
Defending Neural Networks Against Adversarial Examples

by

ARMON BARTON

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2018

Defending Neural Networks Against Adversarial Examples

The members of the Committee approve the doctoral
dissertation of Armon Barton

Jiang Ming

Supervising Professor

Matthew Wright

Gergely Zaruba

David Levine

Dean of the Graduate School

Copyright c© by Armon Barton 2018

All Rights Reserved

To my parents, I would not be who I am today without them.

To my wife, Ameriza Barton, for her endless love and support all the way through

my PhD.

ACKNOWLEDGEMENTS

I would like to thank my original supervising professor Dr. Matthew Wright for

his invaluable advice and support during the course of my doctoral studies, and my

final supervising professor Dr. Jiang Ming for his advice and encouragement through

the last half of my doctoral studies. I wish to thank my academic advisor Dr. Bahram

Khalili for encouraging and inspiring me to pursue doctoral studies, and Dr. Gergely

Zaruba and Mr. David Levine for their interest in my research and for taking the

time to serve on my dissertation committee.

Finally, I would like to express my deep gratitude to my mother and father who

encouraged and inspired me to pursue my doctoral studies. I am extremely fortunate

to be so blessed. I am also extremely grateful to my wife for her encouragement

and patience. I also thank several of my friends who have helped me throughout my

career.

11-26-2018

v

ABSTRACT

Defending Neural Networks Against Adversarial Examples

Armon Barton, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Jiang Ming

Deep learning is becoming a technology central to the safety of cars, the security

of networks, and the correct functioning of many other types of systems. Unfortu-

nately, attackers can create adversarial examples, small perturbations to inputs that

trick deep neural networks into making a misclassification. Researchers have explored

various defenses against this attack, but many of them have been broken. The most

robust approaches are Adversarial Training and its extension, Adversarial Logit Pair-

ing, but Adversarial Training requires generating and training on adversarial examples

from any possible attack. This is not only expensive, but it is inherently vulnerable

to novel attack strategies.

We propose PadNet, a stacked defense against adversarial examples that does

not require knowledge of the attack techniques used by the attacker. PadNet combines

two novel techniques: Defensive Padding and Targeted Gradient Minimizing (TGM).

Prior research suggests that adversarial examples exist near the decision boundary

of the classifier. Defensive Padding is designed to reinforce the decision boundary

of the model by introducing a new class of augmented data within the training set

that exists near the decision boundary, called the padding class. Targeted Gradient

vi

Minimizing is designed to produce low gradients from the input data point toward

the decision boundary, thus making adversarial examples more difficult to find.

In this study, we show that: 1) PadNet significantly increases robustness against

adversarial examples compared to adversarial logit pairing, and 2) PadNet is adapt-

able to various attacks without knowing the attacker’s techniques, and therefore allows

the training cost to be fixed unlike adversarial logit pairing.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xiii

Chapter Page Chapter

1. Introduction . 1

1.1 Statement of the Problem . 1

1.2 Contributions . 3

2. Background . 4

2.1 Neural Networks . 5

2.2 Crafting Adversarial Examples . 5

2.3 Distance Metrics . 6

2.4 Known Attacks . 7

2.4.1 Fast Gradient Sign Method (FGSM) 7

2.4.2 Iterative Gradient Sign Method (IGSM) 8

2.4.3 Carlini Wagner Attack . 8

2.5 Threat Model . 8

3. Related Work . 10

3.1 Adversarial Training . 10

3.2 Gradient masking . 11

3.3 Detecting adversarial examples . 12

3.4 External pre-processing . 12

viii

4. Motivation and design . 14

4.1 Training strategy. 14

4.2 Gradient minimization strategy. 17

5. Defense Evaluation . 20

5.1 Training . 20

5.2 Attacking with FGSM . 22

5.2.1 Defending MNIST against FGSM 23

5.2.2 Defending CIFAR-10 against FGSM 26

5.3 Attacking with IGSM . 28

5.3.1 Defending MNIST Against IGSM 28

5.3.2 Defending CIFAR-10 Against IGSM 30

5.4 Carlini Wagner L2 Attack . 31

5.4.1 No Defense . 31

5.4.2 Adversarial Logit Pairing . 32

5.4.3 TGM+Padding . 32

5.4.4 Padding-only . 32

5.5 Carlini Wagner L∞ & L0 Attack . 32

5.5.1 No Defense . 33

5.5.2 Adversarial Logit Pairing . 34

5.5.3 TGM+Padding . 34

5.5.4 Padding Only . 34

6. Discussion . 35

6.1 Adversarial Logit Pairing . 35

6.2 Diverse Data Sets . 36

6.3 Robustness / Accuracy Trade-off . 36

6.4 PadNet Training Cost . 36

ix

6.5 Combined Defense . 37

6.6 Future Work . 37

7. Conclusion . 38

REFERENCES . 39

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Original images compared to adversarial examples. The original images

classify as the correct digit, while the adversarial examples all classify

as the number ’9’. 6

4.1 Data points from within a hyper cube centered around adversarial ex-

ample x′ classify partly as the ground truth label, and partly as other

adjacent classes. 15

4.2 In defensive padding, a padding class is introduced within the training

set in order to reinforce the boundary layer between classes. 15

4.3 Mean padding and uniform padding. 16

4.4 Visualizing the synergistic effect of combining TGM and defensive padding.

The goal is to minimize the gradient vector (red arrows) starting at the

original sample directed toward the padding class. 17

5.1 FGSM Examples for α ranging from 0.1 to 1. 22

5.2 FGSM black-box and white-box attack success probability for MNIST. 23

5.3 FGSM black-box and white-box attack success probability for CIFAR-10 24

5.4 IGSM black-box and white-box attack success probability for MNIST. 26

5.5 IGSM black-box and white-box attack success probability for CIFAR-10. 27

5.6 CW L2 examples for increasing confidence values. As confidence is in-

creased, the attack success rate and distortion both increase. 30

5.7 CW L2 black-box attack success probability. 30

5.8 CW L0 & L∞ adversarial examples. 33

xi

5.9 CW L∞ & L0 black-box attack success probability. 33

xii

LIST OF TABLES

Table Page

5.1 Model architectures . 21

5.2 Model parameters . 21

5.3 Baseline accuracy comparisons . 22

xiii

CHAPTER 1

Introduction

1.1 Statement of the Problem

In recent times, deep neural networks have demonstrated remarkable perfor-

mance in many difficult machine-learning tasks such as image recognition [1] and

speech recognition [2]. However, recent research has shown that an attacker can trick

a neural network into misclassifying the input [3, 4, 5]. To do this, the attacker’s

algorithm perturbs the input by some small amount in a targeted way to ensure mis-

classification by the neural network. By reverse engineering back propagation, the

attacker can use gradient decent to find small perturbations in the input that suc-

cessfully cause the model to misclassify [3]. In the literature, the perturbed inputs

are known as adversarial examples.

