
OPTIMIZING KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS

AND LEAST SQUARES PROBLEMS

by

MEI YANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2018

Copyright c⃝ by Mei Yang 2018

All Rights Reserved

To my parents Fangrong Zhang and Wei Yang,

And my husband Zicong Zhou and little boy Wenyuan Zhou,

who give me a happy life.

ACKNOWLEDGEMENTS

First of all, I would like to thank my academic advisor, Professor Ren-Cang Li.

I feel very fortunate and honored for having had the opportunity to work with him.

Without Prof. Li’s help, I couldn’t come to the US and finish my doctral degree.

I thank Prof. Li from the bottom of my heart for his constant support, patience,

encouragement and for putting so much effort and time into guiding me.

I would also like to thank Prof. Guojun Liao, Prof. Chaoqun Liu, and Prof. Li

Wang for their interest in my research and for taking time to serve in my dissertation

committee. I wish to thank everyone in the Department of Mathematics at UTA,

for being kind, supportive and encouraging during my doctoral studies.

I thank all my friends during doctoral study. I want to thank Gul Karaduman,

Sat Byul Seo, Tiffany Tsai and Morgan Choi who shared nice friendships and un-

forgettable memory with me for the past several years. I am grateful to have lovely

church families who helped me a lot when I was in need, especially when the baby

was young. All of them made my intensive study life colorful.

I want to express my deepest gratitude and love for my wonderful parents

and my grandparants. Their spiritual support is the most biggest motivation for

me to pursue my Ph.D degree. They didn’t limit my choices but gave my fully

encouragement and valuable trust to let me pursue my dream.

Finally, I want to express my love to my dearest husband, Zicong Zhou, who

loves, cares, and supports my throughout the past few years. He is alway being there

iv

with me and help me in every aspects, from daily cooking to mathematics dissusion.

He is the best husband I’ve ever seen. Without his presence, none of my success

would have been possible.

August 10, 2018

v

ABSTRACT

OPTIMIZING KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS

AND LEAST SQUARES PROBLEMS

Mei Yang, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Ren-Cang Li

The linear system and the linear least squares problem are two fundamental

numerical linear algebra problems. Krylov subspace methods are the most practical

and common techniques to build solvers. In this thesis, we focus on optimizing Krylov

subspace methods for nonsymmetric linear systems and least squares problems.

For nonsymmetric linear systems Ax = b, one of Krylov subspace methods

is GMRES, which seeks approximate solutions over the Krylov subspace Kk(A, b)

(with given initial guess x0 = 0). Constucting different search spaces and applying

restart strategy are two techniques used to deal with possible slow convergence and

to reduce computational cost in GMRES and variants of GMRES, such as restarted

GMRES and flexible GMRES. In this thesis, we present a numerical method called

the heavy ball flexible GMRES method for nonsymmetric linear systems, which is

designed to salvage the lost convergence speed of restarted flexible GMRES while

keeping the benefit of the restarted flexible GMRES in limiting memory usage and

controlling orthogonalization cost. The search space is extended in every iteration

by applying the heavy ball idea in optimization. Comparison of the restarted flexible

vi

GMRES and the heavy ball flexible GMRES are shown in numerical experiments to

illustrate the efficiency of our method.

The linear least squares problem, min
x

∥Ax− b∥2, widely occurs in statistics,

geodetics, photogrammetry, signal processing, and control. Based on the Golub-

Kahan process, LSMR seeks approximate solutions xk over the Krylov subspace

Kk

(
ATA,AT b

)
. We are aiming to optimize LSMR in two ways. Firstly, we pro-

pose the heavy ball minimal residual method by utilizing the restarted technique

to combine LSMR with the heavy ball idea. The restarted Golub-Kahan bidiago-

nalization process is applied to control the memory usage and reorthogonalization

cost. We add a new direction to include previous iterations’ information in extending

the searching subspace, which also speeds up the convergence. Secondly, we present

a flexible preconditioned iterative method for least squares problems. Because of

lacking of effective preconditioners, LSMR sometimes stagnates as iterations go on.

Applying a good preconditioner in LSMR is critical to speed up convergence. Usu-

ally, it’s impossible to tell whether or not a given preconditioner is suitable for the

problem beforehand. So, one may attempt many possible preconditioners together

and switch periodically among them. We want to design an algorithm that can

switch among preconditioners in the outer iterations instead of restarting LSMR.

Our flexible preconditioned LSMR method takes an outer-inner iteration to con-

stuct changable preconditioners, and applies the factorization-free preconditioning

technique to the Golub-Kahan process to reduce computational cost. Numerical

examples demonstrate the efficiency of our method compared to LSMR.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF ALGORITHMS . xiii

Chapter Page

1. INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Krylov Subspace Methods for Square Linear Systems 2

1.2.1 The Arnoldi Process . 3

1.2.2 The Lanczos Process . 5

1.3 Krylov Subspace Methods for Least Squares Problems 10

1.3.1 The Golub-Kahan process . 10

1.4 Preconditioning . 15

1.5 Overview . 16

2. HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC

LINEAR SYSTEMS . 17

2.1 Variants of GMRES . 17

2.1.1 Restarted GMRES . 19

2.1.2 Heavy Ball GMRES . 21

2.1.3 Flexible GMRES . 23

2.2 Motivation and Main Idea . 24

viii

2.3 Heavy Ball FGMRES Method . 27

2.4 Numerical Experiments . 30

3. HEAVY BALLMINIMAL RESIDUALMETHOD FOR LEAST SQUARES

PROBLEMS . 41

3.1 Motivation and Main Idea . 41

3.2 Heavy Ball Minimal Residual Method 43

3.3 Pseudo-code of Extended LSMR . 46

3.4 Numerical Experiments . 52

3.4.1 Reorthogonalization . 52

3.4.2 Backward Error . 57

3.4.3 Comparison of HBMR and LSMR 57

4. FLEXIBLE PRECONDITIONED ITERATIVE METHOD FOR LEAST

SQUARES PROBLEMS . 64

4.1 Motivation and Main Idea . 64

4.2 Preconditioned Least Squares Problem 65

4.3 Flexible Preconditioned Iterative Method 72

4.4 Numerical Experiments . 75

5. SUMMARY . 89

5.1 Contributions . 89

5.2 Future Work . 89

REFERENCES . 91

BIOGRAPHICAL STATEMENT . 98

ix

LIST OF FIGURES

Figure Page

2.1 FGMRES vs. HBGMRES vs. REGMRES for cavity16 26

2.2 NRes vs. cycle for cavity10. Top : selective reorthogonalization;

Bottom : always reorthogonalization 33

2.3 NRes vs. cycle for cavity16. Top : selective reorthogonalization;

Bottom : always reorthogonalization 34

2.4 NRes vs. cycle for comsol. Top : selective reorthogonalization; Bottom :

always reorthogonalization . 35

2.5 NRes vs. cycle for chipcool0. Top : selective reorthogonalization;

Bottom : always reorthogonalization 36

2.6 NRes vs. cycle for flowmeter5. Top : selective reorthogonalization;

Bottom : always reorthogonalization 37

2.7 NRes vs. cycle for e20r0000. Top : selective reorthogonalization;

Bottom : always reorthogonalization 38

2.8 NRes vs. cycle for e20r0100. Top : selective reorthogonalization;

Bottom : always reorthogonalization 39

2.9 NRes vs. cycle for sherman3. Top : selective reorthogonalization;

Bottom : always reorthogonalization 40

3.1 NRes vs. iteration for abb313 and ash292 54

3.2 NRes vs. iteration for ash85 and e05r0000 55

3.3 NRes vs. iteration for e20r0100 and illc1850 56

x

3.4 Results of lp 80bau3b. Top : NRes vs. iteration; Bottom : E1 vs.

iteration . 60

3.5 Results of lp e226. Top : NRes vs. iteration; Bottom : E1 vs. iteration 61

3.6 Results of lp pilot ja. Top : NRes vs. iteration; Bottom : E1 vs.

iteration . 62

3.7 Results of lp brandy. Top : NRes vs. iteration; Bottom : E1 vs. iteration 63

4.1 NRes vs. iteration for lp cre a and lp cre b 79

4.2 NRes vs. iteration for lp cre c and lp greenbea 80

4.3 NRes vs. iteration for lp ken 11 and lp maros 81

4.4 NRes vs. iteration for lp pilot and lp osa 07 82

4.5 Relative Approximate Backward Error vs. iteration for lp cre a and

lp cre b . 83

4.6 Relative Approximate Backward Error vs. iteration for lp cre c and

lp greenbea . 84

4.7 Relative Approximate Backward Error vs. iteration for lp ken 11 and

lp maros . 85

4.8 Relative Approximate Backward Error vs. iteration for lp osa 07 and

lp pilot . 86

4.9 Enlarged view of results for lp cre b. Top : NRes vs. iteration;

Bottom : Relative Approximate Backward Error vs. iteration 87

4.10 Results of different l-step GMRES solving inner iteration for lp pilot.

Left : NRes vs. iteration; Right : Relative Approximate Backward

Error vs. iteration . 88

xi

LIST OF TABLES

Table Page

1.1 Notation . 16

2.1 Flops of GMRES Variants . 25

2.2 Testing Matrices . 30

2.3 Number of Cycles . 32

3.1 Testing Matrices for Reorthogonalization 53

3.2 Number of Iterations for LSMR . 53

3.3 Testing Matrices . 58

4.1 Flops for LSMR Variants . 75

4.2 Testing Matrices . 76

4.3 Number of Iterations . 77

xii

LIST OF ALGORITHMS

1.1 Arnoldi process . 3

1.2 FOM . 4

1.3 GMRES . 5

1.4 Lanczos process . 6

1.5 CG . 7

1.6 CR . 8

1.7 GCR . 9

1.8 Golub-Kahan process . 11

1.9 LSQR . 12

1.10 CGLS . 13

1.11 LSMR . 14

2.1 (k-step) GMRES . 18

2.2 REGMRES(k) . 20

2.3 HBGMRES(k) . 22

2.4 Arnoldi process for (2.5) . 22

2.5 Flexible GMRES . 24

2.6 Heavy Ball FGMRES . 29

3.1 HBMR . 46

3.2 Pseudo-code of Extended LSMR . 51

4.1 factorization-free preconditioned LSMR (MLSMR) 71

4.2 Flexible MLSMR . 73

xiii

CHAPTER 1

INTRODUCTION

Solving systems of linear equations has been being an old but fascinating prob-

lem since the creation of computers. Computational algorithms for finding solutions

are important parts of numerical linear algebra, and play prominent roles in engi-

neering, physics, chemistry, computer science and economics. For linear systems

with dense coefficient matrices, direct methods such as LU factorization [28, 29],

Cholesky factorization and QR factorization [27] are popular for finding solutions,

but not economic and efficient for large and sparse problems. In this thesis, we focus

on the solutions of linear systems with large and sparse coefficient matrices.

1.1 Problem Statement

We consider the problem of solving a system of linear equations in the form

Ax = b, (1.1)

where A ∈ Rm×n, b ∈ Rm, x ∈ Rn. A is typically large and sparse, or is available

through a matrix-vector product subroutine.

We call (1.1) a consistent system if a solution x that satisfies (1.1) exists. If

such x doesn’t exist, we have an inconsistent system. In this case, we look for an

optimal x of the following least squares problem instead:

min
x

∥Ax− b∥2 . (1.2)

We denote the exact solution of (1.1) or (1.2) by x∗, and by xk the approximate

solution of k-th iteration obtained by any iterative method.

1

In sections 1.2 and 1.3, we review a number of Krylov subspace methods for

square linear systems and least squares problems, respectively.

1.2 Krylov Subspace Methods for Square Linear Systems

Basic iterative methods like Jacobi iteration, Gauss-Seidel iteration [27] and

successive over-relaxation (SOR) [67] require less memory than Krylov subspace

methods that we will discuss, but they are often slow and will not converge to the

exact solution x∗ in a finite number of iterations even with exact arithmetic. They

work only for a few type of matrices such as diagonal dominant matrices.

In this section, we focus on square systems, i.e., m = n, solved by Krylov

subspace methods. If Kk is a search space with dimension k, then, in general, k

constraints must be imposed in order to be able to extract an approximate solution

of (1.1). Usually, the residual rk = b−Axk is constrained to be orthogonal to another

k dimension subspace Lk, i.e.,

b− Axk ⊥ Lk, (1.3)

which is known as the Petrov-Galerkin condition. Note that Lk and Kk can be the

same or different.

A Krylov subspace method is a projection method with the search space to be

a Krylov subspace,

Kk(A, r0) = span
(
r0, Ar0, A

2r0, · · · , Ak−1r0
)
, (1.4)

where r0 = b − Ax0 and x0 represents an arbitrary initial guess. When there is no

ambiguity, Kk(A, r0), will be denoted by Kk. The approximate solution xk satisfies

xk ∈ x0+Kk. The different versions of Krylov subspace methods arise from different

choices of the subspace Lk and from the ways in which the system is preconditioned.

2

1.2.1 The Arnoldi Process

The Arnoldi process [3] is an algorithm for building an orthogonal basis of

the Krylov subspace Kk in (1.4). It transforms partially an unsymmetric matrix A

Algorithm 1.1 Arnoldi process

1: Given a vector t, set β1 = ∥t∥2, v1 = t/β1

2: for j = 1, 2, . . . k do

3: wj = Avj

4: for i = 1, 2, . . . , j do

5: hij = wT
j vi

6: wj = wj − hijvi

7: end for

8: vj+1 = wj/βj+1

9: end for

into an upper Heisenberg matrix Hk with an orthonormal matrix Vk. Algorithm 1.1

is one version of the Arnoldi process by using the modified Gram-Schmidt (MGS)

algorithm.

