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Abstract

The main purpose of this study is feature engineering/learning from multivariate

(MV) time-series to achieve a more interpretable model by dimension reduction. This

aim is fulfilled in 2 main parts. In part 1, we proposed a network estimation approach

namely SWDN which stands for sparse weighted directed network. In this approach,

the directed subgraph of the underlying network was detected by maximum span-

ning tree (MST) algorithm that created a null model of connections with maximum

inter-dependence (pairwise correlation or mutual information) forming the backbone

structure of the MV time-series as an empirical reference. The edge weights were

estimated using the linear conditional Gaussian parameters with the maximum likeli-

hood. The efficiency of the proposed method (SWDN) was evaluated on the publicly

available simulated fMRI data-set generated based on BOLD with different simula-

tion parameters and in comparison with other network construction methods, it was

verified to outperform Granger and lag-based methods under some circumstances.

We applied SWDN as a feature extraction tool, and classified Parkinson’s Disease

(PD) fMRI data by finding the discriminative patterns between estimated network of

PDs vs controls and achieved 75 % test accuracy via N-fold cross-validation.

In part 2, we made an extensive feature analysis framework for MV time-series.

This framework consisted of extensive features extraction, post processing and a novel

proposed feature selection technique based on mutual information and sparsity learn-

ing with embedded group structure. The multivariate time-series in this part was

functional near infrared spectroscopy (fNIRS) which is a noninvasive neuroimaging

technique for brain activity monitoring. We applied the proposed supervised exten-
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sive sparse feature learning method on two data-sets to extract and select features and

by applying machine learning and data mining approach and algorithms to classify

participants with brain disorder/disease from the controls.
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CHAPTER 1

Introduction

The main goal of this dissertation is feature learning and analysis of the mul-

tivariate time-series (MVTS), which is conducted in two main section. Section one

is about structure learning or network construction of the MVTS which provides

the connectivity analysis and reduced dimension. Section two is about a feature

learning/engineering framework consisting of data pre-processing, exclusive feature

extraction, post-processing and proposing the new feature selection technique based

on the mutual information and sparse group structure of the multivariate time-series.

The further application of these methods is in application of data mining and ma-

chine learning algorithms in order to classify binary labels. The proposed methods

is applied on the brain neuroimaging data for evaluation like fMRI and fNIRS with

the goal of efficient network construction and classification of binary labels for brain

disease/disorder respectively.

The proposed methods have broad application in various fields with MVTS

data. However our focus was on medical data and particularly brain informatics.

Neuroimaging techniques like EEG, fNIRS, and fMRI provide a complex MVTS data

in a subject-based or trial-based depending of the design of experiment which were

suitable examples to apply and evaluate the efficacy of the proposed methods with

practical goals. Next, we discuss the existing problems in the medical support system

and how the proposed methods can be solutions along with the short descriptions of

the embedded articles which represent the effectiveness, applicability and generaliz-

ability of the proposed methods.

1
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1.1 Decision Support Systems in Medical Diagnostic Problems

Medical decision support systems are considered challenging because they are

dependent on the subjective data of the patient and judgment of the assessor. Since

1970, application of computer systems and AI technology in medical field is growing

rapidly [1,2]. One main reason is increasing facility in gathering the exact and abun-

dant data with the new technology and the ability to easy storage, for example the

soft-wares that can easily monitor the cognitive load and record the measurements

for diagnosis like focus/attention, stress/anxiety. On one hand the data is increas-

ing which can result is big models, on the other hand the need for sparse models

are undeniable since smaller models are more interpretable and more generalizable.

Therefore, the need for development of the methods which reduce the dimension of

the data and can find the strong connection of the available variables in order to find

the significant ones is also growing.

In this study we particularly focus on the application of the proposed methods

on the brain activity measurements with 2 different techniques: functional MRI and

functional near infrared spectroscopy (fNIRS). There are other techniques for brain

data collection like electroencephalographic (EEG), and magnetoencephalographic

(MEG), blood oxygen level dependent (BOLD) which we did not use for analysis.

Generally, the challenges in development of a decision support system for medical

data can be categorized in 3 groups: (1) probabilistic nature of the statistical mod-

eling cause the output of the model to be fuzzy, there is no rigid simple yes or no.

(2) Uncertainty in the gathered data is spite of targeting for a specific output. For

example, a patient visiting a doctor for a speculated disease, may carry some other

symptoms which one is not even aware of. However, the side problem can mislead the

model. Another example is the brain computer experiments. Although the measure-

ments are recorded after a specific stimulus on the brain, there is always uncertainty



3

about the data revealing the preplanned causal effects of the designed experiment be-

cause of the highly complex structure of the brain. (3) the validation of such models is

very challenging. Most popular evaluation approach is cross-validation, however hav-

ing and an additional test set is always more desirable. Moreover, imbalances/skewed

classes is another source of challenge and makes the validation of the model in com-

plex systems to be very difficult. Regarding the brain neuro-imaging data; the main

challenge in the analysis of the collected data by any of the mentioned techniques,

is high dimensional feature space while small-sample size; which cause over-fitting,

poor generalization and non-interpretable solutions. This complex problem can be

viewed and solved from different angles like network analysis, graphical modeling,

Bayesian learning, dimension reduction using linear algebra techniques like principal

component analysis (PCA) and independent component analysis (ICA), all with the

goal of building an interpretable machine learning system. In this study we propose

2 methods as the solution to this problem and apply them on the simulated and

real/experimental data. First, a network construction method based on the maxi-

mums spanning tree (MST) to detect the null model as a sub-graph of the underlying

network, the model is evaluated on the simulated fMRI data and a real data from

Parkinson Disease (PD), the results are shown in the article 1 (in Chapter 2). Sec-

ond, we propose a data mining approach with the application of machine learning

algorithms to exclusively extract features from the high-dimension MVTS and apply

a mutual information based sparse group lasso feature selection technique to find the

most significant features from the most significant groups of the voxels (channels) on

the brain known as region of interest (ROI). These discovered features are known as

biomakres which can be used in diagnostic and treatment-tracking of the patients

with the brain disease/disorder. The result of the application of the second method

on the children who stutter is shown in article 2 (in Chapter 3) and on the veterans
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with post-traumatic stress disorder (PTSD) is shown in article 3 (Chapter 4). The

machine learning approach for the further application of the proposed methods is

defined to be binary classification. Clinical decision making in the field of machine

learning can be categorized mainly to two groups: 1- supervised, when we have the

known classes/labels of the samples/measurements and 2- unsupervised, when we

need to detect the clusters of the similar samples. In this thesis, we mainly focused

on the binary classification decision making.

1.2 Research Objectives and Contributions

This PhD dissertation consists of two main sections listed below:

• Chapter 2: structure learning / network construction of the multivariate time-

series and introducing its two applications. First, connectivity analysis of the

MVTS, detecting the weighted directed network (subgraph) with the most like-

lihood as a null model of the underlying network. Second, using the learned

structure as the extracted features for classification using maximum margin to

find discriminative patterns between binary labels.

• Chapter 3 and 4: exclusive feature learning framework including the propos-

ing novel feature selection algorithm based on mutual information and sparse

group lasso. This approach combines the nonlinear and linear dependence of

the features to the class and results in a sparse selection which can be in-

troduced as non-localized biomarkers which are data-driven-based instead of

prior-knowledge-based.
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1.3 Authorship

The first and primary author of the 3 articles embedded in the dissertation is

Rahilsadat Hosseini, who conducted all the advanced data analytics under the super-

vision of Dr Shouyi Wang in COSMOS lab, at IMSE department in UTA. I applied

data mining and machine learning techniques to solve the problem and propose new

techniques.

In the first paper namely ”Construction of Sparse Weighted Directed Network

(SWDN) from the Multivariate Time-series & its Application as Feature Extraction

for the Binary Classification”, in Chapter 2, the coauthor was Dr. Shouyi Wang,

my supervisor, who guided me through the method development and evaluation,

suggesting similar articles to read and apply moreover, giving effective critics to make

the paper more consistent and stronger.

In the second paper, namely ”An fNIRS-Based Feature Learning and Classifi-

cation Framework to Distinguish Hemodynamic Patterns in Children who Stutter”,

in Chapter 3, the main collaborator was Dr. Bridget Walsh, who had the NIH grant

to design the experiment and collect the fNIRS data from children who were stutter-

ing and who were controls and the group who were treated. She provided me with

expert knowledge of the main problem definition and explanation/interpretation of

the achieved results. Dr. Tian was the other collaborator who guided me through

the analysis.

In the third paper, namely ”Biomarker Identification of Post-traumatic Stress

Disorder from Functional Near-Infrared Spectroscopy using a Novel Mutual Information-

Guided Sparse Feature Learning Approach”, in Chapter 4, the collaborators were Dr.

Hanli Liu and Dr. Fenghua Tian from bioengineering department at UTA. They

collected the fNIRS data from veterans with PTSD and controls and provided me
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with expert knowledge about nature and description of fNIRS data and the disorder,

moreover, verification of the biological interpretation of the achieved results.
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CHAPTER 2

Construction of Sparse Weighted Directed Network (SWDN) from the Multivariate

Time-series & its Application as Feature Extraction for the Binary Classification

The short version of the paper namely ”Construction of Sparse Weighted Di-

rected Network (SWDN) from the Multivariate Time-series” was submitted to the

11th International Conference on Brain Informatics (BI 2018, December 7-9, Arling-

ton, Texas, USA)

However, the long version of the paper in Elsevier format for the journal of

NeuroImage is included in this dissertation.
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Construction of Sparse Weighted Directed Network (SWDN) from the Multivariate
Time-series & its Application as Feature Extraction for the Binary Classification

Rahilsadat Hosseini, and Shouyi Wang

701 S Nedderman Dr. University of Texas at Arlington, 76013,Arlington, TX

Abstract

There are many studies focusing on network detection in multivariate (MV) time-series data. A great deal of focus have been on
estimation of brain networks using fMRI, fNIRS and EEG. We propose a sparse weighted directed network (SWDN) estimation
approach which can detect the underlying minimum spanning network with maximum likelihood and estimated weights based
on linear Gaussian conditional relationship in the multivariate time series. Considering the brain neuro-imaging signals as the
multivariate data, we evaluated the performance of the proposed approach using the publicly available fMRI data-set and the results
of the similar study which had evaluated popular network estimation approaches on the simulated fMRI data. Moreover, weapplied
the proposed network construction method as a feature extraction technique from fMRI data to classify the patterns of the Parkinson
Disease.

Keywords: multivariate time-series, sparse weighted directed network (SWDN), feature extraction, classification, fMRI

1. Introduction

MV time-series analysis is used to investigate the concept of
connectivity in dynamic systems like physiological time series.
Connectivity analysis can detect coupling which means the
presence or absence of interactions between the processes and
identify causality which means the presence of driver-response
relationships. There are different approaches to transform
MV time-series in to a network through mapping algorithms.
A classic but popular approach is considering each one of
time-series as a node, and the weight of the edge connecting
nodes would be interdependency between pairwise data [1]
like correlation matrices [2]. Another recent approach is map-
ping the time-series into abstract graphs [3] for example the
visibility algorithms that is applied on uni-variate time-series
[4]. Another way to perform connectivity assessment include
linear MV autoregressive (MVAR) process, and deriving mea-
surements like coherence, the partial coherence, the directed
coherence and so on from the frequency domain. Dynamic
dependence model (the extensions of multi-regression dynamic
models (MDM) [5]) is another available approach that map
time-series to directed graphical models in which causality
over time is decided based on the contemporaneous values of
each one of the time-series as the predictor in a conditional
relationship. Later sparsity was induced to this network using
sequential Bayesian mixture modeling [6].

There is a growing interest in brain network estimation.
Brain connectivity/network reveals the linking patterns in the
brain which happens in different layers from neurons to neural
assemblies and brain structures. Brain connectivity involves 3
concepts: neuroanatomical or structural connectivity (pattern of
anatomical links), functional connectivity (usually understood

as statistical dependencies) and effective connectivity (referring
to causal interactions). Generally brain network estimation
can be conducted in two main approaches, first, pairwise
connectivity analysis like correlation, second, a convoluted
approach to consider all the nodes globally like Bayes net
modeling. Different methods can be applied on various brain
imaging techniques. For example, MEG analysis of functional
connectivity patterns based on the mutual information between
wavelet time-series [7]. Another example is fNIRS (hemo-
dynamic signals, such as HbO, HbR, and HbT responses)
functional and effective connectivity analysis via Granger
causality methods [8, 9, 10], pair-wise temporal correlation
[11], frequency specific characteristics based on spontaneous
oscillation in the low-frequency range [12], Dynamic Causal
Modeling (DCM) [13] i.e. fitting differential equation or
state space models of neuronal activity to brain imaging data
using Bayesian inference [14], statistical parametric mapping
(SPM) applying the general linear model (GLM) and random
field theory[15] and fast causal inference algorithm [16]. The
other significant group of studies focus on the analysis of
fMRI network [17], using Granger causality [18], dynamic
causal modeling [19], structure learning of sparse Markov
networks specifically Gaussian graphical models incorporated
with variable selection using block coordinate descent method
[20], a regularized regression (Elastic Net) [21] and exploit
the interactions by sparse Markov random field classifiers and
linear methods, such as Gaussian Naive Bayes and SVM [22].

