transit ridership is at the heart of transportation policy making and the success of 

any transit system. In the early 21st century and most recently, urban planners have 

been focusing on the need to promote more sustainable transportation alternatives. In 

recent years, the energy component of the transportation is becoming more apparent. 

North America greatly depends on large amounts of cheap energy to keep its economy 

growing. The price of energy, especially fossil fuels, has been rising in recent years, and 

the price will likely continue to rise. This will mean that North America must adapt as 

energy gets more expensive and scarce. One of the areas of adaptations needs to be 

made in transportation, as transportation consumes large quantities of energy (Greene, 

2004). Recent studies estimate that a large percentage of air pollutants is generated by 

the transportation sector. In 2013, the transport sector accounted for 24% of the CO2 

emissions, 75% of which derive from road transport (International Energy Agency, 2013). 

The transport sector currently accounts for 90% of total oil demand and half of total oil 

consumption (International Energy Agency, 2013), and the number of cars is expected to 

double by 2035 when their total number will reach 1.7 billion. This rise is mainly related to 

the development of emerging economies like China, India and the Middle East. In 

addition, the expected increase in urbanization is likely to cause serious congestion 

problems in the next decades in most cities all over the world (Borghesi et al., 2013). 

Automobile dependence is a concern for many reasons including congestion in 

urban areas, pollution, and environmental damages caused by pollution. Other issues are 

related to human health: air pollution can cause and worsen respiratory diseases, and the 

increasing car dependence of households is held responsible for obesity and lack of 
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physical exercise, which in turn can cause severe health problems (Borghesi et al., 

2013). Switching to more sustainable and environmentally friendly transportation modes, 

and less congesting, such as public transit, is likely to be an effective solution to most of 

these problems. For these reasons, the demand for a more sustainable pattern of 

transportation, reducing automobile dependence and promoting modal switch has been 

growing in many countries. As an alternative to the private car, public transit is an 

efficient means to move large numbers of people within cities, and transit systems play 

an important role in combating traffic congestion, reducing carbon emissions, and 

promoting compact, sustainable urban communities (Taylor et al., 2008). 

 1.2 Statement of Purpose and the Significance of Research 

This study will explore the factors impacting transit ridership in Dallas Area Rapid 

Transit (DART), and how can transit ridership be increased to determine if policy and/or 

actions can be taken to improve ridership in the study area. In order to achieve this 

purpose, this research will examine the factors affecting rail, bus, and transit ridership. In 

addition, this research will explore the effect of intelligent transit information systems 

(ITIS) on transit ridership after the implementation of ITIS applications. These questions 

are examined in a case study applied to Dallas Area Rapid Transit (DART). The period 

covered in this research is from 2007 to 2017. The time series perspective undertaken in 

the research allows us to examine changes in transit ridership over 10 years period in a 

monthly base and the incremental exposure to ITIS technology. 

In addition, this study will attempt to fill some of the gaps that exist in the 

literature by exploring the impact on transit ridership in the presence of intelligent transit 

information systems (ITIS), and how the availability of transit information affects transit 

ridership. Most previous studies of transit ridership have not included ITIS as one of the 

variables thought to influence transit ridership. Therefore, the disparities among the 
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findings of empirical research completed to date point to the necessity for further study. 

This study addresses these shortcomings by exploring multiple factors measuring 

population, technology, geography, and socioeconomic characteristics. This is examined 

through using Time Series / Multiple Regression methods on the dataset to estimate the 

relationship between the models’ variables to answer the research questions related to 

demand for transit ridership in the DFW area. In this type of research quite frequently, 

one is interested in interpreting the effect of a percent change of an independent variable 

on the dependent variable, which we can achieve through a double-log (log-log) model. 

As such, the elasticity of demand for transit with respect to some of the factors in the 

model such as percent change in fare, income or the research question variable, ITIS 

usage, are explored and policy implications out of these elasticities are discussed. 

Finally, it has been argued that ITIS reduces negative aspects and cost of using 

transit through providing information, saving time and other attributes, and makes transit 

more competitive with the automobile. Therefore, it behooves us to include also some 

measure of auto ridership in the models. In order to measure the responsiveness of 

demand for transit to a relative change in the price related to auto usage, we examine 

cross-price elasticity of demand for transit and how cross-price elasticity of demand could 

help us in measuring possible shifts from car to transit as an effect of ITIS usage. We 

think this research provides a significant contribution to transportation planning literature. 

This research provides opportunities to improve transit services because ITIS reduces 

negative aspects and cost of using transit through providing information, saving time and 

other attributes for transit users and non-transit users including the poor and underserved 

population. From transit users’ perspective, the availability of real-time transit information 

at their fingertips and the time saved by real-time transit information is certainly an 

economic benefit. Perhaps a deeper social consideration is that social inequity in 
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American cities, worsened by suburbanization and segregation, may be narrowed to 

some extent by improving transit service for the disadvantaged and underserved 

population who are largely captive transit riders. Further, the findings of this research will 

help North American cities and Dallas Area Rapid Transit specifically to develop 

strategies that attempt to increase transit ridership for a variety of reasons including: 

reduce the energy use of transportation in cities, curb congestion, reduce pollution, and 

provide other social, economic and environmental benefits. In addition, this research will 

aid policy makers in their decision making regarding further investments in transit ITIS 

applications. 

 

1.3 Research Questions 

 
The study attempts to answer the following research questions using Dallas Area Rapid 

Transit as a case study: 

 

1- Does ITIS impact Transit Ridership in Dallas Area Rapid Transit? 

2- Does ITIS impact Rail Ridership in Dallas Area Rapid Transit? 

3- Does ITIS impact Bus Ridership in Dallas Area Rapid Transit? 

In addition, this study will examine the factors that influence transit usage in the presence 

of intelligent transit information systems (ITIS) and will shed some light on the factors 

that influence the three types of mass transit in the study area. 
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Chapter 2  

Literature Review 

This chapter includes a review of the theories behind the factors that may contribute 

to or affect changes in transit ridership (dependent variables). It also discusses the rich 

and well-developed empirical studies regarding the impact of factors affecting transit 

ridership. For this study, the literature related to the determining factors of transit 

ridership can be broadly divided into five sections: 

1- General transportation, mode choice, and factors impacting transit ridership 

2- Connections between rising ridership and use of smart technology 

3- Intelligent Transit Information Systems (ITIS) and the impact on transit ridership 

4- The impact of ITIS app on transit ridership  

5- The potential impact of ITIS app on non-transit users  

 

2.1 Transportation, mode choice, and factors impacting transit ridership 

Mode choice refers to the type of transportation mode (walking, driving, bus, and 

rail) people choose for trips from one point to another (Taylor et al., 2009). Mode choice 

is the third step in the conventional four-step transportation forecasting model. The steps 

are trip generation, trip distribution, mode choice, and route assignment. Public transit 

includes transportation modes such as bus, and commuter rail. The transit ridership 

literature shows that transit ridership mode depends on a number of economic and social 

characteristics, such as urban geography, economic activity, and population 

characteristics (Taylor et al., 2003). In regards to the theories behind the transit mode, 

discrete choice theory was developed by Daniel McFadden who received the Nobel Prize 

in 2000 for his pioneering work in developing the theoretical basis for discrete choice. 

Discrete choice models theoretically or empirically model choices made by people among 
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a finite set of alternatives. The models have been used to examine the choice of which 

mode of transportation to take to work (car, bus, train) among numerous other 

alternatives. Discrete choice models specify the probability that an individual chooses an 

option among a set of alternatives.  Transportation planners use discrete choice models 

to predict demand for planned transportation systems, such as which route a driver will 

take and whether someone will take personal car or transit. The first applications of 

discrete choice models were in transportation planning, and much of the most advanced 

research in discrete choice models is conducted by transportation researchers. As an 

example, the choice set for a person deciding which mode of transport to take to work 

includes driving alone, carpooling, taking bus, etc. The choice set is complicated by the 

fact that a person can use multiple modes for a given trip, such as driving a car to a train 

station and then taking train to work. In this case, the choice set can include each 

possible combination of modes. Alternatively, the choice can be defined as the choice of 

“primary” mode, with the set consisting of car, bus, rail, and other (e.g. walking, bicycles, 

etc.). Note that the alternative “other” is included in order to make the choice set 

exhaustive (McFadden, 2000). 

Considering the demand theory for transit and the factors affecting the transit 

demand, amongst all travel modes, how people choose the transit mode? Individuals will 

have more economic incentives to make the switch away from car dependence and use 

the transit mode if the total utility or satisfaction of using the transit mode is higher than 

the total utility of using the automobile. Boarnet and Crane (2001) say that transit service, 

like other commodities, follows a demand theory of consumption. Individuals are faced 

with resource constraints and trade-offs among available travel alternatives: personal car, 

transit, walking, bicycle, etc. The relative attractiveness of those alternatives to 

individuals depends on relative costs. If the utility of using transit is higher than the costs 
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of driving, a traveler is likely to choose a transit option. If taking a bus or train to work 

instead of driving a personal car can save a commuter money and travel time, a transit 

agency is likely to gain a new rider (Armbruster 2010).  

First utility increases as travel costs drop, which happens when transit cost/fare 

or cost of service drop, provided the fares offer a savings over driving and parking, or 

when more patrons use transit, so fixed costs can be spread over more users. Cost is 

one of the most important determining factors. It can also be linked to affordability of the 

user or income. Total economic costs must be the same or less for public transit as for 

private automobile. Second considering all travel modes and choosing the one that saves 

the most time. According to the Texas A&M Transportation Institute, the average auto 

commuter in the United States spends 42 hours per year in traffic. That same study puts 

the price tag of those delays at $960 per driver. In big cities, the numbers are even 

worse. Drivers in the 15 largest U.S. metro areas spend an average of 63 hours per year 

stuck in congestion on the way to work, costing an average of $1,433 per person 

(Wallace 2017). Third, a mode with higher frequency is desirable as the waiting time 

reduces and the service frequency increases. Other factors to consider when choosing 

transportation mode may include accessibility, fuel efficiency/carbon emissions, and 

integration with other modes, safety, comfort and privacy specifically if they allow 

relaxation or work en-route. In addition, random events, such as weather, accidents, and 

road work, may influence mode choice. Considering daily traffic congestion, the travel 

cost of the car may be lower in the best-case scenario, since it’s the quicker mode, 

however if the traffic reaches a certain congestion level, then using public transit may 

become more appealing to some commuters. Nobody likes sitting in traffic and if these 

drivers had a better choice, they might be willing to use transit. In theory, that alternative 

is public transit – buses, commuter trains, light rail, street cars and subway systems. At 
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its best, public transportation is as reliable as driving, more efficient, less stressful and 

cheaper (Wallace 2017). Most American cities fall short of that ideal.  

In the U.S., the Interstate Highway Act of 1954 was based on the understanding 

that the main function of transportation is to provide access to land, and the 

transportation planner’s role is to provide mobility by forecasting future travel demand 

and determine infrastructures to meet those demands (Dittmar, 1995). There has been 

more emphasis on the need to promote sustainable and environmentally friendly 

transportation modes, and less congesting since the Intermodal Surface Transportation 

Efficiency Act (ISTEA), Transportation Equity Act for the 21st Century (TEA-21), the Safe, 

Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users 

(SAFETEA-LU), and the most recent transportation bill, Fixing America’s Surface 

Transportation (FAST) Act (NCTCOG, 2017). In addition, the Transportation 

Improvement Program (TIP) is a staged, multi-year program of projects proposed for 

funding by federal, State, and local sources within the Dallas-Fort Worth Metropolitan 

Area. The 2017-2020 TIP identifies roadway and transit projects programmed for 

construction within the next four years.  The 2017-2020 TIP was developed by the North 

Central Texas Council of Governments (NCTCOG) in cooperation with local 

governments, the Texas Department of Transportation (TxDOT), and local transportation 

agencies. The 2017-2020 TIP was prepared under guidelines set forth in the Code of 

Federal Regulations (NCTCOG, 2017). 

To achieve the standards, set forth by TIP, ISTEA, and SAFETEA-LU referenced 

above, and as an alternative to the private car, the 2017-2020 TIP for North Central 

Texas was developed to identify transportation improvement projects recommended by 

TxDOT and the Regional Transportation Council (RTC) as a result of the comprehensive, 

cooperative, and continuing regional transportation planning process. This process 
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generates a multi-year listing of roadway and transit projects, and demonstrates that 

energy, environmental, air quality, cost, and mobility consideration are addressed in 

regional transportation planning and programming of projects.  

Mobility 2035 was also developed by the North Central Texas Council of 

Governments (NCTCOG) which represents a blueprint for a Multimodal Transportation 

System to set forth a Metropolitan Transportation Plan. Some of the major policy 

objectives are to use Sustainable Development Strategies to:  Reduce demand on 

transportation system, Provide multimodal options, and Emphasis on Environmental 

Aspects and Quality of Life Issues of Programs and Projects.  

In regards to the empirical studies about factors impacting transit ridership, studies of 

transit ridership include combinations of external and internal factors (Taylor, B., & Fink, 

C. (2003). External factors are exogenous to the system and its managers, such as 

population and employment.  In DART study area, the population is expected to grow 

significantly due to the influx of people moving from other States into the DFW area. 

Employment level is also expected to increase substantially in the DFW area. Population 

and employment increases are expected to have positive impact on transit ridership and 

also car ridership. Transit use is expected to be more sensitive than private vehicles to 

changes in employment levels (Taylor and Fink, 2003). Transit usage declined by 

approximately 25 percent during the Great Depression of the 1930s. Thus, employment 

levels are common variables used in transit ridership analysis. (Kain and Liu 1999) use 

changes in employment as variables in their regression analysis. On the other hand, 

internal factors are endogenous to the system where transit managers may have some 

kind of control over, such as service levels, fares, and intelligent transit information 

technologies employed. Internal factors generally aim to increase efficiency and 
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effectiveness of transit operations. Next section will show some major future transit 

corridor recommendations in DFW metropolitan area. 

A significant body of recent research focuses on the relationships between land use, 

urban form, and travel behavior. A large attention has been devoted to this topic because 

policy makers and planners have some control over land use and the deployment of 

transportation systems, but less control over many of the socio-economic factors (Taylor 

and Fink, 2003). Further, the New Urbanist movement has impacted many planning 

scholars and promoted research on the effects of various New Urbanist principles (such 

as compact, mixed-use developments and interconnected street/sidewalk networks) on 

travel behavior. Bianco et al. (2000), for example, studied the relationship between 

parking costs and transit ridership. They considered various strategies, including parking 

costs, parking regulations, employer paid parking, and transportation demand 

management (TDM) approaches. They find that the best approach in shifting mode share 

to transit – a tax on parking spaces – has the lowest political feasibility. Thus, most 

research on transit use and urban form has focused on other spatial factors such as: 

residential and employment densities. Others have illustrated that the impact of land use 

mix and urban design are also important factors. Crane (2000), for example, finds that 

decentralized residential and occupational locations are difficult to serve with traditional 

fixed route public transit because transit works best when a large number of people are 

travelling to and from concentrated nodes of activities. Thus, dense, compact 

development is more conducive to efficient operations than dispersed and sprawling 

pattern of urban development.  

Other influential factors which were identified by means of literature search on factors 

that affect ridership levels include: gas prices, education, and socioeconomic 

characteristics (Taylor et al., 2003).  It is believed that factors such as gas price changes 
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over the last decade caused many automobile drivers to switch to transit. An analysis of 

transit ridership and fuel prices for nine major US cities from 2002 to 2008 found a 

significant increase in ridership associated with changes in gas prices (Lane, 2010). 

These studies generally conclude that higher gasoline prices have small but significant 

effects on transit ridership (Chen et al., 2011; Lane, 2012). 

Other research included the Education/Percentage of College Population variable in 

the study of transit ridership (Dargay, et al. 2002). Most college students live at or around 

campus, where their activities are usually concentrated. Hence, it is not necessary for 

many of them to have a car. Therefore, it is important to include this variable in the study 

of transit ridership analysis. A positive relationship is expected between percentage of 

college population and transit ridership. 

Employment levels, weather conditions, and system fares also matter (Kuby, et al., 

2004).  In a recent study of the Metropolitan Tulsa Authority, Chiang et al. (2011) 

reported a statistically significant travel elasticity of fare, which suggests that Tulsa 

Transit will lose 50,000 passengers if trip fares increase by $1 per day. Studies 

measuring the impact of fare changes on ridership may focus on different adjustments 

such as transit pass incentives (Zhou and Schweitzer 2011), or fare increases (Hickey 

2005), Other studies explore the effects of fare changes on service coverage (Armbruster 

2010), transit supply, employment, and gasoline price (Varley and Chen 2010; Pucher 

2002). A study of the impact of fuel price and transit fare on ridership (1996-2009) 

similarly found that rising gas prices had a more significant effect than decreased transit 

fares (Chen et al. 2011). General economic theory suggests that the demand for a 

commodity will decrease if its price increases. Several previous studies, such as Taylor et 

al. (2009), have examined the influence of transit fare on patronage and found that when 

the transit fares increase, ridership decreases. 
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Studies of socioeconomic determinants of transit ridership focus on the travel needs 

of demographic groups with limited access to automobiles. Research shows that low-

income groups are most likely to rely on transit for access to employment and other 

household’s necessities (Alam 2009; Holtzclaw et al. 2002; Polzin et al. 2000). The poor, 

racial and ethnic minorities, and the elderly constituted 63 percent of the national transit 

ridership (Pucher and Renne 2003; Renne 2009). Percentage of African American 

Population- When planning a new route, the transit authorities are required to submit a 

Title VI report to the Federal Transit Agency (FTA) proving that the rights and benefits of 

the poor and minorities were given highest-priority consideration in the planning process. 

Moreover, the report must demonstrate that the proposed route does increase transit 

accessibility for minorities. Another study used the percentage of African American 

population to reflect the minority population groups. Literature suggests that a substantial 

proportion of African American minority population ride transit (Alam 2009). Hence, it is 

expected that ridership will increase with an increase in the proportion of African 

American population. Studies of socioeconomic factors also confirm that most of transit 

riders are low-income, African Americans, Latinos, women, and older adults, who are 

unable to afford an automobile due to financial constraints (Alam, 2015). 

The literature about factors impacting transit ridership is quite mixed. Most 

previous studies of transit ridership have not included ITIS as one of the variables 

thought to influence transit ridership. Therefore, the disparities among the findings of 

empirical research completed to date point to the necessity for further study. This study 

addresses these shortcomings by testing multiple factors measuring population, 

technology, geography, and socioeconomic characteristics. This is examined in a case 

study applied to Dallas Area Rapid Transit (DART).  
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2.2 Connections between transit ridership and smart technology 

It is hypothesized that intelligent transit information systems or ITIS will help 

transit agencies attract more riders.  In order to explain the relationship between rising 

ridership and the use of smart technology, we need to understand how psychological, 

sociological and other factors affect travelers' behavior in the presence of ITIS; a 

satisfactory explanation requires that we are also able to specify the social “cogs and 

wheels” (Elster 1989) that have brought the relationship into existence. Dutzik & Madsen 

(2013) point out that Transit apps affect vehicle travel by reducing information barriers, 

reliability concerns and other hurdles to the use of public transportation. Further, survey 

research and observations by transit agency officials suggest that real-time transit 

information is a valuable asset to transit riders and can increase transit ridership by 

promoting awareness, feedback and collaboration to improve the quality of the services 

given by the technology. Tang (2010) argues that intelligent transit information systems 

hold the promise of making transit more attractive to users because of the user benefits. 

Such systems provide trip makers with information on the status of transit vehicles such 

as real-time bus or train arrival times, connection availability and real-time origin-

destination travel times. Other possible applications are routing, information on payment 

methods and connection to other modes of transportation. In addition, travelers may 

perceive that their transit travel experience might improve with transit real-time 

information systems, leading them to have a positive view about such services, and 

consequently to increase their use of transit. The relationship of the propensity to 

increase transit use when given real-time information will therefore be positive. Golob 

(2000) points out that ITS provides a set of services that support using public 

transportation and potentially increase transit use. These include providing real-time 

information about the transit system and schedules, as well as other services that make 
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people feel safer and more confident about using transit. Abdel-Aty and Jovanis (1995) 

examine a different aspect of service quality impacting transit ridership using transit 

survey data from Santa Clara and Sacramento, California. They find that most 

respondents were satisfied with available transit information. 

Several other studies find that the penetration of Information and Communication 

Technologies (ICT) into all aspects of human life has influenced personal activities and 

related travel behavior (e.g. De Graaff & Rietveld, 2003; Golob, 2000; Golob & Regan, 

2001; Mokhtarian et al., 2004; Salomon, 1986, 1998). America’s technological and social 

networking revolution is changing every aspect of American life and transportation is no 

exception. Mokhtarian et al. (2004) affirm that one of the most major changes has been 

the emergence of new technology-enabled transportation services, which take advantage 

of mobile communications technology and social networking tools to provide new 

transportation choices to Americans. By empowering Americans with additional 

transportation choices and enhanced ways to navigate these choices, new technology-

enabled transportation services could reduce the need for many Americans to own a 

personal vehicle, thereby resulting in a significant reduction in vehicle travel (Dutzik & 

Madsen, 2013). 

In regards to previous research on passenger needs for real-time transit 

information and the effects of such information; Dziekan and Kottenho (2007) summarize 

that there are seven major effects of transit ITIS: reduced perceived wait time, positive 

psychological effects (e.g., reduced uncertainty, increased ease-of-use and a greater 

feeling of security), increased Willingness-to-Pay (WTP), adjusted travel behavior (e.g. 

better use of wait time or more efficient traveling), mode choice effects, higher customer 

satisfaction and better image of public transportation.  Smith (2013) argues that 

Technology-enabled transportation services have the potential to change transportation 
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behaviors. They can eliminate traditional barriers that prevent travelers from taking public 

transit or sharing rides.  The new services can make it easier for households to own less 

vehicles - a step that generally leads to reductions in driving.  They can also introduce 

additional transportation choices in places and markets where they are not currently 

available. 

In addition, mobile technology enables riders to use their time riding on trains or waiting 

for buses more productively. This provides an advantage over driving especially if the use 

of mobile technology is perceived as being incompatible with the safe operation of a car. 

Nielsen (2012) adds that a reduction of wait times and associated uncertainties could be 

one of the primary factors linking these systems to increased transit use (from existing 

users or non-users of transit). Any system or technology that would reduce perceived 

wait times and associated uncertainties, whether it is Automatic Vehicle Location (AVL) 

technology which improves actual on-time service performance or real-time bus and train 

arrival systems and onboard connection information systems that affects people's 

perceived wait-times and reduce their anxiety, would be a step in the right direction in 

increasing transit use (Nielsen, 2012). 

Golob and Regan (2001) illustrate that Information technology (Sometimes 

referred to as communications and information technology, or CIT) is developing quickly, 

providing unlimited business opportunities for entrepreneurs to develop and sell IT 

products and services. While most of these products and services are not specifically 

designed to affect travel behavior, they do, often in subtle and unexpected ways. In 

addition, cellular telephones and other portable computer and communications devices 

have redefined our ability to conduct business and dynamically provide real-time 

information while traveling or at locations away from home or workplace. The wave of 

technological advances that brought us the Internet, cell phones, and personal digital 
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assistants (PDA’s) is not slowing down (Mokhtarian et al., 2004). The future will bring a 

next-generation Internet with higher speed, multimedia capability and intelligent agent 

technology. It will be accessible by both PC’s and smart handheld devices. (Mokhtarian, 

2013). These trends offer the possibility of integrating traveler information to daily travel 

itineraries, points of interest, connectivity within transit modes or to ridesharing 

opportunities, to detailed weather reports and personal safety information, which could 

potentially improve the attractiveness of public transportation use. Tang (2010) examines 

how the attitudinal/psychological factors explain and predict travelers' actual behaviors. 

These altitudinal factors are investigated using attitudinal models developed from the 

Theory of Planned Behavior (TPB). Such models are employed in the context of 

technology adoption and use in the presence of habits, attitudes and behavioral 

intentions. Golob (2000) argues that the rise of apps in the transportation sector means 

that riders are increasingly able to make decisions based on the mode of transit that 

provides the best experience. Uber and Lyft put an emphasis on customer experience 

with their apps, enabling riders to seamlessly plan trips, pay, share arrival times with 

others and rate drivers. These apps have eliminated many sources of transportation 

friction and anxiety for riders. By enabling modern technologies, transit agencies can 

offer riders an experience comparable to that of ride-sharing services without being 

restricted to the roads, which are sometimes subject to uncontrollable conditions like 

traffic or construction detours.  

Dutzik and Madsen (2013) add that advances in the Internet and mobile 

communications technologies have unleashed a wave of modern technology enabled 

transportation services. New innovations in technology and social networking are 

beginning to change the transportation landscape in America. New transportation 

services are providing people with an abundance of new options, helping to overcome 
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barriers to the use of non-driving forms of transportation, and shifting the economics 

behind individuals’ travel choices. Collectively, they have the potential to allow more 

Americans to reduce their car dependence lifestyles with less driving (Dutzik & Madsen, 

2013). Gaylord (2013) points out that the majority of U.S. transit systems now make 

scheduling information publicly available, enabling developers to produce a variety of 

new smartphone apps to help riders navigate urban transportation systems. Smartphone-

based IT IS tools enable riders to find the best route for a specific trip, track the progress 

of bus and trains in real time, and pay their fare. 

Furthermore, Rainie (2012) states that new apps and tools also enable 

individuals to plan trips using several modes of transportation, facilitating efficient, 

seamless, and door-to-door journeys. Zickuhr (2012) illustrates that Information 

technologies make it easier to ensure seamless connections between various modes of 

transportation, expanding the number and types of trips that can be completed effectively 

without a car. Smith (2013) points out that the availability of mobile internet connections 

has the potential to influence transportation choices in important new ways. 

Smartphones, for example, provide travelers with access to voice and text 

communications, information and entertainment en-route, enabling time spent waiting for 

buses or riding on trains to be used more pleasantly or productively than before. 

Schwieterman et al. (2012) finds that the ability to stay connected while in travel is an 

important selling point of public transportation ridership relative to automobile driving, 

especially considering the increasing alarm of transportation safety officials about the 

perils of distracted driving.  

Giovanni (2013) says that initial findings from recent research suggest that users 

who perceive public transit as providing an opportunity to multitask may be more likely to 

choose transit over driving. Mokhtarian et al. (2013) points out in a study of the Wi-Fi 
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inclusion on Amtrak trains in California’s Capital Corridor predicted that the service 

increased the number of trips by 2.7 percent, with the greatest impact on new riders. The 

ability of mobile Internet technologies to enable productive use of time on public 

transportation is of critical importance and have the potential to affect how people choose 

to travel. Gosselin (2011) suggests that providing information about transportation 

options via the Internet and mobile technologies can give people the same sense of 

mobility and freedom that comes with owning a car. The researchers concluded that new 

forms of information access enable choice; they can aid with smart planning and in-the-

moment decision-making, reduce users’ frustrations, and soften preconceived notions 

about the downsides of more sustainable transit options when compared with driving 

(Weigel et al., 2010).  

Schwieterman et al. (2013) illustrate that Americans increasingly feel the need to 

connect via email, social networks and the Internet wherever they go. The increasing 

importance of mobile connectivity to Americans has the potential to shift traditional 

conceptions of how individuals value their time- making time spent connected to mobile 

technologies while waiting for a bus or riding a train more valuable than it might 

previously have been. The use of mobile technology on public transportation has become 

very common. An annual observational survey of Chicago-area commuter rail riders 

found that the percentage using portable electronic devices en route increased from 26 

percent in 2010 to 48 percent in 2013 (Schwieterman et al., 2013). More than half of the 

riders on Amtrak’s Acela high-speed rail service in the Northeast use laptops, tablet 

computers, or other electronic devices at any given time during travel (Schwieterman et 

al., 2012).  Surveys conducted by researchers in Great Britain have found that 80 percent 

of business travelers riding on trains worked during their journey, with those who worked 

spending 57 percent of their time working (Department for Transport U.K., 2009). Leggatt 
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(2013) adds that the ways in which information is disseminated to the traveler has also 

changed significantly over time - while information dissemination was originally conceived 

of as occurring via roadside or wayside signs or kiosks or the Internet which could be 

accessed through personal computers or via in-vehicle navigation systems or vehicle 

arrival signs at transit stations and stops, the tremendous market penetration of cellular 

phones, Personal Digital Assistants or other mobile devices in the last 20 years have 

made real-time travel information ubiquitous and instant, and available through handheld 

devices. In short, technology-enabled transportation choices can help people target and 

overcome barriers that might previously have deterred them from taking public 

transportation, sharing a ride with a friend, biking or walking to their destination. 

