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Abstract

The main purpose of this study is feature engineering/learning from multivariate
(MV) time-series to achieve a more interpretable model by dimension reduction. This
aim is fulfilled in 2 main parts. In part 1, we proposed a network estimation approach
namely SWDN which stands for sparse weighted directed network. In this approach,
the directed subgraph of the underlying network was detected by maximum span-
ning tree (MST) algorithm that created a null model of connections with maximum
inter-dependence (pairwise correlation or mutual information) forming the backbone
structure of the MV time-series as an empirical reference. The edge weights were
estimated using the linear conditional Gaussian parameters with the maximum likeli-
hood. The efficiency of the proposed method (SWDN) was evaluated on the publicly
available simulated fMRI data-set generated based on BOLD with different simula-
tion parameters and in comparison with other network construction methods, it was
verified to outperform Granger and lag-based methods under some circumstances.
We applied SWDN as a feature extraction tool, and classified Parkinson’s Disease
(PD) fMRI data by finding the discriminative patterns between estimated network of
PDs vs controls and achieved 75 % test accuracy via N-fold cross-validation.

In part 2, we made an extensive feature analysis framework for MV time-series.
This framework consisted of extensive features extraction, post processing and a novel
proposed feature selection technique based on mutual information and sparsity learn-
ing with embedded group structure. The multivariate time-series in this part was
functional near infrared spectroscopy (fNIRS) which is a noninvasive neuroimaging

technique for brain activity monitoring. We applied the proposed supervised exten-

vil



sive sparse feature learning method on two data-sets to extract and select features and
by applying machine learning and data mining approach and algorithms to classify

participants with brain disorder/disease from the controls.
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CHAPTER 1
Introduction

The main goal of this dissertation is feature learning and analysis of the mul-
tivariate time-series (MVTS), which is conducted in two main section. Section one
is about structure learning or network construction of the MVTS which provides
the connectivity analysis and reduced dimension. Section two is about a feature
learning/engineering framework consisting of data pre-processing, exclusive feature
extraction, post-processing and proposing the new feature selection technique based
on the mutual information and sparse group structure of the multivariate time-series.
The further application of these methods is in application of data mining and ma-
chine learning algorithms in order to classify binary labels. The proposed methods
is applied on the brain neuroimaging data for evaluation like fMRI and fNIRS with
the goal of efficient network construction and classification of binary labels for brain
disease/disorder respectively.

The proposed methods have broad application in various fields with MVTS
data. However our focus was on medical data and particularly brain informatics.
Neuroimaging techniques like EEG, fNIRS, and fMRI provide a complex MVTS data
in a subject-based or trial-based depending of the design of experiment which were
suitable examples to apply and evaluate the efficacy of the proposed methods with
practical goals. Next, we discuss the existing problems in the medical support system
and how the proposed methods can be solutions along with the short descriptions of
the embedded articles which represent the effectiveness, applicability and generaliz-

ability of the proposed methods.



1.1 Decision Support Systems in Medical Diagnostic Problems

Medical decision support systems are considered challenging because they are
dependent on the subjective data of the patient and judgment of the assessor. Since
1970, application of computer systems and Al technology in medical field is growing
rapidly [1,2]. One main reason is increasing facility in gathering the exact and abun-
dant data with the new technology and the ability to easy storage, for example the
soft-wares that can easily monitor the cognitive load and record the measurements
for diagnosis like focus/attention, stress/anxiety. On one hand the data is increas-
ing which can result is big models, on the other hand the need for sparse models
are undeniable since smaller models are more interpretable and more generalizable.
Therefore, the need for development of the methods which reduce the dimension of
the data and can find the strong connection of the available variables in order to find
the significant ones is also growing.

In this study we particularly focus on the application of the proposed methods
on the brain activity measurements with 2 different techniques: functional MRI and
functional near infrared spectroscopy (fNIRS). There are other techniques for brain
data collection like electroencephalographic (EEG), and magnetoencephalographic
(MEG), blood oxygen level dependent (BOLD) which we did not use for analysis.
Generally, the challenges in development of a decision support system for medical
data can be categorized in 3 groups: (1) probabilistic nature of the statistical mod-
eling cause the output of the model to be fuzzy, there is no rigid simple yes or no.
(2) Uncertainty in the gathered data is spite of targeting for a specific output. For
example, a patient visiting a doctor for a speculated disease, may carry some other
symptoms which one is not even aware of. However, the side problem can mislead the
model. Another example is the brain computer experiments. Although the measure-

ments are recorded after a specific stimulus on the brain, there is always uncertainty
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about the data revealing the preplanned causal effects of the designed experiment be-
cause of the highly complex structure of the brain. (3) the validation of such models is
very challenging. Most popular evaluation approach is cross-validation, however hav-
ing and an additional test set is always more desirable. Moreover, imbalances/skewed
classes is another source of challenge and makes the validation of the model in com-
plex systems to be very difficult. Regarding the brain neuro-imaging data; the main
challenge in the analysis of the collected data by any of the mentioned techniques,
is high dimensional feature space while small-sample size; which cause over-fitting,
poor generalization and non-interpretable solutions. This complex problem can be
viewed and solved from different angles like network analysis, graphical modeling,
Bayesian learning, dimension reduction using linear algebra techniques like principal
component analysis (PCA) and independent component analysis (ICA), all with the
goal of building an interpretable machine learning system. In this study we propose
2 methods as the solution to this problem and apply them on the simulated and
real /fexperimental data. First, a network construction method based on the maxi-
mums spanning tree (MST) to detect the null model as a sub-graph of the underlying
network, the model is evaluated on the simulated fMRI data and a real data from
Parkinson Disease (PD), the results are shown in the article 1 (in Chapter 2). Sec-
ond, we propose a data mining approach with the application of machine learning
algorithms to exclusively extract features from the high-dimension MVTS and apply
a mutual information based sparse group lasso feature selection technique to find the
most significant features from the most significant groups of the voxels (channels) on
the brain known as region of interest (ROI). These discovered features are known as
biomakres which can be used in diagnostic and treatment-tracking of the patients
with the brain disease/disorder. The result of the application of the second method

on the children who stutter is shown in article 2 (in Chapter 3) and on the veterans
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with post-traumatic stress disorder (PTSD) is shown in article 3 (Chapter 4). The

machine learning approach for the further application of the proposed methods is
defined to be binary classification. Clinical decision making in the field of machine
learning can be categorized mainly to two groups: 1- supervised, when we have the
known classes/labels of the samples/measurements and 2- unsupervised, when we
need to detect the clusters of the similar samples. In this thesis, we mainly focused

on the binary classification decision making.

1.2 Research Objectives and Contributions
This PhD dissertation consists of two main sections listed below:

e Chapter 2: structure learning / network construction of the multivariate time-
series and introducing its two applications. First, connectivity analysis of the
MVTS, detecting the weighted directed network (subgraph) with the most like-
lihood as a null model of the underlying network. Second, using the learned
structure as the extracted features for classification using maximum margin to
find discriminative patterns between binary labels.

e Chapter 3 and 4: exclusive feature learning framework including the propos-
ing novel feature selection algorithm based on mutual information and sparse
group lasso. This approach combines the nonlinear and linear dependence of
the features to the class and results in a sparse selection which can be in-
troduced as non-localized biomarkers which are data-driven-based instead of

prior-knowledge-based.
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collected the fNIRS data from veterans with PTSD and controls and provided me
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with expert knowledge about nature and description of fNIRS data and the disorder,

moreover, verification of the biological interpretation of the achieved results.
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CHAPTER 2

Construction of Sparse Weighted Directed Network (SWDN) from the Multivariate

Time-series & its Application as Feature Extraction for the Binary Classification

The short version of the paper namely ”Construction of Sparse Weighted Di-
rected Network (SWDN) from the Multivariate Time-series” was submitted to the

11th International Conference on Brain Informatics (BI 2018, December 7-9, Arling-
ton, Texas, USA)

However, the long version of the paper in Elsevier format for the journal of

Neurolmage is included in this dissertation.



Construction of Sparse Weighted Directed Network (SWDN) from the Mulata
Time-series & its Application as Feature Extraction for the Binary Sifecsition

Rahilsadat Hosseini, and Shouyi Wang
701 S Nedderman Dr. University of Texas at Arlington, 76@kBngton, TX

Abstract

There are many studies focusing on network detection inivauiate (MV) time-series data. A great deal of focus haverben
estimation of brain networks using fMRI, fNIRS and EEG. Wepse a sparse weighted directed network (SWDN) estimation
approach which can detect the underlying minimum spannétgerk with maximum likelihood and estimated weights based
on linear Gaussian conditional relationship in the muliai@ time series. Considering the brain neuro-imagingalgyas the
multivariate data, we evaluated the performance of theqeeg approach using the publicly available fMRI data-sdttha results

of the similar study which had evaluated popular networkrestion approaches on the simulated fMRI data. Moreovegmsied

the proposed network construction method as a featureotixinaechnique from fMRI data to classify the patterns @f Barkinson
Disease.

Keywords: multivariate time-series, sparse weighted directed ngt({@®WDN), feature extraction, classification, fMRI

1. Introduction as statistical dependencies) affigetive connectivity (referring

MV time-series analysis is used to investigate the concept otO causal interactioqs). Gene_rally brain networ_k estim_ati_
connectivity in dynamic systems like physiological timeiss. can be.c.onducted.m two main fapproaches, first, pairwise
Connectivity analysis can detect coupling which means thé:onnectlvny analy§|s like- correlation, second,. a conteu

. . approach to consider all the nodes globally like Bayes net
presence or absence of interactions between the processes a

; ; : ) . modeling. Diferent methods can be applied on various brain
identify causality which means the presence of driveroasp . . . . .

. . . imaging techniques. For example, MEG analysis of functiona
relationships. There are ftitrent approaches to transform

) C . . connectivity patterns based on the mutual information betw
MV time-series in to a network through mapping algorithms. yPp

A classic but popular approach is considering each one O\?/avelet time-series [7]. Another example is fNIRS (hemo-

time-series as a node, and the weight of the edge connectitzg/namIC signals, such as HbO, HbR, and HbT responses)

. S nctional an ivi nnectivi nalysis vi ranger
nodes would be interdependency between pairwise data [ ctional and ective connectivity analysis via Grange

like correlation matrices [2]. Another recent approach &pm [flu]sa;lrgun;ﬁg;og; e[c?if’i cg’ch1§r]z’a C?:r'ir;t’:/éssebfsrggoéil Scpo Orget’g;
ping the time-series into abstract graphs [3] for exampée th y

- . : . . : ! oscillation in the low-frequency range [12], Dynamic Cdusa
visibility algorithms that is applied on uni-variate tinseries Modeling (DCM) [13] i.e. fiting diferential equation or

[.4]' Another way to pe_rform connectivity assessment inelud state space models of neuronal activity to brain imaging dat
linear MV autoregressive (MVAR) process, and deriving Mea- <ing Bavesian inference [14], statistical parametric pi
surements like coherence, the partial coherence, thetelitec g bay ' P ey

.%SPM) applying the general linear model (GLM) and random

ggh;ednecr?c:rrfozgl (()trl‘]1efr:)z?ertg(ieo:gg??nnlﬁ}[/i-:’jeor?easlgi'onl?dynagI ield theory[15] and fast causal inference algorithm [16heT
P 9 YN Giher significant group of studies focus on the analysis of

models (MDM) [5]) is another available approach that map : . .
time-series to directed graphical models in which causalit fMRI nework [17], using Granger causality [18], dynamic

o . c?usal modeling [19], structure learning of sparse Markov
over time is decided based on the contemporaneous values Q K ifically G . hical models i I
each one of the time-series as the predictor in a conditiona”(.atwOr S specilically 5aussian graphical modets incorpora
. . . . . . with variable selection using block coordinate descentiobt
relationship. Later sparsity was induced to this netwoikgis

ntial B ian mixture modeling 6 [20], a regularized regression (Elastic Net) [21] and eitplo
sequential bayesia ure modeling [6]. the interactions by sparse Markov random field classifieds an

. . . . . . . linear meth h ian Naive B nd SVM [22].
There is a growing interest in brain network estimation. ear methods, such as Gaussian Naive Bayes and S [22]

Brain connectivitynetwork reveals the linking patterns in the

brain which happens in fferent layers from neurons to neural  Smith et. al. [23] generated various fMRI simulations
assemblies and brain structures. Brain connectivity ire®B  based on BOLD and evaluated th@acy of diferent network
concepts: neuroanatomical or structural connectivitft@paof  construction methods. The 28 simulations varied based on
anatomical links), functional connectivity (usually umsteod  simulation factors including number of nodes, sessiontthura

Preprint submitted to Neurolmage August 22, 2018



TR/neural lag, noise, haemodynamic response function (HRR)jvariate time-series, we applied the method to estimate-fu
standard deviation and other factors like shared inputhajl tional connectivity in fMRI measurements which shows the
mean confound, bad ROI (mixed and new random), backwartemporal statistical correlation among neural assembllé
connections, cyclic connections, stronger connectionsrem fMRI data was publicly available from study [23] that coniets
connections, non-stationary & stationary connectionsaargt  of 28 sessions of BOLD simulated fMRI data, each simulation
one-strong input. The tested network modeling techniquebad diferent properties including, number of nodes, session
were correlation and partial correlation, regularizedemse duration, TR (repetition time), neural lag, noise, HRF stan
covariance (ICOV), mutual information, Granger causalitydard deviation. We exploited the results from study [23] and
(conditional, pairwise, directed and causalityfelience) and compared the performance of SWDN with similar evaluation
related lag-based measures, PDC (partial directed coteren metrics including relative sensitivities to finding the geace
DTF (directed transfer function), coherence, generalize®f a direct network connection, ability to find the directioh
synchronization (Gen Synch), Patel's conditional depande the connection, and robustness against various netwotk cha
measures, Byes Net and LINGAM (Linear, Non-Gaussianjenges. Another purpose besides connectivity analysis fhe
Acyclic causal Models). The four evaluation metrics werenetwork construction of the MV time-series is using struetu
defined as follows: Z-score true positive (TP), Z-scoredals learning as a feature extraction technique and build a n&two
positive (FP), c-sensitivity i.e. the fraction of TPs thata based feature-space for predictive models.

estimated with higher connection non-normalized strength

than the 95th percentile of the raw non-normalized FPs and

total number of true connections and lastly, d-accuracy i.e2. Method

mean fractional rate of detecting the correct directidpali o

of true connections. Evaluation of the network methods are-1. Data Description

summarized as follow: first-rank performing methods with As it has been explained in the previous section, we used
c-sensitivity about 90% were: Partial correlation, ICO\dahne  the public fMRI data to evaluate the network detection. The
Bayes net. The second-rank with 70-80% were: full correfati BOLD timeseries fMRI data was generated based on dynamic
and Patel’s. The third rank with 50% were: MI, Coherence ang5ysa| modeling (DCM) in 28 sessions with 50 subjects, vary-
Gen Synch. The forth rank with poor performance of undefing time-stamp points and simulated witHfferent properties.
20% were: the lag-based methods (Granger, PDC and DTM)he session properties are retrieved from the study [23]isnd
and LINGAM. Regarding the detection of the direction of the symmarized in Table (1).