The process can be summarized by

AVk = VkHk + hk+1,kvk+1e
T
k

= Vk+1Ȟk,

V T
k AVk = Hk,

(1.5)

where Vk = [v1, v2, · · · , vk] is an orthonormal matrix, i.e., V T
k Vk = Ik, and

Vk+1 = [Vk vk+1], Ȟk = [HT
k βk+1ek]

T ,

3

Hk =



h11 h12 · · · · · · h1k

β2 h22 · · · · · · h2k

0 β3 · · · · · · h3k

...
.

...
...

0 · · · 0 βk hkk


.

FOM

Given an initial guess x0, take Lk = Kk = Kk(A, r0), and t = r0 ≡ b− Ax0 in

the Arnoldi process. An approximate solution xk is sought from the affine subspace

x0 +Kk by imposing the Galerkin condition

b− Axk ⊥ Kk,

which implies

V T
k (b− Axk) = 0.

According to (1.5), we know

xk = x0 + Vkyk, yk = H−1
k (β1e1). (1.6)

The full orthogonalization method (FOM) [51] is based on the above approach and

is shown in Algorithm 1.2.

Algorithm 1.2 FOM

1: Given an initial guess x0, set r0 = b− Ax0, β1 = ∥r0∥2, and v1 = r0/β1

2: Compute Hk and Vk as in lines 2-9 in Algorithm 1.1

3: yk = H−1
k (β1e1), and xk = x0 + Vkyk

4

GMRES

Take Lk = AKk = AKk(A, r0). The Galerkin condition becomes

b− Axk ⊥ AKk,

i.e., xk is the minimizer of min
xk∈x0+Kk

∥b− Ax∥2. After k steps of the Arnoldi process,

the approximate solution xk can be written as

xk = x0 + Vkyk, yk = argmin
y

∥β1e1 − Ȟky∥2. (1.7)

The summary of generalized minimal residual (GMRES) method [55] is shown in

Algorithm 1.3.

Algorithm 1.3 GMRES

1: Given an initial guess x0, set r0 = b− Ax0, β1 = ∥r0∥2, and v1 = r0/β1

2: Compute Hk and Vk as in lines 2-9 in Algorithm 1.1

3: yk = argmin
y

∥β1e1 − Ȟky∥2, and xk = x0 + Vkyk

1.2.2 The Lanczos Process

When A is symmetric, the Arnoldi process can be reduced to the symmetric

Lanczos process [44]. The Heisenberg matrix Hk becomes an symmetric tridiagonal

matrix Tk. This leads to a three-term recurrence in the Arnoldi process and a short-

term recurrence for xk as shown in Algorithm 1.4.

The process can be summarized in the matrix form as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Ȟk (1.8)

5

with Vk = [v1, v2, · · · , vk] and

Tk =



α1 β2

β2 α2
. . .

. βk

βk αk


, Ȟk =

 Tk

βk+1e
T
k

 .

Algorithm 1.4 Lanczos process

1: Given a vector t, set β1 = ∥t∥2, v1 = t/β1, v0 = 0

2: for j = 1, 2, . . . k do

3: w = Avj

4: αj = wTvj

5: vj+1 = w − αjvj − βjvj−1

6: βj+1 = ∥vj+1∥2

7: vj+1 = vj+1/βj+1

8: end for

CG

The conjugate gradient (CG) [34, 44] method is one of the best known iterative

methods for solving a symmetric positive definite (SPD) linear system. Mathemat-

ically, CG is equivalent to FOM, i.e., Lk = Kk = Kk(A, r0) and the same Galerkin

condition. It has one formulation which can be derived from Lanczos process [54].

The k-th approximate solution xk is given by

xk = x0 + Vkyk, yk = arg min
y ∈Kk

ϕ(Vky), (1.9)

6

where ϕ(x) = 1
2
xTAx− bTx is the quadratic form. In CG, all residual vectors rj’s are

orthogonal, and the search direction pj’s are A-orthogonal, i.e., conjugate. Algorithm

1.5 shows one version of the CG method.

Algorithm 1.5 CG

1: Given an initial guess x0, set r0 = b− Ax0, p1 = r0, ρ0 = rT0 r0

2: for j = 1, 2, . . . k do

3: qj = Apj

4: αj = ρj−1/p
T
j qj

5: xj = xj−1 + αjpj

6: rj = rj−1 − αjqj

7: ρj = rTj rj

8: βj = ρj/ρj−1

9: pj+1 = rj + βjpj

10: end for

MINRES

If applying GMRES to a symmetric linear system, it reduces to the minimal

residual (MINRES) method [48]. The minimization problem is with the same form

as in GMRES but with Ȟk = [T T
k βk+1ek]

T , i.e.,

xk = x0 + Vkyk, yk = argmin
y

∥β1e1 − Ȟky∥2.

MINRES is applicable to both definite and indefinite systems. Similar to MINRES

approach for symmetric linear systems, there are a number of methods proposed

to minimize the norm of residual over all vectors in the Krylov subspace, such as

ORTHODIR [38], ORTHOMIN [64] and Axelsson’s method [6].

7

MINRES applies the QR factorization to transform [Hk, β1e1] into an upper

tridiagonal matrix Rk zk

0 ζ̄k+1

 ,

Then, define Wk satisfying RT
kW

T
k = V T

k , and construct an recurrence of solutions

by xk = Vkyk = WkRkyk = Wkzk = xk−1 + ζkwk. LSQR uses the same techniques for

least squares problems, which will be discussed later.

CR

The conjugate residual (CR) method [60] is another version of GMRES for an

SPD A. In this case, the residual vectors are made A-orthogonal, i.e., conjugate. The

search directions are ATA-orthogonal. The CR method is shown in Algorithm 1.6.

Since CR and MINRES both work for SPD systems as the special case of GMRES,

Algorithm 1.6 CR

1: Given an initial guess x0, set r0 = b−Ax0, s0 = Ar0, p0 = r0, ρ0 = (r0, s0), q0 = s0

2: for j = 1, 2, . . . , k do

3: αj = ρj−1/∥qj−1∥2

4: xj = xj−1 + αjpj−1

5: rj = rj−1 − αjqj−1

6: sj = Arj

7: ρj = rTk sj

8: βj = ρj/ρj−1

9: pj = rj + βjpj−1

10: qj = sj + βjqj−1

11: end for

8

they generate the same iterations on SPD systems. For nonsymmetric linear systems,

we have the generalized conjugate gradient method (GCR) [18] shown in Algorithm

1.7 which is equivalent to the full GMRES.

Algorithm 1.7 GCR

1: Given an initial guess x0, set r0 = b− Ax0, s0 = Ar0, p0 = r0, q0 = s0, ρ0 = rT0 q0

2: for j = 1, 2, . . . , k do

3: αj = ρj−1/∥qj−1∥2

4: xj = xj−1 + αjpj−1

5: rj = rj−1 − αkqj−1

6: sj = Arj

7: for i = 1, 2, . . . , j do

8: βi = sTj qi/∥qi∥2

9: pj = rj − βipi

10: qj = sj − βiqi

11: end for

12: ρj = rTj qj

13: end for

If A is not symmetric, there is an unsymmetric Lanczos process which relax

the orthogonality requirement of Vk. This leads to Bi-CG[21], an extension of CG,

and the quasi-minimum residual method (QMR) [24] which is an analog version of

MINRES. There are some related methods based on Bi-CG such as Bi-CGS [58],

Bi-CGSTAB [63] and Bi-CGSTAB(ℓ) [57].

9

1.3 Krylov Subspace Methods for Least Squares Problems

In this section, we introduce a number of Krylov subspace methods for the

matrix equation Ax = b, where A is an m-by-n square or rectangular matrix. When

m > n, we solve the least squares problem min
x

∥Ax− b∥2. This is the most common

case. In this thesis, we focus on solving overdtermined least squares problems. When

m < n, Ax = b is underdetermined.

When m > n, we also call Ax = b an overdetermined system because the

number of equations is more than unknowns. It is proved that solutions of the least

squares problem (1.2) are solutions of the normal equation [50]

ATAx = AT b, (1.10)

for which one can apply any of the Krylov subspace methods for the symmetric linear

system.

1.3.1 The Golub-Kahan process

Golub and Kahan [25] proved a matrix A ∈ Rm×n with m > n can be decom-

posed into the bidiagonal form through Householder transformations [36],

A = U

B
0

V T , UTU = Im, V TV = In,

where U = [u1, u2, · · · , um], V = [v1, v2, · · · , vn], and B is lower bidiagonal. The

Golub-Kahan process is also referred to as the Lanczos bidiagonalization [50] for a

rectangular matrix. Golub and Kahan gave an iterative version of bidiagonalization

as shown in Algorithm 1.8.

After the k-th step, we have

AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1, (1.11)

10

Algorithm 1.8 Golub-Kahan process

1: Given t and set u1 = t/ ∥t∥2 , β1 = ∥t∥2,and α1 =
∥∥ATu1

∥∥
2
, v1 = ATu1/α1

2: for j = 1, 2, . . . k do

3: q = Avj − αjuj, βj+1 = ∥q∥2 , uj+1 = q/βj+1

4: p = ATuj+1 − βj+1vj, αj+1 = ∥p∥2 , vj+1 = p/αj+1

5: end for

where

Vk = [v1, v2, · · · , vk], Uk+1 = [u1, u2, · · · , uk+1],

Bk =



α1

β2 α2

.

βk αk

βk+1


, Lk+1 = [Bk αk+1ek+1] .

The above process is equivalent to the symmetric Lanczos process working on the

matrix ATA with starting vector AT t. For given initial guess x0, let t = r0 ≡ b−Ax0,

the k-th approximate solution xk is xk = x0+Vkyk, and the residual rk can be written

as

rk = b− A(x0 + Vkyk) = r0 − AVkyk = β1u1 − Uk+1Bkyk = Uk+1(β1e1 −Bkyk).

We can tell that xk ∈ x0 + span(Vk), and span(Vk) = Kk(A
TA,AT r0). How to find

an approximate solution yk to solve Bkyk ≈ β1e1 determines different methods.

LSQR

LSQR [15] solves min
x

∥r∥2 ≡ min
y

∥β1e1−Bky∥2 by the QR factorization on the

lower bidiagonal matrix Bk, which is a similar technique as mentioned in MINRES.

11

Algorithm 1.9 is one adapted version of LSQR. At each iteration, ∥β1e1 − Bjy∥2

is minimized over a larger Krylov subspace, which implies that rj is monotonically

decreasing.

Algorithm 1.9 LSQR

1: Given initial guess x0 and set r0 = b−Ax0, β1u1 = r0, α1v1 = ATu1, w1 = v1, ϕ̄1 =

β1, ρ̄1 = α1

2: for j = 1, 2, . . . k do

3: βj+1uj+1 = Avj − αjuj

4: αj+1vj+1 = ATuj+1 − βjvj

5: ρj = (ρ̄2j + β2
j+1)

1/2

6: cj = ρ̄j/ρj

7: sj = βj+1/ρj

8: θj+1 = sjαj+1

9: ρ̄j+1 = cjαj+1

10: ϕj = cjϕ̄j

11: ϕ̄j+1 = −sjϕ̄j

12: xj = xj−1 + (ϕj/ρj)wj

13: wj+1 = vj+1 − (θj+1/ρj)wj

14: end for

12

CGLS

Mathematically, LSQR is equivalent to CG applied to the normal equation

(1.10), which is called CGLS [34, 15]. See Algorithm 1.10.

Algorithm 1.10 CGLS

1: Given an initial guess x0, set r0 = b− Ax0, S0 = AT r0, p1 = s0, ρ0 = sT0 s0

2: for j = 1, 2, . . . k do

3: qj = Apj

4: αj = ρj−1/p
T
j qj

5: xj = xj−1 + αjpj

6: rj = rj−1 − αjqj

7: sj = AT rj

8: ρj = sTj sj

9: βj = ρj/ρj−1

10: pj+1 = sj + βjpj

11: end for

LSMR

LSMR [23, 22] minimizes ∥AT r∥2 over the Krylov subspace Kk(A
TA,AT r0).

According to (1.11), the minimization can be simplified to be a subproblem

min
y

∥∥∥∥∥∥∥β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 y

∥∥∥∥∥∥∥
2

, (1.12)

where β̄k = αkβk. By applying double QR decomposition to (1.12), the approximate

solution xk is iteratively obtained as shown in Algorithm 1.11. Mathematically,

LSMR is equivalent to MINRES applied to the normal equation (1.10).

13

Algorithm 1.11 LSMR

1: Given initial guess x0 and set r0 = b−Ax0, β1u1 = r0, α1v1 = ATu1, ᾱ1 = α1, ζ̄1 =

α1β1, ρ0 = 1, ρ̄0 = 1, c̄0 = 1, s̄0 = 0, h1 = v1, h̄0 = 0

2: for j = 1, 2, . . . k do

3: βj+1uj+1 = Avj − αjuj

4: αj+1vj+1 = ATuj+1 − βjvj

5: ρj = (ᾱ2
j + β2

j+1)
1/2

6: cj = ᾱj/ρj

7: sj = βj+1/ρj

8: θj+1 = sjαj+1

9: ᾱj+1 = cjαj+1

10: θ̄j = s̄j−1ρ̄j

11: ρ̄j = ((c̄j−1ρj)
2 + θ2j+1)

1/2

12: c̄j = c̄j−1ρj/ρ̄j

13: s̄j = θj+1/ρ̄j

14: ζj = c̄j ζ̄j

15: ζ̄j+1 = −s̄j ζ̄j

16: h̄j = hj − (θ̄jρj/(ρj−1ρ̄j−1))h̄j−1

17: xj = xj−1 + (ζj/(ρj ρ̄j))h̄j

18: hj+1 = vj+1 − (θj+1/ρj)hj

19: end for

14

1.4 Preconditioning

Preconditioning [43, 61, 33, 20, 19, 10, 56, 46] is one important and popular

technique to improve the performance and reliability of Krylov subspace methods.