Smith et. al. [23] generated various fMRI simulations
based on BOLD and evaluated the efficacy of different network
construction methods. The 28 simulations varied based on
simulation factors including number of nodes, session duration,

Preprint submitted to NeuroImage August 22, 2018



TR/neural lag, noise, haemodynamic response function (HRF)
standard deviation and other factors like shared inputs, global
mean confound, bad ROI (mixed and new random), backward
connections, cyclic connections, stronger connections, more
connections, non-stationary & stationary connections andonly-
one-strong input. The tested network modeling techniques
were correlation and partial correlation, regularized inverse
covariance (ICOV), mutual information, Granger causality
(conditional, pairwise, directed and causality difference) and
related lag-based measures, PDC (partial directed coherence),
DTF (directed transfer function), coherence, generalized
synchronization (Gen Synch), Patel’s conditional dependence
measures, Byes Net and LiNGAM (Linear, Non-Gaussian,
Acyclic causal Models). The four evaluation metrics were
defined as follows: Z-score true positive (TP), Z-score false
positive (FP), c-sensitivity i.e. the fraction of TPs that are
estimated with higher connection non-normalized strengths
than the 95th percentile of the raw non-normalized FPs and
total number of true connections and lastly, d-accuracy i.e.
mean fractional rate of detecting the correct directionality
of true connections. Evaluation of the network methods are
summarized as follow: first-rank performing methods with
c-sensitivity about 90% were: Partial correlation, ICOV and the
Bayes net. The second-rank with 70-80% were: full correlation
and Patel’s. The third rank with 50% were: MI, Coherence and
Gen Synch. The forth rank with poor performance of under
20% were: the lag-based methods (Granger, PDC and DTF)
and LiNGAM. Regarding the detection of the direction of the
connection, none of the methods were accurate except Patel’s
with 65%. The effect of factors are summarized as follow:
longer duration resulted in higher c-sensitivity and had strong
dependency with detection of directionality. Duration was
more effective than TR and TR was more effective than noise
level. Bad RIO was significantly deteriorating. The number of
nodes and the addition of a global mean confound had complex
patterns of effect.

In this study, we aim to learn the structure of a multivariate
time-series and construct a graphical data-driven model using
minimum spanning tree, maximum likelihood and linear
conditional Gaussian dependance. The biggest challenge in
structure learning when having no prior knowledge about
the structure, is finding the highest score structure which is
NP-hard. A very complex yet powerful approach is Bayesian
learning in which each variable is assumed to have a specific
distribution and variables are conditioned on each other, and
final model is selected with methods like Monte Carlo Markov
chain (MCMC) to sample from the posterior distribution and
maximizing expected posteriors or BIC. However there are less
computationally-complex approaches which are popular and
commonly applied for example correlation, regularized inverse
covariance, mutual information, Granger causality and so on.

The first purpose of this study is to apply the proposed net-
work construction method to a variety of MV time-series in or-
der to evaluate the efficacy of the method in comparison with
other network estimation methods. As an example of the mul-

tivariate time-series, we applied the method to estimate func-
tional connectivity in fMRI measurements which shows the
temporal statistical correlation among neural assemblies. The
fMRI data was publicly available from study [23] that consisted
of 28 sessions of BOLD simulated fMRI data, each simulation
had different properties including, number of nodes, session
duration, TR (repetition time), neural lag, noise, HRF stan-
dard deviation. We exploited the results from study [23] and
compared the performance of SWDN with similar evaluation
metrics including relative sensitivities to finding the presence
of a direct network connection, ability to find the directionof
the connection, and robustness against various network chal-
lenges. Another purpose besides connectivity analysis from the
network construction of the MV time-series is using structure-
learning as a feature extraction technique and build a network-
based feature-space for predictive models.

2. Method

2.1. Data Description

As it has been explained in the previous section, we used
the public fMRI data to evaluate the network detection. The
BOLD timeseries fMRI data was generated based on dynamic
causal modeling (DCM) in 28 sessions with 50 subjects, vary-
ing time-stamp points and simulated with different properties.
The session properties are retrieved from the study [23] andis
summarized in Table (1).

In the second part, we applied the proposed method on the
experimental fMRI data collected from the participants with
and without Parkinson Disease (PD) and estimated the under-
lying network for each subject. Next, with the aim of classifi-
cation, we used the estimated network weights as the extracted
features to find the discriminative patterns between controls and
PDs. The fMRI measurements consisted of 21 controls and 25
participants with PD, each subject had 264 channels (nodes)
with 300 number of time-points. All of the computations in this
study were conducted in Matlab version 2017.

2.2. Maximum Spanning Tree (MST), Adjacency Matrix and
Graph

Maximum spanning tree is the same as minimum spanning
tree but with the selection of edges with maximum weigh at
each iteration. Minimum spanning tree as a sub-network con-
taining the strongest connections, has successfully been applied
to detect the null model of connections that form the back-
bone structure of the brain to create an empirical reference[24],
moreover to capture network alterations due to aging and dis-
ease in functional and structural imaging data [25, 26, 27].We
implemented the Prim’s minimum spanning tree algorithm to
find the underlying network. Prim’s algorithm solves the prob-
lem of finding acyclic set connecting all vertices inV with
the minimal weight,w(T) =

∑

(u,v)∈T w(u, v), for a given con-
nected undirected graphG = (V,E), where each edge (u, v)
has a weightw(u, v). Prim’s algorithm starts with a spanning
tree, containing arbitrary vertex and no edge, it repeatedly adds

10



Table 1: Summary of the session properties of the simulated fMRI

Sim1, 5Nd, 200NTp Baseline Sim15, 5Nd, 200NTp Stronger connection
Sim2, 10Nd, 200NTp Baseline Sim16, 5Nd, 200NTp More connections
Sim3, 15Nd, 200NTp Baseline Sim17, 10Nd, 200NTp Reduced noise
Sim4, 50Nd, 200NTp Baseline Sim18, 5Nd, 200NTp Removed all HLV
Sim5, 5Nd, 1200NTp 1 hour session Sim19, 5Nd, 2400NTp Increased neural lag
Sim6, 10Nd, 1200NTp 1 hour session Sim20, 5Nd, 2400NTp Neural lag and removed HLV
Sim7, 5Nd, 5000NTp 4 hour session Sim21, 5Nd, 200NTp 2-group
Sim8, 5Nd, 200NTp Shared input Sim22, 5Nd, 200NTp Nonstationary connection strength
Sim9, 5Nd, 5000NTp Shared input Sim23, 5Nd, 200NTp Stationary connection strength
Sim10, 5Nd, 200NTp Global mean confoundSim24, 5Nd, 200NTp Only one strong external input
Sim11, 10Nd, 200NTp Bad ROI - mixed Sim25, 5Nd, 100NTp Reduced noise
Sim12, 10Nd, 200NTp Bad ROI - mixed Sim26, 5Nd, 50NTp 2.5 min session
Sim13, 5Nd, 200NTp Backward connectionnSim27, 5Nd, 50NTp Reduced noise
Sim14, 5Nd, 200NTp Cyclic connection Sim28, 5Nd, 100NTp Reduced noise
Sim: simulation, Nd: number of Nodes, NTp: Number of time-points, HLV: haemodynamic lag variability

edges with minimum weight and grows the spanning with a ver-
tex not in the tree in a greedy way. We defined a priority queue
for the vertices not in the tree, using a pointer from adjacency
matrix as the list of entry, in order to find the minimal edge
connected to the tree. The key of the vertex is weight of the
edge connecting it to the tree. This greedy algorithm works in
O((|V| + |E|) log |V|) = O(|E| log |V|) running time while loop
runs|V| times.

In maximum spanning tree, the set is found by vertices with
maximum weight. Weight is calculated as the multivariate lin-
ear or nonlinear dependance matrix using pairwise mutual in-
formation (MI) and correlation. As described in the Algo-
rithm (1), the tree starts with connecting all vertices (v1...n ∈ V)
to the root, then a queue is listed for entering the nodes (Q).
The child (F) of the root, is decided by having the maximum
weight (keys(v)) among all edges (E), if the weight of the new
edge is greater than the current weight (W(F, v) > keys(v)).
The selected (v) is then removed from the Q. This repeats till
the queue become empty and predecessor (p) for all (v ∈ Q)
is decided while root is the only vertex without parent. This
procedure iterates for (∀root ∈ V) and the best tree is selected
based on the maximum likelihood of the (data|G,model).

Algorithm 1 Maximum spanning tree (MST), an implementa-
tion of Prim’s minimum spanning tree

Q = V − {root}
p(v) = root ∀v ∈ Q
keys(v) =W(root, v) ∀v ∈ Q
while Q , Ø do

F = argmax
v∈Q

keys(v)

Q = Q− {F}
for v ∈ Q do

if W(F, v) > keys(v) then
p(v) = F
keys(v) =W(F, v)

The constructed tree is a compact joint representation over

unstructured variable representation, much less smaller net-
work. This tree network helps to speed up enumeration and
eliminate variable and is the basis to construct the adjacency
matrix. Adjacency matrix is a 0-1 matrix that takes a n-by-n
weight matrix and returns a list of the maximum weight span-
ning tree. If there is a predecessor, thenpred(i) = 1, otherwise
it is zero. It can be either symmetric or non-symmetric. We
converted the adjacency matrix to a graph by defining a matrix
in size of adjacency matrix but with 2 columns. Column one
defines the existence of an edge (binary), column 2 defines the
parent node, each row represents the child node. Adjacency
matrix is used to calculate the linear parameters of the condi-
tional Gaussian graphical model. There are two assumptions
for simplicity and being allowed to use linear systems: all nodes
follow Gaussian distribution [28] and child-parent (edge)have
linear relationship [13].

2.2.1. Conditional Gaussian Distribution

We used the constructed graph to detect edges between chil-
dren and parents, and to fit linear Gaussian between them. Next,
we estimated parameters of the linear Gaussian model (β) using
Equation (1, 2) whereCM×1 represents the child variable with
M examples andUM×N representsN parents (U1, . . . ,Un) each
with M examples.

C|U ∼ N(β(1) ∗ U1 + β(n) ∗ Un + β(n+ 1), σ2) (1)

σ =

√

cov(C) −
∑

(
∑

(β ∗ β′. ∗ cov(U))) (2)

In Equation (3), (A) represents the expectations matrix and is
required to solve the linear system (A× β = B) where (B) as the
right hand side of the equation follows Equation (4).
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(4)

We used log-likelihood to evaluate the data given the model
and graph structure (data|G,P), whereP is the structure array of
estimated parameters (β) for the linear Gaussian. The selected
model is the one with the maximum likelihood.

E(x) = β(0)+ β(1) ∗ U(1)+ ... + β(n) ∗ U(n) (5)

p(v) =
∑

(G == v)/|V| (6)

log-likelihood(u|v) =

p(v) ∗ log(
∑

(exp((x− E(x))2/2σ2 − log(
√
πσ))))

(7)

2.3. Network Evaluation Metrics

The four evaluation metrics were defined as follows: (1) nor-
malized true positive (Z-score TP) i.e. normalized weight of the
true connections (correctly detected edge when it existed in the
ground-truth network), (2) normalized false positive (Z-score
FP) i.e. normalized weights of the network for edges that are
defined but should have been empty based on the ground-truth,
(3) c-sensitivity i.e. the fraction of TPs that are estimated with
higher connection non-normalized strengths than the 95th per-
centile of the raw non-normalized FPs and total number of true
connections and (4) d-accuracy i.e. mean fractional rate ofde-
tecting the correct directionality of true connections which can
be calculated as difference of normalized weights innodei j and
nodeji .

2.4. Max Margin Optimization of the weights

The constructed network was used as the feature extraction
tool from the MV time-series. In this approach, MV times-
series of each subject was mapped to a square matrix of pair-
wise weights where non-zero value verified the existing of a
linear relationship between parent and child node. Next, linear
Gaussian coefficients were used as decision variables in a max
margin optimization problem for classification task.
In Equation (8),βi, j , represents the linear coefficient between
child-node (i) and parent-node (j), C is a non-negative tuning
parameter,M is the width of the margin;ǫi are error or slack
variables that allow individual observations to be on the wrong
side of the margin of the hyperplane, weights shown as ˆω0,...N,
when havingn channels,N = n2, andp is the sample size. To

solve this problem, we used radial basis function (RBF) kernel
and applied SVM-RBF models.

max
ω0,ω1,...,ωn,ǫ1,ǫ2,...ǫp

M (8)

subject to
n
∑

j=1

ω2
j = 1,

yi(ω0 + ω1β̂i1 + ω2β̂i2 + ... + ωnβ̂in) ≥ M(1− ǫi),

ǫi ≥ 0,
p
∑

i=1

ǫi ≤ C,

MV time-series Network as 

Feature Extraction Tool in 

Predictive Modeling 

1) Select the Optimized Network 

for each sample

MST and linear coefficients as edge 

weights with MLE

2) Feature Engineering:

Construct feature space from weights

Remove redundant features and keep 

the most relevant one to the class

3) Classification:

Maximum Margin between the 

coefficients of the binary classes

Network Construction 

and Selection Process 

1) Construct the Network:

Max Spanning tree (MST)
based on 

Mutual Information & 

Correlation

2) Determine the Model:

Estimate the parameters of 

Conditional Linear Gaussian

3) Select the Best Model:

Iterate over roots, repeat step 1 

and 2.

Select model with Maximum 

Likelihood Estimate (MLE) 

Figure 1: Summary of the process of MV time-series network construction
and selection and its application as a feature extraction tool in the predictive
modeling

The summary of the process for network construction and
optimization and its application as the feature space for classi-
fication is shown in Figure (1). In step 2 of the predictive mod-
eling application, in Figure (1), the feature selection method is
described shortly, which is the criteria of max-relevance,and
min-redundancy (mRMR) [29], the number of selected features
is decided via cross-validation.

3. Results

3.1. Comparing SWDN with other Network Methods

In Figure (2a, 2b, 2c and 2d) performance metrics Zscore TP,
Zscore FP, c-sensitivity and d-accuracy are respectively calcu-
lated for SWDN. Based on the violin plots (vertical histograms
that can depict multimodality), SWDN performs well in ses-
sions 1, 5, 7, 15, 19 and 20, in which there is least overlap
between distributions in Figure (2a and 2b) meaning that thec-
sensitivity distribution shown in Figure (2c) has higher values
with average mean and variance of 0.48 and 0.34 respectively.
The sessions with very poor performance are 3, 4, 11, 12, 13,
16 and 24 in which c-sensitivity distribution has average mean
and variance of 0.09 and 0.12 respectively.
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(d) D-accuracy

Figure 2: X-axis represents session IDs starting from 1 to 28, Y-axis represents
the weights of all edges from all subjects.