connection, none of the methods were accurate except®atel' |4 the second part, we applied the proposed method on the
with 65%. The éect of factors are summarized as follow: experimental fMRI data collected from the participantshwit
longer duration resulted in higher c-sensitivity and hadr®l 5 without Parkinson Disease (PD) and estimated the under-
dependency with detection of directionality. ~Duration wasjying network for each subject. Next, with the aim of classifi
more dfective than TR and TR was mor@ective than noise cation, we used the estimated network weights as the esttact
level. Bad RIO was significantly deteriorating. The number o features to find the discriminative patterns between ctsiaiad
nodes and the addition of a global mean confound had comple®ps. The fMRI measurements consisted of 21 controls and 25
patterns of fect. participants with PD, each subject had 264 channels (nodes)

) ] ~with 300 number of time-points. All of the computations iisth
In this study, we aim to learn the structure of a multivariategy gy were conducted in Matlab version 2017.

time-series and construct a graphical data-driven modegus
minimum  spanning tree, maximum “ke“hOOd and I|near2_2_ Maximum Spanning Tree (MST), Adjacency Matrix and
conditional Gaussian dependance. The biggest challenge it
X . . Graph
structure learning when having no prior knowledge about
the structure, is finding the highest score structure which i  Maximum spanning tree is the same as minimum spanning
NP-hard. A very complex yet powerful approach is Bayesiartree but with the selection of edges with maximum weigh at
learning in which each variable is assumed to have a specifieach iteration. Minimum spanning tree as a sub-network con-
distribution and variables are conditioned on each othad, a taining the strongest connections, has successfully hgaied
final model is selected with methods like Monte Carlo Markovto detect the null model of connections that form the back-
chain (MCMC) to sample from the posterior distribution andbone structure of the brain to create an empirical referg@ve
maximizing expected posteriors or BIC. However there ase le moreover to capture network alterations due to aging and dis
computationally-complex approaches which are popular andase in functional and structural imaging data [25, 26, .
commonly applied for example correlation, regularizeceise  implemented the Prim’s minimum spanning tree algorithm to
covariance, mutual information, Granger causality andrso o  find the underlying network. Prim’s algorithm solves thelpro
lem of finding acyclic set connecting all vertices Vhwith

The first purpose of this study is to apply the proposed netthe minimal weightw(T) = ¥ et W(U,V), for a given con-
work construction method to a variety of MV time-series in or nected undirected grap® = (V, E), where each edgeuv)
der to evaluate thefigcacy of the method in comparison with has a weightv(u, v). Prim’s algorithm starts with a spanning
other network estimation methods. As an example of the multree, containing arbitrary vertex and no edge, it repegtedds
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Table 1: Summary of the session properties of the simulated fMRI

Sim1, 5Nd, 200NTp Baseline Sim15, 5Nd, 200NTp Stronger connection
Sim2, 10Nd, 200NTp Baseline Sim16, 5Nd, 200NTp More connections

Sim3, 15Nd, 200NTp Baseline Sim17, 10Nd, 200NTp Reduced noise

Sim4, 50Nd, 200NTp Baseline Sim18, 5Nd, 200NTp Removed all HLV

Sim5, 5Nd, 1200NTp 1 hour session | Sim19, 5Nd, 2400NTp Increased neural lag
Sim6, 10Nd, 1200NTp 1 hour session | Sim20, 5Nd, 2400NTp Neural lag and removed HLV
Sim7, 5Nd, 5000NTp 4 hour session | Sim21, 5Nd, 200NTp 2-group

Sim8, 5Nd, 200NTp Shared input Sim22, 5Nd, 200NTp  Nonstationary connection strength
Sim9, 5Nd, 5000NTp Shared input Sim23, 5Nd, 200NTp Stationary connection strength
Sim10, 5Nd, 200NTp  Global mean confoundsim24, 5Nd, 200NTp Only one strong external input
Sim11, 10Nd, 200NTp Bad ROI - mixed | Sim25, 5Nd, 100NTp Reduced noise

Sim12, 10Nd, 200NTp Bad ROI - mixed | Sim26, 5Nd, 50NTp 2.5 min session

Sim13, 5Nd, 200NTp  Backward connectionrSim27, 5Nd, 50NTp Reduced noise

Sim14, 5Nd, 200NTp Cyclic connection | Sim28, 5Nd, 100NTp Reduced noise

Sim: simulation, Nd: number of Nodes, NTp: Number of timeénap®, HLV: haemodynamic lag variability

edges with minimum weight and grows the spanning with a verunstructured variable representation, much less smadier n

tex not in the tree in a greedy way. We defined a priority queuavork. This tree network helps to speed up enumeration and

for the vertices not in the tree, using a pointer from adjagen eliminate variable and is the basis to construct the ad@cen

matrix as the list of entry, in order to find the minimal edge matrix. Adjacency matrix is a 0-1 matrix that takes a n-by-n

connected to the tree. The key of the vertex is weight of theveight matrix and returns a list of the maximum weight span-

edge connecting it to the tree. This greedy algorithm womnks i ning tree. If there is a predecessor, theed(i) = 1, otherwise

O((IVI + |IE log|V]) = O(IE|log|V]) running time while loop it is zero. It can be either symmetric or non-symmetric. We

runs|V| times. converted the adjacency matrix to a graph by defining a matrix
In maximum spanning tree, the set is found by vertices within size of adjacency matrix but with 2 columns. Column one

maximum weight. Weight is calculated as the multivariate li defines the existence of an edge (binary), column 2 defines the

ear or nonlinear dependance matrix using pairwise mutual inparent node, each row represents the child node. Adjacency

formation (MI) and correlation. As described in the Algo- matrix is used to calculate the linear parameters of the ieond

rithm (1), the tree starts with connecting all verticeg ([ € V)  tional Gaussian graphical model. There are two assumptions

to the root, then a queue is listed for entering the no@®s ( for simplicity and being allowed to use linear systems: atles

The child F) of the root, is decided by having the maximum follow Gaussian distribution [28] and child-parent (edbaye

weight keygv)) among all edgesH), if the weight of the new linear relationship [13].

edge is greater than the current weigd(F,v) > keygv)).

The selectedy is then removed from the Q. This repeats till

the queue become empty and predecesgpfaf all (v € Q)

is decided while root is the only vertex without parent. This

procedure iterates fol/foot € V) and the best tree is selected 2.2.1. Conditional Gaussian Distribution

based on the maximum likelihood of theataG, mode). We used the constructed graph to detect edges between chil-
_ _ _ _ dren and parents, and to fit linear Gaussian between thent, Nex
Algorithm 1 Maximum spanning tree (MST), an implementa- ¢ estimated parameters of the linear Gaussian mgjiaking

tion of Prim’s minimum spanning tree Equation (1, 2) wher€y,1 represents the child variable with
Q=V —{root} M examples antll <y represent®N parents (s, ..., Uy,) each
p(v) =root YveQ with M examples.
keygv) = W(root,v) VYveQ
while Q # @ do
F = argmaxkeygv)
Q- QVEQ{F} ClU ~ N(B(1) * Uy + () « Un + BN+ 1),0%) (1)
for ve Qdo o = +/coUC) — % B, % co U 2
if W(F,v) > keygv) then \/ M) Z(Z('B P MU @
p(v) = F

keygv) = W(F.v) In Equation (3), A) represents the expectations matrix and is

required to solve the linear systedx 8 = B) where @) as the
The constructed tree is a compact joint representation oveight hand side of the equation follows Equation (4).

11




solve this problem, we used radial basis function (RBF) &kern
and applied SVM-RBF models.

E[U1] E[U] . E[Un] 1
A E[U1+Us] E[Uz2+Ug] ... E[UnxUi] E[Ui] max M (8)
= . . . ) WO, W1 5. Wn,€1,€2,...€p
: : e : : n
| E[Uy#Up] E[Up+U,] ... E[Up*Ug] E[Up)] subject toz wi=1,
®3) =1
E[X] Vi(wo + wiBi1 + w2Bi2 + ... + wpBin) = M(1 - g),
E[X * Uq] p
B= : 4) EiZO,ZEiSC,
: i=1
| E[X* Uy |
We used log-likelihood to evaluate the data given the mode™ "~ ="~ "~ "= "= ="~ Ty T T T T T T T !

Network Construction

H [ | . .

and graph structurelatdG, P), whereP is the structure array of ! ! MYV time-series Network as
I and Selection Process 1
1
1

Feature Extraction Tool in
Predictive Modeling

estimated parameterg)(for the linear Gaussian. The selected:

model is the one with the maximum likelihood. 1) Construct the Network: - 1

Max Spanning tree (MST) Z> 1) Select the Optimized Network -
based on B | for each sample

E(X) = B(0) + B(1) * U(L) + ... + B(n) = U(n) (5) Mutuacljiggggjfon& ! | MST and linear coefficients as edge '
V) = G ==V)/|V 6
Pv) Z( )V ©) 2) Determine the Model: -

2) Feature Engineering:
! Construct feature space from weights
; !Remove redundant features and keep -

3) Select the Best Model: | ! the most relevant one to the class

Iterate over roots, repeat step 1 I

log-likelihood(ulv) =
p(v) * log (> (exp((x - E(x))?/20° - log( Vo))

Estimate the parameters of
- Conditional Linear Gaussian !

(7

I

I

! |

: |

: |
I

. I
I

i ' weights with MLE !

(. I

! I

! I

! |

: |
I

. I

I

I

! 3) Classification:
' Select model with Maximum ! Maximum Margin between the

The four evaluation metrics were defined as follows: (1) nor! Likelihood Estimate (MLE) 1 coefficients of the binary classes
malized true positive (Z-score TP) i.e. normalized weighhe === :=-=-=+=-=-=" S mrmrmm i mmmm ’
true connections (correctly detected edge when it existélld  Figure 1: Summary of the process of MV time-series network coogon
ground-truth network), (2) normalized false positive @b and selection and its application as a feature extractiohitothe predictive
FP) i.e. normalized weights of the network for edges that ar&'deling
defined but should have been empty based on the ground-truth
(3) c-sensitivity i.e. the fraction of TPs that are estindatéth
higher connection non-normalized strengths than tHe (8-
centile of the raw non-normalized FPs and total number @f tru
connections and (4) d-accuracy i.e. mean fractional ratieef
tecting the correct directionality of true connections evhcan
be calculated as fference of normalized weights fode; and
nods;.

2.3. Network Evaluation Metrics and 2.

"The summary of the process for network construction and
optimization and its application as the feature space fssit
fication is shown in Figure (1). In step 2 of the predictive mod
eling application, in Figure (1), the feature selection moetis
described shortly, which is the criteria of max-relevareed
min-redundancy (MRMR) [29], the number of selected feature
is decided via cross-validation.

2.4. Max Margin Optimization of the weights 3. Results

The constructed network was used as the feature extractiog 1. Comparing SWDN with other Network Methods
tool from the MV time-series. In this approach, MV times- ~

series of each subject was mapped to a square matrix of pair- In Figure (2a, 2b, 2c and 2d) performance metrics Zscore TP,
wise weights where non-zero value verified the existing of aZscore FP, c-sensitivity and d-accuracy are respectivadiyue
linear relationship between parent and child node. Nex¢dir  lated for SWDN. Based on the violin plots (vertical histogeam
Gaussian cdécients were used as decision variables in a masthat can depict multimodality), SWDN performs well in ses-
margin optimization problem for classification task. sions 1, 5, 7, 15, 19 and 20, in which there is least overlap
In Equation (8),6:;, represents the linear ddieient between between distributions in Figure (2a and 2b) meaning thatthe
child-node {) and parent-nodej), C is a non-negative tuning sensitivity distribution shown in Figure (2c) has highelues
parameterM is the width of the marging are error or slack with average mean and variance of 0.48 and 0.34 respectively
variables that allow individual observations to be on themg  The sessions with very poor performance are 3, 4, 11, 12, 13,
side of the margin of the hyperplane, weights showw@sy; 16 and 24 in which c-sensitivity distribution has averageime
when havingn channelsN = n?, andp is the sample size. To and variance of 0.09 and 0.12 respectively.
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(d) D-accuracy (d) Session 20 (neural lag and removed HLV), Subject 6
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Figure 2: X-axis represents session IDs starting from 1 tor8is represents  Figure 3: The best constructed network among subjects in a session by

the weights of all edges from all subjects. SWDN (in red, on the left) vs. the ground-truth network (in blue, on
the right). These are the examples of excellent performance of SWDN
under the promising circumstances like small network, longer dura-
tion, existence of strong connection and neural lag with removed HLV.
Edge width is proportional to edge weight.



(a) Session 3 (15 nodes), Subject 2
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(g) Session 24 (one strong external connection), Subject 1 (h) Session 26 (2.5 min session (shorter duration)), Subject 2

Figure 4: The worst constructed network among subjects in a session by SWDBd(imn the left) vs. the ground-truth network (in blue, on the
right). These are the examples of poor performance of SWDN undatthllenging circumstances like bigger networks, shared input, bad ROI
(mixed nodes), existence of backward connection, many conneetihene strong external connection in the ground-truth network amtesho
duration. Edge width is proportional to edge weight. 14



The capability of the proposed method (SWDN) in detec- e
tion of the ground-truth network is compared with other net-
works’ capabilities which are retrieved from the study [28H
the results are summarized below. In each item, the itafit fo
sentences summaries the results taken from the study [23] an
the words in bold font state the performance of SWDN in each *
stated simulation session.

In simulation 14, with cyclic connections, there were same
results as sim1 but reduced d-accura@WDN was not
designed to capture cyclic connections and achieved
30% c-sensitivity.

In simulation 15, with stronger connection, Partial corre-
lation, ICOV and the Bayes net methods achieved 90%.

Full correlation and Patel’s fell to around 60%. MI, Co-
e In simulation 1, 2 and 3, Partial correlation, ICOV and

the Bayes net performed about 90% of c-sensitivity, while
lag-based methods (Granger, etc.) less than 20Phe
proposed method (SWDN) performed with average of
53% c-sensitivity with the standard deviation of .35

in sim1 and2 and outperformed lag-based methods in-
cluding Granger but significantly reduced sensitivity to
17% in sim3.

In simulation 4, full correlation, ICOV and Patel’s all per-
formed excellently.In simulation 3 and 4 number of
nodes increased to 15 and 50, SWDNSs performance de-
creased, especially in sim4 to 10%

In simulation 5 and 6, the duration was increased to 60
minutes, which caused the single lag-based method to
reach higher sensitivity but poor d-accuracy suggested
that it was not a trustworthy result. LINGAM was per-
forming better in sim5 because of more time-points which
improved better function for temporal ICA however, 10%
reduced in sim6 because of more time-pointSWDN
performed 50% in sim5 but decreased in sensitivity in
sim6 (24%) since there were more nodedn Sim7 with

5 nodes and 250 min duration, LINGAM outperformed
all other methods among all sessions (90%WDN in-
creased sensitivity in sim7 to 55% because of the longer
duration and less number of nodes comparing to sim5
and 6.