The term preconditioning refers to transforming a linear system (1.1) into another

system with more favorable properties to iterative methods. A preconditioner is a

matrix that conducts such a transformation. Most preconditioners are chosen to

improve the spectral properties of the coefficient matrix, such as a smaller spectral

condition number, and/or eigenvalues clustered around 1.

Given a nonsingular matrix M , a preconditioned linear system is

M−1Ax = M−1b, (1.13)

which has the same solutions as (1.1) but may be easier to solve. We callM a precon-

ditioner. There are many ways to construct preconditioners for instance, incomplete

factorization [46, 32, 66, 52, 14, 11], multilevel preconditioners [54, p. 371] [7, 8, 45]

and sparse approximate inverses [9, 41, 42, 13, 31, 12], and so on.

System (1.13) is preconditioned from the left, but it can also be preconditioned

from the right, which is usually used to precondition a least squares problem. A right

preconditioned least squares problem is written as

min
y

∥(AM−1)y − b∥2, Mx = y. (1.14)

In general, a good preconditioner M should have the following properties [50, 43],

• The preconditioned system should be easy to solve, i.e. M−1A or AM−1 should

be better conditioned than A and/or has only a few clustered singular values.

• The preconditioner should be cheap to construct and apply, i.e., equations with

matrices M and MT should be cheap to solve .

15

1.5 Overview

Chapter 2 compares some variants of GMRES and presents the heavy ball

flexible GMRES method for nonsymmetric linear systems. Chapter 3 shows a heavy

ball minimal residual method for least squares problems. In chapter 4, we propose

the flexible preconditioned iterative method for least squares problems. The corre-

sponding numerical examples of each method are shown in each chapter. We give

our conclusions in chapter 5. The notations used in this thesis are summarized in

Table 1.1.

Table 1.1: Notation

A matrix, sparse matrix or linear operator
Aij the element of matrix A at the cross of the i-th

row and the j-th column
b, p, r, t, u, v, x, y, · · · vectors
k subscript index for iteration number. E.g. xk is

the approximate solution generated at the k-th it-
eration of an iterative solver such as GMRES

ℓ superscript index for cycle number of solvers with
restarted process. E.g. x

(ℓ)
k is the approximate

solution generated at ℓ-th cycle of REGMRES with
k-steps inner iteration .

ck, sk non-identity elements in a Givens rotation
Bk (k + 1)-by-k lower bidiagonal matrix
ek the k-th column of an identity matrix
x∗ the unique solution to a nonsingular squares sys-

tem Ax = b, or more generally the pseudo-inverse
solution of a rectangular system Ax ≈ b

cond(A) condition number of the coefficient matrix A ⟨·, ·⟩ dot
prod-
uct,
i.e.,
⟨u, v⟩ =
vTu

⟨·, ·⟩M M -product, i.e., ⟨u, v⟩M = vTMu

16

CHAPTER 2

HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC LINEAR

SYSTEMS

In this chapter, we present a numerical method called the heavy ball flexible

GMRES method (HBGMRES) for the nonsymmetric linear system (1.1). HBFGM-

RES is designed to salvage the lost convergence speed of the restarted flexible GM-

RES (REFGMRES) while keep the benefit of REFGMRES in limiting memory usage

and controlling orthogonalization cost. In section 2.1, we review the restarted GM-

RES (REGMRES), the heavy ball GMRES (HBGMRES) and the flexible GMRES

(FGMRES). In section 2.2, we show the motivation of our work and derive HBFGM-

RES in theory. Numerical examples in section 2.3 demonstrate the efficiency of

HBFGMRES compared with REFGMRES.

2.1 Variants of GMRES

Let’s recall the basic idea of GMRES. Given an initial guess x0, the k-th ap-

proximate solution xk is sought so that the k-th residual rk = b− Axk satisfies

∥rk∥2 = min
z ∈Kk(A,r0)

∥b− A(x0 + z)∥2, (2.1)

where the k-th Krylov subspace of A on r0 is defined as

Kk(A, r0) = span(r0, Ar0, · · · , Ak−1r0).

Any z ∈ Kk(A, r0) can be expressed as z = Vky for some y ∈ Rk, and thus

b− Axk = r0 − Az = r0 − AVky = r0 − Vk+1Ȟky = Vk+1(βe1 − Ȟky),

17

Algorithm 2.1 (k-step) GMRES

Given any initial guess x0 ∈ Rn and an integer k ≥ 1, this algorithm computes a

generalized minimal residual solution to the linear system Ax = b.

1: r0 = b− Ax0, β = ∥r0∥2

2: V(:,1) = r0/β, Ȟ = 0(k+1)×k (the (k + 1)× k zero matrix)

3: for j = 1, 2, . . . , k do

4: f = AV(:,j)

5: Ȟ(1:j,j) = V T
(:,1:j)f , f = f − V(:,1:j)Ȟ(1:j,j)

6: Ȟ(j+1,j) = ∥f∥2

7: if Ȟ(j+1,j) > 0 then

8: V(:,j+1) = f/Ȟ(j+1,j)

9: else

10: reset k = j, Ȟ = Ȟ(1:j,1:j)

11: break

12: end if

13: end for

14: yk = arg min
y

∥βe1 − Ȟy∥2

15: return xk = x0 + Vkyk as an approximate solution to Ax = b

where the basis matrix Vk+1 and upper-Heisenberg matrix Ȟk both are generated

by the Arnoldi process as shown in (1.5) with the starting vector v1 = r0/∥r0∥2.

Therefore

min
z ∈Kk(A,r0)

∥b− A(x0 + z)∥2 = min
z ∈Kk(A,r0)

∥r0 − Az∥2 = min
y

∥βe1 − Ȟky∥2, (2.2)

18

where β = ∥r0∥2. Solving the last problem in (2.2) yields the optimal solution yopt

which in turn gives zopt = Vkyopt and finally the k-step GMRES solution is given by

[30, 55]

xk = x0 + zopt = x0 + Vkyopt. (2.3)

For convenience and consistence in this chapter, we outline the k-step version of

GMRES in Algorithm 2.1.

2.1.1 Restarted GMRES

For large scale linear systems, GMRES can be very expensive for large k. Heavy

memory cost is demanded for storing all basis vectors vj, and the orthogonalization

cost in computing vj increases quadratically in k. So restarted GMRES [55] is natu-

rally born. We denote it by REGMRES(k) which attempts to control memory usage

and orthogonalization cost by fixing k and repeatedly iterating the k-step GMRES

with the current initial guess x
(ℓ)
0 being the very previous k-step GMRES solution.

The frame work is sketched in Algorithm 2.2 which includes inner iterations at Line

6 and outer cycle indexed by ℓ.

By limiting the number k of Arnoldi steps in REGREMES(k), possibly heavy

memory burden and computation cost is successfully alleviated. However, it may

cause severe degradation in convergence behavior because the loss of information

when we restart the iteration from scratch its hard to maintain orthogonality against

vectors weve thrown away As we know, the larger k is, the more accurate solutions

are. This means the ℓ-th solution x
(ℓ)
k is always no better than the solution returned

by ℓk-step GMRES in the sense that

∥b− Ax
(ℓ)
k ∥2 ≥ ∥b− Ax

(1)
ℓk ∥2.

19

But we don’t know how much worse it could be. So finding a way to narrow down

the gap between the above two residuals is worth a try.

Algorithm 2.2 REGMRES(k)

Given any initial guess x
(1)
0 ∈ Rn and an integer k ≥ 1, this algorithm computes an

approximate solution to the linear system Ax = b via the restarted GMRES.

1: r
(1)
0 = b− Ax

(1)
0

2: for ℓ = 1, 2, . . . , do

3: if ∥r(ℓ)0 ∥2 ≤ tol× (∥A∥1∥x(ℓ)
0 ∥2 + ∥b∥2) then

4: break

5: else

6: call Algorithm 2.1 with input x
(ℓ)
0 and k, and let x

(ℓ)
k be the returned

approximation

7: x
(ℓ+1)
0 = x

(ℓ)
k

8: r
(ℓ+1)
0 = b− Ax

(ℓ+1)
0

9: end if

10: end for

11: return x
(ℓ)
0 as the computed solution to Ax = b

20

2.1.2 Heavy Ball GMRES

As shown in Algorithm 2.2, the initial guess for the current GMRES cycle is the

approximate GMRES solution of the very previous cycle, which completely ignores

all the Krylov subspaces built in the previous cycles for the purpose of cost control

in memory and flops. Based on this observation, Imakura, Li, and Zhang proposed

the heavy ball GMRES method (HBGMRES) [37] . The so-called heavy ball method

[49, p. 65] is the one:

x(ℓ+1) = argmin
s,t

f(x(ℓ) + t∇f(x(ℓ)) + s(x(ℓ) − x(ℓ−1))),

drawing its name from the motion of a “heavy ball” in a potential field under the

force of friction. The heavy ball method is a kind of multi-step methods. It brings

in more information of the previous cycles by just including the difference of last

two approximate solutions, which is considered to be sufficient to bring history in-

formation before x(ℓ) into current search to make up the lost of previous search

spaces. Therefore, the search space of every HBGMRES cycle is extended to be

Kk(A, r
(ℓ)
0)+ span(x

(ℓ)
0 −x

(ℓ−1)
0). The framework of HBGMRES is presented in Algo-

rithm 2.3.

21

Algorithm 2.3 HBGMRES(k)

Given any initial guess x
(1)
0 ∈ Rn and an integer k ≥ 1, this algorithm computes an

approximate solution to the linear system Ax = b via the heavy ball GMRES.

1: r
(1)
0 = b− Ax

(1)
0 , x

(0)
0 = 0

2: for ℓ = 1, 2, . . . , do

3: if ∥r(ℓ)0 ∥2 ≤ tol× (∥A∥1∥x(ℓ)
0 ∥+ ∥b∥2) then

4: break

5: else

6: compute

x
(ℓ)
k = x

(ℓ)
0 + arg min

z ∈Kk(A,r
(ℓ)
0)+span(x

(ℓ)
0 −x

(ℓ−1)
0)

∥b− A(x
(ℓ)
0 + z)∥2 (2.4)

7: x
(ℓ+1)
0 = x

(ℓ)
k

8: r
(ℓ+1)
0 = b− Ax

(ℓ+1)
0

9: end if

10: end for

11: return x
(ℓ)
0 as the computed solution to Ax = b

Algorithm 2.4 Arnoldi process for (2.5)

1: Given initial guess x0, set r0 = b− Ax0, β = ∥r0∥2 and v1 = r0/β

2: for j = 1, 2, . . . , k do

3: V(:,1) = v1, Ȟ = 0(k+1)×ℓ (the (k + 1)× k zero matrix)

4: zj = M−1V(:,j)

5: f = Azj

6: Ȟ(1:j,j) = V T
(:,1:j)f , f = f − V(:,1:j)Ȟ(1:j,j)

7: Ȟ(j+1,j) = ∥f∥2

8: V(:,j+1) = f/Ȟ(j+1,j)

9: end for
22

2.1.3 Flexible GMRES

Flexible GMRES is a variant of the GMRES algorithm presented by Saad [53]

in 1993. Given a nonsingular matrix M , the right preconditioned linear system is

AM−1(Mx) = b. (2.5)

The Arnoldi process can be modified to work for (2.5) as shown in Algorithm 2.4.

The blue parts show the modification from the original Arnoldi process. After the k-

th iteration, the approximate solution is xk = x0+M−1Vkyk, where yk = min
y ∈Rk

∥βe1−

Ȟky∥2. It’s clear that the search Krylov subspace is

Kk(AM
−1, r0) = span

(
r0, AM

−1r0, ..., (AM
−1)k−1r0

)
.

In every iteration of the Arnoldi process, we don’t explicitly form M−1, but

solve a linear system like Mz = v. We don’t require the exact z but an approximate

solution solving by any linear solver within a given tolerance. This means that

the preconditioner M is not “constant” but allowed to vary from one to another

in the outer iteration, which inspires the main idea of the flexible GMRES. The

flexible GMRES selects different M for each Arnoldi iteration by defining zi = M−1
i vi

and solving Mizi = vi in the inner iteration. After the k-th outer iteration, the

approximate solution is xk = x0 + Zkyk, where yk = arg min
y

∥βe1 − Ȟy∥2. The

blue part in Algorithm 2.5 shows the difference from Algorithm 2.4. Another similar

Krylov subspace method with inner-outer iteration is GMRESR [17] which consists

of GCR as the outer iteration and GMRES as the inner iteration. For FGMRES,

if the inner linear system is chosen to be Az = v, i.e. M−1 is an approximate of

A−1, and applying GMRES as the inner solver, FGMRES and GMRESR can obtain

different but comparable solutions of the original linear system [65]. In what follows,

we will present a heavy ball flexible GMRES (HBFGMRES), inspired by HBGMRES

and FGMRES.

23

Algorithm 2.5 Flexible GMRES

Given any initial guess x0 ∈ Rn and an integer ℓ ≥ 1, this algorithm computes an

approximate solution to the linear system Ax = b via FGMRES.

1: r0 = b− Ax0, β = ∥r0∥2 and v1 = r0/β

2: for j = 1, 2, . . . , k do

3: V(:,1) = v1, Ȟ = 0(k+1)×k (the (k + 1)× k zero matrix)

4: zj = M−1
j V(:,j)

5: f = Azj

6: Ȟ(1:j,j) = V T
(:,1:j)f f = f − V(:,1:j)Ȟ(1:j,j)

7: Ȟ(j+1,j) = ∥f∥2

8: if Ȟ(j+1,j) > 0 then

9: V(:,j+1) = f/Ȟ(j+1,j)

10: else

11: reset k = j, Ȟ = Ȟ(1:j,1:j)

12: break

13: end if

14: end for

15: Zk = [z1, · · · , zk]

16: yk = arg min
y

∥βe1 − Ȟy∥2

17: return xk = x0 + Zkyk as the computed solution to Ax = b

2.2 Motivation and Main Idea

In Table 2.1, we list the numbers of flops for GMRES and its variants we

introduced in section 2.1, where (MV) is the number of flops by one matrix-vector

multiplication with A. We take it to be twice the number of nonzeros entries in A.

