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ABSTRACT 

NOVEL INFRASTRUCTURE MONITORING USING MULTIFACETED 

UNMANNED AERIAL VEHICLE SYSTEMS - CLOSE RANGE 

PHOTOGRAMMETRY (UAV - CRP) DATA ANALYSIS 

 

Surya Sarat Chandra Congress, Ph.D. 

The University of Texas at Arlington, 2018 

 

Supervising Professor:  Dr. Anand J. Puppala, 

 

Remote sensing is a method of collecting data without making any physical contact 

with the object under inspection. Modern day remote sensing kicked off with the 

invention of the camera and continued on to the invention of advanced satellite 

mounted sensors. Photogrammetry is defined as a science that measures distances 

using one or more images captured remotely. Remote collection of images within 

a range of 1000 ft is termed close-range photogrammetry (CRP).  

Unmanned aerial vehicle systems (UAV or UAS) have become a popular 

means of remotely gathering information and assessing infrastructure conditions 

due to their versatile nature. Multirotor and fixed-wing are two types of UAVs that 

are frequently used in field operations. Close-range photogrammetry (CRP) using 
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UAVs can generate dense point cloud images, orthomosaics, digital elevation 

models (DEMs), and digital terrain models (DTMs) in a short time period.  

Analyses of these models help transportation engineers and agencies to 

understand the infrastructure health conditions. Several studies have addressed 

UAV-CRP surveys for infrastructure health condition assessments primarily due to 

restrictions imposed by the Federal Aviation Administration (FAA) on UAV 

studies and their operations in the field. After the introduction of Part 107 

exemption of UAV operations by FAA in August 2016, more studies have been 

planned and performed with UAVs, evaluating their abilities to perform 

infrastructure condition assessments.  

In the present research, the UAV-CRP technology using a hexacopter was 

primarily used to conduct infrastructure monitoring and assessments. As a part of 

the research, a comprehensive literature review of remote sensing and 

photogrammetry studies, UAV-related research by different states’ departments of 

transportation, calibration checks for different accessories, as well as research on 

pavement and bridge infrastructure management was conducted. Then, a 

comprehensive calibration study was performed by conducting total system error 

analysis on both the UAV as well as accessories used in the research. This unique 

calibration analysis provided a much-needed understanding of how environmental 

conditions, including field temperature conditions, lens temperatures, flight 

altitudes, humidity, and different overlap conditions influence the quality of images 
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captured as well as three-dimensional dense point cloud models generated using 

these images. 

Later, UAV-CRP technology was used in various infrastructure inspection 

studies owing to its multifaceted benefits. UAV-CRP studies on pavement sections 

showed they could provide pavement distress data including information on 

longitudinal and transverse cracks, permanent deformation or rutting, as well as 

pavement characteristics such as longitudinal and cross-slope values, and sight 

distances at crossings. All the photogrammetry-based imaging analyses yielded 

results that are in agreement with other traditional methods. UAV-CRP studies 

performed on various construction material stockpiles yielded volume results 

matching with ground truth measurements from traditional field survey results.  

Bridge sites were inspected using UAVs equipped with both top and bottom 

gimbals to provide a complete 360° view of the bridge including substructure and 

superstructure elements. UAV-CRP results can provide condition assessments on 

approach slab settlements, movements and cracking in abutment and wing walls, 

bridge foundation conditions, columns, and under-bridge decks as well as upper 

deck. UAV-CRP studies conducted on rail corridors also proved that the 

photogrammetry results could be used to evaluate encroachments at crossings, and 

washout site detection including an appraisal of factors that may have contributed 

to washouts. UAVs were also used for emergency operations immediately after a 
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hurricane event and proved its value in providing debris assessments in post disaster 

reconnaissance studies performed in Beaumont, Texas.  

A preliminary cost analysis indicates that UAV-CRP technology could 

provide an inexpensive way of monitoring infrastructure conditions and gathering 

valuable data related to infrastructure-related annual and biennial rating surveys. 

All the procedures, analyses, and results indicate the UAV-CRP tool provides a 

quick, efficient, and safe method for assessing infrastructure health conditions. 

  

Keywords: Unmanned aerial vehicles, Infrastructure, Pavements, Bridges, Rail 

Corridor, Safety, Monitoring 
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CHAPTER 1: INTRODUCTION 

1.1 RESEARCH OVERVIEW 

Research guiding the implementation of unmanned aerial vehicles (UAVs) for 

department of transportation (DOT) agencies’ applications in managing the 

infrastructure assets has been conducted at University of Texas at Arlington (UTA). 

The objectives of the research and the workflows formulated to achieve them are 

covered in detail in this research. The results from previous aerial inspection 

surveys also showed that the photogrammetry approach using the UAV platform 

has demonstrated and provided very good preliminary solutions to identifying 

infrastructure problems including pavement, rail, and bridge distress conditions 

(Brooks et al. 2015; Puppala et al. 2018a). 

 This research demonstrated the appropriate use of sensors mounted on 

UAVs, which can be integrated with the close-range photogrammetry (CRP) 

methodology to help in infrastructure performance assessment. Performance and 

the current state of condition of civil infrastructure can be determined using close-

range photogrammetry (CRP) techniques via high-resolution digital cameras 

mounted on unmanned aerial vehicles (UAVs). Initial work covered selection and 

acquisition of equipment and accessories required for UAV-CRP technologies as 

well as the development of calibration procedures for testing the compatibility of 

UAV and accessories as a total system. After the early and promising results 

obtained during those calibration studies and results, the acquired UAV and 
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accessories were then used in transportation infrastructure investigations related to 

construction materials, pavements, bridges and railway tracks’ assessments. This 

research evaluated UAV-CRP technology’s ability to perform field studies with an 

increased safety and to obtain more data with less work at reduced expenditures. 

Most of all, the UAV-CRP technology has the ability to assess the transportation 

infrastructure condition with reasonable accuracy. The following sections introduce 

the key knowledge areas that are important in conducting aerial inspection studies 

using cameras. 

1.2 PHOTOGRAMMETRY 

Photogrammetry is a remote data collection technique, which can record or capture 

information using imaging sensors to make measurements without direct contact 

with the inspecting element (McGlone et al. 2004). It is also referred to as an art, 

science, and technology designed to obtain reliable information about physical 

objects and their surrounding environment through the process of recording, 

measuring and interpreting patterns (Ahmad and Samad 2010; Brooks et al. 2015; 

Udin and Ahmad 2014). Under most conditions, particularly for large areas, 

photogrammetric techniques have proven to be inexpensive and have even proved 

useful in land surveying (Ahmad 2006; Brooks et al. 2015; Mills et al. 1996; 

Puppala et al. 2018b; Room and Ahmad 2014; Siebert and Teizer 2014; Udin and 

Ahmad 2014).  
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UAVs can capture images at different altitudes, angles, and positions. 

Although UAVs are capable of flying at higher altitudes, Federal Aviation 

Administration (FAA) regulates the maximum UAV flying altitude in unrestricted 

airspace as 400 ft. However, operating at higher altitudes or within restricted 

airspace warrants a waiver approved by FAA. The gimbal over which the camera 

is mounted facilitates image capture in both nadir and oblique angles.  

Some drones are also capable of mounting the camera on top whenever the 

need for inspecting inaccessible areas arises. Scans or images taken from a distance 

of less than 1000 ft (~300 m) between the sensor and the inspecting object are 

usually classified as close-range photogrammetry (CRP). Adoption of UAVs for 

photogrammetry comes under the category of close-range photogrammetry (CRP) 

(Brooks et al. 2015; Colomina and Molina 2014; Puppala et al. 2018b; Siebert and 

Teizer 2014), referred in this study as UAV-CRP. 

1.3 UNMANNED AERIAL VEHICLES (UAV) AND CLOSE RANGE 

PHOTOGRAMMETRY (CRP) 

Recent studies have revealed an active engagement of several DOTs, including 

California, Georgia, Michigan, Ohio, Utah and other state agencies in USA, in 

research related to UAV-assisted infrastructure asset management (Tony 2018). 

Caltrans Division of Engineering’s geotechnical services have been involved in 

research projects using UAVs to perform geotechnical investigations pertaining to 

landslides, slope movements, and other steep terrain analysis (Karpowicz 2014).  
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Due to its versatile nature, unmanned aerial vehicles (UAVs or UASs) have 

become a popular means of remotely gathering information and assessing 

infrastructure damage in the past decade. Photogrammetry software using UAV 

collected data can provide a 3-dimensional dense point cloud model, an 

orthomosaic, a digital elevation model (DEM), and a good quality digital terrain 

model (DTM) in a short period (Dobson et al. 2014). The main advantages of UAVs 

over traditional surveying techniques are their ability to capture detailed images of 

the study area at low cost and with rapid deployment. 

The three main components of UAV-CRP are the unmanned aerial vehicle, 

the ground control station, and the communication data link. This system can be 

controlled from the ground control station (GCS). Some previous researches also 

term the combination of the unmanned aerial vehicle and the base station as UAS. 

The availability of the global positioning system (GPS) data and gyroscope 

technology allows the UAV to precisely deliver the digital camera to the required 

location and altitude to capture the infrastructure environment and to record the 

location of the aerial photographs.  

In photogrammetry, it is a common practice to establish the ground control 

points (GCP) before the aerial data collection. Size of the standard or other GCP 

markers used in the field should be maintained in such a way that they are 

distinguishable in the images during processing. Several methods such as traversing 
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and global positioning system (GPS) techniques can be used to establish the GCP 

(Cesetti et al. 2011). 

The communication infrastructure is a mixture of communication 

mechanisms, such as radio modems and microwave links, which make sure that the 

continuous link between the UAV and the base station is kept open. Modern digital 

airborne sensors are also usually mounted with a GPS/IMU (inertial measurement 

unit) system. GPS technology for mapping projects can be assisted by using a series 

of base stations in the project area and a constellation of satellites providing 

positional information accessed by the GPS receiver placed on board of an aircraft. 

Accuracy in the combination of GPS and IMU information can be extremely 

beneficial for mapping areas where limited ground control information is available 

(e.g., rugged terrain). The different phases of CRP are detailed in Figure 1-1. 

Photogrammetric output such as digital maps and orthomosaics can be 

successfully obtained from a compact ‘digital single lens reflex’ (DSLR) camera.  

Over the years, several new software tools and algorithms have been developed to 

analyze images or scans obtained from different remote sensing techniques. In 

particular, efforts have been made to develop algorithms that can identify pavement 

distress resulting from heaving, cracking, potholes, and surface deformation. 

Software has also been developed for bridge element monitoring including 

approach slab settlements, foundation movements, bridge deck conditions, 

abutment, and wing wall performance. Post analysis of the processed data obtained 
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from remote sensing techniques plays a crucial role in identifying the structural 

health condition of the civil infrastructure. After collecting the data over a period 

of time, the analyzed data will be utilized for timeline comparisons and assess any 

changes in the infrastructure over that period. Figure 1-1 presents a flow chart of 

the different stages of UAV-CRP implementation of aerial field survey data 

collection.  

 

Figure 1-1. Different Stages of the Aerial Photogrammetry Process 

For close range photogrammetry studies, rotary wing aircraft (Aibot X6) 

and fixed wing aircraft systems (SenseFly Ebee) are typically used. Figure 1-2 

shows the examples of each UAV type. 

Planning and 
Preparation Stage

•Flight Planning
•Equipment & Material

Data Collection Stage
•Acquired Digital Aerial 
Photo Using UAS
•Establish GCP and CP
• Camera Calibration

Data Processing Stage
•Interior & Exterior 
Orientation
•Aerial Triangulation (AT)
•Orthomosaic

Analysis Stage
•Accuracy Assessment
•Evaluation of Test Site
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 (a)         (b) 

Figure 1-2. Types of UAVs (a) Aibot X6 Multi-rotor (b) SenseFly Ebee Fixed 

Wing 

The Aibot X6 V2 is a versatile UAV best suited for acquiring data over 

relatively small areas. The hovering capability of the aircraft provides a unique data 

collection platform that can be applied to many areas. The Aibot X6 multi-rotor 

UAV can be adopted for small-scale investigations and a fixed wing UAV can be 

used for large-scale environments. The Aibot X6 with an on-board RTK GPS 

receiver allows the UAV to communicate and use real-time kinematic positioning 

provided by the existing TxDOT VRS network. The top gimbal of the Aibot X6 

allows the UT Arlington research team to conduct a 360° bridge inspection, which 

includes access to the under-bridge condition data collection.  

The UT Arlington team used multi-rotor systems for bridge, roadway, 

railway, slope, and material stockpile volumetric assessment research. Fixed wing 

aircraft systems are better suited for collecting data in remote areas, far from 

roadways, with limited access. 
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1.4 RESEARCH OBJECTIVE 

The major objective of this research is to study and demonstrate the UAV-CRP 

technology for infrastructure health condition monitoring and management 

applications. As a part of the main objective, several subtasks were identified and 

executed.  

The first subtask addressed a total system error analysis, which was 

primarily conducted to evaluate the compatibility of UAV and various sensors in 

providing error free imagery of the inspecting objects. The objectives of the total 

system error analysis are to study and address: 

• Variation in accuracy due to geotagging using Global Navigation Satellite 

System (GNSS) and Global Positioning System (GPS) data 

• Variations in the calibrated camera focal length between the ambient room 

conditions and the conditions encountered during field operations  

• Thermal effect on the lens system, to ensure proper imagery data 

extraction 

• Nonlinear errors induced due to distortion 

• Any errors from Structure from motion (SfM) techniques 

• Analysis of image resolution and resolving power of the system 

This is a key subtask for the research as error analysis provides a thorough 

understanding of the accuracy that could be achieved in the field conditions.  
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Once the system error analysis was completed, the UAV-CRP surveys were 

performed on pavement forensics related to pavement condition surveys, determine 

pavement slope characteristics to approach slab pavement distress monitoring; 

perform railways operations including corridor inspection, rail bridge inspection, 

rock cut volumetric and railroad crossing mapping and others; perform bridge 

rating surveys and stockpile volumetric studies. This technology also resulted in 

reducing the inspection expenditure that is conducive for proactive monitoring that 

helps in preventive maintenance. All these studies and results are presented in later 

chapters with results and comprehensive analyses.  

1.5 THESIS OUTLINE 

This dissertation has eight chapters. The first Chapter describes and introduces the 

research objective and tasks performed. The second Chapter covers a 

comprehensive literature review on various topics related to UAVs and their 

applications in infrastructure studies. Total system error analysis procedures and 

results are compiled in the third Chapter.  

Infrastructure studies including UAV-CRP data collection of pavement, 

rail, bridge, and construction material stockpile sites are provided in the fourth 

Chapter. UAV application for disaster management and debris assessments is 

covered in the fifth Chapter. Cost analysis for using UAV-CRP technologies for 

various inspection activities has been included in the sixth Chapter. Business 
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guidelines for transportation agencies have been provided in the seventh Chapter. 

All the key observations are summarized and concluded in the eighth Chapter. 
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, an attempt is made to provide a comprehensive literature summary 

on various subject topics related to autonomous unmanned aerial vehicles (UAV or 

UAS), remote sensing and photogrammetry topics, followed by various methods of 

infrastructure monitoring and disaster management. The subsequent sections 

provide information on the applications of unmanned aerial vehicles and traditional 

methods for infrastructure surveying and management studies. Disaster 

management that arises due to the formation of hurricanes is also discussed by 

examining infrastructure post Hurricane Harvey that struck the state of Texas, USA 

in 2018.   

Most of the compiled literature focuses predominantly on the UAVs and 

hence only limited information on using UAVs for infrastructure monitoring is 

available from sources in the United States as these tools have only been recently 

approved for field operations. Nevertheless, the available literature information is 

valuable for the present dissertation research study as it provides a pathway for 

performing present field investigations along with an exposure to various ways of 

analyzing and interpreting the collected data results. Various topics including 

infrastructure monitoring, methods, and other related topics are also compiled in 

this chapter. 
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2.1 UNMANNED AERIAL VEHICLES (UAV OR UAS) 

An unmanned aerial vehicle, also commonly referred to as a drone, is an aircraft 

that can fly without an actual human pilot on board, and its flight can be controlled 

from a ground control station (Wen and Kang 2014).  

In the United States, the initial development of UAVs took place during the 

early nineteenth century with special interest in using them for long-term 

reconnaissance videos to assist with target designations and attacks in war. Since 

then, they have proven to be immensely helpful in eliminating pilot risks along with 

several other benefits (Haulman 2003). Following pioneering research and 

development in the military by researchers and various agencies worldwide, the last 

decade or so has experienced a rapid growth and demand for UAVs owing to their 

capabilities and potential applications in numerous missions with high social 

benefits (Pereira et al. 2009). However, application of UAVs in non-combat 

missions faced challenges due to the legal and technical constraints prevailing then 

with regards to the safety of flying in non-segregated spaces and flying operations 

related policy issues (Pereira et al. 2009). 

Rotary wing and fixed wing are the two types of UAV units. A fixed wing 

UAV has a single rigid wing across its body that allows it to fly with high speeds 

and for longer flight distances, similar to manned airplanes (Tahar and Ahmad 

2012). Rotary wing UAV uses lift from the continuous rotation of its blades and 

has the ability for vertical takeoff and landing, similar to manned helicopters. The 
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main advantages of these systems are that they can access remotely located areas 

and confined spaces, and can hover at a fixed altitude, allowing sensors (such as 

digital cameras) to collect precise data from hard to reach areas. Studies suggest 

that the difference between photogrammetric output obtained from a fixed platform 

and a mobile platform, such as a lightweight rotary-wing UAV, is small; hence, the 

unmanned aerial vehicle (UAV) can be used for large-scale mapping of aerial 

terrain (Tahar and Ahmad 2012). 

Recent developments in remote sensing such as high-resolution images 

collected from satellites, radar, and UAVs fitted with high-resolution cameras in 

combination with newly developed and sophisticated image analyses algorithms 

have enabled practitioners to measure very small movements on the earth’s surface 

and offer collections of massive spatial data of the earth, its oceans and atmosphere  

(Colomina and Molina 2014; Mustaffara et al. 2008; Udin and Ahmad 2014). These 

methods have tremendous potential towards creating alarm systems through 

anticipatory analysis since large amounts of information can be quickly processed. 

This makes remote sensing an attractive option for predictive intelligence and 

modeling of structures built on the earth’s surface. 

Recently, a growing use of UAVs has been found in many engineering 

applications such as aerial photography, surveillance and control of maritime 

traffic, construction surveillance, detection and control of coastal hazards, flood 

monitoring, terrain mapping, fire disasters, remote data acquisition of existing 
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pavement conditions, earthquake damage assessment, and post distress monitoring 

survey (Adu-Gyamfi et al. 2014; Pereira et al. 2009; Puppala et al. 2018b; Rathje 

et al. 2006; Shamsabadi et al. 2014; Suncar et al. 2013; Tahar and Ahmad 2012).  

The use of UAVs for military purposes including reconnaissance, 

surveillance and target accusation (RSTA) had gained momentum in the past couple 

of decades (Murphy and Cycon 1999). They proposed using vertical take-off and 

landing (VTOL) UAV fitted with visual and thermal sensors for law enforcement 

applications. 

Jacobsen (2002) dealt with the calibration aspects in direct geo-referencing 

the images collected by the camera mounted on UAV. He also provided information 

related to the use of inertial measurement system (IMU) and kinematic GPS-

positioning together for direct geo-referencing (Jacobsen 2002). Kuchar (2005) 

stated that UAVs could be used in civil and military applications such as 

environmental observation, goods delivery, monitoring of construction sites, border 

patrol, and military surveillance. This requires UAVs to coexist in the airspace 

along with civilian aircrafts (Kuchar 2005).  

Wu and Zhou (2006) developed a self-adaptive technique to match 

conjugate points in between adjacent images from UAV and automatically generate 

an orthomosaic from video images. They used this technique to obtain an 

orthoimage from the video of a forest inspected aerially for active fires (Wu and 

Zhou 2006). Another research work demonstrated the methodology of identifying 



 

15 
 

forest fires aerially and warning the authorities about the fire location from the 

orthoimage mosaics generated from the video images obtained using UAVs (Wu et 

al. 2007). 

Carnie et al. (2006) conducted work on developing sense and obstacle 

avoidance capability of UAV using on-board image processing algorithms. After 

conducting tests in different daytime backgrounds they were successful in 

developing obstacle detection capability better than an alerted human observer. 

However, the additional computational burden required to avoid false alarms was 

a limitation (Carnie et al. 2006). Nisser and Westin (2006) investigated the impacts 

of human factors on using UAVs. Their work highlighted the importance of pilot’s 

situational awareness, decision making, workload and performance monitoring, 

and the manual control ability while operating UAVs (Nisser and Westin 2006).  

Wei and Zhou (2008) provided a method of real-time orthorectification of 

the video collected from the camera mounted on a UAV. They provided details 

about self-adaptive method to adjust the parallax; and also adoption of geometric 

and radiometric rectification for orthorectification of the video (Wei and Zhou 

2008). Pereira et al. (2009) used six different fixed wing UAVs with different 

wingspans to conduct video surveillance and environmental monitoring operations. 

All the UAVs deployed had autonomous take-off and landing capabilities (Pereira 

et al. 2009). 
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Honkavaara et al. (2009) presented a review of the then prevailing research 

on radiometric aspects of digital photogrammetry. Typically photogrammetry 

consists of image blocks with 20-80% lateral and longitudinal overlap for better 

data quality. They provided a review of the radiometric calibration of aerial cameras 

in laboratory facility. Grey targets for reflectance measurement and Siemens star 

for resolution measurement are some of the testing methods mentioned in the 

literature. However, they also acknowledged that the calibration parameters 

determined in laboratory might differ in operational conditions (Honkavaara et al. 

2009). Campoy et al. (2009) demonstrated the importance of computer vision 

during and after the UAV data collection for civilian purposes. They also dealt with 

3D image-based visual servoing of objects using UAVs assisted with real-time 

image processing (Campoy et al. 2009). 

Zhou (2010) developed a mathematical model considering camera’s 

internal and external orientation parameters for geo-referencing the video data 

obtained from a fixed wing UAV equipped with an engine run by oil-gas mix, GPS 

for navigation and live video stream of the camera view. Video data was collected 

over a control field consisting of 21 non-traditional ground control points (GCPs) 

and the roll, pitch, and yaw of the UAV was tracked during the flight. A 2-D 

planimetric map with an accuracy of 1-2 meters was generated from the video data 

(Zhou 2010). 
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Kanistras et al. (2013) provided their survey work on UAV’s role as the 

eye-in-the-sky for monitoring traffic. They specified that ease of maneuvering and 

remote communication capability provides the aerial imagery an edge over the 

current methods (Kanistras et al. 2013). 

Nex and Remondino (2014) discussed about different UAV platforms and 

the then prevailing applications of UAV for Geomatics. Cost of a typical aerial 

platform for Geomatics applications ranges between 1,000 Euro and 50,000 Euro 

based on the on-board equipment, flight autonomy, and possible degree of 

automation. Lower the cost of the UAV, lower is the flight duration and stability, 

payload capacity, and data collection accuracy of the UAV. They also mentioned 

how safety of using UAVs is defined by the type of use in USA and by the weight 

of the copter in European countries (Nex and Remondino 2014). They provided 

typical acquisition and processing workflow of UAV data. They provided 3D 

model data showing the improvement in accuracy using GCPs and then asserted 

that using RTK georeferencing could improve the 3D model accuracy. They 

specified that UAVs are cost effective, quick, and reliable alternative for 

monitoring excavation works compared to high quality terrestrial laser scanners 

(Nex and Remondino 2014). 

Gonçalves and Henriques (2015) provided their work on using Sensefly 

SwingletCam UAV equipped with a low-cost non-metric camera to monitor 

morphological changes induced by coastal dynamics. Period of the data collection 
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was planned during a low tide to map the largest area possible. Accurate 3D models 

were obtained using the GCPs obtained using a differential GPS. The plastic bands 

for the sandy areas and rigid plates for the rock surfaces were used as GCPs 

(Gonçalves and Henriques 2015). 

Gabrlik (2015) proposed that a centimeter positional accuracy could be 

obtained using UAVs equipped with high-resolution camera and GNSS receiver. It 

can be accomplished by direct georeferencing that is accurately estimating the 

orientation of the camera images using the onboard GNSS and the inertial 

measurement unit (IMU). Hence, direct georeferencing can be used when the GCPs 

are not available (Gabrlik 2015).  

A study demonstrated the capability of a UAV mounted with a low-cost 

RGB sensor to estimate the tree height for agriculture and forestry application 

(Zainuddin et al. 2016). Haidari et al. (2016) discussed about routine vaccine 

distribution and costs involved using drones. They concluded that using UAS for 

distribution increases the vaccine availability to public and also results in cost 

savings in the long run compared to the traditional ways (Haidari et al. 2016). 

Jiang et al. (2016) proposed a procedure to regulate the unmanned aircraft 

traffic in the airspace. The unmanned aerial traffic management (UTM) includes 

development of a web-interface for the pilots to submit flight plans before 

executing them in the field. They also mentioned about the need for the training 
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and certification of the UTM managers handling the unmanned aerial traffic data 

(Jiang et al. 2016). 

A study used a multi-spectral camera mounted on a fixed wing UAV for 

identifying the Silybum marianum (L.) Gaertn weeds that grow in patches 

(Tamouridou et al. 2017). Honrado et al. (2017) conducted aerial data collection 

using RGB and Near Infra-Red cameras to estimate seasonal production of rice and 

cornfields. These data were combined with ground sensor data to predict accurate 

crop productivity models. They also highlighted that higher number of studies used 

rotary wing UAVs compared to fixed wing UAVs for conducting precision 

agriculture (Honrado et al. 2017). 

Alvear et al. (2017) proposed using UAVs equipped with a pollution 

detecting sensor and on-board Pollution-driven UAV Control algorithm (PdUC) 

that is adaptive in nature. A framework including a Raspberry Pi connected to UAV 

control unit and the pollution sensors was discussed. Simulation study of UAVs 

flying and detecting pollution levels over various regions and comparison with 

other models was also provided (Alvear et al. 2017). 

A research study specified that drone swarms can be used as sensing grid to 

monitor road networks to report real-time traffic updates at the time of an accident 

or a natural disaster (Wu et al. 2017). These drone swarms can be utilized for 

sensing the pollution and noise levels along the urban road networks. Wu et al. 
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(2017) used a networked cyber-physical system (NCPS) for aggregation of data 

from all drones in the group.  

Nikolakopoulos et al. (2017) compared UAV data with classical aerial 

photogrammetry for conducting archaeological studies. Ground truth 

measurements were established using tachymeter and differential GNSS system. 

The planimetric and vertical accuracy of models from the UAV data were found to 

be matching with conventional topographic survey (Nikolakopoulos et al. 2017). 

Daponte et al. (2017) conducted repeated experiments of aerial photogrammetry 

and proposed an uncertainty estimation model for determining the object height. 

The effects of various flight mission parameters like altitude, focal length, field of 

views and other factors on the height measurement had been provided (Daponte et 

al. 2017). 

Ha et al. (2018) and Yurek and Ozmutlu (2018) worked on solving the 

traveling salesman problem that has emerged due to the deployment of UAVs or 

drones from the roof top of the delivery truck to avoid congestion, access difficult 

terrains, and cost effective. This is relatively a new field of application that has been 

explored using UAVs (Ha et al. 2018; Yurek and Ozmutlu 2018). 

Blank et al. (2018) discussed about the UASs invading privacy of the public 

by unintended data collection about the individuals while continuously video 

recording the object under inspection. They also mentioned about the possibility of 

police-operated drones for crowd control causing noise disturbance during the 
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takeoff and landing to the habitants living nearby. They stressed upon the need for 

the UAS operators to obtain prior approval before recording the individuals, 

properties, and other privacy invading events. They called upon for all the UASs to 

have intelligent routing technology enabled by the sensors that automatically avoids 

flying above the location coordinates that are marked private (Blank et al. 2018). 

They quoted about DJI, a prominent UAV manufacturing company, having an 

inbuilt software in their UAVs compiled with the private area coordinates making 

them capable of avoiding those areas even without internet connection (Blank et al. 

2018).  

Blank et al. (2018) also provided the details about a website called 

NoFlyZones.org that had a compilation of names and addresses of property owners 

available for the participating UAV manufacturers. A privacy friendly UAS routing 

framework was developed involving the four players namely: system operators, 

service providers, citizens, and authentication service providers interacting with six 

modules. These modules include geospatial projection, data properties and storage, 

citizen authentication, recording property coordinates and privacy preferences, 

reducing the number of property coordinates, and flight path selection and 

calculation (Blank et al. 2018). These previous studies mark the shift from using 

UAVs for military operations to civilian related applications. 

Federal Aviation Administration (FAA) in the United States had stipulated 

separate guidelines for flying different aircrafts operated manually and 
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autonomously. These guidelines were intended to minimize the risk and provide 

safety to all airborne vehicles. For now, the FAA mandates the operation of UAVs 

within the line of Sight (LOS) of Remote Pilot in Command (RPIC) to provide 

scope to see and avoid any potential aircraft flying within the path of UAV. 

2.2 REMOTE SENSING AND PHOTOGRAMMETRY 

Remote sensing is a non-invasive technique used to acquire information about any 

object. It requires sensors to remotely collect the data and can be performed via 

satellites, aircraft, or aerial vehicles. In recent decades, remote sensing has become 

a dominant tool in observing the earth’s surfaces, using airborne and space borne 

equipment to rapidly detect any changes in infrastructure, physical features due to 

natural and man-made hazards, as well as performance-related changes (Hu et al. 

2010; Rathje et al. 2006; Tripolitsiotis et al. 2014; Tronin 2009).  

The advent of advanced technology in remote sensing has resulted in 

numerous new and improved techniques such as synthetic aperture radar (SAR), 

interferometric synthetic aperture radar (InSAR), satellite differential 

interferometry (DInSAR), satellite thermal imagery, light detection and ranging 

(LiDAR), and unmanned aerial vehicles (UAVs). The UAV is set up with a digital 

camera and uses non-invasive sensors to remotely collect sophisticated data on 

various infrastructures (Rathje et al. 2006; Suncar et al. 2013; Tripolitsiotis et al. 

2014; Tronin 2009). In addition, powerful tools such as the Geographic Information 

Systems (GIS) can be used for organizing, analyzing, and presenting spatial image 
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data that is geographically referenced (Tim 1995). These high-quality images may 

be taken by using any of the available remote sensing techniques mentioned above.  

Photogrammetry is a technique, which can measure distances from the data 

captured from two or more images without any direct contact with the environment. 

It is also referred to as the art, science, and technology of obtaining reliable 

information about physical objects and the surrounding environment through the 

process of recording, measuring and interpreting images and patterns of 

electromagnetic radiant energy and other phenomena (Ahmad and Samad 2010; 

Tahar and Ahmad 2012; Udin and Ahmad 2014). Developments in computer 

science and electronics have greatly influenced the progress of photogrammetry, 

and over time, this has led to its shift from analog to analytical and digital methods. 

Oka (1998) provided the work on evaluating the feasibility of aerial 

photogrammetry to identify erosion. Aerial photogrammetry was used to study the 

formation, accumulation, and movement of eroded materials. Images were 

collected to characterize the materials near to the slope failure zones in steep 

mountainous areas. Ground control points were used to obtain reasonable accuracy 

in the measurements (Oka 1998). Traditionally observation piles were placed to 

measure the amount of erosion. Data obtained from photogrammetry results were 

compared with the field observations made from the observation piles. Oka (1998) 

concluded that the accuracy obtained from the aerial photogrammetry was 

sufficient to monitor active erosion zones in a region. 
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Mora et al. (2003) combined digital photogrammetry with global 

positioning systems (GPS) to measure movements of Ca’ di Malta landslide, south 

of Bologna. GPS sensors were also placed within the actively moving landslide 

area and the other at a stable area to measure the relative movement between the 

sensors over a period of time. GPS measured points were used to orient the images 

collected from the aircraft. Digital photogrammetric techniques were used to 

develop digital elevation models (DEM) from the images collected. The combined 

approach was helpful in estimating the rate of landslide displacement as 10 cm/year 

(Mora et al. 2003). 

Sturzenegger and Stead (2009) characterized the rock cuts involving 

terrestrial remote sensing techniques employing differential GPS, long-range 

reflector less total station, laser scanners and photogrammetry devices. These 

techniques offer a gateway to remotely inspect the inaccessible rock outcrops. 

Accuracy and precision of 3-dimensional models obtained from the 

photogrammetry devices were checked using eight points with known coordinates 

(Sturzenegger and Stead 2009). Accuracy of orientation measurements of eight 

locations in the 3-dimensional models were compared with the compass. 

Sturzenegger and Stead (2009) acknowledged that occlusion of a rock face area due 

to the shadows of the surrounding protruding features. 
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2.2.1 UAV-CRP Technology 

Technology involving the distance measurement from image capture of an object 

using a sensor platform within a distance of less than 1000 ft (300 m) is classified 

as close-range photogrammetry (CRP). Adoption of UAVs for photogrammetry 

comes under the category of close-range photogrammetry (CRP) (Brooks et al. 

2015; Colomina and Molina 2014; Puppala et al. 2018b; Siebert and Teizer 2014), 

referred in this study as UAV-CRP technology. Under most conditions, particularly 

for a large topographical area, photogrammetric techniques adopted using UAVs 

have proven to be inexpensive, and have provided solutions to land surveying 

methods (Ahmad 2006; Mills et al. 1996; Room and Ahmad 2014; Siebert and 

Teizer 2014; Udin and Ahmad 2014). 

The three main components of UAV and CRP are the unmanned aerial 

vehicle, the ground control station (GCS) and the communication data link. This 

system can be controlled from the ground control station. The availability of the 

global positioning system (GPS) and gyroscope technology allows the UAV to 

precisely deliver the digital camera to the optimal location and altitude to capture 

the environment. In photogrammetry, it is a common practice to establish the 

ground control points (GCPs). There are several methods that can be used to 

establish GCPs and these include traversing and the GPS (Cesetti et al. 2011). 

The data communication link consists of various communication 

mechanisms including the radio modems and microwave links and it ensures that a 
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continuous link stays active between the UAV and base station (Ahmad and Samad 

2010). Airborne sensors can be mounted with a GPS/IMU (inertial measurement 

unit) system to assist in mapping the project area by using a series of base stations 

and a constellation of satellites providing positional information accessed by the 

aircraft GPS receiver (Ahmad and Samad 2010). Information obtained from GPS 

and IMU can be useful for mapping rugged terrains where limited ground control 

information is available (Ahmad and Samad 2010). 

Due to its versatile nature, UAVs have become a popular tool for civilian 

tasks in the past couple of decades. Photogrammetry software tools can provide a 

digital elevation model (DEM) and a good quality digital terrain model (DTM) in 

a relatively short time using data collected from UAVs. The main advantages of 

UAV-CRP technology over traditional surveying techniques are its features of 

direct, rapid and detailed image capture of the study area. Adoption of UAVs for 

photogrammetry comes under the category of close range photogrammetry (CRP) 

(Colomina and Molina 2014; Siebert and Teizer 2014) and is referred in this report 

as UAV-CRP technology.  

2.3 TRADITIONAL INFRASTRUCTURE MONITORING METHODS 

This section introduces the background concepts needed for understanding the 

critical areas of infrastructure and the common methods that are being used for 

monitoring. The infrastructure assets include pavements, bridges, rail corridors, and 

construction materials. 
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2.3.1 Background 

Infrastructure monitoring can be largely accomplished using various surveying 

equipment. Surveying is the science of defining the point’s location on earth 

relative to the position of a known benchmark or datum. Distances and elevations 

with reference to the datum location are computed to estimate the horizontal and 

vertical position of the survey points, respectively. There are two types of surveys, 

geodetic survey that considers earth’s curvature and plane survey that ignores 

earth’s curvature (Skeen 2011). Normally geodetic survey cover large areas where 

considering earth’s curvature is important for making accurate measurements and 

plane surveys are confined to reasonably small areas. Various surveying tasks 

include measuring distances, elevations, angles, topographic surveys, and recording 

filed works. Survey instruments for the intended purpose are selected by striking a 

balance between cost, required accuracy, and available time for executing the task 

(Skeen 2011).  

Total station is an electronic instrument used for surveying the 

topographical features and measure lengths. GPS surveying depends upon different 

factors like sky visibility, cloud cover, satellite health and geometry, observation 

technique, and internet availability. It operates by sending and receiving radio 

signals to the nearest orbiting satellite constellation. Terrestrial laser scanners 

placed on stationary platforms collect the data by illuminating the object with light 
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rays and analyzing the time taken for the rays to return back. Mobile lasers also 

work on the same principle but with the platform in motion (Skeen 2011). 

2.3.2 Pavement Forensics 

Pavements form an integral part of infrastructure and its condition needs to be 

monitored frequently to identify distress. Pavement distress is defined as 

degradation of surface conditions or a decrease in the load carrying capacity of the 

pavement. It is divided into structural and functional distresses. Structural defects 

are due to insufficient bearing strength of pavements. Functional defects are mostly 

due to the uneven roughness of the pavement surface that causes an uncomfortable 

ride for the road user. These defects can be assessed and repaired by collecting 

pavement condition data. Pavement condition data includes the international 

roughness index (IRI) or present serviceability rating (PSR). McGhee (2004) 

pointed that all DOTs in the USA adopt automated means to collect the 

international roughness index (IRI) data on their road network (McGhee 2004). IRI 

is also obtained based on the quarter-car or golden-car math model that represents 

the typical behavior of most of the automobiles. It is measured by a computer 

algorithm that gives the response of a quarter-car model to the input longitudinal 

profile of the road as shown in Figure 2-1 (Sayers and Karamihas 1998). 
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Figure 2-1. IRI Calculation (Sayers and Karamihas 1998) 

PSR is determined based upon the rater’s interpretation of safety and quality 

of ride.  Considering the survey expenditure, PSR, rather than IRI, is estimated over 

the majority of road networks. 

 Carey Jr and Irick (1960) were the first to describe a detailed procedure for 

determining the present serviceability index (PSI) from the PSR, which was used 

during the American Association of State Highway Officials (AASHO) road test. 

It was conducted between 1958 and 1960 (Carey Jr and Irick 1960). Pavements 

were rated subjectively by a panel represented by all sections while the road 

agencies simultaneously collected road surface data. Eq. 1 presents the 
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mathematical formulation for calculated PSI based on roughness, cracking, and 

patching data obtained:  

PSI = 5.41 – 1.80 log (0.40R – 30) – 0.5 √(C+P)                             Eq. (1) 

Where R = Roughness Measure which varies depending on equipment used; 

C = % Cracking; P = % Patching 

Hudson et al. (2015) asserts that the present serviceability index (PSI) is the 

objective form of the subjective present serviceability rate (PSR). PSI, unlike the 

international roughness index (IRI), represents the road user experience and can be 

easily perceived by the public (Hudson et al. 2015). A record of PSI over a period 

of time gives an idea about the pavement performance. The pavement distress 

features such as roughness, cracking, and patching need to be assessed to obtain the 

PSI value.  

Cross slope can be defined as the rate of change in the height of the 

pavement in the transverse direction. Transverse profile data is expected to be 

collected according to the PP 70 standard of AASHTO (Collecting the Transverse 

Pavement Profile), which states that the Transverse Pavement Profile shall be 

collected by covering the entire section of the lane with a vertical resolution within 

1 mm and data points spaced 10 mm apart across the lane. Data collected on the 

transverse section of the road shall have a maximum angular allowance of +/−5 

degrees perpendicular to the centerline of the road (shown in Figure 2-2).  



 

31 
 

 

Figure 2-2. Transverse Pavement Profile Data Collection Standards (AASHTO 

Standard PP 70) 

According to AASHTO Standard PP 69 (Determining Pavement 

Deformation Parameters and Cross-Slope from Collected Transverse Profiles), a 

cross slope can be deduced from the collected transverse profile by calculating the 

mean of the elevation of points on the two half-lanes. Slope of the line connecting 

those points is measured as cross slope. 

For any road agency, accurate network-level road condition data is essential 

for making decisions related to repair and rehabilitation. Zhang and Murphy (2013) 

stated that many road agencies in the USA have developed their own pavement 

management systems (PMS) to preserve their road assets. TxDOT is one of the 

earliest agencies to adopt a PMS, dating back to 1982 (Zhang and Murphy 2013). 

After numerous revisions and upgrades of the PMS system, The TxDOT Pavement 

Management Information System (PMIS) emerged as the new PMS system in 1993. 

Ever since, PMIS has been evolving with continuing progress in computing and 

visualization fields. Zhang and Murphy (2013) have also stated that TxDOT 
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developed a web-based GIS system that provides color-coded details representing 

the condition of varied road sections. 

PMIS uses the data from the ride and distress surveys in the calculation of 

the condition score of a given pavement. The condition score combines the distress 

score and ride score into a single value that corresponds to the average person’s 

perception of pavement quality condition. The condition score ranges from 1 (very 

poor) to 100 (very good). Only ‘Good or better condition’ is defined as PMIS 

condition score of 70 or above. The percentage of good or better pavements is 

calculated by dividing the number of lane miles of pavements in good or better 

condition by the total number of lane miles in the system. The PMIS data set 

includes 100% of roadbed miles and the condition score is collected once a year. 

Due to cost and time limitations, road agencies rate one lane for each roadbed and 

considers this lane representative of all the lanes for the specific roadbed. 

 White et al. (2016) provided the framework required for developing a 

Pavement Maintenance Database System (PMDb) for the entire country. This 

database must be built by following nationwide consistent data inputting, reporting, 

and storing methods. This approach results in compiling of whole road network 

data and facilitates effective communication between state DOTs. They reported 

that most of the DOTs have detailed documentation regarding new pavement 

construction projects and major rehabilitation works, but lack the proper 

documentation of routine and preventive maintenance activities (White et al. 2016). 
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A good pavement condition can be maintained if preservation techniques are 

applied at the proper time as shown in Figure 2-3. Proposed pavement data elements 

that must be archived in the PMDb are as shown in Figure 2-4. 

 

Figure 2-3. Effect of Preservation Treatments on Pavement Condition (White et 

al. 2016) 

                  

               Figure 2-4. Pavement Section Data Elements (White et al. 2016)  
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2.3.2.1 Types of Monitoring Techniques 

Pavement surface evaluation has evolved from conducting intuition-based methods 

to the state-of-the-art methods. They are classified into manual, semi-automated, 

and fully automated methods depending on the degree of human intervention 

involved and are summarized below. 