In simulation 8 and 9, shared inputs deteriorated all esti-
mation methods to 60% and belo8WDN was not de-
signed to capture shared inputs because it was based
on minimum spanning tree (maximum of one parent
for a child), therefore as expected the results was low
and about 28-34% c-sensitivity.

In simulation 10 with global mean confound, there was the
same results as sSimSWDN achieved 48% c-sensitivity,
outperforming lag-based methods but behind Bayes
and Partial correlation.

In simulation 11 and 12 with bad ROI (mixed or new
random), the results were extremely bad, all the meth-
ods lower than 20% in sim11 but much better in sim12.
SWDN also performed poorly about 10% in both sim-
ulations.

In simulation 13 with backward connections, all meth-
ods reduced sensitivity significantly with best method to
be Bayes with 60% and Coherence, Gen Synch and Ml
like the correlation measures, ICOV and Patel’s, all being
around 50%.SWDN was not promising with 11%.

15

herence and Gen Synch were unchanged, and, Partial Ml
increased to 85%. Lag-based methods were performing
very poorly (less than 30%B5WDN achieved 60% indi-
cating that it outperformed lag-based methods in cap-
turing stronger connections.

In simulation 16, there were similar results as sim1 but
lower sensitivityExpectedly, SWDN could not estimate
network with many connections because it was de-
signed to capture sparse network with the most signifi-
cant edges, therefore performing poorly about 17%.

In simulation 17, which could be compared with sim15,
Partial correlation, ICOV and the Bayes net had excellent
performance, while lag-based methods (Granger, etc.) less
than 20%. MI and Coherence increased to 709¢/DN

with poor performance of 25% indicated that in com-
parison with sim15 it performed equally or better than
Granger methods.

Simulation 18 was similar to sim1 after removal of haemo-
dynamic lag variability. The results were unchanged, all
lag-based methods performed very poorly both with re-
spect to c-sensitivity and d-accurac$WDN performed
better than lag-based methods with 50% sensitivity in-
dicating that existence of lag did not #fect its perfor-
mance.

¢ In simulations 19 and 20 with added neural lag, Partial

correlation and ICOV achieved highest sensitivity 90s%,
with some of the Granger approaches achieving 80s%.
SWDN achieved 53 to 60% sensitivity.

Simulation 21 tested the sensitivity of the methods at de-
tection of changes in connection strength among subjects.
And introduced the most sensitive method as Patel’s, with
t=7.4, Full correlation, Partial correlation, ICOV, Gen
Synch and most of the Bayes net method®WDN was

not very sensitive with 27%.

In simulation 22, there were non-stationary connection
strengths. Bayes net methods, correlation and ICOV
achieving the c-sensitivity (78% and 70% respectively).
Coherence measures were expected to be promising but
they were notSWDN was promising gaining 48% sen-
sitivity.

In simulation 23, there was stationary connection strength
Partial correlation and ICOV performed the best, but the
Bayes net methods did not perform so well, falling to 60%.
SWDN performed poorly around 37%. The decrease



in performance was similar to the Bayes Net methods all had network size of 5 which verified that SWDN is more ef-
comparing to sim22. fective with smaller networks. Sim5 ,7, 19 and 20 had longer
. . . - . . duration, 1, 4 and 2 hours respectively, which also verifiedan
e In simulation 24 which was similar to sim15, but with only efficacy of the method with longer duration. In sim15, SWDN
one §'Fr9ng external input, none of the methods had a Civas capable of capturing the strong connection. In sim18, 19
sensitivity greater than 50%, and none had d-accuracy,,q 5 removed haemodynamic lag variability (HLV) and in-
greater than 61%. Best performing methods Partial Cor- .0 50 d neural lagtacted the SWDN's performance positively.
relation and 1COV=5 resultgd in 40s% and the Bayes The sessions with poor performance were sim3, 4, 11, 12
net models performed badly in 20s®WDN performed 54 13 5jm3 and 4 had network size of 15 and 50, which ex-
similar to Bayes Net with 24% c-sensitivity. plains the poor performance of the method because of bigger
« In simulations 25, 26 (shorter duration), 27 (shorter dura- Size of the networks. Sim11 and 12 had bad ROI which caused
tion and reduced noise level) and 28 (reduced noise levelfhe deterioration in performance and the results were st@ri
the three best-performing models resulted in 70s%, 50s99Vith other methods [23]. Sim13 had backward connections and
70s% and 80% sensitivity respectiveWDN achieved =~ SWDN was not capable of detection of such connections based
36, 43, 43, and 38% c-sensitivity respectively. on the nature of the spanning tree algorithm. Although SWDN
does not capture all the edges in the ground truth, it is dapab
In Figure (3) and (4) the excellent and poor performance obf detecting the most significant sub-graph. Moreover, evhil
SWDN are respectively depicted via examples among subjectoes not reach to the level of the sensitivity of the comjpnnat
in each session. The examples are selected to visualize tigly complex methods like Bayes Net, it can achieve a vakiabl
strength and weakness of the method more clearly. SWDN igerformance only having low computational complexity.
more éficient in estimation of the ground-truth network when  With respect to the estimation of network connection direc-
it has less number of nodes and longer duration while it pertionality, SWDN was poor and was not able to detect higher
forms poorly with bigger networks and shorter duration. Itthan random accuracy. This conclusions is consistent \wih t
was expected to have low sensitivity in estimation of specifi results taken from study [23] which stated the d-accuradii®f
networks (with complex simulation parameters) like badkdya methods to be at chance level (50%).
more connections, shared input and bad ROI because of the na-We achieved 75% accuracy in classification of PD data.
ture of spanning tree which is acyclic network with fixed num-Since there were 264 nodes in the network of each subject, it
ber of edges in which each child node has maximum of ongvould be considered as a very big network, therefore, SWDN
parent. might not be the best performing method. However, Bayes
net for such a big network is also very complex and time-
3.2. PD Classification using SWDN as feature extraction  consuming and not feasible. On the other hand the achieved
We constructed the feature space from the weights of the netesults should be equal or better that the possible resitis w
work which are the linear conditional Gaussian parametens g Granger and lag-based methods since SWDN outperformed
erated by SWDN. Next, we applied the N-fold cross-validationlag-based methods in some sessions. Moreover, longer dura-
with N = 5, to divide data to training and testing and reportedtion (more number of time-points; 300) of fMRI data could
the classification performance as the average oNtienes re-  improve the current results, since SWDN was mofficient
peated test-set. We used the sensitivity (true positive eatd  in longer duration which was the similar conclusion for athe
specificity (true negative rate), as the evaluation metocas-  methods [23]. However, we achieved a comparable result with
sess the performance of the classification. In this probleen, another study on the same data and it verified the capability
defined sensitivity as the accuracy of PD class and spegificitof the SWDN to detect the empirical reference network as a
as the accuracy of control class and reported total acc@scy null model connection forming backbone structure of the hu-
the average of sensitivity and specificity. man brain which was sensitive to alterations in network kopo
The best SVM classification performance for the real datasesgy between classes.
(PD) was 75.33% accuracy (the average of sensitivity: 86.66
and specificity: 64%). The proposed method, SWDN, outpers o usion & Future Studies
formed the reported accuracy in study [30] for about 5%, in
which Daehan Won [30] tried fferent classifiers on PD data SWDN’s main strength comes from the underlying net-
and achieved maximum of 70% accuracy with 60 features andiork construction to be minimum spanning tree which gener-
utilizing the sparse selection of nodes and edges in a leage- ates a unique, acyclic, strongest sub-network with fixed-num
out cross-validation. This comparison suggested that SWDMer of connections. Minimum spanning tree is an unbiased
successfully detected the backbone brain structure whah w method, which avoids several methodological biases like ar
altering between PD and controls. trary thresholding and is insensitive to alterations inremtion
strength or link density. All of these advantages made SWDN
capable of capturing the strongest sub-graph of the undgrly
network based on the MST algorithm.
The best performing sessions based on c-sensitivity showni SWDN as a network estimation method, was more compati-
Figure (2c) for SWDN were sim1, 5, 7, 15, 18, 19 and 20 whichble with smaller networks meaning less number of nodesr(refe
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to the good performance in sim1) and less number of edges (ret3]
fer to poor performance in sim16) and longer duration of sim-
ulation (refer to the good performance in sim5, 7, 19 and 20)[14
In 2 of the simulations (sim22 and 24), its performance was
similar to Bayes Net, however it was much less complicated15]
computationally and therefore less time-consuming. Ipert
formed lag-based methods like Granger (refer to sim1, 2, 1A116]
15, 17 and 18).

Moreover, SWDN as a feature extraction tool performed
promisingly by capturing the alternating networks betwee
class of PD and controls with 75% accuracy. This result wa
comparable to the achieved result (70% accuracy) in the/stud
of the same data-set (PD) by optimization and machine legrni
approach for the analysis of complex network [30].

SWDN based on minimum spanning tree is not expected
to estimate the dense networks or networks with backward or
cyclic connections. The SWDN is a general network modelind®!
framework that can incorporate more graphical structuresli
dition to minimum spanning tree. For example, we will extend
the SWDN to model more generalized network that can havéo0]
more than one parent-node, backward connections and cyclic
structures.
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An fNIRS-Based Feature Learning and
Classification Framework to Distinguish
Hemodynamic Patterns in Children who Stutter

Rahilsadat Hosseini, Bridget Walsh, Fenghua Tian, and Shilayig

Abstract—Stuttering is a communication disorder that affects [5], [4]. Given the high probability of recovery, parentdenf
approximately 1 % of the population. Although 5-8 % of elect to postpone therapy to see if their child's stuttering
preschool children begin to stutter, the majority will recover with resolves. However, delaying therapy in children at greater

or without intervention. There is a significant gap, however, in risk for persistence allows maladantive neural motor net&/o
our understanding of why many children recover from stuttering ! persi W puv u

while others persist and stutter throughout their lives. Detectig  t0 form that are challenging to treat in the future [6], [4].
neurophysiological biomarkers of stuttering persistence is a The lifelong implications of stuttering are significant,pect-

critical objective of this study. In this study, we developed a nogl  ing psychosocial development, education, and employment
supervised sparse feature learning approach to discover discrim- achievement [7], [8], [9], [10].

inative biomarkers from functional near infrared spectroscopy . A . di f wh
(fNIRS) brain imaging data recorded during a speech production There is f“ significant gap .|n our unders'ganllng 0 W y
experiment from 46 children in three groups: children who stutter SO many children recover while others persist in stuttering
(n = 16), children who do not stutter (n=16), and children who Established behavioral risk factors for stuttering péesise

recovered from stuttering (n =14). We made an extensive feate jnclude one or more of the following: positive family hisgor
analysis of the cerebral hemodynamics from fNIRS signals and |giar age of onset (i.e. stuttering began after 36 monts} t

selected a small number of important discriminative features . ot sex—bovs are more likelv to persist and tvoe
using the proposed sparse feature learning framework. The since onset, sex—boys Ixely persist, yp

selected features are capable of differentiating neural activion and frequency of disfluencies [4]. Combining behaviorek ris
patterns between children who do and do not stutter with factors with objective, physiological biomarkers of stuithg

an accuracy of 87.5 % based on a five-fold cross-validation may constitute a more powerfu| approach to he|p |dent|fy
procedure. The discovered set cerebral hemodynamics featwse children at greater risk for chronic stuttering. Detectiwgh

are presented as a set of promising biomarkers to elucidate hvsiological bi k f stutteri ist isitical
the underlying neurophysiology in children who have recovered physiological biomarkers or stutering persistence IS

or persisted in stuttering and to facilitate future data-driven ODbjective of our research [11], [12].
diagnostics in these children. In our earlier study, Walsh et al. (2017) [13] recorded
I ndex Terms—stuttering, functional near-infrared spectroscopy cortical activity d“””g overt speech prodqctlon from dhl?ln
(fNIRS), speech production, children, data mining, feature ex- Who stutter and their fluent peers. During the experiment,
traction and selection, biomarkers, mutual information, sparse the children completed a picture description task while we
modeling recorded hemodynamic responses over neural regions @wolv
in speech production and implicated in the pathophysiology
of stuttering including: inferior frontal gyrus (IFG), preo-
tor cortex (PMC), and superior temporal gyrus (STG) with
Stuttering is a communication disorder characterized Wynctional near-infrared spectroscopy (fNIRS), which is a
involuntary disruptions in the forward flow of speech. Thessafe, non-invasive optical neuroimaging technology tleat r
disruptions, referred to as stuttering-like disfluenca® rec- lies upon neurovascular coupling to indirectly measurenbra
ognized as repetitions of speech sounds or syllables, bloectivity. This is accomplished using near-infrared liglat t
where no sound or breath emerge, or prolongation of speeanbasure the relative changes in both oxygenated (Oxy-Hb)
sounds. In recent years, there has been considerable ssoga@d deoxygenated hemoglobin (Deoxy-Hb), two absorbing
toward understanding the origins of a historically enigmatchromophores in cerebral capillary blood [14]. fNIRS offer
disorder. Past theories of stuttering attempted to isela¢eific  significant advantages including its relatively low cosidan
factors such as anxiety, linguistic planning deficiencies, greater tolerance for movement, making it a more child-
muscle hyperactivity as the root cause of stuttering (feiese, friendly neuroimaging approach. fNIRS has been used to
see [1]). More recently, however, stuttering is hypothediz assess the regional activation, timing, and lateralinatiocor-
to be a multifactorial disorder. Atypical development oe thtical activation for a diverse number of perceptual, lamgya
neural circuitry underlying speech production may advgrsemotor, and cognitive investigations (for review, [15]).
impact the different cognitive, motor, linguistic, and dmoal Using fNIRS to assess cortical activation during overt
processes required for fluent speech production [2], [3]. speech production, we found markedly different speech-
The average age of stuttering onset is 33 months [4voked hemodynamic responses between the two groups of
Although, 5-8 %, of preschool children begin to stutter, thehildren during fluent speech production [13]. Whereas con-
majority (70-80 %) will recover with or without interventio trols showed clear activation over left dorsal IFG and left