(a) Session 1 (5 nodes), Subject 1

(b) Session 7 (4 hours session), Subject 4

(c) Session 15 (stronger connection), Subject 1

(d) Session 20 (neural lag and removed HLV), Subject 6

Figure 3:The best constructed network among subjects in a session by
SWDN (in red, on the left) vs. the ground-truth network (in blue, on
the right). These are the examples of excellent performance of SWDN
under the promising circumstances like small network, longer dura-
tion, existence of strong connection and neural lag with removed HLV.
Edge width is proportional to edge weight.
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(a) Session 3 (15 nodes), Subject 2 (b) Session 4 (50 nodes), Subject 5

(c) Session 9 (shared input), Subject 1 (d) Session 11 (bad ROI), Subject 1

(e) Session 13 (backward connection), Subject 6 (f) Session 16 (more connections), Subject 3

(g) Session 24 (one strong external connection), Subject 1 (h) Session 26 (2.5 min session (shorter duration)), Subject 2

Figure 4:The worst constructed network among subjects in a session by SWDN (in red, on the left) vs. the ground-truth network (in blue, on the
right). These are the examples of poor performance of SWDN under the challenging circumstances like bigger networks, shared input, bad ROI
(mixed nodes), existence of backward connection, many connectionsand one strong external connection in the ground-truth network and shorter
duration. Edge width is proportional to edge weight. 14



The capability of the proposed method (SWDN) in detec-
tion of the ground-truth network is compared with other net-
works’ capabilities which are retrieved from the study [23]and
the results are summarized below. In each item, the italic font
sentences summaries the results taken from the study [23] and
the words in bold font state the performance of SWDN in each
stated simulation session.

• In simulation 1, 2 and 3, Partial correlation, ICOV and
the Bayes net performed about 90% of c-sensitivity, while
lag-based methods (Granger, etc.) less than 20%.The
proposed method (SWDN) performed with average of
53% c-sensitivity with the standard deviation of .35
in sim1 and2 and outperformed lag-based methods in-
cluding Granger but significantly reduced sensitivity to
17% in sim3.

• In simulation 4, full correlation, ICOV and Patel’s all per-
formed excellently. In simulation 3 and 4 number of
nodes increased to 15 and 50, SWDNs performance de-
creased, especially in sim4 to 10%

• In simulation 5 and 6, the duration was increased to 60
minutes, which caused the single lag-based method to
reach higher sensitivity but poor d-accuracy suggested
that it was not a trustworthy result. LINGAM was per-
forming better in sim5 because of more time-points which
improved better function for temporal ICA however, 10%
reduced in sim6 because of more time-points.SWDN
performed 50% in sim5 but decreased in sensitivity in
sim6 (24%) since there were more nodes.In Sim7 with
5 nodes and 250 min duration, LINGAM outperformed
all other methods among all sessions (90%). SWDN in-
creased sensitivity in sim7 to 55% because of the longer
duration and less number of nodes comparing to sim5
and 6.

• In simulation 8 and 9, shared inputs deteriorated all esti-
mation methods to 60% and below.SWDN was not de-
signed to capture shared inputs because it was based
on minimum spanning tree (maximum of one parent
for a child), therefore as expected the results was low
and about 28-34% c-sensitivity.

• In simulation 10 with global mean confound, there was the
same results as sim1.SWDN achieved 48% c-sensitivity,
outperforming lag-based methods but behind Bayes
and Partial correlation.

• In simulation 11 and 12 with bad ROI (mixed or new
random), the results were extremely bad, all the meth-
ods lower than 20% in sim11 but much better in sim12.
SWDN also performed poorly about 10% in both sim-
ulations.

• In simulation 13 with backward connections, all meth-
ods reduced sensitivity significantly with best method to
be Bayes with 60% and Coherence, Gen Synch and MI
like the correlation measures, ICOV and Patel’s, all being
around 50%.SWDN was not promising with 11%.

• In simulation 14, with cyclic connections, there were same
results as sim1 but reduced d-accuracy.SWDN was not
designed to capture cyclic connections and achieved
30% c-sensitivity.

• In simulation 15, with stronger connection, Partial corre-
lation, ICOV and the Bayes net methods achieved 90%.
Full correlation and Patel’s fell to around 60%. MI, Co-
herence and Gen Synch were unchanged, and, Partial MI
increased to 85%. Lag-based methods were performing
very poorly (less than 30%).SWDN achieved 60% indi-
cating that it outperformed lag-based methods in cap-
turing stronger connections.

• In simulation 16, there were similar results as sim1 but
lower sensitivity.Expectedly, SWDN could not estimate
network with many connections because it was de-
signed to capture sparse network with the most signifi-
cant edges, therefore performing poorly about 17%.

• In simulation 17, which could be compared with sim15,
Partial correlation, ICOV and the Bayes net had excellent
performance, while lag-based methods (Granger, etc.) less
than 20%. MI and Coherence increased to 70s%.SWDN
with poor performance of 25% indicated that in com-
parison with sim15 it performed equally or better than
Granger methods.

• Simulation 18 was similar to sim1 after removal of haemo-
dynamic lag variability. The results were unchanged, all
lag-based methods performed very poorly both with re-
spect to c-sensitivity and d-accuracy.SWDN performed
better than lag-based methods with 50% sensitivity in-
dicating that existence of lag did not affect its perfor-
mance.

• In simulations 19 and 20 with added neural lag, Partial
correlation and ICOV achieved highest sensitivity 90s%,
with some of the Granger approaches achieving 80s%.
SWDN achieved 53 to 60% sensitivity.

• Simulation 21 tested the sensitivity of the methods at de-
tection of changes in connection strength among subjects.
And introduced the most sensitive method as Patel’s, with
t=7.4, Full correlation, Partial correlation, ICOV, Gen
Synch and most of the Bayes net methods.SWDN was
not very sensitive with 27%.

• In simulation 22, there were non-stationary connection
strengths. Bayes net methods, correlation and ICOV
achieving the c-sensitivity (78% and 70% respectively).
Coherence measures were expected to be promising but
they were not.SWDN was promising gaining 48% sen-
sitivity.

• In simulation 23, there was stationary connection strength.
Partial correlation and ICOV performed the best, but the
Bayes net methods did not perform so well, falling to 60%.
SWDN performed poorly around 37%. The decrease
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in performance was similar to the Bayes Net methods
comparing to sim22.

• In simulation 24 which was similar to sim15, but with only
one strong external input, none of the methods had a c-
sensitivity greater than 50%, and none had d-accuracy
greater than 61%. Best performing methods Partial cor-
relation and ICOV=5 resulted in 40s% and the Bayes
net models performed badly in 20s%.SWDN performed
similar to Bayes Net with 24% c-sensitivity.

• In simulations 25, 26 (shorter duration), 27 (shorter dura-
tion and reduced noise level) and 28 (reduced noise level),
the three best-performing models resulted in 70s%, 50s%,
70s% and 80% sensitivity respectively.SWDN achieved
36, 43, 43, and 38% c-sensitivity respectively.

In Figure (3) and (4) the excellent and poor performance of
SWDN are respectively depicted via examples among subjects
in each session. The examples are selected to visualize the
strength and weakness of the method more clearly. SWDN is
more efficient in estimation of the ground-truth network when
it has less number of nodes and longer duration while it per-
forms poorly with bigger networks and shorter duration. It
was expected to have low sensitivity in estimation of specific
networks (with complex simulation parameters) like backward,
more connections, shared input and bad ROI because of the na-
ture of spanning tree which is acyclic network with fixed num-
ber of edges in which each child node has maximum of one
parent.

3.2. PD Classification using SWDN as feature extraction

We constructed the feature space from the weights of the net-
work which are the linear conditional Gaussian parameters gen-
erated by SWDN. Next, we applied the N-fold cross-validation
with N = 5, to divide data to training and testing and reported
the classification performance as the average of theN-times re-
peated test-set. We used the sensitivity (true positive rate) and
specificity (true negative rate), as the evaluation metricsto as-
sess the performance of the classification. In this problem,we
defined sensitivity as the accuracy of PD class and specificity
as the accuracy of control class and reported total accuracyas
the average of sensitivity and specificity.

The best SVM classification performance for the real dataset
(PD) was 75.33% accuracy (the average of sensitivity: 86.66%
and specificity: 64%). The proposed method, SWDN, outper-
formed the reported accuracy in study [30] for about 5%, in
which Daehan Won [30] tried different classifiers on PD data
and achieved maximum of 70% accuracy with 60 features and
utilizing the sparse selection of nodes and edges in a leave-one-
out cross-validation. This comparison suggested that SWDN
successfully detected the backbone brain structure which was
altering between PD and controls.

4. Discussion

The best performing sessions based on c-sensitivity shown in
Figure (2c) for SWDN were sim1, 5, 7, 15, 18, 19 and 20 which

all had network size of 5 which verified that SWDN is more ef-
fective with smaller networks. Sim5 ,7, 19 and 20 had longer
duration, 1, 4 and 2 hours respectively, which also verified more
efficacy of the method with longer duration. In sim15, SWDN
was capable of capturing the strong connection. In sim18, 19
and 20, removed haemodynamic lag variability (HLV) and in-
creased neural lag affected the SWDN’s performance positively.

The sessions with poor performance were sim3, 4, 11, 12
and 13. Sim3 and 4 had network size of 15 and 50, which ex-
plains the poor performance of the method because of bigger
size of the networks. Sim11 and 12 had bad ROI which caused
the deterioration in performance and the results were consistent
with other methods [23]. Sim13 had backward connections and
SWDN was not capable of detection of such connections based
on the nature of the spanning tree algorithm. Although SWDN
does not capture all the edges in the ground truth, it is capable
of detecting the most significant sub-graph. Moreover, while it
does not reach to the level of the sensitivity of the computation-
ally complex methods like Bayes Net, it can achieve a valuable
performance only having low computational complexity.

With respect to the estimation of network connection direc-
tionality, SWDN was poor and was not able to detect higher
than random accuracy. This conclusions is consistent with the
results taken from study [23] which stated the d-accuracy ofthe
methods to be at chance level (50%).

We achieved 75% accuracy in classification of PD data.
Since there were 264 nodes in the network of each subject, it
would be considered as a very big network, therefore, SWDN
might not be the best performing method. However, Bayes
net for such a big network is also very complex and time-
consuming and not feasible. On the other hand the achieved
results should be equal or better that the possible results with
Granger and lag-based methods since SWDN outperformed
lag-based methods in some sessions. Moreover, longer dura-
tion (more number of time-points,≥ 300) of fMRI data could
improve the current results, since SWDN was more efficient
in longer duration which was the similar conclusion for other
methods [23]. However, we achieved a comparable result with
another study on the same data and it verified the capability
of the SWDN to detect the empirical reference network as a
null model connection forming backbone structure of the hu-
man brain which was sensitive to alterations in network topol-
ogy between classes.

5. Conclusion & Future Studies

SWDN’s main strength comes from the underlying net-
work construction to be minimum spanning tree which gener-
ates a unique, acyclic, strongest sub-network with fixed num-
ber of connections. Minimum spanning tree is an unbiased
method, which avoids several methodological biases like arbi-
trary thresholding and is insensitive to alterations in connection
strength or link density. All of these advantages made SWDN
capable of capturing the strongest sub-graph of the underlying
network based on the MST algorithm.

SWDN as a network estimation method, was more compati-
ble with smaller networks meaning less number of nodes (refer
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to the good performance in sim1) and less number of edges (re-
fer to poor performance in sim16) and longer duration of sim-
ulation (refer to the good performance in sim5, 7, 19 and 20).
In 2 of the simulations (sim22 and 24), its performance was
similar to Bayes Net, however it was much less complicated
computationally and therefore less time-consuming. It outper-
formed lag-based methods like Granger (refer to sim1, 2, 14,
15, 17 and 18).

Moreover, SWDN as a feature extraction tool performed
promisingly by capturing the alternating networks between
class of PD and controls with 75% accuracy. This result was
comparable to the achieved result (70% accuracy) in the study
of the same data-set (PD) by optimization and machine learning
approach for the analysis of complex network [30].

SWDN based on minimum spanning tree is not expected
to estimate the dense networks or networks with backward or
cyclic connections. The SWDN is a general network modeling
framework that can incorporate more graphical structures in ad-
dition to minimum spanning tree. For example, we will extend
the SWDN to model more generalized network that can have
more than one parent-node, backward connections and cyclic
structures.
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Hemodynamic Patterns in Children who Stutter
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Abstract—Stuttering is a communication disorder that affects
approximately 1 % of the population. Although 5-8 % of
preschool children begin to stutter, the majority will recover with
or without intervention. There is a significant gap, however, in
our understanding of why many children recover from stuttering
while others persist and stutter throughout their lives. Detecting
neurophysiological biomarkers of stuttering persistence is a
critical objective of this study. In this study, we developed a novel
supervised sparse feature learning approach to discover discrim-
inative biomarkers from functional near infrared spectroscopy
(fNIRS) brain imaging data recorded during a speech production
experiment from 46 children in three groups: children who stutter
(n = 16), children who do not stutter (n=16), and children who
recovered from stuttering (n =14). We made an extensive feature
analysis of the cerebral hemodynamics from fNIRS signals and
selected a small number of important discriminative features
using the proposed sparse feature learning framework. The
selected features are capable of differentiating neural activation
patterns between children who do and do not stutter with
an accuracy of 87.5 % based on a five-fold cross-validation
procedure. The discovered set cerebral hemodynamics features
are presented as a set of promising biomarkers to elucidate
the underlying neurophysiology in children who have recovered
or persisted in stuttering and to facilitate future data-driven
diagnostics in these children.

Index Terms—stuttering, functional near-infrared spectroscopy
(fNIRS), speech production, children, data mining, feature ex-
traction and selection, biomarkers, mutual information, sparse
modeling

I. I NTRODUCTION

Stuttering is a communication disorder characterized by
involuntary disruptions in the forward flow of speech. These
disruptions, referred to as stuttering-like disfluencies,are rec-
ognized as repetitions of speech sounds or syllables, blocks
where no sound or breath emerge, or prolongation of speech
sounds. In recent years, there has been considerable progress
toward understanding the origins of a historically enigmatic
disorder. Past theories of stuttering attempted to isolatespecific
factors such as anxiety, linguistic planning deficiencies,or
muscle hyperactivity as the root cause of stuttering (for review,
see [1]). More recently, however, stuttering is hypothesized
to be a multifactorial disorder. Atypical development of the
neural circuitry underlying speech production may adversely
impact the different cognitive, motor, linguistic, and emotional
processes required for fluent speech production [2], [3].