2.3.2.1.1 Manual System 

In this system, raters are employed to conduct a visual survey manually. The raters 

need to collect the surface data from the outermost lane in one direction if there are 

fewer than four lanes. Thus, the outermost lane is assessed in both directions for 

pavements having four or more lanes, and at times on the worst condition lane. 

Evaluating fewer lanes can prove to be cost effective in the short run but can also 

be costly considering the long-term performance of the pavement. Some minor 

surface distressed areas on the uninspected lanes have a tendency to accelerate the 

deterioration. Some of the road agencies identify pavement distress through visual 

inspection, except for rutting. A rut bar, as discussed below, is used to measure rut 

depth (Rater’s Manual 2016).  

A visual survey of a flexible pavement condition includes a collection of rut 

depths, potholes, patching areas, pavement cracking, raveling, and bleeding. 

Rutting information near wheel paths is collected over 0.1-mile segments with a 

minimum accuracy of one-tenth of an inch. Rut depth is measured by placing rut 

bar or a 6.0 ft. straight edge on the pavement, as shown in Figure 2-5a. Depending 
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upon the rut depth, rutting severity is classified as shallow (0.25-0.49 in.), deep 

(0.50-0.99 in.), or severe (1.00-1.99 in.). Pavement is considered a failure if the rut 

depth exceeds 2 in. (Rater’s Manual 2016). Patched area is shown in Figure 2-5b. 

               

    (a)                                                   (b) 

Figure 2-5. Pavement Condition (a) Severe Rutting (b) Patching (Rater’s Manual 

2016) 

The presence of moisture in the pavement layers triggers potholes. 

According to the study conducted by the American Automobile Association in 

2014, potholes contribute to one third of traffic fatalities. The patching area shown 

in Figure 2-5b represents the rectification of previous distress. Visual inspection 

identifies the degree of compaction of the replaced material and the condition of 

the full lane width overlay on it. Patching is measured in terms of feet for full lane 

width patching. 

Cracking is classified into four groups: block, alligator, longitudinal, and 

transverse cracking, as shown in Figure 2-6. Block cracking is identified as a 

percentage of the lane’s total surface area. Alligator cracking, a load related 

cracking, is expressed as a percentage of the total wheel path area on the inspected 
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lane. Longitudinal and transverse cracks having a minimum width of 1/8th inch and 

are expressed in terms of linear feet per 100 feet of the road stretch under inspection 

(Rater’s Manual 2016). 

        

 (a) (b) 

        

       (c)                                                                 (d) 

Figure 2-6. Pavement Cracking Types (a) Block Cracking (b) Alligator Cracking 

(c) Longitudinal Cracking and (d) Transverse Cracking (Rater’s Manual 2016) 

Other distress problems include raveling and bleeding (Figure 2-7). 

Raveling is classified into low, medium, or high severity and is measured by 

expressing its area as percentage of the total lane area under inspection. Bleeding 
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also has the same severity rating levels as raveling but is instead measured by 

expressing the affected area as a percentage of the total wheel path area. 

        

 (a)  (b) 

Figure 2-7. Problematic Pavement Surfaces (a) Raveling (b) Flushing (Lanham 

2018; Rater’s Manual 2016) 

A rigid pavement visual survey includes identification of spalled cracks, 

punch-outs, patches, faulting and other distress. The number of cracks in concrete 

pavement exhibiting spalling of minimum 1-in. width and 1-ft length are rated as 

spalled cracks. When a full depth block of continuously reinforced concrete 

pavement is separated, then the pavement is rated as a punch out failure. Two types 

of patches applied to concrete pavements are asphalt patch and concrete patch. 

Asphalt patches are rated as the number of 10 ft length patches whereas concrete 

patches are measured as the number of full-depth, full-lane width, and minimum 6 

ft length patches in the concrete pavements. Concrete pavement is rated as faulted 
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or severely faulted when edges on either side of a crack have an elevation difference 

of 1/4th inch or 2 inches respectively (Rater’s Manual 2016). 

Ellenberg et al. (2014) also notes that some road agencies had adopted 

visual survey of pavements, which is often irreproducible and varies depending 

upon the experience of the inspector. Enhanced risk to the safety of inspectors while 

accessing high traffic areas contribute to the demerits of the manual inspection 

technique (Ellenberg et al. 2014). Many DOTs are moving towards semi-automated 

or automated procedures to collect pavement surface condition data.  

2.3.2.1.2 Semi-automated System 

A semi-automated system consists of software assisted by manual inputs. Pavement 

images and video data captured by automated inspection vehicles are reviewed by 

technicians on computer monitors to manually detect and assess pavement distress. 

It requires that the operator distinguishes and delineates the distress type, while the 

software calculates the distress areas (McGhee 2004).  

Distress areas falling in the predefined wheel path areas facilitate the 

differentiation of load related and non-load related distress. A typical workstation 

(shown in Figure 2-8) used for the automated technology includes three monitors. 

The left monitor summarizes the distress data identified from images illustrated on 

the central monitor, while the right monitor simultaneously provides the forward 

view of the road under inspection. This workstation also features a special keyboard 

with keys allocated for the specific type and severity of various distresses under 



 

39 
 

consideration. The results vary depending upon the experience of raters who are 

subjected to challenging tasks of simultaneously observing the distresses and 

compiling the information into the rating software (McGhee 2004). 

 

Figure 2-8. Typical Digital Workstation of Semi-Automated Methods (McGhee 

2004) 

Miller et al., (2003) described a system consisting of a digital line scan 

camera, a computerized controller, and an illumination system. Cracks as fine as 1 

mm (0.04 in.) wide were identified at speeds up to 96 km/h (60 mph) using this 

system. Finer cracks were evaluated with human intervention, as the automated 

process is not efficient in detecting such minute features (Miller et al. 2003). 

2.3.2.1.3 Automated System 

Currently, many DOTs employ vendors to either collect or process the automated 

data needed to evaluate the performance of a pavement. Improved safety and data 

consistencies are some of the major benefits of the automated approach. McGhee 

(2004) noted a significant gap between the state-of-the-art and DOTs state-of-the-



 

40 
 

practice automated evaluation techniques for both cracking and rutting 

measurements. Framework for conducting automated pavement cracking analysis 

is shown in the Figure 2-9. The two classes of automated data collection 

technologies are: 1) imaging technologies that require capturing and processing of 

pavement images and 2) sensing technologies that use various sensors to quantify 

the irregularities of the pavement surface.  

 

Figure 2-9. Automated Pavement Cracking Analysis (McGhee 2004) 

Imaging technology requires an integrated roadway lighting system to allay 

shadows from the roadway features, vehicle, and equipment itself. Imaging may 
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result in a loss of resolution compared to the visual inspection carried out by the 

human eye. However, a well-equipped capturing system reduces this loss. Methods 

of pavement imaging include analog and digital methods. Much of the earlier 

pavement imaging work was carried out by an analog imaging process. It involved 

chemical or mechanical changes that resulted in physical imposition of images on 

a film. The analog method is now obsolete due to the additional time required for 

digitizing the analog images (McGhee 2004). 

Digital imaging utilizes the electronic medium to capture and store images. 

High quality images that utilize automated data processing and analyzing places the 

digital imaging technique ahead of more cumbersome analog methods. Automated 

vehicles use a downward facing camera for assessing the pavement surface 

condition between the wheel paths, and additional cameras can be used based upon 

the DOT’s requirement to capture right-of-way, shoulders, and other information. 

Shadows cast by the traffic, roadside features, and the survey vehicle conceals 

various features of the road surface. Hence, most of the data is collected by 

providing a sufficient light source during night time (McGhee 2004). 

McGhee (2004) also proposed that digital imaging should facilitate random 

access to the database and help in discerning grayscale variations that represent the 

asperities on the road surface. Digital images of a pavement surface can be collected 

by area scan and line scan methods. The area scan method involves covering 

thousands of pixels, with the pre-defined pavement area usually one-half to a full-
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lane wide and 10 to 16 ft long. The scanned data is used to obtain the image of 

pavement section. However, camera features and vehicle speed affect the image. 

Line scan cameras cover a single row of pixels. As the camera moves past the 

pavement section, a series of full pavement width transverse lines are captured and 

the pavement image is developed by stitching those lines together using a software 

program. 

The sensing technology utilizes sensor signals to assess the condition of the 

road. The time it takes for a signal to travel from its incidence on a road surface 

back to the sensor helps in measuring the distance between the reference plane and 

pavement surface. These techniques collect the rut depth concurrently while 

monitoring roughness at the same intervals. Response type road roughness 

measuring systems (RTRRMS) were used for evaluating the roughness using 

meters mounted on vehicles. However, Cox meters may not be used as they 

measure the vehicle response to the pavement profile rather than its response to the 

pavement profile. Inefficiency in measuring the profile and huge investments 

encouraged the road agencies to opt for the cost effective profilometers, which 

measure the roughness of a road at high accuracy (McGhee 2004). 

Buchinger and Silva (2014) stated that Google initiated a research on 

mapping potholes using GPS and a vertical accelerometer mounted on a vehicle. 

Mobile accelerometers detect vehicle shocks induced by potholes, and the GPS 

helps in geo-referencing the data (Buchinger and Silva 2014). Data collected is 
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expected to be refined and integrated with Google maps. The aim of pothole 

mapping is expected to assist driverless (autonomous) road vehicles. However, if 

successful, public road agencies will also benefit from this data while calculating 

ride quality.   

Automated systems utilize digital recognition software capable of 

identifying and quantifying disparities in the grayscale image. Specific algorithms 

assist in relating these variations to striations or distresses on the pavement surface. 

Automated processing techniques employ digital recognition software capable of 

delimiting, quantifying and classifying distresses (Buchinger and Silva 2014). 

Yu (2011) discusses various steps involved in automated image processing 

techniques. Fundamental steps of image processing involve image acquisition, 

preprocessing, segmentation, representation, description, recognition and 

interpretation (Yu 2011). Thresholding is a prominent segmentation technique that 

is being used. Several researchers have developed various thresholding algorithms 

to divide an image. Roadware Group developed the WiseCrax crack detection 

system to classify cracks. WiseCrax consists of three algorithms dedicated to crack 

detection, classification and rating (McGhee 2004). Initially, detection parameters 

for cracks were generated by comparing crack maps with the grayscale pixel 

variation contributed by crack contrast, brightness, and surface conditions. After 

assigning optimal detection parameters to the pavement, cracks can now be 

automatically detected by the system. Using automated pavement distress systems 
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enables many reliable and reproducible results to be obtained while cutting down 

the processing time, which in turn reduces expenditures. 

2.3.3 Bridge Inspection 

Bridge consists of super structure and sub structure elements that need to be 

monitored regularly to maintain its working condition for longer period. Super 

structure elements comprise of bridge deck, approach slab, railings, and joints. Sub 

structure elements comprise of beams, soffits, bearings, wing walls, abutment, pile 

and cap. Different distress parameters like spalling, rusting, joint movements, 

efflorescence staining, and others need to be identified during the biennial 

inspections. Inspecting most of the bridge elements apart from the deck requires 

additional equipment like a snooper truck to reach the hard-to-reach areas. These 

procedures often result in high expenditure along with increased traffic restrictions 

resulting in delay cost. There is also considerable risk involved while a worker is 

involved in such hazardous situations. 

Bridge approach settlements has been a major concern for many DOTs over 

the last few decades. Several millions of dollars were spent to rehabilitate and 

restore the integrity of the U.S. bridge infrastructure. According to a 2016 fiscal 

year report on Texas bridge infrastructure, TxDOT has spent $525.1 million on 

system bridge maintenance, bridge replacement and rehabilitation, as well as 

construction of new-location bridges (TxDOT Bridge Division 2016). Of that 

amount, 46% of funds were spent on bridge maintenance, bridge replacement and 
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rehabilitation. The performance criteria of a bridge infrastructure depend on several 

components where bridge approach foundation settling is one of the major 

concerns. Approximately 25% of the 600,000 bridges in the United States have 

encountered the bump problem and millions of dollars were spent annually for the 

repair costs (Thiagarajan et al. 2010). Figure 2-10 illustrates different factors that 

can lead to the bump problem. 

 

Figure 2-10. Different Factors That Lead to the Formation of Bump Problems 

(Briaud et al. 1997) 

In the last decade, extensive studies were performed to understand the 

primary causes of differential settlement at the bridge approach slabs (Briaud et al. 

1997; Horvath 2005; Kramer and Sajer 1991; Puppala et al. 2009). The primary 

factors include poor soil compaction, soil erosion, water infiltration beneath the 
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pavement, development of voids, and settlement of backfill material due to 

excessive overburden pressure.   

Several techniques, such as excavation and replacement of fill material, 

deep soil mixing (DSM) columns, geosynthetic reinforcement, mechanically 

stabilized earth (MSE) wall, lightweight EPS Geofoam replacement, effective 

drainage and erosion control methods, were recommended and evaluated to 

mitigate this problem (Abu-Hejleh et al. 2006; Bartlett et al. 2000; Dupont and 

Allen 2002; Farnsworth et al. 2008; Horvath 2005; Hsi 2008; Jutkofsky et al. 2000; 

Negussey and Stuedlein 2003; Newman et al. 2009; Puppala et al. 2008; Seo 2005; 

Stark et al. 2004; Tadros and Benak 1989; Wahls 1990; White et al. 2007). To 

ensure the performance of rehabilitated bridge structures, extensive monitoring 

programs are required. Structural health monitoring and performance evaluation 

plays a pivotal role in assessing the condition of a bridge infrastructure project. 

Visual evidence and in-situ instrumentation are two prevalent monitoring 

approaches that are extensively used to evaluate an infrastructure performance.  

Visual inspection is one of the most basic forms of forensic survey. This 

approach provides us quick visual evidence of the condition of an infrastructure. 

However quantifying settlement or any other pavement distress using visual 

surveys depends on operator perception. There are two inspections that involve 

examining bridge deck and underneath the bridge. 
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The bridge deck can be inspected using various equipment. A total station 

survey is the most commonly used survey that can quantify the settlements at a 

bridge infrastructure by determining the change in the elevation levels with respect 

to different time periods. Profilometer survey is another approach that can provide 

the profiles taken along a line perpendicular to the traffic direction to show the 

super elevation and crown of the road design, rutting, and other distress shown in 

Figure 2-11 (Sayers and Karamihas 1998). 

 

Figure 2-11. Conceptual Working Mechanism of Profilometer (Sayers and 

Karamihas 1998) 

Ground Penetrating Radar (GPR) is a non-destructive method that can 

present the features of a subsurface profile (Gehrig et al. 2004). Researchers have 

demonstrated the usefulness of this method in determining the distress in pavement 

infrastructure and in attempting to detect the voids. Another effective approach is 

in-situ instrumentation, such as horizontal inclinometers. The general definition of 
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an inclinometer is a device that is used for monitoring deformations of surfaces or 

subsurface in a direction perpendicular to the axis of a flexible plastic casing by 

means of passing a probe through the casing. It can be clearly understood by the 

definition that the typical application of a horizontal inclinometer is to measure the 

settlement and/or heave under storage tanks, dams, and embankments (Archeewa 

2010). The horizontal inclinometer generally consists of seven components: 

inclinometer casing, horizontal probe, pull-cap, pull cable, dead-end pulley, control 

cable, and readout. However, these methods represent the performance of the entire 

infrastructure based on measurements obtained at limited locations. Despite the 

accuracy in the measurements, the reliability of the data over the entire site is not 

appropriate as the failure can be triggered at any location. 

Current under-bridge inspection methods include various practices to access 

the unreachable areas of the bridge. Aerial work platforms (AWP) such as snooper 

trucks, lifts, or bucket-trucks assist in inspecting the under bridge elements. 

However, they have the disadvantages like high mobilization costs, unsafe for the 

inspector, and traffic delay costs arising out of lane closures. Apart from AWPs, 

rope access is another common form of inspecting the under bridge elements 

(shown in Figure 2-12). Despite of having lower equipment and traffic delay costs, 

rope access is highly dangerous for the inspector and requires rigorous training 

(Wells et al. 2017). 
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Figure 2-12. Rope Access Inspection (Wells et al. 2017) 

One recent advancement that have proven effective for monitoring the 

performance of bridge infrastructure is through remote sensing based studies. The 

University of Texas Arlington research team is currently using light detection and 

ranging (LiDAR) to monitor the performance of a rehabilitated bridge 

infrastructure located in Johnson County, Texas (Shafikhani et al. 2017). LiDAR is 

a remote sensing technique used to collect surficial information from an object or 

phenomena without direct physical contact (Aggarwal 2004; Campbell and Wynne 

2011). Due to its ability to deal with large monitoring areas, it is considered as an 

effective alternative to other monitoring techniques where safe access to the 

inspection area is a concern (Manconi et al. 2014). The basic principle of this 

technique consists of projecting a laser light from the scanner onto the material 
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surface via a rotating mirror, thereby capturing the reflected laser beam pulses from 

the surface. During this process, a set of data points referred to as the “point cloud” 

is generated in 3D space. Based on the unabsorbed wavelengths of laser light at 

each point on the surface, physical features of target points such as distance, color, 

and reflective intensity can be recorded. For example, settlement or heave would 

be the vertical component of the total displacement vector of a target point.  

2.3.4 Rail Corridor Inspection 

Rail corridors are mostly inspected for various distress like rail buckling, improper 

rail and tie alignment, washout underneath the rails, debris accumulation, rusting 

of rails, and others. These inspections warrant hi-rail trucks equipped with costly 

laser scanners. They also result in substantial delays for freight and passenger trains 

travelling through the inspection zone. Many state-of-the-art aerial technologies 

that are being used for monitoring rail corridors are provided in the subsequent 

sections.  

Washout occurs when a flood or a flash flood washes away the ballast and 

roadway under the track. Figure 2-13a illustrates a typical washout on the railway 

line. Rail tracks are made of steel and they expand as they heat up in warm climates, 

especially during the daytime. This expansion of rail tracks induces strong 

compression and may lead to buckling (Figure 2-13b). To repair track buckling, the 

line must be closed and this causes delays and disruption. UAVs can be deployed 

quickly to inspect rail buckling on tracks by collecting pertinent data remotely. 
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           (a)                                                    (b) 

Figure 2-13. Rail Track Condition (a) Typical Washout on the Rail Line (Lamb 

2005) and (b) Typical Buckling of Rail Track (Kish et al. 2003)   

Debris can collect on rail tracks and accumulate with time, especially in 

unmonitored remote areas, causing rail derailments (Figure 2-14). In areas where 

the rail track is laid through forests with a high density of trees, it is likely that old 

trees might fall on tracks and create situations that can only get worse. This is 

especially common in when trees are subject to the high winds associated with 

storms, hurricanes, and tornadoes. Although we cannot control natural hazards 

from occurring, there needs to be an economical way to identify debris 

accumulation quickly so the proper personnel can be notified in time to prevent 

derailment (RAIU 2010). 
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Figure 2-14. Train Derailment Due to Debris on Track (RAIU 2010) 

Recently, Sam Inc. and TxDOT Austin District collaborated for trial studies 

to survey a section of a public rail line using a mobile LiDAR system (Figure 2-

15). As a part of this research, they mapped asset inventory along 32 miles of rail 

track, including sidings and rail yards (Leslar et al. 2009). 
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Figure 2-15. Mobile LiDAR to Survey a Railway Line for Asset Inventory (Leslar 

et al. 2009) 

Traditional rail bridge inspection consists of a hands-on visual observation 

with a qualified inspector, operator, and other crew members. Safety equipment, 

ladders, and under-rail bridge inspection vehicles are used to inspect the 

inaccessible railway bridge parts. Heavy and costly under-bridge inspection units 

are needed, and they are mostly rented for inspection and maintenance work.  

For instance, Figure 2-16a shows A-30 Hi-Rail equipment and Figure 2-16b 

shows A-30y bridge inspection units (N.E. Bridge Contractors 2016). During 

bridge inspections, inspectors must work closely above, below, or alongside the 

bridge with safe maneuvering. The heavy equipment needed to make traditional 
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bridge inspections possible are likely to obstruct road traffic and induce the need 

for traffic control. On the other hand, remote collection of similar information via 

deployment of UAVs is a safe option. 

    

   (a)                                                        (b) 

Figure 2-16. Rail Bridge Inspection Using the Under-bridge Inspection Unit: (a) 

A-30 Hi-Rail Equipment and (b) A-30y Hi-Rail Equipment (N.E. Bridge 

Contractors 2016) 

2.3.5 Construction Materials 

Inventory of construction materials is important in planning the steps in building 

an infrastructure asset. Traditional surveying equipment like theodolite, total 

station, and differential GPS are being used to collect the 3-dimensional coordinates 

of points over the stockpiles and then interpolate the coordinates between the 

collected points to estimate the volumes. It can be clearly observed that these 

techniques can only obtain an approximate value of the volume measurements due 

to their inability to recreate the original irregular stockpile surfaces existing in the 

field. New technologies like terrestrial LiDAR and smartphone cameras are also 
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used to obtain the volumes by collecting the data around the stockpiles. These are 

able to capture the irregular surfaces, however, due to their inability to capture the 

top irregular stockpile surface deems them unfit for accurate volume computation 

of stockpiles that are tall and wide.  

All of the above information suggest that there is a need for devising a new 

methodology that can complement the present methodologies with quick, efficient, 

and accurate data in a safe manner. 

2.4 US DOT AGENCIES’ EXPERIENCE WITH UAS 

In March 2018, American Association of State Highway and Transportation 

Officials (AASHTO) conducted a survey among various state departments of 

transportation (DOTs) in the United States about the usage of unmanned aerial 

vehicle systems. The response was unprecedented as 35 out of 44 DOT respondents 

have approved using UAS for wide range of applications (Tony 2018). The survey 

reported that twenty DOTs have incorporated UAVs into various daily applications 

and fifteen DOTs have been researching about setting up standards and protocols 

to be adopted in addition to safety precautions during aerial data collection methods 

(Tony 2018).  

UAV data collection methods complementing traditional methods is 

gaining popularity as more agencies are researching the drone and its innovative 

applications. Alaska, Arizona, Colorado, Delaware, Georgia, Iowa, Maine, 

Mississippi, Montana, Nebraska, Nevada, New Jersey, North Carolina, Ohio, 
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Oklahoma, Oregon, Pennsylvania, Tennessee, Utah and West Virginia are the 

twenty departments of transportation (DOT) using for their daily tasks (Tony 2018). 

Photography and surveying of the construction site, bridge inspection, traffic and 

pavement monitoring, tall light pole inspection, and emergency operations are the 

most common applications reported by these twenty active DOTs in UAS 

deployment Alabama, Connecticut, Idaho, Illinois, Indiana, Kansas, Kentucky, 

Louisiana, Massachusetts, Michigan, Minnesota, New Hampshire, South Carolina, 

Texas, and Virginia are the fifteen DOTs researching the feasibility of UAS 

applications as part of their daily tasks (Tony 2018). More recent developments in 

the research and applications of UAV by different DOTs are provided in Table 2-

1.
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Table 2-1. Latest Developments in UAV Studies Performed by Various Department of Transportations (DOTs) in USA 

No Department of 

Transportation 

(DOT)/ 

Agency 

State Agencies and DOT Experience 

1 North Carolina 

Department of 

Transportation 

(NCDOT) 

In 2017, NCDOT conducted a joint study along with the North Carolina Highway Patrol to 

compare traditional and UAS methods in collecting the crash scene data. They realized a 

saving of 1.5 hours by using three drones compared to the traditional data collection 

methods adopted by the highway patrol Collision Reconstruction Unit. They also estimated 

that using a drone to collect the crash scene data on a busy highway would result in a 

saving of around $9,300 (Tony 2018). 

2 Missouri 

Department of 

Transportation 

(MoDOT) 

MoDOT is yet to embrace the UAS technology, Lercel et al. (2018) conducted an overview 

of using UAS for Missouri and reported that the bridges in the state of Missouri are 

typically inspected once in every two years in accordance with Federal Laws. The report 

stated that the 3,000 out of 24,000 bridges are structurally deficient bridges in Missouri 
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might need more frequent inspections that result in high expenditure caused due to the 

frequent inspection costs, traffic disruptions, and safety risks (Lercel et al. 2018). 

3 Iowa 

Department of 

Transportation 

(IDOT) 

After FAA released the new Part 107 regulations, three employees in the aviation group of 

IDOT had obtained remote pilot certificate issued by FAA. IODT’s aviation group 

purchased two DJI Phantom 4 drones and assisted other divisions within the DOT in 

capturing the assets (Lercel et al. 2018). 

4 Kansas 

Department of 

Transportation 

(KDOT) 

McGuire et al. (2016) addressed different ways in which KDOT could get benefitted by 

using UAS for different applications (McGuire et al. 2016). For the first time in the United 

States, KDOT partnered with AirMap, Inc. to ensure safer skies by integrating the 

unmanned aerial traffic into the national airspace through Unmanned Traffic Management 

(UTM). UTM implements airport notification and awareness system for UAS operators. 

KDOT’s UAS director has founded Kansas UAS Joint Task Force (JTF) that is responsible 

in developing statewide protocols necessary for UAS integration (Lercel et al. 2018). 

5 Minnesota 

Department of 

Minnesota Department of Transportation (MnDOT) teamed up with external vendors to 

use UAS as a bridge inspection tool. They suggested using UAS for inspecting the bridge 

structural elements that do not need hands-on approach. MnDOT used SenseFly Albris 
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Transportation 

(MnDOT) 

drone that has a capability to fly under John A. Blatnik Bridge in Duluth, MN and inspect 

the elements above it. Subsequently traditional methods were used to inspect the bridge 

and compared with the UAS method. They estimated that UAS inspection would take 5 

days compared to 8 days of traditional bridge inspection monitoring, which also 

contributed to more than 50 percent savings using UAS (Wells et al. 2017). MnDOT also 

conducted another bridge inspection in Nielsville, MN to detect the delamination using a 

thermal camera mounted on the drone (Wells et al. 2017). 

6 North Dakota 

Department of 

Transportation 

(NDDOT) 

NDDOT is also one of the 10 selectees of UAS-IPP program and assigned the task of 

evaluating the night time and beyond line of sight operation of UAS in airspaces ranging 

from rural to urban areas (IPP 2018). 

7 Alaska 

Department of 

Transportation 

(AlaskaDOT) 

Alaska DOT is using UAS for various daily activities like measuring elevations and 

stationing of culverts, in addition to monitoring massive stockpiles of road-building 

(Bohman 2018). 
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8 Arizona 

Department of 

Transportation 

(ADOT) 

ADOT is using drones for conducting surveying works and inspecting hard-to-reach bridge 

areas. Although bridge inspections are conducted by the traditional methods, inaccessible 

data is being supplemented by UAS inspection. ADOT has already inspected a roadway 

damaged due to storm runoff using drones. Under a new federal grant, eight new aerial 

drones are added to the aviation division of ADOT. These are planned to assist the DOT 

personnel in monitoring highway projects thereby ensuring efficiency and safety. The 

DOT employees need to be undergoing training on safely using drones before inspecting 

state highways passing through hazardous areas (ADOT 2018). 

9 Colorado 

Department of 

Transportation 

(CDOT) 

Bly (2016) reported that CDOT had been using drones for inspection since 1990s that 

include assessment of rock fall sites (Bly 2016). CDOT had made an agreement with 

external drone operators to work on their next 5-year projects that require aerial inspection 

(CDOT 2017). This agreement was intended to cut down the request for proposal time for 

any project that requires drone inspection in the next five years. CDOT intends to use the 

drones for crash scene reconstruction, bridge inspection, and rockfall assessment by 

providing safety to the working personnel and the public. Rubino (2018) also reported that 
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CDOT is embracing drones for their construction site inspection due to its cost 

effectiveness (Rubino 2018). 

10 New 

Hampshire 

Department of 

Transportation 

(NHDOT) 

NHDOT collaborated with the University of Vermont Spatial Analysis Lab to research the 

potential transportation sector applications of UAS technology. The applicability of the 

unmanned aerial technologies for various NHDOT activities including monitoring of 

construction sites, traffic, bridges, rock slopes, and accident scene reconstruction has been 

the objective of this project. Cost analysis and comparison of UAS operations with 

conventional methods are also planned as part of this ongoing research project (NHDOT 

2018). 

11 Georgia 

Department of 

Transportation 

(GDOT) 

 

Based on Georgia Tech’s study on possible applications of UAS for GDOT, the agency 

intended to use the aerial technologies for monitoring traffic on roadways. Vehicle speed 

and congestion monitoring, in addition to traffic signal inspection are some of the 

prominent uses of drones identified by the researchers at Georgia Tech. It was also 

reported that GDOT would outsource the drone activities to external vendors (GDOT 

2014). 
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12 Ohio 

Department of 

Transportation 

(ODOT) 

ODOT teamed up with commercial drone partners to inspect Sandusky River Bridge on the 

Ohio Turnpike. It was reported that the drone was able to provide comprehensive bridge 

inspection data before crashing in to the water due to a power loss (Christ 2016). 

13 Maine 

Department of 

Transportation 

(MaineDOT) 

MaineDOT contracted the aerial inspection of Max L. Wilder Memorial Bridge in 

Arrowsic-Woolwich, Maine to external vendors. A drone capable of mounting a top 

gimbal attached to a camera capable of taking pictures above it. MaineDOT also inspected 

the signboard truss on a road using UAS. Application of UAS for bridge inspection will 

not only save the reposition time but also provide safety to personnel compared to the 

traditional inspection methods (MaineDOT 2016). 

14 Mississippi 

Department of 

Transportation 

(MDOT) 

Chaney (2018) reported that Mississippi DOT intend to use the drones as an eye in the sky 

to monitor infrastructure assets. Bridge inspection and emergency response are the two 

main applications of UAS used by Mississippi DOT (Chaney 2018). 
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15 Montana 

Department of 

Transportation 

(Montana 

DOT) 

Montana DOT has demonstrated the usability of drones in inspecting roads in extreme 

conditions. During spring 2018, Beartooth Highway, Montana located in a hilly terrain was 

covered with snow. Montana DOT conducted a reconnaissance study of the mountain 

using drones to estimate the amount of snow that they might encounter (MontanaDOT 

2018). 

16 Nevada 

Department of 

Transportation 

(NDOT) 

The imagery section of Nevada DOT, composed of staff with previous work experience as 

military analysts, researchers, and private consultants, initiated a program involving 

unmanned aerial vehicle systems to support their Hydraulics, Stormwater, Design 

Engineering, and Construction divisions. They have a four person team, including 2 Part 

107 pilots and 2 ASPRS certified mapping scientists, using a fixed and rotary wing 

platforms to generate point clouds, orthomosaics, and various other mapping products. 

Nevada DOT is also planning to collaborate with academic universities to estimate the 

change in sediment detection and road condition using UAS works (Stevens 2018). 

17 New Jersey 

Department of 

The introduction of drones into NJDOT has been done in a structured manner starting with 

appointment of a UAS coordinator within the Aeronautics division of NJDOT to lead UAS 

operations. NJDOT applied for three FWA grants that are directly and indirectly related to 
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Transportation 

(NJDOT) 

the usage of drones within the agency applications (Stott and Tadmori 2018). Traffic 

incident management and congestion assessment, infrastructure inspections, and 

emergency response are some of the UAS applications that NJDOT is planning to explore. 

Ease in deployment, low carbon footprint, and less manpower using UAS are 

acknowledged by the Stott and Tadmori (2018). 

18 Oregon 

Department of 

Transportation 

(OregonDOT) 

Gillins et al. (2018) stated that State transportation agencies can leverage the cutting edge 

unmanned aerial technology to make the inspections more efficient and cost effective in a 

safe manner. They focused on developing safe guidelines for Oregon DOT to adopt in 

conducting bridge and tower inspection using drones. A benefit- cost ratio for conducting 

bridge inspection using UAS was obtained as 9 with an average cost savings of $10,000 

per bridge inspection (Gillins et al. 2018). 

19 Pennsylvania 

Department of 

Transportation 

(PennDOT) 

Pennsylvania Department of Transportation (PennDOT) had purchased a rotary wing 

UAV, Dragon Flyer X-4, and used commercial software to acquire images of rockslides 

and sinkholes before grounding the operations. Bureau of Aviation division in PennDOT 

had conducted survey of government agencies in Pennsylvania and reported that atleast six 

agencies anticipate using UAS in the future (Wojtowicz et al. 2017). 
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20 Delaware 

Department of 

Transportation 

(DelDOT) 

All the public agencies in Delaware train their pilots to same level and use the same aerial 

platform. This facilitates interagency transfer of pilots and aerial platforms during different 

conditions. DelDOT UAS crew includes a FAA certified pilot and a visual observer. The 

pilot needs to perform ten basic maneuvers before being appointed as DelDOT certified 

pilot. DelDOT have nine FAA certified pilots and nine quadcopter UAS platforms (Day et 

al. 2017). DelDOT used the drones for monitoring the construction of bike bridge and road 

crash scene inspection. DelDOT also plans to acquire UAVs accommodating top gimbal 

and tethering. 

21 Utah 

Department of 

Transportation 

(UDOT) 

Barfuss et al., (2012) evaluated the applications of UAV for Utah Department of 

Transportation. UDOT used UAV for monitoring various stages during the construction of 

Southern Parkway street. The images were processed and the models developed were 

inputted into UDOT GIS database. UDOT also mapped the locations of culverts under 

roadways using UAVs (Barfuss et al. 2012). 

22 Connecticut 

Department of 

CTDOT planned to conduct inspection of 1-mile stretch Gold Star Memorial Bridge using 

UAVs. The inspection was intended to gauge the ability of drones in accessing the hard-to-

reach areas (CTDOT 2015; Lillian 2016). 
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Transportation 

(CTDOT) 

23 Illinois 

Department of 

Transportation 

(IDOT) 

Linda and Bill (2017) presented the information about the role of UAS in Illinois 

Department of Transportation operations. Surveying, infrastructure inspection, and visual 

photography/videography are some of the main UAS applications identified by IDOT. 

They intend to inspect critical infrastructure to obtain baseline inventory information 

before and after any incident (Linda and Bill 2017). 

24 Michigan 

Department of 

Transportation 

(MDOT) 

Michigan technological research institute evaluated the usage of drone for various 

transportation infrastructure monitoring purposes including pavements, bridges, and other 

related applications (Brooks et al. 2015). 

25 Massachusetts 

Department of 

Transportation 

(MassDOT) 

Ni and Plotnikov (2016) conducted research to establish the prevailing practice of UASs in 

transportation. A survey among the DOTs was conducted to understand the practicalities of 

using drones for DOT purposes. Basing on the collected information, they classified asset 

management, disaster management, inspection of construction site, and identifying traffic 
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parameters are some of the prominent applications of UAS that MassDOT could explore 

(Ni and Plotnikov 2016). 

26 Texas 

Department of 

Transportation 

(TxDOT) 

UT Arlington evaluated the initial applications of UAVs for monitoring infrastructure 

assets including pavements, bridges, rail lines, and tall structures. A flight operations 

manual to be adopted while conducting drone data collection has been developed by 

TxDOT (Puppala et al. 2018b).  

 

 



 

68 
 

In addition to the latest developments in the UAV related studies conducted 

by US DOTs provided in Table 2-1, there are also other notable researches that 

were conducted in the past decade as follows.  

Kansas State University conducted a literature review, survey, and SWOT 

(strengths, weaknesses, opportunities, and threats or challenges) analysis for the 

Kansas Department of Transportation (KDOT) on potential benefits of using UAV 

in their operations (McGuire et al. 2016). They recommended UAV applications 

for bridge inspections, radio tower inspections, surveying, road mapping, high-mast 

light tower inspections, stockpile measurements, and aerial photography. Their 

studies suggest that using UAV-based techniques could result in improved safety, 

efficiency, and possible reductions in cost. As their studies also compared the cost 

of using an external agency to collect images versus using UAV imaging 

technology and observed a potential cost benefit using UAV technology (McGuire 

et al. 2016). Moreover, the Kansas DOT (2016) has started a fairly new Kansas 

Unmanned Aerial Systems Program to use UAVs in performing bridge and tower 

inspections (Hill 2016). 

Michigan Department of Transportation (MDOT) worked with the 

Michigan Technological Research Institute (MTRI) in a research study to detect 

pot holes on unpaved roads, conduct bridge and pump inspection, and monitor 

progress of ongoing construction (Brooks et al. 2015). The University of Vermont 

collaborated with the Vermont Agency of Roads on a USDOT grant to conduct a 
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UAV study to monitor rivers to prevent flooding and damage to roadways (Asphalt 

Institute 2016). 

In August, 2013, the State of North Carolina approved a test UAV program 

at North Carolina State University. Later, in March 2014, NCDOT presented a 

report on unmanned aircraft in response to the legislative request that included 

coordination with the CIO and Aviation Division. The program lists several areas 

that will benefit from UAVs including agriculture, surveying, wildlife monitoring, 

state infrastructure monitoring, migration monitoring, and emergency management 

(Estes 2014).  

In 2013, the North Carolina state legislature have granted the authority for 

managing statewide drone operations to the aviation division of its state DOT. 

NCDOT have been reported as the pioneers of using the UAS among the DOTs. 

Some of the NCDOT staff have been trained on using the drones for their daily 

operations thereby providing a scope for the staff to come up with new application 

areas for drone technologies (Tony 2018).  

A study by Hurwitz et al. (2018) presented their work for Oregon DOT in 

assessing the driver distraction due to drones. They conducted the effect of lateral 

offset, flight path, and land use on the driver distraction. Due to the less visual 

clutter in rural areas, the researchers noticed more drivers crossing into the adjacent 

lane in response to spotting a drone operation. They acknowledged that the farther 
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the drone operations are from the right of way the fewer are the unsafe glances 

(Hurwitz et al. 2018).  

2.5 UAV APPLICATIONS IN CIVIL ENGINEERING 

Federal government initiatives and research conducted by NASA in building 

military drones paved the way for using unmanned aerial vehicles (UAVs) for 

various civil engineering applications. Modern image capturing equipment 

provided the impetus for conducting real time mapping, surveying and monitoring 

of assets. The ability to remotely monitor and detect physical features in 

infrastructure is of great value to civil engineers. The UAV can identify features 

including distress in pavements, roads, rail bridges, and movement of slopes and 

embankments among other possibilities. Failure or delays in identifying such 

distress could result in injuries, risks, or loss of human lives. In addition to the 

DOTs related UAV work discussed in the earlier sections, there are also other 

agencies and researchers that conducted research on various UAV related 

applications that are covered below. 

Rathinam et al. (2008) conducted fixed wing UAV-based monitoring of 

linear structures such as roads, pipelines, bridges, and canals. Linear structures were 

detected by visual recognition techniques controlled by a closed loop algorithm 

(Rathinam et al. 2008). Zongjian (2008) conducted low altitude UAV surveys using 

a lightweight wide-angle camera assembly comprised of four digital cameras 

arranged as shown in the Figure 2-17a. The arrangement facilitates a larger view of 



 

71 
 

the area at low altitudes.  Overlapping of the images (shown in Figure 2-17b) helped 

to orient the images (Zongjian 2008). 

             

                             (a)                                                              (b)  

Figure 2-17. Image Data Collection (a) Super-Wide-Angle Camera Assembly (b) 

Overlapping Images Projected from the Four Camera Data (Zongjian 2008) 

Steffen and Förstner (2008) discussed the benefits of UAV mapping carried 

out with the help of real time surface information. The real-time feedback adjusts 

the flight trajectory to cover the whole area under consideration (Steffen and 

Förstner 2008). Fu et al. (2015) developed a method to support autonomous flight 

of the Asctec Pelican quadrotor UAV in the absence of GPS. It includes camera 

calibration, visual feature detection and tracking of consecutive images. The UAV 

is equipped with a stereovision pre-processing system that processes the visual 

information and transfers it to the on-board host computer. Based upon the real-

time built environment and obstacle detection, the flight path is dynamically 

adjusted to collect the required data (Fu et al. 2015).  
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Zhang (2008) demonstrated a system using a low-cost model UAV having 

an onboard GPS. Flight assembly is powered by a 26 cc, single cylinder, Zenoah 

G260H engine capable of generating 1940 W at 12,000 rpm, giving an operating 

head speed of approximately 1250–1500 rpm. The UAV had a flight time of 30 

minutes with full payload of 6.4 Kg. A UEye 2220c USB video camera was used 

for capturing data. The combination of the automatic flight control system (AFCS) 

hardware and mission control system (MCS) software assisted in autonomous 

control and navigation during flight (Zhang 2008).  

Eisenbeiß (2009) demonstrated that an autonomously controlled UAV is 

more stable than a manually operated UAV. The elevation models developed from 

laser and image data were compared. He envisaged developing digital surface 

models by using LiDAR and image data collected simultaneously. The combination 

of dense point clouds generated by LiDAR data and texture mapping by image data 

offered detailed information about the area under inspection (Eisenbeiß 2009). 

Figure 2-18a shows an aerial photograph of the University of Technology, 

Malaysia (UTM), main campus, acquired using a digital camera placed under the 

wing of an UAV. The collected series of aerial photographs with an approximate 

60% longitudinal overlap and 30% lateral overlap were assembled to form a 

single image known as an uncontrolled mosaic (shown in Figure 2-18b).  



 

73 
 

  

 (a)  (b) 

Figure 2-18. Digital Imagery of UTM Campus (a) Aerial Photograph of Study 

Area at UTM, Malaysia (b) An Uncontrolled Mosaic (Ahmad and Samad 2010) 

 Irizarry et al. (2012) used a small-scale drone equipped with a video camera 

that used image capturing as well as real-time videos at a construction site. They 

proposed that a high-resolution camera, vocal interaction, and autonomous 

navigation were some of the ideal features of a drone system that allows safety 

inspections at construction sites (Irizarry et al. 2012). 