2.3 Intelligent Transit Information Systems (ITIS)  

Considering theories behind ITIS impact on transit ridership, ITIS applications 

provide real-time information to transit users. It’s nice to have Information about the 

transit system available to all users. Transit and none transit users will benefit from 

having knowledge of the whole system with schedules and fare information, especially if 

the information is current. Perhaps when transit users are presented with better 

information, like knowing ahead of time about schedules and delays on their route, they 

adjust their expectations, and they will be willing to use trip planning tools and 

applications to plan their trips. This might make transit riders feel relaxed and more 

comfortable about their commutes overall, and because of the technological advances, 

these apps will evolve to serve the riders even better which may positively influence the 

transit mode decision, and mitigate the influence of psychological factors that determine 

personal attachment to automobiles. Moreover, ITIS apps provide information about trip 

planning, trip navigation, traffic conditions, bus and train arrival times, and mobile 

ticketing options. These apps also allow commuters to compare travel time and travel 
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cost between different modes and the transit mode making it easier to find the shortest 

and cheapest travel mode. 

The impact of Intelligent Transit Information Systems technology on ridership has 

received some attention in the transportation literature in the 1990s. The deployment of 

automatic vehicle location (AVL) systems to better monitor and control operations was 

becoming prevalent throughout the U.S. transit industry (Deakin and Sonju, 2011). The 

focus of most of these deployments was to increase operational efficiency, not to provide 

customer information. As these deployments matured, transit agencies recognized that 

data from an AVL system could be used to provide customers with real-time arrival 

information.  At the same time, many transit systems in Europe were demonstrating the 

benefits of providing such real-time information to their customers. As a result, transit 

agencies have discovered a growing interest in providing real-time information to 

customers once they have deployed the AVL technology. Transit agencies of various 

sizes are beginning to invest in ITIS applications to facilitate real-time information, with 

the realization that they can have a significant and positive impact on their customers. 

Also, intelligent transportation systems products that specialize in providing real-time 

transit information exist on the market today and are being procured and deployed by 

transit agencies of all sizes (APTA, 2009). In the automobile industry, Waze software is 

used to provide such information. Like the automobile industry, transit agencies can use 

ITIS applications to meet the growing need to disseminate safety and security information 

(e.g., Amber Alerts) to customers in a security-conscious environment (US Department of 

Transportation, 2010). 

In regards to the ITIS empirical studies, according to a study conducted using 

longitudinal data on route level monthly average weekday ridership in the entire Chicago 

Transit Authority (CTA) bus system from January 2002 through December 2010, 
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researchers evaluate the ridership impacts of the CTA real-time bus information system. 

This particular information system is called CTA Bus Tracker and was implemented on 

different CTA bus routes from August 2006 to May 2009. Benefits realized from 

deploying real-time bus arrival information systems include improved customer service, 

increased customer satisfaction and convenience, and improved visibility of transit in the 

community (CTA, 2009). One of the perceptions among customers is that bus services 

have improved, and that people traveling late at night now have the reassurance that the 

next bus is not far away. Given the accuracy with which real-time arrival estimates are 

now being calculated, more and more existing and potential transit riders are viewing 

these systems as a necessary part of their travel experiences. Also, the combination of 

AVL and real-time arrival information systems results in benefits to transit agency staff, 

including less time required to monitor and control schedule adherence, improved safety 

and security for operations personnel and riders, less time required to respond to 

customer inquiries, improved maintenance management, and improved management 

effectiveness (Zhang et al., 2008). 

  Most of studies currently done on the topic of intelligent transit information 

systems have focused on what kind of information is useful and attractive to the potential 

users. For example, one study by Battelle Memorial Institute and Multisystems, Inc. 

(2003) on customers’ preferences on different types of transit information has tried to 

identify which type of information is essential or preferred by customers for different trip 

types. However, no questions were asked on trip makers’ travel behavioral changes. 

Based on this study, for transit pre-trip planning purposes, the highest preferences by 

respondents were for timetables and that traditional or static forms of information were 

preferred over real-time information for pre-trip planning. Trip time forecasts were the 

most preferred kinds of real-time transit pre-trip information. Participants in this study 
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indicated that they would like to have both static and real-time information available at 

wayside, while at the same time recognizing that the costs are likely to be expensive. 

Onboard of the transit vehicle, participants expressed the greatest interest in information 

regarding where to get off the bus and what the current location of the vehicle is.   

Other studies have attempted to examine the effectiveness and social benefits of 

public transit information by measuring traveler’s willingness-to-pay for this service. 

However, most of the studies found that the willingness to pay for transit information is 

low. Using a focus group, Neuherz et al. (2000) found that public transit users regard 

travel information as something already covered or paid for by transit fares. Khattak et al. 

(2003), by analyzing the survey data collected in San Francisco Bay Area in 1997 

through a computer-aided telephone interview of individuals who called the region’s 

Traveler Advisory Telephone System (TATS) and were willing to be interviewed, found 

that public transit users are unwilling to pay as much for travel information as car users.  

However, other authors have reported more positive results in this regard.  By 

conducting a stated choice experiment on travelers on different inter-city trains in 

Europe, Molin and Timmermans (2006) found that even though public transit information 

is highly price sensitive, travelers are still willing to pay for it if the information will provide 

additional functionality such as real-time information.  

 As for the evaluation of the effectiveness of ITIS in attracting new riders or 

otherwise modifying travel behavior, relatively few studies have been undertaken 

(Turnbull and Pratt, 2003). There is, as yet, no definitive reports of transit ridership 

increase in response to real-time information dissemination; however, there is research 

clearly indicating that riders appreciate real-time information, make use of it and are 

more at ease when it is available (Turnbull and Pratt, 2003). A study done by Mishalani 

and McCord (2006) has estimated the relationship between perceived and actual waiting 
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times experienced by bus passengers. By analyzing that data collected at bus stops, 

where no real-time arrival information is provided, the authors found that perceived 

waiting time was greater than the actual waiting time controlling all other factors.  

Assuming the perceived waiting time will be the same once the real-time information is 

provided; the authors concluded that the real-time arrival information will help reduce 

transit riders’ perceived waiting time and uncertainty caused by perceived longer 

headways.  

 Among the limited studies done on the potential effects of ITIS applications in 

attracting more users, especially non-transit users, the study results are quite mixed. A 

study done by Abdel-Aty (2001) indicated that transit information has the potential in 

increasing the acceptance of transit as commuter mode for non-transit users. The 

purpose of this research was to investigate whether traveler information systems would 

increase the acceptance of transit and determine the types and levels of transit 

information that are desired by commuters. A computer-aided telephone interview was 

conducted in this study in two metropolitan areas in Northern California. The survey 

employed stated preference design to collect data from non-transit users. Using an 

ordered probit model, the study identified the transit information that commuters seek 

include operating hours, frequency of service, fare, transfers, seat availability and 

walking distance to transit station. About 38% of non-transit users indicated that they 

might consider transit use if appropriate transit information was available to them. About 

half of them indicated that they were likely to use transit if the preferred information types 

were provided. However, a study done by Chorus et al. (2006) shows that the impact of 

transit information on mode choices will be very limited on car-drivers, even if the 

information provided is actually favorable to transit. In this study, a theoretical regret-

based model of information use and effect was employed.  Using numerical simulations 



 

37 

of the model, the study demonstrates that, even in cases where transit information is 

acquired, and that message is favorable to transit, its impact on change in mode choices 

will be limited. Thus the study suggested conservative estimates of the impact of transit 

information provision on modal shifts. 

 In another study, Cham et al. (2006) attempted to quantify the return on 

investment due to the implementation of real-time bus arrival systems. The authors 

showed that by using fairly conservative assumptions regarding trip volumes that receive 

real-time bus arrival information, reductions in wait time and reduction in the cost of wait-

time uncertainty, that the Portland area’s real-time bus and train arrival information 

system (TriMet Transit Tracker) most likely achieves positive net (social) benefits. The 

Transit Tracker system provides TriMet riders with a real-time estimate of the expected 

time until the next transit vehicle arrives at a specific stop (bus) or station (rail).  Transit 

Tracker covers all rail stops and each of TriMet’s 7,700 bus stops, although at the time of 

the study, electronic Transit Tracker information displays had been deployed at only 13 

bus stops (4 of which also include voice annunciation and information on the remaining 

bus stops were available via telephone or the web) and at all TriMet light rail stations 

(deployed January 2001).  This study uses existing TriMet data sources and a benefit-

cost methodology to arrive at these conclusions. The authors speculate that it is also 

possible that better vehicle arrival time information may also generate additional 

ridership for TriMet, potentially yielding additional benefits to society (e.g., from reduced 

auto use).  However, the existing studies of Transit Tracker use do not provide a 

reasonable basis for assessing any potential increase in ridership resulting from 

implementation of the Transit Tracker system. Hence, the potential for increased 

ridership is not included as a benefit in this brief demonstration.  Similarly, while TriMet 

may also enjoy some cost savings benefits from Transit Tracker’s implementation (e.g., 
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a reduction in staff dedicated to customer service phone lines), TriMet has not conducted 

studies to measure any such potential agency cost savings from Transit Tracker 

implementation.  Therefore such potential agency cost savings benefits were not 

considered in the demonstration analysis considered in the report. 

 The results of the literature scan can be summarized as follows: there has been 

no definitive study on changes in ridership levels due to ITIS applications provision. 

There are several studies, which have shown that the immediate benefits of these 

systems accrue due to the fact that riders appreciate the information and use it. The 

literature indicates that wait times experienced by transit riders is perceived to be 

burdensome by most transit riders. A reduction of wait times and associated 

uncertainties could be one of the primary factors linking these systems to increased 

transit use (from existing users or non-users of transit). Any system or technology that 

would reduce perceived wait times and associated uncertainties, whether it be AVL 

technology, which improves actual on-time service performance, or real-time bus and 

train arrival systems and onboard connection information systems that affects people’s 

perceived wait-times, would be a step in the right direction in increasing transit use 

(Mishalani and McCord, 2006). Although there are yet no definitive reports of transit use 

or mode share increase due to ITIS applications dissemination, many studies have found 

positive psychological effects of real-time information on travelers, such as higher 

satisfaction level with transit service (Shen et al., 2008), and reduced perceived wait 

times and anxieties (Dziekan, K., and K. Kottonhoff, 2007). Some studies have even 

hypothesized that a reduction of perceived wait times and associated uncertainties could 

be one of the primary factors that consequentially lead to transit ridership increase (The 

Victoria Transport Policy Institute, 2007).  
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  Previous research on intelligent transit information systems has been 

summarized in TCRP Report 95 (Turnbull and Pratt, 2003), TCRP Report 48 

(Schweiger, 2003), (Abdel-Aty, 2001), and (FTA, 2011).  According to these reports, the 

potential impact of such information systems on transit ridership is an important factor. 

The availability of real-time information is also impacting travelers’ perception of public 

transit. For example, the ShuttleTrac system implemented at the University of Maryland 

resulted in increases of two psychological indicators among riders (Zhang et al., 2007). 

Within this broader literature, the role that ITIS can play in increasing transit ridership 

levels and to improve customer satisfaction has been receiving increasing interest. 

However, although transit information has been regarded as one of the most important 

factors that will increase transit ridership in many studies, there is no convincing 

evidence in the literature that shows that such information systems can successfully 

increase transit use, especially from non-transit users. While some studies suggest that 

ridership effects of such systems are positive, other studies have given more 

conservative estimates of the impact of ITIS provision on ridership. 

 Although many studies have considered ITIS real-time transit applications to be 

one of the most crucial factors that will influence transit ridership (Federal Highway 

Administration, 2004; Taylor and Fink, 2003; The Victoria Transport Policy Institute, 

2007), the current literature does not provide conclusive evidence regarding whether 

such information systems can successfully increase transit patronage. Most studies 

completed to date explore ITIS impact on ridership in qualitative and descriptive forms, 

surveys, and interviews. Descriptive analyses are normally based on qualitative data from 

surveys and interviews to identify factors affect ridership. However, such studies also 

may have some methodological and interpretive biases. Such information may be 

subjective and may also depend on respondents’ perceptions and assumptions about 
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internal and external factors related to ridership (TCRP 1995, 1998), thus the data are 

subject to biases based on limited information (Taylor and Fink, 2003). This study will 

attempt to quantify the ITIS impact on ridership, and fill the gap in the existing literature 

by exploring the impact of ITIS transit information systems on transit ridership. Within this 

broader literature, the role that intelligent transit information systems (ITIS) can play in 

increasing transit ridership levels and to improve customer satisfaction has been 

receiving increasing interest. Currently, the transit system is growing and changing 

rapidly. Given Dallas Area Rapid Transit (DART) has been involved in the planning, 

programming, and implementation of intelligent transit information programs and projects, 

it is therefore of interest to find out the impact of ITIS on transit ridership in the DART 

study area.  
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2.4 The impact of ITIS applications on transit ridership  

In the existing literature related to the relationship between the use of the app 

and increase ridership, several studies have commented on the role that ITIS app play on 

public transit ridership. Some studies are based on Stated Preference (SP) or simulated 

data (Abdel-Aty & Jovanis, 1995; Peng et al. 1999; Abdel-Aty, 2001; Chorus et al., 2006). 

Abdel-Aty (2001) conducted a SP survey to investigate whether traveler information 

systems would increase the acceptance of transit and found that such information has 

the potential in increasing acceptance of transit as commuter mode for non-transit users. 

A study of Seattle-area bus users who used real-time performance information through a 

service called OneBusAway found that 90 percent reported that the service reduced the 

amount of time they spent waiting for the bus, with an actual reduction in wait time 

averaging 2 minutes. Realtime information was also responsible for a reduction in 

perceived wait times of about 13 percent (Watkins et al., 2011).  More than 30 percent of 

respondents reported that the service induced them to ride the bus more often (Ferris, 

2010).  Lewis and Williams (2000) point out that strategies to increase public transit 

ridership and to improve user satisfaction are an active and ongoing area of research. 

Customer satisfaction, stemming from service scheduling and reliability, service 

coverage, information, comfort, cleanliness, and safety and security is another active 

area of research, which seeks to inform public transportation managers of ways to 

improve services and attract patronage. 

Tang (2010) estimated from using the data from two stated preference surveys 

that Transit Information Systems applications has a positive effect on the intention to 

increase transit use in certain groups of travelers and that eventual changes in ridership 

effect may be small but positive. He also found that in the initial stages of the technology 
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deployment, there is indeed a small positive effect on ridership, in certain routes and 

areas, controlling for a wide variety of factors that may also affect ridership over time. 

    Tang et al. (2012) conduct another study of ridership on the Chicago transit 

system, which introduced a real-time bus location information system from 2006 to 2009. 

They illustrate that introducing real-time information increased bus ridership by 2 percent. 

While that impact appears small, it is likely greater today, as convenient smartphone-

based tools were only beginning to become available by the end of the study period.  A 

survey of users of the University of Maryland’s campus shuttle service found that real-

time data increased ridership by 23 percent (Zhang 2010). Another survey of bus riders 

on a New York City bus line found that, just six months after providing real-time 

information, more than half of all riders had used the information, with more than half of 

those riders consulting the real-time information on every trip. Riders who used the real-

time information reported that they felt spending less time waiting for the bus than non-

users, even though the amount of waiting time they spent was the same (Rojas, 2013).  

Boston’s transit agency, the MBTA, has cited the availability of real-time transit 

information for buses as one of the reasons for this agency to set 15 monthly ridership 

records in a row from 2011 into 2012. In a June 2012 press release, General Manager 

Jonathan Davis said “We’re absolutely convinced that the widespread availability of real 

time bus data is making public transit a more convenient option for commuters. More 

than 100,000 smartphone users have downloaded ITIS applications that provide arrival 

time information for more than 180 MBTA bus routes” (Young, 2012).  

In addition, researchers from Massachusetts Institute of Technology surveyed 

riders the day before and the day after the MBTA installed digital train arrival countdown 

signs in several subway stations in the summer of 2012. Because of the signs, customer 

satisfaction with the train service increased by 15 percent, and riders’ perceived wait 
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times went down by several minutes (Moskowitz, 2013). By surveying riders in the City of 

Manitowoc, WI, the research of Peng et al. (1999) gave some insight into the question of 

whether AVL systems will help to attract more transit riders. About 36% of respondents 

indicated that they would ride more often if better and timelier transit information were 

available, but a larger group said they would ride the same amount. It is possible that a 

greater percentage of respondents would indicate that they would ride more if the AVL 

system in these areas could be configured to provide real-time arrival information. 

However, a study done by Chorus et al. (2006) shows that the impact of transit 

information on mode choices will be limited in affecting car-drivers, even if the information 

provided is actually favorable to transit. In this study, a theoretical regret-based model of 

information use and effect was employed. Using numerical simulations of the model, the 

study demonstrates that even in cases where transit information is acquired, and that 

message is favorable to transit, its impact on change in mode choices will be limited. 

Thus, the study suggested conservative estimates of the impact of transit information 

provision on modal shifts. 

Among the studies that were based on actual observed customer responses to 

real-time transit information, some of the studies did not found evidence showing that 

transit ridership increased because of the provision of such information (Holdsworth et 

al., 2007; Zhang et al.,2008; Cham et al., 2006), while many other studies did show such 

effect after the real-time information was launched (Schweiger, 2003; Infopolis2, 1998; 

Lehtonen & Kulmala, 2001; Cross, 2003; Rolefson, 2003; Body, 2007). After a Signal 

Pre-emption/Real-Time Passenger Information System (SR/RTPIS) program was 

implemented in Auckland, New Zealand, the patronage statistics show an annual 

increase of 7 percent per year in Auckland (Body, 2007). Similarly, a study for the 

Phoebus system in Brussels and Angouleme shows that the introduction of real-time 



 

44 

information has increased the ridership by 5.8% for the bus lines equipped with this 

system. And in Liverpool, study shows that the ridership increased by more than 5% on 

lines equipped with at-stop displays (Schweiger, 2003). Also, the study on Infopolis2 

project (Infopolis2, 1998) stated an increase in revenue such as 1.5% due to this system. 

The results of the literature show that travelers appreciate real-time transit information 

that is reliable and enables them to make immediate travel decisions, and the provision of 

the real-time transit information lead to travel time savings to passengers and higher 

passenger satisfaction with transit system. 

 

2.5 The potential impact of ITIS applications on non-transit users  

After reviewing most of the existing literature related to the impact of the apps on 

non-transit riders, I can conclude that these new ITIS tools/apps reduce negative aspects 

and cost of using transit through providing information, promoting awareness, feedback 

and collaboration to improve the quality of the services given by the technology, saving 

time and other attributes, and make transit more competitive and flexible for individuals to 

meet their transportation needs. From the ITIS impact reviewed in the existing studies, 

some studies are based on Stated Preference (SP) or simulated data (Abdel-Aty and 

Jovanis, 1995; Peng et al. 1999; Abdel-Aty, 2001; Chorus et al., 2006). For example, 

Abdel-Aty (2001) conducted a SP survey to investigate whether traveler information 

systems would increase the acceptance of transit and found that such information has 

the potential in increasing acceptance of transit as commuter mode for non-transit users. 

A computer-aided telephone interview was conducted in this study in two metropolitan 

areas in Northern California. The survey employed SP design to collect data from non-

transit users. According to the survey results, about 38% of non-transit users indicated 

that they might consider transit use if appropriate transit information was available to 
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them. About half of them indicated that they were likely to use transit if the preferred 

information types were provided.  

The literature indicates that wait times experienced by transit riders is perceived 

to be burdensome by most transit riders. A reduction of wait times and associated 

uncertainties could be one of the primary evidences linking these apps to increased 

transit use (from existing users or non-users of transit). Nielsen (2012) adds that any 

system or technology that would reduce perceived wait times and associated 

uncertainties, whether it is Automatic Vehicle Location (AVL) technology which improves 

actual on-time service performance or real-time bus and train arrival systems and 

onboard connection information systems that affects people's perceived wait-times and 

reduce their anxiety, would be a step in the right direction in increasing transit use 

(Nielsen 2012). In addition, access to mobile technology also enables riders to use their 

time riding on trains or waiting for buses more productively. This provides shared 

transportation with a market advantage over driving since the use of mobile technology is 

increasingly understood as being incompatible with the safe operation of a car.  

Small and Verhoef (2007) affirms that increasing the relative attractiveness of transit 

travel with ITIS apps and services that provide Wi-Fi in transit, Education about benefits 

of transit –Monetary savings –Reduced pollution –Less stress –Link to active lifestyles, 

may cause a subset of commuters to switch from auto to transit. As Small and Verhoef 

(2007) note, the introduction of Bay Area Rapid Transit (BART) service between Oakland 

and San Francisco in the early 1970s led to 8,750 automobile trips being diverted to 

BART. Brechan (2017) argues that the combinations of fare reductions and discounted 

passes, higher vehicle user fees (such as priced parking or road tolls), improved transit 

service, transit traveler information and better transit marketing can be particularly 
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effective at increasing transit ridership and reducing automobile use. In addition, this 

research will allow us to examine how the incremental exposure to technology from 2007 

to 2017 may lead to changes in attitudes and behaviors over time as a result of 

technology adoption and diffusion. In the next chapter, I will discuss the social 

mechanism, and theoretical approaches and concepts regarding the diffusion and 

adoption of ITIS technology. 
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Chapter 3  

Theoretical approaches and concepts regarding the diffusion and adoption of ITIS Apps   

3.1 Introduction 

To explain the social mechanisms that may help non-transit riders become aware 

of the smart technology and opportunities for riding transit, we need to understand the 

concepts regarding the diffusion and adoption of ITIS.  Elster (1989) states that a 

satisfactory explanation requires that we are also able to specify the social “cogs and 

wheels” that have brought the relationship between transit ridership and ITIS apps into 

existence. In keeping with the age of technology, social networking sites such as 

Facebook, Twitter, and Myspace can reintroduce transit to non-transit riders and 

technologically savvy class in many modern cities.  More than 50 transit agencies in the 

United States, including DART have some sort of social media presence.  The presence 

of social media and networking allows transit agencies to advertise, market, and make 

announcements on their own behalf without the need of a middle man such as a 

newspaper, commercial, or professional advertising agency (Eirikis, 2010). 

A large theoretical literature has developed showing the impact of network effects 

on the adoption process by consumers. Researchers have used “network effects” to refer 

to three distinct concepts: direct network externalities, indirect network externalities, and 

social network effects Rogers (1995).  In sociology and communications, “network 

effects” usually refer to the communication of ideas through social ties. The rapid 

diffusion of Hotmail email is an example of social network effects. New customers 

learned about the product from friends through email (Goldfarb, 2004). These models are 

driven by the importance of personal interaction in learning about an innovative 

technology and rely on communication of ideas through social ties (Manski (1993). 

Goolsbee and Klenow (2002), and Bell and Song (2004) examine the impact of network 
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effects on Internet adoption by consumers. Goolsbee and Klenow (2002) use 

instrumental variables estimation to examine the importance of local spillovers such as 

learning and network externalities on consumer home PC adoption. They show that these 

spillovers are connected to Internet usage and argue that this provides evidence of 

network effects in adoption. Stroeken and Knol (1999) state that the adoption of 

information technology takes place at the microeconomic level. It is particularly the 

phases involving the provision of knowledge and confidence-building about the adoption 

process. Adoption of information technology involves learning about, and becoming 

aware of, the dynamic environment in relation to the role of information technology. 

Diffusion research generally aims to analyze the diffusion of innovations in a 

social system. In this case, it involves DART Transit sector. Communication with potential 

adopters is the central theme in the diffusion process as this helps to reduce the 

uncertainty that exists among travelers with respect to information technology. Stroeken 

and Knol (1999) argue that homogenization of the group of potential adopters is a 

necessary requirement for optimizing the effectiveness of communication. The 

environment and associated communicative connections of this group of potential 

adopters has thus a profound influence on the adoption degree of an innovation in that 

social system. Cooper and Zmud (1990) defined IT implementation as “an organizational 

effort directed toward diffusing appropriate information technology within a user 

community.” In this research, appropriate transit information technology apps will be 

diffused within DFW user community to examine the impact of these apps on ridership. 

 

3.2 The Adoption Process 

Sheng (1998) created a model to help identify and measure the innovation 

adoption process as shown in Fig 3-1: 
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Figure 3-1 Organizational Innovation Adoption Process 

(Source: Sheng, 1998) 

 
The four-step process includes: 

1. Scanning/Matching: Either an opportunistic approach that scans for new ideas or 

an approach that scans for innovative solutions for existing problems. In this 

study, DART will provide Innovative ITIS solutions which aim to reduce negative 

aspects and cost of using transit through providing information, saving time and 

other attributes, and make transit use more attractive to existing transit users and 

non-transit users.  

2. Fit: The innovation ITIS solutions are redesigned to fit the user’s community 

needs. Political negotiations are conducted to gain support for the match. 

3. Adoption: Initial application use. Identification of a champion. Users are 

encouraged to regularly use the new ITIS apps. 

4. Diffusion: The ITIS application is spread throughout the user community in 

modified and creative ways through modern apps and social ties which generally 

attempt to bring an innovation into a new social network and can effectively 

communicate its benefits to increase overall efficiency or to solve additional 

problems. New customers and non-transit users will learn about the ITIS apps 

from friends through social ties, “word of mouth”, marketing campaigns, and 

promotion services which include providing real-time information about transit 
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arrival and departure times, and other services which make people feel safer and 

confident about using transit. 

Ryan and Gross (1943) used an epidemic model to study the diffusion of hybrid 

corn to Iowa farmers and find that social networks matter. Coleman et al. (1957) show 

how network effects shape the pattern of ICT diffusion and identify the role of network 

effects on the diffusion of new technologies. Stoneman (2002) points out that adoption is 

the individual-level decision to use a new technology. Diffusion is the aggregation of a 

number of adoption decisions. Rogers (1995) defines it as “the process by which an 

innovation is communicated through certain channels over time among the members of a 

social system.” Epidemic models are commonly used to help forecast the rate of 

aggregate technology diffusion. Bass (1969) uses an epidemic model to help predict the 

rate at which a product will diffuse. The central themes of these models -communications 

and social networks- are also prominent in recent economic research on technology 

diffusion. For example, Goolsbee and Klenow (2002) have examined how 

communications and social networks have influenced the diffusion of personal 

computers, and Bell and Song (2004) have examined use of online grocery services. As 

noted by Bell and Song (2004), technology spreads through interpersonal contact and 

information dissemination. Axsen et al. (2009) illustrates that evolving technology can 

have an impact on the way consumers (travelers) benefit from it and use it -" according to 

intuition and theories of diffusion, consumer preferences develop along with technological 

change". 

David (1969) assumes that the entire population has perfect information about the 

technology. Individuals (or firms) adopt the technology when the net benefit of adopting is 

positive. Rogers (1995) focuses on the role of communications networks in technology 

diffusion. He details the process through which innovations move from one population to 
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another and discusses the role of five key factors in the individual decision to adopt: 

relative advantage, complexity, compatibility, trialability, and observability. He 

emphasizes that these factors are only relevant after informative contact with the 

innovation, and much of this work focuses on the roles of different communications 

networks in initiating this contact. This contact is achieved by a “change agent.” The 

change agent brings an innovation into a new social network and can effectively 

communicate its benefits. Transit managers aiming to generate technology adoption 

should think of themselves as change agents (Rogers, 1995).  Although formal studies of 

the role of innovators and change agents have not been conducted in the field of ITIS, it 

is possible that they will play a substantial role in the diffusion and success of these 

technologies by commenting on their use and benefits in technology product blogs and 

"spreading the word" and promotion and collaboration in improving the technology 

(Droge, 2009). 

User studies in this area have examined how social networks and network 

externalities influence user decisions to adopt new communication technologies (Astebro, 

1995; Kraut et al., 1998; Tucker, 2004). Another area of research relates to long-term 

usage within the user community. This research draws upon the “Technology Acceptance 

Model (TAM)”, based on the Theory of Reasoned Action from social psychology (Davis, 

1989; Davis et al., 1989). The TAM model predicts that perceived usefulness and 

perceived ease of use are key to predicting long-run usage. Davis (1989) points out that 

factors that influence behavior, such as user characteristics and system design, do so 

indirectly through attitudes and subjective norms. Venkatesh and Davis (2000) extend the 

TAM model to explain perceived usefulness and ease of use in terms of social influence 

and cognitive instrumental processes. Kim and Malhorta (2005) show that belief 

updating, self-perception, and habit help explain usage behavior when added to the TAM.  
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3.3 Theories explaining connection between the ITIS app and transit ridership 

In the existing literature related to the connection between marginal drivers taking 

the leap to using the app and riding transit, different theories have been applied to the 

analysis of transportation behavior, and the formulation of strategies needed to change 

that behavior. Some recent development of consumer decision making models include 

multi-attribute models that are suitable for services or products containing multiple 

attributes, and attitude models that explain how attitude affect behavior (Abley, 2000). 

The most influential attitude models are the Fishman decision making model - Theory of 

Reasoned Action (TRA), and several extended models from TRA, such as Technology 

Acceptance Model (TAM), and the Theory of Planned Behavior (TPB). All these three 

attitude models are also closely related to Adoption Theories. 