The average age of stuttering onset is 33 months [4].
Although, 5-8 %, of preschool children begin to stutter, the
majority (70-80 %) will recover with or without intervention

[5], [4]. Given the high probability of recovery, parents often
elect to postpone therapy to see if their child's stuttering
resolves. However, delaying therapy in children at greater
risk for persistence allows maladaptive neural motor networks
to form that are challenging to treat in the future [6], [4].
The lifelong implications of stuttering are significant, impact-
ing psychosocial development, education, and employment
achievement [7], [8], [9], [10].

There is a significant gap in our understanding of why
so many children recover while others persist in stuttering.
Established behavioral risk factors for stuttering persistence
include one or more of the following: positive family history,
later age of onset (i.e. stuttering began after 36 months), time
since onset, sex–boys are more likely to persist, and type
and frequency of disfluencies [4]. Combining behavioral risk
factors with objective, physiological biomarkers of stuttering
may constitute a more powerful approach to help identify
children at greater risk for chronic stuttering. Detectingsuch
physiological biomarkers of stuttering persistence is a critical
objective of our research [11], [12].

In our earlier study, Walsh et al. (2017) [13] recorded
cortical activity during overt speech production from children
who stutter and their fluent peers. During the experiment,
the children completed a picture description task while we
recorded hemodynamic responses over neural regions involved
in speech production and implicated in the pathophysiology
of stuttering including: inferior frontal gyrus (IFG), premo-
tor cortex (PMC), and superior temporal gyrus (STG) with
functional near-infrared spectroscopy (fNIRS), which is a
safe, non-invasive optical neuroimaging technology that re-
lies upon neurovascular coupling to indirectly measure brain
activity. This is accomplished using near-infrared light to
measure the relative changes in both oxygenated (Oxy-Hb)
and deoxygenated hemoglobin (Deoxy-Hb), two absorbing
chromophores in cerebral capillary blood [14]. fNIRS offers
significant advantages including its relatively low cost and
greater tolerance for movement, making it a more child-
friendly neuroimaging approach. fNIRS has been used to
assess the regional activation, timing, and lateralization of cor-
tical activation for a diverse number of perceptual, language,
motor, and cognitive investigations (for review, [15]).

Using fNIRS to assess cortical activation during overt
speech production, we found markedly different speech-
evoked hemodynamic responses between the two groups of
children during fluent speech production [13]. Whereas con-
trols showed clear activation over left dorsal IFG and left
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PMC, characterized by increases in Oxy-Hb and decreases in
Deoxy-Hb, the children who stutter demonstrated deactivation,
or the reverse response over these left hemisphere regions.
The distinctions in hemodynamic patterns between the groups
may indicate dysfunctional organization of speech planning
and production processes associated with stuttering and could
represent potential biomarkers of stuttering.

Although different brain signal patterns can be observed for
stuttering and control group in our previous studies, thereis
still a lack of reliable quantitative tools to evaluate stuttering
treatment and recovery process based on brain activity pat-
terns. In our previous studies, we have extensive research ef-
forts on specialized machine learning (ML) and pattern recog-
nition techniques for multivariate spatiotemporal brain activity
pattern identification under different brain states [16], [17],
[18], [19]. In this study, we aimed to detect neurophysiological
biomarkers of stuttering using advanced ML techniques. In
particular, we performed ML models for two experiments. In
experiment (1), we made an extensive feature extraction from
fNIRS brain imaging data of 16 children who stutter and 16
children in a control group collected in our previous study [13].
Next, we developed a novel supervised sparse feature learning
approach to discover a set of discriminative biomarkers from
a large set of fNIRS features, and construct a classification
model to differentiate hemodynamic patterns from children
who do and do not stutter. In experiment (2), we applied the
constructed classification model on a novel test set of fNIRS
data collected from a group of children who had recovered
from stuttering and underwent the same picture descriptionex-
periment. Using the novel test set with children's data thatwas
not used to develop the initial algorithms allowed us to assess
the model generalization with the discovered biomarkers from
experiments (1) to (2). We elected to include children who
had recovered from stuttering in the test group for theoretical
and clinical bearings. Young children who begin to stutter
are far more likely to recover than persist. It is important to
assess the underlying neurophysiology of different stuttering
phenotypes to learn, for example, whether recovered children's
hemodynamic patterns would classify them with the group
of controls or with the group of stuttering children. These
proof-of-concept experiments represent a critical step toward
identifying greater risk for persistence in younger children near
the onset of stuttering.

The remainder of the paper is organized as follows: In
Section 2, we present the methodology, including participant
and data collection details, fNIRS data feature extractionand
structured sparse feature selection models. In Section 3, we
present the results of the pattern discovery of biomarkers as
well as performance consistency on the novel test-set of data
from recovered children. In section 4, we discuss the selected
features and their interpretations in terms of brain regions of
interest. Finally, we conclude the study in section 5.

II. M ETHOD

A. Participants, fNIRS Data Collection & Pre-processing

In experiment (1), fNIRS data from the 32 children who
participated in the Walsh et al. (2017) study [13] was analyzed;

16 children who stutter (13 males) and 16 age- and socioe-
conomic status-matched controls (11 males). The participants
were between the ages of 7-11 years (M = 9 years). Stuttering
diagnosis and exclusionary criteria are provided in [13].

In experiment (2), a group of 14 children (10 males)
between the ages of 8-16 years (M = 12 years) who recovered
from stuttering was analyzed as an additional test group. All
of the children completed a picture description experiment
in which they described aloud different picture scenes (talk
trials) that randomly alternated with null trials in which they
watched a fixation point on the monitor. In order to compare
hemodynamic responses among the groups of children, only
fluent speech trials were considered in the analyses.

For each experiment, we recorded hemodynamic responses
with a continuous wave system (CW6; TechEn, Inc.) that
uses near-infrared lasers at 690 and 830 nm as light sources,
and avalanche photodiodes (APDs) as detectors for measuring
intensity changes in the diffused light at a 25-Hz sampling
rate. Each source/detector pair is referred to as a channel.
The fNIRS system acquired signals from 18 channels (9 over
the left hemisphere and 9 over homologous right hemisphere
regions) that were placed over ROIs relying on 10-20 system
coordinates Figure (1).

Fig. 1: Approximate positions of emitters (orange circles)and
detectors (purple circles) are shown on a standard brain atlas
(ICBM 152). The probes were placed symmetrically over the
left and right hemisphere, with channels 1-5 spanning inferior
frontal gyrus, channels 6-7 over superior temporal gyrus, and
channels 8-9 over precentral gyrus/premotor cortex.

Data analysis is detailed in Walsh et al. [13]. Briefly,
the fNIRS data was preprocessed using Homer2 software
[20]. Usable channels of raw data were low-pass filtered
at 0.5 Hz and high-pass filtered at 0.03 Hz. Concentration
changes in Oxy-Hb and Deoxy-Hb were then calculated and
a correlation-based signal improvement approach applied to
the concentration data to reduce motion artifacts [21]. Finally,
we derived each child's Oxy-Hb and Deoxy-Hb event-related
hemodynamic responses from all channels from stimulus onset
to the end of the trial. We then subtracted the average
hemodynamic response associated with the null trials from the
average hemodynamic response from the talk trials to derive
a differential hemodynamic response for each channel [22].
The average Oxy-Hb and Deoxy-Hb hemodynamic response
averaged over all 18 channels is plotted as a function of time
for each child in Figure (2) and (3).

B. Feature Extraction

As shown in Figure (4), each experimental trial was parti-
tioned into three phases: perception or the see-phase (0-2s, the
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Fig. 2: Oxy-Hb hemodynamic responses averaged over all 18
channels for each subject. Controls are plotted on the left
(cyan curves) and stutterers on the right (magenta curves).
The grand average hemodynamic response across all channels
and subjects is represented by the black dashed curve.

Fig. 3: Deoxy-Hb hemodynamic responses averaged over all
18 channels for each subject. Controls are plotted on the left
(cyan curves) and children who stutter on the right (magenta
curves). The grand average hemodynamic response across all
channels and subjects is represented by the black dashed curve.

children saw a picture on the monitor), the talk-phase (3-8s,
the children described aloud the picture), and the recovery-
phase (9-23s, the hemodynamic response returned to baseline)
for measurements of Oxy-Hb and Deoxy-Hb. We extracted
21 features from each channel;21 = 4 + 3 + 3 + 1 + (5 ×
2(for 1 and 2 sec of delay)). These delays were implemented
to account for correlation of the signal to its lagged values.
The names of the feature group and subgroups are shown in
Figure (4). Therefore, for each subject with 18 channels of
fNIRS data, there were 378 extracted features from Oxy-Hb
and Deoxy-hb measurements in each phase.

The extracted groups of features are summarized in the
following.

• Statistical features capture descriptive information of the
signals.

• Morphological features comprised the number of peaks
and zero crossings and measures of curve length.

• Hjorth parameters capture signal variation
over time expressed as activity, mobility, and
complexity.. The three features are defined as:

activity = V ar(y(t)), mobility =
√

var(y(t)dy/dt
var(y(t))

, complexity = mobility(y(t)dy/dt)
mobility(y(t)) .

• Normalized Area Under the Signal (NAUS) calculates the
sum of values which have been subtracted from a defined
baseline divided by the sum of the absolute values for the
fNIRS signal.

• Autocorrelation captured the linear relationship of the
signal with its historical values considering 1 and 2 s
delays Kendall, partial, Spearman and Pearson are four
ways to compute autocorrelation.

• Bicorrelation computes the bicorrelation on the time
seriesXv for given delays inτv. Bicorrelation is an ex-
tension of the autocorrelation to the third order moments,
where the two delays are selected so that the second delay
is twice the original , (i.e.x(t)x(t− τ)x(t− 2τ)). Given
a delay ofτ and the standardized time seriesXv with
lengthn, denoted asYv, the bicorr(τ) can be calculated
as:

∑n−2τ
j=1 Yv(j)Yv(τ + j)Yv(2τ + j)

n− (2× τ)
(1)

1) Personalized Feature Normalization:As illustrated in
Figures (2) and (3) fNIRS signals vary dynamically across sub-
jects, imposing a challenge to biomedical research. Because
of inter-individual variability in signal features, it is difficult
to build a robust diagnostic model to accurately discriminate
between groups of participants. Outliers can further distort
the trained model, thus impeding generalization. To tackle
these issues, we applied a personalized feature normalization
approach to standardize the extracted feature values of each
subject onto the same scale to enhance feature interpretability
across subjects.

To accomplish this, we calculated the upper and lower
limits for each extracted feature using the formulaVl=
max(minimum feature value, lower quartile + 1.5× interquar-
tile range) for the lower limit, andVu= min(maximum feature
value, upper quartile + 1.5× interquartile range) for the upper
limit. Feature values outside of this defined interval were
considered to be outliers and mapped to 0 or 1. More details
can be found in study [23]. Assuming the raw feature value
wasFraw, the scaled feature valueFscaled was obtained by:

Fscaled =
Fraw − Vl

Vu − Vl
. (2)

C. Integrated Structured Sparse Feature Selection using Mu-
tual Information

Feature selection techniques are widely used to improve
model performance and promote generalization in order to
gain a deeper insight into the underlying processes or problem.
This is accomplished by identifying the most important deci-
sion variables, while avoiding overfitting a model. Most feature
selection techniques classify into three categories: embedded
methods, wrapper methods, and filter methods [24]. Both
embedded and wrapper methods seek to optimize the perfor-
mance of a classifier or model. Thus, the feature selection
performance is highly limited to the embedded classification
models. Filter feature selection techniques assess the relevance
of features by measuring their intrinsic properties. Widely used
models include correlation-based feature selection [25],fast
correlation-based feature selection [26], minimum redundancy
maximum relevance (mRMR) [27] and information-theoretic-
based feature selection methods [28].

Sparse modeling-based feature selection methods have
gained attention owed to their well-grounded mathematical
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Fig. 5: Feature selection and tuning the regularization parameters via N-fold cross-validation in order to introduce the promising
features (biomarkers).

theories and optimization analysis. These feature selection
algorithms employ sparsity-inducing regularization techniques,
such asL1-norm constraint or sparse-inducing penalty terms,
for variable selection. To construct more interpretable models,
structured sparse modeling algorithms that consider feature
structures have recently been proposed and show promising
results in many practical applications including brain infor-
matics, gene expression, medical imaging analysis, etc. [29],
[30], [31], [32]. However, most of the current structured
sparse modeling algorithms only consider linear relationships
between response variables and predictor variables (features)
in the analysis and may miss complex nonlinear relationships
between features and response variables that may be present.
On the other hand, although some filter or wrapper methods
have the capability to capture nonlinear relationships between
features and response variables, feature structures may not be
optimally identified in the feature selection procedure. Con-
structing interpretable learning models with efficient feature
selection remains an open and active research area in the
machine learning community. Zhongxin et al. [33] proposed a

feature selection algorithm based on mutual information (MI)
and least absolute shrinkage and selection operator (LASSO)
using L1 regularization with application to microarray data
produced by gene expression. In our previous study, we also
proposed a MI-based sparse feature selection model for EEG
feature selection and applied it to epilepsy diagnosis [34].
However, feature structures were not considered during feature
selection in both [33] and [34].

To consider both linear and nonlinear relationships be-
tween features and response variables, while acknowledging
feature structures in feature selection, we propose a novel
feature selection framework that integrates information theory-
based feature filtering and structured sparse learning models
to effectively capture feature dependencies and identify the
most informative feature subset. There are two differences
with respect to earlier studies [33] and [34]: (1) we did
not use regularization techniques like LASSO as the second
rank filtering; rather, we used sparse-inducing regularization
to reveal the second-level feature-response relationships; (2)
we applied structured feature learning by penalizing the
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feature groups. We implemented the proposed information-
theory-based structured sparse learning framework to identify
the optimal feature subset as discriminant neurophysiological
biomarkers of stuttering.