Siebert and Teizer (2014) compared different survey techniques based on 

the expected error and the area to be covered (Figure 2-19). They developed a UAV 

system to survey landfills and earth moving operations of a pavement project. It is 

comprised of a lightweight copter having a range of 4 km and a flight time of 18 

min.  The limitation of having the UAV travel a shorter distance in one flight is 

compensated by the federal regulations, which allow UAVs to operate only under 
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line-of-sight (LOS). A flight control unit (FCU) and an inertial measurement unit 

(IMU) were used to assist in navigation and alignment, respectively. The FCU 

along with the onboard GPS and magnetic compass facilitate the movement of the 

UAV through predefined waypoints. The Digital WPL file governing the flight path 

through the waypoints can be uploaded to the UAV wirelessly. This file has a 

provision to specify the time required to capture photos at each waypoint (Siebert 

and Teizer 2014).  

A modified Mikrokopter Flight Planning Tool (MK FPT) was used to 

minimize manual interference in framing the flight path. The UAV traversed 

through the waypoints at an altitude of 75 m and captured images, with a 

longitudinal and transverse overlapping of 60 and 40%, respectively. A 3-D model 

from the collected data was generated using AgiSoft PhotoScan software. A 

computer with Intel Core i7, 64 GB RAM and Windows 7(64 bit) processed 100 

images in 1 hour. Error analysis was conducted by comparing target coordinates 

(position and height), which were measured using a tachymeter and actual 

coordinates obtained from the surface model developed by the photogrammetric 

approach. This study suggested that using high-resolution cameras along with more 

longitudinal and traversal overlap will minimize errors. They also acknowledged 

the difficulty in collecting data during wind gusts higher than 25 mph (Siebert and 

Teizer 2014). 
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Figure 2-19. Potential UAV Application Areas in Surveying Tasks (Siebert and 

Teizer 2014) 

 Details of various previous studies on using UAVs related to infrastructure 

assets segregated as pavements, bridges, railways, and other infrastructure assets 

are provided below. 

2.5.1 UAV Applications in Transportation Studies 

Doherty et al. (2000) presented the applications of the UAVs in transportation 

related areas done under Wallenberg Laboratory for Information Technology and 

Autonomous Systems (WITAS) in Linkoping University (LiU), Sweden. Due to 

the multi-disciplinary nature of the WITAS Unmanned Aerial Vehicle Project, 

different departments in LiU collaborated to research on fully autonomous UAVs 

for gathering the traffic and road information. They used a Vertical Takeoff and 
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Landing Systems (VTOL) mounted with either digital or infrared cameras to collect 

traffic patterns involving overtaking and U-turns (Doherty et al. 2000). 

Frew et al. (2004) used a modified Sig Rascal radio-controlled airplane to 

demonstrate the vision based autonomous following of road. Vision systems are 

small in size and lightweight due to its passive type of data collection and 

processing. They process the natural scenes in the field and measure the relative 

distance and orientation between aircraft and road. This approach was planned to 

help in road data collection in areas where Global Positioning System (GPS) is 

unavailable. They encountered disparities in vision-based and GPS measurements 

of the UAV due to their assumption of zero roll (Frew et al. 2004). 

Zhang (2008) used a computer stationed on the ground for real-time 

communication with the UAV. Flight position was continuously monitored and 

control commands were sent to the onboard navigating assembly. The image 

acquisition system was calibrated and then used for data acquisition. The unpaved 

road condition data was collected by maintaining the UAV at about 50 m above 

ground. Wash boarding or the corrugation effect on unpaved roads was represented 

by closely spaced valleys and ridges formed in the captured images. Severity of 

wash boarding was assessed depending upon the number and width of the ridges. 

Attempts were also made to develop algorithms for extracting the automatic 

pavement condition data from the collected images (Zhang 2008). 



 

77 
 

University of Washington collaborated with the US Department of 

Transportation (US DOT) explored the capabilities of UAVs as an avalanche 

condition identification tool, especially over the slopes near state highways located 

on mountainous terrains. They acknowledged the requirement of obtaining a 

project specific Certificate of Authorization (COA) permission to fly from Federal 

Aviation Administration (FAA). In an effort to reopen the avalanche prone road 

section, WSDOT opted for the low cost alternative of using MLB BAT UAV during 

initial trial and identified the avalanche-prone trigger zones and snow chutes. They 

also identified the limitation of using a fixed wing aircraft, in an urban area, 

requiring a 100-foot long flat road surface to land. Hence they opted for a rotary 

wing UAV i.e. R-Max in their second test to follow a preprogrammed waypoints to 

conduct a survey of terrain conditions along a road prone to an avalanche event 

(McCormack and Trepanier 2008). 

Herold et al. (2008) provided a case study that involves road distress 

interpretation from the imaging spectrometry obtained using unmanned aerial 

vehicles (UAV). However they also acknowledged the then prevailing barriers for 

using UAVs for civilian purposes (Herold et al. 2008). Lin and Saripalli (2012) 

detected roads from aerial images of a desert. A histogram-based thresholding 

algorithm was developed to detect the road region. Additionally, a line detection 

algorithm was used to refine the detected road area (Lin and Saripalli 2012). 
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Zhang and Elaksher (2012) discussed a helicopter based digital imaging 

system for collecting pavement condition data over unpaved rural roads. This 

system is comprised of a UAV furnished with a digital camera, on-board computer, 

GPS receiver, inertial navigation system (INS), and a geomagnetic sensor. An 

onboard computer assists in navigation by coordinating the GPS and INS together. 

The ground control station (GCS) transmits signals to activate the camera at preset 

locations. The steps in the developed system include calibration of the camera, 

image orientation, 3D model development, and assessing the unpaved road 

condition from the models as shown in Figure 2-20. Construction of a 3D model 

(as shown in Figure 2-21) by matching the points in two adjacent images was 

discussed in detail. An accuracy up to 5 mm was observed when the data extracted 

from the images was compared with the data obtained from a manual survey (Zhang 

and Elaksher 2012). 
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Figure 2-20. Flowchart of Unpaved Road Condition Evaluation System (Zhang 

and Elaksher 2012) 

 

                              (a)                                                     (b) 

Figure 2-21. Road Condition Assessment (a) Rutting on an Unpaved Road (b) A 

Reconstructed 3D Model of the Rut Area (Zhang and Elaksher 2012) 

According to a special report on drones in Asphalt, the magazine of the 

Asphalt Institute (2016), the University of Vermont partnered with the Vermont 

road agency and used a UAV to monitor the rivers adjacent to roadways. This study 

1) Camera Calibration
2) UAV Operation 
and Road Image 
Acquisition

1) Image Orientation
2) Developing 3D Road 
Surface Model
3) Feature Extraction And 
Measurement

Evaluation of Road 
Condition Parameters: 
Rutting & Potholes
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was focused to prevent the pavements from flooding and other moisture related 

pavement failures (Asphalt Institute 2016). Other agencies also used UAVs in 

conjunction with thermal imaging cameras to detect the pavement cracks on a 

bridge as shown in Figure 2-22. Thermal imaging largely depends upon the time at 

which the images were captured (Asphalt Institute 2016). 

 

Figure 2-22. Thermal Image Captured by UAV (Asphalt Institute 2016) 

Brooks et al. (2015) discussed 3-D models generated using the bundle 

adjustment principle as shown in Figure 2-23. These models form the basis for 

extracting the elevation details of each point using Agisoft PhotoScan software 

(Brooks et al. 2015). These elevations can be used to calculate the cross slope, 

rutting, volumetric calculations and other pavement related features. Rut volume 

calculations can be used to assess the cost of materials required for repair and 
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rehabilitation of ruts. Cutting and filling calculations made use of the data collected 

by the UAV, which assists in the cost estimation of pavement construction. 

 

Figure 2-23. Bundle Adjustment to Generate 3D Model (Brooks et al. 2015) 

Pereira and Pereira (2015) demonstrated embedded image processing 

systems for automatic crack recognition using UAVs. They emphasized on 

identifying the different types of mortar cracks on facades using aerial inspection. 

Segmentation by edge detection and particulate filter are the two crack identifying 

algorithms discussed by Pereira and Pereira (2015). Different crack images were 

used to calibrate the crack identifying algorithms and tested those with simulated 

mortar cracks on façade (Pereira and Pereira 2015). 

Díaz-Vilariño et al. (2016) evaluated the suitability of unmanned aerial 

photogrammetry for measuring road runoff. D8 algorithm was used to estimate the 

flow direction of the run off. They compared the run off data from DEMs obtained 

from photogrammetry data with the light detection and ranging (LIDAR) dataset as 
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ground truth and concluded that reasonable accuracy could be obtained using UAV 

photogrammetry (Díaz-Vilariño et al. 2016). 

Marinelli et al. (2017) presented the work on identifying the horizontal 

alignment from the road data images collected from mobile terrestrial and aerial 

remote sensing platforms. Those images were subjected to edge extraction and 

feature recognition in Matlab to identify the horizontal alignment (Marinelli et al. 

2017). Another study also studied feasibility of using drones for evaluating the 

effectiveness of soil treatment methods on performance of the pavement using 

UAV collected data (Puppala et al. 2018c). 

2.5.1.1 UAVs for Traffic Related Studies 

Of late, traffic monitoring had been the most common application of UAVs related 

to transportation infrastructure. Shastry and Schowengerdt (2002) developed a 

methodology to extract parameters of traffic flow from the aerial data collected. 

They used an aerial platform mounted camera to overcome the drawbacks of a 

stationary mounted camera like vehicle occlusion, changing light conditions, and 

other factors. They extracted the vehicle trajectory by extracting the temporal data 

from the spatio-temporal data obtained aerially (Shastry and Schowengerdt 2002). 

Kaaniche et al. (2005) conducted a vision system based traffic surveillance 

using UAVs. UAV was flown in a predefined paths along a list of waypoints 

identified by the GPS coordinates with an uncertainty of 10 m. The videos of the 

traffic were collected to obtain various characteristics of traffic such as vehicle 
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counts, speed, flow rate, and density. They demonstrated identification of the 

vehicles using the common fate law on the aerially collected data (Kaaniche et al. 

2005). 

Coifman et al. (2006) demonstrated UAVs for collecting roadway usage 

data, which was otherwise, a laborious task using conventional practices. They had 

flown a BAT III technology UAV assembled with a payload of two video cameras 

over the surroundings of The Ohio State University covering many intersections 

and a freeway. Video images were relayed to the ground station in real-time, during 

the course of the flight.  

Several applications like determination of Level of Service (LOS) of the 

road, Average Annual Daily Travel (AADT), Origin Destination (OD) flows and 

documentation of intersection travel patterns from the aerially collected data were 

realized from their work. LOS was measured using the traffic density (vehicles/km) 

and AADT (vehicles/hr). Queues, signal timings, arrival rates, and turning 

movements were excerpted from the aerial collected data (Coifman et al. 2006). 

Butenuth et al. (2009) used a LDR 3K camera system integrated in a ZEISS 

aerial camera mount coupled with navigation system on UAV to monitor the traffic. 

The central camera was positioned with nadir view and the other two cameras were 

having a tilt of 35°. This setup was to obtain higher field of view even at lower 

altitudes. Vehicle detection and tracking were differentiated in their work to 

identify non-moving vehicles. Vehicle tracking from the aerial images using 
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normalized cross-correlation and velocity and trajectory evaluation were discussed 

in their work (Butenuth et al. 2009). 

Braut et al. (2012) researched on using airborne videos for developing OD 

matrices at complex intersections. OD matrix comprises of the number of vehicles 

going from each intersection entry to each intersection exit. They stated that using 

trained workers at the complex intersections can be time consuming and costly as 

it requires the use of helicopters for aerial data collection. They evaluated the 

performance of the data collected from the camera mounted on a hovering UAV 

and discussed the importance of stabilization of the air-borne video (Braut et al. 

2012). 

Videos of the traffic within the urban areas were collected using an 

Unmanned Aerial Vehicle (UAV) due to its non-intervention on the road 

infrastructure by Salvo et al. (2014a). A quadcopter with carbon fiber body and a 

compact digital camera placed in nadir view was used to collect the traffic related 

data as a low cost alternative to traffic related surveys performed with conventional 

methods. These videos were processed to classify traffic and obtain kinematic 

quantities of traffic flow that could be used to address congestion (Salvo et al. 

2014a). 

Zhang et al. (2014) emphasized the importance of traffic information 

collected by UAVs for smooth operations of Intelligent Transportation System 

(ITS). They proposed using Dempster-Shafer theory, which is based on information 
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fusion, and Kalman filter together as the better way of identifying road sections 

from the videos obtained from UAV (Zhang et al. 2014). Azevedo et al. (2014) 

demonstrated about the steps involved in the vehicle trajectory identification from 

the aerial remote sensing data. Initial steps involved image collection and 

processing followed by algorithms scanning the image pixels for vehicle 

identification and tracking (Azevedo et al. 2014). 

Salvo et al. (2014b) discussed about the computation of gap acceptance at 

an urban intersection using videos of a probe vehicle collected from an UAV flying 

at an altitude of above 60 meters. They adopted UAV due to its non-invasive nature 

on driver’s behavior during the data collection. They also mentioned that high 

spatial resolution, rapid operation, and reduced operating costs could be obtained 

using the UAVs. Ground control points were placed in the intersection and used to 

estimate the accuracy of the images. The accuracy of vehicle trajectory recognition 

from this methodology was estimated by comparing the vehicle speed values 

obtained from the GPS probe and from the UAV videos. After obtaining a 

satisfactory match, these videos were used to obtain the acceptable gap adopted by 

the drivers merging from secondary street to main road at an urban intersection 

(Salvo et al. 2014b). 

Zheng et al. (2015) provided their work on identifying driving patterns of 

Driving While Intoxicated (DWI) drivers in real time using Unmanned Aircraft 

System (UAS). The vehicle trajectories are identified from the aerial videos to spot 
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the erratic drivers. This allows for proactive regulation of erratic driving by the law 

enforcement officials, thereby reducing DWI-related accidents (Zheng et al. 2015).  

Barmpounakis et al. (2016) stated that the collection of visual information 

over larger networks, such as transportation infrastructure, can be challenging. A 

comparison of different attributes common between the use of static cameras, and 

cameras mounted on Manned Aerial Vehicle (MAV) and Unmanned Aerial vehicle 

(UAV) was provided in their works. In their opinion, installation of stationary 

cameras fail to provide a clearer idea during an unexpected emergency and can be 

costly in the end. They mentioned that using a Manned Aerial Vehicle (MAV) for 

localized inspections such as an accident area might not be feasible due to the cost 

constraints involved in it (Barmpounakis et al. 2016).  

UAVs offer a potential alternative to the earlier practices due to the less 

time required to be airborne compared to a MAV and operation flexibility offered. 

Unmanned aerial vehicles score over the stationary cameras as they provide 

different views to understand more about the infrastructure conditions prevailing 

on the ground. Unlike the MAVs UAVs can also facilitate a low cost localized 

inspection be it an intersection or an accident/traffic jammed area (Barmpounakis 

et al. 2016). Chow (2016) discussed about dynamic UAV-based traffic monitoring 

using programming algorithm based on Least Squares Monte Carlo simulation 

(Chow 2016). 
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Babinec and Apeltauer (2016) considered various errors that can be induced 

into the data collected by cameras mounted on UAVs and evaluated the position 

accuracy of objects identified from the aerial data. Later this approach was used for 

traffic surveillance and monitoring. Based on Monte Carlo Sampling, they 

developed an accuracy measuring tool (Babinec and Apeltauer 2016). 

Guido et al. (2017) identified the versatility of UAVs in monitoring traffic 

data from videos. They developed an algorithm to identify the vehicles and 

validated it using a probe vehicle equipped with high accuracy GPS and a control 

point on its roof. Ground Control Points (GCPs) placed homogeneously around the 

area helped in correcting the orientation of captured images. All frames from the 

video were stabilized, converted into grayscale, and then Gaussian-blurring filter 

was applied to smoothen the video frames. The algorithm was trained by inputting 

set of true and false images containing the probe vehicle. The speed of the probe 

vehicle from the aerial video and the GPS sensor were compared with time and 

have exhibited close match (Guido et al. 2017). 

Zeng et al. (2017) developed a hybrid approach for microscopic models to 

simulate pedestrian behavior at signalized intersections using aerial video data 

collected in Beijing, China. Trajectories were extracted from the data collected 

using camera mounted on a quadrotor unmanned aerial vehicle (UAV). Kalman 

filtering (KF) technique was used to correct the errors in the raw trajectory data. 

The coordinates in the videos were then georeferenced using featured points. The 
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model developed was calibrated and compared with two competitive models (Zeng 

et al. 2017). 

Khan et al. (2018) presented their work on automatic identification of traffic 

flow and shockwave at a signalized four-legged intersection using UAVs. They 

detected the shockwave based on identifying the critical points in the vehicle 

trajectory where the motion of the vehicle changes significantly. They also 

monitored through traffic behavior in addition to the turning traffic (Khan et al. 

2018). Kaufmann et al. (2018) conducted research on identifying moving 

synchronized flow patterns in over-saturated city traffic from the aerial data. UAV 

was used to record various situations in city traffic and vehicle trajectories were 

extracted (Kaufmann et al. 2018). 

2.5.2 UAV Applications in Bridge Studies 

Metni and Hamel (2007) monitored bridges using UAV systems and developed a 

strategy for autonomous flight using orientation limits (Metni and Hamel 2007). 

Michigan Tech Research Institute (MTRI) collaborated with Michigan DOT 

(MDOT) and used five different UAV platforms to evaluate two bridges, two pump 

stations, two traffic sites, and a roadway asset site. Figure 2-24a shows the rotary 

type UAV (Bergen Tazer 800 hexacopter), employed by Michigan Tech Research 

Institute (MTRI) with a camera attached for aerial survey of pavements and bridges. 

Figure 2-24b shows the captured high-resolution image from a Tazer 800 UAV 

fitted with a Nikon D800 DSLR camera (Brooks et al. 2015). They reported that 
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high-resolution pavements were captured by using a Bergen Hexacopter paired 

with optical and thermal sensors (Figure 2-25).  

Two axis gimbals assisted in maintaining the same camera direction during 

the UAVs movements. In addition, the stability from using six rotors in the 

hexacopter also contributed to higher quality data. When the connection between 

the controller and the hexacopter is lost, the on-board GPS feature guides the 

hexacopter back to the starting point at a travel height of 150 feet (Brooks et al. 

2015).  

    

(a)                                                      (b)       

Figure 2-24. Aerial Data Collection (a) UAV with a Digital Camera; (b) High-

Resolution Image from UAV Camera (Brooks et al. 2015) 
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  (a)                                                        (b) 

Figure 2-25. Aerial Bridge Deck Inspection (a) A Bergen Hexacopter Collecting 

Bridge Condition Data and (b) Stereoscopic Imagery (Brooks et al. 2015) 

MTRI also demonstrated the effectiveness of using a rotary wing, DJI 

Phantom 2, for aerial surveys in challenging areas, such as the locations beneath 

bridges and in confined spaces (Brooks et al. 2015). The camera (with the ability 

to take pictures and record videos to micro SD cards with a real-time video link of 

up to 900 feet) was mounted on the DJI Phantom Vision 2 UAV and used to create 

photographic inventories of sites such as bridges with hard-to-reach areas. The 

assessments of the UAV studies, as shown in Figure 2-26, clearly show signs of 

significant distress in the form of spalling and cracking in the bridge. The results 

were analyzed and used to identify structural defects (Brooks et al. 2015). 
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        (a)         (b) 

Figure 2-26. Bridge Condition (a) Bridge Selected for a UAV Assessment, and (b) 

A High-Resolution Image Showing Spalling and Cracking (Brooks et al. 2015) 

The Asphalt magazine also stated that Michigan DOT (MDOT) utilized 

UAVs to conduct bridge deck inspection. The benefits observed include the 

increase in safety for their working personnel, and a reduction in time and cost. By 

using the UAV to conduct the bridge deck inspection in lieu of standard procedures, 

MDOT saved around $4000, roughly 90% of the cost invested in standard 

procedures (Asphalt Institute 2016). 

2.5.3 UAV Applications in Rail Corridor Studies 

Railroad planning requires collecting geographical, meteorological, and other data 

that could possibly influence decisions regarding selection, construction and use of 

rail routes. Due to the rapid development in software platforms and reduction in the 

cost of components such as autopilots for autonomous flights, cameras, and 

batteries, the availability of UAV-based studies is increasing in commercial 

markets.  
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Inspection of the rail corridor is needed to identify conditions (e.g., 

washouts, rail buckling, and debris accumulation) that could potentially affect the 

safe operation of the rail line. In addition, it is important to detect encroachment on 

rail right-of-way. Such data collection becomes more difficult, especially in remote 

and inaccessible areas. UAVs must be operated within visual line of sight (VLOS) 

and this poses additional challenges to UAV operations, especially in remote and 

difficult to access areas. 

The use of UAV techniques could provide rapid, cost-effective and high-

quality survey data that could be immensely helpful, especially for inspection of 

railway routes that pass through hilly terrain and have long uninhabited stretches, 

which is usually the case. In addition, as railroads pass through urban areas, UAV-

CRP studies can gather fast and accurate information regarding right-of-way 

acquisition. Fast and accurate surveys of larger railroads can be performed using 

fixed wing and full-sized UAVs, which would reduce the freight and train delays, 

thereby avoiding disruptions to the rail’s routine services. 

The drone industry is observing a continuous advancement in its technology 

and associated on-board sensors (Stewart et al. 2014). This enables rail inspectors 

to use data gathered by the drone to identify defects rather than physically access 

the track. In colder regions, UAVs can be equipped with infrared sensors and their 

images can be used to check the switch point heating systems on rail tracks as 

shown in Figure 2-27 (Stewart et al. 2014). For instance, the Dutch railway 
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company, ProRail, is using infrared images collected from drone-based cameras to 

detect frozen switching points; which gives them the information they need to stop 

rail traffic before accidents can happen (Stewart et al. 2014).   

 

Figure 2-27. Infrared Images from Drone-Based Camera to Detect the Freezing of 

Switching Points (Stewart et al. 2014) 

It should also be noted that the manual procedure of checking the switch 

points is labor-intensive and can jeopardize the safety of the employees (Stewart et 

al. 2014). In contrast, the drones’ camera-based examinations are not only faster, 

but require less boots on ground and are injury free since data is remotely collected 

and processed in the office. Thus, no employees are put on tracks to do actual 

physical inspections (Stewart et al. 2014). 

Germany’s national railway company Deutsche Bahn spent over £6 million 

to remove graffiti on train depots and maintenance facilities. To help prevent such 
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incidents in the future, the company conducted trial studies using mini drones 

equipped with infrared cameras to detect trespassers and vandals (Stewart et al. 

2014). Such UAV-based inspections can improve and enhance the safety of railway 

tracks and other railway facilities. 

Recently, BNSF Railway collaborated with the  Federal Aviation 

Administration (FAA) to assess the damage to railroad tracks from the record 

flooding that hit Texas and Oklahoma in 2015. Rail route inspection, as shown in 

Figure 2-28, was carried out by flying the unmanned aerial vehicles mounted with 

high-definition video cameras over the flood-affected areas. The high-definition 

video feed clearly showed areas where the rail line was washed out and locations 

where excess debris was collected at the foundation of rail bridges (The Association 

of American Railroads 2015). In addition, the authorities could examine the 

condition of bridges and quickly deploy maintenance crews to repair damage once 

the floodwaters receded (The Association of American Railroads 2015). 
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Figure 2-28. BNSF Railway (Bryan 2015) 

Other potential areas of UAV application are in the inspection of rail routes 

in North America, especially in remote areas where a physical inspection becomes 

tough in winters due to harsh climatic conditions. BNSF railways are the second 

largest freight railroad network in North America with approximately 32,500 miles 

of track to manage and maintain. In May 2015, FAA announced a new project, the 

Pathfinder program, in collaboration with three leading U. S. companies, namely, 

Cable News Network (CNN), PrecisionHawk, and BNSF railways  (Perlman 2017). 

Accordingly, CNN works with Georgia Tech University to research visual line of 

sight (LOS) operations for safely news gathering in urban areas; PrecisionHawk 

researches agricultural operations for rural areas, flying beyond visual line of sight 

(BVLOS); and BNSF railways explore command-and-control challenges of using 
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UAV to inspect the rail system infrastructure, beyond the visual line of sight  

(Perlman 2017). 

In 2015, as a part of FAA’s Pathfinder program, the BNSF railways 

collaborated with Insitu Inc. to conduct inspection of rail infrastructure beyond the 

visual line of sight using UAV. Figure 2-29 shows a photo of the ScanEagle (UAV) 

launched at a site near Vaughn, New Mexico to inspect 140 miles of rail track to 

find any washouts and bridge damage to rail infrastructure (Insitu 2018). The BNSF 

is currently working to test a complete system for BVLOS, including all the 

hardware, platforms, software and sensors needed. According to the report by 

Association of American Railroads (2015), BNSF’s role in the Pathfinder Program, 

involves researching the use of long-range drones, which have the ability to fly 

hundreds of miles from their operators (The Association of American Railroads 

2015). 

 

Figure 2-29. BNSF and Insitu Inc. Launching the ScanEagle UAV for Rail 

Inspection (Insitu 2015) 
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Recently in Turkey, a 85-mile long and 1800-ft wide corridor (Figure 2-

30a) passing through plains, hills, mountains, and urban areas meant for a high-

speed rail network was efficiently surveyed using a fixed-wing UAV shown in 

Figure 2-30b. The project was subjected to all types of weather conditions and 

was completed within a small turnaround period of 2 months. The project also 

involved establishing many ground control points as part of the aerial survey to 

achieve the desired high precision required in railway planning (Figure 2-30c). 

Employment of the UAV technology proved to be quick and enabled the 

delivery of the final report within three months of project initiation. The project 

also satisfied the client’s minimum accuracy requirement (Diner 2015). The aerial 

survey also avoided the danger of personnel working along trackside thereby 

preventing any personal harm; hence, the UAV technique improved safety. 

    

(a)                                                           (b) 
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(c) 

Figure 2-30. Aerial Rail Corridor Inspection (a) Railroad Corridor Between 

Ankara and Azmir, Turkey; (b) Fixed Wing UAV Used in Aerial Survey; and (c) 

Worker Establishing Ground Control Points (Diner 2015) 

UAVs can also be deployed for close visual inspection tasks involving the 

rail network. High volume and low height rail infrastructure inspection is 

typically done by crews working under line possession. The use of UAVs to carry 

out visual inspection reduces the need for interruption to rail services and provides 

detailed imagery from an elevated viewpoint, which can identify defects that may 

not be visible from ground level. For low-volume, high-rail infrastructure such as 

viaducts and bridges, traditionally the inspection access method would be rope 

access, scaffolding or elevated platforms. The use of UAVs to inspect these 

structures saves time and expense, and removes inspection personnel from the 

inherent risk in working at great heights (Stuart 2015). 
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2.5.4 UAV Applications for Volumetric Studies  

Accurate volumetric calculations are required to determine rock cuts along the 

railroads. Traditional surveying methods are laborious, time-consuming, and 

subjects surveyors to safety risks. The resultant surveys are also less accurate. 

Lightweight UAVs can be flown at lower altitude and because they are equipped 

with a variety of sensors, including digital camera to record high quality still 

images or high definition videos taken from different angles, their accuracy is 

greater than previously possible. Furthermore, the stereo-imagery can be used to 

generate three-dimensional (3D) point clouds and create a digital surface model 

(DSM). 

Appropriate image analysis software can be used to process and visualize 

the overlapping imagery data as accurate 3D models of the area of interest. Both 

rock cuts and stockpile volume can be accurately determined from this technique 

in a relatively safer, cheaper, faster, and more accurate manner. However, the 

accuracy with which measurements can be obtained from such 3D models will 

depends on resolution of images taken. GeoCue Group, a software solution 

company, has recently developed new image processing algorithms to create more 

accurate 3D models that can prevent overlapping images of stockpile or rock cut 

areas. From these 3D models, accurate volumetric computations can be done 

using software developed by GeoCue Group. 
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2.5.5 UAV for Other Civil Engineering Applications 

Niethammer et al. (2012) used a radio-controlled mini quadcopter UAV mounted 

with a visible range camera to monitor a landslide in Super-Sauze, France. They 

evaluated the capability of UAVs to capture desiccation cracks, fissures, and 

displacements on the landslide surface. The images were processed and stitched to 

obtain an orthomosaic and digital terrain models (DTMs) of the landslides 

(Niethammer et al. 2012). Horizontal displacement of around 7 to 55 m was 

obtained by comparing two orthomosaics of the landslide data collected in 2007 

and 2008. Niethammer et al. (2012) acknowledged the need to research on reducing 

the time required for data processing. 

Construction site, monitoring is one of the common application of UAVs in 

civil engineering field. Figure 2-31 shows the view from the UAV that was used to 

monitor a construction site on a closed section of highway. This inspection was 

performed to assess transportation assets and traffic conditions (Brooks et al. 2015). 
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Figure 2-31. View from the UAV Used for Construction Site Monitoring (Brooks 

et al. 2015) 

UAVs also find their applications in the construction management tasks 

specifically for project progress monitoring, job site logistics, evaluating safety 

conditions, and quality inspections. Irizarry and Costa (2016) discussed about 

various applications and the Unmanned Aerial Systems (UAS) regulations in Brazil 

and United States. A DJI Phantom 2Vision, a low cost UAS, was used by Irizarry 

and Costa (2016) for the image collection of construction sites. Project personnel 

working at the site were provided with a questionnaire consisting of four sections 

related to demographic information, reviewing the information from the asset 

images, level of agreement about the usefulness of the asset images, and 

comparison with current methods. They provided a rough cost estimate of tasks 

involved with the unmanned aerial flight operations. Prior to the new regulations 

by FAA in 2016, obtaining a Certificate of Authorization (COA), to fly in the 

restricted airspace, was charged around $6000 to $9000 by the data collection 
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operators per COA. They also recommended the importance of educating the 

workers about the use of these aerial data collection methods, as it was observed 

that some of the workers stopped working to view the flying aircraft (Irizarry and 

Costa 2016). 

Tatum and Liu (2017) presented their work on using UAVs that are reliable 

and cost effective within the construction industry. Construction companies capture 

aerial photographs of the construction activity for not only monitoring the project 

progress but also for innovative advertising techniques. They discussed about the 

previous works done using UAVs for surveying, inspection, and safety/security 

monitoring. They also circulated a survey questionnaire to 69 companies to obtain 

a conscience on different topics like year-of-UAV-adoption, applications of UAVs, 

cost of using UAVs, and risk mitigation using UAVs. The outcome of those surveys 

indicated 57% of the respondents indicated that using UAVs had provided cost 

avoidance and 42% of the respondents agreed that using UAVs had a positive 

schedule impact on their projects (Tatum and Liu 2017). 

Howard et al. (2018) provided the details regarding the use of UAVs for 

military, recreational, public sector, commercial, and construction purposes. Due 

to the relatively newness of the UAV technology, assessments of safety during its 

field use were not on par with the technological advancements. There might be 

some work place hazards caused and avoided using UAV, hence an awareness 

about these details would help in effective implementation of this technology. They 
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proposed that a database of the UAV related injuries would help in mitigating those 

situations in the future considering it advantages of providing worker’s safety in 

many ways (Howard et al. 2018). 

Tziavou et al. (2018) presented their work on aerial mapping of a coastal 

area using fixed wing and rotary wing UAVs. They concluded that the level of 

detail of geological maps obtained from the aerial orthomosaics is comparable with 

that of the traditional methods. UAVs took five times less time to collect the same 

detail compared to that of traditional ways. They also observed that the data 

collected from rotary wing UAV is more detailed relative to that of the fixed wing 

aerial data (Tziavou et al. 2018). 

2.6 SPECIAL AREAS OF UAV APPLICATIONS  

According to previous studies on pavements, several factors, including accuracy of 

the data, quality of data and data management form, must be considered for optimal 

UAV based pavement data collection. Some of these findings are provided below: 

2.6.1 Accuracy of the Data 

The quality of images changes with respect to the camera, drone position, 

conditions and other parameters are all important and this information must be 

correct. According to Ellenberg et al. (2015) the accuracy of the camera can be 

evaluated by taking a white paper containing lines of a known thickness. Images of 

the paper are placed at varied distances from the UAV and are captured by a camera 
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mounted on the UAV and the thickness of lines in the captured image are compared 

to the original thickness to measure the accuracy of the camera.  

Images captured by UAVs might exhibit non-uniform stretching of the 

image, also known as distortion. The curved appearance of actual straight lines in 

the captured image showcases the radial distortion. This can be corrected using the 

multi-plane calibration method using images in distinct orientations placed at 

various distances away from the UAV & camera assembly. Keeping the camera 

parameters constant, these corrections will then be applied to the images collected 

in the field (Ellenberg et al. 2014). 

2.6.2 Quality Management of Field Surveys 

Quality management of UAV-based field surveys is a key aspect when dealing with 

highly variable pavement data. Shekharan et al. (2006) points out that agencies 

without a quality management plan tend to under or overestimate maintenance and 

rehabilitation needs (Shekharan et al. 2007). Pierce et al. (2013) asserts that 

collecting high quality data avoids the costs associated with inferior data quality. 

Additional expenditure incurred due to poor quality data involves recollecting, 

reprocessing, or rerating data costs (Pierce et al. 2013). Effective pavement 

management systems depend on the quality of the pavement condition data 

collected. Quality data assists in making timely decisions regarding rehabilitation 

work and reduces the life cycle cost of the pavement. 
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According to McGhee (2004), agencies must formulate quality assurance 

plans that include qualification and training for the data collection personnel, 

calibration and maintenance of the equipment, validation sections, and additional 

checks. Sufficient care needs to be taken while collecting data using unmanned 

aerial vehicles.  

Rathinam et al. (2008) discussed the discrepancies in the data collected by 

the UAV following a predefined set of GPS points called waypoints. They 

demonstrated the efficiency of UAV data collection by assembling a positioning 

sensor. It generated a closed loop response by comparing the cross-sectional profile 

generated in the learning step with the real time scanned lines of the road surface. 

This feedback response assists in regulating the location error of UAV with respect 

to the road surface, while collecting the data. Hence, positioning sensors are needed 

if waypoints are sparsely distributed. Developing UAV-CRP technology, based 

upon quality assurance plans (Figure 2-32) may avoid the costs related to the poor 

data quality.  
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Figure 2-32. Data Quality Management Cycle (Pierce et al. 2013) 

2.6.3 Data Management. 

Thousands of gigabytes (GB) of data generated after surveying road sections can 

overload a data acquisition system in place. Efficient data management systems are 

required on board as the amount of data increases with the quality of the images 

collected. Most of the time, a dedicated work place is used to store data about data 

(i.e., metadata). It describes the content, quality, location, condition, and other 

characteristics of the data.  Sometimes metadata (i.e., other relevant information 

regarding the road section) may give an estimate about the possible cause of 

specified distress and assist in arriving at possible solutions. Great volumes of 

generated data can be handled efficiently by equipping the system with higher 

processors. 
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 Notably, the above three factors related to data and quality of UAV surveys 

are crucial for proper characterization of pavement distress conditions that will be 

input into the pavement management information system (PMIS) database. As 

noted earlier, condition rating scores need to be determined for the entire roadbed 

miles and this condition score needs to be collected once a year. Due to cost and 

time limitations posed by this requirement, agencies rate one lane for each roadbed 

and considers this lane representative of all lanes for the specific roadbed.  

If proven as a viable tool for pavement condition rating surveys from the 

present research investigations, the present UAV studies offer an excellent 

opportunity for DOTs to overcome some of the present limitations. As this tool can 

provide survey results in a quick and safe manner and the data can be analyzed and 

stored in electronic format to be checked as needed. Also, since the data is collected 

on an annual basis, the results could show the prevailing conditions at a site that 

might have contributed to pavement distresses in a more systematic manner and 

this will certainly enhance our understanding of pavement performance (materials, 

environment and loading conditions) thereby leading to better strategies of 

pavement management.  

But, huge amounts of data generated would be a disadvantage if proper data 

management policies are not followed. There are many commercial cloud data 

storage platforms offering services to handle large data, exploring those options by 

exercising discretion in selection would prove to be very helpful. 



 

108 
 

2.7 DISASTER MANAGEMENT AND RECONNAISSANCE SURVEYS 

In the past decades, frequency of disasters have been on the rise. There is a need 

for adopting strategies that are efficient and safe. Hurricane is one of the major 

disasters where UAVs could be used to efficiently collect the data. 

Storms can form easily over warm water bodies located near to the equator. 

The surrounding air swirls in to compensate for the lower air pressure created by 

the rise of warm air above those water bodies. This wind flow creates an eye and 

gradually grows into a storm. When the speed of the outer rotating winds of a storm 

attain a minimum of 39 mph, it is termed as a Tropical Storm. When the speed of 

the winds exceed 74 mph, it is termed as Tropical Cyclone or Hurricane (Erickson 

2018).  

Tropical Cyclones originate frequently from the Atlantic basin, and, less 

frequently, from the central North Pacific Ocean. Their names are selected from a 

six-year rotating list of names, updated and maintained by the World 

Meteorological Organization (WMO) (NOAA 2018). Hurricane is classified by the 

Maximum Sustained Wind Speed defined as the speed of the winds that occur for 

a minimum time period of 1 minute and at a standard meteorological altitude of 10 

m (33 ft) in unobstructed area above the ground. Hurricanes are classified into five 

types basing upon the Maximum Sustained Wind Speed shown in Table 2-2 

(Landsea 2006). 
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Table 2-2. Saffir-Simpson Hurricane Wind Scale (Erickson 2018) 

Category Wind Speed (mph) Damage Level Storm Surge (feet) 

1 74-95 Minimal 4-5 

2 96-110 Moderate 6-8 

3 111-129 Extensive 9-12 

4 130-156 Extreme 13-18 

5 157 or higher Catastrophic 19+ 

 

The hurricane mechanism feeds on the warm moist air as shown in the 

Figure 2-33. These hurricanes die down as they move over to the land, due to the 

unavailability of the same energy provided by warm ocean water bodies. But most 

of the cases, the hurricane intensity would have helped it to travel great distance 

over land and already resulted in great damage before it ceased. There are satellites 

monitoring the occurrence of these natural disasters to warn and reduce the 

enormity of loss. Two Geostationary Operational Environmental Satellites (GOES) 

jointly managed by the NASA and the National Oceanic and Atmospheric 
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Administration (NOAA) to assist the meteorologists in observing and predicting 

the weather (Erickson 2018). 

 

Figure 2-33. Mechanism of Hurricane from the Slice of Eye (Erickson 2018) 

Category 4 Hurricane made landfall in Houston Metropolitan area on 

August 25, 2017 and inflicted serious damage. The diameter of the hurricane was 

280 miles and wind speed was around 130 mph, as shown in Figure 2-34. Though 

the winds died down in few days, the Rainfall-triggered flooding had caused 

catastrophic damage due to inundation (CNN News 2017). This has been recorded 

as the second most costly hurricane to make landfall in the United States after 1900. 

Due to this being once in a 500-year flood, two reservoirs exceeded their limit and 

breached causing inundation of most parts in Houston. Some areas in the Houston 

metropolitan area witnessed more than 50 inches of rain, according to National 

Weather Service (Gallagher et al. 2017). 
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Figure 2-34. Hurricane Harvey’s Landfall over Rockport, Texas, as a Category 4 

Storm (Wurman and Kosiba 2018) 

A geophysicist also claimed that the city sank by couple of centimeters due 

to the weight of flood water over one third area of Houston (Huber et al. 2018). 

More than 13 million people and 185k homes were affected by the flood water 

(Gallagher et al. 2017). When the floodwaters receded, all the sodden furniture, 

clothing, and other household objects piled up on the streets as debris. It was 

approximated to 8 million cubic yards of debris in Houston alone. The debris need 

to be cleared as it poses a risk to public health. Although Houston did not experience 

the following Hurricane Irma but its rescue efforts suffered due to the diversion of 

resources (CBS news 2017). 
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2.7.1 UAVs for Disaster Management  

The potential of UAVs as an inspection tool during and after a disaster is enormous, 

as it compensates for the shorthanded city agencies by efficiently collecting the data 

in a safe and quick manner. 

Ezequiel et al. (2014) demonstrated the applications of UAVs for 

assessment and infrastructure development after a disaster. They provided a 

detailed workflow of data collection that includes flight planning and data 

acquisition, data processing, and data delivery. Case study data collected during 

different natural disasters were provided. Image analysis was used to differentiate 

the coconut plantations from the forest area thereby providing an assessment of 

land use in the Samar and Leyte islands. However, the accuracy is questionable as 

there was no ground truth measurements established in this research (Ezequiel et 

al. 2014). 

2.8 SUMMARY 

The chapter described UAVs, remote sensing, and photogrammetry-related 

information in the first few sections. These are followed by various UAV 

applications in many civil infrastructure fields, and all these early studies provided 

some preliminary information for present field studies. The main idea of this 

literature review is to show that UAVs can provide quick survey results for bridge, 

pavement, railway tracks, runways, and other infrastructure in a safe and quick 

manner. This means that this methodology can provide a valuable tool for TxDOT 



 

113 
 

for performing annual field surveys with limited personnel; hence, UAV-CRP 

technology can result in substantial savings for the state DOT in these survey-

related expenses. Still, there are some research-related questions on the validity of 

the UAV interpreted results versus traditional measurements. These questions can 

be answered with more field surveys and analyses of results in a broader scale 

analysis. 
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CHAPTER 3: TOTAL SYSTEM ERROR ANALYSIS 

3.1 INTRODUCTION AND BACKGROUND 

Calibration defines the accuracy and quality of measurements recorded by a device 

(Tempcon 2018). Like every measurement system, calibration checks, including 

measuring the accuracy of the UAVs and the visible light camera assembly, need 

to be thoroughly checked and evaluated. Unfortunately, sparse literature details 

were available on UAV-CRP studies, partly due to this being a relatively new 

method for an advanced infrastructure health monitoring application and therefore 

limited by the adoption issues in transportation infrastructure monitoring due to 

regulatory concerns.  

A comprehensive set of calibration procedures using the sparsely available 

literature as well as discussions with subject matter experts on UAVs, surveying, 

photogrammetry and civil infrastructure have been devised as part of this research.  

The goal of these calibration checks is to minimize any uncertainty in imagery 

measurements by ensuring the accuracy of the total data collection system thereby 

assisting in high-quality infrastructure data collection (Congress et al. 2018).  