For FGMRES, we choose the inner solver to be m-step GMRES. For simplicity, only

24

the leading terms of flops by three major actions within each inner iteration are kept:

matrix-vector multiplications, orthogonalization, and solutions of the reduced least

squares problems.

Table 2.1: Flops of GMRES Variants

GMRES of k-steps (k + 1)(MV)+2k2n+ 4k2

per cycle of REGMRES(k) (k + 1)(MV)+2k2n+ 4k2

per cycle of HBGMRES(k) (k + 2)(MV)+2(k + 2)2n+ 4(k + 1)2

FGMRES of k-steps (k +m+ 2)(MV)+2(k2 +m2)n+ 4(k2 +m2)

We compare the restarted GMRES, heavy ball GMRES and flexible GMRES

with a comparable computation cost. Our numerical examples in Figure 2.1 show

that FGMRES has the best performance among all. So it’s more meaningful to

optimize FGMRES.

From Algorithm 2.5 and Table 2.1, we can see that as k increases, FGMRES

requires more orthogonalization cost and memory for zk and Vk. In addition, the

orthogonality of Vk may be lost in FGMRES which will slow down the convergence in

a way. Similarly to GMRES, the restarted FGMRES can be implemented to control

the memory usage and reorthogonalization cost of Vk by fixing k. Meanwhile, in order

to make up the slow convergence in FGMRES, we can include more Krylov subspace

information of previous cycles by adding the difference of two previous solutions to

extend the search space, i.e., another direct application of the heavy ball idea. We

call this new method the heavy ball flexible GMRES (HBFGMRES).

25

Figure 2.1: FGMRES vs. HBGMRES vs. REGMRES for cavity16
and chipcool0

26

2.3 Heavy Ball FGMRES Method

Suppose that we apply a certain m-step solver to solve the inner linear system

Mivi = zi. In the k-step restarted FGMRES (REFGMRES), the solution can be

expressed as

x
(ℓ)
k = x

(ℓ)
0 + Zkyk ∈ x

(ℓ)
0 + span (Zk).

Add xd = x
(ℓ)
0 − x

(ℓ−1)
0 to the search space span (Zk). The solution can be written as

x
(ℓ)
k = x

(ℓ)
0 + Zkyk + αxd.

Then, the ℓ-th residual becomes

r
(ℓ)
k = b− Ax

(ℓ)
k

= r
(ℓ)
0 − Vk+1Ȟyk − αAxd.

(2.6)

Denote by p = Axd. If p = 0, this case is exactly the restarted FGMRES. We

assume p ̸= 0. Now we orthogonalize p against Vk+1 , and define

d = V T
k+1p, h = p− Vk+1d.

Case 1 h ̸= 0

This is the most generic and common case. Define

v̌k+2 = h/∥h∥2, V̌k+2 = [Vk+1 v̌k+2].

We have

r
(ℓ)
k = r

(ℓ)
0 − Vk+1Ȟyk − αAxd

= r
(ℓ)
0 − Vk+1Ȟyk − α(v̌k+2∥h∥2 + Vk+1d)

= r
(ℓ)
0 − V̌k+2

Ȟ d

0 ∥h∥2


yk
α

 .

27

By solving the following least squares problem

min
y,α

∥∥∥∥∥∥∥βe1 −
Ȟ d

0 ∥h∥2


y
α


∥∥∥∥∥∥∥
2

, (2.7)

where β = ∥r(ℓ)0 ∥2, we can obtain the optimal yk and αopt to form the approximate

solution x
(ℓ)
k that satisfies

x
(ℓ)
k − x

(ℓ)
0 ∈ span(Zk) + span(xd)

in each cycle.

Case 2 h = 0

In this case, we have

∥h∥2 = 0 and Axd = Vk+1d.

Then

r
(ℓ)
k = r

(ℓ)
0 − Vk+1Ȟyk − αAxd

= r
(ℓ)
0 − Vk+1Ȟyk − α(Vk+1d)

= r
(ℓ)
0 − Vk+1

[
Ȟ d

]yk
α

 .

We need to solve

min
y,α

∥∥∥∥∥∥∥βe1 −
[
Ȟ d

]y
α


∥∥∥∥∥∥∥
2

. (2.8)

The details of HBFGMRES is shown in Algorithm 2.6.

28

Algorithm 2.6 Heavy Ball FGMRES

Given any initial guess x0 ∈ Rn and dimension k ≥ 1 of the Krylov subspace. This

algorithm computes an approximate solution to the linear system Ax = b via the

heavy ball FGMRES.

1: r
(1)
0 = b− Ax

(1)
0 , β = ∥r(1)0 ∥0 and v1 = r

(1)
0 /β

2: for ℓ = 1, 2, . . . , do

3: if ∥r(ℓ)0 ∥2 ≤ tol× (∥A∥1∥x(ℓ)
0 ∥2 + ∥b∥2) then

4: break

5: else

6: V(:,1) = v1, Ȟ = 0(k+1)×k (the (k + 1)× k zero matrix)

7: for j = 1, 2, . . . , k do

8: zj = M−1
j V(:,j)

9: f = Azj

10: Ȟ(1:j,j) = V H
(:,1:j)f , f = f − V(:,1:j)Ȟ(1:j,j)

11: Ȟ(j+1,j) = ∥f∥2

12: end for

13: Zk = [z1, · · · , zk]

14: (yk, α) is the solution of (2.7) or (2.8)

15: x
(ℓ+1)
0 = x

(ℓ)
0 + Zkyk + αxd

16: end if

17: end forreturn x
(ℓ)
0 as a computed solution to Ax = b

29

2.4 Numerical Experiments

We present several numerical tests to compare the restarted FGMRES (RE-

FGMRES) and the heavy ball FGMRES (HBFGMRES). The error measurement is

the normalized residual defined as

NRes =
∥r∥2

∥A∥1 × ∥x∥2 + ∥b∥2
.

Numerical results show NRes against cycles. Test matrices are taken from SuiteS-

parse Matrix Collection [2] and Matrix Market [1]. Each comes with a right-hand

side b. Table 2.2 lists 8 testing examples and their characteristic, where n is the size

of matrix, nnz is the number of nonzero entries, and sparsity is nnz/n2. These are

representatives of our numerical examples.

Table 2.2: Testing Matrices

matrix n nnz sparsity application

cavity10 2597 76367 0.0113 computational fluid dynamics
cavity16 4562 137887 0.0066 computational fluid dynamics
comsol 1500 97645 0.0434 structural problem
chipcool0 20082 281150 6.9715e-04 model reduction problem
flowmeter5 9669 67391 7.2084e-04 computational fluid dynamics
e20r0000 4241 131413 0.0073 computational fluid dynamics
e20r0100 4241 131413 0.0073 computational fluid dynamics
sherman3 5005 20033 7.9972e-04 computational fluid dynamics

In order to fairly compare algorithms and make it easy to understand, we use

the following testing scenarios:

• We run REFGMRES(k + 1) and HBFGMRES(k) in order to best illustrate

convergence against cycle indices. Here are two considerations for this choice.

One is to make sure that all approximate solutions at a cycle are computed from

a subspace of dimension k+1: span(x0)+ span(Zk+1) for REFGMRES(k+1),

30

and span(x0) + span(Zk) + span(xd) for HBFGMRES(k). Secondly, we want

to align the costs per cycle for both algorithms.

• In FGMRES, M−1
i is a flexible preconditioner which changes for each iteration.

IfM−1
i is a flexible approximate of A−1, then it might be a good preconditioner.

Based on this idea, we choose to solve Az = v by m-step GMRES to construct

a preconditioner to approximate A−1, i.e., using a degree (m − 1) polynomial

Pm(A) [26] to approximate A−1. Of course, other solvers mentioned in chapter

1 can be also used to solve Az = v.

Numerical results of testing examples are listed in Table 2.3. For each matrix,

we ran different k and m. Table 2.3 lists the number of cycles needed by algorithms

to achieve NRes less than or equal to 10−12. In the table, RE and HB stand for RE-

FGMRES and HBFGMRES. The table clearly demonstrates huge savings achieved

by HBFGMRES over REFGMRES.

We also plot Figures 2.2–2.9 to show how NRes in computed solutions moves

against the cycle index. All figures can give us an impression as how each algorithm

behaves. Together with Table 2.3, we make the following observations.

• HBFGMRES is faster than REFGMRES for certain k and m.

• There is little difference in the number of cycles with always reorthogonaliza-

tion or selective reorthogonalization. For HBFGMRES, the number of cycles

is smaller for most of the examples. These two points make selective reorthog-

onalziation a better choice for cost consideration.

31

Table 2.3: Number of Cycles

matrix
always reorth selective reorth
RE HB RE HB

cavity10 107 38 110 38
cavity16 179 183 216 142
comsol 37 17 55 15

chipcool0 70 21 66 21
flowmeter5 433 333 458 330
e20r0000 400 14 639 14
e20r0100 47 13 54 14
sherman3 249 42 248 44

32

Figure 2.2: NRes vs. cycle for cavity10. Top : selective reorthogonalization;
Bottom : always reorthogonalization

33

Figure 2.3: NRes vs. cycle for cavity16. Top : selective reorthogonalization;
Bottom : always reorthogonalization

34

Figure 2.4: NRes vs. cycle for comsol. Top : selective reorthogonalization; Bottom :
always reorthogonalization

35

Figure 2.5: NRes vs. cycle for chipcool0. Top : selective reorthogonalization;
Bottom : always reorthogonalization

36

Figure 2.6: NRes vs. cycle for flowmeter5. Top : selective reorthogonalization;
Bottom : always reorthogonalization

37

Figure 2.7: NRes vs. cycle for e20r0000. Top : selective reorthogonalization;
Bottom : always reorthogonalization

38

Figure 2.8: NRes vs. cycle for e20r0100. Top : selective reorthogonalization;
Bottom : always reorthogonalization

39

Figure 2.9: NRes vs. cycle for sherman3. Top : selective reorthogonalization;
Bottom : always reorthogonalization

40

CHAPTER 3

HEAVY BALL MINIMAL RESIDUAL METHOD FOR LEAST SQUARES

PROBLEMS

Inspired by the heavy ball GMRES (HBGMRES) [37] method for nonsymmet-

ric linear systems, which successfully integrates the heavy ball method and GMRES

[55], we proposed the heavy ball minimal residual method (HBMR). HBMR utilizes

the restart technique to combine the LSMR method with the heavy ball method.

In section 3.1, the derivation of HBMR is shown. In section 3.2, we mathemati-

cally derive HBMR. Section 3.3 shows the pseudo-code of the extended LSMR for

solving the new subproblem arising in HBMR. Numerical experiments in section 3.4

illustrates that our method works often better than LSMR. The backward error [40]

results indicate HBMR is numerically stable.

3.1 Motivation and Main Idea

Let’s review the overdetermined least squares problem (LS)

min
x

∥Ax− b∥2 , (3.1)

where A ∈ Rm×n,m > n, b ∈ Rm and x ∈ Rn. We denote the residual vector by

r = b− Ax.

Let E = {b−Ax|x ∈ Rn}. This set is non-empty, closed and convex. So there

exists a unique global minimum point in E. This means there exists x ∈ Rn such

that min
x

∥b− Ax∥2 is minimized, but x is not unique when A is not full column rank.

41

Lemma 3.1.1. [50] Let S = {x ∈ Rn|min = ∥b− Ax∥2} be the set of solutions, and

let rx = b− Ax denote the residual for a specific x. Then

x ∈ S ⇐⇒ AT rx = 0 ⇐⇒ rx ⊥ R(A),

where R(A) represents the range of A.

From lemma 3.1.1, we know that the solutions of LS are the same as the

solutions of the normal equation

ATAx = AT b. (3.2)

This suggests two ways for solving a least squares problem. One is directly applying

all well-known methods to (3.2) such as CG and MINRES. Another way is finding new

methods to solve (3.2) such as LSQR by minimizing ∥r∥2 and LSMR by minimizing

∥AT r∥2. As introduced in chapter 1, the Golub-Kahan bidiagonalization process

partially reduces the matrix A into a lower bidiagonal matrix Bk by following iterative

process:

βk+1uk+1 = Avk − αkuk and αk+1vk+1 = ATuk+1 − βk+1vk,

where β1u1 = r0, β1 = ∥r0∥2, α1v1 = ATu1, and α1 = ∥ATu1∥2. After k steps, we

have

AVk = Uk+1Bk, ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1.

Given u1 = b/∥b∥2, LSMR seeks the optimal approximate solutions of (3.1)

over the Krylov subspace

Kk(A
TA,ATu1) = span

(
ATu1, A

TA(ATu1), · · · , (ATA)k−1(ATu1)
)
, (3.3)

with the starting vector ATu1, which is the same as the subspace span(Vk).

Theoretically, when the iteration number k is n, the optimal approximation

over the subspace Kn(A
TA,ATu1) is the exact solution of LS. However, in practice

42

we cannot get the global optimal approximate solution as expected due to rounding

errors [35, 16] and the loss of orthogonality of Vk, which slows the convergence. If

reorthogonalizing vj+1 with vi, i = 1, 2, . . . , j in every iteration, it will cost too much

storage of memory in keeping all the previous vectors vi as well as computations

of reorthogonalization. A good way to cope with these shortcomings is to use a

restarted process.

Simple restarting strategy ignores the information of previous Krylov sub-

spaces. Inspired by the heavy ball GMRES method [37], we apply the heavy ball

idea to the restarted LSMR to make up this problem so as to accelerate convergence.