There are four current approaches for defending against this attack: 1) increas-

ing robustness by introducing adversarial examples within the training set, called

adversarial training [3, 4], 2) forcing the model to have flat gradients so that it be-

comes more difficult for the attacker to find adversarial examples using gradient decent

based attacks [6], 3) detecting adversarial examples prior to classification [7, 8], and

4) externally processing the input to remove perturbation before classification [9, 10].

Approaches (1) and (2) aim to increase robustness of the defended network, while

approaches (3) and (4) aim to filter or reject incoming adversarial examples while

leaving the defended network unchanged. Among approaches that aim to increase ro-

bustness of the defended network, Adversarial Training has been the most successful

1

defense. Recently, Kannan et al. introduced Adversarial Logit Pairing (ALP) [11],

the latest state-of-the-art defense, which relies heavily on Adversarial Training.

All of these current approaches have limitations. In (1) and (3), the trainer of

the neural network must generate and then incorporate adversarial examples from all

known attacks into the training process. Thus, the training cost is likely to dramati-

cally increase. Moreover, the adversary may not be limited to the attack techniques

used by the trainer and could bypass the defense with a different technique. In (2),

Defensive Distillation [12] was proposed to hide the model’s gradient information.

However, Carlini et al. [5] showed that the gradient information could be recovered.

In (4), MagNet [9] was proposed to reform or reject adversarial examples prior to

classification. However, their results showed that a window of opportunity exists for

the attacker to craft adversarial examples that pass both the reformer and rejector.

Existing research suggests that adversarial examples exist near the decision

boundary of the model [13]. Using this as motivation for defending against adversarial

examples, we propose PadNet, a defense that combines two novel approaches: 1)

Defensive Padding, and 2) Targeted Gradient Minimizing (TGM). In our proposal,

these two approaches are combined to form a hybrid defense. Defensive Padding is

designed to reinforce the decision boundary of the model by introducing a new class

of augmented data within the training set that exists near the decision boundary

between all classes. This new class is called the padding class.

TGM is designed to produce low gradients from the input data points toward

the decision boundary. This is achieved by introducing a regularization parameter in

the cost function that acts as a penalty if the gradient with respect to the padding

class is high. Compared to other gradient-based methods, which affect all gradients,

TGM focuses only on the decision boundary.

2

1.2 Contributions

We show that PadNet significantly increases robustness against adversarial ex-

amples compared to ALP. Additionally, we show that PadNet is adaptable to various

attacks, and therefore the training cost is fixed unlike in Adversarial Training. More-

over, PadNet is compatible with MagNet [9] and hence could work with MagNet to

address weaknesses in that defense. In summary, the contributions of this paper are

as follows.

• We propose PadNet, a defense that combines two novel approaches for defending

against adversarial examples: 1) Defensive Padding, and 2) Targeted Gradient

Minimizing (TGM).

• We evaluate PadNet against state-of-the art attacks using a variety of attack

models and show: 1) PadNet significantly improves robustness against adver-

sarial examples compared to ALP, 2) PadNet is adaptive to various attacks

unlike ALP, and 3) PadNet has a fixed training cost unlike ALP.

• We evaluate PadNet on the MNIST and CIFAR-10 datasets.

3

CHAPTER 2

Background

Deep neural networks have become progressively more prominent in modern

society and have demonstrated excellent performance on several difficult machine-

learning tasks such as image recognition [14, 1], speech recognition [2], and natural

language processing [15]. In security-critical domains, deep neural networks play an

important role in autonomous control for robots and vehicles [16, 17], as well as med-

ical imaging analysis [18]. However, recent work suggests that neural networks are

vulnerable to attack by an adversary who specifically crafts the inputs in order to

fool the neural net and cause misclassification. Szegedy et al. [3] was the first to

identify this vulnerability in the image classification domain. They found that it was

possible to perturb an image by such a small amount that the perturbation was unde-

tectable by humans, yet would still causes misclassification by the neural net. These

specifically crafted images are called adversarial examples. More recently, researchers

have developed more efficient algorithms for constructing adversarial examples with

minimal amount of perturbation [4, 6, 19, 5] and with the intent to cause the neural

net to classify the input as any class the adversary chooses – called targeted attacks.

In Figure 2.1, we show original images from the MNIST dataset of handwritten digits

compared to crafted adversarial examples. While the original images classify as the

correct digit, the adversarial examples all classify as the number ’9’.

4

2.1 Neural Networks

A neural network is a function F (x) = y where x ∈ Rn is the input, and y ∈ Rm

is the output. The model F also depends on parameters θ. Each layer Fi within the

neural network F has output

Fi(x) = σ(θwi · x+ θbi),

where σ is some non-linear activation function, θwi is a weight matrix, and θbi is a

bias vector. The final output is given by

F (x) = softmax(Fn(Fn − 1(...(F1(x))))).

The softmax function converts the output of the last layer, called the logits, into a

probability distribution such that y1+...+ym = 1. In the image classification domain,

input x is an h ∗ w pixel image such that x ∈ Rhw, and argmax(y) is equal to the

classification of x.

2.2 Crafting Adversarial Examples

Adversarial examples can be crafted to cause F to classify x as any target class

yt by adding some perturbation δx to x such that

x+ δx = x′, F (x′) = yt.

The adversarial example x′ can be found efficiently through gradient descent

and backpropagation. First, let C(x, yt) be any cost function such that the output is

maximum if F (x) 6= yt and minimal if F (x) = yt. Then, gradient decent can be used

to iteratively adjust the pixels in x until the output of C is minimized and F (x′) = yt.

For each iteration, x is adjusted such that

x′ = x− α∇xC(x, yt),

5

Original Images

Adversarial
Examples

Figure 2.1: Original images compared to adversarial examples. The original images
classify as the correct digit, while the adversarial examples all classify as the number
’9’.

where the gradient vector ∇xC(x, yt) is the rate of change of cost function C with

respect to changing x to the target class yt, and α is a learning rate constant. This

method was used to craft the adversarial examples shown in Figure 2.1, with one

difference: instead of adjusting all the pixels for each iteration, we adjusted only one

pixel – the pixel that corresponded to the steepest component in the gradient vector.

Ironically, gradient decent is also used for learning parameters θ during training

of neural networks. For each iteration of gradient decent during training, θ is adjusted

such that

θ′ = θ − α∇θC(x, y, θ).

Hence, the optimization method that makes deep neural networks possible is the same

method used to attack them.

2.3 Distance Metrics

The perturbation δx should be sufficiently small as to be indistinguishable by

humans. In the literature, researchers have proposed three metrics for quantifying δx.

These three metrics are referred to as L0, L2, and L∞, and are all Lp norms where

‖ x− x′ ‖p= (
n∑
i=1

(x− x′)p)1/p.