I. INTRODUCTION
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PMC, characterized by increases in Oxy-Hb and decreaseslé children who stutter (13 males) and 16 age- and socioe-
Deoxy-Hb, the children who stutter demonstrated deadbmat conomic status-matched controls (11 males). The partitspa
or the reverse response over these left hemisphere regiamste between the ages of 7-11 years (M = 9 years). Stuttering
The distinctions in hemodynamic patterns between the grougiagnosis and exclusionary criteria are provided in [13].
may indicate dysfunctional organization of speech plagnin In experiment (2), a group of 14 children (10 males)
and production processes associated with stuttering amd cdbetween the ages of 8-16 years (M = 12 years) who recovered
represent potential biomarkers of stuttering. from stuttering was analyzed as an additional test group. Al
Although different brain signal patterns can be observed fof the children completed a picture description experiment
stuttering and control group in our previous studies, tlisrein which they described aloud different picture scenesk(tal
still a lack of reliable quantitative tools to evaluate sting trials) that randomly alternated with null trials in whichely
treatment and recovery process based on brain activity pagtched a fixation point on the monitor. In order to compare
terns. In our previous studies, we have extensive resedrchteemodynamic responses among the groups of children, only
forts on specialized machine learning (ML) and pattern gecofluent speech trials were considered in the analyses.
nition techniques for multivariate spatiotemporal bradtivaty For each experiment, we recorded hemodynamic responses
pattern identification under different brain states [1@]7]] Wwith a continuous wave system (CW6; TechEn, Inc.) that
[18], [19]. In this study, we aimed to detect neurophysiadaty uses near-infrared lasers at 690 and 830 nm as light sources,
biomarkers of stuttering using advanced ML techniques. &nd avalanche photodiodes (APDs) as detectors for megsurin
particular, we performed ML models for two experiments. lintensity changes in the diffused light at a 25-Hz sampling
experiment (1), we made an extensive feature extractian frdate. Each source/detector pair is referred to as a channel.
fNIRS brain imaging data of 16 children who stutter and 1&he fNIRS system acquired signals from 18 channels (9 over
children in a control group collected in our previous stutly][ the left hemisphere and 9 over homologous right hemisphere
Next, we developed a novel supervised sparse feature tgarniegions) that were placed over ROIs relying on 10-20 system
approach to discover a set of discriminative biomarkermfrocoordinates Figure (1).
a large set of fNIRS features, and construct a classification
model to differentiate hemodynamic patterns from children
who do and do not stutter. In experiment (2), we applied the
constructed classification model on a novel test set of fNIRS
data collected from a group of children who had recovered
from stuttering and underwent the same picture descrigien
periment. Using the novel test set with children's data et
not used to develop the initial algorithms allowed us to ssse
the model generalization with the discovered biomarkessfr Fig. 1: Approximate positions of emitters (orange circlasyl
experiments (1) to (2). We elected to include children wh@etectors (purple circles) are shown on a standard braas atl
had recovered from stuttering in the test group for thecaéti (ICBM 152). The probes were placed symmetrically over the
and clinical bearings. Young children who begin to stuttéeft and right hemisphere, with channels 1-5 spanning iofer
are far more likely to recover than persist. It is importamt tfrontal gyrus, channels 6-7 over superior temporal gyrus, a
assess the underlying neurophysiology of different stutie channels 8-9 over precentral gyrus/premotor cortex.
phenotypes to learn, for example, whether recovered @nilsir
hemodynamic patterns would classify them with the group Data analysis is detailed in Walsh et al. [13]. Briefly,
of controls or with the group of stuttering children. Thesthe fNIRS data was preprocessed using Homer2 software
proof-of-concept experiments represent a critical steyatd [20]. Usable channels of raw data were low-pass filtered
identifying greater risk for persistence in younger chélinear at 0.5 Hz and high-pass filtered at 0.03 Hz. Concentration
the onset of stuttering. changes in Oxy-Hb and Deoxy-Hb were then calculated and
The remainder of the paper is organized as follows: K correlation-based signal improvement approach apptied t
Section 2, we present the methodology, including partitipathe concentration data to reduce motion artifacts [21]afym
and data collection details, fNIRS data feature extractiod we derived each child's Oxy-Hb and Deoxy-Hb event-related
structured sparse feature selection models. In Sectione3, hgemodynamic responses from all channels from stimulustonse
present the results of the pattern discovery of biomarkerst@ the end of the trial. We then subtracted the average
well as performance consistency on the novel test-set @ daemodynamic response associated with the null trials fiwen t
from recovered children. In section 4, we discuss the sefieciverage hemodynamic response from the talk trials to derive
features and their interpretations in terms of brain regioh a differential hemodynamic response for each channel [22].
interest. Finally, we conclude the study in section 5. The average Oxy-Hb and Deoxy-Hb hemodynamic response
averaged over all 18 channels is plotted as a function of time
for each child in Figure (2) and (3).

[I. METHOD
A. Participants, fNIRS Data Collection & Pre-processing B. Feature Extraction

In experiment (1), fNIRS data from the 32 children who As shown in Figure (4), each experimental trial was parti-
participated in the Walsh et al. (2017) study [13] was aredyz tioned into three phases: perception or the see-phase {Be2s
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o Autocorrelation captured the linear relationship of the
signal with its historical values considering 1 and 2 s
delays Kendall, partial, Spearman and Pearson are four
ways to compute autocorrelation.

« Bicorrelation computes the bicorrelation on the time
seriesX, for given delays inr,. Bicorrelation is an ex-
tension of the autocorrelation to the third order moments,

C T tmesen C % tmees where the two delays are selected so that the second delay

Fig. 2: Oxy-Hb hemodynamic responses averaged over all 18 S twice the original , (i.ex(t)x(t —7)xz(t — 27)). Given
channels for each subject. Controls are plotted on the left @ delay ofr and the standardized time seriés with
(cyan curves) and stutterers on the right (magenta curves). '€ngthn, denoted a&’,, thebicorr() can be calculated
The grand average hemodynamic response across all channels 25

and subjects is represented by the black dashed curve. 2

Oxy-Hb, controls

VT YL ()Y (T + ) Ye(27 + ) W
n—(2x7)

1) Personalized Feature NormalizatiorAs illustrated in
Figures (2) and (3) fNIRS signals vary dynamically acrods su
jects, imposing a challenge to biomedical research. Becaus
of inter-individual variability in signal features, it isifficult
to build a robust diagnostic model to accurately discrirténa
between groups of participants. Outliers can further disto
the trained model, thus impeding generalization. To tackle
° s mow ow I e these issues, we applied a personalized feature normatizat
) ) approach to standardize the extracted feature values &f eac
Fig. 3: Deoxy-Hb hemodynamic responses averaged over liect onto the same scale to enhance feature intergitgtabi
18 channels for each subject. Controls are plotted on the Igf g subjects.

(cyan curves) and children who stutter on the right (magenta accomplish this, we calculated the upper and lower
curves). The grand average hemodynamic response aCI‘OSﬁrﬁ”S for each extracted feature using the formula=
channels and subjects is represented by the black dashed CYhax(minimum feature value, lower quartile + L<Sinterquar-

tile range) for the lower limit, and’,,= min(maximum feature

. . ) value, upper quartile + 1.5 interquartile range) for the upper
children saw a picture on the monitor), the talk-phase (3-8fnit. Feature values outside of this defined interval were
the children described aloud t_he picture), and the recevepnsidered to be outliers and mapped to 0 or 1. More details
phase (9-23s, the hemodynamic response returned to lselin pe found in study [23]. Assuming the raw feature value

for measurements of Oxy-Hb and Deoxy-Hb. We extractggyg Fluw, the scaled feature valug,.,;.q was obtained by:

21 features from each channell =4+ 3+3+1+ (5 x

2(for 1 and 2 sec of delgy. These delays were implemented Footog = Fraw = Vi @

to account for correlation of the signal to its lagged values seate V-V,

The names of the feature group and subgroups are shown in ) _
Figure (4). Therefore, for each subject with 18 channels & Integrated Structured Sparse Feature Selection using Mu

fNIRS data, there were 378 extracted features from Oxy-Hpal Information

\
1
1

Deoxy-Hb, controls
6 6 6 o
w

Deoxy-Hb, stutterers

and Deoxy-hb measurements in each phase. Feature selection techniques are widely used to improve
The extracted groups of features are summarized in thwdel performance and promote generalization in order to
following. gain a deeper insight into the underlying processes or enobl

This is accomplished by identifying the most important eeci
sion variables, while avoiding overfitting a model. Mostttea
I§§Iection techniques classify into three categories: €latdx
methods, wrapper methods, and filter methods [24]. Both
. Hjorth parameters capture signal variatior?mbedded and wrapper methods seek to optimize the per.for—
over time expressed as activity, mobility, andnance of a glas§|f|er or 'model. Thus, the feature sglecpon
complexity.. The three features are defined ag:erforman_ce is highly I|m|te_d to the _embedded classificatio
var(y(ay/ar  models. Filter feature selection techniques assess tiearate
“war(y(t))  of features by measuring their intrinsic properties. Wydeded
models include correlation-based feature selection [t
correlation-based feature selection [26], minimum redunag
o Normalized Area Under the Signal (NAUS) calculates themaximum relevance (MRMR) [27] and information-theoretic-
sum of values which have been subtracted from a definbdsed feature selection methods [28].
baseline divided by the sum of the absolute values for theSparse modeling-based feature selection methods have
fNIRS signal. gained attention owed to their well-grounded mathematical

» Statistical features capture descriptive informationhaf t
signals.

« Morphological features comprised the number of pea
and zero crossings and measures of curve length.

activity = Var(y(t)), mobility =

! Complexity = mobility(y(t))
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Extract feature groups
from each channel in each phase:  # features

Pal‘tltlop 1. Statistical features: mean, variance, skewness, “)
Preprocess the fNIRS signal Kurtosis Normalize
the NIRS signals (Oxy-Hb and Deoxy-Hb) 2. Morphological features: curve length, number of  (3)
j ™ ™ peaks, zero crossin =» the extracted
(32 subjects, each to 3 phases: peaks, g N 3 '
biect 18 ch | See (2 Ik (5 3. Hjorth parameters: activity, mobility, complexity (3) features
subjec channe S) ce (29), talk (5s), 4. Area under curve: normalized area under signal (69
recovery (15s) 5. Correlation features: Autocorrelation (Kendall, (5%2)
partial, Pearson, Spearman) and bicorrelation
Total = 21

Fig. 4: The process of feature engineering: pre-processt idgta, features extraction, post-process the features

Data Matrix: extracted features Apply the feature selection algorithms

from all combinations of source ]t)lv.ld.e datall"r(llattl:lx mn t:i] on training set and tune their Record the
and phase, with corresponding raining, validation an regularization parameters on selected
class label. test sets validation set features
—— . (N—fold cross validation: s = and apply
divide to N-folds, 1 fold test, : Feature Selection Algorithms 1 them on
Deoxytlb 7% Phase2:talk 1 fol d validation and 3 folds , 1: MILASSO (with regularization parameter: 1) ! h
OxyHb T training, repeat N times) 1 2: MISGL (with regularization parameters Al, 12) : the test set
N e e e e e e e e ”

To discover the selected . R
By applying N-fold cross-validation,
feature groups and channels We achieved:
among N-folds of the highest 1- N records of features selection
performance: based on trainings sets
Apply descriptive statistics, and

Optimize the best
number of selection
based on MI (the best MI
selection yields the highest
classifier performances on
test set)

. 2- Selected classifier with tuned parameters
introduced the most frequently selected 3- Best number of selection based on MI

groups and channels as promising 4- Optimized regularization parameters

features for pattern discovery. <:| <:|

To finalize the best features and introduce biomarkers:
We applied significance testing (2-tail t- tests) on selected features. The significant ones were
introduced as the strong stuttering biomarkers (see box-plots in Fig. 9) .

Fig. 5: Feature selection and tuning the regularizatioaupaters via N-fold cross-validation in order to introduee promising
features (biomarkers).

theories and optimization analysis. These feature selectifeature selection algorithm based on mutual informatiot) (M
algorithms employ sparsity-inducing regularization t@ges, and least absolute shrinkage and selection operator (LASSO
such asL;-norm constraint or sparse-inducing penalty termsising L; regularization with application to microarray data
for variable selection. To construct more interpretablalet®, produced by gene expression. In our previous study, we also
structured sparse modeling algorithms that consider featyproposed a MI-based sparse feature selection model for EEG
structures have recently been proposed and show promisiegture selection and applied it to epilepsy diagnosis.[34]
results in many practical applications including brainommf However, feature structures were not considered duringrfea
matics, gene expression, medical imaging analysis, e8}, [2selection in both [33] and [34].

[30], [31], [32]. However, most of the current structured To consider both linear and nonlinear relationships be-
sparse modeling algorithms only consider linear relatigyes tween features and response variables, while acknowlgdgin
between response variables and predictor variables (&=tufeature structures in feature selection, we propose a novel
in the analysis and may miss complex nonlinear relatiorsshifeature selection framework that integrates informath@oty-
between features and response variables that may be presged feature filtering and structured sparse learning Isode
On the other hand, although some filter or wrapper methogs effectively capture feature dependencies and identify t
have the capability to capture nonlinear relationshipsveeh most informative feature subset. There are two differences
features and response variables, feature structures nidyenowith respect to earlier studies [33] and [34]: (1) we did
optimally identified in the feature selection proceduren€onot use regularization techniques like LASSO as the second
structing interpretable learning models with efficienttéea rank filtering; rather, we used sparse-inducing reguléidna
selection remains an open and active research area in f{h&eveal the second-level feature-response relatiossii#)
machine learning community. Zhongxin et al. [33] proposedge applied structured feature learning by penalizing the
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feature groups. We implemented the proposed informatiopenalty for sparse feature selection, and the parameier
theory-based structured sparse learning framework tdifglenis the penalty for sparse group selection (i.e. the weights
the optimal feature subset as discriminant neurophysicdbg of some feature groups will be all zeroes). In cases where
biomarkers of stuttering. feature groups overlap, the sparse overlapping group LASSO
1) Mutual Information for Feature SelectionMl is an regularization can be used [37].
index of mutual dependency between two random variables3) Integrated MI-Sparse Feature Selection FramewoFke
that quantifies the amount of information obtained abowabjective of our approach is to consider structured feature
one random variable from the other random variable [35Jependency while keeping the search process computdjional
MI effectively captures nonlinear dependency among randaefficient. To accomplish this, we employed the MiI-guided
variables and can be applied to rank features in feature-selteature selection framework outlined in Algorithm (1). &iv
tion problems [27]. The fundamental objective of MI-based number of features, the subset of tog: features ranked
filtering methods is to retain the most informative featurgsy Ml is denoted bysS, and the subset of the remaining
(i.e., with higher MI) while removing the redundant or lessfeatures is denoted By’. From S, the optimal feature subset is
relevant features (i.e., with low MI). The mutual infornmati selected by exploring the; high-MI features which includes
of two random variables X and Y, denoted ByX,Y), is the iterative process of removal of highly-correlated tiees
determined by the probabilistic density functions p(x)y)p( with 0.96 threshold. Fromi¥, the k, sparse-model selected

andp(X,Y): low-MI features. The final selected features subset is the se
(@, 9) of (k1 + ko) features which are evaluated based on the cross-
I(X;Y)= Z Z p(z,y)log ( Pty ), (3) validation classification performance. Enumeratiotkpbtarts
p(z) p(y)

yeY zeX from 1 and ascends until reaching the stopping criteria, (i.e

2) Structured Sparse Feature SelectioA: sparse model when the cross-validation accuracy converges and cannot be

generates a sparse (or parsimonious) solution using thi- smiz"ther improved). MISS Algorithm (1) can be applied in two

est number of variables with non-zero weights among all tH{gys: (1) without group structure, which is a combination of
variables in the model. One basic sparse model is LAsSgHtual information and LASSO namely (MILASSO), (2) with

regression, which employg, penalty-based regularization9™OUP structure, which is a combination of mutual inforroati
techniques for feature selection [36]. The LASSO objectidd SGL namely (MISGL).
function is formulated as follows:

Algorithm 1 Mutual Information Sparse Feature Selection
min {[|Ax — Y| + Ay [lx]l1 }, (4) (MISS)

1: Rank all features based on mutual information

2: repeat

3: kl = kl + 1

where A is the feature matrixy is the response variable,
A1 Is a regularization parameter andis the weight vector
to be estimated. Thé; regularization term produces sparse

solutions such that only a few values in the vectosre non- repea.lt. .
. . . : : Divide sorted features to high-MI and low-MI
zero. The corresponding variables with non-zero weights ar S «high-MI

the selected features to predict the response varigble

Structured Features (Sparse Group LASSO (SGL))The
basic LASSO model, and mardy; regularized models, assume
that features are independent and overlook the feature-stru”
Furgs. .However, n ”.‘OS‘ pragncal apphca_tu_ms, featurssain ko < number of selected features by SGL or LASSO
intrinsic structural information, (e.g., disjoint groypsver- : o )

. : Build classifier model withk; + ko, selected features

lapping groups, tree-structured groups, and graph nesyork 2 until classifier performance converaes
[32]. The feature structures can be incorporated into mzodejl ' P 9

to help identify the most critical features and enhance r‘nod[s_ Machine Learning Algorithm Selection & Evaluation
performance.