This chapter covers the need for comprehensive calibration checks for 

UAV-CRP technology and parameters that are necessary for infrastructure 

inspections. The following sections provide the objectives and methodologies 

followed to obtain data results. The methodologies contain step-by-step guidelines 

for performing various calibration checks in both laboratory and field based UAV-



 

115 
 

CRP studies. Subsequently, the data results are analyzed and used to obtain best 

field practices conducive to obtaining high quality infrastructure monitoring data. 

These calibration checks and the UAV-CRP technology results are proven valuable 

in obtaining high quality three-dimensional (3D) models of civil infrastructure data 

as is evident from pavement infrastructure data provided in the later sections. 

3.2 UAV-CRP CALIBRATION OBJECTIVES AND CHECKS 

Camera calibration parameters, including focal length of camera lens and principal 

point offset, as well as radial and tangential distortion coefficients, are often 

considered and evaluated using a sufficient number of ground control points. These 

calibration parameters were computed by operating UAVs at different field 

environmental conditions. Ground checkpoint coordinates were considered and 

used in calculating the root mean square error (RMSE) values in latitude, longitude, 

and altitudes of original point locations in the field and their respective locations in 

the generated model. These comparisons are used to estimate and evaluate the 

accuracy of the generated three-dimensional dense point cloud model.  

Figure 3-1 presents UAV equipment and accessories used in this research, 

which includes an Aibotix hexacopter UAV system and several accessories such as 

the GNSS surveying unit and a high definition camera attached with 20 mm lens 

(Figure 3-1). Though all the equipment used in this UAV research are high quality 

and off-the-shelf products, still there is a necessity to test the compatibility of these 

equipment when involved with the aerial infrastructure monitoring and field 
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assessment. Before collecting the infrastructure data, a comprehensive set of checks 

were planned and executed using the total system comprising of the UAV and other 

accessories to evaluate the quality of data provided by the UAV-CRP technology. 

                                                                

 (a) (b) (c) 

Figure 3-1. UAV-CRP Technology Accessories (a) Hexacopter (b) GNSS Unit (c) 

Digital Camera with 20mm Lens 

In the UAV-CRP studies, imaging analysis is typically performed on the 

infrastructure photographs collected from the UAV platform. Images collected are 

then used to develop 3D infrastructure models. It is necessary to check and evaluate 

various parameters that will influence UAV based image collection as the final 3D 

models might be influenced by the imagery collection. These parameters include 

geotagging of the images, camera parameters such as focal length of the lens and 

monitoring of environmental field conditions including thermal and wind 

conditions at the site, as well as other image related distortion errors. A 

comprehensive understanding and then evaluation of any potential errors would 

help in assessing and ultimately enhancing the quality of image collection that will 



 

117 
 

provide a complete understanding of the infrastructure imaging analysis and health 

monitoring assessment steps performed subsequently. 

3.2.1 Equipment Details 

3.2.1.1 Aibot X6 V2 Hexacopter by Aibotix 

Figure 3-2 presents the Aibot X6 system produced by Aibotix and Leica 

Geosystems distributes and provides technical assistance. Table 3-1 provides a 

summary of technical features of the X6 presented here. 

 

Figure 3-2. Components of Aibot X6 V2 Hexacopter (Source: Leica Geosystems) 
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Table 3-1. Technical features of Aibot X6 V2 hexacopter (Source: Aibotix) 

Length/width 1.05 m (3.4 ft) 

Height 0.45 m (1.5 ft) 

Construction Carbon fiber composite (CFK) 

Dead weight 3,400 g 

Take-off weight 4,600 g – 6,600 g 

Maximum payload * 2,000 g – 3,200 g 

Maximum speed * 40 km/hr 

Maximum flying height * 3,000 m density altitude 

Flight time * Up to 30 minutes 

Operating temperature -20 to 40 degrees Celsius 

Positioning GPS/RTK 

Control Manual and autonomous 

Batteries 2x 5,000 mAh Lithium-Polymer 

*Dependent on payload and conditions 

The Aibot X6 hexacopter is designed for a wide range of applications 

including surveying, infrastructure monitoring, precision agriculture and other 

areas. Underneath the hexacopter, green LED lights in the front and red LED lights 

in the back assist in determining its orientation during flight. It has six motor and 

propeller pairs enclosed in a lightweight composite airframe to handle high winds. 

It also consists of ultrasonic and barometric sensors that assist in maintaining 
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altitude hold at a safe distance above the ground. The LVP antenna relays the video 

signals to the digital live video display unit (DLVP). Top and bottom servo gimbals 

on the copter accommodate and hold different types of sensors. The multi-cable 

geo-box triggers the camera in accordance with either the flight plan or 

intervalometer. The X6 has four legs that assist in takeoff and landing operations. 

3.2.1.2 Trimble R8 GNSS unit 

This unit consists of a receiver, as shown in Figure 3-1b, compatible to work in 

base only, rover only, or base and rover configurations. Coordinates of the ground 

control and check points are obtained by post-processing the collected data at the 

respective ground points.  

3.2.1.3 Sony Alpha 6000 

A normal DSLR camera, as shown in Figure 3-1c, was used in this research and the 

settings adopted during the data collection are presented as follows: 

 Lens Focal Length  :   20.0 mm 

 Shutter Speed   :  1/800 

 Image Sensor Width  :   23.5 mm 

 Image Sensor Height  :   15.6 mm 

 ISO    :   Auto 

 Aperture    :   f2.8 

The camera is triggered by the multi-cable geo-box depending upon either 

the flight plan or the intervalometer. Images and videos can be recorded by 
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plugging the HDMI cable into the camera. All inspection features of the 

infrastructure can be monitored in real-time using the Digital Live Video Display 

unit (DLVP) positioned at the ground station.  

3.2.2 Camera Calibration Parameters 

Most of the modern cameras follow the simple pinhole camera model where the 

light reflected from the inspecting object enters through the aperture and forms a 

sharp image on the sensor (Scratchapixel 2.0 2018). Focal length (f), as shown in 

Figure 3-3a, is defined as the optical distance from the point where light rays 

converge at the lens to the camera sensor (Berkenfeld et al. 2018; Martin 2012). 

Two types of lenses, prime and zoom lens, are categorized by constant and varying 

focal lengths, respectively. Theoretically, the principal point is the intersection of 

the optical axis and the center of the camera sensor, as shown in Figure 3-3b, and 

also the origin of the camera coordinate system (Simek 2013). The deviation of the 

actual principal point from the theoretical principal point is termed as the principal 

point offset (Cx, Cy). 
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(a) 

 

(b) 

Figure 3-3. Calibration Parameters (a) Focal Length and (b) Principal Point  

Due to the variance in manufacturing and positioning of the lens, there are 

two types of distortions including radial and tangential distortions, respectively. 

Radial distortion can be observed when the straight lines appear curved in the 

images (Mathworks 2017; University of Cologne 2017). There are two types of 

radial distortion: barrel distortion (or positive radial distortion) appears when lines 

appear to curve inwards, and pincushion distortion (or negative radial distortion) 
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appears where lines appear to curve outwards, as shown in Figure 3-4 (University 

of Cologne 2017).  

Barrel distortion occurs when the field of view of lens is larger than the size 

of the camera sensor, making straight lines curve inwards in an attempt to fit the 

information. Pincushion distortion occurs because the field of view of lens is 

smaller than the size of the camera sensor, curving straight lines outwards in an 

attempt to fit the information (Mansurov 2018). Tangential distortion, on the other 

hand, occurs when the lens, sensor and vertical plane are not in parallel alignment, 

as shown in Figure 3-5 (Mathworks 2017). Radial distortion coefficients (k1, k2, 

k3); and tangential distortion coefficients (p1, p2) are the calibration parameters 

considered related to distortion. 

  

Figure 3-4. Different Radial Distortion Scenarios 
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Figure 3-5. Different Tangential Distortion Scenarios 

Camera calibration parameters related to various image features, as shown 

in Figures 3-4 and 3-5, are considered and fully addressed in both indoor and 

outdoor analyses on camera calibration parameters. Parameters addressed are focal 

length (f); principal point offset (Cx, Cy); radial distortion coefficients (k1, k2, k3); 

and tangential distortion coefficients (p1, p2). 

Ground sampling distance (GSD) can be obtained by dividing the product 

of flight height (FH) and sensor width (SW) with the product of focal length (f) and 

number of pixels per image width (NI), as shown in Eq. 2. Provided there is good 

resolving power of the camera, smaller GSD often result in better quality data. 

Hence, using a higher focal length for the same flying height, sensor dimensions, 

and number of pixels per image will result in a better GSD. Varying flying height 

will also affect the ground sampling distance thereby affecting the quality of data. 

Hence an appropriate flight altitude adopted for the corresponding level of data 

quality acquired using a camera with specific focal length. 
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GSD = (FH * SW) / (f * NI)     Eq. (2) 

According to Smith et al. (2014a), the drafting committee of the American 

Society for Photogrammetry and Remote Sensing (ASPRS)’s Positional Accuracy 

Standards for Digital Geospatial Data, the quality of the 3D models obtained from 

the imagery are not solely dependent upon focal length, principal point offset, and 

distortion coefficients. Other factors such as amount of imagery overlap, quality of 

the GPS signal, density of ground points, flight altitude, and others will also 

influence the accuracy of 3D models (Smith et al. 2014a). All of the parameters 

discussed above play an important role in the image capture as any errors of these 

parameters will result in erroneous three-dimensional point cloud models in 

subsequent engineering analysis.  

The present research addresses the variance of 3D model errors with 

variance in calibration parameters, flight altitude, overlap, atmospheric conditions, 

and location accuracy as a part of the infrastructure image measurements using the 

UAV platform. The following sections provide a holistic approach adapted by this 

research to assess individual unit performance in combination with the platform 

and external environmental variables associated in the imagery collection. 

3.2.3 Calibration Objectives 

Comprehensive calibration studies were devised and conducted on the hexacopter 

UAV and camera accessory components to address the following objectives and 
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evaluate any errors in the imagery and interpreted data collected by the UAV-CRP 

technology: 

I. To study the variation in accuracy of geotagging images  

II. To study the variation in the focal length of camera lens 

III. To study the thermal effects on camera lens 

IV. To study the nonlinear errors like radial and tangential distortion errors 

V. To evaluate the ‘Structure from Motion’ (SfM) errors, and 

VI. To analyze resolution and resolving power of the system 

Various calibration parameters related to above specific objectives are 

computed by various workflows discussed in the following sections. 

3.3 STEP-BY-STEP METHODS FOR CALIBRATION CHECKS 

Figure 3-6 presents an outline of the steps involved in the total system error 

procedures followed in this research. As a part of the analysis, researchers 

calculated calibration parameters of the camera mounted on a tripod in indoor 

ambient conditions as well as the camera mounted on UAV in outdoor flying 

conditions. On the outdoor flight collected data, the root mean square error (RMSE) 

values in latitude, longitude and altitude of the actual checkpoint positions in the 

field, and the estimated checkpoint positions of the model are calculated and 

evaluated to validate the accuracy of the 3D models of infrastructure.  

Results are analyzed and discussed with respect to flight altitude, 

atmospheric conditions, image overlap, and georeferencing. The total system error 
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analysis attempted here focuses on how the variance in different factors discussed 

by Smith et al. (2014a) influence the accuracy of the 3-dimensional dense point 

cloud model of infrastructure that is ultimately produced. All these parameters 

obtained are tabulated appropriately for comparison and accomplishing the 

objectives. 

 

Figure 3-6. Flow Chart Depicting the Step-by-Step Method for Calibration 

Checks 

3.3.1 Indoor Workflow 

Indoor workflow analysis was conducted to study the deviation of camera 

parameters from the manufacturer specifications. These analyzed results were used 

to compare and determine the acceptance of the parameters obtained in the field. 

The steps involved in indoor workflow were performed as presented in the 

following section:  
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 A minimum of three images of the checkerboard as shown in Figure 3-7 

were first captured. Agisoft Lens Software, which is based on Brown’s distortion 

model, was used for analyzing the images. This software has inbuilt algorithms to 

check the straightness of the checkerboard lines and identify the inner square 

corners of the checkerboard in the collected images. After uploading all images, 

poor quality images were screened according to a quality number provided by the 

software and removed after manual inspection. Desired camera calibration 

parameters that need to be measured were established and then a calibration 

function was executed in the image analysis. After completion of this process, 

camera calibration parameters can be exported as an XML file. These parameters 

for every iteration are tabulated for further comparisons in addressing each of the 

above objectives. 

 

Figure 3-7. Checkerboard Image Used for Indoor Calibration Analysis 
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3.3.2 Outdoor Workflow 

Outdoor analysis was conducted to address the changes in camera calibration 

parameters and then evaluate the RMSE values between latitude, longitude and 

altitude parameters of original points’ location in the field and their respective 

location in the generated model with respect to different flight altitudes, 

atmospheric temperatures, lens temperature and other factors. For this purpose, a 

parking area outside the UT Arlington campus was used as a test site location for 

operating UAV flights at three different altitudes of 40 m (132 ft), 30 m (98 ft), and 

22m (72 ft). The steps involved in performing outdoor workflow are presented in 

the following: 

The detailed procedure includes establishing ground points spread over the 

field area, as shown in Figure 3-8a.  Ground points consists of ground control points 

(GCPs) that help to build the 3-dimensional (3D) dense point cloud model and 

checkpoints (CKs) which are used to evaluate the accuracy of the 3D dense point 

cloud model generated. Availability of a high accuracy GNSS unit determines the 

number of GCPs required for achieving a dense point cloud of an infrastructure 

image with an optimum accuracy.  

A flight plan with an adequate amount of longitudinal and lateral overlaps 

was created to cover the infrastructure area under inspection, as shown in Figure 3-

8b. The image data was then collected by autonomously traversing the UAV 
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through the waypoints as shown in Figure 3-8c. Autonomous navigation facilitates 

repeatable and reproducible infrastructure monitoring data. 

In Figure 3-8c, two consecutive images captured from the drone are 

observed to have a longitudinal overlap marked in yellow and two adjacent images 

captured along two adjacent flight legs have a lateral overlap that was marked in 

purple. Three sets of longitudinal and lateral overlaps equaling to 80% & 60%, 70% 

& 50%, and 60% & 40% respectively were selected and studied for each flight 

altitude. 

The Global Navigation Satellite System (GNSS) was connected to the 

nearest base station after logging all the necessary details into the GNSS NTRIP 

caster manager (Networked Transport of Radio Technical Commission for 

Maritime Services via Internet Protocol). After the field tasks including UAV 

flights and image data collection were completed, the image data was geotagged 

using real time kinematic (RTK) based GNSS data. However, there was also 

another option for geotagging the images using post processing kinematic (PPK) 

based GNSS data. The PPK data could only be accessed after the base station is 

updated with the satellite constellation data, which typically could take couple of 

days after the flight operation. Consequently, this research used RTK data, which 

offers quick access to high quality UAV location data in real time and was accessed 

immediately after completing the UAV flight mission. 
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The geotagged images were uploaded into Agisoft PhotoScan software and 

these images were paired using a high quality alignment, as shown in Figure 3-8d. 

The text file comprising of the original coordinates of GCPs were inputted into the 

software, and these control points were then manually located in the captured 

images, as shown in Figures 3-8e and 3-8f. The model was corrected based on the 

differences between GCP locations generated in the model and the locations that 

were manually identified. The camera images were then optimized to generate the 

camera calibration parameters that were utilized during infrastructure imaging and 

related performance data collection.  

The camera calibration parameters of the model inspected at a particular 

flight altitude, overlap, atmospheric temperatures, and other parameters were 

determined and then exported as a text file for further comparisons. These 

calibration parameters were used by Agisoft PhotoScan software to process the 

point cloud generation, mesh and texture rendering, and ortho-rectification. A fully 

navigable Digital Elevation Model (DEM) was then generated along with the three-

dimensional dense point clouds, mesh and orthomosaics. Dense point cloud model 

and orthomosaic files of the model were exported in LAS and TIFF file formats, 

respectively for further processing.  

These dense point cloud and the orthomosaic files were imported into LP 

360 software, a commercial software that can be utilized to analyze three-

dimensional point clouds collected from aerial sensors. A text file comprising of 
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the actual checkpoint coordinates were imported into the software to mark the 

position of each check point on the 3D model depending upon the respective 

latitude, longitude, and altitude values of each check point.  The accuracy of the 

generated 3D model was inferred from the RMSE values calculated between 

latitude, longitude, and altitude values of the original point coordinates in the field 

and their respective locations marked manually on the generated 3D model as 

shown in Figure 3-8g and 3-8h. The pink square in the Figure 3-8h represents the 

estimated location of the checkpoint on the model generated from the imported 

checkpoint coordinates file and the green cross represents the actual location of the 

checkpoint manually located on the generated 3D model.   

The camera calibration parameters, 3D model, orthomosaic, and the RMSE 

values denoting the accuracy of the models were generated for different flight 

altitudes, overlaps, and atmospheric temperatures for comparison purposes. The 

following sections cover analysis and discussion of these results. 

         

 (a) (b)  
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          (c)                                                              (d)                    

        

(e)                                                                 (f)                 

        

(g)                                                                  (h)                

Figure 3-8. Outdoor Workflow Details (a) Process of Setting-Up Ground Points; 

(b) Flight Plan Comprising of Adequate Overlap and Waypoints Information; (c) 

Data Collection Through Autonomous Navigation and Identification of 

Longitudinal and Transverse Overlap in Aerial Images; (d) Pairing of Geotagged 

Images with High Quality Alignment; (e) Manual Location of GCPs Over the 
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Inspection Area; (f) Close-up View of Manually Marked GCP Represented by a 

Green Flag; (g) Estimated Position & Actual Position of Check Points Marked 

Over the Infrastructure Model; (h) Close-up View of Estimated Position of Check 

Point Represented by Pink Square and Actual Position of Check Point 

Represented by Green Cross 

3.4 ANALYSIS OF TEST RESULTS AND DISCUSSION  

Data collected from both workflows were analyzed in the following sections to 

address the specific objectives of performing total system error analysis:  

3.4.1 Variation in Accuracy of Geotagging Images 

Even though the UAV is navigated with the help of a geographical positioning 

system (GPS), location details provided by GPS could be less accurate. Therefore, 

there is a need for considering a more accurate way of obtaining the elevations at 

which the images were captured. Advent of the global navigation satellite system 

(GNSS) had offered research team an accurate way of estimating the location of the 

UAV while capturing images. The ability to process the GNSS location data either 

in Real Time Kinematic (RTK) or Post Processed Kinematic (PPK) offers certain 

flexibility while operating in remote areas where there could be a problem 

accessing the base station. The GNSS cap can be mounted on the UAV during the 

image capture process to facilitate the collection of both RTK and PPK based data 

for geotagging the images.  
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RTK system typically works in real-time through a radio-link established 

between the antenna connected to the GNSS cap on the UAV and a base station on 

the ground. When the base station is far from the UAV antenna to access, then a 

temporary base station will be created and connected to the main base station 

through internet. RTK assists in accurately geo-tagging the images immediately 

after the completion of the flight surveys. The data stored in the GNSS cap along 

with the PPK data from the base station is used to geotag the flight images as well. 

However, the drawback of PPK data being accessible only after couple of days, 

when satellite data was updated at the respective base station, prompted the use of 

RTK geotagging results.  

In this research, RTK geotagging accuracy was compared with the accuracy 

offered by GPS based geotagging. This helped in evaluating the type of geotagging 

method that needs to be used to obtain accurate infrastructure monitoring data. A 

lightweight rope was used so the weight of the rope will not influence the flying 

capability of the UAV hexacopter used in this research, shown in Figure 3-9. 
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Figure 3-9. Flying UAV Attached with a Lightweight Rope Marked with 1-meter 

Intervals 

A 12-meter long lightweight rope was marked at 1-meter intervals and tied 

to the bottom of the camera gimbal. The UAV was flown in manual mode to trigger 

the camera at every 1-meter altitude levels. After the UAV took off from the ground 

elevation of 152.93 m, ten images were collected at 1-meter altitude intervals. The 

captured images were immediately geotagged after the completion of the flight 

using RTK data and GPS data for comparison provided below. 

Table 3-2 presents approximate elevations (second column) above which 

the photo was taken, both RTK geotagged, and GPS geotagged image elevation 

data shown in the third, and fifth columns, respectively. The RTK data can be 
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observed to have an error ranging from -0.06 m to 0.08 m (column 4). The GPS 

geotagged data appears to have a much larger error ranging from -2.85 m to -4.63 

m (column 6). Some of the errors in the RTK geotagged data can be accounted for 

by the differences in distances between the starting point of the cable and the 

camera sensor and any slight bends in the lightweight rope due to wind at the site 

during surveys.  

Considering these factors, the accuracy levels provided by RTK geotagging 

of the images is deemed acceptable. This check has ensured that it is possible to 

collect infrastructure data and build an accurate 3-D dense point cloud models for 

analysis when RTK geotagging images are used for such model generation. 

Table 3-2. Comparison of Elevations of Images Geotagged from RTK GNSS and 

GPS Data 

Image Estimated 

Original 

Elevation 

(m) 

RTK 

GNSS 

Elevation 

(m) 

RTK Elev. – 

Est. Original 

Elevation 

(m) 

GPS 

Elevation 

(m) 

GPS Elev. – 

Est. Original 

Elevation 

(m) 

1 153.93 153.99 0.06 151.08 -2.85 

2 154.93 154.93 0.00 151.66 -3.27 

3 155.93 155.87 -0.06 152.18 -3.75 

4 156.93 156.89 -0.04 152.95 -3.98 

5 157.93 158.01 0.08 153.91 -4.02 
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6 158.93 158.96 0.03 154.68 -4.25 

7 159.93 159.92 -0.01 155.43 -4.5 

8 160.93 160.93 0.00 156.41 -4.52 

9 161.93 161.91 -0.02 157.30 -4.63 

10 162.93 162.97 0.04 158.49 -4.44 

Where RTK is Real Time Kinematic; GNSS is Global Navigation Satellite System; 

GPS is Global Positioning System; RTK Elev. is Elevation from the RTK GNSS 

data from UAV’s GNSS unit; GPS Elev. is Elevation from the GPS data from 

UAV’s GPS unit; and Est. Original Elevation is Estimated Original Elevation of 

each image with 1 meter increments above the base elevation. 

3.4.2 Variation in the Focal Length of the Camera 

The objective of this calibration check is to study and address changes in focal 

length of the camera lens and any errors associated in generating the three-

dimensional dense point cloud model from camera imagery. First, indoor data were 

collected, and the indoor camera calibration parameters were then obtained 

following steps discussed herein related to indoor workflow. Table 3-3 presents 

variations of focal length measurements in ambient indoor conditions maintained 

at 21°C (70°F). These results show that the focal length remained constant and close 

to the manufacturer focal length of 20 mm in all the indoor trials. 
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Table 3-3. Indoor Camera Calibration Parameters Obtained in Various Trials 

Parameter Trial 1 Trial 2 Trial 3 Trial 4 

f (mm) 20.23 20.23 20.26 20.27 

Cx (Pixels) −48.19 −42.69 −47.10 −47.84 

Cy (Pixels) −21.31 −31.27 −16.15 −16.28 

k1 −0.18 −0.19 −0.18 −0.18 

k2 0.17 0.18 0.17 0.16 

k3 −0.03 −0.05 −0.03 −0.02 

p1 0.00 0.00 0.00 0.00 

p2 0.00 0.00 0.00 0.00 

Where f is focal length; (Cx, Cy) is principal point offset; k1, k2, and k3 are radial 

distortion coefficients; and p1, and p2 are tangential distortion coefficients 

Outdoor calibration data collection was performed on UAV flights operated 

at three different flight altitudes, 40 m (132 ft), 30 m (98 ft), and 22 m (72 ft), 

respectively, and the outdoor camera calibration parameters were obtained using 

images collected from these flight surveys in the field. All the outdoor flights were 

performed with 80% longitudinal overlap and 60% lateral overlap, respectively. 

The atmospheric temperature values were collected from the weather applications 

available over internet. Variations in focal length with changes in atmospheric 

temperature along with their RMSE values are presented in Table 3-4.  
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Focal length values measured from outdoor studies, shown in Table 3-4, did 

not vary much at a given flight altitude, suggesting that outside prevailing ambient 

conditions during data collection did not have much influence on the camera lens 

calibration parameters. The RMSE values of the points in the generated three-

dimensional model compared to the original field points in the X, Y, and Z 

directions, are also small. 

Table 3-4. 3D Model RMSE Values Corresponding to Data Collected at Three 

Flight Altitudes Operated At Three Atmospheric Temperatures  

Flight Altitude of 40 m (132 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.42 20.71 20.47 

X RMSE (cm)  3.4 [0.11] 2.1 [0.07] 3.7 [0.12] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.4 [0.08] 

Z RMSE (cm) 4.6 [0.15] 4.3 [0.14] 5.2 [0.17] 

Flight Altitude of 30 m (98 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.47 20.66 20.43 

X RMSE (cm) 3.0 [0.10] 2.7 [0.09] 4.0 [0.13] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.7 [0.09] 

Z RMSE (cm) 4.6 [0.15] 3.4 [0.11] 5.2 [0.17] 

Flight Altitude of 22 m (72 ft) with 80% & 60% Overlap Set 
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Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.60 20.50 20.43 

X RMSE (cm) 
−3.0 

[−0.10] 

−2.7 

[−0.09] 

−3.7 

[−0.12] 

Y RMSE (cm) 1.8 [0.06] 1.8 [0.06] 2.1 [0.07] 

Z RMSE (cm) 5.2 [0.17] 4.6 [0.15] 5.8 [0.19] 

Where RMSE is Root Mean Square Error and RMSE values in feet are provided 

in [ ] 

From the above analysis and results, it is noted that the focal length slightly 

varied with changes in UAV flight altitude, and flying operating conditions. When 

compared with the manufacturer specifications, the change in focal length in field 

conditions is between 2% and 3.5%, which is small and insignificant. Focal length 

changes that occurred in the field conditions did not influence the accuracy of the 

dense point model when these images were used in the subsequent analysis. This 

was also evident from the RMSE values in the X, Y, and Z directions, as provided 

in Table 3-4. Hence, the prevailing atmospheric conditions during the data 

collection did not influence the present UAV-CRP system and its data collection. 

3.4.3 Thermal Effect on Lenses  

In this calibration check, the objective is to study the influence of outside thermal 

temperatures on the focal length of a camera using localized lens temperature 

measurements. The following steps were performed to study and observe any 
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changes associated in the focal length of the camera with change in lens 

temperature. Only outdoor studies were performed as a part of this check, which 

includes UAV flight operations at three different flight altitudes: 40 m (132 ft), 30 

m (98 ft), and 22m (72 ft). The task includes collecting images and measuring the 

localized camera lens temperature after each flight using an infrared thermometer. 

The outdoor camera calibration parameters were obtained using steps described in 

the section related to outdoor workflow. Lens temperature was measured using the 

Fluke 59 MAX infrared thermometer, as shown in Figure 3-10. 

  

Figure 3-10. Fluke 59 MAX Infrared Thermometer 

All the outdoor flights for this objective were performed with 80% 

longitudinal and 60% lateral overlap, respectively. RMSE values for corresponding 

3D models were calculated and included in the analysis. Table 3-5 presents the 

variation of focal length with lens temperature in field conditions. 
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Table 3-5. 3D Model RMSE Values Corresponding to Three Flight Altitudes 

Operated at Three Atmospheric and Lens Temperatures  

Flight Altitude of 40 m (132 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.42 20.71 20.47 

Lens Temp (°C) 33.2 33.8 40.6 

X RMSE (cm) 3.4 [0.11] 2.1 [0.07] 3.7 [0.12] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.4 [0.08] 

Z RMSE (cm) 4.6 [0.15] 4.3 [0.14] 5.2 [0.17] 

Flight Altitude of 30 m (98 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.47 20.66 20.43 

Lens Temp (°C) 33.2 36.6 39.3 

X RMSE (cm) 3.0 [0.10] 2.7 [0.09] 4.0 [0.13] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.7 [0.09] 

Z RMSE (cm) 4.6 [0.15] 3.4 [0.11] 5.2 [0.17] 

Flight Altitude of 22 m (72 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

Focal length (mm) 20.60 20.50 20.43 

Lens Temp (°C) 32.1 39 37.6 

X RMSE (cm) 3.0 [0.10] 2.7 [0.09] 3.7 [0.12] 
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Y RMSE (cm) 1.8 [0.06] 1.8 [0.06] 2.1 [0.07] 

Z RMSE (cm) 5.2 [0.17] 4.6 [0.15] 5.8 [0.19] 

Where RMSE is root mean square error in cm and RMSE values in feet are 

provided in [ ] 

The data collection was conducted to observe the influence of field 

atmospheric and corresponding lens temperature on the accuracy of 3D models. 

The focal length values did not vary much with respect to the lens temperature at a 

given flight altitude. All three-temperature conditions did not show any appreciable 

impacts on the accuracy of 3D models, suggesting that the camera and lens 

accessories are appropriate for performing imaging studies as per their 

specifications. 

3.4.4 Non-linear Errors 

The objective of this calibration check is to study and assess any changes in the 

distortion parameters of the camera lens and the errors generated in the three-

dimensional dense point cloud modeling from potential distortion in the captured 

images. 

The following steps were performed in outdoor conditions during UAV 

studies at three different flight altitudes: 40 m (132 ft), 30 m (98 ft), and 22 m (72 

ft). Once image data were captured, the camera calibration parameters were 

obtained, using the earlier described steps on outdoor workflow. All the outdoor 

flights were performed with 80% longitudinal and 60% lateral overlap. Table 3-6 
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presents the variation of distortion parameters with atmospheric temperature in the 

field conditions along with RMSE values determined at all three flight altitudes. 

Table 3-6. 3D Model RMSE Values and Distortion Coefficients Corresponding to 

Three Flight Altitudes Operated at Three Atmospheric Temperatures  

Flight Altitude of 40 m (132 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

k1 −0.17 −0.17 −0.17 

k2 0.13 0.13 0.13 

k3 0.01 0.03 0.01 

p1 0.00 0.00 0.00 

p2 0.00 0.00 0.00 

X RMSE (cm) 3.4 [0.11] 2.1 [0.07] 3.7 [0.12] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.4 [0.08] 

Z RMSE (cm) 4.6 [0.15] 4.3 [0.14] 5.2 [0.17] 

Flight Altitude of 30 m (98 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

k1 −0.17 −0.17 −0.17 

k2 0.13 0.13 0.12 

k3 0.02 0.02 0.02 

p1 0.00 0.00 0.00 

p2 0.00 0.00 0.00 
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X RMSE (cm) 3.0 [0.10] 2.7 [0.09] 4.0 [0.13] 

Y RMSE (cm) 2.4 [0.08] 1.8 [0.06] 2.7 [0.09] 

Z RMSE (cm) 4.6 [0.15] 3.4 [0.11] 5.2 [0.17] 

Flight Altitude of 22 m (72 ft) with 80% & 60% Overlap Set 

Parameter Trial 1 (32°C) Trial 2 (33°C) Trial 3 (36°C) 

k1 -0.17 -0.17 -0.17 

k2 0.13 0.12 0.12 

k3 0.02 0.02 0.02 

p1 0.00 0.00 0.00 

p2 0.00 0.00 0.00 

X RMSE (cm) 0.3 [0.01] 2.7 [0.09] 3.7 [0.12] 

Y RMSE (cm) 1.8 [0.06] 1.8 [0.06] 2.1 [0.07] 

Z RMSE (cm) 5.2 [0.17] 4.6 [0.15] 5.8 [0.19] 

Where k1, k2, and k3 are radial distortion coefficients; p1, and p2 are tangential 

distortion coefficients; RMSE is root mean square error and RMSE values in feet 

are provided in [ ] 

Based on the results reported in the above Table 3-6, the distortion 

coefficients remained the same and negligible, indicating no distortion of images 

in all flights at different field conditions and operating altitudes. Overall, higher 

overlap in longitudinal and lateral directions also contribute to reducing the effect 

of distortion of the images on the 3D models. This can also be inferred from the 

small RMSE values in X, Y, and Z directions of the 3D model. For this reason, it 



 

146 
 

can be stated that this calibration check is acceptable for the total system used in 

this research, and no impact on dense point cloud generation is anticipated during 

infrastructure monitoring applications of UAV-CRP technology. 

3.4.5 Structure from Motion (SfM) Errors 

This SfM calibration check is to estimate any errors between actual and estimated 

positions in the three-dimensional dense point cloud model and assess structure 

from motion related errors in the analysis. This objective provides information 

about the influence of flight-related movements or shaking on the dense point cloud 

models generated from the image data collected. 

Outdoor data collection was performed at three different flight altitudes: 40 

m (132 ft), 30 m (98 ft), and 22 m (72 ft), with three different overlaps. Analysis 

was performed using the earlier described steps in the section related to outdoor 

workflow to study the effects of varying flight altitude and overlaps on the captured 

results. The RMSE values were calculated for the respective conditions and 

represented as the SfM errors of the developed three-dimensional dense point cloud 

model. Two scenarios, provided below, are considered to evaluate the SfM errors. 

The first scenario provides the variation in flight altitude with a constant 

overlap, i.e., 80% longitudinal and 60% lateral overlap for all three flight altitudes: 

40 m (132 ft), 30 m (98 ft), and 22m (72 ft). The results corresponding to two 

atmospheric temperatures 32°C (90°F) and 35.6°C (96°F) were provided in Table 

3-7. 
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The second scenario provides the variation in longitudinal and lateral 

overlap at constant flight altitude. Results obtained from three sets of longitudinal 

and lateral overlap (80% & 60%), (70% & 50%), and (60% & 40%) maintained at 

each flight altitude 40 m (132 ft), 30 m (98 ft), and 22m (72 ft) are provided in 

Table 3-8. 

Table 3-7 presents the SfM errors obtained at different flight altitudes at 

32°C (90°F) and 35.6°C (96°F) atmospheric temperatures, respectively. 
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Table 3-7. 3D Model RMSE Values Corresponding to Two Atmospheric 

Temperatures Prevailing at Three Different Flight Altitudes  

Atmospheric Temperature of 32°C 

Parameter 
Flight Alt.-1 (22 

m) 

Flight Alt.-2 (30 

m) 

Flight Alt.-3 (40 

m) 

X RMSE (cm) 3.0 [0.10] 3.0 [0.10] 3.4 [0.11] 

Y RMSE (cm) 1.8 [0.06] 2.4 [0.08] 2.4 [0.08] 

Z RMSE (cm) 5.2 [0.17] 4.6 [0.15] 4.6 [0.15] 

Atmospheric Temperature of 35.6°C 

Parameter 
Flight Alt.-1 (22 

m) 

Flight Alt.-2 (30 

m) 

Flight Alt.-3 (40 

m) 

X RMSE (cm) 3.7 [0.12] 4.0 [0.13] 3.7 [0.12] 

Y RMSE (cm) 2.1 [0.07] 2.7 [0.09] 2.4 [0.08] 

Z RMSE (cm) 5.8 [0.19] 5.2 [0.17] 5.2 [0.17] 

Where RMSE is root mean square error in cm and RMSE values in feet are 

provided in [ ] 

Table 3-8 presents the SfM errors obtained by varying three sets of overlap 

(i.e., 80% & 60%; 70% & 50%; and 60% & 40%) represented as three trials: 1, 2, 

and 3, respectively, at each flight altitude. 
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Table 3-8. Structure from Motion (SfM) Errors Corresponding to Three Flight 

Altitudes Operated at Three Sets of Longitudinal and Lateral Overlap  

Flight Altitude of 40 m (132 ft) 

Parameter Trial 1 Trial 2 Trial 3 

Longitudinal 

overlap (%) 
80 70 60 

Lateral overlap (%) 60 50 40 

X RMSE (cm) 2.1 [0.07] 1.5 [0.05] 1.2 [0.04] 

Y RMSE (cm) 1.8 [0.06] 2.1 [0.07] 2.4 [0.08] 

Z RMSE (cm) 4.3 [0.14] 4.6 [0.15] 4.3 [0.14] 

Flight Altitude of 30 m (98 ft) 

Parameter Trial 1 Trial 2 Trial 3 

Longitudinal 

overlap (%) 
80 70 60 

Lateral overlap (%) 60 50 40 

X RMSE (cm) 4.0 [0.13] 3.0 [0.10] 3.4 [0.11] 

Y RMSE (cm) 2.7 [0.09] 2.1 [0.07] 2.1 [0.07] 

Z RMSE (cm) 5.2 [0.17] 5.2 [0.17] 6.0 [0.20] 

Flight Altitude of 22 m (72 ft) 

Parameter Trial 1 Trial 2 Trial 3 
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Longitudinal 

overlap (%) 
80 70 60 

Lateral overlap (%) 60 50 40 

X RMSE (cm) 3.7 [0.12] 3.0 [0.10] 3.4 [0.11] 

Y RMSE (cm) 2.1 [0.07] 2.1 [0.07] 2.4 [0.08] 

Z RMSE (cm) 5.8 [0.19] 5.2 [0.17] 5.5 [0.18] 

Where RMSE is root mean square error in cm and RMSE values in feet are 

provided in [ ] 

At a given flight altitude, it takes more flight time to collect the data with a 

higher overlap set (i.e., 80% in longitudinal and 60% in lateral direction) compared 

to other lower overlap sets. Overall, 80% and 60% overlaps in the longitudinal and 

lateral direction, respectively, are regarded as the optimal overlap levels needed to 

obtain the required level of image data quality and to avoid the formation of any 

gaps in the model triggered by a no picture event by the camera during the field 

operations. The data provided above have shown minimal SfM errors. 

All the RMSE values obtained in all the objectives discussed in above 

sections were observed to be less than 6 cm. According to the New ASPRS 

Positional Accuracy Standards for Digital Geospatial Data (Smith et al. 2014b) for 

non-vegetated areas, the horizontal accuracy is classified by the square root of sum 

of the squares of RMSE values in X and Y direction. Vertical accuracy is classified 

based upon the RMSE in Z direction. Accuracy of the horizontal data obtained in 
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all above sections is better than horizontal accuracy class of 5-cm and accuracy of 

the vertical data is very close to the vertical accuracy class of 5-cm. 

3.4.6 Analyze Resolution and Resolving Power of the Total System 

The objective of this final calibration check is to study and address both resolution 

and resolving powers of the total system representing UAV studies with a visible 

light camera. The following steps were performed as a part of the calibration check 

to measure the resolution and resolving power of the camera. The analysis was 

conducted in both indoor (as shown in Figure 3-11a) and outdoor facilities (as 

shown in Figure 3-11b). Typically, this analysis is performed using a Siemens star 

image. The Siemens star is a spoke-pattern imaging target that helps in determining 

the spatial resolution of the camera (Horstmeyer et al. 2016). This research 

considered a 16-cycle Siemens star, as shown in Figure 3-11c, with each spoke 

representing a cycle. This is a simple way of estimating the resolution by 

identifying the distance of the distinguishable dark area portion of each cycle from 

the center.  

Siemens star used is shown in the Figure 3-11c, and this star image contains 

black and white windmill blade shapes with a center. This image was printed with 

0.9 m (35 in.) X 0.9 m (35 in.) dimensions for laboratory and field studies. Siemens 

star imaging was performed with a mounted camera in three different scenarios: 1) 

Camera mounted on a tripod in indoors; 2) Camera mounted on the UAV in indoor 
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flights, as shown in Figure 3-11a; and 3) Camera mounted on the UAV in outdoor 

flights, as shown in Figure 3-11b.  

        

 (a)                         (b) 

 

(c) 

Figure 3-11. Capturing Siemens star in Different Scenarios (a) UAV Flight 

Indoors (b) UAV Flight Outdoors with (c) Marked Center and Cycles in 

Siemens Star 
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After capturing the Siemens star images under the different scenarios 

mentioned above, the following steps were performed on the captured images. First, 

the center was identified by marking the center squares with red and yellow colors, 

as shown in Figure 3-12. Second, the sixteen cycles in the Siemens star were 

marked as shown in Figure 3-11c. Resolution was computed by dividing the 0.9 m 

(35 in.) diameter of Siemens star with the number of pixels occupied by the Siemens 

star in either length or breadth direction. Number of relatively light colored pixels 

from center to the recognizable dark colored tip of each cycle near to the Siemens 

star center were counted from Figure 3-12. 

 

Figure 3-12. Zoomed in View of the Siemens Star Center Used to Count the 

Number of Light Colored Pixels from Center to the Recognizable Dark 

Colored Tip of Each Cycle 

A matrix that includes the distance from the Siemens star center to the 

distinguishable dark area portion of each cycle from the center was prepared. All 

the measured distance values are used to obtain an average value. The average 
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distance value obtained above is multiplied with the resolution value to obtain the 

resolving power of the total system, and these results are shown in Table 3-9. 

Table 3-9. Resolving Power of the Camera Mounted on Stationary and Aerial 

Platforms at Three Different Distances from the Siemens Star 

Scenario 
Trial-1 

(Distance – 1.8 m) 

Trial-2 

(Distance – 4.3 m) 

Trial-3 

(Distance – 6.1 m) 

Tripod Mounted 

Camera- Indoor 
0.2 cm 0.6 cm 0.9 cm 

Indoor Flight 0.2 cm NA NA 

Outdoor Flight 0.4 cm 0.7 cm 1.2 cm 

From the results shown in Table 3-9, the resolving power of the camera 

mounted on a tripod indoors appears slightly better than the other two scenarios. 

This can be attributed to absence of vibrations due to the camera’s stationary 

position on the tripod and ambient conditions during the data collection. However, 

it can be observed that the resolving power of the camera mounted on drone 

outdoors is relatively comparable to those of the camera mounted on the tripod and 

drone indoors. Having a servo gimbal on the unmanned aerial platform reduces the 

vibrations induced during the flying operations. This might have helped in 

acquiring good resolving power with a diminutive blur. This final check confirms 

that the resolving power of the total system used in the UAV-CRP studies is suitable 

for infrastructure data collection in the field.  
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As seen from the earlier sections, the UAV-CRP system used in this 

research has provided an error free imagery of the infrastructure that in turn has 

provided an accurate three-dimensional infrastructure dense point cloud. This 

research knowledge gained was applied in collecting the pavement infrastructure 

data as provided in the subsequent section. 