 

3.3.1  The Theory of Planned Behavior  

 The theory of planned behavior TPB, for example, was developed by Dr. Icek 

Aizen, of the University of Massachusetts. Aizen (1991) states that “according to the 

theory of planned behavior, human action is guided by three kinds of considerations: 

beliefs about the likely consequences of the behavior (behavioral beliefs), beliefs about 

the normative expectations of others (normative beliefs), and beliefs about the presence 

of factors that may further or hinder performance of the behavior (control beliefs).” (Aizen, 

1991). The TPB model of human behavior is shown in Figure 3-2. This model comes 

from the field of psychology, and shows that human action is guided by three types of 

considerations: 

 

 Attitude toward the Behavior- An individual’s evaluation of an action, such as 

riding transit. It will be referred to as attitude. In this research ITIS apps provide 
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useful transit information, make transit more attractive to customers, and will 

ultimately contribute to positive attitude toward the behavior.  

 Subjective Norm - An individual’s perception of what others will think if he/she 

performs an action (e.g., what friends and parents will think if he/she rides 

transit). 

 Perceived Behavioral Control or Self-Confidence - An individual’s assessment of 

his/her ability to take an action, such as taking transit. In this case, ITIS apps 

reduce negative aspects and cost of using transit through providing information, 

saving time and other attributes, make transit more attractive to customers, and 

give new drivers more control or self-confidence toward using transit.  

 

Aizen (1991) argues that for each individual, these three types of considerations 

will have different importance, depending on the behavior or action. For example, young 

teens, as compared with older adults, may be more affected by the opinions of their 

peers in a decision to take transit. Attitude, subjective norm, and self-confidence will 

contribute to an individual’s intent to perform an action. Whether an individual holds the 

intent depends on his/her self-confidence in doing so. The literature scan also shows that 

the TPB has been applied in multiple European studies of mode choice. Theory of 

planned behavior has been used extensively to model human social behavior (Daigle et 

al., 2009). It has been used in the transportation planning field to study psychological 

factors affecting mode choice and public transportation use (Bamberg, 1995, 1996; 

Bamberg & Schmidt, 1993, 1998; Heath & Gifford, 2002; Karash et al., 2008). Heath and 

Gifford (2002) used an empirical strategy motivated by the TPB (with interaction 

variables) to predict the effectiveness of a universal bus-pass program (U-Pass program, 

which was offered to students at a considerable price reduction) in increasing the 
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percentage of university students using the bus service and also changes in 

psychological variables related to bus use. However, there are several limitations of TPB. 

Some of the limitations are related to the explanatory power of the model, since only 

three predictors were included in the original TPB. As Ajzen (1991) suggested that TPB is 

open to expansion, many researchers have proposed additional predictors in the model. 

Some researchers proposed to include personal and demographic factors in the model. 

Those factors have been identified as important determinants to form attitudinal factors in 

Huang (1993)'s consumer behavior model and Pearmain (1991)’s travel behavior model. 

Further, several studies (Bruijn et al., 2008; Bruijn et al., 2009; Mullan & Wong, 2009) 

found that reasoned use and habit lead to resistance to change in behavior and 

suggested expanding TPB to include habitual factors. Moreover, according to other 

research related to the TPB, appropriate interventions can break habits by changing 

underlying psychological factors related to these habits and lead to behavior change 

(Heath and Gifford, 2002), thus the interaction between interventions and habit should 

also be considered in the model if appropriate. 
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Figure 3-2 The theory of planned behavior 

(Source: Aizen, 1991) 

 
 

3.3.2  Innovation Diffusion Theory  

Kelly (2012) argues that Technology is a potentiator source of possibilities and 

options, allowing savings of time and costs to organizations. Its technique nature and 

method are strongly associated to knowledge that when applied to practice can provide 

competitive advantage for companies in the eco-nomic scenario. Arthur (2011) argues 

that Technological innovation is the main engine of economic development. According to 

Stal (2007), innovation is the development of a new method, device or machine that, on 

the market, could change the way in which things happen. This change has to be 

transformative in bringing improvements (Tigre, 2006) such as improving transit services 

to users by reducing the uncertainty associated with using transit and bringing 

improvements to the quality of transit service. According to the Oslo Manual (OECD, 

2010), “innovation is clearly part of a business strategy based on transforming ideas into 
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value. Generally, improved goods, services or processes” and can be configured as 

product, process, marketing and organizational innovation. Rogers (1983) proposed the 

innovation diffusion theory, consisting of five stages, which occur over time, given the 

influence of the social system and the communication channels, as shown in Fig. 3.3  

 

 

Figure 3-3 Decision process innovation 

   (Source: Rogers, 1983) 

    
The innovation decision process is the search for information made by a 

sequential activity in which the subject is motivated to reduce uncertainty about the 

advantages and disadvantages of a particular innovation. This process consists of five 

phases: previous conditions for adoption, knowledge about innovation or technology, 

persuasion of the possible adopter by deepening the knowledge about technology and 

searching for more information about the same; decision to adopt or reject the 

technology; implementation, that is the moment in which the technology is put into use; 

and finally the stage of confirmation in which the adopter evaluates and decides the 
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maintenance of the adoption or rejection of it after it has been put into use (Rogers, 

1983). 

 

3.3.3  The information processing theory 

Miller (1956) developed the information processing theory. This theory is an 

approach to the cognitive development of a human being, which deals with the study and 

the analysis of the sequence of events that occur in a person's mind while receiving 

some new piece of information such as transit information received via one of the ITIS 

apps. Huang (2001)'s used this theory to study consumer preference to analyze the 

relationship between perception, attitude and behavior intentions. Huang proposed a 

theoretic model of these psychological and behavior factors (Figure 3-4) and tested this 

model empirically using the data of a Georgia consumer survey on consumers' risk 

perception, attitude and behavior intentions toward pesticide use. The research results 

suggested that consumers' perception significantly affects their attitudes towards 

pesticide use, which in turn influence consumers' perception and behavior's intentions. 

However, the relationship between consumer perception and behavior' intention is not 

significant (Tang, 2010). 

 

Figure 3-4 Information processing theory 
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(Source: Huang, 2001) 

 

3.3.4  Adoption theories 

Pederson (2005) illustrates that studies of Information and Communication 

Technology (ICT) adoption takes one of three possible approaches, a diffusion approach, 

an adoption approach or a domestication approach (Pedersen, 2005). Diffusion 

researchers typically describe the aggregate adoption process in an industry, community 

and society in general, as an S-shaped function of time that may be used to categorize 

adopters of various kinds (Rogers, 1995). This approach has been used in studying the 

diffusion of numerous transportation technologies. Rogers (1962) identified five 

categories of adopters in his Diffusion of Innovations Theory: innovators, early adopters, 

early majority, late majority, and laggards. Innovators are the first pioneers to adopt an 

innovation. Innovators are willing to take risks, youngest in age, have the highest social 

class, have great financial lucidity, very social and have closest contact to scientific 

sources and interaction with other innovators. They are well-informed risk-takers who are 

willing to try an unproven product. Early adopters are the second fastest category of 

individuals who adopt an innovation, and who, based on the positive response of 

innovators, begin to purchase and use products. Early adopters are younger in age, have 

a higher social status, have more financial lucidity, advanced education, and are more 

socially forward than late adopters (Rogers 1962). Adoption researchers typically 

describe and explain the adoption decision of individual end-users applying different 

individual and social theories of decision making (Pedersen, 2005). 

The domestication research typically studies the adoption and use of technology in 

everyday life (Silverstone and Hirsch, 1992). The focus of domestication research is on 



 

59 

the societal consequences of the domestication of technology; that is the process in 

which the use of technology becomes integrated into our everyday life.  

 

3.3.5  Theory of Reasoned Action 

Theory of Reasoned Action (TRA) was originally proposed by Fishbein and Ajzen 

(1975). In the Theory of Reasoned Action (TRA), attitude is defined as a person's overall 

evaluation of an object and comprised of salient beliefs the person held about an object, 

the strength of the beliefs and the evaluation of each beliefs (Fishbein, 1967). Ajzen and 

Fishbein (1980) argued that the best predictor of whether a person will perform a certain 

behavior is that person's behavioral intention. Every decision made by an individual 

depends on the person's intention to perform or not to perform the act. Furthermore, 

one's behavioral intentions are determined by two factors: one's attitude toward the act, 

and a social normative factor. One's attitude toward the act means an individual's 

evaluation of the act instead of the object. The social normative factor represents one's 

judgment about the expectations of others and one's motivation to comply with those 

expectations (Ajzen & Fishbein, 1980). According to the theory of reasoned action, if 

people evaluate the suggested behavior as positive (attitude), and if they think their 

significant others want them to perform the behavior (subjective norm), this results in a 

higher intention (motivation) and they are more likely to perform the action.  

 

3.3.6  Technology Acceptance Model (TAM) 

The Technology Acceptance Model is considered an Extension of Theory of 

Reasoned Action. The Technology Acceptance Model (TAM) originally proposed by 

Davis (1989) is one of the most influential extensions of Ajzen and Fishbein's theory of 

reasoned action in the literature. The technology acceptance model uses two technology 
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acceptance measures - ease of use, and usefulness to replace TRA's attitude measures. 

The roles of these two acceptance measures in predicting behavior have been suggested 

as prominent by earlier studies (Tornatzky & Klein, 1982; Stewart, 1986). In TAM, it is 

assumed that when someone forms an intention to act, they will be free to act without 

limitation (Bagozzi et al., 1992; Davis et al., 1989). 

 

3.3.7  Perceived Behavioral Control and Self Efficacy 

Perceived behavioral control tries to measure the respondent's confidence in 

executing given behavior. The perceived behavioral control concept came from the self-

efficacy (Fishbein and Cappella, 2006; Ajzen, 2002). The concept of self-efficacy is 

rooted in Bandura (1977)'s social cognitive theory. It refers to the conviction that one can 

successfully perform a behavior in order to produce certain outcome. The concept of self-

efficacy is used as perceived behavioral control in TPB model. It indicates the perception 

of the ease or difficulty in executing particular behavior. Such perception is related to 

beliefs about the presence of factors that may facilitate or impede performance of the 

behavior. 

 

3.3.8  Pearman's Travel Behavior Theory/ Model 

Pearman et al. (1991) presented a model depicting the decision-making process 

underlying travel behavior (See Figure 3-5) that is closely related to Ajzen and Fishbein's 

theory of decision making - a model that originates from the field of psychology. In this 

model, there are two sets of variables, one are observable variables that "serve to 

promote and constrain market behavior", and the second are non-observable variables 

that "reflect consumer's understanding of their options and influence their decisions to 
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pursue particular strategies" (Pearmain et al., 1991), which are also internal mental 

elements. 

 

Figure 3-5 Components of travel behavior 

 (Source: Pearmain et al. 1991) 
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Chapter 4   

The elasticity of demand for transit 

4.1 Introduction 

Demand elasticity refers to how sensitive the demand for a good is to changes in 

other economic variables, such as the prices and consumer income (Hamilton, 2008). 

Demand elasticity is calculated by taking the percent change in quantity of a good 

demanded and dividing it by a percent change in another economic variable. For 

example, if the elasticity of transit ridership with respect to transit fares is –0.5, this 

means that each 1.0% increase in transit fares causes a 0.5% reduction in ridership, so a 

10% fare increase will cause ridership to decline by about 5% (Hamilton, 2008). 

Quite frequently one may be interested in interpreting the effect of a percent change of an 

independent variable (e.g. price or income) on the dependent variable (e.g. demand for 

transit). In this case, the elasticity of y (e.g. demand for transit) with respect to x (e.g. 

price or income) could be defined as the percent change in y divided by the percentage 

change by x. 

Elasticity of demand for transit = percent change in transit ridership / percentage change 

by income.  

As an example, for Ej = 2.0 we can say that about the mean of the variable, a 1% 

increase in xj will lead to a 2% increase in y.  In general, a high elasticity value indicates 

that a good is price-sensitive, that is, a relatively slight change in price causes a relatively 

substantial change in consumption. A low elasticity value means that prices have 

relatively insignificant effect on consumption (Hensher, 2008). Economists use several 

terms to classify the relative magnitude of elasticity values. Unit elasticity refers to an 

elasticity with an absolute value of 1.0, meaning that price changes cause a proportional 

change in consumption. Elasticity values less than 1.0 in absolute value are called 
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inelastic, meaning that prices cause less than proportional changes in consumption. 

Elasticity values greater than 1.0 in absolute value are called elastic, meaning that prices 

cause more than proportional changes in consumption. For example, both a 0.5 and –0.5 

values are considered inelastic, because their absolute values are less than 1.0, while 

both 1.5 and –1.5 values are considered elastic, because their absolute values are 

greater than 1.0. (Litman, 2004).  

According to Williams (1999), the elasticity indicates the sensitivity of demand to 

changes in X: 

 If the elasticity is positive, then an increase in X results in an increase in demand. 

 If the elasticity is negative, then an increase in X results in a decrease in demand. 

 The larger the absolute value of the elasticity, the more sensitive the demand is to X. 

 We say that demand is “elastic” with respect to X if the absolute value of the elasticity 

is greater than 1.0. This occurs when demand changes by more than 1% if X 

changes by 1%. 

 We say that demand is “inelastic” with respect to X if the absolute value of the 

elasticity is less than 1.0. This occurs when demand changes by less than 1% if X 

changes by 1%. 

 

4.2 The elasticity of demand for transit with respect to some of the factors in the model  

 In this section I will discuss the elasticity of demand for transit with respect to 

some of the factors in the model such as percent change in fare, income or ITIS.  I will 

illustrate my expectations for the signs of elasticities or their relative magnitude and 

sensitivity of transit to changes in these variables considering the literature, and I will also 

explore policy implications out of these elasticities. 
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4.2.1 Fare Elasticities 

There is extensive literature on the impacts of transit fare on transit ridership 

(Mattson, 2008). Many of the studies found transit fare to be an important factor to affect 

transit ridership (Kain and Liu, 1995; Liu, 1993; Kohn, 2000; Taylor and Fink, 2003). 

However, there are also studies showing the relationship between transit ridership and 

transit fare to be quite inelastic (Mattson, 2008). For example, Paulley et al. (2006) finds 

that travelers living in area with lower population density are more likely to switch to car 

use once transit fare increases.  

In addition, Hamilton (2008) investigates the impact of fare on transit ridership 

and finds that while it generally is recognized that a fare increase would result in some 

ridership decrease, the magnitude of such decrease is difficult to measure and can vary 

greatly among transit systems. A ten percent increase in bus fares would result in 

approximately a four percent decrease in ridership. This shows that today’s transit users 

react more severely to fare changes than found by Simpson and Curtain. The Simpson 

and Curtin formula states that ridership will decline by one-third percent for each one 

percent increase in fare (Curtin, 1968). Additionally, the study shows that transit riders in 

small cities are more responsive to fare increases than those in large cities (Curtin, 

1968). The fare elasticity is approximately - 0.36 for systems in urbanized areas with 

population of 1 million or more. The elasticity is -0.43 in urbanized areas with less than 1 

million population.  Although the data for peak vs. off-peak services are available for only 

six transit systems, the study shows that the difference between the fare elasticity levels 

is very clear: The average peak-hour elasticity is -0.23 while the off-peak hour elasticity is 

-0.42, indicating that peak-hour commuters are much less responsive to fare changes 

than transit passengers travelling during off-peak hours (Hamilton, 2008). More (2002) 

states that Transit Systems which raise fares are expected to find that mass transit 
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industry, like most other goods and services, faces a downward sloping demand curve 

with respect to price. The downward sloping demand curve means that as fares increase, 

ridership will decrease. The passenger reaction to fare change can be quantified by 

measuring the percent change in ridership occurring with a one percent change in fare. 

The resultant number is known in economics as the fare elasticity of demand or simply, 

fare elasticity (Moore, 2002). 

After a detailed review of international studies, Goodwin (1992) produced the 

average elasticity values summarized in Table 4-1. He noted that price impacts tend to 

increase over time as consumers have more options (related to increases in real 

incomes, automobile ownership, and now telecommunications that can substitute for 

physical travel). Nelson, et al (2006) found similar values in their analysis of Washington 

DC transit demand. Nijkamp and Pepping (1998) found elasticities in the –0.4 to –0.6 

range in a meta-analysis of European transit elasticity studies. Table 4-1 summarizes 

international transportation elasticities.  

Table 4-1 Transportation Elasticities 

  Short run Long run 

Bus demand and fare cost -0.28 -0.55 

Railway demand and fare cost -0.65 -1.08 

Petrol consumption and petrol price -0.27 -0.71 

Traffic levels and petrol price -0.16 -0.33 

(Source: Goodwin, 1992) 
 

Dargay and Hanly (1999) studied the effects of UK transit bus fare changes over 

several years to derive the elasticity values summarized in Table 4-2. They used a 

dynamic econometric model (separate short- and long-run effects) of per capita bus 

patronage, per capita income, bus fares and service levels. They found that demand is 

slightly more sensitive to rising fares (-0.4 in the short run and –0.7 in the long run) than 
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to falling fares (-0.3 in the short run and –0.6 in the long run), and that demand tends to 

be more price sensitive at higher fare levels. They found that the cross-elasticity of bus 

patronage to automobile operating costs is negligible in the short run but increases to 0.3 

to 0.4 over the long run, and the long run elasticity of car ownership with respect to transit 

fares is 0.4, while the elasticity of car use with respect to transit fares is 0.3. This table 

shows elasticity values from a major UK study. 

Table 4-2 Bus Fare Elasticities 

Elasticity Type Short run Long run 

Non-Urban -0.2 to -0.3 -0.8 to -1.0 

Urban -0.2 to -0.3 -0.4 to -0.6 

 
(SourceDargay and Hanly, 1999) 

 
Further, Oram and Stark (1996) illustrate that commuter transit pass programs, in 

which employers provide discounted transit passes, may significantly increase ridership. 

Subsidize transit passes can encourage occasional riders to increase transit use or 

prevent ridership losses if implemented when fares are increasing. Many campus UPass 

programs, which provide free or discounted transit fares to students and staff, have been 

quite successful, often doubling or tripling the portion of trips made by transit, because 

college students tend to be relatively price sensitive (Brown et al., 2001). Holmgren 

(2007) used meta-regression to explain the wide variation in elasticity estimates obtained 

in previous demand studies. He calculated short-run U.S. elasticities with respect to fare 

price (−0.59), level of service (1.05), income (-0.62), price of petrol (0.4) and car 

ownership (−1.48). The analysis indicates that commonly-used elasticity estimates treat 

transit service quality as an exogenous variable, which reduces analysis accuracy, and 

recommends that demand models include car ownership, price of petrol, own price, 

income and some measure of service among the explanatory variables, and that the 

service variable be treated as endogenous. Luk and Hepburn (1993) summarize travel 
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demand elasticities developed for use in Australia, based on a review of various national 

and international studies. These standardized values are used for various transport 

planning applications throughout the country, modified as appropriate to reflect specific 

conditions. Table 4-3 shows elasticity values adopted by the Australian Road Research 

Board. 

Table 4-3 Australian Travel Demand Elasticities 

Elasticity Type Short run 

Bus demand and fare -0.29 

Rail demand and fare -0.35 

Mode shift to transit and petrol price +0.07 

Mode shift to car and rail fare increase +0.09 

Travel level and petrol price -0.10 

 
(Source: Luk & Hepburn 1993) 

 

In addition, fare elasticities have several policy implications. Knowledge of fare 

elasticity is extremely important for transit managers for five primary reasons:  

1- It provides information on the expected ridership and farebox revenue resulting 

from a proposed change.   

2- Ridership and revenue estimation after a fare increase as an integral part of the 

transit route scheduling and budgeting processes. 

3- There may be serious social and political consequences of increasing bus or 

transit fares. Therefore, good fare policy and planning requires “what if” analysis 

of passenger behavior. 

4- There exists a theoretical point of unitary fare elasticity beyond which increasing 

fares will result in decreasing fare revenues and thereby negate any possible 

revenue generation through fare policies. 
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4.2.2 Income Elasticities 

In economics, income elasticity of demand measures the responsiveness of the 

quantity demanded for a good or service (e.g. Transit ridership) to a change in the 

income of the people demanding the good. It is calculated as the ratio of the percentage 

change in quantity demanded to the percentage change in income (Perloff, 2008). As for 

income elasticities, previous studies have shown that income level is negatively related to 

transit use (Gomez-Ibanez, 1996); various authors have found widely diverging results for 

the income elasticity of demand for busing routes. Holmgren (2007) found using a meta-

analysis that estimates on the income elasticity of demand for public buses were 

ambiguous and highly dependent on the demand specifications included.  He found that 

while some studies had found negative income elasticities of demand, some had also 

found positive results, and that the overall average was 0.17. Several authors have 

investigated the demand for public transportation on a route by route basis. Schmenner 

(1975) pursued a methodology of restricting his area of study to populations within two 

city blocks of bus routes in three Connecticut cities.  The study found that in bus transit 

with the log of revenue per mile or revenue per hour as the dependent variable, the sign 

on the log of family income was positive when all three cities in his study were pooled.  

When performed on a city by city basis, the sign on family income fluctuated, seeming to 

indicate that city-specific factors were key drivers behind this result.  Further, he claimed 

that previous studies had suggested that demand for busing was price inelastic. 

In addition, Glaeser and Rappaport (2006) found that the fixed time-cost of 

subways is less than that for bus transit, and that subways had on the whole a “much 

lower” time-cost per mile. They also found that when surveying all modes of public transit 

with 2000 census tract data in Boston, Chicago, New York, and Philadelphia that there 

was a positive correlation between the log of income and public transit usage for fixed 
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distances outside of the Central Business District.   When changing the urban mix to 

Houston, Atlanta, Pheonix, and Los Angeles, the authors found that the correlation was 

negative.  Differing levels of urban residential and employment concentrations seem to 

produce different patterns of transit usage according to this study. While the first set of 

cities was specifically selected to include subway transit, the study did not attempt to find 

separate results on income for rail and bus transit (Asquith, 2011). Moreover, Dargay et 

al. (2002) compared transit elasticities in the UK and France between 1975 and 1995 

through a log-log model. The study indicates that transit ridership declines with income 

and with higher fares and increases with increased transit service kilometers. These 

researchers found that transit elasticities have increased during this period. Table 4-4 

summarizes the findings. This table shows mean elasticity values based on 1975 to 1995 

data. 
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Table 4-4 Transit Elasticities 

  England (Log-Log) France (Log-Log) 

Income     

Short Run -0.67 -0.05 

Long Run -0.90 -0.09 

Fare     

Short Run -0.51 -0.32 

Long Run -0.69 -0.61 

Transit VKM     

Short Run 0.57 0.29 

Long Run 0.77 0.57 

 
(Source: Dargay, et al. 2002) 

 

Income elasticities have several policy implications. Knowledge of income 

elasticity is extremely important for transit managers and urban planners. Choosing which 

groups of consumers to target with expansions or upgrades to rail transit is a critical 

policy-making question with many millions of dollars at stake.   Further, from a public 

policy point of view, if it is known that rail-transit is not an inferior good would perhaps 

lead policy makers to choose other forms of public subsidies to increase mobility among 

the poor (Asquith, 2011). Research has also shown that rail transit ridership is greatest in 

more densely populated, lower-income areas (Gordon & Willson, 1985). 

 

4.2.3 Gas Prices Elasticities 

The price of gasoline affects the total cost of travel incurred by consumers. 

Based on standard economic intuition, alternative travel options will become more 

attractive at different gas prices. The hypothesis would be that an increase in gas prices 

increases the public transit ridership and a decrease in gas prices decreases public 

transit ridership. Han and Lee (2009) found long-run elasticities of 0.25 for subway 

passenger trips and 0.32 for subway passenger kilometers with respect to fuel prices in 
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Seoul, Korea between 2000 and 2008.  Iseki and Ali (2014) used panel data of transit 

ridership and gasoline prices for ten selected U.S. urbanized areas over the period of 

2002 to 2011 to analyze the effect of gasoline prices on ridership of the four transit 

modes—bus, light rail, heavy rail, and commuter rail. Their analysis improves upon past 

studies on the subject, this study accounts for endogeneity between the supply of 

services and ridership, and controls for a comprehensive list of factors that may 

potentially influence transit ridership. The analysis found varying effects, depending on 

transit modes and other conditions. Compelling evidence was found for positive short-

term effects only for bus and the aggregate: a 0.61-0.62% ridership increase in response 

to a 10% increase in current gasoline prices (elasticity of 0.061 to 0.062). The long-term 

effects of gasoline prices, on the other hand, was significant for all modes and indicated a 

total ridership increase ranging from 0.84% for bus to 1.16% for light rail, with commuter 

rail, heavy rail, and the aggregate transit in response to a 10% increase in gasoline 

prices. The effects at the higher gasoline price level of over $3 per gallon were found to 

be more substantial, with a ridership increase of 1.67% for bus, 2.05% for commuter rail, 

and 1.80% for the aggregate for the same level of gasoline price changes. Light rail 

shows even a higher rate of increase of 9.34% for gasoline prices over $4. In addition, a 

positive threshold boost effect at the $3 mark of gasoline prices was found for commuter 

and heavy rails, resulting in a substantially higher rate of ridership increase (Iseki & Ali, 

2014). 

The Congressional Budget Office used highway traffic count data to conclude 

that fuel price increases can cause modal shifts (CBO, 2008). They find that a 20% 

gasoline price increase reduces traffic volumes on highways with parallel rail transit 

service by 0.7% on weekdays and 0.2% on weekends, with comparable increases in 

transit ridership, but find no traffic reductions on highways that lack parallel rail service. 
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Currie and Phung (2008) found that in Australia, the cross elasticity of transit ridership 

with respect to fuel prices are 0.22, with higher values for high quality transit (Rail/BRT) 

and for longer distance travel, and lower values for basic bus service and shorter-

distance trips. Lane (2008) analyzed the relationships between fluctuations in gas prices 

and transit ridership in nine U.S. cities between June 2001 and September 2006. He 

found a statistically strong positive relationship, particularly in cities with rail transit 

systems. He developed a model which predicts how much transit demand would increase 

given an increase in fuel prices, as summarized in Table 4-5. This table indicates the 

percentage increases in fuel prices and transit ridership that can be expected from $4.00, 

$5.00 and $6.00 fuel prices in various U.S. cities. 

Table 4-5 Fuel Price Impacts on Transit Ridership 

City $4.00    $5.00    $6.00    

  Fuel            Transit Fuel Transit Fuel Transit 

Los Angeles 20.65% 6.21% 43.13% 14.36% 65.99% 23.97% 

Chicago 22.26% 8.72% 45.03% 18.94% 68.21% 30.27% 

Boston 29.11% 6.53% 53.15% 14.49% 77.63% 23.44% 

San Francisco 23.82% 3.76% 46.65% 9.68% 70.36% 17.07% 

Miami 26.65% 10.88% 50.24% 23.70% 74.25% 37.93% 

Seattle 29.25% 10.31% 53.35% 22.66% 77.85% 36.50% 

Houston 36.65% 12.21% 62.01% 26.15% 87.90% 41.31% 

Denver 29.20% 17.91% 53.26% 35.70% 77.75% 53.50% 

Cleveland 36.82% 18.61% 62.31% 36.83% 88.24% 54.91% 

 
(Source: Lane, 2008) 

 

Currie and Phung (2007) calculated the aggregate cross-elasticity of US transit 

demand with respect to fuel price (e) to be 0.12, indicating that transit demand increases 

1.2% for every 10% gas price increase. US light rail is particularly sensitive to gas prices, 

with values for (e) measured at 0.27 to 0.38. Bus ridership is only slightly sensitive to gas 

prices (e= 0.04) and heavy rail is higher (0.17) which is consistent with most international 
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evidence. A longitudinal model suggests some acceleration in transit mode sensitivity. 

APTA (2011) used data from previous studies and recent experience by U.S. transit 

agencies to evaluate how transit ridership would grow in response to increased fuel 

prices. Regular gasoline prices increased 35% from $3.053 per gallon on 31 December 

2007 to a peak of $4.114 on 7 July 2008, then declined 61% to $1.613 on 27 December 

2008. Transit ridership increased during this period, with a 3.42% increase during the first 

quarter, 5.19%, and 6.52% during the third quarter, indicating a lag between fuel price 

and transit ridership changes. Based on this research they developed a model that 

predicts how annual transit ridership is expected to increased using low, average, and 

high elasticity values.  Mattson (2008) analyzed fuel price increase impacts on transit 

ridership in U.S. cities. He found longer-run elasticities of transit ridership with respect to 

fuel price are 0.12 for large cities, 0.13 for medium-large cities, 0.16 for medium-small 

cities, and 0.08 for small cities. For large and medium-large cities, the response is quick, 

mostly occurring within one or two months after the price change, while for medium and 

small cities, the effects take five to seven months. The quicker response in larger cities 

may be explained by the fact that large city residents are generally more accustomed to 

public transport and so are quicker to shift mode than in smaller cities where transit use is 

uncommon. The elasticity is lowest for the smallest cities, meaning that people in small 

urban or rural areas are less likely to switch to transit. Medium-small cities have the 

highest response (Mattson, 2008). 