As outlined in section 2.2, the features we extracted from W& applied established ML algorithms [38] (i.e., support
the raw fNIRS data are disparate; thus they can be categori¥§ct0r machine (SVM), k-nearest neighbor (kNN), decision
into disjoint groups. The sparse group LASSO regularimtidree’ ensemble, and linear discriminant) to assess whether

algorithm promotes sparsity at both the within- and betweefi€"€Pral hemodynamic features could accurately diffextnt
group levels and is formulated as: the group of children who stutter from controls. An overview

of the steps involved in feature extraction and model evalna
is provided in Figure (6).
2} ) 1) Support vector machinesSVM is considered to be a

Remove redundant features frash
: until k; features remain after reduction
: W +low-MlI
Apply sparsity learning to W

o
o © N O U N

popular and promising approach among classification studie
[39]. It has been used in a variety of biomedical applicatjon
for example, to detect patterns in gene sequences or tafglass
where the weight vectorx is divided by g non- patients according to their genetic profiles, with EEG sligima
overlapping groups: {ar;G1 s TGy -5 TG, } and brain-computer interface systems, and to discriminatedukym
w/is the weight i for group g. The parametek; is the namic responses during visuomotor tasks [40], [17], [442][

g

min {IAX =Y+ M lxl + e Y wfIxa,
i=1

AGRmxn, yERle, :CER”Xl,
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Preprocessed v
signal : Divide data in to
Phasel: see training, validation, and test
Phase2: talk P ﬂ
[ [ Report the
Phase3: recovery Apply the ML 1: SVM hlghes.t
algorithms on the 2:Ensemble |+ preforming
. . 3: Tree - .
training set and choose 4 Linear i+ | algorithm on the
the best performance Discriminant || ! test set as the
Augmented on the validation set 5:KNN best chosen
extracted features: [ [ .
P ﬂ classifier
Phasel: see
Phase2: talk i+ | Apply the ML algorithms with the
: tuned parameters (best performance
Phase3: recovery : ; based on validation results), on the test set

! o i1 Select the best machine :
i Prepare input data for i\ Evaluation of the classifier with N-fold \ I\ learning algorithm for
i the classifier |:>cross-validation: train, validation and test set |:;> the classification

Fig. 6: The process of choosing the most accurate ML claaific algorithm with N-fold cross-validation and paranmete
tuning

In this study we applied Gaussian radial basis function (RBR. Experiment (1): Choosing the best ML Algorithm
as the kernel which maps input datao higher dimensional  The most accurate ML algorithm on the raw fNIRS data
space. was the tree classifier with 77.5 % accuracy. The highest
2) Bayesian Parameter OptimizatiorParameters in eachaccuracy obtained after feature extraction and applicatid
classifier significantly affect its performance. We appliefbature selection (MILASSO) was SVM (with RBF kernel)
Bayesian optimization, part of the Statistics and Machirt@at achieved 87.5 % accuracy, Table (l). The phase of the
Learning Toolbox in Matlab, to optimize hyper-parametefrs dNIRS trial that distinguished the groups of children was
classification algorithm [43]. By applying Bayesian optia the talk interval and the source was Oxy-Hb. However in
tion algorithm, we want to minimize a scalar objective fuoest some cases performance using features derived from Deoxy-
(f(xz) = cross-validation classification lgsfor the classifier Hb measurements reached comparable accuracy as those from
parameters in a bounded domain. Oxy-Hb.
3) N-fold Cross-Validation: We applied N-fold cross- B. Experiment (1): Comparing Feature Selection Algorithms

validation (N=5) for training and testing. First, we sektt In Table (II), we compared the performance of the proposed
the features and optimized the parameters of the clasgificatfeature selection algorithm (MISS) with the popular exigti
algorithm on the training set then applied the tuned modkll-based method like mMRMR and linear regularized methods
on the testing set, see Figure (6). Accuracy is defined ke LASSO and SGL. MISS approach outperformed mRMR
the ratio of correctly classified test subjects to the toti#d feature selection by yielding higher SVM classification
number of subjects. Sensitivity is the ratio of children lre t performance with the same number of selected features, (14
stuttering group correctly identified as stuttering to dltlee and 11 for measurement source of deoxy-Hb and oxy-Hb),
children in the stuttering group. Specificity is the ratio ofipproximately 7.5 and 27.5 % respectively. MISS approach
children correctly identified as controls to the total numbeutperformed LASSO and SGL in feature selection yielding
of children in the control group. In this study, we used thkigher classification accuracy approximately 2.5 to 12.5 %.
average sensitivity and specificity values to measure pinar

classification accuracy for each ML model. C. Experiment (1): Selected Features

From an extended set of features, a subset that provided
the highest classification accuracy was identified by MISGL
. RESULTS and MILASSO in the SVM(RBF) model. This subset of
features, shown in Figure (7), comprises statistical, NAUS
Classifier performance is reported for experiment (1) basefjorth parameters, autocorrelation and bicorrelatiortuiiess.
on the outcome of the N-fold cross-validation procedure dbhannels that provided the highest discriminative power to
the test-set, see Table (I). For experiment (2) classifinatidifferentiate between children who stutter and controlsewe
performance was established on a novel test-set of 14 ehildfocalized to the left hemisphere; specifically, channelst,1,
who had recovered from stuttering, see Table (IV). and 5 over left IFG.
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TABLE |: Comparison among performance of various ML classffi(before & after) feature extraction and application of
feature selection

Input data: fNIRS signal, from phase : Talk

Source: Oxy-Hb Source: Deoxy-Hb
Classifier | avg sen spe | avg sen spe
SVM 0.75 0.75 0.75] 0.725 0.6 0.85
Ensemble| 0.7 0.65 0.75| 0.65 0.7 0.6
KNN 0.7 0.7 0.7 | 0.675 0.5 0.85
L Discr 0.75 0.75 0.75| 0.725 0.6 0.85
Tree 0.775 0.8 0.75| 0.575 0.8 0.35

Input data: extracted features from signal in phase (Talk)
with application of MISS for feature selection

Source: Oxy-Hb Source: Deoxy-Hb
Classifier | Ml num  Tot num avg sen spe| Ml num Tot num avg sen spe
SVM 2 11 0.875 0.85 0.9 10 14 0.825 0.8 0.85
Ensemble| 2 11 0.825 085 08| 9 32 0.85 0.8 0.9
KNN 2 11 0.825 0.75 09| 3 7 0.85 0.85 0.85
L Discr 1 10 0.825 0.8 0.85 10 33 0.775 0.7 0.85
Tree 3 13 0.675 0.8 0.55 6 29 0.75 0.8 0.7

sen: sensitivity, spe: specificity , avg: average of sen g k Discr: linear discriminant
MI num: number of selected features based on Mi
Tot num: total number of selection (based on MI and based on SGIA8SO)

TABLE II: Comparison among performance of various featueteation algorithms via SVM classification accuracy on the
selected features with each approach

Feature selection Deoxy-Hb Oxy-Hb
Method Tot num feat  Avg(sen, spe) Tot num feat Avg(sen, spe)
mRMR 14 75 11 60
LASSO ~ 6.4x% 80 ~ 4.8x% 75
SGL ~ 6.4x 77.5 ~ Tx 78
MISS(MILASSO, MISGL) 14 82.5 11 87.5

Tot num feat: total number of selected features
+ indicates the average number of selected features amongdNeioLASSO and SGL methods
Avg(sen, spe)= average of sensitivity and specificity (%)

Selected feature-groups with MILASSO
Stot 10— o

Il Sclection with LASSO
8+ [ ISelection with MI ]

6 ]

g | -

1234567 8 9101112131415161718
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Fig. 7: Statistical summary of the selected feature gromaschannels with MILASSO and MISGL in N-fold cross validatio

In each fold, there was 11 to 14 selected features, fromrdiitechannels and feature-groups. The pie charts illestiet
group that selected features most frequently came from.histegrams summarize the channel selection with MISGL and
MILASSO. For example, from approximately 60 total featusetected from 5 folds, 6 features were selected from chahnel
and 9 features from channel 4 (either based on MI rankingdebar) or LASSO coefficients (blue bar) which are stacked
for each channel).
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The top 14 features from the entire feature set are listederperiment. The same degree of stuttering recovery assassm
Table (Ill). These features, (2 based on Ml and 12 based (BRA) was achieved with both Oxy-Hb and Deoxy-Hb sources
LASSO), were extracted from the talk-phase with source Oxyable (1V).
Hb. We performed 2-tailed t-tests on these featupegalues
< 0.05, confirm a significant statistical difference between
children who stutter and controls for a given feature.

1) Feature Selection Optimizatiorthe number of features In experiment (1), we applied structured sparse feature
selected by MILASSO or MISGL affects the performancéearning models to previously collected speech-evokedRfNI
of the classifier; a more sparse selection enhances modala from Walsh et al. [13] to explore whether neurophys-
performance, promotes generalization, and facilitatesith iological biomarkers could accurately classify hemodyitam
terpretation of results. During the enumeration procesdMio patterns from children who do and do not stutter. Following
selection, we learned that with less than 10 Ml featuresi(tofeature extraction and feature selection with MISS, the SVM
features< 15 — 22), the average classifier performance wagchieved the highest classification accuracy of 87.5 %. With
approximately 80 %; with 15 to 30 MI featureg5(— 35 < this model, classification performance was improved by 10
total features< 40) , performance was approximately 75 %% using feature extraction and sparse Ml-based features se-
with more than 30 MI features, (total features 42 ), the lection. This degree of accuracy was reached using features
accuracy decreased to 70 %. The highest accuracy with gxdracted during the talk interval of the trial from the soeyr
least number of features came from 11 total features with tRy-Hb (although features extracted from Deoxy-Hb reached
MILASSO approach, 2 Ml and 9 LASSO and 12 total featuregomparable accuracy). A feature set comprising statjstics
with the MISGL approach, 8 Ml and 4 SGL. NAUS, Hjorth parameters, autocorrelation and bicorrefati

2) Biomarkers: The features in Table (Ill) that showed sigfeatures provided the highest discriminative power. Nigtab
nificant differences between children who stutter and cdstr nearly all of these features were extracted from channels
are recognized as biomarkers. Box-plots of these featares localized to the left hemisphere (i.e. channels 1-9). The
the children who stutter and controls are plotted on a comm8glected features may not be significant individually aswho
scale in Figure (8). The discriminative features we detegte in Table (lll), thus they can be ignored or missed in basic
Figure (8) comprised significantly lower values of NAUS anétatistical analyses used by many feature selection #igosi
slightly higher values of Hjorth mobility and bicorrelatiovith The MISS approach is valuable to reveal clear discrimieativ
2 sec of delay for children who stutter compared to controlpatterns among features in a higher dimensional spaceoand t

discover relevant multivariate biomarkers.
Features from channels 1, 4 and 5, which span left IFG,

IV. DISCUSSION

o TSl | T - T were identified as neurophysiological biomarkers thatirist
208 + E 5 ! _ H guished hemodynamic characteristics of children who estutt
E E i 5 - ' : from controls. These included significantly reduced NAUS
o6 L ! ! ! +  in left IFG channels 4 and 5 and increased Hjorth mobility
s . : parameters, denoting increased variability, in left IF@rutels
o4 H - L 1 and 4 in children who stutter.

(;,“3 ! ; + : . : | In our earlier study [13], we found significantly reduced
02 Lo - Q ! Oxy-Hb and increased Deoxy-Hb concentrations during the

0 . I A talk interval in channels over left IFG in the group of chédr

who stutter. The left IFG comprising Broca's area is integgra

S S o S C 8.5 O S S o S o h production and may develop atypically in children wh

AU U3 G i o2 S s\ 0B \«rx“f\“mob\\“‘“mob\\“‘ speech produc y p atypically

et et stutter. Neuroanatomical studies reveal aberrant denedofal

Fig. 8: Box-plot of top 5 significant features from talk-pbastrajectories of white and gray matter of left IFG in children

and source Oxy-Hb, ch: channel, (S: stutterer , C: control).Who stutter compared to controls [44], [45]. Moreover, &her
is evidence of reduced activation of IFG/Broca's area durin

speech production from fMRI studies with adults who stutter
46], [47]. In our earlier study [13], we hypothesized thiaist
Rding may represent a shift in blood flow to regions outside
of our recording area to compensate for functional deficits i
In this section we report the performance of the classifiteft IFG. An alternative possibility is a disruption in ciwel-
on the additional test-set (data from 14 children who recosubcortical loops resulting in a net inhibition of this regi
ered from stuttering), shown in Table (V). We applied th&his is the first study to elucidate group-level differentgs
best-performing algorithm based on the results from expedlassifying individual children as either stuttering ort istut-
ment (1): SVM with tuned parameters sigma = 1 and penaltgring using features derived from their speech-evokeéhbra
= 0.001 on the entire dataset. We documented that 71.43 %hemodynamics. Based on the sensitivity index from the final
approximately 10 out of 14 children who had recovered fromodel, three children who stutter classified as controés, (i.
stuttering, classified into the control group based on featu false negatives). Interestingly, two of these three childvere
derived from fNIRS signals derived from the talk-phase @& thconsidered to be mild stutterers when they participated and

D. Experiment (2): Stuttering Recovery Assessment with
lected Features
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TABLE lll: Top 14 features selected with MISS along witkvalue (0.05 threshold for statistically significartest). With top
11 features, 87.5 % accuracy was achieved in N-fold crokdateon

Feature rank  Feature name p-value | Feature rank Feature name p-value
1 NAUS, ch 4 0.0001 8 Hjorth mobility, ch 1 0.0014
2 Hjorth mobility, ch 4 0.0022 9 NAUS, ch 8 0.1095
3 Hjorth activity, ch 1 0.2800 10 AC partial 2s, ch 14 0.1745
4 Bicorrelation 2s, ch 6  0.0225 11 AC Spearman 1s,ch 6  0.9238
5 NAUS, ch 5 0.0003 12 Hjorth activity, ch 4 0.1792
6 Variance, ch 9 0.5319 13 Variance, ch 4 0.0605
7 Bicorrelation 1s, ch 14  0.6252 14 AC Spearman 1s,ch 7  0.6277

AC: autocorrelation, ZC: zero crossing, CL: curve length
NAUS: normalized area under signal, ch: channel
1 or 2s: 1 or 2 second of delay

TABLE IV: The best SVM performance on the additional testygm stuttering.
set (recovered samples)

phase source Fsel M Tot num SRA V. CONCLUSION

talk— Deoxy-Hb  MILASSO 14 7143 In this final section, we present several suggestions re-

tak  Oxy-Hb  MISGL 11 71.43 . . . o

Fsel M: feature selection method, SRA: stuttering recovesessment ~ 9arding data_‘ preprocessing, feat_ure sglec_non e}nd ML”F'@-'n

Tot num: total number of selected features with MISS and evaluation to guide future investigations in this lirffe o
research.