3.5 SUMMARY 

This chapter covers comprehensive calibration checks on a UAV platform and 

camera used at different flight altitudes, different overlap sets, and environmental 

conditions. Indoor and outdoor workflows were elaborated to guide the engineering 

fraternity to evaluate their UAV systems. All these calibration checks helped in 

validating the compatibility of UAV and camera sensor accessories in providing 

high quality infrastructure images that were valuable engineering analyses.  

The above calibration checks and results lead to the observation that the 

present UAV platform and camera accessories can provide photogrammetry data 

of high quality and excellent repeatability. This research is expected to provide a 

comprehensive idea to UAV users about validating the accuracy of their aerial 

imaging systems used for infrastructure monitoring. 
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CHAPTER 4: INFRASTRUCTURE MONITORING 

4.1 DATA REPRESENTATION 

The following infrastructure data was collected and the results were analyzed in the 

following sections to address the UAV applications on the state of infrastructure 

including pavements, bridges, rail corridor and volumes of construction material 

stockpiles. The site locations are provided in the Figures 4-1 and 4-2. 

I. Pavement condition data was collected at the following three sites: 

 TxDOT Cedar Park Campus, Austin, Texas 

 TxDOT District Headquarters, Fort Worth, Texas 

 US Highway 82 in Sherman , Paris District, Texas 

II. Construction material stockpile volume data was collected at three sites:   

 TxDOT Cedar Park Campus, Austin, Texas 

 TxDOT District Headquarters, Fort Worth, Texas 

 TxDOT Area Office, Decatur, Texas 

III. Bridge infrastructure condition data was collected at one site: 

 SH 360 Extension, Mansfield, Texas 

IV. Rail infrastructure condition data was collected between Alpine-Presidio 

region: 

 Rail Road Crossing site, at railway milepost MP 1027.22 

 Rail Bridge site, at railway milepost MP 1019.5 

 Washout site, at railway milepost MP 1001.5 
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 Rock-Cut site, at railway milepost MP 1008.1 

 

Figure 4-1. Location of the Infrastructure Data Collection Sites 

 

Figure 4-2. Location of Data Collection Sites between the Alpine - Presidio 

Region 
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The data from the above locations were analyzed and presented in four 

categories: pavement condition assessments, stockpile volume calculations, bridge 

inspection and rail corridor studies. The following sections cover each of these 

categories: 

4.2 PAVEMENT FORENSICS 

Measuring pavement characteristics and/or distress using traditional methods can 

be subjective and time consuming. The last few decades have witnessed paradigm 

shifts in pavement distress monitoring from inspectors conducting windshield 

surveys to vehicles mounted with automatic laser scanners. However, data capture 

using laser mounted land vehicles is affected by the shadows and moving vehicular 

traffic. There is also a terrestrial scanner like LiDAR system, which provides high 

accuracy data although consuming more time.  

Compared to the past, in recent years there has been a phenomenal rise, 

propelled by technology advancements, in the application of drones. Growing 

intrigue towards employing unmanned aerial vehicles (UAVs) for frequent data 

collection was a driving force behind this research project. UAVs coupled with high 

quality camera lenses and global navigation satellite system (GNSS) devices have 

the scope to collect survey-grade data with a fewer ground control points (GCPs). 

They present a rapid, accurate and economical alternative for data collection 

systems. UAVs offer repeatability and reproducibility of data collection and help 

in monitoring change in assets regularly. As pavement distress starts to develop, 
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drones can be used to identify it earlier and give scope to proactive maintenance, 

thereby increasing the service life of the pavement. 

Detailed data collection involves laying down ground points that include 

ground control points (GCPs) and check points (CKs) spread over the field area. A 

flight plan is then devised with adequate longitudinal and lateral overlaps to cover 

the required area under inspection. Availability of a highly accurate GNSS 

determines the number of GCPs required for optimum accuracy. Captured images 

from UAV surveys can be georeferenced using GNSS data accessed either by real 

time kinematic (RTK) techniques or post processing kinematic (PPK) techniques. 

A GNSS RTK cap is connected to the nearest base station via internet after logging 

in all the necessary details. All images will be stamped with time and location using 

a geo-box attached to the camera. Highly accurate geotagged images are then fed 

into the Agisoft PhotoScan software, where poor quality images can be removed. 

Applying photogrammetry techniques to the input images, the software processes 

the image alignment, point cloud generation, rendering of mesh & texture, and 

ortho-rectification. We can develop fully navigable digital elevation models (DEM) 

in addition to dense point clouds, mesh and orthomosaics. 

These dense point clouds and orthomosaics are imported into the LP 360 

software and CK coordinates are used to estimate the accuracy of the model. 

Differences between the actual position, located manually in the software, and 

estimated position, are located by the inputted coordinates of the CK, read in terms 
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of the X, Y and Z RMSE of the model. For any object under inspection, a toe (i.e., 

a bounding line) is formed by joining points that confine the object under 

inspection. The area enclosed within the toe is referred to as the base area and the 

point cloud data within the base represents the object. Those imported files can also 

be viewed at different angles to extract the toe and compute the object parameters 

desired in any 3D image analysis software. 

4.2.1 Pavement Inspection Study Areas 

Initially, a demonstration of UAV data collection capabilities was conducted in 

front of the TxDOT officials in TxDOT Cedar Park Campus, Austin. Apart from 

the regular UAV research flights in a parking lot at UTA, this was the first field 

visit site where the Aibot X6 was flown and a live video was shown to a larger 

audience. The view of the camera mounted on the drone was relayed onto two TV 

screens connected to the digital live video display (DLVP) for the convenience of 

the officials seated far from the data collection area and witnessing the drone 

capabilities. In addition to the inspection of the pavement site at Cedar Park 

Campus, the volumetric data of the two detention ponds and a sand stockpile on the 

campus were also collected.  

After a safe and successful demonstration of initial UAV flights, this 

research collected the photogrammetry data of pavement stretch inside the TxDOT 

district headquarters in Fort Worth. Aerial data was also collected at the US 

Highway 82 site in Sherman, Texas to inspect a section of the highway and the 
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Farm to Market (FM) road adjacent to it. The draft of the TxDOT Flight Operations 

Manual (FOM) guidelines were followed and validated during this field visit. All 

these locations are shown in Figure 4-1. 

4.2.2 Pavement Condition Data 

Many factors influence pavement conditions and contribute to their distress with 

time. Expansive soils cause differential settlement due to heaving and it can be 

detected using aerial technologies (Puppala et al. 2018c). Analyses of the collected 

pavement condition data by UAV-CRP studies are presented in the following 

sections: 

4.2.2.1 Pavement characteristics 

UAV-CRP technology can be used to measure various other characteristics of 

pavements that help in assessing the ride quality and safety conditions offered to 

the road user. International roughness index (IRI) is calculated using the Golden 

car method that feeds on the longitudinal elevation profile of the pavement section. 

UAVs may be used to collect the longitudinal elevation profile by flying away from 

the pavement section with an inclined camera facing towards the pavement section. 

In the event of rain, cross-slope of the pavement is important to ensure that there is 

ample drainage. The ultimate goal is that there is no ponding or stagnant water on 

or near the pavement; this will prevent hydroplaning from impeding the available 

skid resistance. It also prevents moisture intrusion into underlying expansive 

subgrades and thereby mitigates differential movements of pavement (Mohammad 
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et al. 1995; Puppala et al. 2011, 2013). At turns, it is also necessary to check if there 

is sufficient transverse slope i.e. super elevation providing necessary centripetal 

force for a safe turn.   

In this research, the UAV was flown adjacent to US 82 Highway located 

near Sherman, Texas. Cautionary signs, as shown in Figure 4-3, were placed on 

both directions of the highway during studies, according to guidelines from the 

TxDOT FOM. 

 

Figure 4-3. Cautionary Sign Ahead of Drone Operating Area 

No traffic regulations were imposed while collecting the data from the drone 

flying away from the pavement. Both the longitudinal and transverse slopes of the 

pavement were calculated from the same pavement data collected at multiple flight 

altitudes at 20 ft and 75 ft, respectively. The UAV was flown at a safe distance of 

10 ft away from the pavement section.  Hence, the camera angle was obliquely 

inclined towards the pavement while flying at 20 ft high and in the nadir position 

while flying at 75 ft high; this was to ensure full transverse coverage of the 
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pavement site. Due to the vegetation on the pavement shoulder, a large wooden 

plank was placed to serve for landing and take-off. Data collection was only 

conducted on one side of the pavement due to the obtained permissions for this. 

However, data collection on both sides would offer a more comprehensive data 

analysis and interpretation.  

The images were processed to obtain 3D dense point cloud model and 

orthomosaic, as shown in Figure 4-4. Accuracy analysis was performed on the 

model developed from the images, using the checkpoint (CK) coordinates placed 

on the pavement. The RMSE values in X, Y, and Z directions of points in the model 

are 0.1 ft (3 cm), 0.2 ft (6 cm), and 0.1 ft (3 cm), respectively. Accuracy of 

horizontal data obtained is close to horizontal accuracy class of 5-cm and vertical 

data obtained is better than vertical accuracy class of 5-cm.  

 

Figure 4-4. Orthomosaic of US 82 Highway Section 

4.2.2.1.1 Longitudinal slope 

Dense point cloud models obtained from the UAV-CRP technology were used to 

obtain the elevation profiles along the pavement surface. For a detailed data 

representation, the longitudinal slope profile was estimated by placing points along 
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two wheel paths, parallel to the pavement centerline, for each lane. According to 

AASHTO PP 69-16, the inner wheel path of the lane was defined as a line parallel 

to the lane centerline and at a distance of 0.875 m left of the centerline. The same 

standard defined the outer wheel path as the line parallel and at a distance of 0.875 

m right from the lane centerline, as shown in the Figure 4-5. By taking the leverage 

offered by the dense point cloud model, points were placed at 1 cm intervals along 

the longitudinal direction of the pavement. 

 

Figure 4-5. Pavement Longitudinal Slope along Two Wheel Paths of Each Lane 

More than 10,000 points were placed within the 300 ft stretch, along the 

five paths shown in Figure 4-5 

1. Outer Lane- Right Wheel Path (shown in Figure 4-6) 

2. Outer Lane- Left Wheel Path (shown in Figure 4-7) 

3. Center Line- Two Lanes (shown in Figure 4-8) 

4. Inner Lane- Right Wheel Path (shown in Figure 4-9) and 
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5. Inner Lane- Left Wheel Path (shown in Figure 4-10) 

The starting point of the inspection stretch was considered the datum point 

and the difference in the elevation of all other points from the datum point was 

plotted to understand the longitudinal profile. All five paths provided information 

on the varying longitudinal profiles of the pavement section. 

 

Figure 4-6. Longitudinal Profile along Right Wheel Path of Outer Lane 
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Figure 4-7. Longitudinal Profile along Left Wheel Path of Outer Lane 

 

Figure 4-8. Longitudinal Profile along Centerline of Two Lanes 
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Figure 4-9. Longitudinal Profile along Right Wheel Path of Inner Lane 

 

Figure 4-10. Longitudinal Profile along Left Wheel Path of Inner Lane 

All the longitudinal profiles along the five paths shown in the Figures 4-5 

to 4-10 were converted into International Roughness Index (IRI) values. IRI values 

were used to estimate and compare the riding comfort experienced by the road 
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users. The elevation profile of the outer lane collected by TxDOT using the standard 

profiler was inputted into ProVAL software to obtain an IRI value of 1.44 m/km 

(91 in/mi). The IRI values can be obtained along any selected path, including 

standard wheel paths, within the UAV-CRP data collection area.  

For comparison purposes, IRI values from the same stretch of the pavement 

segment, along the right and left wheel paths of both outer and inner lanes were 

computed from the UAV-CRP collected data. After inputting the elevation profiles 

of the left and right wheel paths of outer lane shown in Figures 4-6 and 4-7 into 

ProVAL software, the average IRI value obtained along the outer lane wheel paths 

was 1.46 m/km (92 in/mi). Subsequently with the elevation profiles of the left and 

right wheel paths of the inner lane shown in Figures 4-9 and 4-10, the average IRI 

value obtained along the inner lane wheel paths was 1.65 m/km (104 in/mi).  

The IRI values obtained using the elevation data from the profiler and the 

UAV-CRP technology studies showed an excellent match. This also may pave the 

way for using UAV-CRP technology to identify critical pavement stretches 

depending on the distress parameters and IRI. Costly traditional methods may be 

further conducted only on these critical stretches, which not only saves time but 

also economical. More studies may ensure a better understanding of this approach. 

4.2.2.1.1.1 Digital Elevation Model (DEM) and Contour Maps 

Digital Elevation Model (DEM) and the contour maps of US Highway 82, as shown 

in Figures 4-11 and 4-12, indicate the relative elevation differences and the possible 
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drainage path of water in the event of rain. This type of data visualization offers a 

quick idea in estimating the elevation of the objects under inspection.  The road 

section can be observed to be sloping downwards along the direction of travel 

(indicated by the black arrows) starting from right side, with higher elevation 

indicated by the deep green color, towards the lower elevation indicated by aqua 

color on the left side of  Figure 4-11. 

 

Figure 4-11. DEM of US Highway 82 Section 
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Figure 4-12. Contour Map of US Highway 82 Section 

Pavement data was also collected on a nearby road connecting FM 1752 

and west bound US highway 82. A multiple flight paths were adopted with 20 ft 

and 75 ft as operating flight altitudes. The GCP was used to develop the model and 

CK coordinates were used to estimate the quality of the model in terms of RMSE 

values in X, Y, and Z directions. The RMSE values in X, Y, and Z directions are 

0.06 ft (1.8 cm), 0.07 ft (2.1 cm), and 0.02 ft (0.6 cm) respectively. Accuracy of 

horizontal data obtained is close to horizontal accuracy class of 2.5-cm and vertical 

data obtained is better than vertical accuracy class of 1-cm. 

Due to the vegetation on the shoulder of the pavement, a large wooden plank 

was placed to serve for both landing and takeoff. Data collection was only 

conducted on one side of the pavement due to the research stage of this project. All 

photos were processed to obtain a 3D dense point cloud model and orthomosaic, as 

shown in Figure 4-13. 
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Figure 4-13. Orthomosaic of the Road Connecting FM 1752 and West Bound US 

Highway 82, Paris District, Texas 

DEM and contour map of the nearby road connecting FM 1752 and west 

bound US 82 Highway in the Paris district provided an idea of the drainage flow 

patterns at the site (as shown in Figures 4-14 and 4-15). 
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Figure 4-14. DEM of Road Connecting FM 1752 and West Bound US Highway 

82, Paris District, Texas 

 

Figure 4-15. Contour Map of Road Connecting FM 1752 and West Bound US 

Highway 82, Paris District, Texas 

4.2.2.1.2 Transverse slope 

Due to the availability of dense point cloud models, the cross slope of the pavement 

was calculated at desired longitudinal spacing on the pavement section. For better 
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representation, the cross slope was computed with points placed, across the 

pavement, in the transverse direction at 1 cm intervals. Transverse direction was 

selected according to AASHTO PP 70-10 (AASHTO, 2014), which defines a 

transverse line as a line that deviates less than 10° to the perpendicular line of the 

pavement centerline.  

The transverse slope was calculated at 30 ft intervals along the longitudinal 

direction of the pavement. The cross slope sections provided in Figure 4-16 show 

a slope of 3.2% sloping towards the shoulder (indicated by the green colored arrows 

in the top and profile views). This can also be observed in the profile section view 

provided, where the white and yellow pavement markings and the centerline of two 

lanes can be seen at the bottom of Figure 4-16. It shows that the shoulder of the 

pavement, over which the traffic cones are placed, was at a lower altitude compared 

to the other side of the pavement in the transverse direction. 
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Figure 4-16. Transverse Slope Computed Along Three Paths 

For comparison with traditional purposes, Faros X 330 Terrestrial LiDAR 

was used for the collection of pavement data. Data collected from the terrestrial 

LiDAR was also processed to compare the cross slope values as shown in Figure 

4-17. The length of the line selected over the pavement is 293.30 in. and the 

elevation difference of the two points was 9.42 in. The transverse slope of 3.2% 

obtained from the LiDAR data matched the value obtained from UAV-CRP data 

analysis. This exercise demonstrated that the cross slope measurements could be 

computed using UAV-based photogrammetry studies, which can be used as a part 

of Quality Control (QC)/ Quality Assurance (QA) works. 
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Figure 4-17. Transverse Slope Computed from LiDAR Data 

Analysis of the pavement characteristics data collected from UAV-CRP 

methodology proved efficient and accurate. This methodology helped in 

transforming the present subjective inspections to objective methods by providing 

repeatable and reproducible data. 

4.2.2.2 Pavement Edge Distress 

The pavement data collected over the road section inside the TxDOT campus 

during the UAV field demonstration event held at TxDOT Cedar Park Campus, 

Austin was analyzed for distress. There was no vehicular traffic inside the TxDOT 

campus at the time of UAV surveys, as the employees were advised to park their 

vehicles in a separate facility. This provided an opportunity to perform flight 

operations directly over the pavement at lower heights and collect high quality nadir 
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images. There was an on-grade curb inlet located near to the outlet drainage point 

as seen in the Figure 4-18. 

 

Figure 4-18. Curb Opening Inlet Drain (TxDOT 2018) 

The UAV-CRP data of the pavement was collected by flying an operation 

directly over the pavement site at a flight altitude of 20 ft and the data was analyzed 

to study various pavement features. The curb inlet, shown in Figure 4-18, was 

typically provided to drain the runoff water accumulated on the pavement. Figures 

4-19 (a-d), depict various zoom-in levels of the orthomosaic of the same pavement 

section exhibiting minor edge distress near the on-grade curb inlet.  
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 (a) (b) 

     

 (c) (d) 

Figure 4-19. Various Zoom in Levels of Orthomosaic of the Pavement Stretch 

TxDOT Facility Austin 

Researchers identified minor edge distress near the curb inlet from the 3-

dimensional data shown in Figure 4-20. The 3D view of the white rectangular box 

located in the top view is provided on the right hand side of the Figure 4-20. Profile 

view of the rectangular cuboid in the 3D view is presented at the bottom of the 
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Figure 4-20. Engineers should be able to delineate the distress levels, within the red 

rectangles in all views, and observe the distress features. The depth of the distress 

was estimated as 0.4 in. 

This visualization analysis and approach can be used to estimate the 

features of other distress like rutting and pot holes that are covered in the 

subsequent sections. 

 

Figure 4-20. Pavement Edge Distress, Top View, 3D View and Profile View 

4.2.2.3 Pavement Cracking 

Figure 4-19 presents cracks detected on a pavement section that were sealed in 

order to prevent the weakening of pavement sub layers due to percolation of water. 

Proper sealing will fill and bond the cracks, thereby preventing moisture intrusion 

and mitigating pavement deterioration. The pavement section shown in Figure 4-

19 features cracks seal coated with asphalt emulsion as well as minor cracks that 

might have developed after sealing, shown in Figure 4-21a. The orthomosaic 
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developed from the collected images was processed to identify the pavement crack 

dimensions. The total length and average width of longitudinal crack shown in 

Figure 4-21a are 3.4 ft (40.7 in.) and 0.03 ft (0.35 in.), respectively. The percentage 

of pavement-cracked area was computed as 1.2%.  

Pavement data was also collected on a service road connecting FM 1752 

and west bound US 82 Highway. A multiple flight path was adopted with 20 ft and 

75 ft as operating flight altitudes. The orthomosaic was analyzed to find total length 

and average width of the longitudinal cracks as shown in Figure 4-21b were 37.8 ft 

(453.9 in.) and 0.03 ft (0.36 in.), respectively. The percentage of pavement-cracked 

area was computed as 0.1%. This information along with assumed crack depth will 

be helpful in estimating the quantity of seal coat material required. 

  

(a)                                              (b) 

Figure 4-21. Estimating Pavement Crack Dimensions (a) TxDOT Site in Austin 

and (b) Service Ramp near US Highway 82 
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4.2.2.3.1 Cracked Areas 

Pavement crack related data was collected at a flight altitude of 80 ft AGL inside 

the TxDOT district headquarters in Fort Worth, as shown in Figure 4-22. Coding 

algorithms were used to identify the minor cracks shown in Figure 4-22d. These 

cracks were hard to detect, for the naked eye, from the images shown in Figure 4-

22. It is important to identify minor cracks, as identifying them early will prevent 

them from becoming major cracks over time. 

 The general procedure and workflow of the Python script designed to 

calculate the areas of regions of cracks in asphalt is provided below. There are many 

steps involved in cracked area recognition but out of all those, only images of four 

important steps were provided below. The program begins by loading the image 

specified by the path inputted in the command call if that image exists and can be 

read. The loaded image was stored initially as a 3-channel RGB image, as shown 

in Figure 4-22a. The image was then converted to grayscale to ignore unwanted 

colored elements.  Next the image was processed using an inverse binary threshold 

followed by a series of Gaussian blurs, dilations, and binary thresholds to clump 

together the groups of cracks and remove the unwanted pixels.  Then all the small 

isolated contours, defined as group of white pixels that were not attached to the 

groups of cracks are removed from the image.  The remaining contours representing 

the main areas of cracks were then dilated and filled so they are solid white.   
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At this point, the contours generally represent the area of the cracks, but in 

order to produce a more accurate area, the process was applied again by performing 

a bitwise OR operation on the current image and the original image to get an image 

with only the original pixels in the selected contours and white pixels everywhere 

else.  This image then undergoes a very similar process as that described for the 

initial analysis of the image till the inverse binary threshold, but then the image was 

eroded by the same amount that it was dilated in the initial process, as shown in 

Figure 4-22b. Then the image consisting of contours that represent the area of the 

cracked regions was obtained and the areas of these contours are then calculated, 

as shown in Figure 4-22c.  

Another bitwise OR operation was applied with the current image and the 

original image to display the original pixels in the cracked regions and their 

corresponding number of pixels, as shown in Figure 4-22d. The number of pixels 

obtained 299273, 505678, and 59932, respectively starting from top in clockwise 

direction, are multiplied with pixel area of 22.2 mm2 to obtain the cracked area as 

6.6 m2, 11.2 m2, and  1.3 m2, respectively. 
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 (a) (b) 

   

            (c)     (d) 

Figure 4-22. Workflow of Algorithms to Detect Cracked Areas 

Proactive repairs of minor cracks would therefore enhance the longevity of 

the pavements. Also, entry of debris, water, and other unwanted materials can be 

further prevented by properly sealing minor cracks and thereby preventing them 

from transforming into major distresses. The extent of distress marked in Figure 4-

22d helps in planning the proactive maintenance procedures required to slow down 

the pavement deterioration process. This information can be a valuable input to the 
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pavement condition index (PCI), which has a threshold value used by agencies to 

decide on the pavement rehabilitation and preservation works. 

4.2.2.3.2 Crack Sealing 

Even though, the presence of vegetation is a minor problem but it indicates the 

condition of the sealing applied to cracks. As mentioned in earlier sections, proper 

sealing of cracks will be crucial in increasing the service life of the pavement. The 

UAV-CRP data collected at Cedar Park campus identified growing vegetation in 

cracks indicating deterioration of pavement seal coatings, as shown in Figure 4-23. 

Deterioration of seal coats provided the space for the growth of unwanted 

vegetation.  

The presence of growing vegetation can accelerate pavement deterioration, 

if left unchecked. By using color recognition algorithms on the UAV-CRP collected 

data, engineers will be able to spot the vegetation growth and alert the road agencies 

to take necessary actions. These practices come under the good maintenance 

measures required to preserve pavement life and maintain road conditions. 
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    (a) 

       

(b)      (c) 

Figure 4-23. Pavement Crack Seal Condition (a) Identifying Vegetation Growth 

on Pavements (b) Zoomed in Vegetation over Left of Pavement Image (c) 

Zoomed in Vegetation over Top of the Pavement Image 

4.2.2.4 Permanent Deformation or Rutting 

Researchers identified multiple distresses in the pavement data collected inside the 

agency facility in Fort Worth, Texas. The distress located in front of the vehicle 
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shown in Figure 4-24 was identified from the UAV-CRP technology data and 

attributed to permanent deformation.  

 

Figure 4-24. Multiple Pavement Distress  

The image data was used to develop dense point cloud models and 

orthomosaics to analyze distress features. The extent and depth are among the 

important distress features that were identified in this research. Figure 4-25 shows 

the depth of permanent deformation that contributed to the cracking of the 

pavement. It should be noted that the permanent deformation or settlement is not 

directly under the wheel path; this settlement may be contributed by weak layers 

underlying the paved section.  

The pavement top layer was devoid of the support from the underlying 

layers and led to excessive cracking. The depth of the distress was estimated to be 

0.3 ft (3.36 in.); this helps in assessing the severity of the distress. The cracking 
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area identified in Figure 4-24 and the distress features identified in Figure 4-25 help 

to decide if a pavement needs quick rehabilitation measures. 

 

Figure 4-25. Permanent Deformation Induced Cracking 

Availability of quick and efficient methodology such as unmanned aerial 

vehicle – close range photogrammetry (UAV-CRP) will help in planning for early 

recognition of these distresses and the subsequent proactive maintenance of the 

distressed pavements. This would not only reduce maintenance costs over the long 

run, but would also enhance pavement-riding conditions. 

4.3 CONSTRUCTION MATERIAL STOCKPILES 

UAV-CRP methodology was also utilized to collect the accurate volumetric data 

of the pavement construction material in the stockpiles in two locations: TxDOT 

District Headquarters at Fort Worth and TxDOT area office in Decatur as shown in 

Figure 4-26. Accurate inventory of each material stockpile helps in better planning 

for construction activities. This research also demonstrated the differentiation of 
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material types in the stockpiles, depending upon the appearance, mixed in a single 

stockpile. 

 

Figure 4-26. Location of the Construction Material Stockpiles 

4.3.1 TxDOT District Headquarters, Fort Worth 

Two stockpiles inside the TxDOT District Headquarters, Fort Worth facility were 

captured at a flight altitude of 75 ft AGL using UAV-CRP technology. The two 

stockpiles that were mixed at one corner were delineated depending upon the 

complexion and the volume of material in each stockpile was calculated. The 

volumes were estimated to consist of 804.3 yd3 of fine sand material and 54.5 yd3 

of coarse sand material, respectively, as shown in Figure 4-27.  

The ground truth measurement for the volume of fine sand was provided by 

the TxDOT officials and was around 820 yd3. The flatness of the pavement 

underneath the stockpiles also helped to achieve a volume estimation accuracy of 

98%. However, if the stockpiles are stacked up on an undulated surface, even the 
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UAV-CRP technology that captures the accurate surficial properties may result in 

erroneous interpretations. The present traditional methods have similar limitations 

in properly estimating volumes in such cases as well. This aspect still needs further 

investigation. 

 

Figure 4-27. Stockpile Volumetrics of Pavement Construction Materials 

DEM of the whole area provides an idea about the relative elevation of the 

surficial features of the TxDOT Fort Worth campus, as shown in Figure 4-28. The 

circular objects with clear elevation difference, denoted by a red arrow on the right 

side of Figure 4-28, were identified as the silos present inside the facility as shown 

below.  
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Figure 4-28. DEM of Sand Stockpiles in Fort Worth, Texas 

In addition to volumetric calculations, the pink colored contour lines 

(shown in Figure 4-29) of the stockpiles add another dimension to the 

understanding of the surveyor and workers while removing the stockpile materials, 

resulting in a safe excavation. 

 

Figure 4-29. Contour Lines over Sand Stockpiles in TxDOT Fort Worth 
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Obtaining the contours using traditional methods would have resulted 

time-consuming and also unsafe for the workers to climb on those stockpiles 

without knowing the stability of such surfaces. Using UAV-CRP technology, all 

these data outputs could be obtained by analyzing the same dataset collected 

during the mission flights. 

4.3.2 TxDOT Area Office, Decatur 

The next stockpile assignment was at the TxDOT area office in Decatur that 

included a huge recycled asphalt pavement (RAP) stockpile in addition to small 

coarse and fine sand stockpiles. The RAP stockpile was almost 30 ft high with a 

large base area. The UAV-CRP data of the stockpile was collected using a pre-

planned flight plan covering the area with 80% longitudinal and 60% lateral 

overlap. High quality aerial images collected at a flying height of 90 ft (provided in 

the Figure 4-30) shows that there are RAP materials with different asphalt content 

evident through the complexion of the material. Upon examining the images from 

the stockpiles, it was noted that this RAP stockpile was composed of mixed 

material, as shown in Figure 4-30. Dark colored material indicate RAP extracted 

from top pavement layers and light-colored material depicts RAP extracted from 

underlying pavement layers. In some instances, this data is important as the 

presence of excess binder on the aggregates might be unfavorable for some 

purposes. Assuming the land beneath the stockpile was flat, the three types of RAP 

material were delineated in Figure 4-30 by white, aqua, and orange colored 
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boundaries. The respective material volumes starting from left to right are 1857.6 

yd3, 2239.5 yd3, and 1455.3 yd3, respectively.  

The ground truth volumetric measurement of the whole stockpile provided 

by the TxDOT officials was 5547 yd3 and the total volume obtained from the UAV-

CRP methodology was 5552.4 yd3, which resulted in an error of 0.1% of the ground 

truth value. Considering the benefits offered such as safety provided (working 

personnel need not walk over steep slopes), the efficiency (collecting the data 

within 10 minutes), and accuracy provided, the UAV-CRP technology is deemed 

appropriate and acceptable.  

For comparison purposes, the volume of the small RAP stockpile, 

delineated by the purple boundary, beside the huge stockpile was calculated from 

UAV-CRP technology and using traditional methods. Using traditional methods, 

the Triangular Irregular Networks (TIN) surface was developed by collecting the 

coordinates of the finite points over the stockpile and interpolated to find the 

volume of stockpile as 101.4 yd3. The single flight data comprising of both the large 

and small stockpiles was used to estimate the volume of the small stockpile as 

104 yd3. Error in this case was found to be around 2.5% of the value obtained using 

traditional GPS methods. There is also a chance that the UAV-CRP methodology 

offers accurate volumetric numbers, owing to its ability to accurately capture the 

surface undulations when compared to the traditional way of interpolating. 
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Figure 4-30. Mixed RAP Stockpile 

The DEM of the whole area provides an idea about the relative elevation of 

the surficial features of the TxDOT Decatur campus, shown in Figure 4-31. The 

rough estimation of material volume in the storage bays, indicated by a red arrow 

in the bottom right corner of the Figure 4-31, can also be considered as a part of 

regular inventory inspection conducted by UAV-CRP technology. It also gives an 

estimate of the steepest and unstable slope of the stockpile, thereby assisting in 

planning for excavating and transporting the stockpile material. 

. 
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Figure 4-31. DEM of RAP Stockpile in Decatur, Texas 

There were also other stockpiles distributed within the TxDOT campus at 

Decatur, Texas. UAV-CRP technology was used to capture all the features of the 

20,000-yd2 area by flying the UAV at 80 ft AGL. The volume of stockpiles were 

computed as shown in Figure 4-32. The volume of the two RAP stockpiles and one 

sand stockpile delineated by the aqua, red, and blue boundaries are 532.6 yd3, 207.4 

yd3, and 967.6 yd3, respectively.  

If the same flight plan is used to collect the data every few days, it helps in 

conducting timeline monitoring of change in stockpile volumes. This approach can 

also be executed at the road construction site as a quality control (QC) check 
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assisting the road agency by letting them know how much material is being utilized 

in the construction, which can be compared to the amount of work in progress. By 

using this approach, inventory checks of any facility becomes safe, efficient, and 

economical. 

 

Figure 4-32. Inventory data collection that includes multiple material stockpiles 

The DEM of the whole area provides an idea about the relative elevation of 

the surficial features of the TxDOT Decatur facility, shown in Figure 4-33. The 

rough estimation of the material volume in the storage bays (as indicated by a red 

arrow in the bottom left corner of the Figure 4-33) can also be estimated as a part 

of the regular inventory inspection as conducted by the UAV-CRP technology. 
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Figure 4-33. DEM of Multiple Stockpiles in Decatur, Texas 

In addition to the volumetric calculations, the pink colored contour lines 

(shown in Figures 4-34 and 4-35) of the stockpiles add another dimension to the 

understanding of the surveyor. Overall, UAV analyses of stockpiles can provide the 

data to TxDOT in various forms, which can be used for volumetric assessments in 

periodic inventory estimations. In addition, slope contours can be used to assess the 

stability of stockpiles such that there will not be any stability failures of stockpiles 

during unloading operations. 
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Figure 4-34. Contour Lines on the Stockpile Data Collected at Decatur 

 

Figure 4-35. Contour Lines on the Multiple Stockpile Data Collected at Decatur 

Estimation of stockpile volumes using UAV-CRP technology has proven to 

be a valuable tool due to both accuracy and safety elements. It is essential that 

agencies start using this tool for construction site monitoring and stockpile volume 

assessment on a timely basis.  
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4.4 BRIDGE MONITORING 

A bridge inspection was carried out on a newly constructed bridge, not yet opened 

for traffic. This new bridge is an extension of State Highway or SH 360 located at 

32.523034 N, 97.083709 W, in Mansfield, Texas. The Aibot X6 and DJI Phantom 

4 were used for flight operations to conduct the 360° bridge inspection, which 

included superstructure and substructure data collection. 

4.4.1 Bridge Inspection Investigations 

Inspection was conducted on a newly constructed 20 ft high and 700 ft long bridge 

of SH 360, not yet opened to traffic, located in Mansfield, Texas. A comprehensive 

360° bridge inspection was conducted that included cameras mounted on the 

bottom gimbal covering the bridge deck and on the top gimbal covering underneath 

the bridge deck in separate missions. The DJI Phantom quadcopter was also used 

for capturing the 4K video of the entire bridge infrastructure. Superstructure was 

inspected based on the condition of the deck, approach slab, railings, and joint 

conditions. The substructure was inspected for the condition of the beams, soffits, 

bearings, wing walls, abutment, pile and cap, as well as the pile footing. 

The following UAV configurations (i.e. bottom gimbal and top gimbal) 

were used during superstructure and substructure inspections, respectively (as 

shown in Figure 4-36). 
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Figure 4-36. UAV Configurations used for Bridge Superstructure and 

Substructure Inspection 

GCPs that were used to build the 3D dense point cloud model of the bridge 

and CKs were laid on the bridge deck prior to the flight operations. Flight plans 

with multiple flight altitudes were then conducted to capture the details of the 

bridge deck and to cover the surroundings of the bridge within the stipulated time. 

Higher altitude flight was helpful in covering the adjacent bridge features, which 

did not warrant a high quality detail. CKs were later used to check the accuracy of 

the model: The X, Y, and Z RMSE of the model estimated from the analysis are 

0.09 ft (2.7 cm), 0.04 ft (1.2 cm), and 0.23 ft (7.0 cm), respectively. Accuracy of 

horizontal data obtained is close to horizontal accuracy class of 2.5-cm and vertical 

data obtained is better than vertical accuracy class of 10-cm. The orthomosaic of 

the bridge deck is shown in the Figure 4-37. The DEM of the bridge is also provided 

in the Figure 4-38. 
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Figure 4-37. Orthomosaic of the Bridge Deck of SH 360 located in Mansfield, 

Texas 

 

 Figure 4-38. DEM of the Bridge of SH 360 located in Mansfield, Texas 
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The orange colored rectangle in the DEM represents the bridge deck. The 

colored elevation bar, located at the right side of the Figure 4-38, also indicates that 

there is an elevation difference of 20 ft (6 m) between the bridge deck and the 

surrounding ground. The elevation difference between the ground and the deck 

appears reduced near the abutments where the soil embankment slopes, represented 

by a green colored area indicated by a red arrow at the top left corner of Figure 4-

38. Contour lines shown in Figure 4-39 add another dimension to the understanding 

of the engineer as they depict different elevation levels of the infrastructure. 

 

Figure 4-39. Contour Lines on the Bridge Deck and the Surrounding Ground 

4.4.1.1 Bridge Superstructure Inspection 

Being a newly constructed bridge, a few places on the bridge superstructure were 

marked with black tape of known dimensions to evaluate the performance of UAV-

CRP technology measurements compared to ground truth measurements (a few 

markers are shown in Figure 4-40). In addition, the width of two joints was 



 

201 
 

measured using a ruler and the results were compared with the measurements made 

from the visualization model generated from the UAV collected data, as shown in 

Figure 4-41. 

 

Figure 4-40. Taped Markers and Joint Width Locations on the Bridge Deck 

 

Figure 4-41. Joint Width Sections at Two Joints on the Bridge Deck 
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Taped markers were placed at seven random locations, as shown in Figure 

4-42, to compare accuracy of UAV-CRP measurements using ground truth 

measurements and these results are provided in Table 4-1. 

    

 (a) (b) 

Figure 4-42. Measurements made on Marker No. 7 using (a) UAV-CRP 

Measurements (b) Length Measured Using Ruler 
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Table 4-1. Taped Marker Length Comparison between UAV-CRP Data 

Measurements and Ground Truth Measurements 

Marker 

Number 

UAV-CRP Data 

Measurements (cm) 

Ground Truth 

Measurements (cm) 

Absolute Error (%) 

1 10.56 10.80 2.2 

2 8.94 8.85 1.0 

3 8.49 8.50 0.1 

4 9.68 9.70 0.2 

5 9.56 9.60 0.4 

6 8.87 8.90 0.3 

7 8.05 8.00 0.6 

Except for the maximum error value, i.e., 2.2%, all the remaining errors are 

less than 1%, indicating the high quality of the UAV-CRP data was collected and 

analyzed in this infrastructure monitoring.  

The joint width at four sections of the model generated from UAV-CRP 

data was measured on the bridge deck, two at each joint, and compared to a ruler 

measured value of 7.4 cm (shown in Figure 4-43 and Table 4-2). 
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Figure 4-43. Ground Truth Measurement of Joint Width 

Table 4-2. Joint Width Comparisons between UAV-CRP Data Measurements and 

Ruler Measurements 

Joint Width 

Section 

UAV-CRP Data 

Measurements 

(cm) 

Ground Truth 

Measurements 

(cm) 

Absolute Error 

(%) 

1 7.14 7.40 3.5 

2 7.46 7.40 0.8 

3 7.36 7.40 0.5 

4 7.49 7.40 1.2 

The UAV-CRP methodology can be applied to conduct monitoring of 

changes in joint widths over a certain period. By flying closer to the surface of the 
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bridge, the condition of the joint filler can also be closely detected. This was 

however not evaluated in this research. 

4.4.1.2 Under-bridge Inspection 

The drone configuration with the top gimbal, as shown in Figure 4-36, was used to 

perform under-bridge inspections at the same bridge. The pilot and the primary 

visual observer were stationed below the bridge; the UAV was flown under along 

the bridge’s longitudinal direction. Lack of GPS forced the pilot to operate in 

manual flight mode while inspecting underneath the bridge. Each bridge span, the 

distance between two bridge columns, was monitored during each flight. The 

secondary visual observer was placed at a safe offset distance away from the bridge 

columns to inform the pilot when the UAV came alarmingly close (less than 6 ft) 

to the columns. The TxDOT bridge inspector accompanying the UTA research 

team was able to monitor the camera visuals live on a DLVP throughout the 

inspection. Inspector inputs were passed on by the primary visual observer to the 

pilot, who maintained line of sight of the UAV throughout the flight. Because the 

bridge was newly constructed, it did not exhibit much damage. However, moisture 

staining was observed underneath the bridge beams, shown in Figure 4-44. 
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Figure 4-44. Moisture Staining Underneath the Bridge Beams 

The bearings, pier cap, permanent metal deck forms (PMDF), and other 

substructure features can be identified from the bridge inspection studies 

conducted, as shown in Figure 4-45. PMDF structures are placed to keep the 

thickened end slabs in place and hence plays a key role in the structural integrity of 

the bridge. There was no appreciable distress observed in the inspection because 

this was a new bridge, which had not yet been opened to traffic. However, 

inspections on in-service bridges may reveal distresses like cracking and spalling 

of concrete bridge elements, rusting of PMDF and other metal parts, damages in 

the bearings and pile caps, and other surficial distress. 
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Figure 4-45. Under-bridge Inspection Featuring Bridge Substructure Elements 

The stills from the 4K videos were helpful in capturing the side views of the 

bridge that included the columns, pier caps, bearings, and other bridge elements 

shown in Figure 4-46. The condition of the bearing pad and the bearing seat can be 

inspected by zooming on those elements as shown in Figure 4-47. These images 

can also help in identifying the surficial condition of the outer beams. 
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Figure 4-46. Side View of the Bridge Substructure Elements 

 

Figure 4-47. Zoomed in Images Depicting the Condition of the Bearings and Pier 

Cap 
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Increased safety when accessing hard to reach areas is an important benefit 

as noted from the bridge studies presented in this report. Under-bridge inspection, 

that would have been done using a snooper truck stationed and obstructing traffic 

over the pavement, can be accomplished in less time with minimal traffic disruption 

by using a UAV. 

4.5 RAIL CORRIDOR 

4.5.1 Rail Corridor Inspection Study Areas 

Due to the research phase of using UAVs for various infrastructure applications, a 

decommissioned rail track corridor was selected to provide a chance to concentrate 

on evaluating the data collection capability of UAVs. This rail track used to receive 

high traffic during the 1800s and presently in decommissioned state. This provided 

an opportunity to demonstrate the feasibility of using aerial data for track 

maintenance. 

Two UAV flying teams, one from the University of Texas at Arlington 

(UTA) and the other from Michigan Technological Research Institute (MTRI) 

traveled to the Alpine-Presido region, Texas along with two TxDOT employees to 

conduct rail corridor inspection studies at four separate locations. The group used 

two Ford F250 crew cab trucks, as shown in Figure 4-48, equipped with hi-rail gear 

for operating over rail tracks to visit the rail corridor sites. The locations and their 

nearest mileposts’ (MPs’) numbers are listed below.  

 Rail Road Crossing site, at railway milepost MP 1027.22 
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 Rail Bridge site, at railway milepost MP 1019.5 

 Washout site, at railway milepost MP 1001.5 

 Rock-Cut site, at railway milepost MP 1008.1 

 

Figure 4-48. Ford F250 Crew Cab Truck Equipped with Hi-Rail Gear 

The locations of the data collection sites in the Alpine-Presidio region were 

selected based on the idea of employing drones for various applications. Before the 

start of every day for field data collection, there was a TxDOT briefing on safety 

protocols, followed by a discussion of fieldwork objectives by the UT Arlington 

team. Personal protective equipment (PPE) was mandated for everyone taking part 

in the field operations.  