Haire and Machemehl (2007) analyzed ridership in five U.S. cities and found 

statistically significant correlation between ridership and fuel prices, suggesting that rising 

fuel prices increased transit use in historically auto-oriented American cities. They 

estimate that, on average, a one percent fuel price rise increases transit demand 

approximately 0.24 percent, or approximately 0.09 percent ridership gain for each 
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additional cent of fuel price. Maley and Weinberger (2009) found that in Philadelphia, fuel 

price increases had a larger effect on regional rail ridership (0.27 to 0.38 elasticities) than 

on local bus ridership (0.15 to 0.23 elasticities), probably due to a larger portion of rail 

riders being discretionary transit users who have the option of driving, and so are more 

likely to do so when fuel prices decline.  Blanchard (2009) used regional gasoline prices, 

transit ridership and supply data from 218 US cities from 2002 to 2008 to estimate the 

cross elasticity of demand for four transit modes with respect to gasoline price. The 

results indicate that the cross-price elasticity of transit demand with respect to gasoline 

price ranges from -0.012 to 0.213 for commuter rail, -0.377 to 0.137 for heavy rail, -0.103 

to 0.507 for light rail, and 0.047 to 0.121 for bus. The values vary significantly between 

cities, but are not highly correlated with urban population size, and the cross-price 

elasticity increased over this time period for commuter rail, light rail, and motorbus transit. 

Jung et al. (2016) used a data set of debit and credit card transactions in Korea to 

examine the effect of gasoline prices on individual choices between private vehicle and 

public transit travel. The study found significant heterogeneity, with some people being 

much more price sensitive than others. Brand (2009) found that the 20% 2007 to 2008 

U.S. fuel price increase caused a 3.5% VMT reduction, indicating a short-run price 

elasticity ranging from -0.12 to -0.17. Accounting for base trends (between 1983 and 

2004 VMT increased about 2.9% annually and gasoline consumption increased about 

1.2% annually, reflecting population, income and GDP growth) the short-run VMT fuel 

price elasticity ranged from -0.21 to -0.30. During this period, transit ridership increased 

about 4%. This increase was widespread, with 86% of transit agencies reporting ridership 

increases. Comparing the transit ridership increase to VMT decline indicates that only 

about 5% of the reduced vehicle travel shifted to transit, although this shift was much 

greater in major cities with high quality public transit services. For example, in New York 
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City traffic declined 6.3% through the Lincoln and Holland Tunnels, and more than 7% on 

four major bridges.  

Because of rising gas prices, APTA (2011) showed that public transit systems 

across the country are reporting significant increases in ridership.   Eighty-six percent of 

public transit systems report increased public transportation ridership over the past year 

with increases ranging from 2 percent to 30 percent.  Most agencies report ridership 

increases during both peak and off-peak hours (62 percent) with two out of ten observing 

an increase primarily during peak hours.  Among the small number of systems reporting a 

decrease in ridership, well over half have increased transit fares, cut service or both (8 

out of 13).  Public transportation agencies are taking a wide range of actions in response 

to increased ridership.  Four out of ten (42 percent) have increased service on existing 

routes.  Many of those adding service on existing route have also expanded into other 

areas, with three in ten (29 percent) reporting they have expanded service into new 

geographic areas.  Although many agencies have responded with specific changes, 

almost four in ten (38 percent) have made no changes to service and as a result, are 

experiencing increased crowding on existing routes.  Many agencies are not able to take 

action to respond to increasing ridership and, in some cases, are even cutting service. 

Gas prices elasticities have many policy implications. Hansen (2016) showed 

that gas prices indeed affect transit ridership in all forms, with elasticity values ranging 

between 0.0581-0.147.  Thus, there is a quantifiable effect that is of value to both policy 

makers and public transit operators to better effectively manage fleet and respond to 

consumer demands when gas prices increase. Transit agencies should prepare for a 

potential increase in ridership during peak periods that can be generated by substantial 

gasoline price increases over $3 per gallon for bus and commuter rail modes, and over 

$4 per gallon for light rail, in order to accommodate higher transit travel needs of the 
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public through pricing strategies, general financing, capacity management, and 

operations planning of transit services (Iseki & Ali, 2014). In addition, a substantial spike 

in gas prices may cause many riders to switch from auto-travel to public transportation 

and reduce road congestions. 

 

4.2.4 ITIS Elasticities 

It has been argued that ITIS reduces negative aspects and cost of using transit 

through providing information, saving time and other attributes, and makes transit more 

attractive to customers. As a result, the elasticity of demand for transit ridership with 

respect to ITIS is positive. I expect an increase in ITIS app usage increases the demand 

for transit ridership. As for ITIS elasticities, some previous studies were conducted based 

on Stated Preference (SP) or simulated data (Abdel-Aty & Jovanis, 1995; Peng et al., 

1999; Abdel-Aty, 2001; Chorus et al., 2006). For example, Abdel-Aty (2001) conducted a 

SP survey to investigate whether traveler information systems would increase the 

acceptance of transit and found that such information has the potential in increasing 

acceptance of transit as commuter mode for non-transit users. A computer-aided 

telephone interview was conducted in this study in two metropolitan areas in Northern 

California. The survey employed SP design to collect data from non-transit users. 

According to the survey results, about 38% of non-transit users indicated that they might 

consider transit use if appropriate transit information was available to them. About half of 

them indicated that they were likely to use transit if the preferred information types were 

provided. Turnbull and Pratt (2003) point out that improved marketing, schedule 

information, easy-to-remember departure times, and more convenient transfers can also 

increase transit use, particularly in areas where service is less frequent.  
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TRB’s Transit Cooperative Research Program (TCRP) Report 95 conducts a 

study on Transit Information and Promotion, examines travelers’ responses to mass-

marketed and targeted information and promotions, customer information services, and 

real-time transit information dissemination. This report is part of TCRP’s Traveler 

Response to Transportation System Changes Handbook series.  Based on this report, 

transit information is one of the key factors that will influence transit ridership; however, 

although many studies have been conducted to examine the effects of information of 

drivers' behaviors (Avineri & Prashker, 2006; Shiftan et al. 2007; Abdel-Aty et al. 1997; 

Abdel-Aty & Abdalla, 2004; Chen and Jovanis, 2003; Schofer et al., 1993; Wardman et 

al., 1997; Heathington, 1969; Yumoto et al.1979; Boyce, 1988; Al-Deek et al.1988; 

Mobility 2000, 1990; Kirson et al. 1991; Sparmann, 1991), studies exploring the potential 

impact of such systems on transit riders are relatively few (Turnbull & Pratt, 2003; TCRP, 

2003; Abdel Aty , 2001; Fries et al., 2009). Additionally, the analysis results on whether 

such system will increase transit patronage is quite mixed (Balcombe et al., 2004). 

ITIS elasticities have several policy implications. Knowledge of ITIS elasticities 

will help North American cities and Dallas Area Rapid Transit specifically to develop 

strategies that attempt to increase transit ridership for a variety of reasons including: 

reduce the energy use of transportation in cities, curb congestion, reduce pollution, and 

provide other social, economic and environmental benefits. It will aid policy makers in 

their decision making regarding further investments in transit ITIS applications. In 

addition, the use of these data by transit operators, transportation planners, and transit 

marketers presents significant opportunities for both short-term and long-term gains in 

transit use. Transit properties that leverage objective customer information from these 

systems may be able to be more proactive in serving transit customers (Under TCRP 

Project B-29, “Transit Market Research: Leveraging ITS and Transit ITS Data,”. It will 
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also enable service providers to target services towards those areas (or customers) that 

are most likely to increase transit use because of these services, design improved ITIS, 

and develop transit promoting programs. In addition, the underlying reasons for deploying 

this kind of applications include both economic and social considerations. Transit 

agencies expect these systems to boost the ridership, and hence revenues, by attracting 

more passengers. From transit users’ perspective, the availability of real-time transit 

information at their fingertips and the time saved by real-time transit information is 

certainly an economic benefit. Besides, transit agencies may boost their public images by 

making such visible efforts to improve their service. Perhaps a deeper social 

consideration is that social inequity in American cities, worsened by suburbanization and 

segregation, may be narrowed to some extent by improving transit service for the 

disadvantaged population who are largely captive transit riders. This analysis will help 

DART’s transit managers increase their operational efficiency and provide better real-

time customer information to retain existing customers and perhaps attract new 

customers.  

 

4.2.5 Employment Elasticities 

Several studies have found employment level to be a significant factor to affect 

transit ridership (Taylor & Fink, 2003). A change in employment level will change transit 

use due to the change of demand (Mattson, 2008). During Great Depression of 1930s, 

transit ridership had decreased by 25% nationwide (APTA, 2001). Chung (1997) also 

found that employment had greater impacts than fare on CTA transit ridership from year 

1976 to 1995. Fehr and Peers (2004) illustrate that employment is closely related to 

variables such as income and the economic level in general, which have a powerful 

influence on all segments of the transit market. Since demand for mass transit is 
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dependent upon the level of travel inducing activities, ridership should be strongly and 

positively related to the general economic level. Therefore, as employment decreases 

then ridership should also decrease (Goodwin,1992). Previous studies have shown that 

employment elasticities range from +0.50 to +0.70. (Cain, 2007). One researcher 

reported an employment elasticity of 1.086, meaning that a 1.086 percent increase in 

ridership occurs for each one percent increase in jobs (Fehr & Peers, 2004). Asquith 

(2011) finds that the nature of employment could be a key determinant of how residents 

choose to commute.  Neighborhoods with large numbers of unemployed workers are 

likely to also have large numbers of underemployed or part time workers who would be 

less likely to travel to the type of white-collar jobs that cluster in the CBD. 

 

4.2.6 Weather Elasticity 

Khattak and Palma (1997) explored how adverse weather conditions might affect 

traveler's behavior by conducting a survey with Brussels commuters. The survey results 

show that more than one-quarter of the respondents reported that adverse weather was 

either very important or important in changing their mode choice. Guo et al. (2007) used 

the Chicago Transit Authority in Illinois as a case study to investigate the impact of five 

weather elements (temperature, rain, snow, wind, and fog) on daily bus and rail ridership, 

and showed that weather condition impacts transit ridership: Good weather increase 

transit use, while bad weather decrease such usage. 
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4.3 Cross price elasticity of demand for transit 

 
Cross-elasticities refer to the percentage change in the consumption of a good 

resulting from a price change in another related good. For example, automobile travel is a 

substitute for transit travel, so an increase in the price of driving tends to increase 

demand for transit. Cross price elasticity of demand could help in measuring possible 

shifts from competing good as an effect of its price increase. To help analyze cross-

elasticities it is useful to estimate mode substitution factors, such as the change in 

automobile trips resulting from a change in transit trips. These factors vary depending on 

circumstances (Litman, 2004). For example, when bus ridership increases due to 

reduced fares, typically most of the added trips will substitute for an automobile trip. 

Conversely, when a disincentive such as parking fees or road tolls causes automobile 

trips to decline, generally 20-60% shift to transit, depending on conditions. Pratt (1999) 

provides information on the mode shifts that result from various incentives, such as 

transit service improvements and parking pricing (Litman, 2004). 

For the competing mode, the local gasoline price is important. Although there are 

other alternate modes, such as walking, and bicycling, whose costs are not related to 

gasoline prices, the automobile is by far transit’s major competitor. Concerning prior 

research Mokhtarian, et al. (2013), studied an aggregation of four cases in earlier studies 

and produced a bus demand to auto operating costs cross elasticity of +0.74. This is 

consistent since the cross elasticity between a good or service and its substitute should 

always be positive. That is, as the price of the good or service increases (e.g. auto 

travel), the demand for the substitute (e.g. transit travel) should also increase and vice 

versa. Small and Verhoef (2007) note that the introduction of Bay Area Rapid Transit 

(BART) service between Oakland and San Francisco in the early 1970s led to 8,750 

automobile trips being diverted to BART. Anderson (2014) uses a regression 
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discontinuity design based on a 2003 labor dispute within the Los Angeles transit system, 

and finds that average highway delay increases by 47% when transit service ceases 

operation. The effects of mass transit have recently been examined in various contexts. 

Bauernschuster et al. (2017) use a similar research design to Anderson (2014) and find 

that transit strikes in Germany resulted in an 11-13% increase in total hours spent in cars 

during these strikes, and a commensurate increase in accident and emission 

externalities. Using a regression discontinuity framework, Yang et al. (2008) find that 

subway openings in Beijing in the last decade led to an average reduction in travel delays 

of approximately 15% across Beijing, following a near doubling of the rail network in the 

city.  

Hensher (1997) developed a model of cross-elasticities between various forms of 

transit and car use, illustrated in Table 4-6. This type of analysis can be used to predict 

the effects that transit fare changes will have on vehicle traffic, and the effect that road 

tolls or parking fees will have on transit ridership. Such models tend to be sensitive to 

specific demographic and geographic conditions and so must be calibrated for each area. 

Table 4-6 indicates how various changes in transit fares and car operating costs affects 

transit and car travel demand. For example, a 10% increase in single fare train tickets will 

cause a 2.18 reduction in the sale of those fares, and a 0.57% increase in single fare bus 

tickets. This is based on a survey of residents of Newcastle, a small Australian city. 
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Table 4-6 Direct and Cross-Share Elasticities 

  Train Train Train Bus Bus Bus Car 

  Single Fare Ten Fare Pass 
Single 
Fare 

Ten 
Fare Pass   

Train, single fare -0.218 0.001 0.001 0.057 0.005 0.005 0.196 

Train, ten fare 0.001 -0.093 0.001 0.001 0.001 0.006 0.092 

Train, pass 0.001 0.001 -0.196 0.001 0.012 0.001 0.335 

Bus, single fare 0.067 0.001 0.001 -0.357 0.001 0.001 0.116 

Bus, ten fare 0.020 0.004 0.002 0.001 -0.160 0.001 0.121 

Bus, pass 0.007 0.036 0.001 0.001 0.001 -0.098 0.020 

Car 0.053 0.042 0.003 0.066 0.016 0.003 -0.197 

 
(Source: Hensher, 1997) 

 

The Congressional Budget Office used highway traffic count data to conclude 

that fuel price increases can cause modal shifts (CBO 2008). They find that a 20% 

gasoline price increase reduces traffic volumes on highways with parallel rail transit 

service by 0.7% on weekdays and 0.2% on weekends, with comparable increases in 

transit ridership, but find no traffic reductions on highways that lack parallel rail service. 

Currie and Phung (2008) found that in Australia, the cross elasticity of transit ridership 

with respect to fuel prices are 0.22, with higher values for high quality transit (Rail/BRT) 

and for longer-distance travel, and lower values for basic bus service and shorter-

distance trips. TRACE (1999) provides detailed elasticity and cross elasticity estimates 

for several types of travel (car-trips, car-kilometers, transit travel, walking/cycling, 

commuting, business, etc.) and conditions, based on numerous European studies. 

Comprehensive sets of elasticity values such as these can be used to model the travel 

impacts of various combinations of price changes, such as a reduction in transit fares 

combined with an increase in fuel taxes or parking fees. It estimates that a 10% rise in 

fuel prices increases transit ridership 1.6% in the short run and 1.2% over the long run, 

depending on regional vehicle ownership. This declining elasticity value is unique to fuel 
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because fuel price increases cause motorists to purchase more fuel-efficient vehicles 

(Littman, 2004). Table 4-7 summarizes elasticities of trips and kilometers with respect to 

fuel prices in areas with high vehicle ownership (more than 450 vehicles per 1,000 

population). This table shows the estimated elasticities and cross-elasticities of urban 

travel in response to a change in fuel price or other vehicle operating costs. 

Table 4-7 :  Elasticities and Fuel Price 

 Term/Purpose Car Driver Car Passenger Public Transport 

Trips       

Commuting -0.11 +0.19 +0.20 

Business -0.04 +0.21 +0.24 

Education -0.18 +0.00 +0.01 

Other -0.25 +0.15 +0.15 

Total -0.19 +0.16 +0.13 

Kilometers       

Commuting -0.20 +0.20 +0.22 

Business -0.22 +0.05 +0.05 

Education -0.32 +0.00 +0.00 

Other -0.44 +0.15 +0.18 

Total -0.29 +0.15 +0.14 

 
(Source: TRACE, 1999) 
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Table 4-8 indicates how parking prices affect travel by automobile and public 

transit.  

 
Table 4-8 Parking Price Elasticities 

Term/Purpose Car Driver 
Car 
Passenger 

Public 
Transport 

Trips       

Commuting -0.08 +0.02 +0.02 

Business -0.02 +0.01 +0.01 

Education -0.10 +0.00 +0.00 

Other -0.30 +0.04 +0.04 

Total -0.16 +0.03 +0.02 

Kilometers       

Commuting -0.04 +0.01 +0.01 

Business -0.03 +0.01 +0.00 

Education -0.02 +0.00 +0.00 

Other -0.15 +0.03 +0.02 

Total -0.07 +0.02 +0.01 

 
(Sources: TRACE 1999) 

 

Frank, et al. (2008) evaluate the effects of relative travel time on mode choice. 

They find that, walking and biking will be used for shorter trips, such as travel to local 

stores and mid-day tours from worksites if services are nearby, and rates of transit use 

are more sensitive to changes in travel time than fare levels, with wait time much more 

‘‘costly’’ than in-vehicle time. Their analysis suggests that a considerable growth in transit 

ridership could be achieved through more competitive travel times on transit. Hensher 

and King (2001) point out that parking prices and road tolls tend to have a greater impact 

on transit ridership than other vehicle costs such as fuel, typically by a factor of 1.5 to 2.0, 

because they are paid directly on a per-trip basis. Table 4-9 shows how parking prices 

affects travel in a relatively automobile-oriented urban region. This table shows 

elasticities and cross-elasticities for changes in parking prices at various Central 
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Business District (CBD) locations. For example, a 10% increase in prices at preferred 

CBD parking locations will cause a 5.41% reduction in demand there, a 3.63% increase 

in Park & Ride trips, a 2.91 increase in Public Transit trips and a 4.69 reduction in total 

CBD trips. 

Table 4-9 Parking Elasticities 

  
Preferred 
CBD 

Less Preferred 
CBD CBD Finge 

Car Trip, Preferred CBD -0.541 0.205 +0.035 

Car Trip, Less Preferred 
CBD +0.837 +0.015 +0.043 

Car Trip, CBD Fringe +0.965 +0.0286 -0.476 

Park & Ride +0.363 +0.136 +0.029 

Ride Public Transit +0.291 +0.104 +0.023 

Forego CBD Trip +0.469 +0.150 +0.029 

 
(Source: Hensher and King, 2001) 

 

Currie and Justin Phung (2007) calculated the aggregate cross-elasticity of US 

transit demand with respect to fuel price (e) to be 0.12, indicating that transit demand 

increases 1.2% for every 10% gas price increase. US light rail is particularly sensitive to 

gas prices, with values for (e) measured at 0.27 to 0.38. Bus ridership is only slightly 

sensitive to gas prices (e= 0.04) and heavy rail is higher (0.17) which is consistent with 

most international evidence. A longitudinal model suggests some acceleration in transit 

mode sensitivity. Litman (2017) finds Cross-elasticities between transit and automobile 

travel are relatively low in the short run (0.05) but increase over the long run (probably to 

0.3 and perhaps as high as 0.4). Price elasticities have many applications in 

transportation planning. They can be used to predict the ridership and revenue effects of 

changes in transit fares; they are used in modeling to predict how changes in transit 

service will affect vehicle traffic volumes and pollution emissions; and they can help 
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examine the impacts and benefits of mobility management strategies such as new transit 

services, road tolls and parking fees (Wallis, 2004). 

 

4.3.1 Measuring shifts from car to transit as an effect of ITIS 

Cross price elasticity measures responsiveness of demand for good X i.e. transit 

ridership following a change in the price of a substitute good Y i.e. auto ridership. 

Substitutes are products in competitive demand. With substitutes, an increase in the price 

of one good (ceteris paribus) will lead to an increase in demand for a rival product. For 

example, a decrease in the price of transit will lead to a decrease in demand for auto 

travel. The value of cross price elasticity for transit and auto travel is always positive. 

Cross price elasticity of demand could help in measuring possible shifts from competing 

good as an effect of its price increase. The stronger the relationship between two 

products, the higher is the co-efficient of cross-price elasticity of demand. Close 

substitutes have a strongly positive cross price elasticity of demand i.e. a small change in 

relative price causes a big switch in consumer demand (Litman, 2004).  

In this study, we expect ITIS apps to reduce the price and cost of using transit 

through providing information, saving time, and making transit easier to use, cheaper and 

more competitive with the automobile. Therefore, it behooves us to include also some 

measure of auto ridership in the models such as “average monthly weekday traffic counts 

in DART area”. This may include the counts registered at Automatic Traffic Recorder 

(ATR) stations maintained by TxDOT. This ATR variable will help us in measuring the 

responsiveness of demand for transit ridership as an effect of ITIS considering the price 

of auto ridership, controlling for all other important explanatory variables. We expect a 

decrease in the price of transit as an effect of ITIS will lead to a decrease in demand for 

auto ridership which is considered a substitute product. As such, the cross price elasticity 
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of demand for transit with respect to a percent change in the research question variable, 

ITIS usage, is examined. This will help us examine possible shifts from auto to transit in 

the presence of ITIS.  

In addition, ITIS apps increase transit quality by reducing negative aspects of 

using transit through reducing uncertainties associated with transit use and saving 

access and wait time.  An increase in transit quality as an effect of ITIS apps primarily 

reduces the price of using transit and makes transit more attractive to customers. A 

reduction in the access and wait times associated with public transit use, has been 

demonstrated to have a much more significant effect on modal choice than changes in 

monetary costs (Wardman, 2004). This reduction in the generalized cost of transit travel 

may lead to a downward shift in the auto demand curve following an increase in transit 

quality if the cross-elasticity between modes is positive. In general, Transit and auto are 

substitutes. Therefore, an increase in transit attractiveness and quality as an effect of 

ITIS may cause some commuters to substitute transit travel for trips previously taken by 

automobile, thereby decreasing auto travel. 

Other studies have examined the effect of public transit supply on the demand for 

auto travel.  For example, Beaudoin et al. (2015) estimate the effect of past public transit 

investment on the demand for automobile transportation by applying an instrumental 

variable approach that accounts for the potential endogeneity of public transit investment, 

and that distinguishes between the substitution effect and the equilibrium effect, to a 

panel dataset of 96 urban areas across the U.S. over the years 1991-2011. The results 

show that, owing to the countervailing effects of substitution and induced demand, the 

effects of increases in public transit supply on auto travel depend on the time horizon. In 

the short run, when accounting for the substitution effect only, they find that on average a 

10% increase in transit capacity leads to a 0.7% reduction in auto travel. However, transit 
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has no effect on auto travel in the medium run, as latent and induced demand offset the 

substitution effect. In the long run, when accounting for both substitution and induced 

demand, they find that on average a 10% increase in transit capacity is associated with a 

0.4% increase in auto travel. They also find that public transit supply does not have a 

significant effect on auto travel when traffic congestion is below a threshold level. 

Additionally, they find that there is substantial heterogeneity across urban areas, with 

public transit having significantly different effects on auto travel demand in smaller, less 

densely populated regions with less-developed public transit networks than in larger, 

more densely populated regions with more extensive public transit networks. 

Beaudoin et al. (2015) find that there is substantial heterogeneity across urban 

areas. When accounting for the substitution effect only, the magnitude of the elasticity of 

auto travel with respect to transit capacity varies from approximately -0.008 in smaller, 

less densely populated regions with less-developed public transit networks; to 

approximately -0.215 in larger, more densely populated regions with more extensive 

public transit networks. When accounting for both the substitution effect and the induced 

demand effect in the long run, the elasticity of auto travel with respect to transit capacity 

varies from approximately 0.005 in smaller, less densely populated regions with less-

developed public transit networks; to approximately 0.129 in larger, more densely 

populated regions with more extensive public transit networks. The Federal Highway 

Administration (2012) suggests that the elasticity of auto travel with respect to transit 

fares ranges from 0.03 to 0.1 in the short run. While there is a general belief that 

commuters are more responsive to changes in the time components of transit travel, 

there does not appear to be a widely used estimate of the elasticity of auto travel with 

respect to transit capacity. McFadden (1974) uses a disaggregate discrete choice 
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approach and estimates that the elasticity of auto travel with respect to waiting and travel 

time for bus and rail ranges from 0.02 to 0.15. 
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Chapter 5  

Case Study: Dallas Area Rapid Transit (DART) 

5.1 Introduction 

Dallas Area Rapid Transit (DART) is a regional transit agency authorized under 

Chapter 452 of the Texas Transportation Code and was created by voters and funded 

with a one-cent local sales tax on August 13, 1983. The service area consists of 13 

cities: Addison, Carrollton, Cockrell Hill, Dallas, Farmers Branch, Garland, Glenn 

Heights, Highland Park, Irving, Plano, Richardson, Rowlett, and University Park. As of 

March 2017, DART serves Dallas and 12 surrounding cities with more than 140 bus or 

shuttle routes, eight On-Call zones, 93 miles of light rail transit (DART Rail), and 

paratransit service for persons who are mobility impaired. The DART Rail System is 

considered the longest light rail network in the United States. DART extensive network of 

Light Rail, Trinity Railway Express commuter rail, bus routes and paratransit services 

move more than 220,000 passengers per day across our 700-square-mile service area. 

The DART Rail System provides fast, convenient service to work, shopping and 

entertainment destinations in Dallas, Carrollton, Farmers Branch, Garland, Irving, Plano, 

Richardson and Rowlett. Plus, the TRE commuter rail line links DART customers to 

Irving and downtown Fort worth (See fig. 5-1 and 5-2). 

  

5.2 Study Area 

This study covers transit ridership in Dallas Area Rapid Transit (DART) operation 

area which is located in four counties in Dallas-Fort Worth (DFW) Metropolitan; these 

counties are Collin, Dallas, Denton, and Tarrant. The period covered in this research is 

from 2007 to 2017. The time series perspective undertaken in the research allows us to 



 

91 

examine changes in transit ridership over 10 years period in a monthly base and the 

incremental exposure to ITIS technology. 

 

 

Figure 5-1 DART Service Area 

 (Source: DART.org, DART Reference Book March 2017) 
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Figure 5-2 DART Rail System Map 

 (Source: DART.org, DART Reference Book March 2017) 
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5.3 DFW Metropolitan Area 

DART is considered part of the Dallas-Fort Worth Metropolitan (DFW) Area in which 

congestion levels and road conditions are getting worse. Automobile dependence is a 

concern for many reasons including congestion in urban areas, pollution, and 

environmental damages caused by pollution. The level of congestion / delay is expected 

to increase substantially in DFW area between the year of 2017 and 2040 (See fig. 5-3 

and 5-4) 

 

 
 

Figure 5-3 2017 Levels of Congestion/ Delay 

 (Source: Mobility 2040 Presentation, NCTCOG) 
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Figure 5-4 2040 Levels of Congestion/ Delay 

 (Source: Mobility 2040 Presentation, NCTCOG) 
 
 

Switching to more sustainable and environmentally friendly transportation modes, 

and less congesting, such as public transit, is likely to be an effective solution to most of 

these problems. Moreover, in DART study area, the population is expected to grow 

significantly due to the influx of people moving from other States into the DFW area (See 

fig. 5-5). Employment level is also expected to increase substantially in the DFW area 

(See fig. 5-6). Population and employment increases are expected to have positive 

impact on transit ridership.  
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Figure 5-5 Population density 

 (Source: Mobility 2040 Presentation, NCTCOG) 
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Figure 5-6 Change in Employment density 

 (Source: Mobility 2040 Presentation, NCTCOG) 
 
 
 
 

5.4 DART Intelligent Transit Information Systems (ITIS) Applications Overview 

In 2010, Trapeze ITS, a provider of solutions to public passenger transportation 

industry, has been chosen by DART for its intelligent transit transportation system 

implementations. DART selected Trapeze INFO-Web for its online trip planning software. 

“The fact that Trapeze INFO-Web required absolutely no additional data maintenance 

was a huge factor in selecting the company as a vendor by DART,” said Alan Gorman, 

Senior DART’s Manager, Transit IT Systems. Buses and trains equipped with GPS based 

Automatic Vehicle Location (AVL), Automatic passenger counters and a private radio 

system for operator voice communications to Dispatch vehicle location data every 90 

seconds 4G wireless. This information will help DART like many other public transit 
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systems reach its full potential and address concerns about uncertainty of arrival time, 

limited connectivity, in addition to safety and comfort. DART has strived to collect more 

information about the location of their vehicles and to provide this information to their 

customers. The availability of global positioning system (GPS) data was a necessary step 

for addressing the uncertainty concerns, but it was only part of the solution because 

location information had to be communicated in real time to the public. ITIS applications 

on user-friendly devices such as smart phones, PDAs, and Desktops can provide that 

missing link. 