First, the personalized feature scaling approach faiglita
have since recovered from stuttering (determined via aviell the discovery of discriminative patterns by removing data
up visit or through parental report). It is tempting to sgater outliers and reducing the variability in each feature. This
that the recovery process had already begun for these ehildwas a critical step in our approach to address inherent-inter
when we recorded their hemodynamic responses during tRélividual differences in the physiological signals.
initial study. However, longitudinal studies in youngeildren ~ Second, the MISS approach yielded a final feature space
(i.e., near the onset of stuttering) are necessary to tiaek that was both parsimonious and interpretable. In particula
developmental trajectories of their hemodynamic resppase MISGL, that considers feature group structures in sparae fe
they either recover from or persist in stuttering to emp“rc ture Iearning, and achieved the best classification peEfDrm
assess this assumption. with the least number of selected features. We compared our

Finally, we compared the consistency of the best-perfogmifi€Sult from the MISS approach with commonly used feature
SVM classifier using N-fold cross-validation from experime S€lection techniques in Table (I), and the results proved
(1) with results achieved using the SVM classifier on a novijat MISS outperformed the methods which solely applied
test-set of data from 14 children who had recovered frofi{ther Ml or regularized linear regression significantlyord
episodes of early childhood stuttering in experiment (2g Wmportantly, MISS pinpointed specific left hemisphere chan

found that the majority of the recovered children, or 71.43€lS that classified children as stuttering/nonstuttemit

%, classified as controls, rather than children who stutté¥gher accuracy and corroborated findings from our earlier
periment [13].

This suggests that left-hemisphere stuttering biomarkeas ©X
In summary, the proposed Ml-based structured sparse fea-

dissociated stuttering children's speech-evoked henaodimn ) " . -
ture learning method demonstrates its effectiveness tods

patterns from controls, may indicate chronic stutteringijlev ST ) ) ) )
recovery from stuttering in many of these children was agje most discriminative features in a high dimensionalufieat

sociated with hemodynamic responses similar to those frotpace With a limited number of training samples, a common
children who never stuttered. Stuttering recovery may thdallenge for health care and medical data mining appreache
be supported, in part, by functional reorganization ofgagi COmPared to other methods, the proposed MISS approach of-
such as left IFG that corrects anomalous brain activity pdEr'S & Promising, interpretable solution to facilitateaderiven
terns. Although this speculation warrants further studyg ardvances in clinical and experimental research applioatio
replication, an fMRI study with adults who recovered from

stuttering identified the left IFG as a pivotal region asated ACKNOWLEDGMENT
with Opt|ma| Stuttering recovery [48] Dr. Walsh was Supported by NIH grant (NIH/NIDCD RO3

A final point to consider is that although most of the recoPC013402) [13]
ered children had hemodynamic patterns similar to controls
four of these children classified into the stuttering grabjyen

that stuttering is highly heterogeneous, with multipletéas 1] O. Bloodstein and N. B. RatnerA handbook on stutteringCengage
. . . . . . Learning, Clifton Park, NY, 6 edition edition, oct 2008.
implicated in the onset and chronicity of the disorder [2]’[2] A. Smith and C. Weber. How Stuttering Develops: The Maltiorial

it is not surprising to find evidence suggesting that recpver ~ Dynamic Pathways Theondournal of Speech, Language, and Hearing
processes may be different for some children. More research Researchpages 1-23, August 2017. _ _ o

is cl | ded to substantiate the neural reorqani tiat 3] A. Smith. Stutte_rlng: a unified approaqh to a_mqltlfactbrd;/namlc dis-
IS Clearly n_ee ) ’ order. InStuttering research and practice: bridging the g&sychology
accompanies both spontaneous and therapy-assisted mgcove Press, 1999.
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Biomarker ldentification of Post-traumatic Stress
Disorder from Functional Near-Infrared

Spectroscopy usi

ng a Novel Mutual

Information-Guided Sparse Feature Learning
Approach

Rahilsadat Hosseini, Fenghua Tian, H

Abstract—Post-traumatic stress disorder (PTSD) is a common
mental disorder that can develop after a person is exposed to
a traumatic event. In clinical practice, it is still a challenging
problem to identify PTSD related brain patterns and also assess
how a PTSD patient effectively responses to certain treatment.
Functional near infrared spectroscopy (fNIRS) is a neuroimaging
technique with an excellent temporal resolution for brain activity
monitoring. In this study, we made extensive feature extraction
of fNIRS brain imaging data and applied the mutual information
integrated structured sparse (MISS) feature learning framewaok
that we had previously proposed in our previous study to identify
a set of robust fNIRS pattern features as biomarkers to discrim-
inate brain activity patterns of veterans with PTSD and healthy
control subjects in a working memory test experimental setting.
The feature extraction and the MISS framework discovered
three top features as a PTSD biomarkers that can discriminate
PTSD patients from the control subjects with a N-fold-cross-
validation classification accuracy of 100%. Compared with other
popular feature selection methods, MISS framework identified
a robust feature subset with the highest discriminative power
using the minimum number of features. MISS provides great
potentials to facilitate effective personalized PTSD assessment
and treatment in the future. Moreover, MISS method is a general
feature selection framework for multivariate time series that
consider feature structures and take account linear and nonlinea
relationships between response and predictor variables.

Index Terms—extensive feature extraction, fNIRS, mutual
information, sparse group lasso, feature selection

I. INTRODUCTION

anli Liu and Shouyi Wadgmber, IEEE

Functional near infrared spectroscopy (fNIRS) is a non-
invasive, portable, and low-cost neuroimaging technolfuyy
brain activity monitoring with excellent temporal resadut
that monitors hemodynamic changes in the concentration
of oxygenated (HbO2) and deoxygenated (Hb) hemoglobin
molecules in the blood, which can be used to assess cerebral
brain activity on the basis that neural activation and viscu
response are tightly coupled [8]. Through decades of dpvelo
ment, fNIRS has become a valuable neuroimaging technique
for its portability, and reliability. The application of IRS
in cerebral functioning studies has been validated by other
neuroimaging techniques, which showed that the fNIRS $igna
maintains a strong correlation with the fMRI Blood Oxygen
Level Dependent (BOLD) signal [9], [10], [11], as well as
the PET measures of changes in regional cerebral blood flow
(rCBF) [12]. FNIRS has been growing rapidly in clinical
settings and research and has been used in many studies
of brain functions and brain disorders, e.g., attentioncitefi
hyperactivity disorder (ADHD) and Autism [13], depression
[14], etc.

The main treatments for patients with PTSD are counseling
and medication and various types of treatment and interven-
tions have been proposed and utilized in the past decades,
such as trauma-focused cognitive behavioral therapy (CBT)
cognitive processing therapy(CPT), and prolonged exmosur
(PE) [15]. However, there is considerably less attentiomemi

Post-traumatic stress disorder (PTSD) is a common mentalthe accurate assessment of treatment effectivenesg usin
disorder that can develop after a person is exposed tobain imaging biomarkers via portable and reliable neuagjm

traumatic event, such as warfare, traffic collisions, dssaung techniques like fNIRS. Most of the existing studies on
or others life threats [1]. In the United States, about 9% &fTSD pattern recognition are based on structural MRI data
people may develop PTSD at some point in their life [2]. PTS[16]. It is desired to discover informative biomarkers (g.g
causes neural circuits changes in the brain, and a patié¢int Warain activity and patterns) to evaluate whether an indiald
PTSD may present cognitive dysfunctions, such as memamgsponds to a treatment well and moves towards the right
impairments, attention deficits, and dysexecutive synéomdirection to the measures of the healthy control population
In order to diagnose and characterize brain responses of thethis study, we aimed to develop an effective data-driven
patients with PTSD, neuroimaging techniques like funalonmethod to discover important fNIRS features from sparse
magnetic resonance imaging (fMRI) [3] , [4] , and functionahumber of voxels (channels) as biomarkers that are highly
near infrared spectroscopy (fNIRS) [5], [6], and functibnadiscriminative between the PTSD group and the control group
imaging techniques of single-photon emission computed to-In our previous study, Tian et al. [5] used a 36 channel
mography (SPECT), positron emission tomography (PET) [fIRS setup to image the prefrontal activations in a group
have been applied. of veterans diagnosed with PTSD and a group of age/gender-
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matched healthy controls during two working memory tasks, Il. METHOD

namely a digit forward task and a digit backward task. BoiR, participants, fNIRS data acquisition and preprocessing
tasks required serial encoding, maintaining and recall of a
string of 6 digits presented on the computer screen. In thi¢ di
forward task, the subjects recalled the digits in the sarderor

?S tr}?aydvx{(ra]reé)ireitse?r:et(:]; |nrtr\1/erd|g|t ?gc:(vyl_zar:d tﬁSkl’ﬂt]he ﬁjr 5]. As shown in Figure 1, the participants were instructed t
ecaflec e digits € reverse order. ihe heaihy c complete a session of digit forward task (eight trials) and a
showed _robust hemodynamic activations during the _encodmgssion of digit backward task (eight trials) sequentialhjle
and retrieval processes. In contrast, the veterans withDPT eir brain activities were scanned by a high-performance

were found to_hgve activat_ion_during_the encoding procass, li?NIRS brain imager (Cephalogics LLC., Boston, MA). The
followed by distinct deactivation during the retrieval pess. fNIRS system acquired data from 36 source-detector pairs

This deactivation was more pronounced in the right d(')rsolal hannels) placed on the forehead. The location of the fNIRS
eral prefrontal cortex (DLPFC). It appeared that veteraits W channels is shown in Figure 2. The sampling rate was 10.8

PTSD suppressed prefrontal activity during memory redliev Hz for the fNIRS signals. The channel-wise fNIRS data from

which cquld be a_useful b lomarker to evaluate the C()gmt“faeach task session was preprocessed using a standard toolbox
dysfunction associated with PTSD.

Homer [21] to remove significant motion artifacts. The data
in optical density were then low-pass filtered at 0.2 Hz and
igh-pass filtered at 0.01 Hz. Then the changes of oxygenated
moglobin (HbQ) and deoxygenated hemoglobin (Hb) con-
centrations were calculated for each channel. At last, &@he

. . i sk, event-related HbOand Hb changes were averaged over
(MISS) which had been proposed in our previous study [1'[ e good trials to obtain averaged hemodynamic responses,

to discover the most critical features that discriminatgepes : C

with PTSD and the control group. All of the computations ar\évhICh were the data used in this study.
conducted in Matlab. In particular, we extracted eight gou
of features from fNIRS signals. We explored distinguishin
patterns among all of the possible combination of expertaien
design factors, including forward or backward, the phase
the process (encode, maintain and recall) and the sou
of fNIRS measurements (oxygenated hemoglobin, HbO2 a
deoxygenated hemoglobin, Hb). We discovered that the th
phase of the experiment, namely the recall phase, was the i 6 : ; 6-10 :
significant phase period, and that the most discriminatiee f i« > >ie 10s >ie ° >
ture groups were statistical measures, autocorrelatigorttd Encoding Maintaining ' Recall
parameters and SVD. Wlth only top three. features selected gg 1. A session for digit forward or backward task with difim of three
MISS from autocorrelation group, we achieved 100% accuragysses: encode, maintain and recall

in classification of PTSD from controls. MISS outperformed 2

popular feature selection techniques namely minimum redun

dancy and maximum relevancy (nRMR) [18] and sparse group =

LASSO (SGL) [19] by capturing both linearly and non-lingarl £
related features to the response variable from sparse rlumlf"{,
of voxels (channels) that can be considered as the region [
interest (ROI) in this study. RIO discovery can improve th Q
interpretation and classification accuracy [13]. Definiogels
(channels) as the non-overlapping feature groups resutteei
selection belonging to the same channel. Sometimes it is a
necessity to choose features in a group and sometimes it just
provides higher interpretability and repeatability [20]. aaan dn e 10

Covered By the 36 fNIRS
Channels

A total of 16 war-zone veterans diagnosed with PTSD and
16 healthy controls were the two groups of participants that
matched in agealge = 29.4+9.6years) and gender (all males)

In this study, we made extensive feature analysis on tﬁ
fNIRS data obtained by Tian et al. [5] and applied the eftecti
mutual-information-based sparse feature learning ajpgpro

No Display on

Screen

Type the 6 Digits in Forward
Digit Flashes on Screen | Memorize String of 6 Digits or Backward Order

The rest of the paper is organized as follows. In Section
2, we present the proposed methods, mainly including featur
extrgctiqn of fNIRS data ar_'d feature selection techniques pFig. 2. Location of channels in Brodmann area on the brain
senting information theory-integrated structured spézature
learning models. In Section 3, we show results of biomarker
pattern discovery and performance comparisons of sevePal Feature Extraction
popular feature selection techniques. In section 4, we haveAs shown in Figure 1, a trial of fNIRS data can be
conclusions. segmented to three phases: the encoding phase (0-6s), the
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maintenance phase (6-16s), and the recall phase (16-trial o« 04
end). In feature extraction, we also consider two expertaien
factors: 1) two recall tasks in forwarding or backward order
of 6 digits, 2) data measurements on the frontal activation i
oxygenated or deoxygenated hemoglobin changes resggctive

Controls, forward, Hb
\
1
Veterans, forward, Hb

A[HbO,], A[Hb] as estimates of Hemoglobin Response (HR) s o= Z=¢” ~ S
[22]. .
The averaged fNIRS signal (in terms of Hb and HbpOf "
each subject in PTSD group and control group under backward 02
and forward tasks are shown in Figures 3, 4, 5 and 6. Magenta 03, . - w05 e - )
lines are the average of the fNIRS signal over 36 channels for Data points in 30 sec Data points in 30 sec

each Veterar_] with PTSD, and the blue lines depict average . 5. The averaged Hb concentration values of each suinj¢be forward
the fNIRS signal over 36 channels for each healthy contr@kk: the thin blue solid lines on the left subplot repregeesithy control
subject. In each of these figures, the dotted lines show tdjects and the magenta lines on the right subplot represtetans with
group averages of all participants in each group. From th&SP- The thicker dotted lines are group averages.

figures, one can observe that although the group average of

PTSD and control group show different temporal hemody- 2 12

namic response patterns, the cross-individual varighifitthe ! !

hemodynamic response patterns are very high. Thus, we were g o
aimed to discover a set of robust discriminative featurddém
in the highly variable fNIRS response patterns and can ifyent

0.4

Controls, forward, HbO:
IS)
[N

Veterans, forward, HbO2

PTSD signature patterns accurately for each individuglestb TIPS R S
For a data-driven approach, we made an extensive feature 02 e
extraction investigation on the Hb and Hp&sponse patterns 04
in the three phases under the experimental settings. 06
0 80 100 200 300 0 80 100 200 300
03 03 Data points in 30 sec Data points in 30 sec

025 025 Fig. 6. The averaged HbOconcentration values of each subject in the

forward task: the thin blue solid lines on the left subplopresent healthy
control subjects and the magenta lines on the right subppoesent veterans
with PTSD. The thicker dotted lines are group averages.

o
N

Hb

- 0.15

0.1

Veterans, backward, Hb

8 0.05 ~
fn” /, M= ~
._g 0, e S
5005 We extracted eight groups of features summarized in the

01 following.