6

• L0 indicates the total number of pixels that were changed in the image.

• L2 measures the Euclidean distance between the two images.

• L∞ measures the greatest change to any pixel in the image.

For example, the adversarial examples shown in Figure 2.1 were optimized for

the L0 distance metric. The corresponding L0 distances were 25, 60, and 19 for digits

’3’, ’7’, and ’8’ respectively. For digit ’3’, we only had to change 25 out of 784 pixels

in order for this image to classify as a ’9’.

2.4 Known Attacks

Methods for crafting adversarial examples can be categorized into two groups:

1) iterative methods, and 2) optimization methods. Both can be used for targeted or

non-targeted attacks. The adversarial examples from Fig. 2.1 are one example of an

iterative method. We now describe two other iterative methods from the literature.

2.4.1 Fast Gradient Sign Method (FGSM)

The fast gradient sign method [4] is optimized for the L∞ distance metric.

FGSM finds x′ such that

x′ = x− ε · sign(∇xC(x, y, yt)),

where ε is the amount that each pixel is changed. sign(∇xC(x, y, yt)) ignores all the

magnitudes for each element in the gradient vector, and just keeps the sign of each

element. Thus, each pixel is changed by amount ε in the direction of the gradient.

FGSM is fast because it runs for one iteration only.

7

2.4.2 Iterative Gradient Sign Method (IGSM)

IGSM [20] is a refinement of FGSM where instead of changing the pixels by

amount ε for one iteration, multiple iterations are taken of which pixels are changed

by a minimum amount α. However, the change is clipped with respect to the original

image, ensuring that no pixel is changed more than amount ε. IGSM finds x′ such

that

x′ = clipε(x− α · sign(∇xC(x, y, yt))).

2.4.3 Carlini Wagner Attack

The Carlini Wagner (CW) attack [5] is a suite of attacks that use optimization

methods to find minimum perturbation according to the L0, L2, and L∞ distance

metrics. The attack is modeled in terms of an optimization problem as follows:

minimize D(x, x′) + c · f(x′)

s.t. x′ ∈ [0, 1]n

where the goal is to find x′ such that the distance D(x− x′) is minimized. They add

the constraint that, for x′ to be a valid image, all pixels must be in the range [0, 1].

In this problem, f(x′) should also be minimized where f is an objective function

that outputs a minimal value when f(x′) = yt – i.e., when the attack succeeds. The

constant c is used to increase or decrease the weight of f .

2.5 Threat Model

We assume an attacker may use an adversarial example x′ to perform targeted

and non-targeted attacks against a deep neural net F . For a targeted attack, the

attack is successful if and only if the defended network F classifies adversarial exam-

ples as a particular target class of the adversary’s choosing such that F (x′) = yt. A

8

non-targeted attack is successful if and only if the defended network F classifies the

adversarial example as any class other than the original label such that F (x′) 6= y.

We assume an attacker may perform black-box and white-box attacks against

a deep neural net. A black-box attack is one in which the attacker does not know

the parameters θ of F , or the training method. As such, the attacker generates

adversarial examples on some state-of-the art deep neural net F ′, and subsequently

transfers those example to be classified by the defended network F . A white-box

attack is one in which the attacker has full knowledge of the defended network F and

thus knows the parameters θ and the training method. As such, the attacker may

generate adversarial examples directly on the defended network F .

9

CHAPTER 3

Related Work

Due to the limited understanding of the nature and extent of vulnerabilities

in deep neural nets, defending against adversarial examples has turned out to be a

major challenge [21]. Current defensive strategies fall into the following categories:

1) Adversarial Training, 2) gradient masking, 3) detecting adversarial examples, and

4) external pre-processing. Approaches (1) and (2) aim to increase robustness of

the defended network, while approaches (3) and (4) aim to filter or reject incoming

adversarial examples while leaving the defended network unchanged. Currently, the

best defenses are a hybrid of two or more of the listed techniques. However, all current

defenses fall short in fully securing deep neural nets against adversarial examples.

3.1 Adversarial Training

Currently, the best known method for increasing robustness for a defended

neural net is to introduce Adversarial Training [4, 3] – a technique in which crafted

adversarial examples along with their ground truth labels are included within the

training set. Unfortunately, Goodfellow et al. showed that the FGSM attack still had

a 17.6% success rate against a network defended by Adversarial Training. Recently,

Kannan et al. proposed Adversarial Logit Pairing (ALP) [11] which is a refinement of

Adversarial Training. In ALP, a term is added to the cost function that encourages

the logits, the final inputs to the softmax function, to be similar for an adversarial

example compared to its benign counterpart. For example, consider a model with

cost function C(M, θ) used for Adversarial Training where M is a minibatch of benign

10

examples {x1, ..., xm} and their corresponding adversarial examples {x′1, ..., x′m}. Let

f(x, θ) be a function mapping the inputs to their logits within the model. Then,

adversarial logit pairing is given by minimizing the cost

C(M, θ) + λ
1

M

m∑
i=1

(f(xi, θ), f(x′i, θ)).

The authors showed that ALP significantly increased robustness compared to vanilla

Adversarial Training. However, ALP inherits several disadvantages from Adversarial

Training. Papernot et al. [21] pointed out that, since Adversarial Training is not adap-

tive, it is essential to include adversarial examples produced by all known attacks.

Generating adversarial examples, however, is expensive for most techniques. There-

fore, the training cost is likely to increase dramatically. Additionally, the adversary

may not be limited to the attack techniques used by the trainer.

3.2 Gradient masking

Gradient masking techniques aim to increase robustness by forcing the model to

produce near-zero gradients. Gu et al. [22] proposed adding a layer-wise smoothness

penalty within the feed-forward neural net that enables the model to achieve ”flat-

ness” around the input data points. Their results suggest that the defense increased

distortion, however, they did not suggest that the defense decreased the attack success

rate. Papernot et al. [12] introduced defensive distillation which hides the model’s

gradient information by replacing the model’s last layer with a ”harder” softmax

function. However, Carlini et al. [5] showed that the defense can be bypassed by

calculating the gradient directly from the pre-softmax layer.

11

3.3 Detecting adversarial examples

Grosse et al. [7] proposed using statistical distance metrics for detecting ad-

versarial examples by measuring maximum mean discrepancy and energy distance.

Metzen et al. [8] proposed using separate classification networks for detecting adver-

sarial examples. They construct a deep neural net classifier to detect whether an

input is adversarial. Similar to Adversarial Training, it is essential for these methods

to include adversarial examples produced by all known attacks in order to generalize

well. Moreover, the attacker may not be limited to the attack techniques used for

training the detection method.

3.4 External pre-processing

In external pre-processing, the defended neural network remains unchanged

and therefore lacks robustness. Instead, the input data passes through some pre-

processing step before entering the defended neural net.