Integration with the existing schedule data was another factor as changes to the 

schedules are immediately reflected on their website. There’s no need for manual 

updating or uploading of data. Trapeze is also characterized by its system’s simplicity: 

riders enter a starting point, a destination, and a preferred departure or arrival time, and 

itineraries are generated using scheduling and routing data from the Trapeze FX 

scheduling system. Results can be sorted by total trip time, number of transfers, and 

walking distances. Drop-down menus also allow riders to select landmarks such as 

shopping centers or hospitals as their origin and destination points. “DART has also 

implemented TransitMaster from Trapeze as the application underlying a new radio 

communications system which will provide a trove of real-time (or close) trip data for 

operational metrics and analysis,” said Allan Steele, Vice President/Chief Information 

Officer at DART. Using business intelligence tools this will be linked to data from other 

modules to deliver management information routinely and on demand. Additionally, 

DART has made strides in delivering information to riders. Using a desktop or mobile 

browser, riders can receive real-time predicted bus arrival time at a stop. Smartphones 

can also be used to locate the nearest DART stop, with a street view,  and then show 

routes at that stop, trip planning and predicted bus or train arrival time. Text capability 
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has been added, using the bus stop ID and short code to extend the arrival prediction 

service to riders with regular cell phones. Subscriptions to social media sites and email 

enable direct messages to riders about incidents on their chosen routes.  The following 

ITIS transit information systems tools and applications have been implemented and 

available via desktops and mobile devices: 

1. DART Trip Planner app enables customers to plan bus and rail trips from the 

convenience of their personal computers with the online DART Trip Planner 

available on DART.org. 

2. Google Transit: Create personalized trip plans for DART buses, DART Rail, TRE 

and DCTA A-train. Google Transit features interactive Google Maps. 

3. DART Travel Agent: The DART Travel Agent shows how visitors, shoppers, fun 

seekers and sports fans can get around by bus, train or a combination of both.  

4. My Ride North Texas: The goal for My Ride North Texas app is to provide a one-

stop transportation resource, where anyone can find a ride in the 16 county 

North Central Texas region, and transportation providers can support their 

communities. This website was created to meet the transportation needs for 

military veteran’s face every day, and has been extended to serve the needs of 

everyone in the North Texas region. 

5. Where’s My DART STOP: Use this stop location tool to find the nearest DART 

stop and service to your location. Where's My DART Stop, utilizes interactive 

Google Maps with Street View, so finding your way around once you get off the 

bus or train just got easier.  

6. Where My Bus App: Before you go, find out when your bus will actually be at 

your stop. Select your route, direction of travel and stop and you are all set.  
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7. Where My Train: Use this app to find out when your train will actually be at your 

stop. Select your route, direction of travel and stop and you are all set.  

8. DART's GoPass app: The GoPassSM mobile ticketing application is launched in 

2012 as the new way to buy passes for the region’s three transit agencies. This 

Mobile ticketing App for Apple & Android makes discovering everything 

DARTable a breeze. Whether you are traveling by rail, bus or both, you've got a 

great travel tool literally at your fingertips. You can purchase DART passes on 

the app, and learn when the next bus or train will arrive or leave from any station. 

The app also features a trip planner to help you get to your destination, and even 

offers a section highlighting local events accessible by transit. 
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5.5 Transit Ridership Figures 

DART ridership trend figures between 2007 and 2017 for the three types of mass 

transit namely: Rail, Bus, and Transit are shown in figure 5.7. 

 

 
Figure 5-7 Transit Ridership Figures 
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Chapter 6  

Methodology 

6.1 Introduction 

This chapter introduces the statistical models used to understand factors 

impacting transit ridership in the Dallas Area Rapid Transit.  The methodology and 

variables of this study will be taken and analyzed from many prior articles and studies. In 

addition, this chapter provides some details on the databases that will be utilized for this 

study and different quantitative measurement that will be utilized to address the research 

questions.  Three time series regression models will be developed to explain three 

dependent variables for ridership in DART area for transit, rail and bus ridership. The 

models considered in this section explain transit ridership for rail, bus, and for the 

combined ridership using several independent variables selected based on a 

comprehensive review of the theoretical and empirical literature. Models are estimated 

separately for rail, bus, and for transit ridership to evaluate the determining factors on 

each mode.  

 
6.2 Regression Models Overview 

 
Three models will be developed to explain the following dependent variables: 

1. Monthly transit ridership in DART area (Transit) 

2. Monthly rail ridership in DART area (Rail) 

3. Monthly bus ridership in DART area (Bus) 
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6.2.1 Regression Equations 

In general transit ridership equation will be: 

Total Monthly Transit Ridership for DART Area = α + b1 Monthly Unemployment + 

b1 Monthly Gas Prices + b1 Monthly Fares + b1 Average Monthly Temperatures + b1 

Average Monthly Precipitation+ b1 Monthly Number of Days When Temperatures 

Dropped to 32 F or Below+ b1 Monthly Amount of Snowfall+ b1 Monthly ITIS 

Applications Usage+ b1 Education+ b1 Income + b1 Car Trips + b1 Net Migration 

Flow + b1 Estimate of People in Poverty.  

Or  

Yt = α + βXt + εt   For t =1, .. , T  

Where: 

 Y is the dependent variable (Transit Ridership); Which is the monthly transit 

ridership for DART Area; 

 α is the unobserved time-invariant individual effect; 

 X  is a vector of explanatory variables consists of Unemployment Rates 

(UNEMP), Gas Prices (GAS), Fares (FARE), Average Temperatures (TEMP), 

Average Precipitation (PRECIPITATION), Number of days below 32 F 

(FREEZE), Amount of Snowfall (SNOW), ITIS Applications Usage (ITIS), 

Education Attainment (EDUC), Car Trips (CARTRIPS) Income (INCOME), Net 

Migration Flow (MIGFLOW), Estimate of People in Poverty (POVERTY) in DFW; 

 

 ε   is the error term; 

 T is the number of time periods/months in the data set (120). 
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In this study, the following equations will be estimated to explain transit ridership 

in DART Area for the following three dependent variables: Total Monthly Transit 

Ridership, Total Monthly Rail Ridership, and Total Monthly Bus Ridership, all as function 

of aforementioned explanatory variables and others which may be implicated from the 

results of a comprehensive literature review. Therefore, in mathematical terms, the 

regression equations are written as: 

 

1- Transit = α + β1 (UNEMP) + β2  (GAS) + β3  (FARE) + β4  (TEMP) + β5 

(PRECIPITATION)+ β6 (FREEZE)+ β7 (SNOW)+ β8 (ITIS)+ β9 (EDUC)+ β10 

(INCOME) + β11 (CARTRIPS) + β12 (MIGRFLOW) + β13 (POVERTY)          (1)                               

 

2- Rail = α + β1 (UNEMP) + β2  (GAS) + β3  (FARE) + β4  (TEMP) + β5 

(PRECIPITATION)+ β6 (FREEZE)+ β7 (SNOW)+ β8 (ITIS)+ β9 (EDUC)+ β10 

(INCOME) + β11 (CARTRIPS) + β12 (MIGRFLOW) + β13 (POVERTY)          (2)                               

 

3- Bus = α + β1 (UNEMP) + β2  (GAS) + β3  (FARE) + β4  (TEMP) + β5 

(PRECIPITATION)+ β6 (FREEZE)+ β7 (SNOW)+ β8 (ITIS)+ β9 (EDUC)+ β10 

(INCOME) + β11 (CARTRIPS) + β12 (MIGRFLOW) + β13 (POVERTY)          (3)                               

Table 6.1 below presents all explanatory variables, along with a definition, and data 

source: 
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Table 6-1 Definition of variables used in the equations 1, 2, and 3 

Variable abbreviation Definition source 

UNEMP Monthly Unemployment Rates 
Federal Reserve 

Economic Data 

GAS Monthly Gas Prices NCTCOG 

FARE Monthly Fares DART 

TEMP Average Monthly Temperatures Weather website 

PRECIPITATATION Average Monthly Precipitation Weather website 

FREEZE 
Average Monthly Number of Days When 

the temperature dropped to 32 F or below 
Weather website 

SNOWFALL Average Monthly Amount of Snowfall  Weather website 

ITIS 
Monthly Intelligent Transit Information 

Systems Applications Usage in DART Area 
DART 

EDUC 
Educational Attainment (Percentage of 

population with college degree) 

American Community 

Survey (ACS) 

INCOME 
Income Data (Per Capita Personal Income 

in DFW. Dollars, Monthly) 

Federal Reserve 

Economic Data 

CARTRIPS 

Average monthly weekday traffic counts 

which include the counts registered at 

Automatic Traffic Recorder (ATR) stations  

NCTCOG 

MIGRATFLOW Net Migration Flow in DFW 
U.S. Bureau of the 

Census 

PPOVERTY Estimate of People of All Ages in Poverty 
U.S. Bureau of the 

Census 

 

http://www.census.gov/
http://www.census.gov/
http://www.census.gov/
http://www.census.gov/
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In this type of research quite frequently, one may be interested in interpreting the 

effect of a percent change of an independent variable on the dependent variable, which 

can be also achieved through a double-log (log-log) model. This can be transformed by 

taking the logarithm from both sides. 

Log y = logα + β₁logx₁ + β₂logx₂ + β₃ logx₃ + e 

Where:  e = log ε 

 

In the full logarithm nonlinear form, the b coefficients will constitute elasticities. 

Essentially, if we run the model proposed in this study, the coefficients will constitute the 

elasticities. 

Log Transit Ridership = logα + β₁logIncome + β₂logITIS + ….. +β24 logFare + e 
 
 
Therefore, in mathematical terms, the regression equations might be written as: 

 

4- Log TRANSIT = Log α + β1 Log (UNEMP) + β2  Log (GAS) + β3  Log (FARE) + β4  

Log (TEMP) + β5 Log (PRECIPITATATION) + β6 Log (FREEZE)+ β7 Log 

(SNOW)+ β8 Log (ITIS)+ β9 Log (EDUC)+ β10 Log (INCOME) + β11 Log 

(CARTRIPS) + β12 Log (MIGRFLOW) + β13 Log (POVERTY)                  (4)                                                

 

5- Log RAIL = = Log α + β1 Log (UNEMP) + β2  Log (GAS) + β3  Log (FARE) + β4  

Log (TEMP) + β5 Log (PRECIPITATATION) + β6 Log (FREEZE)+ β7 Log 

(SNOW)+ β8 Log (ITIS)+ β9 Log (EDUC)+ β10 Log (INCOME) + β11 Log 

(CARTRIPS) + β12 Log (MIGRFLOW) + β13 Log (POVERTY)                  (5) 
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6- Log BUS = = Log α + β1 Log (UNEMP) + β2  Log (GAS) + β3  Log (FARE) + β4  

Log (TEMP) + β5 Log (PRECIPITATATION) + β6 Log (FREEZE)+ β7 Log 

(SNOW)+ β8 Log (ITIS)+ β9 Log (EDUC)+ β10 Log (INCOME) + β11 Log 

(CARTRIPS) + β12 Log (MIGRFLOW) + β13 Log (POVERTY)                  (6) 

                                                       

 6.2.2 Hypothesis     

During building regression models, authors hope to accept the model; thus, the null 

hypothesis (Ho) is usually constructed to make its rejections possible and get the desired 

result which is alternative hypothesis (Ha).  

 

6.2.2.1 Hypothesis 1 

The null hypothesis (H0: β = 0) for the first research question might be written as:  

I. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with ITIS.  

II. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Fare. 

III. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Gas Price. 

IV. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Temperature. 

V. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Precipitation. 

VI. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Freeze. 



 

107 

VII. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Snow. 

VIII. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Car Trips. 

IX. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Unemp. 

X. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Poverty. 

XI. Transit ridership for the period between 2007 and 2017 in the DART area 

does not exhibit any significant relationship with Income. 

However, the alternate hypothesis (Ha: β ≠ 0) is that all independent variables have a 

statistically significant impact on transit ridership for the period between 2007 and 2017. 

Hypotheses have been stated based on the expected results. So, hypothesis for the first 

research question will be:  

I. Hypothesis: As the ITIS application usage increases, transit ridership will 

increase. So, ITIS increases transit ridership because it reduces negative 

aspects and cost of using transit through providing information, saving 

time and other attributes, and makes transit more competitive with the 

automobile 

II. As Fare increases, transit ridership will decrease 

III. As Gas Price increases, transit ridership will increase 

IV. As Temp increases, transit ridership will increase 

V. As Precipitation increases, transit ridership will decrease 

VI. As Freeze increases, transit ridership will decrease 

VII. As Snow increases, transit ridership will decrease 
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VIII. As Car Trips (Congestion) increases, transit ridership will increase 

IX. As Unemp increases, transit ridership will decrease 

X. As Poverty increases, transit ridership will increase 

XI. As Income increases, transit ridership will decrease 

 

6.2.2.2 Hypothesis 2 

The null hypothesis (H0: β = 0) for the second research question might be written as:  

I. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with ITIS.  

II. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Fare. 

III. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Gas Price. 

IV. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Temperature. 

V. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Precipitation. 

VI. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Freeze. 

VII. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Snow. 

VIII. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Car Trips. 

IX. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Unemp. 
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X. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Poverty. 

XI. Rail ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Income. 

However, the alternate hypothesis (Ha: β ≠ 0) is that all independent variables have a 

statistically significant impact on rail ridership for the period between 2007 and 2017. 

Hypotheses have been stated based on the expected results. So, hypothesis for the 

second research questions will be:  

I. Hypothesis: As the ITIS application usage increases, rail ridership will 

increase 

II. As Fare increases, rail ridership will decrease 

III. As Gas Price increases, rail ridership will increase 

IV. As Temp increases, rail ridership will increase 

V. As Precipitation increases, rail ridership will decrease 

VI. As Freeze increases, rail ridership will decrease 

VII. As Snow increases, rail ridership will decrease 

VIII. As Car Trips (Congestion) increases, rail ridership will increase 

IX. As Unemp increases, rail ridership will decrease 

X. As Poverty increases, rail ridership will increase 

XI. As Income increases, rail ridership will decrease 

6.2.2.3 Hypothesis 3 

The null hypothesis (H0: β = 0) for the third research question might be written as: 

I. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with ITIS.  
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II. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Fare. 

III. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Gas Price. 

IV. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Temperature. 

V. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Precipitation. 

VI. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Freeze. 

VII. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Snow. 

VIII. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Car Trips. 

IX. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Unemp. 

X. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Poverty. 

XI. Bus ridership for the period between 2007 and 2017 in the DART area does 

not exhibit any significant relationship with Income. 

However, the alternate hypothesis (Ha: β ≠ 0) is that all independent variables have 

a statistically significant impact on bus ridership for the period between 2007 and 2017. 

Hypotheses have been stated based on the expected results. So, hypothesis for the 

above research questions will be:  
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I. Hypothesis: As the ITIS application usage increases, bus ridership will 

increase 

II. As Fare increases, bus ridership will decrease 

III. As Gas Price increases, bus ridership will increase 

IV. As Temp increases, bus ridership will increase 

V. As Precipitation increases, bus ridership will decrease 

VI. As Freeze increases, bus ridership will decrease 

VII. As Snow increases, bus ridership will decrease 

VIII. As Car Trips (Congestion) increases, bus ridership will increase 

IX. As Unemp increases, bus ridership will decrease 

X. As Poverty increases, bus ridership will increase 

XI. As Income increases, bus ridership will decrease 

 

6.3 Data Sets and Sources 

 
In this study, the datasets consist of ridership data for the DART Area, socio-

economic data for DART, and ITIS applications usage data for the entire DART Area 

from January of 2007 to present in a monthly base.  Given that the intelligent transit 

information systems applications were implemented in 2012, this enables the models to 

capture any seasonal changes over this period, or roughly few years before the 

implementation of ITIS transit applications to few years after. The required data for this 

study will be obtained from a wide variety of sources: 
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6.3.1 U.S. Census Data 

This study of the Dallas Area Rapid Transit (DART) covers the period between 

2007 and 2017. In addition, this study uses time series perspective to examine changes 

in transit ridership over 10 years period in a monthly base to capture the incremental 

exposure to ITIS technology. Most of the socioeconomic data can be found in Census 

and the American Community Survey (ACS). The changes in these socioeconomic data 

impact on transit system in DFW area help to answer the research questions. 

 

6.3.2 North Central Texas Council of Governments (NCTCOG) 

The NCTCOG Regional Data Center provides objective data and analysis on the 

development of the NCTCOG region related to urban planning and economic activities 

such as development data, employment estimates, and Geographic Information System 

(GIS) layers.  This source also provides some data related to DART and Dart area and all 

geocoded information needed for converting some data from other jurisdictions into 

DART operation area.  

 

6.3.3 Dallas Area Rapid Transit (DART)  

DART is going to provide the following ITIS data for relatively the entire 10 years 

study period. However, if the data is not available then DART will provide the data for the 

years in which the data is/was available: 

1- Monthly Intelligent Transit Information Systems Applications Usage in DART 

Area (ITIS): Currently ITIS application visits counts are recorded and reported to 

DART. The application visit statistics represent the number of times transit 

applications are opened.  

2- DART will also provide the Wi-Fi data on the trains.   
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3- DART also promised to provide additional ITIS data collected on the trains 

 

 

6.4 Dependent Variables 

 
The dependent variables are monthly average transit, rail, and bus for the DART Area 

from January 2007 to July 2017.  Models were estimated separately for buses, trains, 

and for transit ridership. The models consist of the following dependent variables: 

1. Monthly transit ridership for DART Area 

2. Monthly rail ridership for DART Area 

3. Monthly bus ridership for DART Area 

 

 

6.5 Independent Variables 

 
The following independent variables are the explanatory contributing factors that may 

impact transit ridership in Dallas Area: 

1. Monthly Unemployment Rates (UNEMP): The monthly unemployment rates in 

DART Area will be obtained from the Federal Reserve Economic Data website  

2. Monthly Gas Prices (GAS): This data will be obtained from the NCTCOG website 

3. Monthly Fares (FARE): Monthly fares data will be obtained from DART 

4. Monthly Average Temperatures (TEMP): Average Monthly Temperatures in 

DART Area will be obtained from the weather website 

5. Monthly Average Precipitation (PRECIPITATION): Average Monthly Precipitation 

in DART Area will be obtained from the weather website 
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6. Monthly Number of days below 32 F (FREEZE): Average Monthly Number of 

Days When the temperature in DART Area dropped to 32 Fahrenheit or below 

will be obtained from the weather website 

7. Monthly Amount of Snowfall (SNOW): Average Monthly Amount of Snowfall in 

DART Area will be obtained from the weather website 

8. Monthly Intelligent Transit Information Systems Applications Usage in DART 

Area (ITIS): Currently ITIS application visits counts are recorded and reported to 

DART. The application visit statistics represent the number of times transit 

applications are opened.  

Note: The ITIS transit application usage data for the study period will be obtained 

from DART. 

9. Educational Attainment (EDUC): Education data is available from American 

Community Survey (ACS) 

10. Income (INCOME): Income data is available from ((Federal Reserve Economic 

Data) 

11. Car Trips (CARTRIPS): Average monthly weekday traffic counts in DART area 

which include the counts registered at Automatic Traffic Recorder (ATR) stations 

maintained by TxDOT  

12. Net Migration Flow (MIGFLOW): Net Migration Flow for Dallas County data is 

available from U.S. Bureau of the Census 

13. Estimate of People in Poverty (POVERTY): Estimate of People of All Ages in 

Poverty for Dallas County, TX data is available from U.S. Bureau of the Census 

 

Table 6.2 below presents all explanatory variables, along with a definition, data 

source, and the sign of their expected impact on transit ridership based on the literature. 

http://www.census.gov/
http://www.census.gov/
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Note, a positive (+) sign indicates that it is expected to have a positive relationship with 

the dependent variable. A negative sign (-) means a hypothesized negative relationship 

between the dependent and independent variable, and (?) means an uncertain 

relationship.  

 
Table 6-2 Definition of variables and the expected impact 

Variable abbreviation Definition source Expected Sign 

 Dependent Variable   

Rail 
Monthly rail ridership for DART Area (2007-

2017) 
NCTGOC 

 

BUS 
Monthly bus ridership for DART Area 

(2007-2017) 
NCTGOC 

 

TRANSIT 
Monthly transit ridership for DART Area 

(2007-2017) 
NCTGOC 

 

 Independent Variables   

UNEMP Monthly Unemployment Rates 
Federal Reserve 

Economic Data 

- 

GAS Monthly Gas Prices NCTCOG + 

FARE Monthly Fares DART - 

TEMP Average Monthly Temperatures Weather website - 

PRECIPITATATION Average Monthly Precipitation Weather website - 

FREEZE 

Average Monthly Number of Days When 

the temperature in DART Area dropped to 

32 Fahrenheit or below 

Weather website 

- 
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SNOWFALL 
Average Monthly Amount of Snowfall in 

DART Area 
Weather website 

- 

ITIS 
Monthly Intelligent Transit Information 

Systems Applications Usage in DART Area 
DART 

+ 

EDUC 
Educational Attainment (Percentage of 

population with college degree) 

American 

Community 

Survey (ACS) 

? 

INCOME 
Income Data (Per Capita Personal Income 

in DFW. Dollars, Monthly) 

Federal Reserve 

Economic Data 

- 

CARTRIPS 

Average monthly weekday traffic counts in 

DART area which include the counts 

registered at Automatic Traffic Recorder 

(ATR) stations maintained by TxDOT  

NCTCOG 

+ 

MIGRATFLOW Net Migration Flow in DFW 
U.S. Bureau of 

the Census 

? 

PPOVERTY Estimate of People of All Ages in Poverty 
U.S. Bureau of 

the Census 

+ 

 

 

6.6 Research Methods 

 
Time Series / Multiple Regression methods will be used on the dataset to 

estimate the relationship between the models’ variables. Time Series analysis was 

selected for the following reasons:  

1. To identify changes in the dependent variables (Transit Ridership, Rail Ridership, 

and Bus Ridership) with variations in independent variables (Unemployment 

http://www.census.gov/
http://www.census.gov/
http://www.census.gov/
http://www.census.gov/
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Rates (UNEMP), Gas Prices (GAS), Fare Price (FARE), Average Temperatures 

(TEMP), Average Precipitation (PRECIPITATION), Number of days below 32 F 

(FREEZE), Amount of Snowfall (SNOW), ITIS Applications Usage (ITIS), 

Education Attainment (EDUC), Car Trips (CARTRIPS), Income (INCOME), Net 

Migration Flow (MIGFLOW), Estimate of People in Poverty (POVERTY) in the 

Dallas Area) over 10 years period/ Time series. 

2. To assess the strength of impact of the independent variables on the dependent 

variable (Ridership) for the entire length of the 10 years’ timeframe. 

To explore the effect of a percent change of an independent variable on the 

dependent variable, which we can be achieved through a double-log (log-log) 

model. As such, the elasticity of demand for transit with respect to some of the 

factors in the model such as percent change in fare, income or the research 

question variable, ITIS usage, are examined.  

 

6.7 Descriptive Statistics 

Descriptive statistics for the dependent and independent variables are 

presented in Table 6-3. The mean transit ridership in DART area between 2007 

and 2017 was estimated to be 211092. The mean rail ridership was 82225 and 

the mean bus ridership was 128866. The ITIS application usage mean was 

estimated to be 53280. The mean Car Trips was 20959 and the mean per capita 

Income was $ 44620. The mean Gas price per gallon was $ 2.74 and the mean 

Fare was 1.62. The average Temperature was 65.6 F and the average 

Precipitation was 2.78. The average number of days when the temperature 

dropped to 32 Fahrenheit or below (Freeze) was 1.78 and the average amount of 
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Snowfall was 0.11. The mean of people of all ages in Poverty was estimated to 

be 438222 and the mean Unemployment rate was 6.3. 

 
Table 6-3 Descriptive Statistics 

Descriptive Statistics 

 N Mean Std. Deviation 

Transit Riders 132 211092.22 16688.655 

Rail Riders 132 82225.91 16801.411 

Bus Riders 132 128866.31 16882.794 

ITIS 132 53280.69 31233.763 

Car Trips 132 20959.54 5377.765 

Income 132 44620.42 5119.189 

Gas Price/ Gallon 132 2.74229 .654949 

Fare 132 1.615 .1928 

Temperatures (F) 132 65.638 16.0895 

Precipitation  132 2.7829 2.52864 

Freeze 132 1.78 3.541 

snowfall (ASN) 132 .11 .403 

Poverty  (EPP) 132 438222.73 33550.477 

Unemp 132 6.2821 1.62116 

Valid N (listwise) 132   

 
 

 

 
 

  



 

119 

Chapter 7  

Regression Analysis 

7.1 Selection of Multiple Regression Models 

Regression model building can assist in determining the factors most heavily affect 

the dependent variable, and therefore, choosing the best model cannot be achieved 

unless one considers all possible models (Berenson et al., 2009). A good number of 

independent variables were obtained from the literature review for examining the factors 

affecting transit, rail, and bus ridership. All three models have many independent 

variables, but models will be revisited by both employing different set of models and 

variables combinations to find the best model explaining the dependent variable 

(Anjomani & Shebeeb, 2003; Berenson, Levine & Krehbiel, 2009). All needed statistical 

procedures such as testing for the absence of high degree of multicollinearity will be 

applied; multicollinearity means that two or more variables are highly correlated with each 

other which mean two or more of the independent variables are not independent of each 

other (Lewis-Beck, 1980; Berenson, 2009). As a result, some of the independent 

variables may be eliminated. To carry out all the procedures and regression models, this 

study will use SPSS software. 

After testing the VIF, normality, multicollinearity, and homoscedasticity, a 

modified approach based on Berenson et al. (2009) was utilized to evaluate all possible 

models for the independent variables and to determine the best fitted model. Berenson et 

al. (2009) employed two criterions to determine the best model. They are the higher 

adjusted R2 and the Cp statistic that is close to or less than the number of independent 

variables plus one (K+1) (Berenson et al., 2009). Figure 7-1 summarizes the steps 

involved in model building. First, we run the regression model with only the independent 

variables related to the research question or (ITIS), and then make a hierarchy of 
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remaining independent variables based on the literature review. In other words, after 

adding the major factors first, we added those remaining independent variables, one by 

one, into the regression model and run the model with the added variable. Next, we used 

three criteria based on Rao and Miller (1971) to decide whether to keep or drop the 

added independent variable, including the significance of the variable, the improvement 

of t-value, and the improvement of adjusted R2 (Anjomani, 2016). 
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Figure 7-1 Summary of steps involved in model building  

(Source: Berenson et al., 2009) 
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Moreover, the assumption of normality was checked to identify if the data were 

normally distributed (Ghasemi & Zahediasl, 2012; Thode, 2002). Our test of the normality 

showed that the initial dependent variables (Transit, Rail, and Bus) were not normally 

distributed. Therefore, a transformation of the data was used to achieve the normality of 

the variables. We used the most popular transformation method ‒ the natural logarithm 

(Wooldridge, 2013).  

 
7.2 Test for Variance Inflation Factor (VIF) for the Models 

The first step of Berenson’s model building is to measure the amount of 

collinearity between two or more independent variables through a variance inflation factor 

(VIF) (Berenson et al., 2009). If the VIF is greater than 5.0, the multicollinearity is high, 

meaning a severe correlation across the independent variables, however the smaller the 

value of VIF, the lower the possibility of correlations between explanatory variables 

(Berenson et al., 2009). As observed in table 7-1, table 7-2, and table 7-3 the models are 

free of collinearity problems. In addition, after running Pearson’s correlation tests, none of 

the regression models had multicollinearity problems.  

Table 7-1 Variance inflation factors (VIF) for the Equation: LnTransit 

 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

LnITIS .384 2.521 

LnCarTrips .547 1.829 

LnIncome .237 3.214 

LnGas .534 1.872 

LnFare .636 1.573 

LnTemp .470 2.129 

LnPrecipitation .930 1.075 

LnFreeze .435 2.298 

LnSnow .733 1.365 

LnPoverty .397 2.519 

LnUnemp .635 1.576 

a. Dependent Variable: LnTransit 
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Table 7-2 Variance inflation factors (VIF) for the Equation: LnRail 

 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

LnITIS .384 2.521 

LnCarTrips .547 1.829 

LnIncome .237 3.214 

LnGas .534 1.872 

LnFare .636 1.573 

LnTemp .470 2.129 

LnPrecipitation .930 1.075 

LnFreeze .435 2.298 

LnSnow .733 1.365 

LnPoverty .397 2.519 

LnUnemp .635 1.576 

a. Dependent Variable: LnRail 

 
 

 
  



 

124 

Table 7-3 Variance inflation factors (VIF) for the Equation: LnBus 

 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

LnITIS .384 2.521 

LnCarTrips .547 1.829 

LnIncome .237 3.214 

LnGas .534 1.872 

LnFare .636 1.573 

LnTemp .470 2.129 

LnPrecipitation .930 1.075 

LnFreeze .435 2.298 

LnSnow .733 1.365 

LnPoverty .397 2.519 

LnUnemp .635 1.576 

a. Dependent Variable: LnBus 

 
 

7.3 Test of Normality 

The assumption of normality should be tested to identify if the data are normally 

distributed. The test of normality should be carried out for continuous dependent 

variables especially with variables that have many observations (Anjomani, 2016; 

Ghasemi & Zahediasl, 2012; Wooldridge, 2013). The test of normality was carried out in 

SPSS and also the normal Q-Q plots were checked. Generally the Kolmogorov-Smirnov 

and Shapiro–Wilk test were carried. The null hypothesis for this test is that the data was 

normally distributed. The null hypothesis was accepted if the P value was above 0.05. 