4.5.1.1 Railroad Crossing Mapping Surveys 

A railroad crossing, located in Presidio, Texas, was the first of the data collection 

sites visited. The location coordinates of this site can be identified as 29.555607610 
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N, 104.357767373 W. Observations during the initial reconnaissance surveys 

indicated that the decommissioned rail track had accumulated a large volume of 

debris. The objective of this location visit was to map the railroad at grade crossing 

area that extended to at least 60 meters in all directions from the center point of the 

crossing. For comparison studies, a terrestrial LiDAR survey was first conducted, 

and then a close-range photogrammetry study was performed with a UAV.  

Traffic flow was unobstructed for the most part and was only regulated 

while covering the central part of railroad crossing area from two terrestrial LiDAR 

scan surveys spanning 15 minutes each, using two flagged workers standing on 

either end of the inspection road area. A Faros X 330 LiDAR with resolution of ¼ 

and quality of 4× was used considering the level of detail required, distance from 

the railroad crossing, and the available time. Four spheres, three on one side and 

one on other side of the road along the rail line, were placed to assist in stitching of 

two LiDAR scans together (shown in Figure 4-49a).  

UAV data collection was performed by UAV platform, Aibot X6 

hexacopter, as shown in Figure 4-36. Railroad crossing area extending 60 m length 

in each of the four directions from the center of the crossing location was measured 

with a tape and marked by placing a traffic cones. Six ground points, four ground 

control points (GCPs) and two ground check points (CKs) were laid using Trimble 

R8 as shown in the Figure 4-49b.  
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       (a)                                                           (b) 

Figure 4-49. Railroad Crossing (a) Lidar Scanning, and (b) Collecting the Ground 

Points Information  

Flights were planned in such a way to avoid flying over the adjacent private 

area in the north-west part of the site shown in Figure 4-50. The dense point cloud 

model, high quality orthomosaic, and digital elevation model (DEM) pictures are 

shown in Figures 4-50(a-c), respectively. The orthomosaic was obtained after 

building mesh and rendering texture to the dense cloud points that can be observed 

by the sharpness exhibited by the orthomosaic compared to dense point cloud 

model. DEM offers an overview of the elevation of the objects with in the area read 

from a color-coded elevation bar, shown in figure 4-50c.  

They are the imaging analysis outputs obtained from 342 photos collected 

during two flight plans executed at an altitude of 85 ft, spanning 10 minutes each. 

Throughout the data collection, real time video of the camera view was displayed 

on the digital live video display (DLVP) unit. The orthomosaic obtained was 
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helpful in setting up the sight triangles and the DEM was useful in determining if 

there are any obstructions within the sight triangle. 

   

 (a)                                                       (b)                                                 

 

(c) 

Figure 4-50. Railroad Crossing (a) Dense Point Cloud Model (b) High Quality 

Orthomosaic (c) Digital Elevation Model (DEM) 
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It is important to validate the accuracy of any model developed from 

collected images. Four ground control points (GCPs) were used in obtaining the 

dense point cloud models, and the accuracy of the model in the X, Y, and Z 

directions was estimated using two check points (CKs). Root Mean Square Error 

(RMSE) values in X, Y, and Z directions are 0.78 ft (2.4 cm), 0.17 ft (5.2 cm), and 

0.05 ft (1.4 cm), respectively. Accuracy of horizontal data obtained is close to 

horizontal accuracy class of 5-cm and vertical data obtained is better than vertical 

accuracy class of 2.5-cm. 

The measurements obtained from the terrestrial LiDAR and the UAV-CRP 

data were compared to evaluate the accuracy of the data captured using UAV. The 

spacing between the outer ends of the two rails was calculated from both the data 

collected from terrestrial LiDAR and UAV-CRP, as shown in Figures 4-51 and 4-

52, respectively. 

 

Figure 4-51. Rail Spacing Measured from Railroad Crossing Data Collected 

Using Terrestrial LiDAR 
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Figure 4-52. Aerial View of Rail Spacing Measured from Railroad Crossing Data 

Collected Using UAV-CRP 

The nearest rail spacing measurement in the LiDAR data, as shown in the 

Figure 4-51, is represented by the aqua line drawn in UAV-CRP data, as shown in 

Figure 4-52. The farthest rail spacing measurement in the LiDAR data, shown in 

Figure 4-51, is represented by the pink line drawn using UAV-CRP data, as shown 

in Figure 4-52. Considering the terrestrial LiDAR data as the benchmark, the 

percentage error in lengths measured by the UAV-CRP data compared to the 

LiDAR data monitored is recorded as 0.7% and 0.3%, respectively. This analysis 

indicates that the UAV-CRP data can accurately detect several rail track features at 

a rail corridor. With this assurance of accuracy, the railroad corridor data was 

analyzed for different features and results are presented in the following: 
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4.5.1.1.1 Rail Corridor Feature Identification: Vegetation, Debris and Rusting 

The output models from the UAV-CRP technology were analyzed based on their 

ability to cover several rail corridor problems. UAV-CRP offers a uniform scale in 

the orthomosaics, which assisted in pinpointing the areas of debris, rusted rail 

sections, and vegetation encroachment areas as they appear in the field (as shown 

in Figures 4-53a and 4-53b). Submergence of rail ties under debris can also be 

identified in the zoomed orthomosaic view of the rail track section shown in Figure 

4-52. This information is needed for the proper maintenance of rail track, which is 

essential to safe railway operations. 

   

(a)                                                             (b) 

Figure 4-53. Rail Track Condition Assessment (a) Vegetation Encroachment and 

(b) Rusted Rail Sections 

4.5.1.1.2 Obstruction Identification within the Sight Triangle of Rail Road 

Intersection 

The elevation information of the area obtained from the digital elevation model 

(DEM) is useful in identifying any potential obstruction or encroachment within 

the sight triangles formed, as shown in Figures 4-54(a–d). Each of these figures 
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displays three views: a top view, 3D view, and profile section view. A yellow 

triangular toe with its two sides parallel to the centerline of the pavement and 

centerline of the rail line was formed at grade with the pavement. The length of the 

two legs of the triangle was obtained by calculating the stopping sight distance 

corresponding to the allowable vehicular speed on the pavement. The two sides 

meet orthogonally, and their other ends are joined by the hypotenuse of the triangle.  

Analysis was performed using cut and fill volumetric calculations, where 

the toe triangle formed in the level field with the pavement serving as the horizontal 

partition between the cut and fill sections. Cut was represented by the black regions 

where there are objects above the level of the pavement section and fill is 

represented by red regions where there are no objects above the level of pavement. 

The black regions are inspected closely to identify potential obstructions laying 

within the sight triangle.   

  

 (a)  (b) 
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 (c)  (d) 

Figure 4-54. Obstruction Analysis (a) Sight Triangle Formed by the Toe, (b) Sight 

Triangle Area Marked Red and Black, (c) Inspecting the Black Regions near the 

Orthocenter of the Sight Triangle, (d) Inspecting Black Region Representing 

Vegetation Protruding Above the Level of the Sight Triangle  

The yellow toe triangle was formed as shown in Figure 4-54a and analyzed 

for potential obstructions to line of sight within the yellow sight triangle. In Figure 

4-54b, the red region in the top view shows the area without any obstructions. The 

small black pockets near the orthocenter, zoomed in Figure 4-54c, represent the 

objects above the level of the pavement and within the sight triangle. With closer 

inspection in Figures 4-54c and 4-54d, the black regions were formed due to the 

vegetation growing above the level of the sight triangle. The sectional profile view 

at the bottom of each picture shows that the elevation of the vegetation is not great 

enough to deem it as a harmful obstruction within the sight triangle. 

4.5.1.1.3 Elevation profile near to tracks 

The comfort of those who drive over the Nation’s streets and highways is an 

important factor when estimating the condition of any pavement. An attempt was 
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made to estimate the discomfort experienced as indicated by IRI values from the 

UAV-CRP collected data. The MTRI team collected photogrammetry data using a 

Nikon D810 camera mounted on a Bergen hexacopter to determine the ride 

smoothness at railroad crossings.  The assembled drone configured for research and 

weighs just over 11 pounds including the payload costs $5,000. The 3D digital 

elevation model (DEM) and the orthomosaic (shown in Figures 4-55(a)–(c)) were 

used to calculate the elevation details.  

The MTRI team measured the elevation profile at four sections across two 

specific rail crossings (as shown in Figure 4-55).  After extracting the elevation 

profiles of those sections using ArcGIS Desktop, the elevation values were 

imported into ProVAL to determine the IRI of each section at its respective 

crossing, with the depression areas representing the rail tracks removed. This 

resulted in IRI values in the range of 9.12 to 12.31 m/km (578 to 780 in/mi), which 

needs further inspection along the whole pavement stretch. 
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 (a)  (b) (c) 

Figure 4-55. Aerial Mapping Products of Railroad Crossing (a) Orthomosaic, (b) 

DEM and (c) The Elevation Profile of Four Sections 

4.5.1.2 Railway Bridge 

The UAV inspection teams comprising UTA and MTRI team visited a railway 

bridge located at coordinates, 29.59554545 N, 104.2466614 W.  A 360° rail bridge 

inspection was accomplished using top and bottom gimbals mounted on the UAV. 

The bottom gimbal on the Bergen hexacopter and DJI phantom was used to capture 

the top and side views of the bridge. The top gimbal on the Aibot X6 hexacopter, 

as shown in Figure 4-56, was used in conducting the under-bridge inspection.  
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Figure 4-56. UAV with Camera Mounted on Top Gimbal Flying Towards the 

Bridge for Inspection 

4.5.1.2.1 Rail Bridge: Super and Substructure Inspection 

A TxDOT bridge inspector accompanied the UTA and MTRI research team to 

supervise the inspection. Throughout the under-bridge inspection, the bridge 

inspector accessed the live relay of the camera’s view on the digital live video 

display unit (DLVP) monitor and passed on the information needed to inspect the 

bridge elements that are of importance to TxDOT. This under-bridge inspection not 

only helped to identify missing rivets and bolts but also the presence of the rusted 

sections and rotten tie members, as shown in Figure 4-57. This drone inspection 

was also safer for the TxDOT workers who traditionally collect this information 

walking on a wooden platform placed 70 ft above ground level just below the 1500 
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ft long bridge. During our UAV inspection, research team identified the heavily 

distressed walking platform shown at the bottom of Figure 4-57 and Figure 4-58a. 

Some of the elements identified included rail ties, bridge girders, plates, rivets, 

bridge columns, and other rail elements.  

. 

Figure 4-57. Under-bridge View Displaying Missing Rivets, Rotten and Rusted 

Bridge Elements 

The stills from the 4K quality videos of the bridge’s top and side views were 

used to identify the damaged ties and railings, and the condition of the plates and 

rivets on the bridge columns as shown in Figure 4-58(a–d). 
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 (a) (b) 

  

 (c) (d)  

Figure 4-58. Rail Bridge Inspection (a) Bridge Column Inspection (b) Side View 

of the Bridge Girders (c) Damaged Railings (d) Top View of the Railway Line 

4.5.1.2.2 Thermal Imaging 

The UTA and MTRI team used FLIR Vue Pro thermal camera mounted on the 

Bergen hexacopter and collected visible range digital imagery with a Nikon D810 

used in the small Phantom 3A and Mavic Pro quadcopters. Six survey-grade GPS-

based ground control points were laid on the bridge and at the ends of the bridge. 

The thermal data was used to detect the improper alignment of rail ties indicated by 

stark differences between the temperature of a tie from that of the surrounding 

debris, as shown in Figures 4-59a and 4-59b. We can also apply algorithms to detect 
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if a tie is missing or buried under the debris. We can also differentiate between good 

and damaged ties using the thermal data, which showcase their ability to conduct 

heat differently. 

 

        (a)                       (b) 

Figure 4-59. Aerial Data of Rail Bridge (a) Thermal data from Flir Vue Pro 

Camera (b) Orthoimage from Nikon D810 Camera 

Figure 4-60 shows how the pixel values of each tie in the thermal imagery 

can be extracted to indicate the relative temperatures of the ties.  This can then be 

compared with the optical imagery to show how tie brightness affects temperature; 

darker ties with more creosote are usually warmer than bright ties. This analysis is 
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useful for an automated identification of older ties with more creosote that might 

need replacement. 

 

Figure 4-60. Relative Brightness Linked With Temperature to Identify Older Ties 

Needing Replacement 

4.5.1.2.3 Bridge Bearing Condition Inspection 

The UTA and MTRI research team also demonstrated the use of 4K video 

(equivalent to 8.8 MP resolution) in conducting bridge inspection. Over a period of 

4 minutes and 46 seconds, 1000 feet of bridge fascia were flown at 30 fps 4K video, 

which is the same as taking 8,580 continuous images of the bridge. This video 

capture was also repeated for the other side of the bridge. The TxDOT inspector 

also expressed interest in inspecting the condition of the bridge bearings. Hence, 
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the individual frames from the 4K video were extracted and merged together to 

create detailed side views of the bridge bearings (as shown in Figure 4-61).  

Providing this kind of rapid video inventory capability can help to inspect hard-to-

access parts of bridges in a very short amount of time. 

 

Figure 4-61. Bridge Bearing Inventory Created from 4K Video Stills Collected by 

a Mavic Pro Small Quadcopter UAV 

These videos and the images were helpful in assessing the condition of the 

railway track located in a remote area of Texas.  

4.5.1.3 Railway Washout 

The UTA and MTRI inspection team visited the washout area underneath the rail 

track located at 29.77550326 N, 104.06125797 W. A drainage path leading to the 
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washout had been observed during the initial inspection of the site. For ground truth 

comparisons, the width of the washout was found manually at different sections 

along the length of the washout, as shown in Figure 4-62a. Damaged ties/sleepers 

were marked to assess the detection capability of 3D models developed from the 

UAV-collected data. 

A LiDAR scan was performed using the Faros X 330 LiDAR at the washout 

site. A resolution of ¼ and quality of 4x were selected considering the level of detail 

required as well as the distance from the washout and the available time, as shown 

in Figure 4-62b. Subsequently, five ground control points were set up using Trimble 

R8. The Bergen hexacopter was flown over the washout site. 

  

(a) (b) 

Figure 4-62. Inspection of Washout (a) Manual Measurement of Washout Width, 

and (b) LiDAR Scanning at Washout underneath the Rail Track  

The UAV data was analyzed to develop orthomosaic and 3D dense point 

cloud models that not only help estimate the extent of the washout, but also identify 

the drainage path that contributed to it, as shown in Figure 4-63. 



 

228 
 

 

Figure 4-63. Aerial view of Drainage Path That Contributed to the Washout 

Ground truth measurements were made and compared with LiDAR (as 

shown in Figure 4-64) and UAV collected data measurements are shown in Figure 

4-65. 

 

Figure 4-64. Washout Width Measured Using Data Collected from Terrestrial 

LiDAR 
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Figure 4-65. Measurements of Washout Width and Rail Spacing from UAV Data 

The error between the measurements from the Terrestrial LiDAR and the 

UAV-CRP data at Section A is 0.1%. Comparisons of the drainage path width and 

washout obtained from the ground truth measurements and the measurements from 

UAV-CRP data are shown in Figure 4-65 and indicate an error of 0.4%, 0.4%, 

1.7%, and 4% at sections A, B, C, and D, respectively. Comparisons of rail spacing 

measurements from the ground truth and the UAV-CRP data show an error of 0.2%, 
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1.8%, and 0.3% at Sections G, E, and F, respectively. These errors are small 

indicating that UAV-CRP data and analyses provide the measurements matching 

ground truth values obtained from traditional methods. 

4.5.1.4 Rock Cut 

The rail line passing through a rock cut located at coordinates 29°42'20.3"N, 

104°08'07.5"W was visited by the inspection team. Unstable rock slopes, rock fall 

debris, and damaged ties were among the problems identified on this rail 

infrastructure. Stability of rock cuts is warranted for safe operation and preservation 

of any infrastructure asset that passes through hilly terrain. A proper assessment of 

the stability of cuts could result in planning for measures reducing the damage 

caused by potential landslides during hazardous disasters such as earthquakes and 

hurricanes. The UAV-CRP methodology assists in collecting such data in a safe 

and efficient manner. UAV operations were performed on a rail line passing 

through one of the rock-cut sections in the Alpine-Presidio region, Texas. A LiDAR 

scan was performed using the Faros X 330 LiDAR at the rock cut site. A resolution 

of ¼ and quality of 4× were selected considering the level of detail required, 

distance from the rock walls, and the available time.  

Subsequently, an attempt to set up five ground control points using Trimble 

R8 failed as the site was 30 miles away from the base station and covered with soil 

on both sides. Here, radio communication issues with the real-time kinematic 

(RTK) broadcast signals prevented collection of GPS data.  The UAV was taken 
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off from the box (as shown in Figure 4-66a) due to the unavailability of a flat ground 

surface and high wind gusts. The Aibot X6 hexacopter was flown at multiple flight 

altitudes manually due to the variations in the ground profile, wind speed, and bird 

threat in this remote area of Texas. The copter was flown away from the wind tunnel 

effect created by the rock walls on either side of the cut. While maintaining the 

copter’s line of sight data was collected as the area, being covered was monitored 

in real-time using a live video display unit (DLVP).  

Servo gimbal was not only useful in damping the vibrations caused due to 

flying in windy conditions but also in collecting nadir and oblique images. Oblique 

images were helpful in creating an accurate representation of the uneven slope 

surfaces of the rock walls. Geotagged images were used to generate a high-quality 

3D dense point cloud model, as well as a digital elevation model (DEM), and 

orthomosaic, shown in Figure 4-66b and 4-66c. These files are used to obtain 

different views as shown in Figure 4-66b. 

 

 (a) (b) 
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  (c)  

Figure 4-66. Rock Cut Inspection (a) Setting up the UAV Take off Point on a 

Box, (b) Rock Cut Shown in Different Views (c) DEM of the Rock Cut 

Data collected from the terrestrial LiDAR and the UAV are analyzed to 

compare the accuracy of the UAV data, shown in Figures 4-67 and 4-68. The 

nearest rail spacing measurement in LiDAR data, shown in Figure 4-67, is 

represented by the aqua line drawn in UAV data, shown in Figure 4-68. The farthest 

rail spacing measurement in LiDAR data, shown in Figure 4-67, is represented by 

the orange line drawn in UAV data, as shown in Figure 4-68.  
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Figure 4-67. Rail Spacing Measured At Rock Cut Using Data Collected from 

Terrestrial LiDAR 

 

Figure 4-68. Aerial View of Rail Spacing Measured at Rock Cut Using Data 

Collected from UAV-CRP Technology 

Considering the terrestrial LiDAR data as the benchmark, the percentage 

error in aqua and orange lengths measured by the UAV are recorded as 0.4% and 
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0.7%, respectively. This analysis indicates that the UAV-CRP data could accurately 

capture several features of rock cut. Further results from the rock cut are presented 

in the following sections: 

4.5.1.4.1 Rock Slope Stability Analysis 

All three views including top (or plan view), 3D view, and profile section views of 

the railway infrastructure passing through a rock cut are presented in Figure 4-66b. 

These different view perspectives can help identify the most critical rock slopes 

and plan stabilizing measures in case the slopes appear to be too close to a failure 

state as shown in Figures 4-69 and 4-70. The debris on the track is made up of rocks 

that rolled down from the rock outcrops, which is simulated in the two- and three-

dimensional models for a more realistic field experience representation.  Also, 

potential rock debris volume estimation can be performed to help plan debris 

removal after the occurrence of rock slides. 

 

Figure 4-69. Slope Stability Analysis of the Rocks at One Location 
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Figure 4-70. Slope Stability of the Rocks at Multiple Locations along the 

Infrastructure 

Slope stability information was presented at three locations (two on left and 

one on right side of the track), in the rock slope section as shown in Figure 4-70. 

For Section 1, the slopes (presented as tangent slope angles) connect each of the 

three points on the slope region with the point located on the toe of the slope of the 

left rock slope as shown in Figure 4-69, are 3.3, 2.0, and 1.7, respectively. Similarly, 

the slopes connecting the point on the slope toe and the points on the crest on the 

slope section (only two slopes are drawn here) were calculated at two other 

locations depicted in Figure 4-70. The slopes for Section 2 on the right rock slope 

are 2.0 and 1.8. The slopes for Section 3 on the left rock slope in are 4.5 and 3.0. 

 This information will be input into any slope stability software with the 

availability of rock material properties at the site, engineers will be able to perform 
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slope stability assessments of the rock cut sections. Any unstable slopes will then 

be reviewed and strengthened. 

4.5.1.4.2 Debris Detection on Rail Lines 

The two sky-blue lines, in the top view of the photo image shown in the Figure 4-

71, represent the rail tacks. Two red lines on either side of the track, as shown in 

the 3-D view on the top right of Figure 4-71, were formed as the toe lines at the 

level of the rails 9 ft each from the nearest rails.  

 

Figure 4-71. Perilous Debris Obstruction Identification within the Permissible 

Vicinity of Rail Infrastructure 

The cut and fill volumetric method was used to find any possible rock falls 

that are above the level of the rails and could pose a potential danger to the smooth 

movement of the rail traffic on the infrastructure. The toe formed level with the 

rails serves as the horizontal partition between the cut and fill. Cut is represented 

by black regions where there are objects above the level of the rails and fill is 

Perilous Debris 

Obstruction Identified 
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represented by red regions where there are no objects above the level of rails within 

the region between the toe and the rails. 

The red regions around the rail lines, represented by the sky-blue color, 

denote the areas where there is no potential obstruction from rock debris 

accumulated near the rail lines due to unstable rocks. The black regions, pointed 

out by the yellow arrow in the top view of Figure 4-71, represent the rock debris 

above the rail levels. This can also be inspected on the right side of the rail track 

shown in the profile section view, highlighted by the red oval, at the bottom of 

Figure 4-71. This data will be very useful in areas with unstable slopes or with 

slopes that are not easily accessible. In addition to all the data collected, damaged 

or rotten ties can also be counted by observing the number of dark ties visible in 

the top views of images presented in Figures 4-69, 4-70, and 4-71. 

4.5.1.4.3 Thermal Imaging 

The UTA and MTRI team collected the aerial data at another rock cut site with only 

one rock wall and a valley on the other side. A Nikon D810 mounted on the 

hexacopter was used to collect visible range images and Flir Vue Pro to gather the 

thermal data. This data was used to develop the orthomosaics that help in further 

evaluations. Thermal imaging, visible range orthomosaics, and DEMs as shown in 

Figures 4-72(a)–(c), can be used to identify the improper alignment of rail ties 

indicated by stark difference between the temperature of a tie from that of the 

surrounding debris and also sliding debris. Research teams can also apply 
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algorithms to detect if the tie is missing or buried under the debris and also to 

differentiate between good and damaged ties using the thermal data that highlights 

the variability in thermal properties of damaged and healthy ties. 

 

       (a)                           (b)                       (c) 

Figure 4-72. Aerial Data of Rock cut (a) Thermal Imaging (b) Orthomosaic (c) 

DEM 

4.5.1.4.4 Erosion Detection 

Aerial data collected by UTA and MTRI team was processed to obtain elevation 

data that can be used to detect erosion around rail ties, as shown in Figure 4-73. 

The ties were protruding out, without any substantial support to hold the rails in 

place. This is detrimental to safe rail operations. Eight rail ties were selected and 

the respective elevations of top face of each tie from the bottom of the ground were 

measured from UAV-CRP data and a tape for comparison purposes.  
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All measurements were within 1.61 cm of their field values, as close as 

0.80% (8.89 cm vs. 8.82 cm) although one area had 6.35 cm vs. 4.80 cm. As field 

measurements were only recorded within the nearest ½ in., it is possible that the 

measurements from the remote sensing results might be accurate. This research also 

demonstrates that the UAV-CRP data can be used in the detection of missing ballast 

support for ties due to erosion. This process can likely be automated to find areas 

of ballast fouling and other problems along rail lines. 

 

Figure 4-73. Detection of missing ballast support for the ties due to erosion 
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4.6 SUMMARY 

UAV-CRP technology collected data offer a comprehensive idea on the distress 

features including permanent deformation to cracking patterns in pavements, 

spalling to bearing condition of bridges, and washout to buckling of rail lines. 

Various infrastructure condition assessments including transportation to 

geotechnical infrastructure health monitoring were possible and these applications 

were performed and fully addressed in this research.  

 Pavement images were collected and processed to build different 

photogrammetric models. These models were analyzed for different distress like 

cracking, permanent deformation, pot holes, and other serviceability parameters. 

International roughness index (IRI) and transverse slope were measured using 

traditional profilers and terrestrial LiDAR to compare with UAV-CRP technology. 

Although a good match was obtained between the IRI values using the traditional 

methods and UAV-CRP technology, there is need for conducting more validation 

studies.  

UAV-CRP technology have shown good correlation with the measurements 

from terrestrial LiDAR. Python programming language was used to identify the 

cracked region basing upon different filters applied on the pixel intensity based 

images. Pavement construction material stockpiles were also estimated using UAV-

CRP technology and have shown an excellent match with the traditional methods. 

UAV-CRP technology have provided the stockpile information quick, safe and 
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efficient manner compared to conventional techniques. Bridge structure was 

inspected for obtaining the condition of superstructure and substructure elements. 

Top gimbal and bottom gimbal cameras were used in separate flights to conduct a 

360° bridge inspection. 

Railway corridor inspections on the decommissioned rail line in the Alpine-

Presidio region have shown that data collection using UAV-CRP technology is 

quick, safe, and accurate compared to the traditional way of data collection. In this 

dissertation research many important features that might affect the working of 

railroad crossing had been identified using this new technology. Various 

superstructure and substructure elements of the rail bridge were safely inspected. 

Washout location has also been identified along with the drainage path leading to 

the erosion of soil underneath the track. Information pertaining to the stability of 

rock cuts were also obtained using this technology. UAV-CRP technology studies 

have provided information critical to the safety of road and rail users.  
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CHAPTER 5: DISASTER MANAGEMENT OPERATIONS 

5.1 INTRODUCTION 

Recently the frequency of disaster occurrence has gone up and it created the need 

for exploring tools and equipment that help in various disaster management 

operations. UAVs had provided scope to monitor places that cannot be easily 

accessed by humans, especially during the time of disasters. Mounting different 

sensors also helps in inspecting the situation, in an innovative view which otherwise 

would not be possible with a naked eye. In this dissertation research, UAVs were 

explored for reconnaissance surveys during and after the Hurricanes. They were 

mounted with a visible range camera and the condition of the infrastructure in 

addition to the debris stockpile information. 

5.2 HURRICANE HARVEY DETAILS 

Large amounts of debris was generated from Hurricane Harvey that struck the state 

of Texas, USA in 2017. As a part of National Science Foundation (NSF) RAPID 

study, UT Arlington studied the use of UAV-CRP technology for the estimation of 

stockpile volumes of debris generated from the inundated household items. This 

chapter describes the framework followed to estimate debris piles and pavement 

condition using UAV-CRP technology related data collection.  

Research team visited various sites in the City of Beaumont, Texas 

including a landfill site and the debris piles stacked up on the streets, as part of 

reconnaissance survey to select appropriate sites for data collection. Due to the 
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research nature of the study, with an intention to collect more data in the available 

time, the sites were selected in such a way that the streets have continuous debris 

piles in the vicinity. DJI Phantom Advanced 4 is built with front obstacle avoidance 

sensors that help in maneuvering in complex places such as arterial roads covered 

with poles, trees, and other obstacles. Due to the obstructions posed by the trees 

and buildings, all the UAV data collection was done in a manual flight mode to 

have better control of flight operations. Remote pilot in command (RPIC) had flown 

the copter within the line of sight throughout the flights and the visual observer was 

able to click pictures looking at the screen providing the views from the camera 

mounted on the drone. 

5.3 UAV AND ACCESSORIES USED 

DJI Phantom Advanced 4, as shown in Figure 5-1, was used due to its compactness 

and higher flight time. It can be operated autonomous as well as in manual flight 

mode. It has a 20 MP inbuilt camera with adjustable aperture size from F2.8-11. 

 

Figure 5-1. DJI Phantom Advanced 4 
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5.4 DEBRIS SITE INFORMATION 

The sites were selected in such a way that they fall under the class G airspace 

according to Federal Aviation Authority (FAA). UAV was flown at eight different 

sites that included flights covering one or multiple stockpiles. The eight debris 

stockpile sites selected are located at 11800 Carpenter Road, 9902 N Major Dr, 

7695 San Anselmo St, 11080 Sherwood Dr, 11130 Fairfield Dr, 11195 Forest Glen, 

11135 Forest Glen, and 12700 Tan Oak Ln, Beaumont, Texas, respectively shown 

in Figure 5-2. All these areas under unrestricted flying zones, falling under class G 

airspace, are numbered as Site 1, 2, 3, 4, 5, 6, 7, and 8. Sites 1, 2, 4, 5, and 7 

consisted of single debris stockpile each; Site 6 consisted of two debris stockpiles; 

and sites 3 and 8 consisted of three debris stockpiles each. 

 

Figure 5-2. Locations of Eight Debris Piles Located in Beaumont, Texas (Map 

data © 2018 Google) 
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5.5 DATA COLLECTION AND ANALYSIS 

All the staff participating in the research were required to wear Personal Protective 

Equipment (PPE) while performing the UAV data collection procedures. Traffic 

cones were placed at the boundary of the inspection area projecting on to the 

roadway but there was no traffic control as the UAV was flown off from the 

pavement. Due to the early days after the disaster had occurred, these arterial roads 

mostly had the slow moving garbage truck traffic that can be easily spotted. The 

UAV was taken off from a flat surface and flown in multiple flight legs parallel to 

the longest side of the debris stockpiles. Whenever a passing vehicle was spotted 

and informed by one of the visual observers, the drone was flown away to a safe 

distance from the pavement and hovered still to continue the data collection after 

the vehicle passed.  

Each stockpile was covered in three longitudinal legs due to the smaller 

width of the stockpiles and the lower flight altitudes adopted. First leg of the UAV 

flight was selected in such a way that it is couple of feet away from the edge of the 

stockpile and the pictures were manually taken in such a manner that noticeable 

objects on the stockpile were identified on the monitor and ensured that they are 

captured in at least four images in the longitudinal direction. At the end of the 

longest stockpile leg, the UAV was flown laterally to reach the central plane of 

stockpile and the procedure adopted for adequate longitudinal overlap coverage 
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during the first leg was followed along the center line of the stockpile, parallel to 

the first leg.  

The third leg was flown along couple of feet away from the edge of 

stockpile to obtain adequate lateral overlap as well. Whenever the stockpile width 

was higher, an extra leg was introduced in the middle for acquiring better quality 

data with higher overlap. These procedures were followed for the data collection at 

all eight debris sites discussed below 

Despite of lacking the ability to penetrate the surface of debris stockpiles, 

the UAV-CRP provides an accurate estimation of the irregular outer surface from 

the 3-dimensional dense point cloud model. Using the orthomosaic, a boundary was 

created by joining the points around the debris stockpile and the base of the debris 

stockpile was formed between these points. Both these views offered by the 3-

dimensional dense point cloud model and the orthomosaic are combined to measure 

the distances in three dimensions.  

Most of the debris stockpiles were piled up on the side of the streets where 

the land was sloping, hence, the elevation of the ground under the debris stockpile 

is interpolated between elevations of two boundary points. The volume was 

calculated by estimating the dense point cloud points above the base and enclosed 

within the boundary marked. These procedures were followed for estimating the 

volume of each debris stockpile at all eight site locations provided below. 
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5.5.1 Debris Site 1  

The first debris stockpile was inspected near to the location 11800 Carpenter Road, 

Beaumont, Texas. The only stockpile inspected at this location composed of the 

sodden household objects dominated by the furniture. There was no vehicular 

traffic during the data collection hence the UAV was taken off from the adjacent 

hard surface. Following the procedure explained in earlier sections, the single 

stockpile was inspected in a manual flight. The images captured were processed in 

image analysis software to develop 3-dimensional dense point cloud model, 

orthomosaic and digital elevation model (DEM). Orthomosaic offers a better 2-

dimensional scaled view to estimate the horizontal distances in the model.  

Additional depth perception offered by the color-coded elevation in DEM 

will help in a quick and rough estimation of the volumetric numbers, shown in 

Figure 5-3. The color-coded bar in the DEM of the collected data represents the 

highest elevation point on the debris pile by dark red and the lowest elevation point 

in the collected data by dark blue. This gives an estimate of the relative elevations 

of the surrounding areas i.e. the area where the debris stockpile was formed is 

sloping downwards as we move away from the pavement. Using the procedures 

discussed above, 3-dimensional dense point cloud model and the orthomosaic 

obtain the volume of the debris stockpile was obtained as 2,230 ft3. 
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 (a)    (b) 

Figure 5-3. Site 1 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.2 Debris Site 2 

The second debris stockpile site was inspected near to the location 9902 N Major 

Drive, Beaumont, Texas. There is only one debris stockpile inspected at this 

location that composed of mostly the construction rubble and sodden wooden 

furniture. There was moderate traffic on the adjacent pavement. Even though there 

were no appreciable obstructions posed by the nearby trees, UAV was flown 

manually to interrupt immediately after spotting a vehicle and resume the data 

collection after the passing of vehicle.  

All the images were collected and processed according to the procedures 

explained above to generate the 3-dimensional dense point cloud model, 

orthomosaic and digital elevation model (DEM), as shown in Figure 5-4. The color 

coded bar in the DEM of the collected data represents the highest elevation point 
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on the debris pile by red and the lowest elevation point in the collected data by dark 

blue. This gives an estimate of the relative elevations of the surrounding areas i.e. 

the area adjacent to the pavement over which the debris stockpile was formed 

appears to slope downwards away from the pavement. Using the 3-dimensional 

dense point cloud model and orthomosaic, the volume of the stockpile was obtained 

as 380 ft3. 

   

 (a)  (b) 

Figure 5-4. Site 2 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.3 Debris Site 3 

The third debris stockpile site was inspected near to the location 7695 San Anselmo 

St, Beaumont, Texas. There were three debris stockpiles piled on both sides of the 

pavement and these were predominantly composed of construction rubble and 

sodden wooden furniture. There was no traffic during the data collection on the San 

Anselmo Street, however, due to the debris location’s proximity to the T 
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intersection with Willis Lane, an additional visual observer was employed for 

spotting the traffic from Willis Lane turning into San Anselmo Street.  

The UAV was flown manually due to excessive obstructions posed by the 

trees. The flight path was planned in such a way that all three debris stockpiles were 

covered in single flight mission at that location. This gave an opportunity to even 

collect the data pertaining to the arterial pavement in and around the debris piles, 

as it gave an opportunity to assess the infrastructure condition after the natural 

disaster.  

All the images were collected and processed according to the procedures 

explained above to generate the 3-dimensional dense point cloud model, 

orthomosaic and digital elevation model (DEM), as shown in Figure 5-5. The two 

stockpiles on the right side of the pavement in Figure 5-5a are marked as 3a, 3b, 

and the debris pile on the left side of the pavement is marked as 3c. The color-coded 

bar in the DEM of the collected data represents the highest elevation point on the 

debris pile by red and the lowest elevation point in the collected data by dark blue. 

This gives an estimate of the relative elevations of the surrounding areas i.e. the 

debris stockpile was formed over the area sloping downwards in the direction away 

from the adjacent pavement. Using the 3-dimensional dense point cloud model and 

orthomosaic, the volume of the three stockpiles are obtained and these are 676 ft3, 

104 ft3, and 28 ft3, respectively. 
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(a)                                               (b) 

Figure 5-5. Site 3 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.3.1 Pavement Infrastructure Condition 

The Rutting or excessive permanent deformation is a common type of flexible 

pavement distress transpired due to deformation of either due to poor asphalt mix 

properties or the underlying base and subgrade layers or both (Puppala et al. 2003, 

1999, 2011). Improper design standards, poor pavement construction practices, and 

higher vehicular traffic than designed are some of the factors contributing to the 

deformation of asphalt mix layer. Underlying pavement layers’ deformation can be 

observed immediately after a rainy season, causing floods to inundate the whole 

pavement right of way. The stagnant water permeates into the underlying pavement 

layers and reduces the shear strength causing the deformation of underlying layers.  

3a 

3c 3b 
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Excessive rut depths can also contribute to water stagnation that impedes 

the friction necessary for skid resistance. Pavement rut depth needs to be measured 

to ascertain the suitability of pavement conditions for road users. Traditional 

methods use a straightedge placed over two pavement contact areas across the rut 

and a gauge to measure to measure the rut depth as the distance between bottom 

surface of straightedge and the deformed pavement surface (ASTM E1703/E 2005). 

This is a tedious procedure as it requires frequent position change of the instrument 

and also requires more personnel to perform the traffic control operations and 

follow other safety protocols. UAV-CRP technology offers a quick way of 

assessing the rut depth with no or minimal traffic restrictions. 

 The research team used the UAVs to map the pavement infrastructure 

condition in Beaumont, Texas, immediately after Hurricane Harvey in 2017. This 

hurricane triggered floods, which inundated Houston and many other cities along 

the coastal region. One of the infrastructure sites that was inspected had pavement 

sides piled up with debris generated from the household items to walls from 

damaged residences, as shown in the top view of the Figure 5-6.  

The 3D view presents the color-coded elevation of pavements and 

surroundings covered under the outer cyan colored rectangle in the top view, as 

indicated by yellow arrow in Figure 5-6. The red color in 3D view indicates the 

crest of the debris pile and the pavement is indicated by green and yellow colored 

area on the left side of the debris pile. Lowest point in the collected data indicating 
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the sloping ground on the other side of the pavement opposite to the debris pile 

location was indicated by dark blue color in the 3D view as shown in Figure 5-6. 

Color coded elevations can also be seen in the profile view of the pavement 

provided in Figure 5-6.  

 

Figure 5-6. UAV-CRP Technology Data Identifying Rutting of Pavement Section 

Immediately after Hurricane Harvey 

While collecting data, the research team physically identified permanent 

deformation conditions at the pavement locations marked within red colored 

rectangle in the top view and red colored ellipse in the profile view of the Figure 5-

6. After processing the images and building models, they were analyzed for 

determining the extent of distress. The sectional view of the pavement at the small 

white rectangle shown in the top view was provided in the profile view of the Figure 

5-6. The depth of the rutted portion from dense point cloud was estimated as 12.20 

cm (4.80 in.), which matched with the depth measurements taken from field 
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surveys. The UAV-CRP technology provided a quick and accurate way of 

estimating the rutting depth in addition to providing other pavement related 

information. 

During these studies, it was also realized that the aerial technology not only 

helps in estimating the debris but also assesses the condition of the adjacent 

pavements affected by inundation caused by hurricane triggered rainfall events. 

These aerial surveys are multi-purpose as they do not require separate traditional 

methods for estimating the condition of pavement infrastructure and debris 

volumes. Same photogrammetry data collected from UAV is analyzed for multiple 

attributes. 

5.5.4 Debris Site 4 

The fourth debris stockpile site was inspected near to the location 11080 Sherwood 

Dr, Beaumont, Texas. Only one stockpile composing of sheet rock waste, sodden 

couches and carpets in addition to the furniture was inspected at this location. This 

was located parallel to a railway line and does not have any tree obstructions. The 

debris was located around pavement and the adjacent areas, and hence extra 

precaution was taken by having visual observers due to the presence of moderate 

traffic activity while performing the UAV surveys and data collection operations.  

All the images were collected and processed according to the procedures 

explained above to generate the 3-dimensional dense point cloud model, 

orthomosaic and digital elevation model (DEM), as shown in Figure 5-7. The color 
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coded bar in the DEM of the collected data represents the highest elevation point 

on the debris pile by red and the lowest elevation point in the collected data by dark 

blue color. This gives an idea of the relative elevations of the surrounding areas i.e. 

the debris was piled over an undulated pavement surface formed due to excessive 

cracking, indicated by light yellow color in the DEM. Using the 3-dimensional 

dense point cloud model and orthomosaic, the volume of the stockpile was obtained 

as 907 ft3.  

   

 (a) (b) 

Figure 5-7. Site 4 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.4.1 Pavement cracking 

The aerial data of debris collected was also able to capture the pavement distress 

shown in Figure 5-8. This data was collected immediately after the hurricane and 

there was no prior data of the pavement condition was available with the research 

team. Hence, google maps were accessed to obtain the images of the exact same 
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location before the hurricane. Unfortunately, the last image of the same location 

was captured in January 2013. Nevertheless, they were studied for understanding 

the reasons for this excessive cracking failure of the pavement as shown in Figure 

5-8. Although not many cracks were identified but a sealed crack and a developing 

crack, barely noticeable, were identified from those google images. 

  

 (a)  (b) 

Figure 5-8. Google Map Street Images of Sherwood Dr Looking towards Tram 

Rd, Beaumont, Texas Captured in January 2013 (a) Sealed Cracks (b) Developing 

Cracks (Map data © 2018 Google) 

The aerial data was analyzed for estimating the present condition of distress 

as shown in Figure 5-10. A maximum depth of distress was calculated as 2.4 in. 

along the 80 ft length of distress identified quickly from aerial data shown in 

Figures 5-9 and 5-10. 
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Figure 5-9. Pavement Distress Highlighted in the Orthomosaic of the Debris Site 

 

Figure 5-10. Different Views of the UAV-CRP Data Displaying the Extent of 

Distress  

 This author opines that this site has problems with underlying pavement 

layers as evidenced from the google images captured in 2013. Although it is 

observed to have some sealed cracks from the previous images as shown in Figure 

5-8a, new cracks had also been observed to develop which can be seen in Figure 5-

8b. The seepage of water through these fresh cracks, traffic volume, and other 
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factors affecting pavement stability might have triggered this failure. This research 

also acknowledges that the distress had occurred due to the absence of an affordable 

monitoring tool that could have provided scope for frequent proactive monitoring 

at low cost and helped in planning for preventive maintenance. UAV-CRP 

technology offers high quality data images of the pavement compared to google 

images and would help in monitoring the distress propagation over a period. This 

alerts the road agencies about the need for pavement maintenance before it 

deteriorates to such a condition that mandates rehabilitation of the whole pavement 

structure. 