Xu et al. [10] proposed feature squeezing. In their design, they stack N identi-

cal deep neural net models in parallel. The input data passes directly into the first

model, and simultaneously passes through an external pre-processing filter before

passing through the other models. Each external filter performs a unique feature

squeezing process on the input data that reduces the search space available to an

adversary. One example of this would be to reduce the color bit depth of each pixel

before passing the image to the model. For the final output, they use prediction in-

consistency which detects adversary examples when the model reports disagreements

among the predictions of the sub-models. According to their results, the method

rejects adversarial examples with low perturbations, but is increasingly vulnerable as

perturbations increase.

12

Meng et al. [9] proposed MagNet, a framework for defending against adversar-

ial examples by using an external detector network and a reformer network. The

detector detects adversarial examples when they are far from the manifold of normal

examples. The reformer network reforms adversarial examples by moving them to-

wards the manifold. According to their results, there exists windows of opportunity

where adversarial examples within a particular distortion range pass through both

the detector and reformer, and these examples thus attack the network successfully

since the defended network itself is unchanged.

Both of these methods are hybrids of detection and external pre-processing and

are compatible with methods that increase robustness of the defended network such

as Adversarial Training and gradient masking.

13

CHAPTER 4

Motivation and design

In this section, we explain how knowledge about adversarial examples informs

our design for a new defense against adversarial examples and describe those designs

in detail. There are two strategies that we focus on: 1) a training strategy, and 2)

a gradient minimization strategy. Unlike Adversarial Training, our training strategy

does not rely on knowing the methods the attacker uses to create adversarial ex-

amples. Therefore, our training set size remains fixed with respect to the number of

possible attacks, and our training method does not change regardless of the attacker’s

method. Likewise, unlike known gradient masking techniques, our technique targets

and reduces the gradients where adversarial examples are known to exist rather than

obfuscating the existing gradients.

4.1 Training strategy.

In the supervised learning domain of machine learning, the task is to infer

a function from labeled training data. Each training example consists of an input

object and a desired output value. The supervised learning algorithm analyzes the

training data and produces an inferred decision boundary that can be used to classify

new examples. The placement of this decision boundary is thus very important to

the effectiveness of the classifier in generalizing to classify new inputs correctly.

The decision boundary is also important to adversarial examples. Cao et al. [13]

performed an experiment in which they formed a small hyper cube around the center

14

xx'Class 1

Class 2

Figure 4.1: Data points from within a hyper cube centered around adversarial example
x′ classify partly as the ground truth label, and partly as other adjacent classes.

xx'Class 1

Padding Class

Class 2

Figure 4.2: In defensive padding, a padding class is introduced within the training
set in order to reinforce the boundary layer between classes.

of adversarial inputs x′. They then passed 10,000 data points from within this hyper

cube through a deep neural net. This experiment is visualized in Figure 4.1. They

found that a majority of the data points classified as the correct class, while the rest of

the data points classified as one or more other classes. This suggests that adversarial

examples occur near the decision boundary, and that decision boundaries of multiple

classes can exist adjacently to one another.

Using this as motivation for a defense against adversarial examples, we propose

Defensive Padding – a training strategy that is meant to reinforce the boundary

between classes. This is done by introducing what we term as a padding class between

classes of deep neural nets. This augmented model can be visualized in Figure 4.2.

We introduce two forms of padding: 1) mean padding, and 2) uniform padding.

In mean padding, we take the mean of one random data point from one class and

another random data point from another class. Then, we add Gaussian noise to this

15

Normal
3

Normal
8

Mean
Padding

Uniform
Padding

Figure 4.3: Mean padding and uniform padding.

sample. Figure 4.3 shows an example of mean padding taken from two MNIST data

points. In uniform padding, we draw a random variable α from the range [.2, .8].

Then we take the weighted average of the two data points using the weights α and

1− α. Figure 4.3 shows an example of uniform padding from MNIST with α = 0.2.

While different amounts and combinations of mean padding and uniform padding

are possible, we apply a simple approach. For each training data point, we added one

mean padding data point and one uniform padding data point based on it. For each

class (call it class A), we generate data points pairing data points from class A with

each other class in equal measure.

The padding samples shown in Figure 4.3 are an amalgamation of both of the

original samples and should reside in a space that is in between the two original classes

while far from the respective centroids of those classes. We show in Section 5 that

this defense is adaptive to a variety of attacks. Introducing these additional training

samples effectively tripled our training set, though constructing each sample is very

easy to do. On the other hand, Adversarial Training requires the trainer to both

construct and incorporate adversarial examples from all known attacks, causing the

training cost to dramatically increase.

16

Figure 4.4: Visualizing the synergistic effect of combining TGM and defensive
padding. The goal is to minimize the gradient vector (red arrows) starting at the
original sample directed toward the padding class.

For the MNIST dataset, Defensive Padding works well with perturbation to

every pixel. We found, however, that accuracy of a model trained on CIFAR-10

significantly decreased when all pixels were perturbed during defensive padding. We

believe that, since there are three color channels, perturbing more than one third of

the pixels results in excessive loss of information. As such, we used a similar padding

approach for CIFAR-10 in which the only difference was that we randomly selected

one-third of the pixels to perturb rather than all the pixels. The remaining two-thirds

of the pixels remain the same as one of the two base images. In uniform padding,

the base image is the one with the highest weight, while either image can be used

arbitrarily in mean padding.

4.2 Gradient minimization strategy.

Existing gradient masking techniques aim to increase robustness by arbitrarily

forcing the model to produce near-zero gradients, or by obfuscating the existing gra-

17

dient. On the other hand, evidence suggests that adversarial examples occur near the

decision boundary [13]. As such, we propose Targeted Gradient Minimizing (TGM).

Our goal is to produce near-zero gradients from input x toward the decision boundary.

To achieve this, we add a term to the cost function cost = C(x, y, θ) such that

cost′ = cost+
1

n

n∑
i=1

(∇xC(ypad))
2,

where ∇xC(ypad) is the gradient with respect to x when targeting any sample ypad

within the padding class. We take the mean of the squared gradient vector and pe-

nalize if that value is high. This increases likelihood that most components in the

gradient vector from starting point x toward the padding class – and thus toward

the decision boundary – are near zero. As such, TGM relies heavily on a well-formed

padding class that truly reinforces the decision boundary. Figure 4.4 is a visualiza-

tion of the synergistic effect of the combination of TGM and defensive padding. The

red arrows represent the gradient vector starting at the original sample directed to-

ward the padding class. Since we know adversarial examples exist near the decision

boundary, we presume that an adversary’s goal is to perturb benign samples in a di-

rection toward the decision boundary using gradient based methods. By minimizing

this gradient vector, we increase difficulty in an adversary’s ability to find adversarial

examples.