Accordingly, for this test all our variables must be above 0.05, to accept the null 

hypothesis. Table 7.4 describes the results of the test for normality. It shows the P values 
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for all dependent variables (LnTransit, LnRail, and LnBus) are greater than 0.05, which 

means the data is normally distributed. 

Table 7-4 Test for Normality 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

LnRail .058 132 .200* .985 132 .173 

LnBus .057 132 .200* .986 132 .196 

LnTransit .052 132 .200* .992 132 .682 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 
One of the best graphical methods of testing for normality is the Q-Q Plot. An 

ideal normal distribution will be positioned exactly on the line. The Q-Q plot also indicates 

that all data points fall very close to the diagonal line.  The result depicted in figure 7-2 

shows that all variables are normally distributed and the assumption of normality for all 

selected variables was satisfied. 

Moreover, the normality test of residuals was also computed using a histogram 

and P-P plot of standardized residuals in SPSS as shown in Figure 7-3. The P-P Plots 

should show data points fall very close to the diagonal line and histogram should form a 

bell shape. The results in Figure 7-4 indicate that residuals are normally distributed. 
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Figure 7-2 Q-Q Plots (left) and Histograms (right) of the selected dependent variables 
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Figure 7-3 P-P Plots (left) and Histograms (right) of the selected dependent variables 
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7.4 Test for Homoscedascity 

Residual plots were checked to identify whether there was a constant variance in 

the errors. Generally the residual plot should be distributed randomly without any specific 

pattern and should be equally distributed, which means that there is a constant variance. 

If a pattern exists it indicates that a non-linear regression is present and the 

homoscedasticity assumption is violated.  As observed in figure 7.4, 7.5, and 7.6 the 

residual plots show that the variance of the errors were distributed randomly and the 

relationships between variables in all models are linear. Please note that Figure 7.4, 7.5, 

and 7.6 describe the regression standardized residual with the predicted Z value on the X 

axis and the Predicted Standardized Residual on the Y axis for the dependent variables 

(LnTransit, LnRail, and LnBus) respectively.   

 

 
Figure 7-4 Residual plot for Equation 1: LnTransit 
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Figure 7-5 Residual plot for Equation 1: LnRail 
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Figure 7-6 Residual plot for Equation 1: LnBus 

 

7.5 Procedures and Analysis 

The multiple regression models were conducted using SPSS to examine the 

impact of the independent variables on the dependent variables in the study area. The 

models were built by including most factors that may have an impact on the dependent 

variables based on various theories and empirical studies. As indicated earlier, the 

regression models for this study are in the log-log (double log) form and, as such, the 

coefficients will constitute the elasticities. In other words, an interpretation of their 

coefficients as elasticities indicates a percent change of the explanatory variables 

between 2007 and 2017 will lead to a percent change for the coefficient in the dependent 

variable (Transit Ridership) between 2007 and 2017.  
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7.5.1 Regression Analysis and Results for Research Question 1: Transit Ridership (2007-

2017)  

The first regression model estimates transit ridership between 2007 and 2017 as 

a function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on transit ridership as follows:  

Ln(TRANSIT) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 

(LnGas) + β5 (LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 

(LnSnow)+ β10 (LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 

(LnEduc)                                                                       (1) 

In the initial formulation of the regression model, the independent variables that 

directly relate to the research question were considered. Subsequently, the control 

variables that are not considered to be major factors were first added into the regression 

model, if the variable was found to be not significant, it was removed from the equation. 

As a result, the Net Migration Flow and Education variables were included in the model, 

but both became insignificant, so they were dropped from all equations; then, all 

regression models were evaluated based on the same criteria, including the improvement 

of the adjusted R2, the improvement of the t test, and the Cp statistic that should be close 

to or less than (K+1). Table 7-5 shows the ANOVA output for the transit model which 

illustrates the model significance. The results show that this model is significant, meaning 

that there is a relationship between the independent variables and the dependent 

variable. 
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Table 7-5 Model 1 Transit ANOVA Output 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .642 11 .058 42.242 .000b 

Residual .166 120 .001   

Total .808 131    

a. Dependent Variable: LnTransit 

b. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, LnITIS, LnGas, LnCarTrips, 

LnSnow, LnFare, LnTemp, LnPoverty, LnIncome 

 
Table 7-6 shows the summary of the best model explaining transit ridership 

which depicts the R Square is .795. This means the independent variables explain 

approximately 80% of the variation in Transit Ridership. Moreover, the highest adjusted 

R2 found in this model is .776.  

Table 7-6 Model 1 Transit Summary 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .891a .795 .776 .03717 

a. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, 

LnITIS, LnGas, LnCarTrips, LnSnow, LnFare, LnTemp, 

LnPoverty, LnIncome 

b. Dependent Variable: LnTransit 
 

Table 7-7 below also shows that the Mean of Residual is equal to zero which indicates 

normal distribution. 
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Table 7-7 Model 1 Transit Residual Statistics 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 12.0965 12.4581 12.2570 .07000 132 

Residual -.09122 .12072 .00000 .03558 132 

Std. Predicted Value -2.293 2.873 .000 1.000 132 

Std. Residual -2.454 3.248 .000 .957 132 

a. Dependent Variable: LnTransit 
 

Table 7-8 shows the results of the chosen multiple regression model that 

includes the coefficients and the corresponding significant levels (p-values).  

Table 7-8 Results of the best multiple regression model of Transit Ridership 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 11.664 1.119  10.420 .000 

LnITIS .064 .011 .440 5.669 .000 

LnCarTrips .100 .017 .338 6.038 .000 

LnIncome -.184 .059 -.266 -3.129 .002 

LnGas .069 .019 .211 3.728 .000 

LnFare -.138 .033 -.217 -4.179 .000 

LnTemp -.054 .019 -.174 -2.881 .005 

LnPrecipitation -.004 .003 -.048 -1.112 .268 

LnFreeze -.017 .006 -.194 -3.088 .003 

LnSnow -.031 .016 -.095 -1.966 .052 

LnPoverty .146 .067 .143 2.178 .031 

LnUnemp -.078 .015 -.265 -5.108 .000 

a. Dependent Variable: LnTransit 
 

All the independent variables namely ITIS, CarTrips, Income, Gas, Fare, 

Temperature, Freeze, Snow, Poverty, and Unemployment are considered statistically 
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significant since their significance (p) value was < 0.05. The regression coefficients (B) 

help in identifying the nature and the strength of the relationship with the dependent 

variable. It was also observed that ITIS, CarTrips, Gas, and Poverty have a positive 

relationship towards the dependent variable. On the other hand, Income, Fare, 

Temperature, Freeze, Snow, and Unemployment have a negative relationship towards 

the dependent variable. Over all, the results show that there was a significant relationship 

between the dependent variable and independent variables.  

Based on the information observed in Table 7-8, ITIS is statistically significant 

and its coefficient 0.064 indicates that, holding all independent variables as fixed, a 1% 

increase in ITIS is predicted to increase transit ridership by 0.064. This means that as 

ITIS increases by 10%, transit ridership increases by 0.64%. Accordingly, the null 

hypothesis can be rejected at a 95% confidence level, meaning that there is a 

relationship between ITIS and transit ridership in the DART area. Considering the Beta 

coefficients, IT IS Beta-coefficient is about 0.45 which is the largest between all Beta 

coefficients, which means ITIS is the most important variable contributing to the ridership 

increase. Not surprisingly, the car trips has the second largest value, which considering 

its positive sign indicates impact of congestion increases on improving the ridership.  

This study also sought to answer the secondary research question: What are 

some controlling factors impacting transit ridership? From Table 7-8, the following 

conclusions can be drawn. Car Trips variable is significant and its coefficient 0.100 

indicates that, holding all independent variables as fixed, a 1% increase in Car Trips is 

predicted to increase transit ridership by 0.100. This means that as Car Trips (Congestion 

on highways in the study area) increases by 10%, transit ridership increases by around 

1.0%. 
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Likewise Gas price was also statistically significant (Sig = .000) and has positive 

relationship with the dependent variable. Its coefficient .069 indicates that a one 

percentage increase in gas price per gallon is predicted to increase transit ridership in the 

study area by .069, while controlling for all other variables.  This finding is consistent with 

our previous analysis. When gas price increases in DFW area, it will most likely cause 

auto ridership to be more expensive and transit ridership to be cheaper; thereby 

increasing transit ridership. As expected, Fare price on the other hand, has a negative 

relationship with the dependent variable and was statistically significant. Its coefficient -

0.138 indicates that, holding all independent variables as fixed, a 1% increase in fare 

prices is predicted to decrease transit ridership by 0.138. This means that as fare price 

increases by 10%, transit ridership decreases by around 1.4% - Which indicates the 

importance of this variable. 

In this model, it is observed that all selected socioeconomic variables are 

statistically significant and conform to expectations. Income and Unemployment have a 

negative relationship with the dependent variable, while Poverty has a positive 

relationship with the dependent variable. Literal interpretation follows that for every 1% 

increase in individual income within the DFW area, transit ridership decrease by .184% 

when the effects of all the other variables are held constant. This indicates that low 

income individuals are most likely to rely on transit for access to employment and other 

household’s necessities.  In addition, a 1% increase in Unemployment in the study area 

leads to a .078% decrease in transit ridership, while controlling for all other variables. 

Furthermore the Poverty variable showed statistically significant (sig= .031) and has 

positive relationship with the dependent variable. Its coefficient .146 indicates that a 1% 

increase in Poverty increased transit ridership by approximately 0.15% over the study 

period, with the effects of all the other variables held constant.  
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It is also observed that most of the weather variables are statistically significant 

and has negative relationship with the dependent variable, which again conforms to 

expectations. The findings show that Temperature, Freeze, and Snowfall coefficients are 

negative. This means that extreme weather conditions such as low temperatures, freeze, 

and snow decreases transit ridership in the study area. Precipitation on the other hand, is 

not significant. Yet, this variable is considered one of the major factors affecting transit 

ridership and is consistently mentioned in the theoretical literature review, so it has been 

kept in this model and the remainder of the regression models.  Anjomani (2016) states 

that if the purpose of the research is to establish a relationship and if there is an 

independent variable that the literature suggests should be in the model, the variable 

should be kept in the model regardless of its significance. 

The final regression model taking into consideration all significant independent 

variables (plus LnPrecipitation) can be written as follows: 

 

Ln(TRANSIT) = 11.664+ .064 (LnITIS) + .100 (LnCarTrips) - .184 (LnIncome) +  .069 

(LnGas) - .138 (LnFare) - .054 (LnTemp) - .004 (LnPrecipitation) - .017 (LnFreeze) - .031 

(LnSnow)+ .146 (LnPOVERTY) - .078 (LnUnemp) + ε                                      (1) 
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7.5.2 Regression Analysis and Results for Research Question 2: Rail Ridership (2007-

2017)  

The second regression model estimates rail ridership between 2007 and 2017 as 

a function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on rail ridership as follows:  

Ln(Rail) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 (LnGas) + β5 

(LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 (LnSnow)+ 

β10 (LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 (LnEduc)                                                                 

(2) 

Just as for the transit model building steps discussed earlier, the same 

methodology was followed in the formulation of the rail regression model. All regression 

models were evaluated based on the same criteria, including the improvement of the 

adjusted R2, the improvement of the t test, and the Cp statistic that should be close to or 

less than (K+1). Table 7-9 shows the ANOVA output for the rail model which illustrates 

the model significance. The results show that this model is significant, meaning that there 

is a relationship between the independent variables and the dependent variable. 

Table 7-9 Model 2 Rail ANOVA Output 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 5.201 11 .473 84.432 .000b 

Residual .672 120 .006   

Total 5.873 131    

a. Dependent Variable: LnRail 

b. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, LnITIS, LnGas, LnCarTrips, 

LnSnow, LnFare, LnTemp, LnPoverty, LnIncome 
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Table 7-10 shows the summary of the best model explaining rail ridership which 

depicts the R Square is .886. First, it is noted that this model has the highest R2 of the 3 

models, and so has the best explanatory power. This means the independent variables 

explain approximately 89% of the variation in Rail Ridership. Moreover, the highest 

adjusted R2 found in this model is .875.  

 
Table 7-10 Model 2 Rail Summary 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .941a .886 .875 .07483 

a. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, 

LnITIS, LnGas, LnCarTrips, LnSnow, LnFare, LnTemp, 

LnPoverty, LnIncome 

b. Dependent Variable: LnRail 

 
Table 7-11 below also shows that the Mean of Residual for this model is equal to 

zero which again indicates a normal distribution. 

 
Table 7-11 Model 2 Rail Residual Statistics 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 10.9816 11.6713 11.2955 .19926 132 

Residual -.14047 .26610 .00000 .07162 132 

Std. Predicted Value -1.575 1.886 .000 1.000 132 

Std. Residual -1.877 3.556 .000 .957 132 

a. Dependent Variable: LnRail 
 

Table 7-12 shows the results of the chosen multiple regression model for Rail 

that includes the coefficients and the corresponding significant levels (p-values).  
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Table 7-12 Results of the best multiple regression model of Rail Ridership 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 6.535 2.254  2.900 .004 

LnITIS .304 .023 .775 13.372 .000 

LnCarTrips .117 .033 .146 3.486 .001 

LnIncome .205 .118 .110 1.732 .086 

LnGas .098 .038 .111 2.623 .010 

LnFare -.137 .037 -.165 -3.658 .000 

LnTemp .109 .066 .064 1.650 .102 

LnPrecipitation -.006 .006 -.029 -.921 .359 

LnFreeze -.024 .011 -.097 -2.079 .040 

LnSnow -.049 .032 -.056 -1.539 .127 

LnPoverty .120 .135 .044 .890 .375 

LnUnemp .059 .031 .075 1.924 .057 

a. Dependent Variable: LnRail 

 
Results for model 2 are presented in Table 7-12. In this model the following 

independent variables namely ITIS, CarTrips, Gas, Fare, Freeze, and Unemployment are 

considered statistically significant since their significance (p) value was < 0.05. It was 

also observed that ITIS, CarTrips, Gas, and Unemployment have a positive relationship 

towards the dependent variable. On the other hand, Fare, and Freeze have a negative 

relationship towards the dependent variable. Over all, the results show that there was a 

significant relationship between the dependent variable and independent variables.  

Similar to the results of the transit study related to the considering of the Beta 

coefficients, ITIS Beta-coefficient is about 0.78, which is the largest with a wide margin 

from the next vale between all Beta coefficients. This means ITIS is the most important 

variable contributing to the rail ridership increase. Car trips has the second largest value 
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with a 0.15 score, which considering its positive sign indicates impact of congestion 

increases on improving the rail ridership. 

Interestingly, ITIS is statistically significant in this model and its coefficient 0.304 

indicates that, holding all independent variables as fixed, a 1% increase in ITIS is 

predicted to increase rail ridership by 0.304. This means that as ITIS increases by 10%, 

Rail ridership increases by 3% - Which indicates the importance of this variable. 

Accordingly, the null hypothesis can be rejected at a 95% confidence level, meaning that 

there is a relationship between ITIS and Rail ridership in the DART area.  

Based on the information observed in Table 7-12, a higher unemployment rate 

increases rail ridership, which is surprising. Unemployment was statistically significant 

(Sig = .05) and has positive relationship with the dependent variable. Its coefficient .059 

indicates that a one percentage increase in unemployment is predicted to increase rail 

ridership in the study area by .059, while controlling for all other variables.  As expected, 

however, a fare increase decreases rail ridership. Fare has a negative relationship with 

the dependent variable and was statistically significant.  

This study also sought to answer the secondary research question: What are 

some controlling factors affecting rail ridership? From Table 7-12, the following 

conclusions can be drawn. Car Trips variable is significant and its coefficient 0.117 

indicates that, holding all independent variables as fixed, a 1% increase in Car Trips is 

predicted to increase rail ridership by approximately 0.12. This means that as Car Trips 

(Congestion on highways in the study area) increases by 10%, rail ridership increases by 

around 1.2%. 

Likewise Gas price was also statistically significant (Sig = .010) and has positive 

relationship with the dependent variable. Its coefficient .098 indicates that a one 

percentage increase in gas price per gallon is predicted to increase rail ridership in the 
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study area by .098, while controlling for all other variables. In this model, however, 

weather variables do not seem to have the same impact on Rail as they do on rail with 

the exception of LnFreeze variable.  LnFreeze is statistically significant and its coefficient 

-0.024 indicates that, holding all independent variables as fixed, a 1% increase in 

LnFreeze is predicted to decrease rail ridership by 0.024.   

Moreover, it is observed that Poverty is not significant in this model; however, 

this variable is consistently mentioned in the theoretical literature review, so it has been 

kept in the model and the remainder of the regression models. 

The final Rail regression model taking into consideration all significant 

independent variables (plus the weather variables) can be written as follows: 

Ln(Rail) = 6.535+ .304 (LnITIS) + .117 (LnCarTrips) + .205 (LnIncome) +  .098 (LnGas) - 

.137 (LnFare) + .109 (LnTemp) - .006 (LnPrecipitation) - .024 (LnFreeze) - .049 

(LnSnow)+ .120 (LnPOVERTY) + .059 (LnUnemp) + ε                       (2) 
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7.5.3 Regression Analysis and Results for Research Question 3: Bus Ridership (2007-

2017)  

The third regression model estimates bus ridership between 2007 and 2017 as a 

function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on bus ridership as follows:  

Ln(Bus) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 (LnGas) + β5 

(LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 (LnSnow)+ 

β10 (LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 (LnEduc)       (3)                                                    

 

Just as for the transit and the rail models building steps discussed earlier, the 

same methodology was followed in the formulation of the bus regression model. All 

regression models were evaluated based on the same criteria, including the improvement 

of the adjusted R2, the improvement of the t test, and the Cp statistic that should be close 

to or less than (K+1). Table 7-13 shows the ANOVA output for the bus model which 

illustrates the model significance. The results show that this model is significant, meaning 

that there is a relationship between the independent variables and the dependent 

variable. 

Table 7-13 Model 3 Bus ANOVA Output 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1.771 11 .161 38.393 .000b 

Residual .503 120 .004   

Total 2.274 131    

a. Dependent Variable: LnBus 

b. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, LnITIS, LnGas, LnCarTrips, 

LnSnow, LnFare, LnTemp, LnPoverty, LnIncome 
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Table 7-14 shows the summary of the best model explaining bus ridership which 

depicts the R Square is .779. This means the independent variables explain 

approximately 78% of the variation in Bus Ridership. Moreover, the highest adjusted R2 

found in this model is .758.  

 
Table 7-14 Model 3 Bus Summary 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .882a .779 .758 .06476 

a. Predictors: (Constant), LnUnemp, LnFreeze, LnPrecipitation, 

LnITIS, LnGas, LnCarTrips, LnSnow, LnFare, LnTemp, 

LnPoverty, LnIncome 

b. Dependent Variable: LnBus 

 
Table 7-15 below also shows that the Mean of Residual for this model is equal to zero 

which again indicates a normal distribution. 

 

Table 7-15 Model 3 Bus Residual Statistics 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 11.5002 12.1148 11.7580 .11627 132 

Residual -.16779 .17066 .00000 .06198 132 

Std. Predicted Value -2.217 3.069 .000 1.000 132 

Std. Residual -2.591 2.635 .000 .957 132 

a. Dependent Variable: LnBus 
 

Table 7-16 shows the results of the chosen multiple regression model for Bus that 

includes the coefficients and the corresponding significant levels (p-values).  
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Table 7-16 Results of the best multiple regression model of Bus Ridership 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 12.523 1.950  6.422 .000 

LnITIS -.049 .032 -.056 -1.539 .127 

LnCarTrips .092 .029 .184 3.166 .002 

LnIncome -.424 .102 -.365 -4.139 .000 

LnGas .059 .032 .107 1.821 .071 

LnFare -.289 .057 -.271 -5.033 .000 

LnTemp .004 .032 .008 .128 .898 

LnPrecipitation -.003 .006 -.022 -.504 .615 

LnFreeze -.010 .010 -.065 -.995 .322 

LnSnow -.018 .028 -.032 -.647 .519 

LnPoverty .249 .117 .145 2.131 .035 

LnUnemp -.145 .027 -.294 -5.463 .000 

a. Dependent Variable: LnBus 

 
Results for model 3 are presented in Table 7-16. Unlike the previous two models, 

the variable of most interest to this research (ITIS) is not statistically significant, which is 

quite surprising. One possible explanation is that perhaps a high percentage of bus riders 

either do not have digital phone or IPad to use ITIS or that are not versed with the 

software. The other possible explanation might be that (ITIS) for bus is not sufficient to 

convince people to leave their automobiles and ride the bus. Another possibility is that 

bus riders may need a different set of ITIS apps or perhaps more targeted apps. Running 

the model with a more refined and detailed ITIS data which would separate the bus users 

from the other rail could help to derive more accurate results and better interpretations. In 

terms of Beta coefficients, car trips has the highest score with a negative sign implying 

that car trips is the most important contributor to the decrease of bus ridership.  
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In this model, it’s observed that the following independent variables namely: 

CarTrips, Income, Fare, Poverty, and Unemployment are considered statistically 

significant since their significance (p) value was < 0.05. CarTrips, and Poverty have a 

positive relationship towards the dependent variable. On the other hand, Income, Fare, 

and Unemployment have a negative relationship towards the dependent variable. Over 

all, the results show that there was a significant relationship between the dependent 

variable and most of the independent variables.  

Based on the information presented in Table 7-16, a higher unemployment rate 

decreases bus ridership. Unemployment was statistically significant (Sig = .000) and has 

negative relationship with the dependent variable. Its coefficient .145 indicates that a one 

percentage increase in unemployment is predicted to decrease bus ridership in the study 

area by .145, while controlling for all other variables.  As expected, however, a fare 

increase decreases bus ridership. Fare has negative relationship with the dependent 

variable and was statistically significant, and its coefficient -.289 indicates that, holding all 

independent variables as fixed, a 1% increase in fare is predicted to decrease bus 

ridership by 0.289. This means that as bus fare increases by 10%, bus ridership 

decreases by around 2.9%. 

From Table 7-16, the following conclusions can be drawn. Car Trips variable is 

significant and its coefficient 0.092 indicates that, holding all independent variables as 

fixed, a 1% increase in Car Trips is predicted to increase rail ridership by approximately 

0.09. This means that as Car Trips (Congestion on highways in the study area) increases 

by 10%, bus ridership increases by around 0 .92%. 

Likewise Gas price was also statistically significant and has positive relationship 

with the dependent variable, and its coefficient .059 indicates that, holding all 

independent variables as fixed, a one percentage increase in gas price per gallon is 
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predicted to increase bus ridership in the study area by .059. In this model, it is also 

observed that the weather variables do not have much impact on bus ridership in the 

study area.  Furthermore the Poverty variable showed statistically significant (sig= .035) 

and has positive relationship with the dependent variable. Its coefficient .249 indicates 

that a 1% increase in Poverty increased bus ridership by approximately 0.249% over the 

study period, with the effects of all the other variables held constant.  

The final Bus regression model taking into consideration all significant 

independent variables (Plus ITIS and the weather variables) can be written as follows: 

Ln(Bus) = 12.523- .085 (LnITIS) + .092 (LnCarTrips) - .424 (LnIncome) +  .059 (LnGas) - 

.289(LnFare) + .004 (LnTemp) - .003 (LnPrecipitation) - .010 (LnFreeze) - .018 

(LnSnow)+ .249 (LnPOVERTY) - .145 (LnUnemp) + ε                               
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7.6 Regression Analysis Using the Lag Dependent Variables: 

 
 From the literature scan, there are really mix feelings about inclusion or exclusion 

of Lag dependent variables in the models. Achen (2001) points out that the decision to 

include a lagged dependent variable in the model is really a theoretical question. It makes 

sense to include a lagged dependent variable if you expect that the current level of the 

dependent variable is heavily determined by its past level. In that case, not including the 

lagged dependent variable will lead to omitted variable bias and your results might be 

unreliable.  

For this study, we decided lagging the dependent variable in the three transit 

models namely: Transit, Rail, and Bus.  Using a lagged dependent variable among the 

independent variables may be theoretically important. It may also allow to compare the 

models’ outputs with the original models’ outputs to test and analyze any significant 

difference or impact. 

 
7.6.1 Regression Analysis and Results for Research Question 1 Using Lag Dependent 

Variable: Transit Ridership (2007-2017)  

 
The first regression model estimates transit ridership between 2007 and 2017 as 

a function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on transit ridership using the lag dependent 

variable as follows:  

Ln(TRANSIT) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 

(LnGas) + β5 (LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 

(LnSnow)+ β10 (LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 

(LnEduc) + β14 (LnTransitLag1)               
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                                                        (1) 

Table 7-17 shows the ANOVA output for the transit model with the lag dependent 

variable LnTransitLag1 which illustrates the model significance. The results show that this 

model is significant, meaning that there is a relationship between the independent 

variables and the dependent variable. 

Table 7-17 Model 4 Transit ANOVA Output Using Lag Dependent Variable 

 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .663 12 .055 45.606 .000b 

Residual .143 118 .001   

Total .806 130    

a. Dependent Variable: LnTransit 

b. Predictors: (Constant), LnTransitLag1, LnPrecipitation, LnITIS, LnUnemp, LnTemp, LnGas, 

LnCarTrips, LnSnow, LnFare, LnFreeze, LnPoverty, LnIncome 

 

 
Table 7-18 shows the summary of the best model explaining transit ridership 

which depicts the R Square is .823. This means the independent variables explain 

approximately 82% of the variation in Transit Ridership. Moreover, the highest adjusted 

R2 found in this model is .805.  

Table 7-18 Model 4 Transit Summary Using Lag Dependent Variable 

Model Summary 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .907a .823 .805 .03481 

a. Predictors: (Constant), LnTransitLag1, LnPrecipitation, LnITIS, 

LnUnemp, LnTemp, LnGas, LnCarTrips, LnSnow, LnFare, LnFreeze, 

LnPoverty, LnIncome 
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Table 7-19 below also shows that the Mean of Residual is equal to zero which indicates 

normal distribution. 

Table 7-19 Model 4 Transit Residual Statistics Using Lag Dependent Variable 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 12.0967 12.4653 12.2573 .07142 131 

Residual -.07232 .10720 .00000 .03317 131 

Std. Predicted Value -2.249 2.913 .000 1.000 131 

Std. Residual -2.077 3.079 .000 .953 131 

a. Dependent Variable: LnTransit 

 

 
Table 7-20 shows the results of the chosen multiple regression model that includes the 

coefficients and the corresponding significant levels (p-values).  
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Table 7-20 Multiple regression model of Transit Ridership Using Lag Dependent Variable 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 11.107 1.056  10.517 .000 

LnITIS .062 .011 .423 5.827 .000 

LnCarTrips .092 .016 .309 5.864 .000 

LnIncome -.183 .055 -.264 -3.317 .001 

LnGas .053 .018 .161 2.955 .004 

LnFare -.127 .031 -.201 -4.118 .000 

LnTemp -.052 .017 -.168 -2.997 .003 

LnPrecipitation -.004 .003 -.053 -1.308 .193 

LnFreeze -.016 .005 -.176 -3.010 .003 

LnSnow -.025 .016 -.072 -1.577 .117 

LnPoverty .196 .064 .190 3.053 .003 

LnUnemp -.082 .014 -.279 -5.682 .000 

LnTransitLag1 .253 .063 .173 3.997 .000 

a. Dependent Variable: LnTransit 
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7.6.2 Regression Analysis and Results for Research Question 2 Using Lag Dependent 

Variable: Rail Ridership (2007-2017)  

The second regression model estimates rail ridership between 2007 and 2017 as 

a function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on rail ridership using the lag dependent 

variable as follows:  

Ln(Rail) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 (LnGas) + β5 

(LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 (LnSnow)+ 

β10 (LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 (LnEduc) + β14 

(LnRailLag1)                                                                             (2) 

 

Table 7-21 shows the ANOVA output for the rail model with the lag dependent 

variable LnRailLag1 which illustrates the model significance. The results show that this 

model is significant, meaning that there is a relationship between the independent 

variables and the dependent variable. 