5.5.5 Debris Site 5 

The fifth debris stockpile site was inspected near to the location 11130 Fairfield Dr, 

Beaumont, Texas. This site location had only one stockpile comprising of the waste 

generated from window panels, sodden mattresses, and broken wooden pieces. 

There was not much of vehicular traffic during the data collection but the tree 

density forced the research group to opt for manual flight. All the images were 

collected and processed according to the procedures explained above to generate 

the 3-dimensional dense point cloud model, orthomosaic and digital elevation 

model (DEM), as shown in Figure 5-11. The color-coded bar in the DEM of the 

collected data represents the highest elevation point on the debris pile by red and 

the lowest elevation point in the collected data by dark blue. This gives an estimate 

of the relative elevations of the surrounding areas i.e. the smaller width debris was 
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piled over a flat surface and there is a ditch, represented by blue color, adjacent to 

the stockpile and away from the pavement. Using the 3-dimensional dense point 

cloud model and orthomosaic, the volume of the stockpile was obtained as 847 ft3. 

 

 (a) (b) 

Figure 5-11. Site 5 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.6 Debris Site 6 

The sixth debris stockpile site was inspected near to the location 11195 Forest Glen, 

Beaumont, Texas. There are two debris stockpiles comprising of clothes, wooden 

furniture, refrigerators, and boxes at this site location. Manual flight was adopted 

to cover the both stockpiles due to the tree obstructions. There was not much traffic 

during the data collection. All the images were collected and processed according 

to the procedures explained above to generate the 3-dimensional dense point cloud 

model, orthomosaic and digital elevation model (DEM), as shown in Figure 5-12. 

The top and bottom stockpiles at this site location in Figure 5-12a are marked as 6a 
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and 6b, respectively. The color-coded bar in the DEM of the collected data 

represents the highest elevation point on the debris pile by red and the lowest 

elevation point in the collected data by blue. This gives an estimate of the relative 

elevations of the surrounding areas i.e. the debris stockpile 6a is having higher 

elevation compared to debris stockpile 6b which has larger base area. Using the 3-

dimensional dense point cloud model and orthomosaic, the volume of the two 

stockpiles were obtained as 982 ft3 and 1280 ft3.  

   

 (a) (b) 

Figure 5-12. Site 6 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.7 Debris Site 7 

The seventh debris stockpile site was inspected near to the location 11135 Forest 

Glen, Beaumont, Texas. The only stockpile at this location composed of sheet rock 

waste, broken wooden panels, furniture, and stuffed up trash bags. There was not 

much traffic and the presence of tree obstructions made the research team to adopt 

manual flight mode. All the images were collected and processed according to the 

6b 

6a 
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procedures explained above to generate the 3-dimensional dense point cloud model, 

orthomosaic and digital elevation model (DEM), as shown in Figure 5-13. The 

color coded bar in the DEM of the collected data represents the highest elevation 

point on the debris pile by yellow and the lowest elevation point in the collected 

data by blue. This gives an estimate of the relative elevations of the surrounding 

areas i.e. the debris was piled over a surface sloping downwards away from the 

pavement. Using the 3-dimensional dense point cloud model and orthomosaic, the 

volume of the stockpile was obtained as 1,839 ft3. 

  

 (a) (b) 

Figure 5-13. Site 7 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 

5.5.8 Debris Site 8 

The eighth debris stockpile site was inspected near to the location 12700 Tan Oak 

Ln, Beaumont, Texas. The three stockpiles are located at the end of the Tan Oak 

Lane. They mostly comprised of sheet rock waste, broken wooden furniture and 
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other sodden household items owing to their proximity to the residential houses. 

During the data collection, there was no vehicular traffic on this street as the 

stockpiles were located the dead end of the street. All the images were collected 

and processed according to the procedures explained above to generate the 3-

dimensional dense point cloud model, orthomosaic and digital elevation model 

(DEM), as shown in Figure 5-14. The three stockpiles in the Figure 5-14a are 

identified in clockwise direction as 8a, 8b, and 8c, respectively. The color-coded 

bar in the DEM of the collected data represents the highest elevation point on the 

on the adjacent house roof by red and the lowest elevation point in the collected 

data by blue. This gives an estimate of the relative elevations of the surrounding 

areas i.e. the debris stockpile were stacked in front of the houses. Using the 3-

dimensional dense point cloud model and orthomosaic, the volume of the three 

stockpiles were obtained as 1,400 ft3, 1,564 ft3, and 687 ft3, respectively. 

  

 (a) (b) 

Figure 5-14. Site 8 Data (a) Orthomosaic (b) Digital Elevation Model (DEM) 
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All the debris volumetric information including location, number of 

stockpiles and aerial images at each location, and volumes are tabulated in Table 5-

1. At debris site-3, volumes of 3a, 3b, and 3c; site-6, volumes of 6a and 6b; and at 

site-8, volumes of 8a, 8b, and 8c are provided in an order in the fifth column of the 

Table 5-1. 

Table 5-1. Volume of Stockpiles Estimated using UAV-CRP Data Collected at 

Each Debris Site 

SNO. Site Location 

& Comments 

Coordinates No. of 

Images 

 Volume 

(Cubic Feet) 

1) Debris Site – 1 
(One Stockpile) 

30.1819 ,  
-94.2037 

127 2,230 

2) Debris Site - 2 
(One Stockpile) 

30.1604 ,  
-94.1991 

79 380 

3) Debris Site - 3 
(Three Stockpiles) 

30.1491 ,  
-94.1896 

164 676 & 104 
& 28 

4) Debris Site - 4 
(One Stockpile) 

30.1730 ,  
-94.1748 

116 907 

5) Debris Site - 5 
(One Stockpile) 

30.1732 ,  
-94.1737 

81 847 

6) Debris Site - 6 
(Two Stockpiles) 

30.1754 ,  
-94.1721 

131 982 & 1280 

7) Debris Site - 7 
(One Stockpile) 

30.1749 ,  
-94.1716 

81 1839 

8) Debris Site - 8 
(Three Stockpiles) 

30.1381 ,  
-94.2486 

220 1400 & 
1564 & 687 
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5.6 SUMMARY 

The frequency of natural disasters with higher intensity has risen up in the recent 

times and this warrants the use of new technology to inspect the debris generated 

quickly, efficiently, and safely. During these studies, it was also realized that the 

aerial technology not only helps in estimating the debris but also to assess the 

condition of the adjacent pavements affected by inundation caused by hurricane 

triggered rainfall. These aerial surveys are multi-purpose as they don’t require 

separate traditional methods for estimating the condition of pavement infrastructure 

and debris volumes. Same photogrammetry data collected from UAV is analyzed 

for multiple attributes. UAV-CRP technology offers scope to collect more data with 

less boots on the ground, which is the case immediately after a disaster. 
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CHAPTER 6: COST ANALYSIS  

6.1 INTRODUCTION 

Due to the growing need of infrastructure agencies for acquiring quality data in less 

time, it would not be an exaggeration if UAVs are forecasted to be part of every 

agencies’ inspection procedures in the near future. This is possible mainly due to 

the safety elements and cost effectiveness associated with this method when 

compared to traditional methods. According to Association for Unmanned Vehicle 

Systems International (AUVSI), this claim is also supported by the forecasted 

phenomenal investment of $5 billion in U.S. commercial drone sector by 2025 

(Mccarthy 2015). 

Cost analysis is a very important step of any emerging technology, as all the 

benefits provided will be nullified if the costs involved could not justify its use. 

This step is crucial in evaluating the feasibility of using UAV-CRP technology for 

the practical applications in infrastructure sector. The sections below provide a 

detailed information on costs involved with this innovative technology. Various 

companies related to civil engineering, surveying and mapping, UAV operations, 

and others were contacted to obtain various aerial inspections related cost 

information. The details are provided as below 

 A short questionnaire related to tasks that can be performed by the 

commercial unmanned aerial vehicle (UAV) vendors for transportation 

infrastructure was drafted and emailed to several UAV companies. The 
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questionnaire is provided in the Appendix-A. Responses and details are provided 

in the following section. 

6.2 VARIOUS DETAILS ABOUT THE UAV DATA COLLECTION 

COMPANIES 

Details about the companies that were surveyed about various details pertaining to 

infrastructure monitoring using UAV-CRP technology are provided here. 

6.2.1 Background of Companies Surveyed 

The research team focused on contacting vendors with backgrounds in 

transportation infrastructure and surveying practices. Because few companies 

responded, the observations noted in this section are limited, since they are solely 

based on information provided by the respondents. The lack or limited responses is 

attributed to the fact that only a few major companies are capable of providing a 

wide range of service.   

Many are either expanding or acquiring skillsets in this dynamic fast-

growing field. Responses were therefore hindered by the limited experiences of the 

vendors in the transportation infrastructure arena. This is to be expected, as the US 

DOT Federal Aviation Administration (FAA) exemption was not initiated until 

2016. This exemption was issued as a “Final Rule setting forth standards for 

operation and certification of small-unmanned aircraft systems. Known as the RIN 

2120– AJ60, the most notable exemptions were expressed as follows: 
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“Small UAS operators may request waivers of operational rules applicable 

to small UAS, requirements such as the requirement to maintain visual line 

of sight and yield right of way to manned aircraft, as well as prohibitions on 

operations over people and in certain airspace”  (From Federal Register, Vol. 

81, No. 148 / Tuesday, August 2, 2016 / Notices,  

US DOT Office of the Secretary, [Docket No. DOT–OST–2016–0131].  

Hence, more time is needed to find vendors that can provide infrastructure 

services based on the new freedoms and opportunities for UAV users that apply for 

and are granted the needed waivers.  

Researchers noted that this observation is valid in many states around the 

U.S.A., as evidenced by the researcher’s knowledge acquired from the UAV panel 

and works at the recent 2018 Transportation Research Board’s (TRB’s) annual 

conference in Washington, DC. It should be noted that many DOT agencies are 

focusing on research related to infrastructure applications while exploring the 

development of policies and guidelines.    

The majority of companies that responded focused on pipelines and other 

linear infrastructure inspections. They provide traditional commercial surveying 

services that include setting up ground control points (GCPs) and a base station for 

real time kinematic (RTK) data. Most of the responding companies use both fixed-

wing and multirotor UAVs to conduct inspections of larger areas with the former 

and localized inspections with the latter. Companies having varied sensors, ranging 
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from digital single-lens reflex (DSLR) cameras to mobile LiDAR sensors were 

selected and surveyed to study and understand their experience using these different 

sensors. All surveyed companies lacked experience in conducting UAV inspections 

with the ground sampling distance (GSD) required to detect pavement distress.  

6.2.2 Equipment Used 

Almost all of the companies used a Trimble unit for setting up GCPs and a base 

station for RTK data. The UAV companies that were contacted were mostly using 

visible-range camera-related photogrammetry, although a few companies were also 

exploring infrared range (IR) cameras and mobile LiDAR sensors. Normalized 

difference vegetation index (NDVI) cameras have been used extensively by 

companies performing precision agriculture-related inspections. Most of the 

companies that were contacted does not possess a top gimbal camera capable of 

conducting under-bridge inspections. 

  Most respondent companies possess both rotary wing and fixed wing 

UAVs. Companies involved in data collection of large areas use fixed wing UAVs 

due to their higher flight times and operating speeds. Companies dealing with 

smaller inspection areas, e.g., localized inspections use rotary wing UAVs. 

Companies utilize visible range cameras and LiDAR sensors mounted on 

UAVs to provide 3D dense point cloud models, which can be exported as 

orthomosaics, DEMs, and DTMs. These models help analyze and detect the 

features of infrastructure or utility elements under inspection. Infrared (IR) cameras 
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provide thermal reflectance data of elements under inspection. Different sensors are 

used depending upon the client, site, and inspection-type requirements. 

6.2.3 Survey Parameters  

Though there are growing applications of UAVs, such as sensor-based UAV 

inspections, most of the UAV inspection companies in the past were working in 

only one or two niche areas and were not exploring other potential application areas 

mainly due to FAA regulations. Due to the US DOT FAA 2016 UAV exemptions 

(titled ‘Department of Transportation Federal Aviation Administration; 

DOT/FAA854 Requests for Waivers and Authorizations Under 14 CFR part 107,’’ 

commonly referred to as RIN 2120– AJ60), many companies have now started 

acquiring UAVs and sensors for performing different tasks, including infrastructure 

studies.  

Companies have already been conducting large-scale UAV inspections, 

such as assisting in pipeline inspections, electrical line inspections, monitoring the 

crop health distributed over a large area, stockpile volumetric calculations, and 

other applications. However, most of the UAV companies lack the civil engineering 

expertise or background that is required to analyze the remotely collected data from 

an engineering perspective, while other companies do not have the appropriate 

equipment that is required to collect the precision data. All companies collect data 

by operating UAVs at higher flight altitudes that result in a larger ground sampling 

distance (GSD). However, companies also expressed an interest in acquiring 
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equipment necessary for conducting inspections with smaller ground sampling 

distances (GSDs) if there are potential opportunities to expand their UAV services.   

All but one of the companies who responded to the questionnaire have 

conducted UAV inspections as a part of subcontracting works. Most of these 

companies have limited experience in inspecting pavement infrastructure. One 

company had experienced in conducting small-scale UAV operations for TxDOT 

before no-fly restrictions were imposed. Part of those operations included stockpile 

volumetric calculations, clay cap inspections, landfill monitoring, detention pond 

inspections, and drainage mapping. One UAV application that most of the 

companies were able to provide was the estimation of the stockpile volumetric of 

materials. However, none of them provided details of error percentages when 

compared to ground truth-values.  

One of the applications conducted by most of the UAV companies contacted 

was the mapping of pipelines, closely related to roadway mapping. Most companies 

will need to acquire additional precision sensors to conduct meaningful pavement 

and other infrastructure inspections. 

6.2.4 Parameters of Deliverables 

The collected images from the camera/LiDAR are geotagged and 

stitched/registered to generate 3D dense point cloud models, orthomosaics, digital 

elevation models (DEMs), and digital terrain models (DTM). Most of the 

companies deliver output file formats that can be inputted into standard 3D 
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modeling analyses and 3D printing software. Some companies will overlay other 

information, such as thermal or vegetation index, over the primary orthomosaics 

developed from the visible range camera.  

 The above outputs need to be inputted into imaging analysis software in 

order to inspect the infrastructure element under scrutiny. Due to the lack of an 

established engineering viewpoint, most companies were not able to perform 

comprehensive analysis of models and provide only qualitative deliverables such 

as images and videos of infrastructure. For most company personnel responding to 

our questionnaire, imaging was no more important than any of the other tasks 

involving calculation of lengths, elevations, and volumetric estimations. The 

majority of these companies have not provided information on automated detection 

of infrastructure distress. 

The present requirement of the clients is to have a resolution ranging from 

a couple of centimeters to a decimeter. This also reduces the size of the output files. 

Bigger files can be stored in the cloud, a service that many firms offer, charging a 

standard price per gigabyte (GB). Despite possessing the hardware to handle data 

larger than the current trend, a few companies claimed that they had not received a 

client request for better resolution models than the above-specified numbers.  

6.2.5 Cost Details 

Most of the companies have a range of prices for each deliverable, depending upon 

the magnitude of the area or object under inspection and the time required to 
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process the data with the required quality level. The rate of charge for data 

collection, deliverables, technician salaries, and other expenses seems to reduce 

with an increase in the scope and magnitude of work and the repetition of the work 

at the same location.  

 Some companies were not able to provide a cost estimate for the 

infrastructure-related UAV inspections due to limited or no experience in handling 

such projects. Nevertheless, the companies that provided rough cost estimates did 

so by providing a price-per-hour or price-per-day rates. Companies did not 

explicitly specify a direct increase in cost for higher detailed surveys, but instead 

provided a higher charge for the operations due to the increase in the number of 

flights. Due to the in-house capability of all companies to set up ground control 

points (GCPs), the estimated cost of setting up ground control points ranged from 

$200 to $1000 depending on the number of GCPs required for the specified 

accuracy. The cost of services for companies that charge cost-per-day rates ranged 

from $2000 to $5000 per day, while the cost of services for companies that charge 

based on the costs-per-hour ranged from $150 to $350 per hour.  

Depending upon various operation attributes, such as inspection time, site 

complexity, and difficulty level of the inspection, FAA rates for hiring a certified 

UAV remote pilot in command (RPIC) generally range from $185 to $500 per hour. 

Rate for visual observer generally ranges from $85 to $300 per hour. The 

companies that seemed to be capable of complex operations based their cost 
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estimates on a cost-per-day schedule. In addition to the operating costs, a standard 

per diem charge, ranging from $150 to $250 per day, needs to be paid to the 

operators if the work period is more than 8 hours long. Most of the surveyed 

companies were not interested in conducting challenging tasks like under-bridge 

inspections. 

6.2.6 Surveys Summary  

The researcher had attended many conferences related to UAVs (AUVSI 2017, 

UAV EXPO 2017 & 2018) and transportation infrastructure (TRB 2018). Based on 

the current state of practice in transportation sector and the responses from the 

companies to the questionnaire provided in the Appendix-A, this research 

determined that the UAV state of practice is still relatively new for those involved 

in infrastructure evaluation projects. Thus, an in-depth infrastructure inspection is 

an early development stage compared to the more mature current state of practice 

among those who provide field surveys and stockpile volumetrics. Many of the 

surveyed companies are traditional inspection companies that have just recently 

started working with UAVs, while others are newer companies that primarily work 

with UAVs. All of the participating companies are familiar with general surveying 

methods, such as utilizing differential GPS equipment for setting GCPs and using 

base stations to collect RTK data for imparting more accuracy in these studies.  

Majority of these companies seem to work on their present client 

requirements and hence planned to expand their application diversity. The present 
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application areas mostly focus on  pipeline inspections, stock pile measurements, 

cut and fill measurements, mining surveys, slope stability, elevations and drainage 

mapping, detention pond measurements, electric grid inspections, solar panel area 

surveys, vegetation inspections, and others.  The future application areas they 

intend to work on include pavements, railways, and bridge decks. However, none 

of these companies showed any interest in conducting inspections of hard-to-reach 

areas, like under-bridge inspections.  

The identified companies, who preferred fixed-wing UAVs due to their 

greater flight time and operating speeds, were more focused on capturing data over 

very large areas. Many of their application areas, such as pipeline inspections, 

involve long linear surveys up to several miles each. Due to the time required, many 

of the companies often opted for fixed-wing UAVs to collect the features of linear 

objects, such as pavements, rail lines, and bridge decks. Based on the research 

experience, the author acknowledges that a multirotor is more useful in conducting 

localized inspections, such as under-bridge inspections, in addition to collecting 

substantial ground area data per flight while operating under the line of sight of the 

remote pilot in command (RPIC). 

Some respondent companies used ground sampling distance (GSD) in their 

work, but found that a couple of centimeters to decimeters of GSD is not conducive 

to conducting in-depth infrastructure inspections. In order to meet the 

Transportation agencies’ requirements of collecting infrastructure data, UAV 
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companies will need to operate at lower altitudes and use higher quality UAVs with 

more advanced camera accessories to get high-resolution images. A small number 

of companies have advertised that they can achieve the GSD required to identify 

cracks on infrastructure. 

6.3 RETURN ON INVESTMENT OF UAV-CRP TECHNOLOGY 

Various topics related to the return on investment (ROI) for using UAV-CRP 

technology for infrastructure monitoring. ROI analysis provides details about the 

benefits of using this innovative technology. The ROI analysis presented here is 

based on similar framework used by Texas Department of Transportation. Benefit 

areas identified in this research are of two types: qualitative and economic. The 

qualitative benefits are non-monetary as it is realized that the high level of UAV-

CRP applications with its continual advancements in knowledge and management. 

The research based on economic benefits lies in the money saved as the new 

technology gets the job done more quickly, more accurately, and at less cost. The 

present research defines UAV-CRP based on its features and functions, which yield 

benefits in nine different areas illustrated in Figure 6-1. 
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Figure 6-1. Major Focus Areas 

6.3.1 Benefit Areas 

Five areas have exclusive quantitative benefits, two areas have qualitative benefits, 

and two others have both quantitative and qualitative benefits. The following 

sections describe each of these benefit areas in detail: 

6.3.1.1 Increased Service Life  

Different types of distress in pavements including longitudinal and transverse 

cracking, rutting or permanent deformation, alligator cracking, and other distress 
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data need to be collected to assess the pavement condition. Pavement characteristics 

like longitudinal slope, transverse slope, and sight distances at crossings also need 

to be collected to monitor the changes in the pavement design parameters. The 

quality of collected data measuring distress and pavement characteristics plays a 

key role, since repairs are performed based upon pavement health condition. 

Traditional methods of assessment are subjective, time consuming, and can delay 

decision making on rehabilitation strategies. 

The unmanned aerial vehicle system-close range photogrammetry (UAV-

CRP) used in this research, has the potential to collect similar pavement distress 

data in a relatively shorter period and in a safer manner. The data obtained from 

UAV-CRP operations were used to quickly perform analysis and identify pavement 

sections that require immediate repairs. Pavement characteristics like longitudinal 

slope, transverse slope, and sight distances at crossings were also calculated to 

monitor changes or deviations from the initial design values. Due to the proactive 

monitoring leading to preventive maintenance, the annual pavement maintenance 

cost can be reduced and the service life of the structure is extended when using 

UAV-CRP instead of traditional methods.  

6.3.1.2 Improved Productivity and Work Efficiency  

This project successfully demonstrated that the UAV-CRP technology could be 

used to survey large areas with fewer personnel in a short amount of time, leading 

to improved work productivity. The large amounts of quality data obtained from 
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one set of UAV-CRP operations can be analyzed for multiple infrastructure 

parameters, which would otherwise have required multiple traditional surveys. 

Thereby, adopting timely UAV-CRP surveys will improve the efficiency of 

infrastructure inspections. 

6.3.1.3 Expedited Project Delivery  

Collection of inspection data in the field using UAV-CRP technology requires a 

minimal amount of time. UAV-CRP collection procedures replace multiple 

traditional surveys with fewer flights that collect multiple parameters, which will 

reduce delays in project time. The data can be processed and analyzed quickly, 

reducing the turn-around time and leading to expedited project planning and 

delivery. Continuous monitoring of construction procedures using UAV-CRP 

technology helps in executing construction steps according to design plan and 

delivers the project in time. This will prevent any penalty costs incurred due to 

delays in construction. 

6.3.1.4 Materials and Pavements  

Assessing the performance of materials and pavements in field conditions is an 

important application area for UAV-CRP technology. Researchers often study 

novel materials that can be used either in bases/sub-bases or pavement surface 

materials to produce resilient pavements and rail track systems with the potential 

to experience less distress. Examples of materials used in pavements include 

modified asphalt concrete, cement concrete materials, as well as novel chemically 
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treated sub-soils to stabilized aggregate bases. Performance of these materials in 

mitigating pavement distress is often the focus of new research. The UAV-CRP 

studies will provide an excellent opportunity to evaluate these potentially 

transformative materials by providing high quality field monitoring data, which can 

lead to widespread incorporation of materials that will enhance pavement 

performance in field conditions.  

The UT Arlington research team monitored vertical settlements underneath 

an approach slab supported by a hybrid geo-foam embankment section at a bridge 

site (Shafikhani et al. 2017). Deformations were monitored from field 

instrumentation technologies facilitated by both horizontal inclinometers and 

LiDAR surveys (Shafikhani et al. 2017). These traditional methods are stationary 

and thus take more time to collect whole data. The use of UAV-CRP technology 

for deformation monitoring enables the rapid collection of reliable deformation 

data. Such data collected repetitively over time can provide an assessment of the 

geofoam system’s efficiency in reducing the vertical settlement of approach slab 

pavements. Hence, the use of UAV-CRPs for the research evaluation of various 

types of innovative materials in field test sections would help DOT agencies to 

implement successful materials and pavements into practice. This alone could 

potentially save millions of dollars in annual maintenance costs and hence lead to 

a stronger and more resilient pavement infrastructure.  
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UAV-CRP methodology was also successfully used to determine the 

volume of pavement material stockpiles, with good matching of ground truth 

measurements obtained with traditional methods. This helps in planning the 

pavement construction and reduces wastage of stock material. During asphalt 

pavement construction, UAVs equipped with thermal cameras can also be used to 

monitor the temperature of asphalt laid and plan the compaction procedure. This 

helps prevent the micro cracking formed during compaction of cold asphalt mix 

and hence increases the pavement durability.    

6.3.1.5 Infrastructure Condition  

The health of various transportation infrastructure, including but not limited to 

highways, bridges, and railway corridors, could be monitored efficiently and 

quickly by using UAV-CRP technology. The safely obtained data and accurate 

assessments provided could contribute to the extensive use of this technology to 

complement traditional monitoring methods for infrastructure health condition 

monitoring in the near future. 

6.3.1.6 Engineering Design Improvements  

This research demonstrated that UAV-CRP technology could be used to collect the 

characteristics of transportation infrastructure like longitudinal slope, transverse 

slope, and sight distances, and compare them to minimum design standard. The 

results of these studies and comparisons of UAV-CRP methods with traditional 

methods can improve the safety and comfort to those who drive the roads under 
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consideration. This type of quick data collection procedure helps identify the need 

for any design improvements. Future advancements in sensor hardware 

technologies can provide data that will be beneficial to assessing engineering 

designs. 

6.3.1.7 Safety  

The major advantage of UAV-CRP technology is that it can lead to safer operations 

in the field. Compared to traditional surveys, UAV-CRP technology requires 

minimal traffic control for performing field operations. Unlike traditional surveys 

where the crew or the inspecting vehicles have to operate on the pavement, UAV-

CRP technology results in less interference with traffic as the pilot and the flying 

drone are operated at a safe distance away from the pavement or near bridge 

infrastructure. This will help in avoiding work-related accidents and related costs 

while providing safety for road users. The safety offered by UAVs in accessing 

hard-to-reach areas, such as underneath bridges for under the bridge inspection 

stands out as one of the most important benefits of this new technology. 

6.3.1.8 Management and Policy  

This research generated a questionnaire, which was used in this work to obtain the 

responses of different UAV operators who use drones as part of their inspection 

and survey business. We focused on those who used their UAVs to inspect 

transportation infrastructure, but as noted in earlier chapters, the field is so new due 

to past restrictions that were not lifted until 2016, finding a large number of 
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respondents was impossible.  All the UAV operator responses (who were referred 

to as vendors and sometimes surveyors) and the practical experience gained while 

collecting UAV field data contributed to formulating policies for different UAV 

operations involving transportation agency’s infrastructure assets.  

Current traditional methods used to collect data pertaining to pavement 

inspections, railway corridor inspections, and rock cut volumetrics are time 

consuming and can delay the decision-making process. Data collected through 

UAV-CRP technologies can be processed quickly and represented in a user-

friendly manner, assisting both project managers and policy makers in developing 

sound planning, decision-making, and efficient operations management. 

6.3.1.9 Level of Knowledge  

This research was initiated in response to the sparse amount of academic knowledge 

available in the literature on UAV-CRP usage in assessing transportation 

infrastructure.  As this research study progressed, the researchers were able to learn 

and compile more theoretical and practical knowledge pertaining to the UAV topics 

under study. The analysis of the data collected by the UAV-CRP technology also 

offers a new dimension to the understanding. This knowledge is being disseminated 

on various national and international platforms to increase the level of knowledge 

of engineers, practitioners, the public, and decision makers. This report on UAVs 

is one such attempt to expand the present literature on UAV research related to 

infrastructure studies. 
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Developing UAV operations-related procedures, guidelines, and initial 

applications for surveying pavements and railway corridor operations will propel 

agency personnel, including surveyors, engineers, and technicians towards the 

usage of UAVs for the various tasks outlined in this research. The high-quality and 

reliable data collected will be analyzed and used by the agencies in making sound 

and rational decisions related to infrastructure assessment, distress management, 

asset management, and resource allocation strategies. 

6.3.2 Intangible Assets 

Several intangible benefits are also identified from the UAV-CRP operations as 

provided below: 

1. Patents, copyrights, and licenses 

2. Non-compete agreements 

3. Favorable financing 

4. Trained and assembled workforces 

5. Contracts 

6. Leasehold interests 

7. Unpatented proprietary technology 

8. Trademarks/Trade names 

UTA research and expansion of knowledge regarding UAV applications 

will lead to workshops and training sessions that will benefit DOTs and other 

infrastructure agencies in conducting infrastructure monitoring and asset 
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management studies. Some of the above benefit topics either will directly or 

indirectly connect to this wider dissemination of this knowledge.  

6.4 COST ESTIMATES 

This section deals with the cost analyses of various technologies basing on the data 

collected from different vendors and the compilation of the costs and time periods 

for conducting UAV inspection tasks during this research. 

The cost analysis presented here focuses on four of the major application 

areas, further subdivided into seven subtasks that are presented in the sections 

below. Both qualitative and economic analyses are conducted in the following four 

major application areas of UAV-CRP technology: inspection of different types of 

highway pavement, bridge site investigations, stockpile volumetric studies, and 

railway corridor studies. Certain assumptions were made with respect to potential 

benefits in each of these areas.  During the execution of the research tasks, more 

details on the true benefits, along with quantitative and qualitative information, 

were collected. This section has been updated based on the wealth of experience 

gained by the research team throughout the research and prepared to contribute to 

a new understanding of the return on investment associated with using UAV-CRP 

technology compared to traditional methods. 

6.4.1 Pavement Inspection  

Currently, visual surveys and profiler studies, as well as other non-destructive 

studies, are conducted by various DOTs to assess pavement conditions, which in 
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turn can be used for formulating pavement rehabilitation strategies. Pavement 

condition includes the distress data as well as the geometric design characteristics 

like longitudinal slope, transverse slope, and sight distances at crossings. 

Based on email communications with the TxDOT Maintenance Division, 

the annual cost of visual inspections is estimated to be approximately $2.5M per 

90,000 miles of roadbed in Texas. Visual surveys are relatively cheaper when 

compared to UAV applications; however, they are also operator sensitive, meaning 

that the final assessments may vary from person to person and from location to 

location. After the visual inspections, critically rated sections will be inspected for 

various pavement characteristics.  

The limitations of the visual surveys warrant a rational methodology for a 

uniform assessment of pavement characteristics across the state. TxDOT uses semi-

expensive to expensive methods, such as ground penetrating radar (GPR), LiDAR 

surveys, and other laser-based surveys for collecting pavement distress information 

including cracking, rutting or permanent deformation, and other pavement 

characteristics that can be visualized or scanned.  

In the present dissertation work, the possibility of obtaining high quality 

photogrammetry details of the pavement condition using UAV-CRP methodology 

was explored. It should be noted that the focus of this research included high-speed 

roads consisting of both urban and rural interstate highways, freeways, and 

expressways. Considerable cost savings in expenditures using UAV survey 
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methods were observed, as these procedures provided quick data with less traffic 

regulations.  

Based on the available surveying vendor information, traditional surveying 

of the pavements for acquiring all characteristics was estimated as $3 per linear 

foot, which translates to approximately $3,000 for a 1,000-ft long pavement section. 

This traditional survey was assumed to provide both the extent of pavement 

distress, and pavement characteristics such as longitudinal and lateral slope 

analysis. Assuming that this operation takes 1.5 hours, the cost of expenditures for 

a registered professional land surveyor (RPLS) and technician for this in-the-field 

survey is about $165/hour and $70/hour, respectively.  

Assuming two flagged staff will be required for traffic control, the payments 

for the two-flagged staff members for the whole job would be close to $150. The 

total expenditure of traditional methods involving the survey cost and personnel 

wages would be $3,503 (the sum of $3,000, $353 and $150). In addition, there will 

also be an additional traffic delay cost that arises while regulating the freight and 

passenger traffic, which is not considered in this study to be on the conservative 

side.  

A highway pavement nearly 1000 ft long can be inspected using UAV-CRP 

technology for data collection in a 30 min period, involving multi altitude flights 

and no major traffic control operations. Videos of the pavement site in 4K format 

can be collected in another 10 minutes. UAV capital recovery and operation costs, 
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GCP setup costs, as well as mobilization costs would average $800 per pavement 

site.  

The approximate costs for flight operations, including expenses of a three-

member team comprised of one pilot, and two visual observers, would be around 

$400 and post processing of data including visualization analysis and final 

deliverables, which include a report along with videos, would be $1,500. Hence, 

the total approximate cost would be close to $2,700 per pavement site survey. 

However, this cost varies depending upon the travel distance to the pavement site, 

additional per diem costs, number of pavement lanes, complexity of the site (might 

warrant extra visual observers), type of deliverables, inclement weather conditions, 

and other factors. 

Even though the cost of traditional surveys conducted to measure cross 

slope, longitudinal slope, sight distance, and extent of distress is assumed to be on 

the lower side, considerable savings will be generated from the ability of UAV-

CRP technology to collect pavement distress identification information, which 

includes the three basic pavement types; asphalt concrete-surfaced; jointed (plain 

and reinforced) Portland cement concrete; and continuously reinforced concrete.as 

found in the FHWA Distress Identification Manual for the Long-Term Pavement 

Performance Program (Miller and Bellinger 2014). Thus, the UAV-CRP 

technology can capture all of the pavement distress and characteristics in a single 
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flight as compared to the need of multiple traditional surveys needed to collect the 

same data.   

Using UAV-CRP technology over traditional methods would, therefore, 

result in the quantitative benefit of a 23% cost savings. A major quantitative benefit 

of UAV-CRP technology is the reduction of traffic delays from traffic controls 

during traditional field surveys thereby avoiding the loss of productive time for the 

road users. 

 By extrapolating the potential 1000-ft cost savings for the high-speed urban 

and rural interstate highway roads in the state of Texas using UAV-CRP 

technology, anticipated cost savings for the 16,319 urban and rural interstate lane 

miles (miles reported in (FHWA 2014)), to be $69.2M. This number will even be 

higher if all the 675,580 total lane miles of state highways, FM roads and other 

roads in Texas are included for pavement inspection studies using UAV-CRP 

technology. Again, a conservative reduction factor of 4 to account for variance due 

to pavement types that will be surveyed and adaptation by districts is assumed. This 

implies that a cost savings of $17.3M would be realized with UAV-CRP based 

pavement ratings studies. Again, these expenses are for the evaluation of the entire 

pavement system in the state of Texas and may be spread throughout several years. 

Major indirect benefits of using UAV-CRP technology over traditional 

methods are minimized fuel consumption costs and reduced high emissions due to 

idling of the traditional survey-dedicated vehicles during traffic control. We also 
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anticipate other indirect benefits with UAV-CRP studies, as described below. 

Safety of the traffic users can be ensured by eliminating possible rear-end accidents 

during traffic control situations, which can occur due to sudden reduction in vehicle 

speeds while conducting traditional visual surveys for pavement forensics.   

Continuous monitoring of new pavement construction sites with UAV-CRP 

technology will provide existing pavement characteristics that can be checked with 

minimum design standards. This approach gives scope for performing timely 

maintenance if the design characteristics are found to be deteriorated. The palpable 

data obtained from the analysis of UAV-CRP data increases the level of knowledge 

of engineers, practitioners and leaders thereby making the decision-making process 

easier. The derived data and prompt analysis will lead to more robust field 

operations at a node (or a given site), or at the network level (district level). All 

benefits will lead to more realistic assessments of pavement distress conditions and 

appropriate pavement management strategies. 

6.4.2 Bridge Inspection  

According to the TxDOT’s “Report on Texas Bridges As of 2016” prepared by the 

Bridge Division of TxDOT, there were 53,875 bridges in Texas (TxDOT Bridge 

Division 2016) at that time. These bridges must be inspected regularly once in two 

years to assess their condition. Bridges were classified as good or better (GB) 

structure, structurally deficient (SD) structure, functionally obsolete (FO) structure, 

sub-standard for load only (SSLO) structure, load-posted bridge, and land-locking 
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bridge depending upon the condition. 80 % of the inspected bridges were classified 

as good or better (GB) structures. Bridge inspection includes monitoring of 

approach slabs from superstructure elements to substructure elements. The sections 

below constitute a brief overview of the cost analysis conducted for various tasks 

involved in bridge inspections. 

A 360° bridge inspection was conducted using UAVs with different 

configurations involving cameras mounted on the top and bottom gimbals for 

under-bridge and bridge superstructure data collection, respectively. Monitoring 

the bridge approach slab deformation is also important as the road user’s perception 

of comfort is based upon their experience while traveling on the roads.  

 Based on the vendor information received from traditional inspection 

operators, the traditional survey analysis cost for all the features of the bridge deck 

profile is assumed to be $3 per linear foot; thus, the cost would be $2,700 for a 900-

ft long bridge. This traditional survey is assumed to provide both the extent of 

bridge deck pavement distress, and other characteristics. Depending upon the 

vendor information, the rate of pay for the bridge inspector and technicians required 

for the job is assumed as $100 per hour and $50 per hour, respectively. The 

traditional method of under-bridge inspection involves a snooper truck rented at 

$1,800 per bridge to collect the substructure condition.  

Assuming that the inspection of the superstructure and the substructure 

requires an average of two 8-hour working days per bridge, the total pay for three 
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technicians may be calculated as $2,400 for the whole period of inspection. In 

addition, per diem lodging and food costs close to $150 should be included as well. 

The total expenditure for conducting traditional methods of bridge monitoring 

would be approximately $9,400 per bridge (from cost breakdown in this paragraph: 

$2,700 ($3 per linear foot), + $1,600 (two 8-work day wages for bridge inspector), 

+ $1,800 (truck rental), + $2,400 (two 8-work day wages for three technicians), and 

$900 (per diem for three technicians)). The expenditure increases further due to 

transportation costs if the truck is rented from some other location in the United 

States. 

Using UAV-CRP technology, conditions of the bridge deck and the 

approach slabs of nearly 900 ft long were collected in 30 min data collection 

procedures involving multi altitude flights. High-definition 4K-quality videos of 

the bridge sides were collected in another 30 min. Underneath the bridge, all five 

spans can be inspected in 90 minutes with the bridge inspector viewing the live feed 

on a digital live video display unit (DLVP) monitor. The UAV capital recovery and 

operation costs, ground control points (GCP) setup costs, as well as mobilization 

costs would be approximately $1,000 per bridge site. The approximate costs for 

flight operations, including a three-member team comprised of one pilot, and two 

visual observers, would be around $1000 and post processing of the imaging data 

including visualization analysis and final deliverables including a report and videos 

would be $2,000. Hence, the total approximate cost for performing a UAV-CRP 
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inspection would be close to $4,000 per bridge. However, this cost varies depending 

upon the travel distance to the site, additional per diem costs, number of bridge 

spans, complexity of the site (might warrant extra visual observers), type of 

deliverables, inclement weather conditions, and other factors. Using UAV-CRP 

technology over traditional methods would result in a quantitative benefit of 58% 

in cost savings.  

Other quantitative benefits of UAV-CRP technology can be realized from 

avoiding traffic delays as it does not warrant any traffic restrictions on the 

overpasses, a requirement while conducting the under-bridge inspection using a 

snooper truck under traditional methods.  

A major indirect benefit that can be observed is the safety provided by the 

UAV-CRP technology while conducting the under-bridge inspection. Another 

indirect benefit of UAV-CRP technology is the potential reduction in accidents 

associated with bump problems. UAV-CRP technology assists through early 

detection of deterioration resulting in proactive repairs of bridge bump issues, 

thereby providing a safer ride for road users and probable savings in future 

maintenance costs.  

It should be noted that these reports provide more comprehensive bridge 

rating data than approach slab settlement alone, and this information could be input 

into other bridge rating surveys. Live video relayed on the monitor during the 

inspection and the videos post inspection will increase the knowledge of the 
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inspector pertaining to the bridge infrastructure. UAV-CRP analysis data includes 

bridge distress such as spalling, cracks, rusting, bridge approach settlement or 

permanent deformation data, and other pavement features. 

By using UAV-CRP methods over traditional methods, the approximate 

cost savings of performing annual bridge surveys of 9,698 bridges would be 

$52.4M, based on 2016 TxDOT Bridge report (TxDOT Bridge Division 2016) 

stating that 18% of Texas bridges were not rated under the good or better category 

and are considered to be prime candidates for bridge surveys using UAV-CRP 

technology. This number represents a high approximate value and assumes all 

bridge surveys are done with UAV-CRP technologies.  

A conservative reduction factor of 4 is assumed to account for the variability 

of bridge types; hence, an approximate cost savings of $13.1M is obtained as an 

estimate of bridge infrastructure ratings. The research team believes that the UAV-

CRP technology will provide direct and quick assessments of annual bridge ratings 

as demonstrated in the present research. Further research and future validation 

studies are needed to further assess true savings of this technology. 

6.4.3 Railway Corridor Inspection 

Railway corridor inspection includes the cost analysis for data collection of railroad 

crossings, track failures, rail bridge, rock cut volumetrics and encroachment 

detection. Typically, the rail corridor inspection survey is performed with ground 

crew for site-specific areas. The inspection crew use mobile LiDAR via hi-rail 
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vehicles to survey a railway line to detect washouts, rail buckling, and other track 

asset conditions. As per the Federal Railroad Administration (FRA) track 

inspection guidelines, the allowable railway track speeds may have to be reduced 

to account for track inspections.  

Many accidents occur at grade railroad crossings across the United States. 

Poor sight distance is one of the primary causes; hence, frequent mapping and 

monitoring of grade railroad crossings eliminates the costly alternative of providing 

grade-separated railroad crossings. Rail bridge inspections need to be conducted 

regularly to prepare condition-rating reports. The maintenance and functionality of 

rail infrastructure passing through a rock cut depends upon the stability of rock 

slopes and the detection of rock fall debris on rail tracks. The rail tracks can be 

inspected for failures using sensors mounted on the hi-rail vehicles.  

Currently, obstructions within sight triangles at railroad crossing and 

volumetric calculations of debris at rock cuts can only be estimated from multiple 

traditional surveying tasks. Appropriate use of UAV-CRP technology for the 

inspection of various rail corridor sites have been successfully demonstrated in this 

research. 

6.4.3.1 Railroad Crossings  

At railroad crossings, the presence of obstructions can result in many problems such 

as accidents. Traditional methods utilize total station and other survey equipment 

used for obstruction identification, which can consume more time while exposing 
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surveyors to perilous conditions. Frequent disruptions to highway and rail traffic 

also contribute to traffic delays and emission costs. The tedious and operator-

sensitive nature of conventional methodologies justify the search for a new 

methodology that offers detailed mapping information while providing 

considerable savings in man hours and surveying costs. This project demonstrated 

a practical solution by using UAV-CRP methodology that collects high-quality 

image data using principles of photogrammetry and within a shorter time than the 

conventional techniques.  