Athalye et al. [23] proposed Backward Pass Differentiable Approximation – an

attack used to circumvent defenses that rely solely on gradient obfuscation. They

identify three forms of gradient obfuscation in which the gradient information can

be recovered: 1) shattered gradients, or networks that are non-differentiable due to

some external preprocessing step such as MagNet, 2) stochastic gradients, caused by

randomizing the output of the network during test time, and 3) exploding & vanishing

gradients as found in Defensive Distillation where the output of one network is fed

18

as input to another during training. In these methods, the gradient exists within the

model but is obfuscated on some level depending on the technique. However, TGM

does not obfuscate the existing gradient of the model. Additionally, TGM does not

satisfy the characteristics and behaviors laid out by Athalye et al. [23] that occur as

a result of obfuscated gradients.

19

CHAPTER 5

Defense Evaluation

To evaluate Defensive Padding and Targeted Gradient Minimizing, we set up

an experiment in which we trained four deep neural nets on MNIST and CIFAR-10.

The four respective test networks are described as: 1) No-Defense, 2) Padding-only,

3) TGM+Padding, and 4) Adversarial Logit Pairing (ALP). Apart from the Softmax

layer, each network was trained with similar architecture and hyperparameters as

used by Carlini and Wagner [5] and by Papernot et al. [12] and shown in Table 5.1

and Table 5.2. One key difference is that we used 11 neurons in the Softmax layer

for any network that was trained with defensive padding.

The baseline classification accuracy for each network is shown in Table 5.3. For

the MNIST models, the TGM+Padding and Padding-only networks had near state-

of-the art accuracy of 97.43% and 98.98% respectively, while all other networks had

state-of-the art accuracy of over 99%. For the CIFAR-10 models, No-Defense and

Padding-only had similar accuracy with respect to this CNN architecture compared

to prior work [5, 12]. There was a reduction in accuracy for TGM+Padding and

Adversarial Logit Pairing by approximately 6% and 8% respectively compared to

No-Defense.

5.1 Training

The No-Defense network was trained with standard training data for the MNIST

and CIFAR-10 models respectively. The Padding-only network was trained with aug-

mented training data that incorporated mean padding and uniform padding examples

20

Layer Type MNIST CIFAR-10

Convolution + ReLU 3 x 3 x 32 3 x 3 x 64

Convolution + ReLU 3 x 3 x 32 3 x 3 x 64

Max Pooling 2 x 2 2 x 2

Convolution + ReLU 3 x 3 x 64 3 x 3 x 128

Convolution + ReLU 3 x 3 x 64 3 x 3 x 128

Max Pooling 2 x 2 2 x 2

Fully Connected + ReLU 200 256

Fully Connected + ReLU 200 256

Softmax (No Padding) / (Padding) 10 / 11

Table 5.1: Model architectures

Parameter MNIST CIFAR-10

Learning Rate 0.1 .01

Optimization Method SGD SGD

Dropout 0.5 0.5

Batch Size 10 10

Epochs 50 250

Table 5.2: Model parameters

as described in Chapter 4. The TGM+Padding network was trained with the same

augmented training data as the Padding-only network, with the addition of a targeted

gradient minimization term within the cost function. In Adversarial Logit Pairing,

the FGSM adversarial examples were crafted with ε = 0.25 and ε = 0.1 for MNIST

and CIFAR-10 respectively [3, 11]. We attacked these four test networks with FGSM,

IGSM, and CW L2, L∞, and L0 attacks under Black Box, White Box, Targeted, and

Non-Targeted attack models.

21

Model MNIST CIFAR-10

No-Defense 99.52% 82.25%

Padding-only 98.98% 82.08%

TGM+Padding 97.43% 76.23%

Adversarial Logit Pairing 99.38% 73.9%

Table 5.3: Baseline accuracy comparisons

0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5

Figure 5.1: FGSM Examples for α ranging from 0.1 to 1.

5.2 Attacking with FGSM

We generated 1000 FGSM adversarial examples with ε ranging from 0.1 to 1

and from 0.05 to 0.5 for MNIST and CIFAR-10, respectively. Figure 5.1 shows an

example of the added distortion on MNIST as it relates to ε. With ε = 0.1, the

distortion is minimal and hard to detect by humans. When ε > 0.3, the distortion

is already substantial, and the digit is nearly unrecognizable for ε > 0.8. We show

the attack success rate against MNIST models in Figure 5.2 and against CIFAR-10

models in Figure 5.3.

22

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.2 0.4 0.6 0.8 1

ALP
TGM & Padding
Padding only
No Defense

(a) MNIST Black-box Non-targeted

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.2 0.4 0.6 0.8 1

ALP
TGM & Padding
Padding only
No Defense

(b) MNIST Black-box Targeted

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.2 0.4 0.6 0.8 1

ALP
TGM & Padding
Padding Only
No Defense

(c) MNIST White-box Non-targeted

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

0.3

FGSM - ε
0.2 0.4 0.6 0.8 1

ALP
TGM & Padding
Padding only
No Defense

(d) MNIST White-box Targeted

Figure 5.2: FGSM black-box and white-box attack success probability for MNIST.

5.2.1 Defending MNIST against FGSM

5.2.1.1 No Defense

The FGSM attack was most successful against the undefended network com-

pared to TGM+Padding and ALP. With ε = 0.1, the attack success rate was 46%,

43%, 30%, and 6% for black-box non-targeted (5.2a), black-box targeted (5.2b), white-

box non-targeted (5.2c), and white-box targeted (5.2d) respectively. As ε increased,

the attack success rate increased to nearly 100% for black-box and white-box non-

targeted, and to at most 65% and 17% for black-box targeted and white-box targeted

respectively.

23

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(a) CIFAR-10 Black-box Non-targeted

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(b) CIFAR-10 Black-box Targeted

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

FGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding Only
No Defense

(c) CIFAR-10 White-box Non-targeted

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

FGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(d) CIFAR-10 White-box Targeted

Figure 5.3: FGSM black-box and white-box attack success probability for CIFAR-10

5.2.1.2 TGM+Padding

The FGSM attack was least successful against the TGM+Padding network.

With ε = 0.1, the attack success rate was 5%, 6%, 2%, and 1% for black-box non-

targeted (5.2a), black-box targeted (5.2b), white-box non-targeted (5.2c), and white-

box targeted (5.2d) respectively.

For adversarial examples with low distortion (ε = 0.1), the TGM+Padding

defense improved robustness by 83% to 92% compared to the undefended network.

For adversarial examples with major distortion ε = 1, the TGM+Padding defense

improved robustness by 100% compared to both the undefended network and ALP.

24

As ε increased from 0.2 to 1.0, the attack success rate remained zero under

all attack models for TGM+Padding, and Padding-only, and thus no distinction was

observed among these defenses comparatively.