1) Mutual Information for Feature Selection:MI is an
index of mutual dependency between two random variables
that quantifies the amount of information obtained about
one random variable from the other random variable [35].
MI effectively captures nonlinear dependency among random
variables and can be applied to rank features in feature selec-
tion problems [27]. The fundamental objective of MI-based
filtering methods is to retain the most informative features
(i.e., with higher MI) while removing the redundant or less-
relevant features (i.e., with low MI). The mutual information
of two random variables X and Y, denoted byI(X,Y ), is
determined by the probabilistic density functions p(x), p(y),
andp(X,Y ):

I(X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x) p(y)

)

, (3)

2) Structured Sparse Feature Selection:A sparse model
generates a sparse (or parsimonious) solution using the small-
est number of variables with non-zero weights among all the
variables in the model. One basic sparse model is LASSO
regression, which employsL1 penalty-based regularization
techniques for feature selection [36]. The LASSO objective
function is formulated as follows:

min {‖Ax−Y‖+ λ1‖x‖1} , (4)

where A is the feature matrix,Y is the response variable,
λ1 is a regularization parameter andx is the weight vector
to be estimated. TheL1 regularization term produces sparse
solutions such that only a few values in the vectorx are non-
zero. The corresponding variables with non-zero weights are
the selected features to predict the response variableY .

Structured Features (Sparse Group LASSO (SGL))The
basic LASSO model, and manyL1 regularized models, assume
that features are independent and overlook the feature struc-
tures. However, in most practical applications, features contain
intrinsic structural information, (e.g., disjoint groups, over-
lapping groups, tree-structured groups, and graph networks)
[32]. The feature structures can be incorporated into models
to help identify the most critical features and enhance model
performance.

As outlined in section 2.2, the features we extracted from
the raw fNIRS data are disparate; thus they can be categorized
into disjoint groups. The sparse group LASSO regularization
algorithm promotes sparsity at both the within- and between-
group levels and is formulated as:

min

{

‖Ax−Y‖+ λ1‖x‖1 + λ2

g
∑

i=1

ω
g
i ‖xGi

‖2

}

(5)

A ∈ Rm×n, y ∈ Rm×1, x ∈ Rn×1,

where the weight vectorx is divided by g non-
overlapping groups:

{

xG1
, xG2

, . . . , xGg

}

, and
ω
g
i is the weight i for group g. The parameterλ1 is the

penalty for sparse feature selection, and the parameterλ2

is the penalty for sparse group selection (i.e. the weights
of some feature groups will be all zeroes). In cases where
feature groups overlap, the sparse overlapping group LASSO
regularization can be used [37].

3) Integrated MI-Sparse Feature Selection Framework:The
objective of our approach is to consider structured feature
dependency while keeping the search process computationally
efficient. To accomplish this, we employed the MI-guided
feature selection framework outlined in Algorithm (1). Given
a number of featuresk, the subset of topk features ranked
by MI is denoted byS, and the subset of the remaining
features is denoted byW . FromS, the optimal feature subset is
selected by exploring thek1 high-MI features which includes
the iterative process of removal of highly-correlated features
with 0.96 threshold. FromW , the k2 sparse-model selected
low-MI features. The final selected features subset is the set
of (k1 + k2) features which are evaluated based on the cross-
validation classification performance. Enumeration ofk1 starts
from 1 and ascends until reaching the stopping criteria (i.e.,
when the cross-validation accuracy converges and cannot be
further improved). MISS Algorithm (1) can be applied in two
ways: (1) without group structure, which is a combination of
mutual information and LASSO namely (MILASSO), (2) with
group structure, which is a combination of mutual information
and SGL namely (MISGL).

Algorithm 1 Mutual Information Sparse Feature Selection
(MISS)

1: Rank all features based on mutual information
2: repeat
3: k1 = k1 + 1
4: repeat
5: Divide sorted features to high-MI and low-MI
6: S ←high-MI
7: Remove redundant features fromS
8: until k1 features remain after reduction
9: W ←low-MI

10: Apply sparsity learning to W
11: k2 ← number of selected features by SGL or LASSO
12: Build classifier model withk1 + k2 selected features
13: until classifier performance converges

D. Machine Learning Algorithm Selection & Evaluation

We applied established ML algorithms [38] (i.e., support
vector machine (SVM), k-nearest neighbor (kNN), decision
tree, ensemble, and linear discriminant) to assess whether
cerebral hemodynamic features could accurately differentiate
the group of children who stutter from controls. An overview
of the steps involved in feature extraction and model evaluation
is provided in Figure (6).

1) Support vector machines:SVM is considered to be a
popular and promising approach among classification studies
[39]. It has been used in a variety of biomedical applications;
for example, to detect patterns in gene sequences or to classify
patients according to their genetic profiles, with EEG signals in
brain-computer interface systems, and to discriminate hemody-
namic responses during visuomotor tasks [40], [17], [41], [42].
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Fig. 6: The process of choosing the most accurate ML classification algorithm with N-fold cross-validation and parameter
tuning

In this study we applied Gaussian radial basis function (RBF)
as the kernel which maps input datax to higher dimensional
space.

2) Bayesian Parameter Optimization:Parameters in each
classifier significantly affect its performance. We applied
Bayesian optimization, part of the Statistics and Machine
Learning Toolbox in Matlab, to optimize hyper-parameters of
classification algorithm [43]. By applying Bayesian optimiza-
tion algorithm, we want to minimize a scalar objective function
(f(x) = cross-validation classification loss) for the classifier
parameters in a bounded domain.

3) N-fold Cross-Validation: We applied N-fold cross-
validation (N=5) for training and testing. First, we selected
the features and optimized the parameters of the classification
algorithm on the training set then applied the tuned model
on the testing set, see Figure (6). Accuracy is defined as
the ratio of correctly classified test subjects to the total
number of subjects. Sensitivity is the ratio of children in the
stuttering group correctly identified as stuttering to all of the
children in the stuttering group. Specificity is the ratio of
children correctly identified as controls to the total number
of children in the control group. In this study, we used the
average sensitivity and specificity values to measure binary
classification accuracy for each ML model.

III. R ESULTS

Classifier performance is reported for experiment (1) based
on the outcome of the N-fold cross-validation procedure on
the test-set, see Table (I). For experiment (2) classification
performance was established on a novel test-set of 14 children
who had recovered from stuttering, see Table (IV).

A. Experiment (1): Choosing the best ML Algorithm

The most accurate ML algorithm on the raw fNIRS data
was the tree classifier with 77.5 % accuracy. The highest
accuracy obtained after feature extraction and application of
feature selection (MILASSO) was SVM (with RBF kernel)
that achieved 87.5 % accuracy, Table (I). The phase of the
fNIRS trial that distinguished the groups of children was
the talk interval and the source was Oxy-Hb. However in
some cases performance using features derived from Deoxy-
Hb measurements reached comparable accuracy as those from
Oxy-Hb.
B. Experiment (1): Comparing Feature Selection Algorithms

In Table (II), we compared the performance of the proposed
feature selection algorithm (MISS) with the popular existing
MI-based method like mRMR and linear regularized methods
like LASSO and SGL. MISS approach outperformed mRMR
in feature selection by yielding higher SVM classification
performance with the same number of selected features, (14
and 11 for measurement source of deoxy-Hb and oxy-Hb),
approximately 7.5 and 27.5 % respectively. MISS approach
outperformed LASSO and SGL in feature selection yielding
higher classification accuracy approximately 2.5 to 12.5 %.

C. Experiment (1): Selected Features

From an extended set of features, a subset that provided
the highest classification accuracy was identified by MISGL
and MILASSO in the SVM(RBF) model. This subset of
features, shown in Figure (7), comprises statistical, NAUS,
Hjorth parameters, autocorrelation and bicorrelation features.
Channels that provided the highest discriminative power to
differentiate between children who stutter and controls were
localized to the left hemisphere; specifically, channels 1,4,
and 5 over left IFG.
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TABLE I: Comparison among performance of various ML classifiers (before & after) feature extraction and application of
feature selection

Input data: fNIRS signal, from phase : Talk
Source: Oxy-Hb Source: Deoxy-Hb

Classifier avg sen spe avg sen spe
SVM 0.75 0.75 0.75 0.725 0.6 0.85
Ensemble 0.7 0.65 0.75 0.65 0.7 0.6
KNN 0.7 0.7 0.7 0.675 0.5 0.85
L Discr 0.75 0.75 0.75 0.725 0.6 0.85
Tree 0.775 0.8 0.75 0.575 0.8 0.35
Input data: extracted features from signal in phase (Talk)

with application of MISS for feature selection
Source: Oxy-Hb Source: Deoxy-Hb

Classifier MI num Tot num avg sen spe MI num Tot num avg sen spe
SVM 2 11 0.875 0.85 0.9 10 14 0.825 0.8 0.85
Ensemble 2 11 0.825 0.85 0.8 9 32 0.85 0.8 0.9
KNN 2 11 0.825 0.75 0.9 3 7 0.85 0.85 0.85
L Discr 1 10 0.825 0.8 0.85 10 33 0.775 0.7 0.85
Tree 3 13 0.675 0.8 0.55 6 29 0.75 0.8 0.7
sen: sensitivity, spe: specificity , avg: average of sen and spe, L Discr: linear discriminant
MI num: number of selected features based on MI
Tot num: total number of selection (based on MI and based on SGL or LASSO)

TABLE II: Comparison among performance of various feature selection algorithms via SVM classification accuracy on the
selected features with each approach

Feature selection Deoxy-Hb Oxy-Hb
Method Tot num feat Avg(sen, spe) Tot num feat Avg(sen, spe)
mRMR 14 75 11 60
LASSO ~ 6.4 ∗ 80 ~ 4.8 ∗ 75

SGL ~ 6.4 ∗ 77.5 ~ 7 ∗ 78
MISS(MILASSO, MISGL) 14 82.5 11 87.5
Tot num feat: total number of selected features
∗ indicates the average number of selected features among N-fold for LASSO and SGL methods
Avg(sen, spe)= average of sensitivity and specificity (%)

Fig. 7: Statistical summary of the selected feature groups and channels with MILASSO and MISGL in N-fold cross validation.
In each fold, there was 11 to 14 selected features, from different channels and feature-groups. The pie charts illustrate the
group that selected features most frequently came from. Thehistograms summarize the channel selection with MISGL and
MILASSO. For example, from approximately 60 total featuresselected from 5 folds, 6 features were selected from channel1,
and 9 features from channel 4 (either based on MI ranking (yellow bar) or LASSO coefficients (blue bar) which are stacked
for each channel).
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The top 14 features from the entire feature set are listed in
Table (III). These features, (2 based on MI and 12 based on
LASSO), were extracted from the talk-phase with source Oxy-
Hb. We performed 2-tailed t-tests on these features.p-values
≤ 0.05, confirm a significant statistical difference between
children who stutter and controls for a given feature.

1) Feature Selection Optimization:The number of features
selected by MILASSO or MISGL affects the performance
of the classifier; a more sparse selection enhances model
performance, promotes generalization, and facilitates the in-
terpretation of results. During the enumeration process for MI
selection, we learned that with less than 10 MI features (total
features≤ 15 − 22), the average classifier performance was
approximately 80 %; with 15 to 30 MI features (25 − 35 ≤
total features≤ 40) , performance was approximately 75 %;
with more than 30 MI features, (total features≥ 42 ), the
accuracy decreased to 70 %. The highest accuracy with the
least number of features came from 11 total features with the
MILASSO approach, 2 MI and 9 LASSO and 12 total features
with the MISGL approach, 8 MI and 4 SGL.

2) Biomarkers:The features in Table (III) that showed sig-
nificant differences between children who stutter and controls
are recognized as biomarkers. Box-plots of these features for
the children who stutter and controls are plotted on a common
scale in Figure (8). The discriminative features we detected in
Figure (8) comprised significantly lower values of NAUS and
slightly higher values of Hjorth mobility and bicorrelation with
2 sec of delay for children who stutter compared to controls.

Fig. 8: Box-plot of top 5 significant features from talk-phase
and source Oxy-Hb, ch: channel, (S: stutterer , C: control).

D. Experiment (2): Stuttering Recovery Assessment with Se-
lected Features

In this section we report the performance of the classifier
on the additional test-set (data from 14 children who recov-
ered from stuttering), shown in Table (IV). We applied the
best-performing algorithm based on the results from experi-
ment (1): SVM with tuned parameters sigma = 1 and penalty
= 0.001 on the entire dataset. We documented that 71.43 %, or
approximately 10 out of 14 children who had recovered from
stuttering, classified into the control group based on features
derived from fNIRS signals derived from the talk-phase of the

experiment. The same degree of stuttering recovery assessment
(SRA) was achieved with both Oxy-Hb and Deoxy-Hb sources
Table (IV).

IV. D ISCUSSION

In experiment (1), we applied structured sparse feature
learning models to previously collected speech-evoked fNIRS
data from Walsh et al. [13] to explore whether neurophys-
iological biomarkers could accurately classify hemodynamic
patterns from children who do and do not stutter. Following
feature extraction and feature selection with MISS, the SVM
achieved the highest classification accuracy of 87.5 %. With
this model, classification performance was improved by 10
% using feature extraction and sparse MI-based features se-
lection. This degree of accuracy was reached using features
extracted during the talk interval of the trial from the source,
Oxy-Hb (although features extracted from Deoxy-Hb reached
comparable accuracy). A feature set comprising statistics,
NAUS, Hjorth parameters, autocorrelation and bicorrelation
features provided the highest discriminative power. Notably,
nearly all of these features were extracted from channels
localized to the left hemisphere (i.e. channels 1-9). The
selected features may not be significant individually as shown
in Table (III), thus they can be ignored or missed in basic
statistical analyses used by many feature selection algorithms.
The MISS approach is valuable to reveal clear discriminative
patterns among features in a higher dimensional space, and to
discover relevant multivariate biomarkers.