In summary, we use the restarted Golub-Kahan process to control the memory

and reorthogonalization cost by fixing k. Let ℓ be the index of the restarted process.

At the same time, in each cycle we keep some information of the approximate solution

x
(ℓ)
k and x

(ℓ−1)
k from the previous two cycles.

3.2 Heavy Ball Minimal Residual Method

Given initial guess x0, denote by r0 = b − Ax0. Write the solution of normal

equation (3.2) x as x = x0 +∆x. Then

AT r = AT (b− Ax) = AT (r0 − A∆x).

Apply the k-step Golub-Kahan process to approximate x with x
(ℓ)
k at each cycle

ℓ = 1, 2, That is

x
(ℓ)
k = x

(ℓ)
0 +∆x,

where x
(ℓ)
0 = x

(ℓ−1)
k .

Denote by r
(ℓ)
0 = b− Ax

(ℓ)
0 . Solve for ∆x:

∆x = argmin
z

∥∥∥AT
(
r
(ℓ)
0 − Az

)∥∥∥
2
.

43

The optimization is done over the Krylov subspace Kk

(
ATA,AT û1

)
, where û1 =

r
(ℓ)
0 /∥r(ℓ)0 ∥2. The solution of the restarted LSMR x

(ℓ)
k satisfies

x
(ℓ)
k − x

(ℓ)
0 ∈ Kk

(
ATA,AT û1

)
.

Extend this subspace by adding the vector xd ≡ x
(ℓ)
0 − x

(ℓ−1)
0 . The optimal solution

x
(ℓ)
k of HBMR is in

x
(ℓ)
0 +Kk

(
ATA,AT û1

)
+ span (xd) .

Therefore

x
(ℓ)
k = x

(ℓ)
0 + Vkyk + αxd.

For simplicity, we still use Vk, Uk+1, Bk, αk , and βk to denote the corresponding

matrices and vectors after the k-step Golub-Kahan process with starting vector û1 =

r
(ℓ)
0 /∥r(ℓ)0 ∥2. For every cycle, we have

AT r(ℓ) = AT b− ATAx
(ℓ)
k

= AT b− ATA
(
x
(ℓ)
0 + Vkyk + αxd

)
= AT r

(ℓ)
0 − ATAVkyk − ATAαxd

= AT r
(ℓ)
0 − Vk+1

 BT
k Bk

αk+1βk+1e
T
k

 yk − αATAxd.

Assume ATAxd ̸= 0. We orthogonalize ATAxd against Vk+1 to define

ĥ = V T
k+1A

TAxd, ĝ = ATAxd − Vk+1ĥ.

We need to consider if ĝ ̸= 0 or not. That is testing if ∥ĝ∥2 ≤ tol× ∥ĥ∥2.

Case ĝ ̸= 0:

This is the most generic and common case. In this case we set

δ̂ = ∥ĝ∥2, v̂k+2 = ĝ/δ̂.

44

Then we have

AT r
(ℓ)
k = AT r

(ℓ)
0 − Vk+1

 BT
k Bk

αk+1βk+1e
T
k

 yk − αATAxd

= β1α1v1 −
[
Vk+1 v̂k+2

]
 BT

k Bk

αk+1βk+1e
T
k

 ĥ

0 δ̂


yk
α



=

[
Vk+1 v̂k+2

]α1β1e1 −


 BT

k Bk

αk+1βk+1e
T
k

 ĥ

0 δ̂


yk
α


 .

Because of the orthogonality of [Vk+1 v̂k+2], we obtain a new subproblem

min
x

∥∥AT r
∥∥
2
= min

y,α

∥∥∥∥∥∥∥∥∥∥
α1β1e1 −


 BT

k Bk

αk+1βk+1e
T
k

 ĥ

0 δ̂


y
α


∥∥∥∥∥∥∥∥∥∥

Case ĝ = 0:

In this case, we have xd ∈ Kk

(
ATA,AT û

(ℓ)
1

)
, û

(ℓ)
1 = r

(ℓ)
0 /∥r(ℓ)0 ∥2. Thus

x
(ℓ)
k − x

(ℓ)
0 ∈ Kk

(
ATA,AT û

(ℓ)
1

)
+ span (ĝ)

= Kk

(
ATA,AT û

(ℓ)
1

)
.

So the subproblem becomes

min
x

∥∥AT r
∥∥
2
= min

y,α

∥∥∥∥∥∥∥α1β1e1 −


 BT

k Bk

αk+1βk+1e
T
k

 ĥ


y
α


∥∥∥∥∥∥∥
2

.

We outline the framework of HBMR in Algorithm 3.1.

45

Algorithm 3.1 HBMR

1: Given initial guess x
(ℓ)
0 ∈ Rn, ℓ = 1, tol=10e-12, and integer k ≥ 1. Set x

(0)
0 = 0

2: r
(ℓ)
0 = b− Ax

(ℓ)
0

3: while
∥∥∥AT r

(ℓ)
0

∥∥∥
2
> tol× ∥A∥1 × ∥r(ℓ)0 ∥2 do

4: compute

x
(ℓ)
k = argmin

x

∥∥AT r
∥∥
2

over

x
(ℓ)
0 +Kk

(
ATA,AT û1

)
+ span

(
x
(ℓ)
0 − x

(ℓ−1)
0

)
5: x

(ℓ+1)
0 = x

(ℓ)
k

6: r
(ℓ+1)
0 = b− Ax

(ℓ+1)
0

7: ℓ = ℓ+ 1

8: end while

9: return x
(ℓ)
0

3.3 Pseudo-code of Extended LSMR

In this part, we show how to modify LSMR for solving the generic subproblem

in HBMR:

min
x

∥∥AT r
∥∥
2
= min

y,α

∥∥∥∥∥∥∥∥∥∥
α1β1e1 −


 BT

k Bk

αk+1βk+1e
T
k

 ĥ

0 δ̂


y
α


∥∥∥∥∥∥∥∥∥∥
2

= min
y,α

∥∥∥∥∥∥∥∥∥∥
β̄1e1 −


BT

k Bk

β̄k+1e
T
k

 ĥ

0 δ̂


y
α


∥∥∥∥∥∥∥∥∥∥
2

,

where β̄1 = α1β1 and β̄k = αkβk.

46

As in LSQR, we form the QR factorization of Bk as

Qk+1Bk =

Rk

0

 , Rk =



ρ1 θ2

ρ2
. . .

. . . θk

ρk


.

Then BT
k Bk = RT

kRk. Because Bk is lower bidiagonal, Qk+1 can be efficiently com-

puted by Givens rotations [16]. At the k-th iteration, construct the Givens rotation

working on rows l and l + 1 of Bk:

Pl =



Il−1

cl sl

−sl cl

Ik−l


, l = 1, 2, . . . , k.

So Qk+1 = Pk · · ·P2P1.

Solve RT
k qk = β̄k+1ek for qk. We have qk = (β̄k+1/ρk)ek = ϕkek, with ϕk =

β̄k+1/ρk. Then as in LSMR we perform the QR factorization of

 RT
k

ϕke
T
k

,

Q̄k+1

 RT
k β̄1e1

ϕke
T
k 0

 =

R̄k zk

0 ξ̄k+1

 and R̄k =



ρ̄1 θ̄2

ρ̄2
. . .

. . . θk

ρ̄k


,

47

where Q̄k+1 = P̄k · · · P̄2P̄1 and P̄l is defined similarly to Pl. We define tk = Rky.

Then

min
y,α

∥∥∥∥∥∥∥∥∥∥
β̄1e1 −


BT

k Bk

β̄k+1e
T
k

 ĥ

0 δ̂


y
α


∥∥∥∥∥∥∥∥∥∥
2

= min
y,α

∥∥∥∥∥∥∥∥∥∥
β̄1e1 −


RT

kRk

qTk Rk

 ĥ

0 δ̂


y
α


∥∥∥∥∥∥∥∥∥∥
2

= min
y,α

∥∥∥∥∥∥∥∥∥∥
β̄1e1 −


RT

k

qTk

 ĥ

0 δ̂


Rky

α


∥∥∥∥∥∥∥∥∥∥
2

.

Denote by

Q̂k+1 =

Q̄k+1 0

0 1

 .

So

Q̂k+1


β̄1e1

0

0

 =


Q̄k+1

β̄1e1

0


0

 =


zk

ξ̄k+1

0

 ,

and

Q̂k+1


 RT

k

ϕke
T
k

 ĥ

0 δ̂

 =


R̄k

0

 Q̄k+1ĥ

0 δ̂

 .

Because Q̂k+1 is orthogonal, the subproblem can be simplified as

min
t,α

∥∥∥∥∥∥∥∥∥∥


zk

ξ̄k+1

0

−


R̄k

0

 Q̄k+1ĥ

0 δ̂


 t

α


∥∥∥∥∥∥∥∥∥∥
2

,

48

where t and y are related by t = Rky. Denote by Q̄k+1ĥ = (ĥ11, ĥ12, . . . , ĥ1,k+1)
T ≡

(ĥT
k , ĥ1,k+1)

T . Now, we form the last Givens rotation P̂k+1 to eliminate δ. We have

P̂k+1

Q̄k+1ĥ

δ

 = P̂k+1


ĥk

ĥ1,k+1

δ

 =


ĥk

h̃1,k+1

0

 .

and

P̂k+1


zk

ξ̄k+1

0

 =


zk

ξ̂k+1

ξ̂k+2

 ,

Therefore, the subproblem becomes

min
t,α

∥∥∥∥∥∥∥∥∥∥


zk

ξ̂k+1

ξ̂k+2

−


R̄k ĥk

0 h̃1,k+1

0 0


 t

α


∥∥∥∥∥∥∥∥∥∥
2

.

Finally, the subproblem is solved by choosing t and α from zk

ξ̂k+1

 =

R̄k ĥk

0 h̃1,k+1


 t

α

 . (3.4)

From the above equation, we find

α = ξ̂k+1/h̃1,k+1 and R̄kt = zk − αĥk.

49

Denote by tk the solution of (3.4), and by yk the corresponding one in Rkyk = tk. Let

Wk and W̄k be computed by forward substitution from RT
kW

T
k = V T

k and R̄T
k W̄

T
k =

W T
k . The k-th solution can be written as

xk = x0 + Vkyk + αxd

= x0 +WkRkyk + αxd

= x0 +Wktk + αxd

= x0 + W̄kR̄ktk + αxd

= x0 + W̄kzk − α(W̄kĥk − xd).

So we can still update solution xk iteratively as in LSMR. Based on what we have

shown, we give the pseudocode of the extended LSMR in Algorithm 3.2. The blue

parts in Algorithm 3.2 show the difference from LSMR.

50

Algorithm 3.2 Pseudo-code of Extended LSMR

1: Given initial guess x0 and set r0 = b−Ax0, β1u1 = r0, α1v1 = ATu1, ᾱ1 = α1, ζ̄1 =

α1β1, ρ0 = 1, ρ̄0 = 1, c̄0 = 1, s̄0 = 0, h1 = v1, h̄0 = 0

2: g0 = AT (Axd), t0 = −xd, h11 = vT1 g0, g = g0 − h11v1

3: for k = 1, 2, . . . do

4: βk+1uk+1 = Avk − αkuk

5: αk+1vk+1 = ATuk+1 − βkvk

6: ĥ1,k+1 = vTk+1g0, g = g − vk+1ĥ1,k+1

7: ρk = (ᾱ2
k + β2

k+1)
1/2

8: ck = ᾱk/ρk, sk = βk+1/ρk

9: θk+1 = skαk+1, ᾱk+1 = ckαk+1

10: θ̄k = s̄k−1ρ̄k, ρ̄k = ((c̄k−1ρk)
2 + θ2k+1)

1/2

11: c̄k = c̄k−1ρk/ρ̄k, s̄k = θk+1/ρ̄k

12: ζk = c̄kζ̄k, ζ̄k+1 = −s̄kζ̄k

13: tp = ĥ1k, ĥ1k = c̄ktp + s̄kĥ1,k+1, ĥ1,k+1 = −s̄ktp + c̄kĥ1,k+1

14: h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

15: xk = xk−1 + (ζk/(ρkρ̄k))h̄k

16: hk+1 = vk+1 − (θk+1/ρk)hk

17: tk = tk−1 + (ĥ1k/(ρkρ̄k))h̄k

18: δ = ∥g∥2, tp = ĥ1,k+1, ĥ1,k+1 = (δ2 + ĥ2
1,k+1)

1/2

19: c = tp/ξ̂k+1, ξ̂k+1 = cξ̄k+1, α = ξ̂k+1/ĥ1,k+1

20: xk = xk − αtk

21: end for

51

3.4 Numerical Experiments

In this section, we will discuss numerical experiments in three aspects: re-

orthogonalization, backward error and comparsion of HBMR and LSMR.

3.4.1 Reorthogonalization

First, let’s introduce one error assessment to measure the performance of a

method for LS, named normalized residual (NRes) defined as below:

NRes =
∥AT (Ax− b)∥2

∥A∥1(∥A∥1∥x∥2 + ∥b∥2)
,

where using ∥A∥1 is for its easiness in computation. NRes will be shown against the

number of iterations for different cases in our test.

Theoretically, both Vk and Uk are orthonormal matrices in the Golub-Kahan

process. However, the orthogonality of both matrices may not be preserved because

of rounding errors. First, we want to test the influence of orthogonality of Uk on

convergence of LSMR. We compare the convergence of LSMR in three cases: no

reorthogonalization of Uk or Vk, only full reorthogonalizing Vk, and full reorthogo-

nalizing both Uk and Vk. Table 3.1 lists all test coefficient matrices of least squares

problems drawing from Matrix Market [1]. In our test, we set the right-hand vector

b to be 1/2 ∗ (1, 1, · · · , 1)T ∈ Rm for matrices 1-3. For matrices 4-6, we use their

original right-hand sides b. Figure 3.1 shows the results of NRes against iterations for

all examples in Table 3.1 with the stopping criteria ||AT rk||2 ≤ tol× ||A||1 × ||rk||2.