As per Federal Railroad Administration (FRA) 2009 statistics, there are 

9,817 railroad grade crossings in the state of Texas and many of them interact with 

TxDOT pavement infrastructure (TxDOT 2011). The following assumptions were 

made in calculating annual expenditures of mapping the at-grade railroad crossings 

using traditional surveys. Based on the surveying vendor information, the 

traditional way of surveying the pavement and the rail sections is assumed to be $3 

per linear feet and it amounts to $2,400 for a railroad crossing area with 400 ft of 

pavement and 400 ft of railway track. This traditional survey is assumed to provide 

both pavement and rail characteristics. The flag staff would be required to collect 

the data for 4 hours at a total cost of $400. The total cost for mapping at grade 

railroad crossings is calculated as the sum of the surveying expenditure, including 

flagged staff wages, and cost of expenditure for Registered Professional Land 

Surveyors (RPLS) and technicians for this job, which is about $165/hour and 
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$70/hour, respectively. Thus, the total cost would be close to $3,740 (sum of $2,800 

and $940).  

 At railroad crossings, the UAV-CRP technology collects the distress data, 

the obstructions in sight triangle data, and encroachment identification data in the 

same flight operation. At grades, railroad crossing data was collected in 30 minutes. 

The sum of the UAV capital recovery and operation costs, GCP setup costs, as well 

as mobilization costs would be approximately $800 per at-grade railroad crossing 

site. The approximate costs for flight operations including a two-member team 

comprised of one pilot, and one visual observer would be around $300 and post 

processing of data including visualization analysis and final deliverables including 

a report and videos would be $2,000. Hence, the total approximate cost using UAV-

CRP technology would be close to $3,100 per at-grade railroad crossing visit. 

However, this cost varies depending upon the travel distance to the site, additional 

per diem costs, number of pavement lanes and rail lines, complexity of the site 

(might warrant extra visual observers), type of deliverables, inclement weather 

conditions, and other factors. These rates will be considerably reduced when a more 

substantial area requires inspection. 

Using UAV-CRP technology over traditional methods results in the 

quantitative benefit of 17% in cost savings. A major quantitative benefit of using 

UAV-CRP technology at grade railroad crossings is the ability to collect more data 

in fewer flights compared to the traditional methods. If UAV-CRP technology is 



 

297 
 

adopted for inspecting the 9,817 at-grade railroad crossings in the state of Texas, it 

can result in savings of $6.3M. A reduction factor of 4 is used since transportation 

agency may inspect only a fraction of these crossings with this UAV-CRP 

technology. Hence, this would result in approximately $1.6M in cost savings for 

monitoring Texas railroad crossings to plan for enhancing the safety around these 

crossings. 

Using UAV-CRP technology to map at-grade railroad crossings will assist 

transportation agency personnel in making rational decisions related to providing 

appropriate grade-separated railroad crossings. Including the traffic counts, in 

conjunction with accurate mapping of the crossings, UAV-CRP technology can 

also assist in planning possible expansions/diversions of the highway sections in 

the future. 

6.4.3.2 Rail Track Inspection 

The annual expenditure for railway corridor inspections using traditional methods 

is calculated using data provided by TxDOT Rail Division staff and certain 

assumptions made are explained in the following section. In 2012, there were 

approximately 10,469 rail miles in the State of Texas (TxDOT Rail Division, 2016). 

Based on the surveying vendor information, the traditional way of surveying 

railway tracks is assumed to cost $3 per linear foot and amounts to $3,000 per 1000 

ft of railway track. The total cost invested into mapping a rail track using traditional 

methods is calculated as the sum of the surveying expenditures, and the product of 
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the number of workers (assumed to be three) and their time required for mapping 

rail track (assumed to be 1 hour), with an hourly rate assumed to be $50/hour for 

personnel. The total cost of field surveys would be close to $3,150 (sum of $3,000 

and $150).  

UAV-CRP technology is anticipated to gather all the information required 

for a railway corridor inspection remotely without disrupting trains or delaying their 

travel time. UAV-CRP technology collects the rail track distress data, debris data, 

and tie condition data all in the same flight operation. The rail track data of 1000 ft 

was collected using UAV-CRP technology in 20 minutes. UAV capital recovery 

and operation costs, GCP setup costs, as well as mobilization costs would be 

approximately $800 per railway track site. The approximate costs for flight 

operations, including a three-member team comprised of one pilot, and two visual 

observers, would be around $400.  

Additionally, post processing of data, including visualization analysis and 

final deliverables, which include a report and videos, is estimated to cost $1800. 

Hence, the total approximate cost of UAV-CRP technology would be close to 

$3,000 per 1000 ft of rail track inspections. However, this cost varies depending 

upon the travel distance to the site, additional per diem costs, number of rail lines, 

complexity of the site (might warrant extra visual observers), type of deliverables, 

inclement weather conditions, and other factors. The cost will be reduced if a larger 

inspection assignment is needed based on economy of scale. We can also expect 
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that the use of UAV-CRP technology in rail corridor inspections will save 

expenditures related to the use of hi-rail inspection vehicles, overtime wages due to 

delays, and the additional costs of emissions. 

Using UAV-CRP technology over traditional methods results in the 

quantitative benefit of 4.8% in cost savings. Major quantitative benefits of using 

UAV-CRP technology for inspection arises from its ability to collect data on track 

conditions, encroachment problems, and debris in the same flight. If the UAV-CRP 

technology is used to inspect 10,469 rail miles in the state of Texas, the estimated 

savings are around $8.3M for track operations and other track studies. A reduction 

factor of 4 is used since transportation agency may inspect only a fraction of the 

rail lines with this UAV-CRP technology. Hence, this would result in 

approximately $2.1M in cost savings for monitoring rail lines. It should be noted 

that majority of these rail miles are managed by rail operating companies in Texas. 

Major indirect benefits of conducting UAV-CRP studies for mapping rail 

tracks include assisting agency personnel in proactively monitoring rail 

infrastructure and providing long-term safe traveling conditions to rail freight and 

passenger traffic based on improved maintenance and immediate intervention when 

a problem is detected.  Another indirect benefit is the enhancement of safety 

elements while performing UAV operations in remote sites or locations that are 

swampy, have dense vegetation or have the highly arid soil found in deserts. 
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6.4.3.3 Rail Bridge Inspection 

According to the data provided by TxDOT Rail Division (2016), there are 

approximately 400 railway bridges in the state of Texas. Traditional bridge 

inspection consists of a hands-on visual observation with a qualified inspector, 

operator, and other crewmembers. Safety equipment, ladders, and under-rail bridge 

inspection vehicles are used to inspect inaccessible railway bridge regions. The 

following information is obtained from TxDOT Rail Division’s Texas Rail Plan 

Update  (TxDOT Rail Division, 2016), as well as information based on calculations 

made in this research developed to determine the annual expected benefits of UAV-

CRP technology implementation in rail bridge inspection.  

Salaries for bridge inspectors and operators are $5.5k and $2k per week, 

respectively. Costs of an under-bridge inspection unit and its insurance are $5.5k 

and $500, respectively. Approximate costs incurred on bridge inspections based on 

a 40-hour work week are the sum of weekly salaries for the bridge inspector, 

operator, and crew as well as the costs of the under-bridge inspection unit and safety 

equipment used during operation. This research very conservatively assumes that 

it takes 2.5 working days (20 hours) to conduct a 360° inspection of a 1000 ft rail 

bridge using traditional methods. Approximately two bridges can be inspected 

within a normal workweek (40 hours). We anticipate these costs for traditional 

surveys to be around $13.5k per week. The approximate cost for each 1000 ft rail 

bridge would be around $6,750. 
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Bridge inspections can be conducted remotely using UAVs with low safety 

risks in a short time period. Using UAV-CRP technology, bridge deck images and 

videos, including above-and-below assessments of the bridge being inspected, can 

be collected in a 90-min data collection process involving multi altitude flights. 

UAV capital recovery and operation costs, GCP setup costs, as well as mobilization 

costs approximately $1,000 per rail bridge site.  

The approximate costs for flight operations including a three-member team 

comprised of one pilot, and two visual observers would be around $600 and post 

processing of data including visualization analysis and final deliverables including 

a report and videos would be $2,000. Hence, the total approximate cost would be 

close to $3,600 per bridge per visit. However, this cost varies depending upon the 

travel distance to the site, additional per diem costs, number of rail lines, 

complexity of the site (might warrant extra visual observers), type of deliverables, 

inclement weather conditions, and other factors.  

When performing the rail bridge inspections using UAV-CRP technology, 

we will not require an additional crew, additional safety equipment, or the 

expensive conventional under-bridge inspection unit used by current road-bound 

practitioners. Presence of a bridge inspector is also optional as the videos are 

available to provide an in-field view. Thus, the cost of these items can be saved. 

Using UAV-CRP technology over traditional methods result in quantitative 

benefits representing a 47% cost savings. It also does not warrant any expensive 
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safety equipment required for accessing the under-bridge elements. For all the 

railway bridges in the state of Texas, the total amount saved by conducting UAV-

CRP inspection is based on an estimate of 400 bridges served with $3,150 saved 

per bridge, which would be approximately $1.3M. A conservative reduction factor 

of 4 is assumed to account for the variability of bridge types; hence, an approximate 

cost savings of $300k is obtained as an estimate of rail bridge infrastructure ratings 

The indirect benefits from this methodology are that it can be used to inspect 

bridges that are not easily accessible, and it does not require costly safety equipment 

for field operations. It also gives an option to review the videos and go through 

them closely to inspect all the elements that are not typically covered or offered by 

traditional methods. 

6.4.3.4 Rock Cut Surveys 

Rail infrastructure passing through rock cuts needs continuous monitoring of the 

rock slopes for safe operation. Traditional surveying techniques are time 

consuming and perilous to the working staff, due to the steepness of the rock slopes. 

Because of the complexity involved, the accuracy of the surveying data collected 

also tends to be reduced. The traditional survey estimates of rail track condition, 

amount of debris on track, and slope stabilities can only be done through different 

surveying tasks. Assuming the average cost of performing traditional methods to 

collect all the data is $4 per ft; thus, the cost of using traditional methods to survey 

a 1000 ft rail track stretch within an open rock cut is $4,000. This traditional survey 
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is assumed to provide the rock slope information, presence of any debris 

obstructions, and other rail features. Expenditure for 4 technicians and the 90 

minutes required for operation is estimated as $300. The total cost using traditional 

methods would be $4,300. 

At a rock cut site, UAV-CRP technology collected the rail track distress 

data, debris data, tie condition data, and the stability of rock cut slopes, all in the 

same flight operation. The data of 1000 ft rail track was collected using UAV-CRP 

technology in 30 minutes. UAV capital recovery and operation costs, GCP setup 

costs, as well as mobilization costs would be approximately $800 per railway rock 

cut site. The approximate cost for flight operations, including a three-member team 

comprised of one pilot, and two visual observers, would be around $400 and post 

processing of data, including visualization analysis and final deliverables including 

a report and videos, is $2,000. Hence, the total approximate cost of inspection using 

UAV-CRP technology would be close to $3,200 per 1000 ft of rail track through a 

rock cut. However, this cost varies depending upon the travel distance to the site, 

additional per diem costs, number of rail lines, complexity of the site (might warrant 

extra visual observers), type of deliverables, inclement weather conditions, and 

other factors.  
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The UAV-CRP cost will decrease if a larger inspection assignment is 

needed based on economy of scale. For example, if three bridges are close enough 

to be assessed in one day, a notable discount can be assessed based on the size of 

the project, the proximity of the structures served, and the full-time use of an 8-

hour day for all the personnel involved.  

Using UAV-CRP technology over traditional methods results in the 

quantitative benefit of 25.6% in cost savings. It also does not warrant any expensive 

safety equipment required for accessing the dangerous sloping areas on the rock 

slope. Major indirect benefits using UAV-CRP technology can be seen from the 

increased safety conditions and efficiency provided while collecting the data. This 

data can be used to understand infrastructure conditions and prolong service life.  

6.4.4 Construction Material Stockpile Volumetrics  

A Comparison of volumetric analysis of construction material stockpiles by 

traditional survey methods and UAV-CRP technology is provided. For 

conventional methods, small stockpiles with flat slopes are easier and safer to 

evaluate compared to steeper and larger stockpiles. Increase in the size of a 

stockpile increases the magnitude of danger and error obtained from these methods. 

UAV-CRP technology can be used to obtain large stockpiles data accurately with 

less personnel required. 

Based upon the surveying vendor’s data, the cost of estimating a 5,500-

cubic-yd stockpile using traditional methods is estimated to be $1500. The rate for 
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Registered Professional Land Surveyor (RPLS) is about $165 per hour and the 

technician would normally get $70/hour. Assuming this procedure takes an hour, 

the total expenditures for conducting volumetric measurements using traditional 

methods would be $1,735 per 5,500-cubic-yd of stockpile material. 

Using UAV-CRP technology, information pertaining to a 5,500-cubic-yd 

stockpile can be collected using 15-min data collection procedures involving multi 

altitude flights. UAV capital recovery and operation costs, GCP setup costs, as well 

as mobilization costs would be approximately $500 per stockpile site. The 

approximate costs for flight operations, including a three-member team comprised 

of one pilot, and two visual observers, would be around $300 and the post 

processing of data including visualization analysis and deliverables for final report, 

would be $600. Hence, the total approximate cost of inspection using UAV-CRP 

technology would be close to $1,400 per 5,500-cubic-yd of stockpile material. 

However, this cost varies depending upon the travel distance to the site, additional 

per diem costs, number of stockpiles needed to be estimated, complexity of the site 

(might warrant extra visual observers), type of deliverables, inclement weather 

conditions, and other factors. 

The rate of charge will come down if a larger inspection assignment is 

needed. Using UAV-CRP technology over traditional methods result in a 

quantitative benefit of 19% in cost savings. UAV-CRP technology also does not 

warrant any expensive safety equipment required for accessing the dangerous 
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sloping areas on the stockpiles. This technology can be extensively used to calculate 

the volume of material stockpiles during construction and is expected to generate 

more benefits.  

Major indirect benefits can be seen from the improved safety and accuracy 

provided while collecting the data. This data can be used to gather accurate 

inventory information and plan construction activities accordingly. Digital 

elevation models (DEM) and contours obtained from this UAV-CRP technology 

will be helpful in safely planning the loading and unloading activities of stockpiles. 

6.5 COMPILATION OF MONETARY VALUES 

Based on the assumptions and calculations provided in the above sections, Table 6-

1 summarizes the approximate total cost savings obtained by using UAV-CRP 

technology as compared to the traditional methods. These cost savings realized in 

this analysis of the above areas are approximate and are based on certain 

assumptions. Safety operations is one major area where using UAV-CRP 

technology can enhance the field survey operations and infrastructure assessments. 
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Table 6-1. Monetary Values Resulting from Using UAV-CRP Technology over 

Traditional Methods for Different Application Areas 

No Item Quantity 

1.  
Approximate cost savings after using UAV-CRP 

technology in inspecting high speed pavements in Texas 
$17.3M  

2.  
Approximate cost savings after using UAV-CRP 

technology for inspecting poorly rated bridges in Texas 
$13.1M 

3.  
Approximate cost savings after using UAV-CRP 

technology to inspect at grade railroad crossings in Texas* 
$1.6M 

4.  
Approximate cost savings after using UAV-CRP 

technology to inspect rail tracks in Texas 
$2.1M 

Total Expected benefits from implementing UAV‒CRP 

technology for the above tasks** 
$34.1M 

Note: * Other railway tasks and stockpiles are not included as appropriate number 

of each type of infrastructure elements considered was hard to estimate 

**Conservative reduction factor of 4 for pavements, bridges, and railways is 

assumed.  

6.6 OTHER POTENTIAL BENEFIT AREAS 

In addition to the above infrastructure monitoring tasks, UAV-CRP technology also 

finds its application in other areas discussed as below. 



 

308 
 

6.6.1 Asset Management and Remote Area Site Reconnaissance Works 

Using UAV-CRP technology for asset management, remote area site 

reconnaissance, and monitoring works could result in the following benefits:  

• Ease of monitoring inaccessible or remote areas 

• Increased safety operations 

• Money and time saved through inexpensive and time saving procedures 

• Improved decision-making in critical asset management using UAV-based 

data collection 

DOT agencies normally spends between $0.1 and $1M per construction 

project for site reconnaissance studies, based on the scope and area to be examined. 

In remote and rural areas, including problematic zones (swamps, wetlands, deserts, 

dense forest regions). These surveys can be expensive and may subject workers to 

hazardous conditions. UAVs can provide initial reconnaissance data in a short turn-

around time that will potentially save millions of dollars annually. UAV 

reconnaissance data can help districts and area offices in making site-related 

decisions faster with a much higher safety factor, which will potentially reduce 

manual operations needed for these studies. 

6.6.2 Disaster Response Unit Operations 

Disasters often result in devastating consequences and the public agencies often 

end up short handed in disseminating, coordinating, and rescuing operations. UAVs 

are in identifying various elements of the inspecting objects during and after the 
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disaster events. Possible benefits of using UAV-CRP technology for disaster 

response operations are as follows:  

• During natural and manmade disaster situations (floods, forest fires, 

accidents involving environmental implications, and terrorist situations), 

districts and areas have to perform preliminary field surveys and make decisions 

about the closure of roads and bridges to protect people.  

• UAV operations will provide live feed data that can be used to make these 

decisions wisely and quickly 

• UAV operations will eliminate most (if not all) safety issues prevailing with 

the present traditional methods 

6.6.3 Real Time Monitoring 

Road user cost (RUC) is defined as the estimated daily cost to the traveling public 

resulting from construction or maintenance work being performed. That cost 

primarily refers to lost time caused by hazardous conditions. Using UAVs will 

provide immediate and real time data that can be used to make timely decisions on 

road and bridge closures, potentially reducing RUCs that depend on the type of 

road, traffic conditions, motorist costs, and accident-related information. Early 

closures can lessen or mitigate damages to road and bridge infrastructures and will 

save human lives.  

A conservative estimate of 30% in reductions of construction/maintenance 

time from the UAV-based decision-making process can be realized. This means 
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that for a single major construction/maintenance project, the use of UAVs can result 

in potential cost savings by reducing construction time. The total cost benefits can 

be several millions of dollars after considering all the larger projects that could be 

benefitted.   

6.7 SUMMARY 

Cost analyses of UAV-CRP operations not only indicates its cost effectiveness 

compared to traditional methods but also provides an idea about the feasibility for 

conducting frequent inspections that will save a lot of taxpayers’ dollars by 

proactively identifying distress before they transform or inflict an infrastructure 

with a larger damage. 

Implementation of this technology could lead to several millions of dollars 

in cost savings, with more accurate stockpile volumetric assessments, inexpensive 

annual inspections of bridges, cheaper site reconnaissance surveys in remote areas, 

and instant information relay that can trigger emergency responses during natural 

hazard situations. 
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CHAPTER 7: BUSINESS GUIDANCE AND POLICY 

RECOMMENDATIONS 

7.1 INTRODUCTION 

NCDOT is one of the 10 selectees of Unmanned Aircraft Systems (UAS) 

Integration Pilot Program-2018 (IPP-2018) shaped by USDOT and FAA. As part 

of this program, NCDOT will be testing packaged delivery by operating over 

humans, during night, and beyond visual line of sight (BYVLOS) within a defined 

airspace (IPP 2018). KDOT is also one among the 10 selectees of Unmanned 

Aircraft Systems (UAS) Integration Pilot Program (IPP) shaped by USDOT and 

FAA. Under this program, KDOT is the only agency assigned to evaluate the use 

of drones for highway and infrastructure management (IPP 2018). In August 2018 

under IPP, KDOT with the help of Kansas State University Polytechnic deployed 

UAS beyond visual line of sight (BVLOS) in rural areas (Lillian 2018). Oklahoma 

Department of Transportation (ODOT) is using UAS for bridge and other 

infrastructure inspections (Lercel et al. 2018). 

In order to avoid investing in technologies that do not match with agencies’ 

interests, MnDOT suggested the potential UAS users to conduct a return on 

investment of this technology. MnDOT has conducted UAS operations both in-

house and outsourced to external vendors for various projects. MnDOT has initially 

started using UAS for bridge inspections to overcome the direct and indirect costs 

involved in traditional bridge inspections. They also reported that using UAS 
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resulted in improving the efficiency and safety during bridge inspections (Lercel et 

al. 2018). Although some DOTs have been adopting UAS for agency operations, 

this research identified that many other DOT agencies’ need for guidance and 

policy recommendations. 

Based on the management and practical experience of conducting UAV-

related operations performed as a part of the present research, it presents the 

following viewpoints and policy recommendations for future consideration of the 

DOT agencies:  

7.1.1 General Guidelines 

Before applying for a contract bid to carry out UAV operations for DOT agencies, 

any vendor or consulting agency should have a minimum of 10 hours prior 

experience in conducting UAV operations in an urban or rural setting. They should 

demonstrate that the operations follow the guidelines setup in flight operations 

manual (FOM) of the respective agency and use the survey signs developed as a 

part of this research. DOT agencies are required to provide necessary traffic control 

during the inspections. The UAV vendors should be also informed that DOT 

agencies would not be liable for any kind of claims or disputes arising from the 

actions of the vendor collecting the data.   

7.1.2 Data Collection Activities 

Common data collection activities of most survey companies are in agreement with 

the desired tasks of most DOT agencies. Some companies are capable of collecting 
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pavement data, rail line data, bridge deck data, stockpile volumetrics, elevation and 

drainage mapping, embankment data and other data that can be collected using the 

bottom gimbal camera. The majority of these companies are also capable of 

traveling and operating in distant remote areas, although some of them focus on a 

single region.  

All of these data collection operations can be outsourced to companies by 

specifying the required resolving power and accuracy standards. The type of UAV, 

either rotary or fixed wing type, used for conducting the inspection should not pose 

any problems as long as the company provides data meeting specified resolving 

power and accuracy standards. The companies need to deliver standard output 

deliverables, such as 3D dense point cloud models, orthomosaics, DEMs, DTMs, 

Vector map data, and any other deliverables, that match the DOT agency 

requirements.  

7.1.3 Analysis and Deliverables 

The companies’ ability to analyze the outputs from the UAV-collected data from a 

civil engineering point-of-view is of concern. Many of the companies are familiar 

with simpler linear measurements and volumetric measurements on the data. 

However, analyses of the data and interpretation for infrastructure health 

monitoring prove to be challenging since many companies do not have the 

necessary background and proper experience to work in these areas. The analysis 

features also include automatic feature identification, which is clearly lacking in 
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the commercial consulting sector. This implies DOT engineers may either have to 

process and interpret the data provided by the vendors themselves, or contract to 

experts at universities or consulting agencies who will be able to process this data 

and derive meaningful interpretations.  A small number of vendor companies are 

building partnerships with software companies focused on automated feature 

detection, but these are not yet available as commercial products or services. Hence, 

this research proposes that DOT agencies should develop an in-house capability to 

analyze the deliverables and draw resulting conclusions based on the analysis. 

One area of concern is the limited background of vendors in under-bridge 

inspections. Due to the complexity of the issues involved, this research proposes 

that DOT agencies should search for vendors that can offer safe and high-quality 

under-bridge inspection services. This will serve an important need as bridge rating 

surveys are needed biennially for proper maintenance strategies. It should be noted 

that there are vendors from different regions that can provide these services, but 

they may be expensive for the local county commissioners who intend to keep their 

bridges safe. Again, with time and more work by the local in-state vendors, under-

bridge inspection may not be an issue in the near future. 

7.1.4 Business Recommendation 

Business guidance recommendation for DOT agencies is presented in the 

following, and this recommendation is based on UAV research experiences, 

contacts with various traditional surveyors and UAV vendors, and working with 
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UAV groups from different parts of the country. Application areas include 

infrastructure imaging, stockpile volumetrics, pavement studies, bridge surveys, 

rail corridor assessments, emergency response, and other transportation asset 

management studies. Several factors including FOM, costs of operations, amount 

of work, liability issues, and benefits of UAVs over traditional methods are 

considered while making the recommendations. 

Three approaches for UAV data collection and analysis were formulated 

involving two entities i.e. DOT agency and Contractors (classified as the agencies 

that demonstrated UAV data collection expertise): 

 Approach 1 – Only Contractors (commercial and others that demonstrate 

UAV expertise) 

 Approach 2 – Only DOT Internal UAV Group 

 Approach 3 – Fusion between DOT UAV Group and Contractors (Hybrid 

Approach) 

In approach 1, UAV-CRP data collection, processing, and data analysis 

would be performed by UAV contractors or vendors. In approach 2, UAV-CRP 

data collection, processing, and data analysis would be performed by a UAV group 

within the DOT. In approach 3, UAV-CRP data collection and processing would 

be assigned to contractors and data analysis and interpretation would be performed 

by DOT or by contractors under the supervision of DOT personnel.  
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Each approach has benefits and limitations as discussed below, are taken 

into consideration before arriving at a suitable approach that can be adopted for the 

near future.  

7.1.4.1 Approach 1:  

The following describes benefits and limitations of approach 1 (Contractors). 

7.1.4.1.1 Benefits: 

 Readily available UAV platforms and sensors required to conduct the data 

collection 

 Experience in collecting and processing the UAV data 

7.1.4.1.2 Limitations:  

 Most contractors are not familiar with DOT agencies’ Flight Operation 

Manual (FOM) guidance and hence some training is needed prior to 

operating over infrastructure under DOTs 

 Most contractors lack the civil engineering background while analyzing the 

UAV collected data 

 Most contractors lack a methodology to conduct detailed analysis of the 

processed UAV data (especially related to pavements, railways and bridges) 

to provide the state of the condition of infrastructure 

 Most contractors lack the experience of collecting UAV data of 

infrastructure located in an urban environment 
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7.1.4.2 Approach 2:  

The following describes benefits and limitations of approach 2 (DOT Internal UAV 

Group). 

7.1.4.2.1 Benefits: 

 Working staff available all over the state  

 Possessing the required engineering knowledge to analyze the collected 

infrastructure data 

7.1.4.2.2 Limitations:  

 At present, lack the necessary equipment (UAV platforms, sensors and 

other accessories) 

 At present, lack of trained work force in DOTs to conduct the UAV data 

collection  

Due to the above factors in the first two approaches, this research 

recommends that DOT and contractors work together and complement each other’s 

strengths for performing UAV studies on infrastructure. This approach hereafter 

termed as approach 3 (Hybrid Approach), should be continued until DOT agencies 

achieve self-sufficiency in performing UAV-CRP studies, data collection, 

processing, and analysis.  

7.1.5 Decision Matrix 

An attempt is made to present different grades of recommendations for each 

application area in a decision matrix provided in the Table 7-1: 
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Table 7-1 Decision Matrix of Application Areas and Different Approaches 

Application 

Areas 

Contractors 

[Approach 1] 

DOT UAV Group 

[Approach 2] 

Hybrid 

[Approach 3] 

Pavement 

Studies 
3 2 1 

Bridge Studies 3 2 1 

Rail Corridor 

Studies 
2 3 1 

Stockpile 

Volumetric 
2 3 1 

Construction 

Site Monitoring 
2 3 1 

Emergency 

Response 
2 3 1 

Note:  

1. The above recommendations are made for the next 10 years  

2. The hierarchy of numbers provides an idea about the recommendation for 

each application area with 1 being the top priority approach and 3 being 

least priority approach 

This research recommends that the approach 3 (Hybrid Approach) to be 

followed in the initial years to conduct UAV-CRP surveys and monitoring for all 

the infrastructure application areas. DOT agency overseeing the UAV operations 
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by contractors in all application areas will not only help in maintaining the quality 

of the data but will also help DOTs in gaining the experience to conduct the data 

collection, processing, and analysis.  

For pavement and bridge studies, this research recommends that the second 

preference be given to the DOT UAV group (approach 2) due to engineering 

expertise that DOT possesses. Also, the inexperience of most of the contractors in 

collecting, processing, and analyzing precise pavement and bridge data is a major 

reason for this recommendation. Hence, during the initial years the hybrid [3] 

approach is recommended as the first preference for these application areas. 

Infrastructure condition data post an emergency can be collected, processed 

and analyzed using the UAV-CRP methodology. Artificial intelligence being not 

available readily for the image analysis, looking at aerial images and videos would 

help in the immediate rescue operations. For emergency monitoring, this research 

recommends that the second preference be given to the contractors (approach 1) 

due to their experience in collecting the visuals that includes images and videos 

using UAV-CRP. DOT UAV group (approach 2) is given the third preference due 

to the shortage of equipment and trained workers for performing UAV-CRP 

methodology during an emergency. In the initial years, DOT might start with the 

infrastructure data being collected, processed, and analyzed by the contractors 

according to DOT requirements and DOT overseeing the operations. Hence, during 
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the initial years the hybrid approach (Approach 3) is recommended for 

implementing this UAV application in DOTs.  

Resources in the form of staffing and UAV equipment and accessories are 

needed for DOT to oversee the contractors’ works during these initial years. This 

research recommends two full time staff members to head a new UAV-

Infrastructure section and this team should have sufficient background in operating 

UAVs, surveying and infrastructure engineering fields. Also suggest hiring teams 

of pilots and observers to perform in-house field UAV studies. Pilots can be part 

time staff and observers can be trained interns. It is recommended that full time 

pilots and observers can be gradually hired to work under the new unit leadership.          

7.2 SUMMARY 

Also, in the near future, it is anticipated that there will be a few more in-state 

vendors that can provide the services necessary to inspect infrastructures with more 

awareness and experience in these topics. In addition, other agencies around the 

country are embracing this new technology and are conducting much-needed 

research with UAV platforms. All these indicate that the future prognosis of this 

UAV-CRP technology for infrastructure monitoring will be bright and hence these 

efforts will help in future cost savings in infrastructure assessments and surveys. 
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SUMMARY AND CONCLUSIONS 

8.1 SUMMARY 

In this dissertation research, close range photogrammetry was accomplished using 

unmanned aerial vehicle (also termed as UAV-CRP) platforms mounted with 

visible range camera. This methodology helps in remote data collection. Due to its 

multifaceted benefits, UAV-CRP technology have been explored as a potential 

infrastructure monitoring tool in the present research and this has been the main 

objective and focus of this dissertation research.  

A comprehensive literature review on UAVs, photogrammetry, traditional 

monitoring methods, previous studies on UAV applications in Civil Engineering, 

and latest developments in using UAVs for US DOT agencies have been conducted 

in the initial chapters. Fixed wing and rotary wing are the two main types of UAVs 

considered in this research as studies on the hybrid vertical take-off and landing 

(VTOL) are limited.  

Growing demand for the UAV applications was observed from the literature 

study, also indicated by the fact that as many as 36 DOT agencies have either started 

using or are researching the feasibility of incorporating UAVs as part of their 

applications. Various practitioners, researchers, and also engineers have conducted 

significant amount of research on various UAV applications include monitoring 

pavements, traffic, landslides, bridges, dams, rail tracks, construction sites, tall 

structures and stockpile volumetrics. 
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The main components of UAV-CRP technology include drone equipped 

with navigation accessories, camera and its accessories, and a gimbal. Even though 

there are off-the-shelf products available in the market, this study identified a need 

to evaluate the compatibility of various accessories involved in the data collection 

procedures. Flight altitude, focal length, longitudinal and lateral overlap of flight, 

and flight speed affect the quality of the photogrammetry data collected. By varying 

those parameters, a total system error analysis was conducted on the UAV and other 

accessories. Methodologies for collecting indoor and outdoor data to achieve the 

calibration objectives were used to study georeferencing accuracy, effect of 

different parameters on focal length, distortion, and resolving capacity.  

UAV-CRP monitoring had been conducted at sites including various 

infrastructure assets like pavements, bridges, rail lines, and stockpiles. All the data 

collection procedures were conducted with research group personnel wearing 

personal protective equipment and appropriate signs placed ahead of the inspection 

area on either sides. The infrastructure imagery data was processed to obtain dense 

point cloud models, orthomosaics, digital elevation models, and contours. These 

processed outputs were then analyzed for different attributes pertaining to the 

infrastructure asset under inspection. 

Pavement data was collected by flying off the pavement shoulder and with 

the camera inclined towards the pavement. The pavement data was analyzed for 

longitudinal and lateral elevation profiles in addition to various distress parameters. 
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Traditional methods were also conducted to compare the measurements from both 

the methods. Pavement cracking was identified by algorithms developed in Python 

programming language. Various functions were ran on the distressed pavement 

orthomosaic images to identify and calculate the area of distress to help in 

understanding the condition of the pavement. The volumetric information of the 

construction material stockpiles had been obtained from the UAV-CRP technology 

and were compared with traditional surveying methods. 

Bridge structure was inspected for superstructure and substructure elements 

like bridge deck, approach slab, railings, joint conditions, beams, soffits, bearings, 

wing walls, abutment, pile and cap, as well as the pile footing. Top gimbal mount 

was used to inspect the underneath of bridge and bottom gimbal mount was used to 

inspect all other elements. High quality 4K videos were also collected to obtain an 

idea about the condition of various hard-to-reach areas. The bridge inspector 

supervising the inspection operations was able to monitor the camera visuals in 

real-time on a digital live video display (DLVP) unit throughout the inspection. 

Different sites along the rail corridor were inspected to evaluate the 

application of UAV-CRP technology in monitoring the condition of the rail 

components. At-grade railroad crossing, washout, railbridge, and rock cut are the 

features inspected using this innovative technology. Different features like rusting 

of rails, vegetation encroachment, drainage path leading to soil erosion, and tie 

condition were identified from UAV-CRP collected data. Thermal data was 
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collected to estimate the health of the ties. Slope information of the rock walls was 

obtained for analyzing the stability of rock slopes. 

UAV-CRP technology had also been used to monitor the debris generated 

due to the inundation of houses caused by the floods triggered by Hurricane Harvey. 

In addition to the debris data, infrastructure data pertaining to pavement condition 

was also collected using UAV-CRP technology to evaluate the distress parameters. 

Various benefit parameters related to return on investment were considered to 

conduct cost analysis of this innovative technology.  

The aim of this analysis was to evaluate the economic feasibility of using 

this new technology over the traditional methods.  Even though many DOT 

agencies have started using UAVs, those efforts can be termed as initial 

developments. This study proposed a few business guidance policy 

recommendations for the agencies to plan UAV operations for the near future. 

Benefits and limitations of three approaches were discussed and a decision matrix 

for different UAV applications was provided.  

8.2 CONCLUSIONS 

This dissertation study conducted comprehensive work in evaluating the UAV-

CRP technology for infrastructure applications and conclusions are provided 

below.  

1. Depending upon the experience gained during the literature study on UAV 

applications and this dissertation research conducted for evaluating 
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infrastructure monitoring, rotary wing UAVs better serve the purpose of a 

localized inspection compared to the fixed wing. 

2. All the checks conducted under total system error analysis had ensured that 

required grade of accuracy could be obtained in the models developed from 

the imagery data collected in the field. The first check that evaluated the 

accuracy of geotagging images using RTK data and GPS data validated the 

high accuracy obtained using RTK GNSS data. This helped the research 

team in realizing the need for using RTK GNSS data while conducting 

actual infrastructure studies.  

3. Second check examined the variance of focal length in room conditions and 

field conditions. Indoor results indicated that the focal length remained 

constant and close to manufacturer specifications. Outdoor results analysis 

results indicated that the minor variance of the focal length in the outdoor 

conditions did not induce any substantial errors in the 3D model. The third 

check proved that, within the temperature range specified by the 

manufacturer, the focal length of the lens remained within the acceptable 

range and contributed high quality imaging analysis and 3D models of the 

infrastructure. Checking lens focal length is a critical step as it is related to 

the most important feature that is the camera sensor. 

4. In the fourth check, zero tangential distortion was recorded, which proves 

that there was no defect in the camera components. High overlap adopted 
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also helped in mitigating the radial distortion and obtaining high quality 3D 

models. The fifth calibration check was about mapping data of an area with 

more variation in the vertical profile using an aerial mobile platform. 

Although the optimum flight altitude for data collection is based upon the 

height of the obstructions in the vicinity, the SfM error analysis provided a 

comprehensive understanding about the optimum overlap and flight altitude 

that was adopted during actual field data collection of the infrastructure. 

The sixth calibration check helped in deciding the particular flight altitude 

required to identify and distinguish the features under infrastructure survey 

and inspection with sufficient resolving power of camera.  

The above calibration checks and results lead to the observation that 

the present UAV platform and camera accessories can provide 

photogrammetry data of high quality and excellent repeatability. This 

provided confidence in collecting infrastructure monitoring data for making 

engineering judgements during the subsequent steps of this dissertation 

research. 

5. The UAV-CRP technology successfully inspected the pavements 

constructed on expansive soils and obtained pavements’ characteristics and 

distress information. Both the longitudinal and transverse elevation profiles 

of the pavement were analyzed from the same UAV-CRP flight mission 

data. This UAV based inspection indicates its benefits in terms of higher 
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safety, lesser workforce and inspection time, and no traffic delay cost 

compared to two separate traditional inspection methods required for the 

two attributes discussed above.  

6. The UAV-CRP technology also provided a more detailed pavement distress 

information than the presently used and available traditional methods, and 

all the distress details collected using UAV-CRP technology could be used 

to estimate pavement serviceability index (PSI) that helps in assessing the 

need for pavement rehabilitation. 

Traffic restrictions, a typical sight during most of the conventional 

inspection methods, were not imposed during the UAV-CRP data collection 

on the high speed pavement. This innovative data collection procedure also 

considerably reduced the inspection cost and traffic delay cost. Analysis of 

the pavement characteristics data collected from UAV-CRP methodology 

also proved efficient and comparable with traditional methods. 

7. Even though the UAV-CRP technology might not match the accuracy level 

of the laser devices, the UAV-CRP data can be collected and used as a 

complimentary data collection tool to the traditional methods. Critical 

pavement sections can be identified by quickly conducting the UAV-CRP 

technology inspection over the pavement network level and then conduct 

the costly traditional surveys on those most critical sections identified from 

the UAV-CRP data analysis. 
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8. This technology allows for safe data collection of rail infrastructure in hard-

to-reach areas such as under bridges, steep slopes, and marshy areas. It has 

the capability to not only show the washout distress but also an idea about 

the factors (drainage path leading to it), which is otherwise a time taking 

task using traditional methods. The rail under bridge inspection had 

provided a safe access to view the condition of the ties and also the rotten-

wooden walking platform that would have been used for regular 

inspections. 

Due to the emerging nature of this UAV-CRP technology, it is 

proposed and recommended that UAV-CRP to be used as a complimentary 

data collection tool to the present traditional methods until common 

acceptance is obtained among the civil and infrastructure engineering 

fraternity about solely using UAVs with high quality sensors to perform 

maintenance studies. Further studies will lead to and ensure such approach 

in the near future. 

UAVs can also be used to collect the infrastructure condition data in 

addition to helping in rescuing operations during and after the hurricane. UAVs can 

become a useful tool during disaster management. Cost analysis conducted in this 

study also assured that millions of taxpayers’ dollars could be saved by 

complementing the traditional data collection methods with UAV-CRP technology 

in a safe manner.  
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UAV-CRP technology, owing to its multiple benefits, have gained the 

impetus for its application in many interdisciplinary fields. Many DOTs have 

started embracing this technology and realized the benefits. Business guidance 

recommendations provided in this dissertation suggest that DOT agencies could get 

benefitted by adapting a hybrid approach for UAV data collection which involves 

a partnership between DOT personnel and contractors. 

8.3 SCOPE FOR FUTURE WORK 

This technology being new has opened many avenues that needs further future 

studies. Below are some of the areas that can be explored: 

There is a need to explore UAV data collection by flying beyond visual line 

of sight (BVLOS), as the future readies up for preprogramming flight plan and 

launching UAVs remotely. However, this also needs further development and 

integration with unmanned aerial traffic management (UTM). This can also support 

drone swarms that can be used for infrastructure assessment before and after a 

disaster in an efficient manner.  

Artificial intelligence and machine learning on the multifaceted UAV image 

data will automate the processing and analyzing the infrastructure data for various 

distress. Development of algorithms that automatically feed these data into the 

pavement maintenance database system (PMDb), bridge maintenance database, and 

rail maintenance database will be extremely helpful for infrastructure asset 

management. 
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The dense point cloud models obtained from UAV data collection can be 

incorporated with augmented reality and virtual reality to create a whole new 

experience of visualizing the infrastructure asset condition. 
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APPENDIX-A 

Survey Questionnaire for Commercial Companies 

Based upon the UT Arlington team’s UAV research experience, the below 

questionnaire was prepared and used to contact various UAV-related companies 

through email: 

Parameters of Equipment  

 Does your company use multi-rotor, fixed wing, or other UAVs? 

 Does your company conduct each survey with one UAV, or more? 

 Does your company use any advanced types of GPS units (RTK, PPK, 

GNSS, etc.)? 

 Does your company use ground control points? 

Parameters of Survey  

 Does your company conduct roadway surveys (e.g. 500 ft pavement)?  

 Does your company conduct above-bridge surveys?  

 Does your company conduct under-bridge surveys?  

 Does your company conduct volumetric measurements (e.g. 5000 cu yard 

stockpiles, detention ponds, etc.)? 

 Does your company conduct surveys down railway lines?  

 How much rail track area can your company cover in a business day? 
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Parameters of Deliverables 

 Does your company create 3D model reconstructions? If so, what is the 

cost? 

 Does your company create orthophotos? If so, what is the cost? 

 Does your company create any other layers (e.g. vegetation index, thermal, 

etc.)? If so, what is the cost? 

 Are these layers overlaid or independent? What is the cost associated with 

it? 

 What is your company’s advertised accuracy of these layers? Does the 

accuracy vary with cost? 

 Does your company conduct any tests for detection of faults, distresses, 

cracks, rutting, potholes, vegetation, etc.? If so, what is the cost? 

 Can your company identify volumetric changes over a period of days or 

months? If so, what is the cost? 

 Are there any additional costs for travelling to remote areas? If so, what is 

the cost?  
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