Table 7-21 Model 5 Rail ANOVA Output Using Lag Dependent Variable 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 5.151 12 .429 82.853 .000b 

Residual .611 118 .005   

Total 5.763 130    

a. Dependent Variable: LnRail 

b. Predictors: (Constant), LnRailLag1, LnPoverty, LnTemp, LnIncome, LnPrecipitation, LnSnow, 

LnFare, LnUnemp, LnCarTrips, LnGas, LnFreeze, LnITIS 

 

 
Table 7-22 shows the summary of the best model explaining rail ridership which 

depicts the R Square is .894. This means the independent variables explain 
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approximately 89% of the variation in Rail Ridership. Moreover, the highest adjusted R2 

found in this model is .883.  

Table 7-22 Model 5 Rail Summary Using Lag Dependent Variable 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .945a .894 .883 .07198 

a. Predictors: (Constant), LnRailLag1, LnPoverty, LnTemp, LnIncome, 

LnPrecipitation, LnSnow, LnFare, LnUnemp, LnCarTrips, LnGas, 

LnFreeze, LnITIS 

b. Dependent Variable: LnRail 

 

 
Table 7-23 below also shows that the Mean of Residual is equal to zero which indicates 

normal distribution. 

Table 7-23 Model 5 Rail Residual Statistics Using Lag Dependent Variable 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 10.9586 11.6913 11.2980 .19906 131 

Residual -.14904 .25015 .00000 .06858 131 

Std. Predicted Value -1.705 1.975 .000 1.000 131 

Std. Residual -2.071 3.475 .000 .953 131 

a. Dependent Variable: LnRail 

 

 
Table 7-24 shows the results of the chosen multiple regression model that includes the 

coefficients and the corresponding significant levels (p-values).  
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Table 7-24 Multiple regression model of Rail Ridership Using Lag Dependent Variable 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 4.688 2.238  2.095 .038 

LnITIS .292 .022 .748 13.170 .000 

LnCarTrips .088 .033 .110 2.646 .009 

LnIncome .242 .115 .131 2.111 .037 

LnGas .068 .037 .077 1.816 .072 

LnFare .124 .064 .073 1.946 .054 

LnTemp -.126 .036 -.152 -3.486 .001 

LnPrecipitation -.007 .006 -.037 -1.176 .242 

LnFreeze -.021 .011 -.085 -1.883 .062 

LnSnow -.034 .033 -.036 -1.033 .303 

LnPoverty .255 .136 .093 1.875 .063 

LnUnemp .044 .030 .056 1.462 .147 

LnRailLag1 .353 .103 .116 3.411 .001 

a. Dependent Variable: LnRail 

 
 

 
  



 

154 

7.6.3 Regression Analysis and Results for Research Question 3 Using Lag Dependent 

Variable: Bus Ridership (2007-2017)  

The third regression model estimates bus ridership between 2007 and 2017 as a 

function of ITIS, weather, and other socioeconomic factors in the DFW area. The model 

is formulated to examine the impact of ITIS on bus ridership using the lag dependent 

variable as follows:  

Ln(Bus) = α + β1 (LnITIS) + β2 (LnCarTrips) + β3 (LnIncome) +  β4 (LnGas) + β5 

(LnFare)+ β6 (LnTemp) + β7 (LnPrecipitation) + β8 (LnFreeze)+ β9 (LnSnow)+ β10 

(LnPOVERTY)+ β11 (LnUnemp) + β12 (LnMigFlow) +   β13 (LnEduc) + β14 (LnBusLag1)                    

(3)   

 
Table 7-25 shows the ANOVA output for the bus model with the lag dependent 

variable LnBusLag1 which illustrates the model significance. The results show that this 

model is significant, meaning that there is a relationship between the independent 

variables and the dependent variable. 

Table 7-25 Model 6 Bus ANOVA Output Using Lag Dependent Variable 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1.844 12 .154 43.659 .000b 

Residual .415 118 .004   

Total 2.259 130    

a. Dependent Variable: LnBus 

b. Predictors: (Constant), LnBusLag1, LnIncome, LnPrecipitation, LnCarTrips, LnTemp, 

LnPoverty, LnSnow, LnUnemp, LnFare, LnGas, LnFreeze, LnITIS 

 

 
Table 7-26 shows the summary of the best model explaining bus ridership which 

depicts the R Square is .816. This means the independent variables explain 
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approximately 82% of the variation in Bus Ridership. Moreover, the highest adjusted R2 

found in this model is .797.  

Table 7-26 Model 6 Bus Summary Using Lag Dependent Variable 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .903a .816 .797 .05933 

a. Predictors: (Constant), LnBusLag1, LnIncome, LnPrecipitation, 

LnCarTrips, LnTemp, LnPoverty, LnSnow, LnUnemp, LnFare, LnGas, 

LnFreeze, LnITIS 

b. Dependent Variable: LnBus 

 

 
Table 7-27 below also shows that the Mean of Residual is equal to zero which indicates 

normal distribution. 

Table 7-27 Model 6 Bus Residual Statistics Using Lag Dependent Variable 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 11.4721 12.1091 11.7570 .11910 131 

Residual -.14253 .13640 .00000 .05652 131 

Std. Predicted Value -2.392 2.956 .000 1.000 131 

Std. Residual -2.403 2.299 .000 .953 131 

a. Dependent Variable: LnBus 

 

 
Table 7-28 shows the results of the chosen multiple regression model that 

includes the coefficients and the corresponding significant levels (p-values).  
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Table 7-28 Multiple regression model of Bus Ridership Using Lag Dependent Variable 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 12.488 1.788  6.983 .000 

LnITIS -.054 .018 -.333 -4.514 .128 

LnCarTrips .088 .027 .176 3.308 .001 

LnIncome -.448 .094 -.386 -4.757 .000 

LnGas .039 .030 .070 1.284 .202 

LnFare -.277 .053 -.261 -5.271 .000 

LnTemp -.005 .030 -.010 -.173 .863 

LnPrecipitation -.002 .005 -.017 -.423 .673 

LnFreeze -.009 .009 -.061 -1.020 .310 

LnSnow -.002 .028 -.003 -.074 .941 

LnPoverty .279 .107 .162 2.601 .010 

LnUnemp -.147 .024 -.299 -6.010 .000 

LnBusLag1 .435 .092 .201 4.705 .000 

a. Dependent Variable: LnBus 

 

 
Tables 7-17 thru 7-28 showed that the inclusion of the lag variables namely: 

LnTransitLag1, LnRailLag1, LnBusLag1 did not have any significant impact on the 

previous models outputs. Since the results of the previous models have not changed 

much, the detailed interpretations of these models namely: models 4, 5, and 6 will not be 

present. 
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Chapter 8  

Conclusions, Summary of Findings, and Policy Implications 

8.1 Conclusions 

This research contributes to the field of urban planning and public policy by 

developing empirical evidence that analyzes the impact of intelligent information systems 

(ITIS) on transit ridership. The study explores ITIS and the factors impacting transit 

ridership in Dallas Area Rapid Transit (DART), and how can transit ridership be increased 

to determine if policy and/or actions can be taken to improve ridership in the study area. 

This study covered the period extending from January 2007 to December 2017.  To 

accomplish the goal of the study this research specifically examined and tested the 

following research questions: 

1- Does ITIS impact Transit Ridership in Dallas Area Rapid Transit? 

2- Does ITIS impact Rail Ridership in Dallas Area Rapid Transit? 

3- Does ITIS impact Bus Ridership in Dallas Area Rapid Transit? 

In addition, this study examined factors that influence transit usage in the presence of 

intelligent transit information systems (ITIS). 

Multiple regression models were formulated using SPSS to examine the impact 

of the independent variables namely:  ITIS, Car Trips, Income, Gas, Fare, Temperature, 

Precipitation, Freeze, Snowfall, Poverty, Unemployment, Net Migration Flow, and 

Education on the dependent variables (Transit, Rail, and Bus) ridership in the study area 

between 2007 and 2017. Results of the first two models (transit and rail) were in 

accordance with the hypothesis.  Accordingly, the statistical analysis found that ITIS has 

significant impact on both transit and Rail modes. In addition, IT IS had the highest value 

in terms of Beta coefficients, which indicated it is the most important variable contributing 

to the increase of transit and rail ridership. However, results of the regression analysis did 
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not support the hypothesis for ITIS impact on bus mode, and the statistical analysis found 

that ITIS has no effect on bus mode. One possible explanation is that ITIS apps is not 

sufficient to convince people to leave their automobiles and ride the bus, or perhaps bus 

riders in the Dallas-Fort Worth area do not rely on ITIS apps as much as Transit and Rail 

riders. Finally, the ITIS variable in the models does not trach mode choice information 

associated with each trip; it only captures the number of times an ITIS app was opened 

which can be perceived as a limitation to this study. Comparing the results of the three 

models it becomes clear that the ITIS rail effect and bus effect are in the two end of the 

range and the transit effect is just the average of the two effects. With the advancement 

of Information and tracking technologies, future research should focus on more 

comprehensive ITIS app indicator, which tracks mode choice information. In other words, 

it captures what mode was chosen for each trip. More precisely, there is need for the 

breakdown of IT IS data by rail and bus that the models could be run with the actual data 

as opposed to the aggregate data which our study had access to and used. 

 

8.2 Summary of Findings for Research Question 1 

Research Question 1: Does ITIS impact Transit Ridership in Dallas Area Rapid Transit? 

 The first regression model estimates transit ridership between 2007 and 2017 as 

a function of ITIS, weather, and other socioeconomic factors in the DFW area. For this 

model, the findings below show the significant independent variables which have an 

impact on transit ridership within the study area: 

 ITIS: ITIS app usage in the study area shows a positive correlation with transit 

ridership. In this model ITIS is also a test of causation; as the ITIS app usage 

increases, transit ridership also increases. This is supported by some of the 

available literature that suggests that ITIS reduces negative aspects and cost of 
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using transit through providing information, saving time and other attributes, and 

makes transit more competitive with the automobile. The results showed that 

ITIS is affecting transit ridership. More importantly, it showed that ITIS is one of 

the most important contributors to transit ridership increase. 

 Car Trips:  The results show a significant positive correlation between Car Trips 

and transit ridership.  As Car Trips increase, transit ridership increases. This 

means that when congestion on the highways in the study area increases, transit 

ridership also increases. 

 Gas: Gas price was also statistically significant and has positive correlation with 

transit ridership. This finding is consistent with our previous analysis. When gas 

price increases in DFW area, it will most likely cause auto ridership to be more 

expensive and transit ridership to be cheaper; thereby increasing transit 

ridership. 

 Fare:  As expected, Fare price has a negative correlation with transit ridership 

and was statistically significant. This finding conforms to existing literature and 

suggests as fare increases, transit ridership decreases within the study area. 

 Income: Income has a negative correlation with transit ridership. As income 

increases, transit ridership decreases. This finding suggests that low income 

individuals are most likely to rely on transit for access to employment and other 

household’s necessities. 

 Unemployment: Likewise, unemployment has a negative correlation with transit 

ridership. This means that as unemployment increases in the study area, transit 

ridership decreases. This finding conforms to employment literature witch 

suggests that a change in employment level will change transit use due to the 
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change of demand (Mattson, 2008). During Great Depression of 1930s, transit 

ridership had decreased by 25% nationwide (APTA, 2001). 

 Poverty: Poverty has a positive correlation with transit ridership. This means that 

as poverty increases, transit ridership increases. This finding suggests that Poor 

individuals are most likely to choose transit for access to employment and other 

household’s necessities. 

 Weather: Weather variables namely: Temp, Freeze, and Snowfall are statistically 

significant and have negative correlation with transit ridership, which again 

conforms to expectations. This means that extreme weather conditions decrease 

transit ridership in the study area. The findings conform to existing literature. Guo 

et al. (2007) used the Chicago Transit Authority in Illinois as a case study to 

investigate the impact of five weather elements (temperature, rain, snow, wind, 

and fog) on transit ridership, and found that weather condition affects transit 

ridership: Good weather increase transit use, while bad weather decrease such 

usage. 

 

8.3 Summary of Findings for Research Question 2 

Research Question 2: Does ITIS impact Rail Ridership in Dallas Area Rapid Transit? The 

second regression model estimates rail ridership between 2007 and 2017 as a function of 

ITIS, weather, and other socioeconomic factors in the DFW area. For this model, the 

findings below show the significant independent variables which have an impact on rail 

ridership within the study area: 

 ITIS: ITIS app usage in the study area shows a positive correlation with rail 

ridership. As the ITIS app usage increases, rail ridership increases. Interestingly, 

ITIS coefficient 0.304 indicates that, holding all independent variables as fixed, a 
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1% increase in ITIS is predicted to increase rail ridership by 0.304. This means 

that as ITIS increases by 10%, Rail ridership increases by 3% - Which indicates 

the importance of this variable. This finding is supported by some of the available 

literature that suggests that ITIS reduces negative aspects and cost of using 

transit through providing information, saving time and other attributes, and makes 

transit more competitive with the automobile. 

 Car Trips:  The results show a significant positive correlation between Car Trips 

and rail ridership.  As Car Trips increase, rail ridership increases. This means 

that when congestion on the highways in the study area increases, rail ridership 

also increases. 

 Gas: Gas price was also statistically significant and has positive correlation with 

rail ridership. This finding is consistent with our previous analysis. When gas 

price increases in DFW area, it will most likely cause auto ridership to be more 

expensive and transit ridership to be cheaper; thereby increasing transit/rail 

ridership. 

 Fare:  As expected, Fare price has a negative correlation with rail ridership and 

was statistically significant. This finding conforms to existing literature and 

suggests as fare increases, rail ridership decreases within the study area. 

 Unemployment: Unemployment has a positive correlation with rail ridership. This 

means a higher unemployment rate increases rail ridership, which is somewhat 

surprising.  

 Weather: Freeze (When the temperature in DFW Area dropped to 32 Fahrenheit 

or below) has a negative correlation with rail ridership. This means that extreme 

weather conditions decrease rail ridership in the study area. This again conforms 

to expectations. 
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8.4 Summary of Findings for Research Question 3 

Research Question 3: Does ITIS impact Bus Ridership in Dallas Area Rapid Transit? The 

third regression model estimates bus ridership between 2007 and 2017 as a function of 

ITIS, weather, and other socioeconomic factors in the DFW area. For this model, the 

findings below show the significant independent variables which have an impact on bus 

ridership within the study area: 

 ITIS: Unlike the previous two models, the variable of most interest to this 

research (ITIS) is not statistically significant in this model, which is quite 

surprising. One possible explanation is perhaps a high percentage of bus riders 

either do not have digital phone or IPad to use ITIS or that are not versed with 

the software. The other possible explanation might be that (ITIS) for bus is not 

sufficient to convince people to leave their automobiles and ride the bus. Another 

possibility is that bus riders may need a different set of ITIS apps or perhaps 

more targeted ITIS apps.   

 Car Trips:  The results show a significant positive correlation between Car Trips 

and bus ridership.  As Car Trips increase, bus ridership increases. This means 

that when congestion on the highways in the study area increases, bus ridership 

also increases. 

 Poverty: Poverty has a positive correlation with transit ridership. This means that 

as poverty increases, bus ridership increases. This finding suggests that Poor 

individuals are most likely to choose public transportation for access to 

employment and other household’s necessities. 
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 Fare:  As expected, Fare price has a negative correlation with bus ridership and 

was statistically significant. This finding conforms to existing literature and 

suggests as fare increases, bus ridership decreases within the study area. 

 Unemployment: Likewise, unemployment has a negative correlation with bus 

ridership. This means that as unemployment increases in the study area, bus 

ridership decreases. This finding conforms to employment literature witch 

suggests that a change in employment level will change transit use due to the 

change of demand (Mattson, 2008). During Great Depression of 1930s, transit 

ridership had decreased by 25% nationwide (APTA, 2001). 

 Income: Income has a negative correlation with transit ridership. As income 

increases, bus ridership decreases. This finding suggests that low income 

individuals are most likely to rely on public transportations for access to 

employment and other household’s necessities. 

 

8.5 Policy Implications 

This research contributes to the field of urban planning and public policy by 

developing empirical evidence that analyzes the impact of intelligent information systems 

(ITIS) on transit ridership. Thereby emphasizes the integrations of ITIS applications as a 

policy tool for increasing transit ridership in DFW area. The outcomes of this research 

have several policy implications. Knowledge of ITIS elasticities will help North American 

cities and Dallas Area Rapid Transit specifically to develop strategies that attempt to 

increase transit ridership for a variety of reasons including: reduce the energy use of 

transportation in cities, curb congestion, reduce pollution, and provide other social, 

economic and environmental benefits. It will aid policy makers in their decision making 

regarding further investments in transit ITIS applications. In addition, the use of these 
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data by transit operators, transportation planners, and transit marketers presents 

significant opportunities for both short-term and long-term gains in transit use. Transit 

properties that leverage objective customer information from these systems may be able 

to be more proactive in serving transit customers (Under TCRP Project B-29, “Transit 

Market Research: Leveraging ITS and Transit ITS Data”. This research provides 

opportunities to improve transit services because ITIS reduces negative aspects and cost 

of using transit through providing information, saving time and other attributes for transit 

users and non-transit users including the poor and underserved population. It will also 

enable service providers to target services towards those areas (or customers) that are 

most likely to increase transit use because of these services, design improved ITIS, and 

develop transit promoting programs. In addition, the underlying reasons for deploying this 

kind of applications include both economic and social considerations. Transit agencies 

expect these systems to boost the ridership, and hence revenues, by attracting more 

passengers. From transit users’ perspective, the availability of real-time transit 

information at their fingertips and the time saved by real-time transit information is 

certainly an economic benefit. Besides, transit agencies may boost their public images by 

making such visible efforts to improve their service. Perhaps a deeper social 

consideration is that social inequity in American cities, worsened by suburbanization and 

segregation, may be narrowed to some extent by improving transit service for the 

disadvantaged population who are largely captive transit riders. This analysis will also 

help DART’s transit managers increase their operational efficiency and provide better 

real-time customer information to retain existing customers and perhaps attract new 

customers.  

The implementations of Intelligent Transit Information Systems (ITIS) radically 

changed the way people communicate and get information.  The ITIS applications aid 
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transportation operators and emergency response personnel as they monitor traffic, 

detect and respond to incidents, and inform the public of traffic conditions via the 

Internet, roadway devices, and the media. The availability of ITIS applications has the 

potential to change several aspects of people’s lives and to influence their travel choices. 

Today some of the ITIS applications provide real-time transit information making transit 

more attractive to users. Such systems enable trip makers to make informed decisions 

by providing them with the information on the projected vehicle arrival and departure 

time at stations/stops, projected vehicle connection information, and expected origin-

destination travel time (U.S. Department of Transportation, 2010). Originally available 

through Variable Message Signs at transit facilities or through the Internet, software 

developers now have built application software for smart phones and Personal Digital 

Assistants that use the underlying transit vehicle location data, making such information 

ubiquitously available.  

The availability of this information has the potential to change people’s attitudes 

toward public transit and to boost ridership.  Public transit systems play an important role 

in combating traffic congestion, reducing carbon emissions, and promoting compact, 

sustainable urban communities (Taylor et al., 2008).  The development of real-time ITIS 

applications is one of the new strategies for high-quality transit service. These systems 

provide timely and accurate information to current and potential riders to enable them to 

make better pre-trip and en-route decisions. The most frequently provided real-time 

transit information includes vehicle arrival times, service disruptions and delays. In 

addition, there are various types of travel information. These include pre-trip as well as 

en-route information.  

Over all, the DFW metropolitan area is considered an auto-oriented environment 

where public funds are mainly invested in highway improvements. Accordingly, an 
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investment in transit ITIS applications needs to be incorporated into local and regional 

policies. Adopting such polices would make transit more competitive with private 

automobiles and potentially increase transit ridership. Furthermore, with the widespread 

dissemination of the Internet and personal mobile devices, the ways by which public 

transit agencies serve travel information to the public are undergoing great 

improvements. Recent technological advances in dynamic information systems are 

changing the experience for transit travelers and transit managers. New mobile 

technologies allow for en-route decision making and, thus, changing the nature of the 

transit experience. Further advances in interoperability are supporting advances in 

content, format, and delivery—making it easier to access and use multi-source data, 

facilitating multi-modal connections. DART has been involved in the planning, 

programming, and implementation of ITIS programs and projects. This research clearly 

demonstrated that ITIS is affecting rail ridership and in general the transit ridership. More 

importantly, it showed that ITIS is one of the most important contributors to the transit and 

rail ridership. In particular, regarding the rail ridership it was the most significant by a wide 

margin compared to the rest of the variables. All these verify and confirm DART’s efforts 

in implementing the ITIS technology and its fruitfulness. Finally, findings from this 

research should help DART and other transit agenesis better understand the correlation 

between ITIS applications and transit ridership.   

 

  



 

167 

References 

 

Abdel-Aty, M. (2001). Using ordered probit modeling to study the effect of ATIS on transit 

ridership. Transportation Research, Part C, Emerging Technologies 9 (4), 265–

277. 

Abdel-Aty, M., & Abdalla, M., (2004).  Modeling drivers’ diversion from normal routes 

under ATIS using generalized estimating equations and binomial probit link 

function. Transportation 31 (3), 327–348. 

Alam, B. M., (2009). “Transit Accessibility to Jobs and Employment Prospects of Welfare 

Recipients Without Cars.” Transportation Research Record: Journal of the 

Transportation Research Board 2110: 78–86. 

Alam, B. M. (2015). “Investigating the Determining Factors for Transit Travel Demand by 

Bus Mode in US Metropolitan Statistical Areas.” Transportation Research 

Record: Journal of the Transportation Research Board 2110: 78–86. 

American Public Transit Association. (2009). Public transportation facts at a glance. 

Technical report, 2009. 

Anjomani, A., & Shebeeb, O. (2003). Safety and Efficiency: Regression Analysis Results 

for Left-turn Movements. Proceedings of the 82nd Annual meetings of the 

Transportation Research Board, CD ROM. Washington D.C. Retrieved from 

http://www.ltrc.lsu.edu/TRB_82/TRB2003-002126.pdf 

Anjomani, A. (2016). Interactions and model building [PowerPoint slides]. 

http://www.ltrc.lsu.edu/TRB_82/TRB2003-002126.pdf


 

168 

APTA. (2008). Rising Fuel Costs: Impacts on Transit Ridership and Agency Operations: 

Survey Results, American Public Transportation Association (www.apta.com); at 

www.apta.com/resources/reportsandpublications/Documents/fuel_survey_0809.p

df.  

APTA. (2011). Potential Impact of Gasoline Price Increases on U.S. Public 

Transportation Ridership, 2011 -2012, American Public Transportation 

Association (www.apta.com); at http://tinyurl.com/cuy2hl7.  

Armbruster B. (2010). Factors Affecting Transit Ridership at the Metropolitan Level 2002-

2007, A Thesis for the Degree of Master of Public Policy, Georgetown University. 

Arthur, W. B. (2011). The nature of technology: What it is and how it evolves.New York: 

Free Press. 

Bass, F. M., 1969, A New Product Growth for Model Consumer Durables, Management 

Science 15, 215-227. 

Asquith, B. J. (2011). Income Elasticity of Demand for Large, Modern Rapid Transit Rail 

Networks. Undergraduate Economic Review: Vol. 7: Iss. 1, Article 20. 

Battelle Memorial Institute and Multisystems, Inc. (2003). Customer Preferences for 

Transit ATIS. Prepared for Federal Transit Administration. Report No. FTA-OH-

26-7015-2003.1 

Beaudoin, J. Y., Farzin, H. & Lawell, C. L. (2015). “Public Transit Investment and 

Sustainable Transportation: A Review of Studies of Transit’s Impact on Traffic 

Congestion and Air Quality,” Research in Transportation Economics, 52: 15-22. 

http://www.apta.com/resources/reportsandpublications/Documents/fuel_survey_0809.pdf
http://www.apta.com/resources/reportsandpublications/Documents/fuel_survey_0809.pdf
http://tinyurl.com/cuy2hl7


 

169 

Bell, D. R. & Song. S. (2004). Neighborhood Effects and Trial on the Internet: Evidence 

from Online Grocery Retailing, Mimeo, Wharton. 

Berenson, M., Levine, D., & Krehbiel, T. (2009). Basic business statistics: Concepts and 

applications. Prentice Hall: New Jersey   

Blanchard, C. (2009). The Impact of Rising Gasoline Prices on US Public Transit 

Ridership, Masters Thesis, Duke University; at 

http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/1379/Blanchard,%

20Christopher.pdf;jsessionid=CFD50E95C8DC8F6F35783C67FEF302BE?seque

nce=1.  

Boarnet, M. R. & Crane, R. (2001). Travel by design: The influence of urban form on 

travel. Oxford, New York: Oxford University Press, 2001.   

Brand, D. (2009). Impacts of Higher Fuel Costs, Federal Highway Administration, 

(www.fhwa.dot.gov); at 

www.fhwa.dot.gov/policy/otps/innovation/issue1/impacts.htm.  

Brown, J., Hess, D. & Shoup, D. (2001), Unlimited Access. Transportation, Volume 28, 

number 3, 2001, pp. 233-267; at UCLA Institute of Transportation Studies 

website: www.sppsr.ucla.edu/res_ctrs/its/UA/UA.pdf. 

Borghesi, S., Calastri, C. & Fagiolo, G. (2014). How do people choose their commuting 

mode? An evolutionary approach to transport choices, LEM Papers Series, 

Laboratory of Economics and Management (LEM), Sant'Anna School of 

Advanced Studies, Pisa, Italy 

http://www.fhwa.dot.gov/policy/otps/innovation/issue1/impacts.htm
http://www.sppsr.ucla.edu/res_ctrs/its/UA/UA.pdf
https://econpapers.repec.org/paper/ssalemwps/2014_2f15.htm
https://econpapers.repec.org/paper/ssalemwps/2014_2f15.htm


 

170 

Cain, A. (2007). Center for Urban Transportation Research, “Are Printed Transit 

Information Materials a Significant Barrier to Transit Use?,” Journal of Public 

Transportation, 10(2):  33-52, 2007. 

CBO. (2008). Effects of Gasoline Prices on Driving Behavior and Vehicle Markets, 

Congressional Budget Office (www.cbo.gov); at 

www.cbo.gov/ftpdocs/88xx/doc8893/01-14GasolinePrices.pdf. 

Cham, L. G., Darido, D., Jackson, R., Laver, A. H. & Schneck, D. (2006).  Real-time Bus 

Arrival Information Systems Return-on-investment Study – Final Report. National 

Technical Information Service, Federal Transit Administration, Washington, D.C., 

2006. 

Chen, C., Varley, D. & Chen, J. (2011). What Affects Transit Ridership? A Dynamic 

Analysis Involving Multiple Factors, Lags and Asymmetric Behaviour. Urban 

Studies 48 (9): 1893–1908. 

Chiang, W., Robert A. R., & Timothy L. U. (2011). Forecasting Ridership for a 

Metropolitan Transit Authority. Transportation Research Part A: Policy and 

Practice 45.7 696-705. Web. 

Chorus, C., E. Molin, B. Van Wee, T. Arentze, & Timmermans. H. (2006). Responses to 

Transit Information among Car-drivers: Regret-based Models and Simulations. 

Transportation Planning & Technology, Vol. 29, No. 4, 2006, pp. 249-271. 

Coleman, J., Katz, E. & Menzel, H. (1957). The Diffusion of an Innovation Among 

Physicians Sociometry 20, 253-270. 

http://www.cbo.gov/ftpdocs/88xx/doc8893/01-14GasolinePrices.pdf


 

171 

Cooper, R. B. & Zmud, R. W. (1990). Information Technology Implementation Research: 

A Technological Diffusion Approach. Management Science, Vol. 36, No. 2, 1990, 

pp. 123-139. 

Crane, R. (2000). The Impacts of Urban Form on Travel: An Interpretive Review. Journal 

of Planning Literature, 15(2000): 3-23. 

CTA. (2009). CTA Bus Tracker: Select Stop – Estimated Arrival Times. Retrieved from: 

http://www.ctabustracker.com/bustime/eta/eta.jsp. 

Currie, G.  & Phung, J. (2007). Transit Ridership, Auto Gas Prices and World Events – 

New Drivers of Change? Transportation Research Board Annual Meeting 

(www.trb.org).   

Currie, G.  & Phung, J. (2008). Understanding Links Between Transit Ridership and 

Automobile Gas Prices: U.S. and Australian Evidence, Transportation Research 

Board 87th Annual Meeting (www.trb.org). 

Curtin, J. F. (1968). Effect of Fares on Transit Riding.  Highway Research Record, 213 

(1968), 8-19. 

Dallas Area Rapid Transit DART. (2017). DART Reference Book. Available at: 

(https://www.dart.org/about/dartreferencebookmar17.pdf). 

Dargay, J. & Hanly, M. (1999). Bus Fare Elasticities. ESRC Transport Studies Unit, 

University College London, (www.ucl.ac.uk).   