When NRes is less than 10e-12, Table 3.2 lists the number of iterations of three

cases: no reorthogonalization (no reorth), only reorthogonalizing Vk (full reorth Vk)

and reorthogonalizing both Vk and Uk (full reorth Vk and Uk). From both tables, we

can tell two observations:

52

• The orthogonality of Vk and Uk do effect the speed of convergence, i.e., the

convergence of LSMR can be accelerated by reorthogonalization of Vk to some

extent.

• The convergence of LSMR by reorthogonalizing both Uk and Vk is the same as

just reorthogonalizing Vk. Therefore, we just need to reorthogonalize Vk.

Table 3.1: Testing Matrices for Reorthogonalization

ID matrix m n nnz cond(A)

1 abb313 313 176 1557 5.0762e+17
2 ash292 292 2920 22082 1.3610e+18
3 ash85 85 85 523 463.7463
4 e50r0000 236 236 5847 1.5699e+073
5 e20r0100 4241 4241 13143168 9.5925e+10
6 illc1850 1850 712 8636 5.7897e+06

Table 3.2: Number of Iterations for LSMR

matrix no reorth full reorth Vk full reorth Vk & Uk

abb313 137 93 93
ash292 1108 290 290
ash85 192 86 86

e50r0000 187 122 122
e20r0100 53 35 35
illc1850 80 54 54

53

Figure 3.1: NRes vs. iteration for abb313 and ash292

54

Figure 3.2: NRes vs. iteration for ash85 and e05r0000

55

Figure 3.3: NRes vs. iteration for e20r0100 and illc1850

56

3.4.2 Backward Error

The normwise backward error measures the perturbation to A that would make

an approximation solution x an exact least squares solution

µ(x) = min
δA

∥δA∥F s.t. x = argmin
z

∥b− (A+ δA)z∥2.

µ(x) can be explicitly expressed by [35, p, 393] [40]:

µ(x) = min

{
∥r∥2
∥x∥2

, σmin[A B]

}
, B =

∥r∥2
∥x∥2

(
I − rrT

∥r∥22

)
.

Since it’s expensive to evaluate µ(x), we consider the approximate optimal backward

error [62, 40] µ̃:

K =

 A

||r||2
||x||2 × I

 , v =

r
0

 , min
y

||Ky − v||2, µ̃ (x) =
||Ky||2
||x||2

.

Backward error is an important assessment to measure the accuracy of a method for

least squares problems [62, 40, 59]. Often we regard that smaller the backward error

is, more accurate the approximate solution is. In addition, the backward error can

estimate the run-time stability of one algorithm. In our test, we show the relative

approximate optimal backward error E1= µ̃/∥A∥1.

3.4.3 Comparison of HBMR and LSMR

The data in Table 3.3 comes from the website of SuiteSparse Matrix Collection

[2]. Each comes with their right-hand sides b. We compared LSMR, restarted LSMR

and HBMR. The stopping criteria is: if ||AT rk||2 ≤ tol × ||A||1 × ||rk||2, where

tol=10e-12.

57

Table 3.3: Testing Matrices

matrix m n nnz cond(A)
lp 80bau3b 12061 2262 23264 567.2253
lp brandy 303 220 2202 Inf
lp pilot ja 2276 940 14977 2.5307e+08
lp e226 472 223 2768 9.1322e+03

In order to fairly compare algorithms and make it easy to understand, we use

the following testing scenarios:

• We run the restarted LSMR (k + 1) (RELSMR) and HBMR (k) in order to

best illustrate convergence against the iteration indices. For LSMR (k/2),

we reorthogonalize v(k/2+1) with previous k/2 vi’s in each iteration when i >

k/2. There are two considerations for this choice. One is to make sure that

for RELSMR and HBMR, all approximate solutions at one cycle are com-

puted from a subspace of dimension k + 1, i.e., span(x0) + span(Vk+1) for

REFGMRES(k+1), and span(x0)+span(Zk)+span(xd) for HBLSMR(k). Sec-

ondly, we want to align the costs per iteration for LSMR(k/2), RELSMR(k+1)

and HBMR(k). The x-axis shows the iteration index of LSMR. Since RELSMR

and HBMR involves inner iterations, in order to fairly compare all three algo-

rithm, we plot the number of iterations index of LSMR, and total numbers of

inner iterations involved in all the cycles of RELSMR and HBMR, respectively.

• The stopping criteria is either NRes is less than or equal to 10e-12 or the

number of iterations exceeds 3000.

From Figures 3.4–3.7, we can tell some general observations:

• The relative residuals of all examples shows that LSMR with partial reorthog-

onalization of Vk converges faster than the one with no reorthogonalization.

This observation confirms that the loss of orthogonality of Vk can slow down

58

the convergence of LSMR and partial reorthogonalization is necessary to speed

up the convergence.

• The relative residual is monotonically decreasing for all methods. Figures 3.4–

3.7 show that with the comparable computational cost, HBMR converges faster

to a smaller relative residual compared to restarted LSMR and LSMR.

• The approximate optimal backward error displays a similar pattern as the

normalized residual. HBMR is a stable method according to the results of

backward error. Also, we can see that HBMR has the smallest approximate

optimal backward error. This means HBMR gives the most accurate solutions

among all methods.

59

Figure 3.4: Results of lp 80bau3b. Top : NRes vs. iteration; Bottom : E1 vs.
iteration

60

Figure 3.5: Results of lp e226. Top : NRes vs. iteration; Bottom : E1 vs. iteration

61

Figure 3.6: Results of lp pilot ja. Top : NRes vs. iteration; Bottom : E1 vs.
iteration

62

Figure 3.7: Results of lp brandy. Top : NRes vs. iteration; Bottom : E1 vs. iteration

63

CHAPTER 4

FLEXIBLE PRECONDITIONED ITERATIVE METHOD FOR LEAST

SQUARES PROBLEMS

In this chapter, we propose a flexible preconditioned iterative method for least

squares problems. In this method, an outer-inner iteration is built to constuct

changable preconditioners. In section 4.1, we explain our motivation and main idea

of our method. In section 4.2, we introduce the right preconditioned least squares

problem, factorization-free LSMR (MLSMR) with details, and perform some theoret-

ical analysis. In section 4.3, we integrate our flexible preconditioners with MLSMR

to give flexible preconditioned LSMR (FMLSMR). In section 4.4, we show some

numerical examples to illustrate the efficiency of our method.

4.1 Motivation and Main Idea

Krylov subspace techniques have been viewed as general-purpose iterative

methods, especially since the popularization of preconditioning techniques in 1970s.

Based on the Golub-Kahan bidiagonalization process [25], both LSQR [15] and LSMR

[23] are iterative methods that seek approximate solutions xk in the Krylov subspace

Kk

(
ATA,AT b

)
. Because of lack of effective preconditioners, LSQR and LSMR can

become stagnated as the iterations progress for certain problems. Therefore, applying

good preconditioners in LSQR and LSMR is necessary to speed up the convergence.

In this chapter, we mainly focus on optimizing LSMR, and the similar techniques

can be also applied to LSQR.

64

There are many ways to construct specific preconditioners for specific prob-

lems, such as incomplete LU [54], incomplete QR [45], and preconditioners based on

perturbed QR factorizations [5]. But it’s not straightforward to determine whether

or not a given preconditioner is suitable for the problem at hand. If not, one may

attempt other possible preconditioners and switch periodically among them.

It is desirable to be able to switch within the outer iteration instead of restart-

ing. This is the main idea of the flexible GMRES [53] proposed by Saad in 1993.

In the flexible GMRES, one linear system needs to be approximately solved in the

inner iteration. Different solvers for this inner iteration can result in different pre-

conditioners in each outer iteration. In 2015, Morikuni and Hayami presented an

inner-iteration GMRES method [47] for least squares problems. This method in-

volves solving normal-type equations in the form of ATAv = p by some station-

ary iterative methods. In this chapter, we combine the above two ideas to form a

flexible preconditioner iterative method by using non-stationary methods to solve

normal-type equations in the inner iteration that yield different preconditioners in

the Golub-Kahan bidiagonalization process.

4.2 Preconditioned Least Squares Problem

The right preconditioned least squares problem is as follows

min
x̂

∥∥AL−1x̂− b
∥∥
2
, x = L−1x̂, (4.1)

which is equivalent to the split preconditioned normal equation

L−TATAL−1x̂ = L−TAT b. (4.2)

65

Recall that the Golub-Kahan process with t = b iteratively transforms [b A]

to the upper-bidiagonal form [β1e1 Bk], where

Bk =



α1

β2 α2

.

βk αk

βk+1


.

After the k-th step, we have

AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1,

where Vk+1 = [v1, v2, · · · , vk], Uk+1 = [u1, u2, · · · , uk], and Lk+1 = [Bk αk+1ek+1].

Both Vk+1 and Uk+1 are orthonormal. Applying Algorithm 1.8 to the preconditioned

least squares problem (4.1), we have

q = AL−1vk − αkuk, βk+1 = ∥q∥2, uk+1 = q/βk+1, (4.3a)

p = L−TATuk+1 − βk+1vk, αk+1 = ∥p∥2, vk+1 = p/αk+1. (4.3b)

Define M = LTL and ṽk+1 = L−1vk+1. Pre-multiplying both sides of (4.3b) by L−1,

we have αk+1ṽk+1 = M−1ATuk+1 − βk+1ṽk. We know αk+1 = ⟨p, p⟩ 1
2 . To compute

⟨p, p⟩, we notice

⟨p, p⟩ = ⟨L−TATuk+1 − βk+1vk, L
−TATuk+1 − βk+1vk⟩

= ⟨L−TATuk+1 − βk+1vk, L
−TATuk+1⟩ − ⟨L−TATuk+1 − βk+1vk, βk+1vk, ⟩

= ⟨L−TATuk+1, L
−TATuk+1⟩ − 2⟨βk+1vk, L

−TATuk+1⟩+ ⟨βk+1vk, βk+1vk⟩.

66

By the definition of the M -inner product, we have

⟨L−TATuk+1, L
−TATuk+1⟩ = uT

k+1AL
−1L−TATuk+1

= uT
k+1AM

−1ATuk+1

= ⟨ATuk+1, A
Tuk+1⟩M−1

= ⟨M−1ATuk+1,M
−1ATuk+1⟩M ,

⟨βk+1vk, L
−TATuk+1⟩ = βk+1u

T
k+1AL

−1vk

= βk+1u
T
k+1Aṽk = βk+1u

T
k+1AM

−TMṽk

= ⟨M−TATuk+1, βk+1ṽk⟩M ,

⟨βk+1vk, βk+1vk⟩ = ⟨βk+1Lṽk, βk+1Lṽk⟩

= βk+1ṽ
T
k L

TLβk+1ṽk = βk+1ṽ
T
k Mβk+1ṽk

= ⟨βk+1ṽk, βk+1ṽk⟩M .

Therefore,

⟨p, p⟩ = ⟨M−1ATuk+1,M
−1ATuk+1⟩M − 2⟨M−TATuk+1, βk+1ṽk⟩M + ⟨βk+1ṽk, βk+1ṽk⟩M

= ⟨M−1ATuk+1 − βk+1ṽk,M
−1ATuk+1 − βk+1ṽk⟩M .

Denote by s = M−1ATuk+1 − βk+1ṽk. So (4.3) can be written as

βk+1uk+1 = Aṽk − αkuk,

s = M−1ATuk+1 − βk+1ṽk,

αk+1 = ⟨s, s⟩
1
2
M ,

ṽk+1 = s/αk+1.

Define p̃ = Mṽk and s̃ = ATuk+1 − βk+1p̃. Because

M−1s̃ = M−1ATuk+1 −M−1βk+1p̃

= M−1ATuk+1 − βk+1ṽk,

67

s can be written as s = M−1s̃ and αk+1 = ⟨s, s⟩
1
2
M = sMs = sMM−1s̃ = ⟨s, s̃⟩ 1

2 .

Then the k-th step of the Golub-Kahan process is

βk+1uk+1 = Aṽk − αkuk,

s̃ = ATuk+1 − βk+1p̃,

s = M−1s̃,

αk+1 = ⟨s, s̃⟩
1
2 ,

ṽk+1 = s/αk+1.

(4.4)

In the (k + 1)-th step, we define p̃ = Mṽk+1 similarly as in the k-th step. Since

ṽk+1 = s/αk+1 and s = M−1s̃, we have

p̃ = Mṽk+1 = Ms/αk+1

= MM−1s̃/αk+1

= s̃/αk+1

Use p̃ and ṽk+1 to replace s̃ and s, respectively. Therefore, an computational cost

saving version of preconditioned Golub-Kahan bidiagonalization process can be sum-

marized as

βk+1uk+1 = Aṽk − αkuk,

p̃ = ATuk+1 − βk+1p̃,

ṽk+1 = M−1p̃,

αk+1 = ⟨ṽk+1, p̃⟩
1
2 ,

ṽk+1 = ṽk+1/αk+1,

p̃ = p̃/αk+1.

(4.5)

As we can see in (4.3), for a given preconditioner L, we need to solve two linear

systems of the form Lv = u and LTv = u. However, in (4.5), we only need to deal

68

with one inner linear system Ms = s̃ and don’t need to factorize the preconditioner

M . This is the so-called factorization-free preconditioner [4].