5.2.1.3 Padding-only

Under the black-box non-targeted (5.2a) and targeted (5.2b) attack models

with ε = 0.1, the FGSM attack was most successful against Padding-only compared

to all other test networks. The attack success rate was 60% and 47% for black-box

non-targeted and targeted respectively.

5.2.1.4 Adversarial Logit Pairing

Under the black-box non-targeted (5.2a) and targeted (5.2b) attack models,

with ε <= 0.25, ALP provided similar robustness compared to TGM+Padding. How-

ever, Madry et al. [24] suggested that Adversarial Training loses robustness against

adversarial examples that were crafted with greater ε values compared to the adver-

sarial examples used for training. In our results, we observed that ALP inherits this

disadvantage from Adversarial Training. As ε increased from 0.25 to 1.0, the attack

success rate increased to nearly 100% under black-box non-targeted (5.2a) and at

most 42% under black-box targeted (5.2b). In the white box cases, ALP had similar

robustness with ε = 0.1 compared to TGM+Padding. However, as ε increased to 1.0,

the attack success rate increased to nearly 100% under white-box non-targeted (5.2c),

and at most 16% under white-box targeted (5.2d)

25

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

IGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(a) MNIST Black-box Non-targeted

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

IGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(b) MNIST Black-box Targeted

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

IGSM - ε
0.1 0.15 0.2 0.25 0.3

ALP
TGM & Padding
Padding only
No Defense

(c) MNIST White-box Non-targeted

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

IGSM - ε
0.1 0.15 0.2 0.25 0.3

ALP
TGM & Padding
Padding only
No Defense

(d) MNIST White-box Targeted

Figure 5.4: IGSM black-box and white-box attack success probability for MNIST.

5.2.2 Defending CIFAR-10 against FGSM

5.2.2.1 No Defense

Under the black-box model, the FGSM attack was most successful against the

undefended network compared to TGM+Padding and ALP. With ε = 0.05, the attack

success rate was 63% and 38% for black-box non-targeted (5.3a) and black-box tar-

geted (5.3b), respectively. As ε increased, the attack success rate increased to nearly

100% for black-box non-targeted and to at most 84% for black-box targeted.

The attack success rate against adversarial examples with low distortion (ε =

0.05) was 95% and 29% for white-box non-targeted (5.3c) and white-box targeted

(5.3d), respectively. Due to the lack of iterations in FGSM, as ε increased, the attack

26

P
ro

ba
bi

lit
y

0

0.05

0.1

0.15

0.2

0.25

IGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(a) CIFAR-10 Black-box Non-targeted

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

IGSM - ε
0.1 0.2 0.3 0.4 0.5

ALP
TGM & Padding
Padding only
No Defense

(b) CIFAR-10 Black-box Targeted

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

IGSM - ε
0.02 0.04 0.06 0.08

ALP
TGM & Padding
Padding only
No Defense

(c) CIFAR-10 White-box Non-targeted

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

IGSM - ε
0.02 0.04 0.06 0.08

ALP
TGM & Padding
Padding only
No Defense

(d) CIFAR-10 White-box Targeted

Figure 5.5: IGSM black-box and white-box attack success probability for CIFAR-10.

success rate decreased to approximately 82% and 10% for white-box non-targeted and

white-box targeted respectively.

5.2.2.2 PadNet

PadNet provided the most robustness compared to the other test networks. The

attack success rate remained approximately 0% against TGM+Padding and Padding

only for all ε values under all tested attack models 5.3a, 5.3b, 5.3c, 5.3d.

5.2.2.3 Adversarial Logit Pairing

ALP provided limited robustness compared to PadNet. Under the black-box

attack models with low distortion (ε = 0.05), the attack success rate was reduced from

27

62% to 25% (5.3a), and from 38% to 10% (5.3b) compared to no defense. However,

under the white-box non-targeted model (5.3c), the attack success rate for ALP was

approximately 10% to 15% higher compared to no defense for ε values ranging from

0.1 to 0.5. Likewise, under the white-box targeted model (5.3d), the attack success

rate for ALP was approximately 10% to 22% higher compared to no defense.

The contrasting results with respect to ALP’s robustness on MNIST compared

to CIFAR-10 for the white-box attacks indicate that its robustness is highly dependent

on the characteristics of the particular data set that the defense is designed to protect.

5.3 Attacking with IGSM

We generated 1000 MNIST and CIFAR-10 IGSM adversarial examples. We

show attack success rate against MNIST models in Figure 5.4 and against CIFAR-10

models in Figure 5.5.

5.3.1 Defending MNIST Against IGSM

5.3.1.1 No Defense

The IGSM attack was most successful against the undefended network com-

pared to TGM+Padding and ALP. With ε = 0.1, the attack success rate was 19%,

5%, 80%, and 58% for black-box non-targeted (5.4a), black-box targeted (5.4b), white-

box non-targeted (5.4c), and white-box targeted (5.4d) respectively. As ε increased,

the attack success rate increased to 100% for the white-box attacks, and to at most

27% and 9% for black-box non-targeted and targeted respectively.

28

5.3.1.2 Adversarial Logit Pairing

ALP provided similar robustness compared to PadNet under the black-box at-

tack models. The attack success rate was approximately 0% to 1.5% for the targeted

(5.4a) and non-targeted (5.4b) attacks for all tested ε values. Under the white-box at-

tacks, ALP provided significantly less robustness compared to PadNet. With ε = 0.1,

the attack success rate was approximately 17% and 6% for white-box non-targeted

(5.4c) and targeted (5.4d) respectively, and it increased to 84% and 59% as ε increased

respectively.

5.3.1.3 TGM+Padding

Compared to ALP, TGM+Padding provided similar robustness against the

black-box attacks and significantly more robustness against the white-box attacks.

With ε = 0.1, the attack success rate was 3%, 1%, 5%, and 2% for black-box non-

targeted (5.4a), black-box targeted (5.4b), white-box non-targeted (5.4c), and white-

box targeted (5.4d), respectively. For the black-box attacks, the attack success rate

remained at approximately 0% as ε increased. On the other hand, the attack success

rate increased to 50% and 42% for the white box attacks as ε increased.

For adversarial examples with low distortion (ε = 0.1), the TGM+Padding

defense improved robustness by 80% to 96% compared to the undefended network.

5.3.1.4 Padding-only

With ε = 0.1, the IGSM attack was most successful against Padding-only com-

pared to all other test networks. The attack success rate was 39%, 23%, 96%, and 95%

for black-box non-targeted (5.4a), black-box targeted (5.4b), white-box non-targeted

(5.4c), and white-box targeted (5.4d) respectively.

29

0 5 10 15 20

Figure 5.6: CW L2 examples for increasing confidence values. As confidence is in-
creased, the attack success rate and distortion both increase.