Features from channels 1, 4 and 5, which span left IFG,
were identified as neurophysiological biomarkers that distin-
guished hemodynamic characteristics of children who stutter
from controls. These included significantly reduced NAUS
in left IFG channels 4 and 5 and increased Hjorth mobility
parameters, denoting increased variability, in left IFG channels
1 and 4 in children who stutter.

In our earlier study [13], we found significantly reduced
Oxy-Hb and increased Deoxy-Hb concentrations during the
talk interval in channels over left IFG in the group of children
who stutter. The left IFG comprising Broca's area is integral to
speech production and may develop atypically in children who
stutter. Neuroanatomical studies reveal aberrant developmental
trajectories of white and gray matter of left IFG in children
who stutter compared to controls [44], [45]. Moreover, there
is evidence of reduced activation of IFG/Broca's area during
speech production from fMRI studies with adults who stutter
[46], [47]. In our earlier study [13], we hypothesized that this
finding may represent a shift in blood flow to regions outside
of our recording area to compensate for functional deficits in
left IFG. An alternative possibility is a disruption in cortical-
subcortical loops resulting in a net inhibition of this region.
This is the first study to elucidate group-level differencesby
classifying individual children as either stuttering or not stut-
tering using features derived from their speech-evoked brain
hemodynamics. Based on the sensitivity index from the final
model, three children who stutter classified as controls (i.e.,
false negatives). Interestingly, two of these three children were
considered to be mild stutterers when they participated and
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TABLE III: Top 14 features selected with MISS along withp-value (0.05 threshold for statistically significantt-test). With top
11 features, 87.5 % accuracy was achieved in N-fold cross-validation

Feature rank Feature name p-value Feature rank Feature name p-value
1 NAUS, ch 4 0.0001 8 Hjorth mobility, ch 1 0.0014
2 Hjorth mobility, ch 4 0.0022 9 NAUS, ch 8 0.1095
3 Hjorth activity, ch 1 0.2800 10 AC partial 2s, ch 14 0.1745
4 Bicorrelation 2s, ch 6 0.0225 11 AC Spearman 1s, ch 6 0.9238
5 NAUS, ch 5 0.0003 12 Hjorth activity, ch 4 0.1792
6 Variance, ch 9 0.5319 13 Variance, ch 4 0.0605
7 Bicorrelation 1s, ch 14 0.6252 14 AC Spearman 1s, ch 7 0.6277

AC: autocorrelation, ZC: zero crossing, CL: curve length
NAUS: normalized area under signal, ch: channel
1 or 2s: 1 or 2 second of delay

TABLE IV: The best SVM performance on the additional test-
set (recovered samples)

phase source Fsel M Tot num SRA
talk Deoxy-Hb MILASSO 14 71.43
talk Oxy-Hb MISGL 11 71.43

Fsel M: feature selection method, SRA: stuttering recovery assessment
Tot num: total number of selected features with MISS

have since recovered from stuttering (determined via a follow-
up visit or through parental report). It is tempting to speculate
that the recovery process had already begun for these children
when we recorded their hemodynamic responses during the
initial study. However, longitudinal studies in younger children
(i.e., near the onset of stuttering) are necessary to track the
developmental trajectories of their hemodynamic responses as
they either recover from or persist in stuttering to empirically
assess this assumption.

Finally, we compared the consistency of the best-performing
SVM classifier using N-fold cross-validation from experiment
(1) with results achieved using the SVM classifier on a novel
test-set of data from 14 children who had recovered from
episodes of early childhood stuttering in experiment (2). We
found that the majority of the recovered children, or 71.43
%, classified as controls, rather than children who stutter.
This suggests that left-hemisphere stuttering biomarkersthat
dissociated stuttering children's speech-evoked hemodynamic
patterns from controls, may indicate chronic stuttering, while
recovery from stuttering in many of these children was as-
sociated with hemodynamic responses similar to those from
children who never stuttered. Stuttering recovery may thus
be supported, in part, by functional reorganization of regions
such as left IFG that corrects anomalous brain activity pat-
terns. Although this speculation warrants further study and
replication, an fMRI study with adults who recovered from
stuttering identified the left IFG as a pivotal region associated
with optimal stuttering recovery [48].

A final point to consider is that although most of the recov-
ered children had hemodynamic patterns similar to controls,
four of these children classified into the stuttering group.Given
that stuttering is highly heterogeneous, with multiple factors
implicated in the onset and chronicity of the disorder [2],
it is not surprising to find evidence suggesting that recovery
processes may be different for some children. More research
is clearly needed to substantiate the neural reorganization that
accompanies both spontaneous and therapy-assisted recovery

from stuttering.

V. CONCLUSION

In this final section, we present several suggestions re-
garding data preprocessing, feature selection and ML training
and evaluation to guide future investigations in this line of
research.

First, the personalized feature scaling approach facilitated
the discovery of discriminative patterns by removing data
outliers and reducing the variability in each feature. This
was a critical step in our approach to address inherent inter-
individual differences in the physiological signals.

Second, the MISS approach yielded a final feature space
that was both parsimonious and interpretable. In particular,
MISGL, that considers feature group structures in sparse fea-
ture learning, and achieved the best classification performance
with the least number of selected features. We compared our
result from the MISS approach with commonly used feature
selection techniques in Table (II), and the results proved
that MISS outperformed the methods which solely applied
either MI or regularized linear regression significantly. More
importantly, MISS pinpointed specific left hemisphere chan-
nels that classified children as stuttering/nonstutteringwith
higher accuracy and corroborated findings from our earlier
experiment [13].

In summary, the proposed MI-based structured sparse fea-
ture learning method demonstrates its effectiveness to discover
the most discriminative features in a high dimensional feature
space with a limited number of training samples, a common
challenge for health care and medical data mining approaches.
Compared to other methods, the proposed MISS approach of-
fers a promising, interpretable solution to facilitate data-driven
advances in clinical and experimental research applications.
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Abstract—Post-traumatic stress disorder (PTSD) is a common
mental disorder that can develop after a person is exposed to
a traumatic event. In clinical practice, it is still a challenging
problem to identify PTSD related brain patterns and also assess
how a PTSD patient effectively responses to certain treatment.
Functional near infrared spectroscopy (fNIRS) is a neuroimaging
technique with an excellent temporal resolution for brain activity
monitoring. In this study, we made extensive feature extraction
of fNIRS brain imaging data and applied the mutual information
integrated structured sparse (MISS) feature learning framework
that we had previously proposed in our previous study to identify
a set of robust fNIRS pattern features as biomarkers to discrim-
inate brain activity patterns of veterans with PTSD and healthy
control subjects in a working memory test experimental setting.
The feature extraction and the MISS framework discovered
three top features as a PTSD biomarkers that can discriminate
PTSD patients from the control subjects with a N-fold-cross-
validation classification accuracy of 100%. Compared with other
popular feature selection methods, MISS framework identified
a robust feature subset with the highest discriminative power
using the minimum number of features. MISS provides great
potentials to facilitate effective personalized PTSD assessment
and treatment in the future. Moreover, MISS method is a general
feature selection framework for multivariate time series that
consider feature structures and take account linear and nonlinear
relationships between response and predictor variables.

Index Terms—extensive feature extraction, fNIRS, mutual
information, sparse group lasso, feature selection

I. I NTRODUCTION

Post-traumatic stress disorder (PTSD) is a common mental
disorder that can develop after a person is exposed to a
traumatic event, such as warfare, traffic collisions, assault,
or others life threats [1]. In the United States, about 9% of
people may develop PTSD at some point in their life [2]. PTSD
causes neural circuits changes in the brain, and a patient with
PTSD may present cognitive dysfunctions, such as memory
impairments, attention deficits, and dysexecutive syndromes.
In order to diagnose and characterize brain responses of the
patients with PTSD, neuroimaging techniques like functional
magnetic resonance imaging (fMRI) [3] , [4] , and functional
near infrared spectroscopy (fNIRS) [5], [6], and functional
imaging techniques of single-photon emission computed to-
mography (SPECT), positron emission tomography (PET) [7]
have been applied.

Functional near infrared spectroscopy (fNIRS) is a non-
invasive, portable, and low-cost neuroimaging technologyfor
brain activity monitoring with excellent temporal resolution
that monitors hemodynamic changes in the concentration
of oxygenated (HbO2) and deoxygenated (Hb) hemoglobin
molecules in the blood, which can be used to assess cerebral
brain activity on the basis that neural activation and vascular
response are tightly coupled [8]. Through decades of develop-
ment, fNIRS has become a valuable neuroimaging technique
for its portability, and reliability. The application of fNIRS
in cerebral functioning studies has been validated by other
neuroimaging techniques, which showed that the fNIRS signal
maintains a strong correlation with the fMRI Blood Oxygen
Level Dependent (BOLD) signal [9], [10], [11], as well as
the PET measures of changes in regional cerebral blood flow
(rCBF) [12]. FNIRS has been growing rapidly in clinical
settings and research and has been used in many studies
of brain functions and brain disorders, e.g., attention deficit
hyperactivity disorder (ADHD) and Autism [13], depression
[14], etc.

The main treatments for patients with PTSD are counseling
and medication and various types of treatment and interven-
tions have been proposed and utilized in the past decades,
such as trauma-focused cognitive behavioral therapy (CBT),
cognitive processing therapy(CPT), and prolonged exposure
(PE) [15]. However, there is considerably less attention given
to the accurate assessment of treatment effectiveness using
brain imaging biomarkers via portable and reliable neuroimag-
ing techniques like fNIRS. Most of the existing studies on
PTSD pattern recognition are based on structural MRI data
[16]. It is desired to discover informative biomarkers (e.g.,
brain activity and patterns) to evaluate whether an individual
responds to a treatment well and moves towards the right
direction to the measures of the healthy control population.
In this study, we aimed to develop an effective data-driven
method to discover important fNIRS features from sparse
number of voxels (channels) as biomarkers that are highly
discriminative between the PTSD group and the control group.

In our previous study, Tian et al. [5] used a 36 channel
fNIRS setup to image the prefrontal activations in a group
of veterans diagnosed with PTSD and a group of age/gender-
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matched healthy controls during two working memory tasks,
namely a digit forward task and a digit backward task. Both
tasks required serial encoding, maintaining and recall of a
string of 6 digits presented on the computer screen. In the digit
forward task, the subjects recalled the digits in the same order
as they were presented; in the digit backward task, the subjects
recalled the digits in the reverse order. The healthy controls
showed robust hemodynamic activations during the encoding
and retrieval processes. In contrast, the veterans with PTSD
were found to have activation during the encoding process, but
followed by distinct deactivation during the retrieval process.
This deactivation was more pronounced in the right dorsolat-
eral prefrontal cortex (DLPFC). It appeared that veterans with
PTSD suppressed prefrontal activity during memory retrieval,
which could be a useful biomarker to evaluate the cognitive
dysfunction associated with PTSD.

In this study, we made extensive feature analysis on the
fNIRS data obtained by Tian et al. [5] and applied the effective
mutual-information-based sparse feature learning approach
(MISS) which had been proposed in our previous study [17],
to discover the most critical features that discriminate patients
with PTSD and the control group. All of the computations are
conducted in Matlab. In particular, we extracted eight groups
of features from fNIRS signals. We explored distinguishing
patterns among all of the possible combination of experimental
design factors, including forward or backward, the phase of
the process (encode, maintain and recall) and the source
of fNIRS measurements (oxygenated hemoglobin, HbO2 and
deoxygenated hemoglobin, Hb). We discovered that the third
phase of the experiment, namely the recall phase, was the most
significant phase period, and that the most discriminative fea-
ture groups were statistical measures, autocorrelation, Hjorth
parameters and SVD. With only top three features selected by
MISS from autocorrelation group, we achieved 100% accuracy
in classification of PTSD from controls. MISS outperformed 2
popular feature selection techniques namely minimum redun-
dancy and maximum relevancy (mRMR) [18] and sparse group
LASSO (SGL) [19] by capturing both linearly and non-linearly
related features to the response variable from sparse number
of voxels (channels) that can be considered as the region of
interest (ROI) in this study. RIO discovery can improve the
interpretation and classification accuracy [13]. Defining voxels
(channels) as the non-overlapping feature groups results in the
selection belonging to the same channel. Sometimes it is a
necessity to choose features in a group and sometimes it just
provides higher interpretability and repeatability [20].

The rest of the paper is organized as follows. In Section
2, we present the proposed methods, mainly including feature
extraction of fNIRS data and feature selection techniques pre-
senting information theory-integrated structured sparsefeature
learning models. In Section 3, we show results of biomarker
pattern discovery and performance comparisons of several
popular feature selection techniques. In section 4, we have
conclusions.

II. M ETHOD

A. Participants, fNIRS data acquisition and preprocessing

A total of 16 war-zone veterans diagnosed with PTSD and
16 healthy controls were the two groups of participants that
matched in age (age = 29.4±9.6years) and gender (all males)
[5]. As shown in Figure 1, the participants were instructed to
complete a session of digit forward task (eight trials) and a
session of digit backward task (eight trials) sequentiallywhile
their brain activities were scanned by a high-performance
fNIRS brain imager (Cephalogics LLC., Boston, MA). The
fNIRS system acquired data from 36 source-detector pairs
(channels) placed on the forehead. The location of the fNIRS
channels is shown in Figure 2. The sampling rate was 10.8
Hz for the fNIRS signals. The channel-wise fNIRS data from
each task session was preprocessed using a standard toolbox,
Homer [21] to remove significant motion artifacts. The data
in optical density were then low-pass filtered at 0.2 Hz and
high-pass filtered at 0.01 Hz. Then the changes of oxygenated
hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) con-
centrations were calculated for each channel. At last, for each
task, event-related HbO2 and Hb changes were averaged over
the good trials to obtain averaged hemodynamic responses,
which were the data used in this study.
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Fig. 1. A session for digit forward or backward task with definition of three
phases: encode, maintain and recall

Fig. 2. Location of channels in Brodmann area on the brain

B. Feature Extraction

As shown in Figure 1, a trial of fNIRS data can be
segmented to three phases: the encoding phase (0-6s), the
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maintenance phase (6-16s), and the recall phase (16-trial
end). In feature extraction, we also consider two experimental
factors: 1) two recall tasks in forwarding or backward order
of 6 digits, 2) data measurements on the frontal activation in
oxygenated or deoxygenated hemoglobin changes respectively
∆[HbO2], ∆[Hb] as estimates of Hemoglobin Response (HR)
[22].