After the k-step preconditioned Golub-Kahan process, instead of having

AL−1Vk = Uk+1Bk, (4.6)

L−TATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1, (4.7)

we have

AṼk = Uk+1Bk, (4.8)

M−1ATUk+1 = ṼkB
T
k + αk+1ṽk+1e

T
k+1. (4.9)

It’s easy to see that Uk+1 is orthonormal, while Ṽk+1 isn’t. For the preconditioned

least squares problem (4.1), LSMR seeks the approximation solutions x̂k in the sub-

space span(Vk), i.e. x̂k = Vkŷk, where ŷk is the vector we need to find. Because of

(4.8), the residual of the preconditioned normal equation (4.2) can be written as

L−TAT rk = L−TAT (b− AL−1x̂k) = L−TAT (b− AL−1Vkŷk)

= L−TAT (b− Uk+1Bkŷk) = L−TAT b− L−TATUk+1Bkŷk

= β̄1v1 − Vk+1

BT
k Bk

β̄k+1e
T
k

 ŷk

= Vk+1

β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ŷk

 ,

where β̄1 = α1β1 and β̄k = αkβk. So

min
x̂

∥∥L−TAT r
∥∥
2
= min

ŷ

∥∥∥∥∥∥∥β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ŷ

∥∥∥∥∥∥∥
2

.

69

The last equality holds because of Vk+1 is orthonormal. The doubl QR factorization

in LSMR can still be used to solve the following subproblem

ŷk = argmin
ŷ

∥∥∥∥∥∥∥β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ŷ

∥∥∥∥∥∥∥
2

.

Therefore solution of the original least squares problem can be approximated by

xk = L−1x̂k = L−1Vkŷk = Ṽkŷk

which means we can avoid solving xk = L−1x̃k to get the solution of the precondi-

tioned least squares problem. This technique and the preconditioned Golub-Kahan

process (4.5) give rise to the factorization-free LSMR (MLSMR) method in Algo-

rithm 4.1

70

Algorithm 4.1 factorization-free preconditioned LSMR (MLSMR)

1: Initialization:

2: β1u1 = b, p̃ = ATu1, ṽ1 = M−1p̃, α1 = ⟨ṽ1, p̃⟩1/2, p̃ = p̃/α1, ṽ1 = ṽ1/α1

3: ᾱ1 = α1, ξ̄1 = α1β1, ρ0 = ρ̄0 = c̄0 = 1, s̄0 = 0, h1 = ṽ1, h̄0 = 0, x0 = 0

4: for k = 1, 2, . . . , do

5: βk+1uk+1 = Aṽk − αkuk

6: p̃ = ATuk+1 − βk+1p̃

7: ṽk+1 = M−1p̃, αk+1 = ⟨ṽk+1, p̃⟩1/2

8: p̃ = p̃/αk+1

9: ṽk+1 = ṽk+1/αk+1

10: ρk = (ᾱ2
k + β2

k+1)
1/2

11: ck = ᾱk/ρk

12: sk = βk+1/ρk, θk+1 = skαk

13: ᾱk+1 = ckαk+1

14: θ̄k = s̄k−1ρk

15: ρ̄k = ((c̄k+1ρk)
2 + θ2k+1)

1/2

16: c̄k = c̄k−1ρk/ρ̄k

17: s̄k = θk+1/ρ̄k

18: ξk = c̄kξk, ξ̄k = −s̄kξ̄k

19: h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

20: xk = xk−1 + (ξk/(ρkρ̄k))h̄k

21: hk+1 = ṽk+1 − (θk+1/ρk)hk

22: if ∥AT rk∥2 ≤ tol∥A∥1(∥b∥2 + ∥A∥1∥xk∥2) then

23: break

24: end if

25: end for

71

Theorem 4.2.1. At the k-th step of MLSMR,

xk ∈ Kk(M
−1ATA,M−1AT b) = L−1Kk(L

−TATAL−1, L−TAT b).

Proof Applying LSMR to the split preconditioned normal equation (4.2), we

find the approximate solution xk satisfies

xk ∈ span(L−1Vk) = L−1Kk(L
−TATAL−1, L−TAT b).

According to the preconditioned Golub-Kahan bidiagonalization process (4.5), we have

β1u1 = b, α1ṽ1 = M−1ATu1,

βk+1uk+1 = Aṽk − αkuk, αk+1ṽk+1 = M−1ATuk+1ṽk − βk+1ṽk.

This means xk = span(Ṽk) = Kk(M
−1ATA,M−1AT b). Therefore

xk ∈ L−1Kk(L
−TATAL−1, L−TAT b) = Kk(M

−1ATA,M−1AT b),

as was to be shown.

Theorem 4.2.2. Ṽk+1 is M-orthonormal.

Proof Based on the Golub-Kahan bidiagonalization process, we know both Uk+1

and Vk+1 are orthonormal, that is UT
k+1Uk+1 = Ik+1 and V T

k+1Vk+1 = Ik+1. We know

Ṽk+1 = L−1Vk+1, which implies

Ik+1 = V T
k+1Vk+1 = Ṽ T

k+1L
TLṼk+1 = Ṽ T

k+1MṼk+1 = ⟨Ṽk+1, Ṽk+1⟩M ,

i.e., Ṽk+1 is M-orthonormal.

4.3 Flexible Preconditioned Iterative Method

In MLSMR, if M = ATA and M−1 can be exactly calculated with no rounding

error, x1 is the exact solution of normal equation (1.10). But it’s impractical to

72

exactly compute (ATA)−1, therefore an approximate inverse of ATA has to be used.

This means we can solve

ATAṽk = p̃ (4.10)

to get M−1
k as an approximate of (ATA)−1 in inner iterations. If choosing stationary

methods such as Jacobi and SOR-type methods to solve (4.10), we can actually

obtain an fix preconditioner M as mentioned in section 4.1. However, applying

non-stationary methods like CG and GMRES can give us M−1
k , i.e., changeable

preconditioners in each iteration. For any given non-stationary inner solver, as ṽk

and the right-hand side p̃ change in every iteration, M−1
k changes. Algorithm 4.2

outlines the flexible preconditioned LSMR method (FMLSMR). In FMLSMR, the

Algorithm 4.2 Flexible MLSMR

1: Initialization:

2: β1u1 = b, p̃ = ATu1, ṽ1 = M−1
1 p̃, α1 = ⟨ṽ1, p̃⟩1/2, p̃ = p̃/α1, ṽ1 = ṽ1/α1

3: ᾱ1 = α1, ξ̄1 = α1β1, ρ0 = ρ̄0 = c̄0 = 1, s̄0 = 0, h1 = ṽ1, h̄0 = 0, x0 = 0

4: for k = 1, 2, . . . , do

5: βk+1uk+1 = Aṽk − αkuk

6: p̃ = ATuk+1 − βk+1p̃

7: ṽk+1 = M−1
k+1p̃, αk+1 = ⟨ṽk+1, p̃⟩1/2

8: p̃ = p̃/αk+1

9: ṽk+1 = ṽk+1/αk+1

10: Steps 10-24 as in Algorithm 4.1

11: end for

73

approximate solution xk is sought in span(Ṽk), not in Kk(M
−1ATA,M−1AT b) any

more. After the k-th step, we have

AṼk = Uk+1Bk,

ATUk+1 = [M1ṽ1,M2ṽ2, · · · ,Mk+1ṽk+1]



α1 β2

α2 β3

.

. . . βk+1

αk+1


= [M1ṽ1,M2ṽ2, · · · ,Mk+1ṽk+1]L

T
k+1.

Let x = Ṽkỹ. ∥AT r∥2 can be expressed as follows,

∥∥AT r
∥∥
2
=

∥∥AT b− ATAx
∥∥
2
=

∥∥AT b− ATUk+1Bkỹ
∥∥
2

=

∥∥∥∥∥∥∥AT b− [M1ṽ1, · · · ,Mk+1ṽk+1]

 BT
k Bk

αk+1βk+1e
T
k

 ỹ

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥[M1ṽ1, · · · ,Mk+1ṽk+1] (β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ỹ)

∥∥∥∥∥∥∥
2

≤ ∥[M1ṽ1, · · · ,Mk+1ṽk+1]∥2

∥∥∥∥∥∥∥β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ỹ

∥∥∥∥∥∥∥
2

.

In our flexible preconditioned LSMR (FMLSMR) method, we solve the sub-

problem as below

min
ỹ

∥∥∥∥∥∥∥β̄1e1 −

BT
k Bk

β̄k+1e
T
k

 ỹ

∥∥∥∥∥∥∥
2

.

74

As we can see, the approximate solution xk = Ṽkỹk formed by the minimizer ỹk of the

above subproblem is also a good approximate solution of the original least squares

problem (1.2) when ∥ [M1ṽ1, · · · ,Mk+1ṽk+1] ∥2 is not too big.

Similarly, we can have flexible factorization-free LSQR with the following in-

equality

∥r∥2 = ∥b− Ax∥2 =
∥∥∥b− AṼkỹ

∥∥∥
2
= ∥b− Uk+1Bkỹ∥2

= ∥Uk+1(β1e1 −Bkỹk)∥2 ≤ ∥Uk+1∥2 ∥β1e1 −Bkỹk∥2 .

When ∥Uk+1∥2 is not too big, ṽk+1ỹk is a good approximate solution of (1.2).

4.4 Numerical Experiments

Table 4.1 lists the number of flops for LSMR and FMSLMR with the l-step

GMRES as the inner solver, where (MV) is the number of flops by one matrix-vector

multiplication with A or AT . We take it to be twice the number of nonzero entries

in A. For simplicity, we only keep the leading terms in flops by the two major

actions in each iteration: matrix-vector multiplications and solutions of the inner

linear systems. Table 4.2 shows the information of all test matrices with right-hand

vectors which are drawn from SuiteSparse Matrix Collection [2] .

Table 4.1: Flops for LSMR Variants

per iteration of LSMR 2(MV)
per iteration of FMLSMR(GMRES(l)) (2l + 3)(MV)+2l2n+ 4l2

We present several numerical experiments to compare LSMR and FMLSMR

with GMRES as the inner solver. Comparisons will be done in two aspects:

75

Table 4.2: Testing Matrices

ID matrix m n nnz sparsity

1 lp cre a 7248 3516 18168 7.1291e-04
2 lp cre b 77137 9648 260785 3.5041e-04
3 lp cre c 6411 3068 15977 8.1230e-04
4 lp greenbea 5598 2392 31070 0.0023
5 lp ken 11 21349 14694 49058 1.5638e-04
6 lp maros 1966 846 10137 0.0061
7 lp pilot 4860 1441 44375 0.0063
8 lp osa 07 25067 1118 144812 0.0052

• Normalized residual (NRes)

NRes =
∥AT (Ax− b)∥2

∥A∥1(∥A∥1∥x∥2 + ∥b∥2)

against the number of iterations for each methods in Table 4.2, where using

∥A∥1 is for its easiness in computation.

• Approximate backward error. We use the approximate backward error [59]

Ê = −rrTA

∥r∥22
, ∥Ê∥2 =

∥AT r∥2
∥r∥2

.

In our test, we show the relative approximate backward error ∥Ê∥/∥A∥1, de-

noted by nrmAr/(nrmr*nrmA) in figures. As we mentioned in chapter 3, the

backward error can estimate the accuracy and stability of a method for least

squares problem. Often we regard that smaller the backward error is, more

accurate the approximate solution is.

In our numerical experiments, the inner iteration (4.10) is solved by the l-

step GMRES. For each matrix, we ran different l-step GMRES. Since Ṽk is not

orthonormal in FMLSMR, we don’t have to reorthogonalize Ṽk. Table 4.3 lists The

number of iterations needed by both algorithms when NRes ≤ 10e-12, except for

76

those marked by “-” which means that the maximum number 5000 of iterations is

exceeded without satisfying the stopping criteria.

Table 4.3: Number of Iterations

ID matrix LSMR FMLSMR

1 lp cre a - -
2 lp cre b - 666
3 lp cre c - 2149
4 lp greenbea 2471 451
5 lp ken 11 537 46
6 lp maros 3316 217
7 lp pilot 2581 450
8 lp osa 07 68 9

We display all the figures to show how NRes and relative approximate backward

errors in the computed solutions move against the iteration index. Here are some

observations we got from the figures and Table 4.3.

• Figures 4.1–4.4 show that the relative residual decreases for both LSMR and

FMLSMR. Together with Table 4.3, we can see FMLSMR converges faster than

LSMR for all examples. For lp cre a, both LSMR and FLSMRM cannot reach

the stopping criteria, but FMLSMR has a smaller NRes than LSMR at every

iteration. For lp cre b and lp cre c, FMLSMR converges to 10e-12 at certain

iterations, while LSMR doesn’t. For Examples 4-8, the number of iterations

needed to get NRes≤ 10e-12 by FMLSMR is much smaller than by LSMR.

• Figures 4.5–4.8 show the relative approximate backward errors of all examples.

The results have almost similar patterns as relative residuals. We can see that

∥ÊFMLSMR∥ ≤ ∥ÊLSMR∥ almost always, which means for the same numbers

of iterations, FMLSMR computes more accurate solutions than LSMR.

77

• We show part of the enlarged view results for lp cre b in Figure 4.9. For

FMLSMR, NRes and ∥ÊFMLSMR∥ decreases not monotonically but oscillat-

ingly. For the rest of examples, we have the similar discovery.

• In Figure 4.10, we show the results for lp pilot with different l for inner solver

GMRES. As we can see, as l gets larger, the iterations needed for FMLSMR is

getting smaller. Similar observation can be seen in other examples. This can be

explained by the fact that the greater l is, the better (ATA)−1 is approximated,

which returns the more accurate solution xk.