-0.15 . . . . . .

o o « Statistical features capture descriptive informationhef t

“o 100 200 300 “o 100 200 300 :
Data points in 30 sec Data points in 30 sec Slgnals'

o Number of peaks and zero crossing capture morpholog-
Fig. 3. The averaged Hb concentration values of each subjéiee backward ical features. Zero Crossings is the number of times the
task: the thin blue solid lines on the left subplot repredeelithy control

subjects and the magenta lines on the right subplot represtetans with VE_‘Iue of the feature cross the zero "ne_- ) -

PTSD. The thicker dotted lines are group averages. o Hjorth  parameters capture activity, mobility,
and complexity of a signal's variation in
time. The three features are _defined as:

activity = Var(y(t)), mobility = /2er@dy/dt
; ; N var(y(t))

o8 5o , complexity = %
3 06 5 06
g g AN « Normalized Area Under Signal (NAUS) calculates the
202 A\ 202 \ / ) g )
LY g S SRR _'@;\b\l’ sum of values which have been subtracted from a baseline
802504 €02 %\i{' (first value in each phase), divided by the sum of the
g0 g4 N absolute values for the fNIRS signal.

zz zz « Autocorrelation captures linear relationship of the signa

P ) with its historical values considering different delays,

0 100 200 300 0 100 200 300

Data points in 30 sec Data points in 30 s6c Kendal, partial, Spearman and Pearson are four ways of
calculation. In this study, eight delays of 0.28, 0.56, 0.74

Fig. 4. The averaged HbOconcentration values of each subject in the 1.02. 1.30. 1.57. 1.76. 2.04 seconds were employed for
backward task: the thin blue solid lines on the left subpégiresent healthy ’ ' ’ ’

control subjects and the magenta lines on the right subpboesent veterans aytocorre!atlon features. . . )
with PTSD. The thicker dotted lines are group averages. « Bicorrelation computes the bicorrelation on the time

seriesX, for given delays inr,. Bicorrelation is an ex-
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tension of the autocorrelation to the third order momentssight into the underlying processes or problem. Mostuieat
where the two delays are selected so that the second dedalection techniques generally can be categorized intethr

is twice the original , (i.ex(t)x(t — 7)z(t — 27)). Given categories: embedded, wrapper, and filter methods [24 Bot
a delay ofr and the standardized time serias, with embedded and wrapper methods rely on an employed classi-
lengthn, denoted a¥,, the bicorr(7) can be calculated fier or model therefore, the feature selection performasce i

as: . specific and limited to the embedded classification/préxict
Yoicn Yo ()Yo(r + )Y, (27 + 4) 1y Mmodels. Typical such approaches include Pudi's floatingbea
n—(2x7) @ [25] and stepwise selection [26]. Filter feature selectiech-

. Singular Value Decomposition (SVD) derived feature nigues assess the relevance of features by looking only at

. . . . e intrinsic properties of the feature values. Some popu-
SVD is a generalized form of eigen decomposition : .
” S . : ar examples include correlation-based feature sele¢fa@h
positive semi-definite normal matrix. In particular,

. q’ast correlation-based feature selection [28], and mimimu
m x n matrix M can be decomposed to three terms

8 . redundancy maximum relevance (MRMR) [18], information-
me." UmXWEmmVnm, Whergu,E,V are unitary theoretic-based feature selection methods [29]. In amditi
matrix, rectangular diagonal matrix and real or complex . . .
. . ; Sparse modeling-based feature selection methods havedgain
unitary matrix, respectively. Columns d&§ and V are

ip_creasing research interests due to well-grounded mattiem

orthonormal bases. Singular values in this study is ca . Lo . X

. . al analysis and optimization theories. These featuretefe
culated based on the row wise channels, meaning afﬁ’-frorithms employ sparsity-inducing regularization tages
decomposition of the feature matrix consisting of 369 ploy sp Y greg anes,

. Such asL;-norm constraint or sparse-inducing penalty terms,
rows (channels) and 300 columns as data points, we cf S . P g penaty
. . Of variable selection. Recently, to construct more intetgble
diagonal values o known aso; of matrix M (features

matrix). We employed the 36 singular values, logarith models, structured sparse modeling algorithms that censid

: : "Rature structures have been proposed and shown promising
of the singular values, and the range of the smgularvaIuFessults in many practical applications including computer
as the SVD features of fNIRS signals. y P bp 9 P

vision, gene expression, medical imaging analysis, ef@], [3
[31]. However, most of the current structured sparse mod-
C. Personalized Feature Normalization & Processing eling algorithms only consider linear relationships betwe

A challenge of many biomedical studies is high intefl®Sponse variables and predictor variables (featuresheso
individual variability. As one can observe in Figure 3-6¢ thcomplex nonlmlear relationships could be missed in thmhne
collected fNIRS signals vary dynamically across Subjectgjlnctlon modeling procedure. On the other hand, some filter-
Thus, the corresponding signal features can vary largedyitan Pased methods and wrapper methods could capture nonlinear
is difficult to build a robust diagnostic model to discrimiaa "lationships between features and response variableheu
PTSD subject accurately. In addition, due to various antsfa feature structure usually cannot be wgll considered in the
existing in the collected signals, there are inevitabldienst feature selection procedure. To make interpretable legrni
in the extracted signal features which can also distort modgodels with efficient feature selection is still an open and
training and deteriorate model generalization perforrean@ctive research area in machine learning community. To con-
To tackle these issues, we applied a personalized featSiger both linear and nonlinear relationships betweerufeat
normalization approach described in study [23] to staridard @nd response variable, and to consider feature structare (i
the extracted feature values to increase feature intetpitiey this study defined as voxels / cr_lannels) in feature.selectmn
across subjects. The personalized feature scaling reétees We apply the novel feature selection framework that inteegra
individual variability that may be caused by signal driftdan information theory-based feature filtering and structigearse
baseline changes and eliminates feature outliers. learning models. This method is explained in details and has

In summary, as shown in Figure 7, there are 12 corkR€en applied on a differe_nt set of FNIRS data in study [17].
binations of experimental settings in feature selectian: f However we briefly describe the components of the MISS.
ward/backward tasks, encoding/maintaining/recall phased ~ 1) Structured Sparse Feature SelectioA: sparse model
Hb/HbO, signals; and for each setting, eight groups of 118€nerates a sparse solution with a small number of variables
features were extracted. Thus, a total number ofx1215 = With non-zero weights among all the variables in the model.
1380 features were extracted for each subject. In the faligw The most basic sparse model is least absolute shrinkage and
we will present a novel structured sparse feature selectidflection operator (LASSO) regression, which emplby
framework that integrates information theory with strueti Penalty-based regularization techniques for featurecgefe

sparse modeling to discover the fNIRS pattern signatures[&#]- The LASSO model and various, regularized models
access PTSD brain activity in memory tasks. assume that features are independent and do not consider

structures of features. However, in most practical appbos,
) ] features follow some essential structures, such as disjoin

D. Integrateq Structured Sparse Feature Selection using M@‘roups, overlapping groups, tree-structured groups, aaphg
tual Information networks [33]. The feature structures can be greatly useful
Feature selection techniques have been widely usedtdoguild the optimization procedure and help identify the

identify most important decision variables, to avoid ovelimportant features with better interpretability. In the 38
fitting and improve model performance, and to gain a deepmethod, we improved the sparse learning from basic LASSO



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 00, NO. 00 2018 34

Encoding i 1) Statistical Features - 4
: 2) Number of peaks - 1
/ \ 3) Zero Crossing - 1
: Forward Hb : 4) Hjorth parameters - 3
Each / i i 5) Normalized Area Under the Signal - 1 H
Subject Maintain : 6) Autocorrelation: 4 features x 8 delays =32 :
36 fNIRS 7) Bi-Correlation: 8 delays - 8

\ : 8) SVD Features: 36 singular values,
\a Backward HbO:2 H H logarithm & range of 36 singular values -

\ i 36+36+1 =73
Recall (In Total 115 features extracted per setting)

Channels

Fig. 7. The feature extraction structure for each subjedteach channel.

model to structured learning by applying SGL, and used votures by just excluding low Ml-ranked features and impdrtan
els (channels) to define non-overlapping groups of extdacteeature structures. On the other hand, most of the current
features. The sparse group sparsity is designed to producgtractured sparse modeling algorithms can only handlatine
solution with simultaneous between- and within group spars relationships between response and predictor variablesed
The SGL regularization is formulated as: on this consideration, we applied MISS for feature selectio

g 3) Integrated MI-Sparse Feature Selection FramewdFke

min {|Ax = Y| + A x]l1 + Az Z w!|xq; ||2} (2) key idea of the proposed approach is to take into accourt-stru

i=1 tured feature dependency while keeping the searching pro-
ye R™ g e R cess highly computationally efficient. The proposed mutual
) ) . information-guided feature selection framework is buiittbe
where the weight vectorx is divided by g non- weq steps: Mi-based feature ranking for high-MI features
oggrlappmg_ groups:  {wg, %Gy, %6, and gryctured sparse feature learning on low Ml-ranked festur
wfis the weight i for group g. The. parametek; is the  4ng integration of the selected high- and low-ranked featin
penalty for sparse feature selection, i.e. weights of SOM@ onymeration procedure. In the feature ranking step, @e us
features in non-zero groups can be zero, and the parameigh, rank features and identify a subset of high MI features
A2 is the penalty for sparse group selection, i.e. the Weighfgyi have the best informative power individually to class
of some feature groups will be all zeros. In this study, |apels. Among those features, the highly correlated featur
decides the selection of the voxels (channels) which can be, .onsidered as redundant features and removed in a way
interpreted as ROI and,, decides the features of non-zerQmjar to the mRMR approach. Given a number of features
(selected) voxels. o k, the subset of tog: features ranked by MI is denoted by
~2) Mutual Information for Feature Selectionin informa- ¢ anq the subset of the remaining features is denoteti/by
tion theory, mutual information (M) is a measure of inher, e second step, we employ the structured sparse learning
ent dependence between two independent variables [34]. Mbqrithms based on feature structure of the studied proble
measures how much information a feature contains about W& ctured sparse model (as described above) is employed t
class without making any assumptions about the nature Qfjact important feature subset with combined discriniaat
their underlying relationships, moreover it captures imar ower from the low-ranked features $&t Assumek, features
relationship between random variables and is invarianteund;re selected by the structured sparse learning algorithra. T

transfor.mation of the features [35]. The mgtual informatad o step is the only difference between the applied MISS in
two variables X and Y, denoted bi( X, Y), is calculated by: ihis study and application of MISS in study [17]. In study

. _ p(z,y) [17], we used all the nonzero coefficients selected by the
I(X;Y)=)_ ) p(w,y) 10g< )7 (3 sparse learning method. But in this study, the third step is
yeY zeX

p(z) p(y) . .
to further reduce the feature subset and discover the obtima

where p(x) and p(y) are the marginal probability aid(,Y) feature subset by exploring thg high-MI features and the
is the joint probability distribution of the variable X and Y k, sparse-model selected low-MI features. Within a small set
MI can be applied to rank features and has been frequently (k; + ko) features, it becomes possible to enumerate all
used for feature selection [18], [36], [37]. The basic idethe combinations of the selected feature subsets with al smal
of most Ml-based feature filtering methods is to keep tHeature pool. Feature subset evaluation is based on the-cros
more informative features (with higher MI) and remove thealidation classification performance. In particular, wepgose
redundant or less-relevant features (with low MI) in a fiigr to evaluate feature subset in an ascending order of feagtire s
procedure, a very popular example is mMRMR [18]. Howevesjze. It starts with one feature, then combinations of 2, 3,
MRMR is not global because of greedy search and yieldad .... The subset evaluation stops (optimal feature subse
selection from all over the feature space [20]. is reached) when the cross-validation accuracy convengegs a

Although these approaches can work well in many casesnnot be further improved. The applied mutual-informatio
they are subject to issues of missing some important feguided structured sparse feature selection (MISS) framewo

A 6 Rmx’ﬂ/

?
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is shown in Figure 8, if the sparse learning is based on LASSPSVM s a robust fast alternative for SVM but it assigns the
it is referred as MILASSO, and if based on SGL, as MISGLpoints to the closest two parallel planes instead of twaodisj
Iterative feature integration framework is illustratedrigure half-spaces. SVM has been a successful classification model
9. in many brain related studies [23], [39], [40], [41]. Althgiu
Combining Individually Low-MI Features May  there iS application of other popular classifiers in fNIRS
_______________________________ Produce Strong Discriminative .P.".‘f”.e:r studies like GLM [42] and LDA [43], SVM is commonly used
: A% A A ; [44] and in some cases comparison proved its efficacy [14].

° i EN
< i\ e . . . L
3N 2 A AA'. : In general, a SVM model finds a hyperplane that divides two
2 08 A0 : .
&1 I+ ‘&»'6 (] : classes (PTSD class dsand control class as-1) with the
_‘é_’ i \ : A‘. o o0 least error and maximum distance of the closest sample in
Nk ; e 00 ‘.Featumi each class to the separating hyperplane using the extracted
= Y T ———— : o > features’ patterns [45]. In this study, the linear PSVM mode

i l was employed to discriminate features of PTSD and control

Structured Sparse Model to group.
k1 Features of Highest Ml Values Discover k2 Features with
Combined Discriminative Power

E. Training and Evaluation

v v Feature selection was conducted inside N-fold cross vali-
Starting from feature with highest M|, integrate the Ml-selected k1 dation |oop’ on the training set. Therefore, all the avddab
High-MI features & k2 Sparse-Model-Selected Features in an iterative . . .
feature-adding framework until the N-fold cross-validation parameters of the selection algorlthms nameIY: the relgalar
classification performance converges and does not improve. tion parameters in SGL formulatior)\( and )\2) and number
l of features with high Ml values are optimized/tuned in tiadn
loop. The reported results pertain to the highest perfooman

The Optimal Feature Subset is Determined with . . . .. . . .
High Discriminate Power in a Low Feature Space for the best combination in the optimization. After itecats

for feature selection on N fold ends, we had N (number of
Fig. 8. The framework of the mutual information-guided featsetection folds) groups of K selected features, meaning, we eventuall

approach. had an ensemble of feature rankings that needed to be inte-
kr Selected High-MI Features gratgd by appllcz_altlon of consensus ranking. The one-cousen
& k2 Sparse Model Selected Low-MI Features ranking was defined based on the frequency of selection over
+ the N-fold procedure. In particular, the ranks for featusese

defined from the highest to the lowest frequency of seledtion
N-fold cross validation procedure, and then the first K fesgu

Initialize M = 1

M=M+1 : -
M High-MI Features ; were picked. If there was same frequency for some features,
+ the decision was based on the priority of that feature in each
: loop of selection. Priority of each feature was the averdge o
N Sparse Features | N=N+1 its rank in all folds of selection.