Dargay, J., Hanly, M., Bresson, G. M., Boulahbal, J., Madre, L. & Pirotte, A. (2002). The 

Main Determinants of the Demand for Public Transit: A Comparative Analysis of 

http://www.ctabustracker.com/bustime/eta/eta.jsp
http://www.trb.org/
https://www.dart.org/about/dartreferencebookmar17.pdf


 

172 

Great Britain and France, ESRC Transport Studies Unit, University College 

London (www.ucl.ac.uk). 

David, P. A. (1969). A contribution to the Theory of Diffusion Stanford Center for 

Research in Economic. Department for Transport (U.K.). 

David, P. A. (1990). The Dynamo and the Computer: An Historical Perspective on the 

Modern. 

Department for Transport (U.K.), Productive Use of Rail Travel Time and the Valuation of 

Travel Time Savings for Rail Business Travelers: Final Report, June 2009.  

Deakin, E. & Sonju, K. (2011). Transportation Technologies: Implications for Planning.  

De Graaff, T. & Rietveld, P. (2003). ICT and substitution between out-of-home and at-

home work. <http://www.tinbergen.nl/discussionpapers/03061.pdf> (retrieved 

15.02.05). 

De Graaff, T. & Rietveld, P. (2004). Telework, frequency of working out-of-home and 

commuting: a labor supply model and an application to the Netherlands. 

Dittmar, H. (1995). A broader context for transportation panning: not just an end in itself. 

J. Am. Plan. Associ. 61 (1), 7-13. 

Dutzik, T. & Madsen, T. (2013).  A New Way to Go. The Transportation Apps and 

Vehicle-Sharing Tools that Are Giving More Americans the Freedom to Drive 

Less. Frontier Group Phineas Baxandall, Ph.D. U.S. PIRG Education Fund. 

http://www.ucl.ac.uk/


 

173 

Dziekan, K. & Vermeulen, A. (2006). Psychological Effects of and Design Preferences for 

Real-Time Information Displays. Journal of Public Transportation, Vol. 9, No. 1, 

2006, pp. 71-89. 

Elster, J. (1989). Nuts and Bolts for the Social Sciences. Cambridge: Cambridge 

University Press. 

Elster, J. (1991). Patterns of Causal Analysis in Tocqueville’s Democracy in America. 

Rationality and Society 3(3):277-97. 

Elster, J. (1992). Political Psychology. Cambridge: Cambridge University Press. 

Eirikis, D., & Eirikis, M. (2010). Friending Transit: How Public Transit Agencies Are Using 

Socal Media to Expand Their Reach and Improve Their Image. Mass Transit, 7. 

Farias, J., & Almeida, J. (2014). Technology adoption in service organizations: A 

framework proposal for studying ICT diffusion in healthcare and hospital 

services. XXIV International Conference of RESER, Helsinki. 

Farias, J. S., Guimaraes, T. A., & Vargas, E. R. (2012). Innovation in Brazilian and 

Spanish hospitals: The managers’ perception upon electronic patient record. 

Brazilian Business Review, 9(3), 23–44 (Art. 2). 

Federal Highway Administration. (2004). Traffic Congestion and Reliability: Linking 

Solutions to Problems, prepared by Cambridge with Texas Transportation 

Institute, 2004. 

Federal Highway Administration. (2012). Analysis of Automobile Travel Demand 

Elasticities With Respect To Travel Cost. Report prepared by Oak Ridge National 



 

174 

Laboratory for the Federal Highway Administration Office of Highway Policy 

Information. 

Fehr & Peers. (2004). Direct Ridership Forecasting: Out of the Black Box, Fehr & Peers 

(www.fehrandpeers.com).    

Ferris, B., Watkins, K. E. & Borning, A. (2010). One Bus Away: Behavioral and 

Satisfaction Changes Resulting from Providing Real-Time Arrival Information for 

Public Transit, submitted to the 2011 Transportation Research Board Annual 

Meeting, 14 November 2010.  

Frank, L., & Engelke, P. O (2008). Urban Form, Travel Time, And Cost Relationships 

With Tour Complexity And Mode Choice. Transportation, Vol. 35, No. 1, January, 

pp. 37-54; at www.springerlink.com/content/9228326786t53047.   

FTA. (2001). National Transit Summaries and Trends, Federal Transit Administration 

(www.fta.gov); at 

www.ntdprogram.com/NTD/NTST.nsf/NTST/2001/$File/01NTST.pdf. 

Gaylord, C. (2013). The App-Driven Life: How Smartphone Apps Are Changing Our 

Lives. Christian Science Monitor, 27 January 2013. 

Glaeser, E. L. & Kahn, M. E. (2004). Sprawl and Urban Growth.  Handbook of Regional 

and Urban Economics.  Volume 4, 2481-2527.  

Global Positioning System. (2009). In Wikipedia, The Free Encyclopedia. Retrieved from: 

http://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=283848264.  

http://www.ntdprogram.com/NTD/NTST.nsf/NTST/2001/$File/01NTST.pdf
http://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=283848264


 

175 

Golob, T. F. (2000). Activity approaches to modeling the effects of information technology 

on personal travel. TravelBehavior.com: UCI-ITS-AS-WP-00-1, Institute of 

Transportation Studies University of California, Irvine, USA, p. 46. 

Golob, T. F. & Regan, A.C. (2001). Impacts of information technology on personal travel 

and commercial vehicle operations: research challenges and opportunities. 

Transportation Research Part C – Emerging Technologies 9, 87–121. 

Goolsbee, A. & Klenow, P. (2002). Evidence on learning and network externalities in the 

diffusion of home computers, Journal of Law and Economics 45, 317-343. 

Google. (2010). Google Latitude. Retrieved from: 

http://www.google.com/mobile/default/latitude.html.  

Google. (2013). Google Transit Feed Specification. Retrieved from: 

http://code.google.com/transit/spec/transit_feed_specification.html.  

Google. (2014). Google Transit Partner Program. Retrieved from: 

http://maps.google.com/help/maps/transit/partners/participate.html.  

Gordon, P.  & Willson, R. (1985). The Determinants of Fixed Rail Transit Demand—An 

International Cross-Sectional Comparison," a chapter in International Railway 

Economics, eds. K. Button and D.E. Pittfield. Hants, England: Gower, 1985, pp. 

159-175. 

Goodwin, P. (1992). Review of New Demand Elasticities With Special Reference to Short 

and Long Run Effects of Price Changes. Journal of Transport Economics, Vol. 

26, No. 2, May, pp. 155171. 

http://maps.google.com/help/maps/transit/partners/participate.html


 

176 

Gosselin, K. (2011). Latitude Research, Deprivation Study Finds Access to Real-Time 

Mobile Information Could Raise the Status of Public Transit, 16 March 2011. 

Haire, A. R., & Machemehl, R. B. (2007). Impact of Rising Fuel Prices on US Transit 

Ridership. Transportation Research Record 1992, TRB (www.trb.org), pp. 11-19; 

at http://pubsindex.trb.org/view.aspx?id=802405.   

Hamilton, B. A. (2008). CityRail Fare Elasticities, Independent Pricing and Regulatory 

Tribunal (www.ipart.nsw.gov.au); at 

www.ipart.nsw.gov.au/files/CityRail%20fare%20elasticities%20-

%20Booz%20%20website%20final%20document%20%20June%202008.PDF.  

Han, S. & Lee, C. W.  (2009). Oil Price and Travel Demand, Korea Transport Institute 

(http://english.koti.re.kr).   

Hansen, O. S. (2016). Understanding Public Transit Ridership through Gasoline Demand: 

Case Study in San Francisco Bay Area, CA Advised by: Professor Michael 

Anderson. Department of Economics University of California, Berkeley. 

Hensher, D. A.  (2008). Assessing Systematic Sources of Variation in Public Transport 

Elasticities: Some Comparative Warnings,” Transportation Research A, Vol. 42, 

Issue 7 (www.elseevier.com/locate/tra), pp. 1031-1042. 

Hickey, R. (2005). Impact of Transit Fare Increase on Ridership and Revenue: 

Metropolitan Transportation Authority, New York City. Transportation Research 

Record: Journal of the Transportation Research Board 1927: 239–248.  

http://www.ipart.nsw.gov.au/files/CityRail%20fare%20elasticities%20-%20Booz%20%20website%20final%20document%20%20June%202008.PDF
http://www.ipart.nsw.gov.au/files/CityRail%20fare%20elasticities%20-%20Booz%20%20website%20final%20document%20%20June%202008.PDF


 

177 

Hojin, J., Gun, J. Y. & Kyoung, K. (2016). Investigating the Effect of Gasoline Prices on 

Transit Ridership and Unobserved Heterogeneity. Journal of Public 

Transportation, Vol. 19, No. 4, pp. 56-74 (DOI: http://dx.doi.org/10.5038/2375-

0901.19.4.4); at: http://scholarcommons.usf.edu/jpt/vol19/iss4/4.  

Holmgren, J. (2007). Meta-analysis of Public Transit Demand. Transportation Research 

Part A: Policy and Practice, Volume 41, Issue 10, Dec. 2007, pp. 1021-1035. 

Holtzclaw, J., Clear, R., Dittmar, H., Goldstein, D. & Haas, P. (2010). Location Efficiency: 

Neighborhood and Socio-Economic Characteristics Determine Auto Ownership 

and Use - Studies in Chicago, Los Angeles and San Francisco, Transportation 

Planning and Technology, 25:1, 1-27, DOI: 10.1080/03081060290032033 

International Energy Agency. (2013). CO2 Emissions from fuel combustion highlights 

2013. Paris. Technical report. 

Iseki, H. & Ali, R. (2014), Net Effects Of Gasoline Price Changes On Transit Ridership In 

U.S. Urban Areas, Report 12-19, Mineta Transportation Institute  

Kain, J. F. & Liu, Z. (1999). Secrets of Success: assessing the large increases in transit 

ridership achieved by Houston and San Diego transit providers. Transportation 

Research Part A: Policy and Practice, 33(7/8): 601-24. 

Kelly, K. (2012). Para onde nos leva a tecnologia. São Paulo: Bookman.Laudon, K. K. C., 

& Laudon, J. P. (2007). Sistemas de Informa¸cão Gerenciais(7 ed. 4areimp). São 

Paulo: Pearson Prentice Hall. 

Kenneth, J.B. (Eds.), Handbook of Transport Modelling. Pergamon, pp. 449–462. 

http://scholarcommons.usf.edu/jpt/vol19/iss4/4
https://doi.org/10.1080/03081060290032033


 

178 

King County. (2009). Tracker Map Real-time Transit Vehicle Locations. Retrieved from: 

http://tracker-map.metrokc.gov/tracker-map-launch.jsp. 

Khattak, A. J., Yim, Y. & Stalker, P. L. (2003). Willingness to Pay for Travel Information in 

Transportation Research, Part C, Vol. 11C, 137-159 

Kohn, H. M. (1999). Factors affecting urban transit ridership. Statistics Canada. Knol. 

Eindhoven: Eindhoven University of Technology, 1999. ISBN 90-386-0593-5 

(ECIS research report) - NUGI 684.  

Kuby, M., Barranda, A. & Upchurch, C. (2004). FACTORS INFLUENCING LIGHT-RAIL 

STATION BOARDINGS IN THE UNITED STATES. Transportation Research 

Part A: Policy and Practice, Volume 38, Issue 3, p. 223-247. 

Lane, B. W. (2008), Gasoline Costs, Public Transit, And Sustainability, Peer Reviewed 

Conference Paper, Berkeley Electronic Press (http://works.bepress.com); at 

http://works.bepress.com/bradleywlane/8.   

Lane, B. W. (2010). “The Relationship between Recent Gasoline Price Fluctuations and 

Transit Ridership in Major US Cities.” Journal of Transport Geography 18 (2): 

214–225. 

Lane, B. (2012). A Time-series Analysis of Gasoline Prices and Public Transportation in 

US Metropolitan Areas. Journal of Transport Geography 22 (2012): 221–235. 

Lee Rainie, L. (2012). Pew Internet and American Life Project, Two-Thirds of Young 

Adults and Those with Higher Income Are Smartphone Owners, 11 September 

2012. 

http://tracker-map.metrokc.gov/tracker-map-launch.jsp


 

179 

Leggatt, H. (2013). Mobile Accounted for 11% of Ecommerce Sales in 2012,” BizReport, 

10 January 2013. 

Lewis, D. & Williams, F. L. (1999). Policy and Planning as a Public Choice: Mass Transit 

in the United States. Ashgate Publishing: Brookfield, VT. 

Lewis-Beck, M. (1980). Applied regression: An introduction. SAGE: Newbury Park, CA 

Litman, T. (2006). Transportation Elasticities: How Prices and Other Factors Affect Travel 

Behavior, Victoria Transport Policy Institute (www.vtpi.org); at 

www.vtpi.org/elasticities.pdf.   

Litman, T. (2012). “Changing North American Vehicle-Travel Price Sensitivities: 

Implications For Transport and Energy Policy” Transport Policy 

Litman, T. (2017). Transit Price Elasticities and Cross-Elasticities. Victoria Transport 

Policy Institute, (www.vtpi.org). 

Litman, T. (2004). Transit Price Elasticities and Cross-Elasticities,” Journal of Public 

Transportation, Vol. 7, No. 2, (www.nctr.usf.edu/jpt/pdf/JPT 7-2 Litman.pdf), 

2004, pp. 37-58. 

Luk, J. & Hepburn, S. (1993). New Review of Australian Travel Demand Elasticities, 

Australian Road Research Board (www.arrb.org.au). 

Maley, D. W. & Weinberger, R. (2009). Rising Gas Price and Transit Ridership: Case 

Study of Philadelphia, Pennsylvania, Transportation Research Record 2139, 

Transportation Research Board (www.trb.org), pp. 183-188.  

http://www.arrb.org.au/


 

180 

Mattson, J. (2008). Effects of Rising Gas Prices on Bus Ridership for Small Urban and 

Rural Transit Systems, Upper Great Plains Transportation Institute 

(www.ugpti.org); at www.ugpti.org/pubs/pdf/DP201.pdf; summarized in 

Community Transportation, Spring, pp. 38-41; at 

http://web1.ctaa.org/webmodules/webarticles/articlefiles/Effects_Rising_Gas_Pri

ces_Transit_Ridership.pd f.     

McFadden, D. (1974). The Measurement of Urban Travel Demand. Journal of Public 

Economics, 3(4): 303-328. 

McFadden, D. & Train, K. (2000). Mixed MNL Models for Discrete Response. Journal of 

Applied Econometrics. Vol. 15, No. 5 (Sep. - Oct., 2000), pp. 447-470 . 

Mishalani, R. & McCord, M. (2006). Passenger Wait Time Perceptions at Bus Stops: 

Empirical Results and Impact on Evaluating Real-Time Bus Arrival Information. In 

Journal of Public Transportation, Vol. 9, No. 2, 2006. 

Molin, E. & Timmermans, H. (2006). Traveler Expectations and Willingness-to-pay for 

Web-enabled Public Transport Information Services. In Transportation Research 

Part C 14(2006) 57-67. 

Mokhtarian, P. L. (2004). A conceptual analysis of the transportation impacts of B2C e-

commerce. Transportation 31, 25–284.  

Mokhtarian, P. L. (2005). Travel as a desired end, not just a means. Transportation 

research Part A 39, 93–96. 



 

181 

Mokhtarian, P. L., Neufeld, A. J., Dong, Z. & Circella, G. (2013). Did Free Wi-Fi Make a 

Difference to Amtrak’s Capital Corridor Service? An Evaluation of the Impact on 

Riders and Ridership, February 2013. 

Mokhtarian, P. L. (2002). Telecommunications and Travel: The Case for 

Complementarity. Journal of Industrial Ecology, 6(2): 43-57, April 2002, doi: 

10.1162/108819802763471771. 39  Alexander Malokin,  

Mokhtarian, P. L. & Giovanni, C. (2013). Multi-Tasking Aficionados and Mode Choice: 

Untapped Potential for Transit Ridership? Powerpoint presentation to University 

of California Transportation Center 2013 Research Conference, 1 March 2013. 

Moskowitz, E. (2013). T Riders Happier with Countdown Signs for Next Train. Boston 

Globe, 23 January 2013.  

Murray, S. (2010). Public transit passengers face rough ride. Wall Street Journal, January 

2. http://online.wsj.com/article_email/SB126238967349812961-

lMyQjAxMTIwNjAyMjMwODI5Wj.html   

Mussi, F. B., & Canuto, K. C. (2008). Percepc¸ão dos Usuários sobre os Atrib-utos de 

uma Inovac¸ão. Revista de Gestão USP, 15(n. especial), 17–30. SãoPaulo. 

Nelson, P., Baglino, A., Harrington, W., Safirova, E., & Lipman,R. (2006). “Transit in 

Washington, DC: Current Benefits and Optimal Level of Provision,” Journal of 

Urban Economics, 62(2): 231-51. 



 

182 

Nijkamp, P. & Pepping, G. (1998), “Meta-Analysis for Explaining the Variance in Public 

Transport Demand Elasticities in Europe,” Journal of Transportation Statistics, 

Vol. 1, No. 1, Jan., pp.1-14; at http://ntl.bts.gov/lib/7000/7100/7104/nijkamp.pdf. 

Nielsen. (2012). Smartphones Account for Half of All Mobile Phones, Dominate New 

Phone Purchases in the U.S., 29 March 2012.  

North Central Texas Council of Governments (NCTCOG), (2017). Mobility 2035 

Presentation. Available at: (www.nctcog.org/trans/tip/17-20/documents). 

North Central Texas Council of Governments (NCTCOG), (2017). Mobility 2040 

Presentation. Available at: 

(http://www.nctcog.org/trans/mtp/2040/documents/MapPackage.pdf). 

Oram, R. & Stark, S. (1996). “Infrequent Riders: One Key to New Transit Ridership and 

Revenue,” Transportation Research Record 1521, TRB (www.trb.org), pp. 37-41. 

O’Sullivan, A. (2012). Urban Economics (8th Ed.). New York, NY: McGraw Hill. 

Paulley, N., Balcombe, R., & Mackett , R. (2006), “The Demand For Public Transport: 

The Effects of Fares, Quality Of Service, Income and Car Ownership,” Transport 

Policy, Vol. 13, No. 4 (www.elsevier.com/locate/tranpol), July 2006, pp. 295-306. 

Perloff, J. (2008). Microeconomics Theory & Applications with Calculus. Pearson. 

Polzin, S. E., Xuehao, C. & Joel R. R. (2000). Density and Captivity in Public Transit 

Success: Observations from the 1995 Nationwide Personal Transportation Study. 

Transportation Research Record: Journal of the Transportation Research Board 

1735: 10–18.in 

http://ntl.bts.gov/lib/7000/7100/7104/nijkamp.pdf
http://www.nctcog.org/trans/tip/17-20/documents


 

183 

Pucher, J. (2002). Renaissance of Public Transport in the United States? Transportation 

Quarterly 56 (1): 33–49. 

Pucher, J. & Renne, J. L. (2003). Socioeconomics of Urban Travel: Evidence from the 

2001 NHTS. Transportation Quarterly 57 (3): 49–77. 

Renne, J. L. (2009). From Transit-adjacent to Transit-oriented Development. Local 

Environment 14 (1): 1–15. 

Rogers, E. M. (1983). Diffusion of innovations (3rd ed.). New York: The Free Press, New 

York.  

Rogers, E. M. (1995). The Diffusion of Innovations, Fourth Edition. Free Press, New 

York.  

Rojas, F. (2013). Effective Disclosure Through Open Data. Transparency Policy Project, 

Ash Center for Democratic Governance and Innovation, Harvard Kennedy 

School, Transit Transparency.  Spring 2012, accessed at 

www.transparencypolicy.net/assets/ FINAL_UTC_TransitTransparency_ 

8%2028%202012.pdf, July 21, 2013. 

Ryan, B. & Gross, N.C. (1943). The Diffusion of Hybrid Seed Corn in Two Iowa 

Communities, Rural Sociology 8, 15-24. 

Salomon, I. (2000). Can telecommunications help solve transportation problems. In: 

Hinsher, D.A. 

Salomon, I. (1998). Technological change and social forecasting: the case of 

telecommuting as a travel substitute. Transportation Research Part C 6, 17–45. 



 

184 

Sebastian, B., Ajzen, I. & Schmidt, P. (2010). Choice of Travel Mode in the Theory of 

Planned Behavior: The Roles of Past Behavior, Habit, and Reasoned Action, 

Basic and Applied Social Psychology, 25:3, 175-187, DOI: 

10.1207/S15324834BASP2503_01 

Schelling, T. C. (1978). Micromotives and Macrobehavior. New York: W. W. Norton. 

Schweiger, C.L. (2003). Real-Time Bus Arrival Information Systems. Transit Cooperative 

Research Program (TCRP) Synthesis Report 48, published by Transportation 

Research Board, Washington. 

Schenker, E. & Wilson, J. (1967). The Use of Public Mass Transportation in the Major 

Metropolitan Areas of the United States. Land Economics, 43(3), 361-367  

Schmenner, R. W. (1976).  The Demand for Urban Bus Transit: A Route-by Route 

Analysis. The Journal of Transport Economics and Policy, 10(1), 68-86.  

Schwieterman, J. P., Forst, R. & Nelson, D. (2012). Staying Connected En Route: The 

Growing Use of Tablets and other Portable Electronic Devices on Intercity Buses, 

Trains, and Planes. DePaul University, Chaddick Institute for Metropolitan 

Development, Tablets and e-Readers Leap Past Music Players and Regular Cell 

Phones as “Technologies of Choice” on Commuter Trains (press release), 23 

May 2012.  

Schwieterman, J. P., Forst, R. & Nelson, D. (2013). The Digitally Connected Commuter: 

The Rapidly Rising Use of Personal Electronic Devices on Chicago’s Suburban 

Trains 2012-2013, 15 June 2013.  

https://doi.org/10.1207/S15324834BASP2503_01


 

185 

Sheng, L. (1998). Adoption and Diffusion of Telemedicine Technology in HealthCare 

Organizations: A Comparative Case Study in Hong Kong. Unpublished paper. 

1998.  

Small, K. & Verhoef, E. (2007). The Economics of Urban Transportation. New York: 

Routledge 

Smith, A. (2013). Smartphone Ownership – Pew Research Center, 2013 Update, 5 June 

2013. 

Stoneman, P. (2002). The Economics of Technological Diffusion. Blackwell Publishers, 

Oxford UK. 

Stroeken, J. H. M. & Knol, W. H. C. (1999). The stimulation of the diffusion and adoption 

of information technology in small and mediumsized enterprises through IT 

scenarios. Research Report Eindhoven Centre for Innovation Studies, Eindhoven 

University of Technology.  

Stal, E. (2007). Inovac¸ão Organizacional e Tecnológica. In D. Moreira, & A.Queiroz 

(Eds.), Inova¸cão Tecnológica, Sistemas Nacionais de Inova¸cão e 

Tang, L. & Thakuriah, P. (2007). Ridership Effects of Real-Time Bus Information System: 

A Case Study in the City of Chicago. Transportation Research Part C, 22: 146– 

161, 1 January 2012. 

Tang, L. (2010). Design and Implementation of Advanced Transit Information Systems, 

University of Illinois at Chicago, 2010.  



 

186 

Taylor, B. D., Miller, D., Iseki, H. & Fink, C. (2009). Nature And/or Nurture? Analyzing the 

Determinants of Transit Ridership across US Urbanized Areas. Transportation 

Research Part A: Policy and Practice 43.1 (2009): 60-77. Web. 

Taylor, B. D.  & Fink, C. (2009). The Factors Influencing Transit Ridership: A Review and 

Analysis of the Ridership Literature, UCLA Department of Urban Planning, 

University of California Transportation Systems Center (www.uctc.net); at 

www.uctc.net/papers/681.pdf.    

Tang, L. & Thakuriah, P. (2007).  An Analysis of Behavioral Responses to Real Time 

Transit Information Systems. Chicago. University of Illinois at Chicago. 

The Victoria Transport Policy Institute. (2007). Valuing Transit Service Quality 

Improvements: Considering Comfort and Convenience in Transport Project 

Evaluation, Victoria, Canada. 

TRACE. (1999). Elasticity Handbook: Elasticities for Prototypical Contexts, Prepared for 

the European Commission, Directorate-General for Transport, Contract No: RO-

97-SC.2035, (www.hcg.nl/projects/trace/trace1.htm). 

Transit Cooperative Research Programs. (2003). Real-Time Bus Arrival Information 

Systems. TCRP Synthesis No. 48. Retrieved from: 

http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_syn_48.pdf 

Transit Cooperative Research Program. (1998). Strategies to Attract Auto Users to Public           

Transportation. TCRP Report Number 40. 

http://www.hcg.nl/projects/trace/trace1.htm
http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_syn_48.pdf


 

187 

Transit Cooperative Research Program. (2016). Real-Time Bus Arrival Information 

Systems. TCRP Report Number 48. 

Turnbull, K. F. & Pratt, R. H. (2003). Transit Information and Promotion: Traveler 

Response to Transport System Changes, Chapter 11, Transit Cooperative 

Research Program Report 95; Transportation Research Board (www.trb.org). 

Tigre, P. B. (2006). Gestão da Inova¸cão: A economia da tecnologia no Brasil.Rio de 

Janeiro: Elsevier. 

U.S. Department of Transportation. (2010). Advanced Public Transportation Systems 

Deployment in the United States — Year 2010 Update, Washington, D.C., 2010. 

U.S. Urban Personal Vehicle & Public Transport Market Share from 1900. Retrieved 

from: http://www.publicpurpose.com/ut-usa2007ann.pdf 

Venkatesh, V. & Davis, F. D. (2003). User acceptance of information technology: toward 

a unified view. MIS Quarterly,27(September 3), 425–478. 

Wallace N. (2017). The Best Cities for Public Transpiration, University of Washington, 

2017. 

Watkins, K. E., Ferris, B., Borning, A. G., Rutherford, S. & Layton, D. (2011). Where Is 

My Bus? Impact of Mobile Real-time Information on the Perceived and Actual 

Wait Time of Transit Riders. Transportation Research Part A: Policy and Practice 

45.8 839-48. 

Wardman, M. (2004). “Public Transport Values of Time,” Transport Policy, 11(4): 363-

377. 

http://www.publicpurpose.com/ut-usa2007ann.pdf


 

188 

Weigel, L. (2010). Transportation for America, Future of Transportation National Survey, 

March 2010. Transportation Statements. 

Wooldridge, J. (2013). Introductory Econometrics: A modern approach. (5th ed.). Mason, 

OH: South-Western Cengage Learning. 

Young, C. A. (2012). MBTA Ridership Growth Contributes to Nationwide Surge. Boston 

Globe, 4 June 2012.  

Zhang, F., Q. Shen, & Clifton, K., J. (2008). Examination of Traveler Responses to Real-

time Information about Bus arrivals using Panel data. Transportation Research 

Record, Vol. 2082, 2008, pp. 107-115. 

Zhang, F. (2010). Traveler Responses to Real-Time Passenger Information Systems 

(dissertation), 2010. 

Zhou, J. & Schweitzer, L. (2011). Getting Drivers to Switch: Transit Price and Service 

Quality among Commuters. Journal of Urban Planning and Development 137 (4): 

477–483. 



 

189 

Biographical Information 

Ahmed Ismail Daqrouq graduated with his Bachelor of Science degree in 

Computer Information Systems from the University of Texas at Arlington in 2000. He then 

worked at Accenture LLP in Dallas, Texas as a business analyst providing consulting 

solutions to various clients. He earned his Masters of Science degree in Computer 

Information Systems from the University of Texas at Arlington in 2009. He graduated with 

4.0 GPA. He worked with several clients across multiple verticals including Version, 

AT&T, Dynegy, Geneva, Trinity Industries, PDX Enterprise Pharmaceutical Systems, 

Sonexus Health, Cardinal Health, Bank of America, ADT security services, Premier 

Designs, Visionet Systems, Tribune, Ashely Furniture, Masonite, and Northrup Grumman 

as a consultant and technical leader. In a consulting role, he worked on the creation of 

formal master project plans, Fit-gap analysis, process mapping, data migrations, and 

employee training. He also worked on providing technical solutions, business analysis, 

and process design. Ahmed ssuccessfully executed multiple end to end implementation 

projects in Supply Chain, Trade and Logistics, Procurement & Sourcing, Inventory and 

Warehouse Management, Finance, Product Information Management, and Sales & 

Marketing. Ahmed has been involved in Full Cycle implementations of numerous 

distributions such as enterprise data, billing, e*commerce, retail, telecommunication, 

financial, pharmaceutical, aerospace, enterprise resource planning ERP, and CRM 

systems. Ahmed is currently working for Microsoft as a Dynamics AX & Dynamics 365 

engineer working as a technical leader to solve technically complex Dynamics AX 

problems,  integrate cross-product solutions, and drive the discovery of potentially 

unique solutions for each customer situation. His research interests are in the field of 

transportation planning and design, Information technology, urbanizations issues and 

equity. Ahmed is married and has four children. 