The averaged fNIRS signal (in terms of Hb and HbO2) of
each subject in PTSD group and control group under backward
and forward tasks are shown in Figures 3, 4, 5 and 6. Magenta
lines are the average of the fNIRS signal over 36 channels for
each veteran with PTSD, and the blue lines depict average of
the fNIRS signal over 36 channels for each healthy control
subject. In each of these figures, the dotted lines show the
group averages of all participants in each group. From the
figures, one can observe that although the group average of
PTSD and control group show different temporal hemody-
namic response patterns, the cross-individual variability of the
hemodynamic response patterns are very high. Thus, we were
aimed to discover a set of robust discriminative features hidden
in the highly variable fNIRS response patterns and can identify
PTSD signature patterns accurately for each individual subject.
For a data-driven approach, we made an extensive feature
extraction investigation on the Hb and HbO2 response patterns
in the three phases under the experimental settings.

Fig. 3. The averaged Hb concentration values of each subjectin the backward
task: the thin blue solid lines on the left subplot representhealthy control
subjects and the magenta lines on the right subplot representveterans with
PTSD. The thicker dotted lines are group averages.

Fig. 4. The averaged HbO2 concentration values of each subject in the
backward task: the thin blue solid lines on the left subplot represent healthy
control subjects and the magenta lines on the right subplot represent veterans
with PTSD. The thicker dotted lines are group averages.

Fig. 5. The averaged Hb concentration values of each subjectin the forward
task: the thin blue solid lines on the left subplot representhealthy control
subjects and the magenta lines on the right subplot representveterans with
PTSD. The thicker dotted lines are group averages.

Fig. 6. The averaged HbO2 concentration values of each subject in the
forward task: the thin blue solid lines on the left subplot represent healthy
control subjects and the magenta lines on the right subplot represent veterans
with PTSD. The thicker dotted lines are group averages.

We extracted eight groups of features summarized in the
following.

• Statistical features capture descriptive information of the
signals.

• Number of peaks and zero crossing capture morpholog-
ical features. Zero Crossings is the number of times the
value of the feature cross the zero line.

• Hjorth parameters capture activity, mobility,
and complexity of a signal’s variation in
time. The three features are defined as:
activity = V ar(y(t)), mobility =

√

var(y(t)dy/dt
var(y(t))

, complexity = mobility(y(t)dy/dt)
mobility(y(t)) .

• Normalized Area Under Signal (NAUS) calculates the
sum of values which have been subtracted from a baseline
(first value in each phase), divided by the sum of the
absolute values for the fNIRS signal.

• Autocorrelation captures linear relationship of the signal
with its historical values considering different delays,
Kendal, partial, Spearman and Pearson are four ways of
calculation. In this study, eight delays of 0.28, 0.56, 0.74,
1.02, 1.30, 1.57, 1.76, 2.04 seconds were employed for
autocorrelation features.

• Bicorrelation computes the bicorrelation on the time
seriesXv for given delays inτv. Bicorrelation is an ex-
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tension of the autocorrelation to the third order moments,
where the two delays are selected so that the second delay
is twice the original , (i.e.x(t)x(t− τ)x(t− 2τ)). Given
a delay ofτ and the standardized time seriesXv with
lengthn, denoted asYv, the bicorr(τ) can be calculated
as:

∑n−2τ
j=1 Yv(j)Yv(τ + j)Yv(2τ + j)

n− (2× τ)
(1)

• Singular Value Decomposition (SVD) derived features:
SVD is a generalized form of eigen decomposition of
positive semi-definite normal matrix. In particular, a
m × n matrix M can be decomposed to three terms:
Mm×n = Um×mΣm×nV∗

n×n, whereU,Σ,V are unitary
matrix, rectangular diagonal matrix and real or complex
unitary matrix, respectively. Columns ofU and V are
orthonormal bases. Singular values in this study is cal-
culated based on the row wise channels, meaning after
decomposition of the feature matrix consisting of 36
rows (channels) and 300 columns as data points, we had
diagonal values ofΣ known asσi of matrix M (features
matrix). We employed the 36 singular values, logarithm
of the singular values, and the range of the singular values
as the SVD features of fNIRS signals.

C. Personalized Feature Normalization & Processing

A challenge of many biomedical studies is high inter-
individual variability. As one can observe in Figure 3-6, the
collected fNIRS signals vary dynamically across subjects.
Thus, the corresponding signal features can vary largely and it
is difficult to build a robust diagnostic model to discriminate
PTSD subject accurately. In addition, due to various artifacts
existing in the collected signals, there are inevitable outliers
in the extracted signal features which can also distort model
training and deteriorate model generalization performance.
To tackle these issues, we applied a personalized feature
normalization approach described in study [23] to standardize
the extracted feature values to increase feature interpretability
across subjects. The personalized feature scaling reducesinter-
individual variability that may be caused by signal drift and
baseline changes and eliminates feature outliers.

In summary, as shown in Figure 7, there are 12 com-
binations of experimental settings in feature selection: for-
ward/backward tasks, encoding/maintaining/recall phases, and
Hb/HbO2 signals; and for each setting, eight groups of 115
features were extracted. Thus, a total number of 12× 115 =
1380 features were extracted for each subject. In the following,
we will present a novel structured sparse feature selection
framework that integrates information theory with structured
sparse modeling to discover the fNIRS pattern signatures to
access PTSD brain activity in memory tasks.

D. Integrated Structured Sparse Feature Selection using Mu-
tual Information

Feature selection techniques have been widely used to
identify most important decision variables, to avoid over-
fitting and improve model performance, and to gain a deeper

insight into the underlying processes or problem. Most feature
selection techniques generally can be categorized into three
categories: embedded, wrapper, and filter methods [24]. Both
embedded and wrapper methods rely on an employed classi-
fier or model therefore, the feature selection performance is
specific and limited to the embedded classification/prediction
models. Typical such approaches include Pudi’s floating search
[25] and stepwise selection [26]. Filter feature selectiontech-
niques assess the relevance of features by looking only at
the intrinsic properties of the feature values. Some popu-
lar examples include correlation-based feature selection[27],
fast correlation-based feature selection [28], and minimum
redundancy maximum relevance (mRMR) [18], information-
theoretic-based feature selection methods [29]. In addition,
sparse modeling-based feature selection methods have gained
increasing research interests due to well-grounded mathemati-
cal analysis and optimization theories. These feature selection
algorithms employ sparsity-inducing regularization techniques,
such asL1-norm constraint or sparse-inducing penalty terms,
for variable selection. Recently, to construct more interpretable
models, structured sparse modeling algorithms that consider
feature structures have been proposed and shown promising
results in many practical applications including computer
vision, gene expression, medical imaging analysis, etc. [30],
[31]. However, most of the current structured sparse mod-
eling algorithms only consider linear relationships between
response variables and predictor variables (features), some
complex nonlinear relationships could be missed in the linear
function modeling procedure. On the other hand, some filter-
based methods and wrapper methods could capture nonlinear
relationships between features and response variables, but the
feature structure usually cannot be well considered in the
feature selection procedure. To make interpretable learning
models with efficient feature selection is still an open and
active research area in machine learning community. To con-
sider both linear and nonlinear relationships between features
and response variable, and to consider feature structure (in
this study defined as voxels / channels) in feature selection,
we apply the novel feature selection framework that integrates
information theory-based feature filtering and structuredsparse
learning models. This method is explained in details and has
been applied on a different set of FNIRS data in study [17].
However we briefly describe the components of the MISS.

1) Structured Sparse Feature Selection:A sparse model
generates a sparse solution with a small number of variables
with non-zero weights among all the variables in the model.
The most basic sparse model is least absolute shrinkage and
selection operator (LASSO) regression, which employL1

penalty-based regularization techniques for feature selection
[32]. The LASSO model and variousL1 regularized models
assume that features are independent and do not consider
structures of features. However, in most practical applications,
features follow some essential structures, such as disjoint
groups, overlapping groups, tree-structured groups, and graph
networks [33]. The feature structures can be greatly useful
to guild the optimization procedure and help identify the
important features with better interpretability. In the MISS
method, we improved the sparse learning from basic LASSO
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(In Total 115 features extracted per setting)
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Fig. 7. The feature extraction structure for each subject and each channel.

model to structured learning by applying SGL, and used vox-
els (channels) to define non-overlapping groups of extracted
features. The sparse group sparsity is designed to produce a
solution with simultaneous between- and within group sparsity.
The SGL regularization is formulated as:

min

{

‖Ax−Y‖+ λ1‖x‖1 + λ2

g
∑

i=1

ω
g
i ‖xGi

‖2

}

(2)

A ∈ Rm×n, y ∈ Rm×1, x ∈ Rn×1,

where the weight vectorx is divided by g non-
overlapping groups:

{

xG1
, xG2

, . . . , xGg

}

, and
ω
g
i is the weight i for group g. The parameterλ1 is the

penalty for sparse feature selection, i.e. weights of some
features in non-zero groups can be zero, and the parameter
λ2 is the penalty for sparse group selection, i.e. the weights
of some feature groups will be all zeros. In this study,λ2

decides the selection of the voxels (channels) which can be
interpreted as ROI andλ1, decides the features of non-zero
(selected) voxels.

2) Mutual Information for Feature Selection:In informa-
tion theory, mutual information (MI) is a measure of inher-
ent dependence between two independent variables [34]. MI
measures how much information a feature contains about the
class without making any assumptions about the nature of
their underlying relationships, moreover it captures nonlinear
relationship between random variables and is invariant under
transformation of the features [35]. The mutual information of
two variables X and Y, denoted byI(X,Y ), is calculated by:

I(X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x) p(y)

)

, (3)

where p(x) and p(y) are the marginal probability andp(X,Y )
is the joint probability distribution of the variable X and Y.
MI can be applied to rank features and has been frequently
used for feature selection [18], [36], [37]. The basic idea
of most MI-based feature filtering methods is to keep the
more informative features (with higher MI) and remove the
redundant or less-relevant features (with low MI) in a filtering
procedure, a very popular example is mRMR [18]. However,
mRMR is not global because of greedy search and yields
selection from all over the feature space [20].

Although these approaches can work well in many cases,
they are subject to issues of missing some important fea-

tures by just excluding low MI-ranked features and important
feature structures. On the other hand, most of the current
structured sparse modeling algorithms can only handle linear
relationships between response and predictor variables. Based
on this consideration, we applied MISS for feature selection.

3) Integrated MI-Sparse Feature Selection Framework:The
key idea of the proposed approach is to take into account struc-
tured feature dependency while keeping the searching pro-
cess highly computationally efficient. The proposed mutual-
information-guided feature selection framework is built on the
three steps: MI-based feature ranking for high-MI features,
structured sparse feature learning on low MI-ranked features,
and integration of the selected high- and low-ranked features in
an enumeration procedure. In the feature ranking step, we use
MI to rank features and identify a subset of high MI features
that have the best informative power individually to class
labels. Among those features, the highly correlated features
are considered as redundant features and removed in a way
similar to the mRMR approach. Given a number of features
k, the subset of topk features ranked by MI is denoted by
S, and the subset of the remaining features is denoted byW .
In the second step, we employ the structured sparse learning
algorithms based on feature structure of the studied problem.
A structured sparse model (as described above) is employed to
select important feature subset with combined discriminative
power from the low-ranked features setW . Assumek2 features
are selected by the structured sparse learning algorithm. The
next step is the only difference between the applied MISS in
this study and application of MISS in study [17]. In study
[17], we used all the nonzero coefficients selected by the
sparse learning method. But in this study, the third step is
to further reduce the feature subset and discover the optimal
feature subset by exploring thek1 high-MI features and the
k2 sparse-model selected low-MI features. Within a small set
of (k1 + k2) features, it becomes possible to enumerate all
the combinations of the selected feature subsets with a small
feature pool. Feature subset evaluation is based on the cross-
validation classification performance. In particular, we propose
to evaluate feature subset in an ascending order of feature set
size. It starts with one feature, then combinations of 2, 3,
and . . . . The subset evaluation stops (optimal feature subset
is reached) when the cross-validation accuracy converges and
cannot be further improved. The applied mutual-information-
guided structured sparse feature selection (MISS) framework
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is shown in Figure 8, if the sparse learning is based on LASSO,
it is referred as MILASSO, and if based on SGL, as MISGL.
Iterative feature integration framework is illustrated inFigure
9.
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Fig. 8. The framework of the mutual information-guided featureselection
approach.
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Fig. 9. The optimal feature subset selection by exploring theMI-selected
features and sparse-model selected features. The P(M,N) in the flowchart
denotes the best N-fold cross-validation classification accuracy using M
MI-selected features (after removing the highly correlatedones, with .96
threshold) and N sparse-model selected features.

4) Classification Method:In this study, we employed Prox-
imal Support Vector Machines (PSVM) [38] as the classifier
to access the discriminative performance of feature subset.

PSVM is a robust fast alternative for SVM but it assigns the
points to the closest two parallel planes instead of two disjoint
half-spaces. SVM has been a successful classification model
in many brain related studies [23], [39], [40], [41]. Although
there is application of other popular classifiers in fNIRS
studies like GLM [42] and LDA [43], SVM is commonly used
[44] and in some cases comparison proved its efficacy [14].
In general, a SVM model finds a hyperplane that divides two
classes (PTSD class as1 and control class as−1) with the
least error and maximum distance of the closest sample in
each class to the separating hyperplane using the extracted
features’ patterns [45]. In this study, the linear PSVM model
was employed to discriminate features of PTSD and control
group.