P
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Carlini L2 - Confidence
0 5 10 15 20

ALP
TGM & Padding
Padding only
No Defense

(a) MNIST

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

0.12

Carlini L2 - Confidence
0 5 10 15 20

ALP
TGM & Padding
Padding only
No Defense

(b) CIFAR-10

Figure 5.7: CW L2 black-box attack success probability.

5.3.2 Defending CIFAR-10 Against IGSM

5.3.2.1 No Defense

Under the black-box non-targeted model (5.5a), the attack success rate was

approximately 16% to 23% against the undefended network. Under the white-box

attacks, the attack success rate was 80% and 62% for non-targeted (5.5c) and targeted

(5.5d) respectively, and increased to approximately 100% as ε was increased to 0.02.

5.3.2.2 Padding Only

Under all attack models, Padding only provided the most robustness compared

to both TGM+Padding and ALP. The attack success rate was approximately 5%

against the black-box non-targeted (5.5a) attack. Against the white-box attacks

30

(5.5c), (5.5d), the attack success rate was approximately 0% for ε = 0.01. However,

as ε was increased for the white-box attacks, the attack success rate reached nearly

100%.

5.3.2.3 TGM+Padding and ALP

Under the White-box non-targeted attack model (5.5c), TGM+Padding pro-

vided slightly more robustness compared to ALP. With ε = 0.01, the attack success

rate was 24% and 42% for TGM+Padding and ALP respectively. For all other attack

models, TGM+Padding and ALP provided similar robustness.

5.4 Carlini Wagner L2 Attack

The CW L2 attack allows the adversary to adjust attack strength by adjusting

the confidence. As confidence is increased, distortion increases. We generated 500

CW L2 examples with confidence values of 0, 5, 10, 15, and 20. Figure 5.6 shows

one example of the added distortion on one MNIST sample as confidence is increased.

Using these examples, we performed a black-box targeted attack on our test networks.

The attack success rates for MNIST and CIFAR-10 are shown in Figures 5.7a and 5.7b

respectively.

5.4.1 No Defense

The attack success rate for the undefended network on MNIST (5.7a) was 7% for

confidence = 0 and increased to 81% as confidence was increased to 20. The attack

success rate for the undefended network on CIFAR-10 remained at approximately

10% for all confidence values.

31

5.4.2 Adversarial Logit Pairing

For defending MNIST, ALP maintained similar robustness compared to PadNet

for confidence values ranging from 0 to 15. However, when confidence was increased

to 20, the attack success rate against ALP was approximately 14%. For defending

CIFAR-10, ALP did not provide any additional robustness compared to no defense.

The attack success rate for ALP on CIFAR-10 remained approximately 10% for all

confidence values.

5.4.3 TGM+Padding

For defending both MNIST and CIFAR-10, TGM+Padding provided the most

robustness compared to the other test networks. The attack success rate for defending

MNIST and CIFAR-10 did not exceed 1% for all tested confidence values.

5.4.4 Padding-only

For defending MNIST, Padding-only provided similar robustness compared to

TGM+Padding. The attack success rate for defending MNIST did not exceed 3%

for any of the tested confidence values. For defending CIFAR-10, Padding-only sig-

nificantly improved robustness compared to no defense. The attack success rate for

defending CIFAR-10 was reduced from 10% to approximately 3.5% for Padding-only

compared to No-Defense.

5.5 Carlini Wagner L∞ & L0 Attack

The CW L∞ and L0 attacks do not allow the adversary to adjust a confidence

parameter. As such, we generated one set of 1,000 adversarial examples for each

attack. In Figure 5.8, we show one CW L0 and one CW L∞ adversarial example

from the MNIST dataset. Note that the distortion in the CW L∞ example has a

32

Carlini L0 Carlini Li

Figure 5.8: CW L0 & L∞ adversarial examples.

Pr
ob

ab
ili

ty

0

0.02

0.04

0.06

0.08

0.1

Carlini Li Carlini L0

ALP
TGM & Padding
Padding only
No Defense

(a) MNIST

Pr
ob

ab
ili

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Carlini Li Carlini L0

ALP
TGM & Padding
Padding only
No Defense

(b) CIFAR-10

Figure 5.9: CW L∞ & L0 black-box attack success probability.

similar pattern to the distortion in the FGSM adversarial examples shown in Fig-

ure 5.1. Though these are two distinct attacks, FGSM being iterative and CW being

optimizational, they both optimize on the same L∞ distance metric and thus produce

similar distortion patterns. Using these examples, we performed a black-box targeted

attack on our test networks. The attack success rates for MNIST and CIFAR-10 are

shown in Figures 5.9a and 5.9b, respectively.

5.5.1 No Defense

The attack success rate was 6% and 9% for the L∞ and L0 attacks against

MNIST respectively, and 11% for the L∞ and L0 attacks against CIFAR-10.

33

5.5.2 Adversarial Logit Pairing

For defending MNIST, ALP was as effective as TGM+Padding against the L∞

attack, and slightly less effective against the L0 attack compared to TGM+Padding.

Against the L∞ attack on MNIST (5.9a), the attack success rate was approximately

1% for ALP and TGM+Padding. Against the L0 attack on MNIST (5.9a), the attack

success rate was 3% for ALP.

For defending CIFAR-10, ALP did not provide any additional robustness com-

pared to no defense. The attack success rate was 10% and 11% against the L∞ and

L0 attack respectively.

5.5.3 TGM+Padding

For defending both MNIST and CIFAR-10 against the L∞ and L0 attacks,

TGM+Padding provided the most robustness compared to the other test networks.

The attack success rate did not exceed 1% against the L∞ and L0 attacks on MNIST

and on CIFAR-10. For defending MNIST, TGM+Padding improved robustness by

89% against the L0 attack compared to No-Defense, and by 81% against the L∞

attack compared to No-Defense. For defending CIFAR-10, TGM+Padding improved

robustness by 91% against both the L0 and L∞ attacks compared to No-Defense.

5.5.4 Padding Only

For defending against the L0 attack on MNIST, the attack success rate for

Padding only was 8%; Padding only did not provide any significant robustness com-

pared to No-Defense. Conversely, for defending against the L0 attack on CIFAR-10,

the attack success rate for Padding only was 1.5%; Padding only provided similar

robustness as compared to TGM+Padding. The contrasting results imply that ro-

bustness may very across diverse data sets.

34

CHAPTER 6

Discussion

6.1 Adversarial Logit Pairing

Madry et al. [24] pointed out that Adversarial Training becomes increasingly

vulnerable as distortion increases beyond the ε value used for training. Our results

suggest that ALP inherits this disadvantage from Adversarial Training. For example,

ALP was trained using FGSM examples with ε = 0.25. In the FGSM attacks on

MNIST (Figures 5.2a, 5.2b, 5.2c), the attack success rate dramatically increased

when ε was increased beyond 0.25.