Initialize N =0

v

We applied 10-fold cross-validation for training and tegti
We selected the features and optimized the parameters of the
classification algorithm on the training set and then applie
the results on the testing set. Accuracy is the ratio of ctigre
classified test subjects to the total number of test subjects
Sensitivity is true positive rate, i.e. the accuracy of PTSD
group, meaning ratio of correctly predicted of PTSD sulsiect
to all PTSD subjects. Specificity is true negative rate, i.e.
the accuracy of the control group. In this study, we used the
average of sensitivity and specificity as an unbiased acgura
measure to the binary classification performance.

P (M*, N*) : Optimal Feature Subset '
Contains M* Ml-selected Features : I
and N* Sparse-selected Features

The classification results of raw fNIRS signals are shown
Fig. 9. The optimal feature subset selection by exploring Mieselected in Table |. The E_Werage CIaSS|flca_t|_0n performance 'S_ betwee
features and sparse-model selected features. The P(M,Neirflawchart 53 to 69% for different task conditions and data settings.
denotes the best N-fold cross-validation classificatioocueacy using M The poor classification performance confirmed the existing
Ml-selected features (after removing the highly correlatets, with .96 . . . L A
threshold) and N sparse-model selected features. of the inevitable high cross-individual variability of hewfy-
namic response patterns in fNIRS data as shown in Figures 3 -

4) Classification Methodin this study, we employed Prox- 6. Thus, we applied the proposed extensive feature exdracti
imal Support Vector Machines (PSVM) [38] as the classifieaf raw fNIRS signal and feature selection (MISS) from 12
to access the discriminative performance of feature subgmbssible combinations of experimental settings to discave

. EXPERIMENTAL RESULTS
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TABLE | Phase: Encode Phase: Maintain Phase: Recall

CLASSIFICATION PERFORMANCE OF LINEARPSVM FOR RAW FNIRS ! prso ! prso ! prso
SIGNALS BETWEEN VETERANS WITHPTSDAND HEALTHY CONTROLS o8 o8 o8

Description  Task  Sourcé Accuracy Sen Spe § 06 06 06

Only Fw Fw both 68.8 647 733 2 ' '

Only Bw Bw  both 59.4 64.7 53.3 Soa 04 04

Only Hb both  Hb 53.1 52.9 533 3

Only HbO2  both  HbO2 59.4 64.7 53.3 ® 02 0.2 0.2

All both  both 62.5 64.7 60

Fw: Forward, Bw: Backward 0 0 o

Sen: sensitivity, Spe: Speciﬂcity Hjorth, mobility, ch: 12 Hjorth, mobility, ch: 12 Hjorth, mobility, ch: 12

Fig. 11. Boxplot of the values of top Hjorth parameters featunobility,

set of robust subject-invariant discriminative feature$aSD 2M°nd 3 phases of the experiment. encode, maintain and recall

pattern signatures.

Phase: Encode Phase: Maintain Phase: Recall
1 PTSD 1 PTSD 1 PTSD
A. Statistics of the Extracted Features & Phase’s Signifiean os e o e o e
By visualizing the statistics of the extracted featuressit %06 e e
discovered that the most discriminative phase of the experi 3
ment is the last one, namely recall phase, when the pamitipa 304 04 04
are asked to recall the digits. In Figure 10, 11, 12 and 13 °,, 02 02
the significance of the top rank feature in each outperfogmin
group including statistics, Hjorth parameters, autodatien ® ol AG. e 30 el AG. e 30 el AG. e 30

and SVD respectively is shown. Boxplot of the values of

the top feature in each group indicates that in the last phasg 12. Boxplot of the values of top autocorrelation featyartial, among
meaning recall, values of the feature becomes significanflyphases of the experiment: encode, maintain and recall
differentiating between the classes. Based on the box,plots

channel-wise mean and autocorrelation in controls growp ha hese:fncode Phase: Maitain. [ hase: Recall
higher values than PTSD group, this means that there is more Control Control Control
active potential and higher correlation with historicalues $° 08 08

for fNIRS measurements in healthy control group. On the £, 06 06

other hand, singular values after SVD and Hjorth parameter g

mobility in veterans with PTSD have higher values, which & o o

means there is more variation in fNIRS measurement for this ~ oz 02 0.2

class. All these quantitative conclusions are consistetit w . . ol =
observed differences between two classes in Figures 3, 4, 5 (. attersvo, cn: 11 {0}, after SVD, ch: 11 o), after SVD, ch: 11
and 6.

Fig. 13. Boxplot of the values of top SVD feature: singulalues, among
3 phases of the experiment: encode, maintain and recall

Phase: Encode Phase: Maintain Phase: Recall
1 PTSD 1 PTSD 1 PTSD
Control Control Control
0.8 0.8 0.8 +«PTSD

3 * Control

S

0.6 0.6 0.6

2 o 1 (e}

3 N o © (5

go4 0.4 0.4 ﬁo.a °

3 506 b ° °

0.2 0.2 0.2 - o)
So4 L ° .
0 0 0 502 )
<
Mean, ch: 23 Mean, ch: 23 Mean, ch: 23 N 0A A“ oo 1
0
0.2 0a 0.6 08
Fig. 10. Boxplot of the values of top statistics feature: meanong 3 phases 06 o5 02 04
of the experiment: encode, maintain and recall ’ 10
Kendal AC,1.57s, ch 10
Kendal AC,1.57s,ch 9

B. Evaluation of Feature Selection Methods Fig. 14. The three selected features by the proposed MiSSfeature

. L. . . selection framework. The three selected features combingdthier can
Without application of any feature selection techniquegenieve an accuracy of 100% to discriminate the PTSD patieats the

the classification results using all the extracted eightigso control subjects. Compared with other feature selection oustithe proposed

of features are shown in Table Il. The best performané@SS feature selection framework identified a feature suttht the highest
L . . . discriminative power and the minimum number of features.

(highlighted in bold) was achieved with an accuracy of 92631

(the average of sensitivity and specificity) at the settinfs

the backward task, recall phase, and Hb®hile in other Il, we observe that the features in recall phase demonstrate

combination of settings ranged from 48 to 71%. From Tabkgnificant discriminative patterns for the two groups. $hu
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TABLE Il
CLASSIFICATION PERFORMANCE OF LINEARPSVM FOR ALL EXTRACTED FEATURES FROM INIRS SIGNALS WITHOUT APPLICATION OF FEATURE
SELECTION TECHNIQUES BETWEEN VETERANS WITHPTSDAND HEALTHY CONTROLS, EACH ROW SHOWS DIFFERENT SETTING FOR EPOCH DEFINITION
MEANING DIFFERENT COMBINATION OF TASK, PHASE AND SOURCE OF THE MEASUREMENT

Task Phase Source Accuracy Sen Spe
Fw Encode Hb 48.08 50.0 46.2
Fw Encode HbO2 58.17 62.5 53.8
Fw Maintain  Hb 49.20 29.2  69.2
Fw Maintain  HbO2 49.20 79.2 19.2
Fw Recall Hb 65.87 625 69.2
Fw Recall HbO2 54.97 79.2 308
Fw All trial Hb 52.56 16.7 885
Fw All trial HbO2 60.26 66.7 53.8
Bw Encode Hb 53.85 50.0 57.7
Bw Encode HbO2 63.62 542 731
Bw Maintain ~ Hb 55.77 50.0 615
Bw Maintain  HbO2 47.76 417 538
Bw Recall Hb 71.15 50.0 92.3
Bw Recall HbO2 92.31 100.0 84.6
Bw All trial Hb 39.90 375 423
Bw All trial HbO2 55.93 542 57.7

Fw& Bw  Encode Hb & HbO2 69.55 58.3 80.8
Fw& Bw  Maintain ~ Hb & HbO2 41.83 375 46.2
Fw& Bw  Recall Hb & HbO2 82.69 100.0 65.4
Fw& Bw Al trial Hb & HbO2 53.69 458 615
Fw: Forward, Bw: Backward, Sen: sensitivity, Spe: spedifici

TABLE Il
COMPARING PERFORMANCE FEATURE SELECTION TECHNIQUESMI GUIDED SPARSE SELECTION METHODS OUTPERFORMSRMR AND SGL
Selection Number of Best setting for epoch Accuracy Sen Spe
method selected feats definition
3 Fw task, recall phase, Hb 84.29 91.67 76.92
mRMR 10 Fw task, recall phase, Hb & HbO2 92.15 95.83 88.46
45 Fw & Bw task, recall phase, Hb 98.07 100.00 96.15
3 Fw & Bw task, recall phase, Hb & HbO2 94.00 93.75 87.50
SGL 10 Fw & Bw task, recall phase, Hb & HbO2 96.00 95.83 91.67
19 Fw & Bw task, recall phase, Hb & HbO2 100.00 100.00 100.00
3:1Ml, 2 LASSO | Fw task, recall phase, Hb & HbO2 90.22 95.83 84.62
MILASSO | 10: 1 MI, 9 LASSO | Fw task, recall phase, Hb 98.08 100.00 96.15
16: 8 MI, 8 LASSO | Fw task, recall phase, Hb 100.00 100.00 100.00
MISGL 3:1 MI, 2 SGL Fw & Bw task, recall phase, HbO2 100.00 100.00 100.00

feat: features, Sen: sensitivity, Spe: specificity, Fwwiad, Bw: backward

MI: number of selection based on mutual information, SGL: basedparse group LASSO

In each section of the feature selection method, first row shibw result for 3 selection,row 2, 10
features and last row shows the highest performance pogsilaleieve with more features

we applied feature selection on the recall phase using tl
MILASSO, MISGL, SGL, mRMR feature selection methods.
Table Il summarizes the feature selection and classifinati

performance of the four feature selection approaches. CH23 — Brodmann Area 10
CH20 — Brodmann Area 45
CH17 — Brodmann Area 9

CH1 —— Brodmann Area 45

U\

For mRMR method, as a filtering method, the classificatio|
accuracies of the top 3, 10, and 45 features are shown in t&‘ e
Table II, ranging from 84 to 98% and there was no improve
ment with more than 45 features. For SGL method with th " |
optimized values for\; and )., the accuracy ranged from S
94 with 3 features to 100% with 19 features. For MILASSO. o .
. . . . Fig. 15. Selected discriminative channel locations; cheng8, 20, 17 and
and MISGL, implementation of MISS yielded higher accuracy are frequently selected with the four applied featurecsiele methods
with less number of features. As shown in Figure 14, the
three selected features have strong combined discrim@nati
power and can be used as the robust and subject-invariant IV. CONCLUSIONS
bio-signature to discriminate PTSD patients from the adntr The key value of this study was application of a novel
subjects. effective feature learning method which has been propased i
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our previous research [17] and to discover brain biomarkd 1.57 sec delay of fNIRS signals from three channels
of PTSD using fNIRS imaging data. With a set of robusthich can be used as the pre-treatment biomarkers preglictin
biomarkers, the hypothesis on the patient effectivelygadp PTSD. The most frequently selected channels were located in
ing to the treatment can be tested. Brodmann areas 9, 10 and 45 which could be recognized as the
The first contribution of this study was an extensive featufROl in this study. Most importantly, this study can generate
extraction and pattern study for fNIRS imaging data antigh impact on fNIRS brain imaging analysis with potengjall
explored the feature groups that demonstrate discrimimatimportant applications to PTSD treatment assessment.en th
patterns between veterans with PTSD and healthy contmirrent clinical practice, it is still a challenging probieto
subjects. We presented g a new feature extraction methmpehntify and accurately assess how a PTSD patient efféctive
which was derived from singular value decomposition and wagsponses to a certain treatment plan. The existing brain
found to be individually very promising in the discrete fam imaging analysis tools cannot handle this problem well. The
for classification. The most distinguishing feature growgse proposed feature extraction and the MISS feature selection
statistics, bicorrelation, autocorrelation, singulatues after framework provide a novel data-driven approach to discaver
SVD and Hjorth parameters. The second contribution wast of robust biomarkers to discriminate PTSD patients from
application of the MISS framework which integrates informathe control subjects. As shown in Figure 16, the identified
tion theory with structured sparse learning theory to achiebiomarkers can be used to make an assessment of PTSD
efficient feature selection. Compared with the current pepu treatment methods and help doctors/physicians deterrine t
feature selection techniques, namely mRMR which achievebst effective treatment plan for each individual patie.
the highest accuracy of 98% with 45 features, SGL whictffective treatment is assumed to move the feature pattern o
obtained the highest accuracy of 100% using 19 featuresPTSD patient toward the identified target feature region of
MISS outperformed and achieved the highest performankealth control group. The MISS selected top fNIRS imaging
of 100% with 16 features with MILASSO, and reachegbattern features in this study provide one possible saiutio
the highest performance of 100% with only three featur@shieve this goal and facilitate effective personalizedsBT
with MISGL. Therefore, MISS structured feature selectioassessment and treatment in the future. More importahgy, t
approach is capable of finding the most sparse feature sulaggtlied information-theory-guided structured sparsetuiea
with the highest discriminative power and a minimum numbeselection MISS framework is a general framework which can
of feature size. be applied in the analysis and learning of any multivariate
time-series.
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CHAPTER 5
Conclusions

In this section we draw some conclusions based on the application of the pro-
posed network construction method and feature learning framework. More details
can be found in each article in the previous chapters.

The advantage of structure/network learning from the MVTS based on MST is
detecting the strongest connections as a unique sub-graph from the underlying net-
work with unique edge-weights which are estimated based on the linear conditional
Gaussian and maximum likelihood. The methods is more effective in smaller net-
works and longer durations. Under some circumstances, it outperforms the lag-based
methods like Granger causality. However, based on the nature of the MST algorithm,
it performs poorly when estimating the network from a ground-truth structure with
cyclic, backward, many and shared-input connections. Another advantage is that the
weights can be used as extracted features from the MVTS and can be applied for
machine learning purposes like classification.

MISS was significantly promising as a feature selection technique, it outper-
formed mRMR, LASSO, SGL and was capable of finding the most sparse set of
discriminative features. Moreover, the proposed method facilitated finding the region
of interest (ROI) on the brain for a specific brain disease with a data-driven approach
for the cases that we do not have access to any prior-knowledge-based (ROI). The
sparsely selected features known as biomarkers were used to detect the discriminative

patterns between control and non-control class. The sparse set of biomarkers makes

40
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the final model be more interpretable and generalizable, moreover, the model could

facilitate diagnostics and tracking of the patients’ treatment.
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