E. Training and Evaluation

Feature selection was conducted inside N-fold cross vali-
dation loop, on the training set. Therefore, all the available
parameters of the selection algorithms namely, the regulariza-
tion parameters in SGL formulation (λ1 andλ2) and number
of features with high MI values are optimized/tuned in training
loop. The reported results pertain to the highest performance
for the best combination in the optimization. After iterations
for feature selection on N fold ends, we had N (number of
folds) groups of K selected features, meaning, we eventually
had an ensemble of feature rankings that needed to be inte-
grated by application of consensus ranking. The one-consensus
ranking was defined based on the frequency of selection over
the N-fold procedure. In particular, the ranks for featureswere
defined from the highest to the lowest frequency of selectionin
N-fold cross validation procedure, and then the first K features
were picked. If there was same frequency for some features,
the decision was based on the priority of that feature in each
loop of selection. Priority of each feature was the average of
its rank in all folds of selection.

We applied 10-fold cross-validation for training and testing.
We selected the features and optimized the parameters of the
classification algorithm on the training set and then applied
the results on the testing set. Accuracy is the ratio of correctly
classified test subjects to the total number of test subjects.
Sensitivity is true positive rate, i.e. the accuracy of PTSD
group, meaning ratio of correctly predicted of PTSD subjects
to all PTSD subjects. Specificity is true negative rate, i.e.
the accuracy of the control group. In this study, we used the
average of sensitivity and specificity as an unbiased accuracy
measure to the binary classification performance.

III. E XPERIMENTAL RESULTS

The classification results of raw fNIRS signals are shown
in Table I. The average classification performance is between
53 to 69% for different task conditions and data settings.

The poor classification performance confirmed the existing
of the inevitable high cross-individual variability of hemody-
namic response patterns in fNIRS data as shown in Figures 3 -
6. Thus, we applied the proposed extensive feature extraction
of raw fNIRS signal and feature selection (MISS) from 12
possible combinations of experimental settings to discover a
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TABLE I
CLASSIFICATION PERFORMANCE OF LINEARPSVM FOR RAW FNIRS
SIGNALS BETWEEN VETERANS WITHPTSDAND HEALTHY CONTROLS

Description Task Source Accuracy Sen Spe
Only Fw Fw both 68.8 64.7 73.3
Only Bw Bw both 59.4 64.7 53.3
Only Hb both Hb 53.1 52.9 53.3
Only HbO2 both HbO2 59.4 64.7 53.3
All both both 62.5 64.7 60
Fw: Forward, Bw: Backward
Sen: sensitivity, Spe: specificity

set of robust subject-invariant discriminative features as PTSD
pattern signatures.

A. Statistics of the Extracted Features & Phase’s Significance

By visualizing the statistics of the extracted features, itis
discovered that the most discriminative phase of the experi-
ment is the last one, namely recall phase, when the participants
are asked to recall the digits. In Figure 10, 11, 12 and 13
the significance of the top rank feature in each outperforming
group including statistics, Hjorth parameters, autocorrelation
and SVD respectively is shown. Boxplot of the values of
the top feature in each group indicates that in the last phase
meaning recall, values of the feature becomes significantly
differentiating between the classes. Based on the box plots,
channel-wise mean and autocorrelation in controls group have
higher values than PTSD group, this means that there is more
active potential and higher correlation with historical values
for fNIRS measurements in healthy control group. On the
other hand, singular values after SVD and Hjorth parameter
mobility in veterans with PTSD have higher values, which
means there is more variation in fNIRS measurement for this
class. All these quantitative conclusions are consistent with
observed differences between two classes in Figures 3, 4, 5
and 6.

Fig. 10. Boxplot of the values of top statistics feature: mean, among 3 phases
of the experiment: encode, maintain and recall

B. Evaluation of Feature Selection Methods

Without application of any feature selection techniques,
the classification results using all the extracted eight groups
of features are shown in Table II. The best performance
(highlighted in bold) was achieved with an accuracy of 92.31%
(the average of sensitivity and specificity) at the settingsof
the backward task, recall phase, and HbO2 while in other
combination of settings ranged from 48 to 71%. From Table

Fig. 11. Boxplot of the values of top Hjorth parameters feature: mobility,
among 3 phases of the experiment: encode, maintain and recall

Fig. 12. Boxplot of the values of top autocorrelation feature: partial, among
3 phases of the experiment: encode, maintain and recall

Fig. 13. Boxplot of the values of top SVD feature: singular values, among
3 phases of the experiment: encode, maintain and recall

Fig. 14. The three selected features by the proposed MISSSGL feature
selection framework. The three selected features combined together can
achieve an accuracy of 100% to discriminate the PTSD patientsfrom the
control subjects. Compared with other feature selection methods, the proposed
MISS feature selection framework identified a feature subsetwith the highest
discriminative power and the minimum number of features.

II, we observe that the features in recall phase demonstrate
significant discriminative patterns for the two groups. Thus,



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 00, 2018 37

TABLE II
CLASSIFICATION PERFORMANCE OF LINEARPSVM FOR ALL EXTRACTED FEATURES FROM FNIRS SIGNALS WITHOUT APPLICATION OF FEATURE

SELECTION TECHNIQUES BETWEEN VETERANS WITHPTSDAND HEALTHY CONTROLS, EACH ROW SHOWS DIFFERENT SETTING FOR EPOCH DEFINITION:
MEANING DIFFERENT COMBINATION OF TASK, PHASE AND SOURCE OF THE MEASUREMENT

Task Phase Source Accuracy Sen Spe
Fw Encode Hb 48.08 50.0 46.2
Fw Encode HbO2 58.17 62.5 53.8
Fw Maintain Hb 49.20 29.2 69.2
Fw Maintain HbO2 49.20 79.2 19.2
Fw Recall Hb 65.87 62.5 69.2
Fw Recall HbO2 54.97 79.2 30.8
Fw All trial Hb 52.56 16.7 88.5
Fw All trial HbO2 60.26 66.7 53.8
Bw Encode Hb 53.85 50.0 57.7
Bw Encode HbO2 63.62 54.2 73.1
Bw Maintain Hb 55.77 50.0 61.5
Bw Maintain HbO2 47.76 41.7 53.8
Bw Recall Hb 71.15 50.0 92.3
Bw Recall HbO2 92.31 100.0 84.6
Bw All trial Hb 39.90 37.5 42.3
Bw All trial HbO2 55.93 54.2 57.7
Fw& Bw Encode Hb & HbO2 69.55 58.3 80.8
Fw& Bw Maintain Hb & HbO2 41.83 37.5 46.2
Fw& Bw Recall Hb & HbO2 82.69 100.0 65.4
Fw& Bw All trial Hb & HbO2 53.69 45.8 61.5

Fw: Forward, Bw: Backward, Sen: sensitivity, Spe: specificity

TABLE III
COMPARING PERFORMANCE FEATURE SELECTION TECHNIQUES, MI GUIDED SPARSE SELECTION METHODS OUTPERFORMS MRMR AND SGL

Selection Number of Best setting for epoch Accuracy Sen Spe
method selected feats definition

3 Fw task, recall phase, Hb 84.29 91.67 76.92
mRMR 10 Fw task, recall phase, Hb & HbO2 92.15 95.83 88.46

45 Fw & Bw task, recall phase, Hb 98.07 100.00 96.15
3 Fw & Bw task, recall phase, Hb & HbO2 94.00 93.75 87.50

SGL 10 Fw & Bw task, recall phase, Hb & HbO2 96.00 95.83 91.67
19 Fw & Bw task, recall phase, Hb & HbO2 100.00 100.00 100.00

3 : 1 MI, 2 LASSO Fw task, recall phase, Hb & HbO2 90.22 95.83 84.62
MILASSO 10: 1 MI, 9 LASSO Fw task, recall phase, Hb 98.08 100.00 96.15

16: 8 MI, 8 LASSO Fw task, recall phase, Hb 100.00 100.00 100.00
MISGL 3: 1 MI, 2 SGL Fw & Bw task, recall phase, HbO2 100.00 100.00 100.00

feat: features, Sen: sensitivity, Spe: specificity, Fw: forward, Bw: backward
MI: number of selection based on mutual information, SGL: basedon sparse group LASSO
In each section of the feature selection method, first row shows the result for 3 selection,row 2, 10
features and last row shows the highest performance possibleto chieve with more features

we applied feature selection on the recall phase using the
MILASSO, MISGL, SGL, mRMR feature selection methods.
Table III summarizes the feature selection and classification
performance of the four feature selection approaches.

For mRMR method, as a filtering method, the classification
accuracies of the top 3, 10, and 45 features are shown in the
Table II, ranging from 84 to 98% and there was no improve-
ment with more than 45 features. For SGL method with the
optimized values forλ1 and λ2, the accuracy ranged from
94 with 3 features to 100% with 19 features. For MILASSO
and MISGL, implementation of MISS yielded higher accuracy
with less number of features. As shown in Figure 14, the
three selected features have strong combined discriminative
power and can be used as the robust and subject-invariant
bio-signature to discriminate PTSD patients from the control
subjects.

Fig. 15. Selected discriminative channel locations; channels 23, 20, 17 and
1 are frequently selected with the four applied feature selection methods

IV. CONCLUSIONS

The key value of this study was application of a novel
effective feature learning method which has been proposed in
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our previous research [17] and to discover brain biomarkers
of PTSD using fNIRS imaging data. With a set of robust
biomarkers, the hypothesis on the patient effectively respond-
ing to the treatment can be tested.

The first contribution of this study was an extensive feature
extraction and pattern study for fNIRS imaging data and
explored the feature groups that demonstrate discriminative
patterns between veterans with PTSD and healthy control
subjects. We presented g a new feature extraction method
which was derived from singular value decomposition and was
found to be individually very promising in the discrete format
for classification. The most distinguishing feature groupswere
statistics, bicorrelation, autocorrelation, singular values after
SVD and Hjorth parameters. The second contribution was
application of the MISS framework which integrates informa-
tion theory with structured sparse learning theory to achieve
efficient feature selection. Compared with the current popular
feature selection techniques, namely mRMR which achieved
the highest accuracy of 98% with 45 features, SGL which
obtained the highest accuracy of 100% using 19 features,
MISS outperformed and achieved the highest performance
of 100% with 16 features with MILASSO, and reached
the highest performance of 100% with only three features
with MISGL. Therefore, MISS structured feature selection
approach is capable of finding the most sparse feature subset
with the highest discriminative power and a minimum number
of feature size.

Extensive fNIRS Pattern 
Feature Extraction: 

Univariate, Multivariate, 
High Order Statistics, 

Time Series Features, 
etc. 

Mutual Information Guided Structured Sparse 
Feature Learning Framework

Discover Discriminative Brain 
Signature for PTSD Subjects

PTSD fNIRS Imaging 
Feature Pattern

Brain Signature for PTSD 
Treatment Assessment  

Before Treatment

Target Region

Fig. 16. The potential application of the identified biomarkers to make an
assessment of PTSD treatment methods and help doctors/physicians determine
the most effective treatment plan for each individual patient. An effective
treatment is assumed to move the feature pattern of a PTSD patient toward
the target feature pattern region of health control group. The proposed feature
extraction and MISS feature selection framework provide great potentials to
facilitate effective personalized PTSD assessment and treatment in the future.

The proposed feature extraction and effective feature learn-
ing method discovered top three features that can be used for
perfect separation of PTSD patients from healthy controls.
These top three features are Kendal auto-correlation values

for 1.57 sec delay of fNIRS signals from three channels
which can be used as the pre-treatment biomarkers predicting
PTSD. The most frequently selected channels were located in
Brodmann areas 9, 10 and 45 which could be recognized as the
ROI in this study. Most importantly, this study can generate
high impact on fNIRS brain imaging analysis with potentially
important applications to PTSD treatment assessment. In the
current clinical practice, it is still a challenging problem to
quantify and accurately assess how a PTSD patient effectively
responses to a certain treatment plan. The existing brain
imaging analysis tools cannot handle this problem well. The
proposed feature extraction and the MISS feature selection
framework provide a novel data-driven approach to discovera
set of robust biomarkers to discriminate PTSD patients from
the control subjects. As shown in Figure 16, the identified
biomarkers can be used to make an assessment of PTSD
treatment methods and help doctors/physicians determine the
most effective treatment plan for each individual patient.An
effective treatment is assumed to move the feature pattern of
a PTSD patient toward the identified target feature region of
health control group. The MISS selected top fNIRS imaging
pattern features in this study provide one possible solution to
achieve this goal and facilitate effective personalized PTSD
assessment and treatment in the future. More importantly, the
applied information-theory-guided structured sparse feature
selection MISS framework is a general framework which can
be applied in the analysis and learning of any multivariate
time-series.
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CHAPTER 5

Conclusions

In this section we draw some conclusions based on the application of the pro-

posed network construction method and feature learning framework. More details

can be found in each article in the previous chapters.

The advantage of structure/network learning from the MVTS based on MST is

detecting the strongest connections as a unique sub-graph from the underlying net-

work with unique edge-weights which are estimated based on the linear conditional

Gaussian and maximum likelihood. The methods is more effective in smaller net-

works and longer durations. Under some circumstances, it outperforms the lag-based

methods like Granger causality. However, based on the nature of the MST algorithm,

it performs poorly when estimating the network from a ground-truth structure with

cyclic, backward, many and shared-input connections. Another advantage is that the

weights can be used as extracted features from the MVTS and can be applied for

machine learning purposes like classification.

MISS was significantly promising as a feature selection technique, it outper-

formed mRMR, LASSO, SGL and was capable of finding the most sparse set of

discriminative features. Moreover, the proposed method facilitated finding the region

of interest (ROI) on the brain for a specific brain disease with a data-driven approach

for the cases that we do not have access to any prior-knowledge-based (ROI). The

sparsely selected features known as biomarkers were used to detect the discriminative

patterns between control and non-control class. The sparse set of biomarkers makes
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the final model be more interpretable and generalizable, moreover, the model could

facilitate diagnostics and tracking of the patients’ treatment.
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