Moreover, Papernot et al. [21] pointed out that adversarial training is not adap-

tive to crafted adversarial examples that differ from the adversarial examples used

for training the model. Our results suggest that ALP also inherits this disadvantage.

Notably, ALP did not adapt to the CW attacks. On MNIST, the attack success rate

reached 14% for confidence = 20. On CIFAR-10, the attack success rate was not

significantly different than No-Defense.

We conclude that, for ALP to be effective, the training set should incorporate

adversarial examples from all known attacks. Since this not only involves more train-

ing but also the high computational cost of generating the adversarial examples, this

is becomes a major disadvantage because the training cost is likely to increase dra-

matically. Moreover, the adversary is not limited to the maximum value of ε used in

training nor the attack methods used by the trainer.

35

6.2 Diverse Data Sets

We observed some contrasting results with respect to MNIST and CIFAR-10

that may imply that robustness results may vary across diverse data sets. In the

IGSM attacks, for example, we observed that Padding only significantly increased ro-

bustness for defending CIFAR-10 compared to the other test networks. Conversely,

for defending MNIST against IGSM, TGM+Padding significantly increased robust-

ness compared to the other test networks. Secondly, for the L0 attack on MNIST, we

found that Padding only did not provide any additional robustness compared to No-

Defense. On the other hand, for the L0 attack on CIFAR-10, Padding only provided

similar robustness compared to TGM+Padding. These results indicate that the best

defense method is highly dependent on the particular data set.

6.3 Robustness / Accuracy Trade-off

In general, for defending CIFAR-10, Padding only provided the most robustness

against the IGSM attacks and high robustness against the CW attacks. Given that

the Padding only model for CIFAR-10 had an accuracy of 82.08%, we conclude that

Padding only had the best robustness / accuracy trade-off for defending CIFAR-10.

On the other hand, TGM+Padding provided the most overall robustness for defend-

ing MNIST. With an accuracy of 97.43% for the MNIST model, we conclude that

TGM+Padding had the best robustness / accuracy trade-off for defending MNIST.

6.4 PadNet Training Cost

In our experiments, PadNet adapted well with respect to the different attack

methods compared to ALP. This is advantageous for PadNet because the training

set incorporated one set of padding examples, yet robustness was consistent across

36

attacks. Therefore, the training cost should be fixed with respect to the tested attack

methods.

6.5 Combined Defense

One hybrid defense method known as feature squeezing [10] was found to re-

ject adversarial examples with low distortion. However, as distortion increased, this

method became increasingly vulnerable. In the MagNet defense [9], adversarial exam-

ples within a particular distortion range pass through both the detector and reformer.

One advantage for PadNet is that it is compatible with defenses such as MagNet. Ad-

ditionally, our results show that PadNet may have higher robustness for the distortion

ranges that caused vulnerability within MagNet. As such, combining PadNet with

MagNet would synergistically produce a more robust hybrid defense. We intend to

explore this in future work.

6.6 Future Work

For other future work, we plan to improve upon our method for populating the

padding class. In this work, we presented our first attempted methods for populating

the padding class. However, there may be more effective solutions. Past research has

focused on using generative adversarial networks (GANs) [25] to derive adversarial

examples [26]. One idea would be to use GANs to derive a padding class.

As we noted above, we believe that robustness of the defense is highly dependent

on the data set. As such, we plan on testing PadNet and the combined effect of PadNet

with other defenses on more diverse datasets such as ImageNet.

37

CHAPTER 7

Conclusion

We have proposed PadNet, a stacked defense against adversarial examples. Pad-

Net does not require knowledge of the attack techniques used by the attacker. Pad-

Net combines two novel techniques: 1) Defensive Padding, and 2) Targeted Gradient

Minimizing (TGM). Prior research suggests that adversarial examples exist near the

decision boundary of the classifier. Defensive padding is designed to reinforce the

decision boundary of the model by introducing a new class of augmented data within

the training set that exists near the decision boundary, called the padding class. Tar-

geted Gradient Minimizing is designed to produce low gradients from the input data

point toward the decision boundary, thus making adversarial examples more difficult

to find.

Our results showed that: 1) PadNet significantly increases robustness against

adversarial examples compared to Adversarial Logit Pairing (current state-of-the-art),

and 2) that PadNet is adaptable to various attacks without knowing the attacker’s

techniques, and therefore allowing the training cost to be fixed unlike Adversarial

Logit Pairing.

38

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acous-

tic modeling in speech recognition: The shared views of four research groups,”

in IEEE Signal Processing Magazine, vol. 29, no. 6. IEEE, 2012, pp. 82–97.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” in International Confer-

ence on Learning Representations (ICLR’13), 2013.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing ad-

versarial examples,” in International Conference on Learning Representations

(ICLR’15), 2015.

[5] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-

works,” in Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017,

pp. 39–57.

[6] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,

“The limitations of deep learning in adversarial settings,” in Security and Privacy

(EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–387.

[7] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel,

“On the (statistical) detection of adversarial examples,” in arXiv preprint

arXiv:1702.06280, 2017.

39

[8] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial

perturbations,” 2017.

[9] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial

examples,” in Proceedings of the 24th ACM Conference on Computer and Com-

munications Security (CCS’17), 2017.

[10] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples

in deep neural networks,” in arXiv preprint arXiv:1704.01155, 2017.

[11] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” arXiv

preprint arXiv:1803.06373, 2018.

[12] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a

defense to adversarial perturbations against deep neural networks,” in Security

and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597.

[13] X. Cao and N. Z. Gong, “Mitigating evasion attacks to deep neural networks via

region-based classification,” 2017.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11.

IEEE, 1998, pp. 2278–2324.

[15] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov,

and M. Collins, “Globally normalized transition-based neural networks,” 2016.

[16] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-

driving cars,” in arXiv preprint arXiv:1604.07316, 2016.

[17] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,”

in Robotics and Automation (ICRA), 2017 IEEE International Conference on.

IEEE, 2017, pp. 2786–2793.

40

[18] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” in

Annual Review of Biomedical Engineering, no. 0. Annual Reviews 4139 El

Camino Way, PO Box 10139, Palo Alto, California 94303-0139, USA, 2017.

[19] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial

examples and black-box attacks,” in International Conference on Learning Rep-

resentations (ICLR’17), 2017.

[20] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical

world,” 2016.

[21] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of

security and privacy in machine learning,” in arXiv preprint arXiv:1611.03814,

2016.

[22] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to

adversarial examples,” in arXiv preprint arXiv:1412.5068, 2014.

[23] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples,” arXiv preprint

arXiv:1802.00420, 2018.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-

wards deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neu-

ral Information Processing Systems, 2014.

[26] J. Hayes and G. Danezis, “Machine learning as an adversarial service: Learning

black-box adversarial examples,” arXiv preprint arXiv:1708.05207, 2017.

41