78

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-12

10-10

10-8

10-6

10-4

10-2

100

N
R

es

lp_cre_a

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

N
R

es

lp_cre_b

LSMR
FMLSMR_GMRES(30)

Figure 4.1: NRes vs. iteration for lp cre a and lp cre b

79

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-12

10-10

10-8

10-6

10-4

10-2

100

N
R

es

lp_cre_c

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

10-2

N
R

es

lp_greenbea

LSMR
FMLSMR_GMRES(10)

Figure 4.2: NRes vs. iteration for lp cre c and lp greenbea

80

0 100 200 300 400 500 600

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

N
R

es

lp_ken_11

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000 3500

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

N
R

es

lp_maros

LSMR
FMLSMR_GMRES(30)

Figure 4.3: NRes vs. iteration for lp ken 11 and lp maros

81

0 10 20 30 40 50 60 70

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

10-2

N
R

es

lp_osa_07

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000

iteration #

10-14

10-12

10-10

10-8

10-6

10-4

10-2

N
R

es

lp_pilot

LSMR
FMLSMR_GMRES(20)

Figure 4.4: NRes vs. iteration for lp pilot and lp osa 07

82

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_cre_a

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-10

10-8

10-6

10-4

10-2

100

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_cre_b

LSMR
FMLSMR_GMRES(30)

Figure 4.5: Relative Approximate Backward Error vs. iteration for lp cre a and
lp cre b

83

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration #

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_cre_c

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500

iteration #

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_greenbea

LSMR
FMLSMR_GMRES(10)

Figure 4.6: Relative Approximate Backward Error vs. iteration for lp cre c and
lp greenbea

84

0 100 200 300 400 500 600

iteration #

10-10

10-8

10-6

10-4

10-2

100

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_ken_11

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000 3500

iteration #

10-6

10-5

10-4

10-3

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_maros

LSMR
FMLSMR_GMRES(30)

Figure 4.7: Relative Approximate Backward Error vs. iteration for lp ken 11 and
lp maros

85

0 10 20 30 40 50 60 70

iteration #

10-8

10-7

10-6

10-5

10-4

10-3

10-2

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_osa_07

LSMR
FMLSMR_GMRES(30)

0 500 1000 1500 2000 2500 3000

iteration #

10-10

10-8

10-6

10-4

10-2

nr
m

A
r/

(n
rm

A
*n

rm
r)

lp_pilot

LSMR
FMLSMR_GMRES(20)

Figure 4.8: Relative Approximate Backward Error vs. iteration for lp osa 07 and
lp pilot

86

Figure 4.9: Enlarged view of results for lp cre b. Top : NRes vs. iteration; Bottom :
Relative Approximate Backward Error vs. iteration

87

Figure 4.10: Results of different l-step GMRES solving inner iteration for lp pilot.
Left : NRes vs. iteration; Right : Relative Approximate Backward Error vs. itera-
tion

88

CHAPTER 5

SUMMARY

5.1 Contributions

In this thesis, we show different techniques to optimize certain Krylov subspace

methods for linear systems and least squares problems. We summary our contribu-

tions as follows:

• In chapter 2, we presented a heavy ball flexible GMRES method to solve non-

symmetric linear systems. This method is a combination of the heavy ball

method and the flexible GMRES method to save memory storage and orthog-

onalization cost as well as making up slow convergence.

• In chapter 3, we proposed a heavy ball minimal residual method to solve least

squares problems. This method combines the heavy ball method and LSMR.

Our numerical results show that HBMR works better for some examples com-

pared to restarted LSMR and LSMR.

• In chapter 4, we reviewed MLSMR and presented some theoretical analysis

for MLSMR. By building an inner-outer iteration in MLSMR, we proposed a

flexible preconditioned iterative method (FMLSMR) for least squares problems.

The numerical results show faster convergence and more accurate solutions of

FMLSMR than LSMR.

5.2 Future Work

We summarize several potential ideas for the future research.

89

• In chapters 3 and 4, we introduced the approximate optimal backward error

and the approximate backward error to estimate the backward error, repec-

tively. In our numerical tests, we found that the approximate backward error

is not monotonically decreasing for some examples, while the approximate op-

timal backward error has the same pattern as backward error for all the testing

examples. So how to distinguish which one we need to use is a question. An-

other question is how to find an efficient way to accurately compute backward

error instead of using some approximate backward error.

• In chapter 4, we introduce an inner iteration to the Golub-Kahan process by

solving an normal-type equation ATAv = p. Numerical experiments show

that this technique works well in the flexible factorization-free LSMR. So we

are wondering is that possible to apply this techique to some methods for

underdetermine or regularized least squares problems? Or can we try to apply

FMLSMR to saddle point problems [39] or other types of least squares problems

like total least squares and constrained least squares problems [50]?

90

REFERENCES

[1] Matrix market, https://doi.org/https://math.nist.gov/MatrixMarket/.

[2] Suitesparse matrix collection, https://doi.org/https://sparse.tamu.edu/.

[3] W. Arnoldi, The principle of minimized iterations in the solution of the matrix

eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[4] S. R. Arridge, M. M. Betcke, and L. Harhanen, Iterated preconditioned

LSQR method for inverse problems on unstructured grids, Inverse problem, 36

(2015), pp. 225–250.

[5] H. Avron, E. NG, and S. Toledo, Using perturbed QR factorizations to

solve linear least squares problems, SIAM J. Matrix Anal. Appl., 31 (2009),

pp. 674–963.

[6] O. Axelsson, Conjugate gradient type-method for unsymmetric and inconsisi-

tent systems, Linear Algebra Appl., 29 (1980), pp. 1–16.

[7] O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning meth-

ods, I,, Numer. Math., 56 (1989), pp. 157–177.

[8] O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning meth-

ods, II,, SIAM J. Numer. Anal., 27 (1990), pp. 1569–1590.

[9] M. W. Benson and P. O. Erederickson, Iterative solution of large sparse

linear systems arising in certain multimensional approximation problems, Util-

itas Math., 22 (1982), pp. 127–140.

[10] M. Benzi, Preconditioning techniques for leage linear systems: a survey, Jour-

nal of Computational Physics, 182 (2002), pp. 418–477.

91

[11] M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite and

nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333–1353.

[12] M. Benzi and M. Tåuma, A comparative study of sparse approximate inverse

preconditioners, Appl. Numer. Math., 30 (1999), pp. 305–340.

[13] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse

iterations, SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[14] P. Concus, G. H. Golub, and G. Meurant, Block preconditioning for the

conjugate gradient method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220–

252.

[15] C. C.Paige and M. A. Saunders, LSQR: An algorithm for sparse lin-

ear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982),

pp. 43–71.

[16] J. W. Demmel, Applied Nmerical Linear Algebra, SIAM, Philadephia, 1997.

[17] H. A. V. der Vorst and C. Vuik, GMRESR: a family of nested GMRES

methods, Numer. Linear Algebra Appl., (1994), pp. 369–386.

[18] S. C. Eisenstat, H. C. Elman, and H. H. Schultz, Variational iterative

methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal.,

20 (1983), pp. 345–357.

[19] D. J. Evans, The use of pre-conditioning in iterative methods for solving linear

equations with symmetric positive definite matrices, J. Inst. Math. Appl., 4.

[20] D. K. Faddeev and V. N. Faddeeva, Computational mothods for linear

algebra, Freeman and Company, San Fransisco, 1956.

[21] R. Fletcher, Conjugate gradient methods for indefinite systems, Journal of

Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[22] D. C. Fong, Minimum-Rsidual Methods for Sparse Least-Squares Using Golub-

Kahan Bidiagonalization, PhD thesis, Stanford University, Stanford, MA, 2011.

92

[23] D. C. Fong and M. A. Saunders, LSMR: an iterative algorithm for sparse

least-squares problems, SIAM J. Sci. Comput., 33 (2011), pp. 2950–2971.

[24] R. W. Freund and N. M. Nachtigal, QMR: a quasi minimal residual

method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–

339.

[25] G.Golub and W.Kahan, Calculating the singular values and pseduo-inverse

of a matrix, SIAM J. Numer. Anal. Ser. B, 8 (1965), pp. 205–224.

[26] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, SIAM,

Philadephia, 2009.

[27] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins,

Baltimore, 4th ed., 2013.

[28] J. Grcar, How ordinary elimination became gaussian elimination, Historica

Mathematica, 38 (2011), pp. 163–218.

[29] J. Grcar, How ordinary elimination became gaussian elimination, Notice of

the AMS, 58 (2011), pp. 782–792.

[30] A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philade-

phia, 1997.

[31] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approxi-

mate inverse, SIAM J. Sci. Comput., 18 (1997), pp. 838–853.

[32] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978),

pp. 142–156.

[33] M. R. Hestenes, The conjugate-gradient method for solving linear systems, in:

Sympos. Appl. Math., Numerical Analysis, Vol. VI, McGraw-Hill, New York,

1956, pp. 83–102.

93

[34] M. R. Hestenes and E. Stiefe, Methods of conjugate gradients for solving

linear systemsl, Journal of Research of the National Bureau of Standards, 49

(1952), pp. 409–436.

[35] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philade-

phia, 2nd ed., 2002.

[36] A. S. Householder, Unitary triangularization of a nonsymmetric matrix,

Journal of the ACM, 5 (1958), pp. 339–342.

[37] A. Imakura, R. C. Li, and S. L. Zhang, Locally optimal and heavy ball

GMRES methods, Japan J. Indust. Appl. Math., 33 (2016), pp. 471–499.

[38] K. C. Jea and D. M. Young, Generalized conjugate-gradient acceleration of

nonsymmetrizable iterative methods, Linear Algebra Appl., 20 (1980), pp. 159–

194.

[39] G. Karaduman, Numerical Solution of Saddle Point Problems by Projection,

PhD thesis, University of Texas at Arlington, Arlington, TX, 2017.

[40] R. Karlson and B. Waldén, Estimation of optimal backward pertubation

bounds for the linear least squares problem, BIT, 34 (1997), pp. 862–869.

[41] L. Y. Kolotilina and A. Y. Yeremin, On a family of two-level precondi-

tionings of the incomplete block factorization type, Soviet J. Numer. Anal. Math.

Modelling, 1 (1986), pp. 293–320.

[42] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate in-

verse preconditionings I, Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–

58.

[43] C. Lanczos, Chebyshev polynomials in the solution of large-scale linear sys-

tems, Toronto Symposium on Computing Techniques, (1952), pp. 124–133.

[44] C. Lanczos, Solution of systems of linear equations by minimized iterations,

J. Res. Nat. Bur. Standards, 49 (1952), pp. 33–53.

94

[45] N. Li and Y. Saad, MIQR: A mutilevel incomplete QR preconditioner for

large sparse least-squares problems, SIAM J. Matrix Anal. & Appl., 28 (2006),

pp. 524–550.

[46] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for

linear systems of which the coefficient matrix is a symmetric M-matrix, Math.

Comp., 31 (1977), pp. 148–162.

[47] K. Morikuni and K. Hayami, Convergence of inner-iteration GMRES meth-

ods for rank-deficient least squares problems, SIAM J. Sci. Comput., 36 (2015),

pp. 225–250.

[48] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of

linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[49] B. T. Polyak, Introduction to optimization, Optimization Software, New York,

1987.

[50] Å. Björck, Numerical methods for least squares problems, SIAM, Philadephia,

1996.

[51] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems,

Mathematics of Computation, 37 (1981), pp. 105–126.

[52] Y. Saad, Preconditioning techniques for indefinite and nonsymmetric linear

systems, J. Comput. Appl. Math., 24 (1988), pp. 89–105.

[53] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci.

Comput., 14 (1993), pp. 461–469.

[54] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadephia,

2nd ed., 2003.

[55] Y. Saad and M. H. Schultz, GMRES: a generalized minimum residual al-

gorithm for solving nonsymmetric linear systems, SIAM J. Sci. and Statist.

Comput., 7 (1986), pp. 856–869.

95

[56] Y. Saad and H. A. van der Vorst, Iterative solution of linear systems in

the 20th century, J. Comput. and Appl. Math., 123 (2000), pp. 1–33.

[57] G. L. G. Sleijpen and D. R. Fokkema, BICGSTAB(ℓ) for linear equations

involving unsymmetric matrices with complex spectrum, ETAN, 1 (1993), pp. 11–

32.

[58] P. Sonnoveld, CGS: a fast Lanczos-type olver for nonsymmetric linear sys-

tems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36–52.

[59] G. W. Stewart, Research development and LINPACL, in Mathematical Soft-

ware III, J. R. Rice, ed., Academic Press, 1977, pp. 1–14.

[60] E. Stiefel, Relaxationsmethoden bester strategie zur lösung linearer, Journal

of Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[61] E. L. Stiefel, Kernel polynomials in linear algebra and their applications, U.

S. Nat. Bur. Standards Appl. Math. Ser., 49 (1958), pp. 1–24.

[62] Z. Su, Computational Methods for Least Squares Problems and Clinical Trials,

PhD thesis, Stanford University, Stanford, CA, 2005.

[63] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant

of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist.

Comput., 13 (1992), pp. 631–644.

[64] P. K. W. Vinsome, ORTHOMIN: an iterative method solving sparse sets of si-

multaneous linear equations, Proceedings of the Fourth Symposium on Reservoir

Simulation, Society of Petroleum Enjineers of AIME, 1976, pp. 149–159.

[65] C. Vuik, New insights in GMRES-like methods with variable preconditioners,

Journal of Computational and Applied Mathematics, 61 (1999), pp. 189–204.

[66] J. W. Watts, A conjugate gradient truncated direct method for the iterative

solution of the reservoir simulation pressure equation, Soc. Petroleum Eng. J.,

21 (1981), pp. 345–353.

96

[67] D. M. Young, Iterative Methods for Solving Partial Difference Equations of

Elliptic Type, PhD thesis, Harvard University, Cambridge, MA, 1950.

97

BIOGRAPHICAL STATEMENT

Mei Yang was born in Xingping, China, in 1985. She received her Bachelor

of Science degree in Mathematics from China University of Mining and Technology,

Master of Science degree in Mathematics from Xi’an Jiaotong University in 2008 and

2012 respectively. She joined the Ph.D program in Mathematics at the University of

Texas at Arlington in the fall of 2012.

Mei’s research interest includes numerical linear algebra, numerical analysis,

data mining, and statistics.

98

