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Abstract

Surrogate optimization approaches for black-box functions focus on approximat-

ing the underlying function, using metamodeling techniques, in order to optimize

computationally expensive simulation models.

Historically, surrogate optimization models have been validated by determin-

istic (noiseless) functions with every variable being significant. As a result, many

surrogate optimization models used interpolating surrogates. However, many real-

world experiments often times include parameters that are insignificant and un-

certainties associated with the black-box function. Using traditional interpolating

surrogate optimization methods can lead to surrogate models with unnecessary

predictors and sensitivity to noise. Consequently, a surrogate model with flexi-

ble, non-interpolating, and parsimonious characteristics is required to overcome

real-world noisy black-box functions with only a subset of important variables.

One such surrogate model is, Multivariate Adaptive Regression Splines (MARS)

which was initially developed by Friedman. In this study, we propose a modified

version of MARS, Tree Knot MARS (TK-MARS), to improve the application of

MARS within the surrogate optimization context. TK-MARS is able to identify

the peaks and valleys for optimization using a classification and regression tree

partitioning method. Furthermore, we develop a smart replication strategy based

on hypothesis testing. The Smart-Replication approach identifies the promising

points to replicate and the number of replications for each of them.
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Chapter 1

Introduction

1.1 Black-Box Systems

Simulators can be used to study, and potentially optimize many real-world com-

plex systems such as air quality [1], green building [2], hospital emergency room

[3], investment portfolio [3], vehicle crash [4], and agricultural crop ideotype [5]

simulation models that are called black-box systems. Black-box systems are com-

plex systems of inputs and outputs with entirely unavailable information about

the underlying behavior and model. Hence, there is no mathematical formula-

tion for these types of functions, and as a result, the derivatives are unavailable.

Consequently, the common derivative-based optimization techniques cannot be

employed.

In this research, our focus is on solving an optimization problem of the fol-

lowing form:
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min f(x) (1.1)

s.t.

a ≤ x ≤ b,∀x ∈ Rd, (1.2)

where f(x) is the black-box function, and the goal is to obtain a globally optimal

solution of f(x) in the feasible input space of D, where D = {x ∈ Rd : a ≤ xj ≤

b,∀j = 1, · · · , d}.

The black-box optimization problem formulation is like any other optimiza-

tion problem with an objective function and constraints defining the feasible re-

gion. However, the difference is in the objective function, f(x), which is totally

unknown and usually has a complex underlying behavior.

Evaluting the black-box function f(x) involves expensive experiments that

may either be computer simulators like energy simulation tools or actual experi-

ments like crash simulators. Reaching an optimal solution of a high-dimensional

expensive black-box function in a limited number of function evaluations is the

main challenge of the problem. Therefore, finding a best sampled mean solution

(BSMS) in a fixed number of function evaluations (which usually depends upon a

given budget or time constraint) and measuring the performance of the algorithm

is a matter of concern.

Since these simulators are often too computationally expensive to be embed-

ded directly within a global optimization method, a more practical approach em-
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ploys surrogate models that are computationally less expensive to evaluate. One

of the existing well-known derivative free techniques for solving black-box opti-

mization is surrogate optimization.

A surrogate model is a mathematical approximation of the relationship be-

tween input and output variables. Several types of statistical models including

Kriging [6], Radial Basis Functions (RBF) [7], Regression Trees [8], Multivariate

Adaptive Regression Splines (MARS) [9], Artificial Neural Networks [10], Sup-

port Vector Regression (SVR) [11], etc. are distinguished as surrogate models.

Surrogate optimization requires careful selection of simulator runs so as to si-

multaneously improve the surrogate model and gain more information on potential

optimum in each iteration.

1.2 Motivation

The purpose of this study is to develop an algorithm that finds an optimum input

vector of a high-dimensional black-box system that includes uncertainty and has

some unimportant input variables in few experiments (function evaluations).

Historically, surrogate optimization methods assume the complex black-box

system involves no uncertainty in performance and the set of important decision

variables is known a priori. In the real world, both of these assumptions are

often violated. This research introduces a new surrogate optimization paradigm

to address uncertainty in system performance and feature selection for important

decision variables. In real simulations a large percentage of variables are unimpor-
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tant [12], and there are uncertainties associated with the black-box system [13].

Every variable being significant is the weakest part of the literature. We need a

new surrogate optimization method to handle this paradigm shift.

Interpolating models, such as Radial Basis Function (RBF) and Kriging, are

the most common techniques applied in surrogate optimization literature, which

cannot handle noise inherently and assume every input is significant.

1.3 Research Questions

In this research we address the following primary research questions:

• How can we handle unimportant inputs (decision variables of the black-box

function) in surrogate optimization?

• How can we handle the uncertainties associated with the black-box functions

in surrogate optimization?

1.4 Contributions

To answer the research questions, we develop a new surrogate optimization ap-

proach, Tree-Knot Multivariate Adaptive Regression Splines (TK-MARS).

Existing statistical models are mainly designed to fit the data, precisely. For

surrogate optimization, we need a specifically designed statistical model to deter-

mine the overall structure of the underlying function, where a potential optimum
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lies, in the fewest number of function evaluations. The goal is finding an optimal

solution, not modeling the black-box function.

MARS has classically been used for prediction, not for surrogate optimiza-

tion. As a surrogate modeling method, we employ MARS for its feature selection

ability and its robustness toward uncertainty. MARS can handle the fact that there

are some unimportant variables as opposed to conventional interpolating-based

surrogate models such as Radial Basis Function (RBF) that fail in handling this

issue. The other advantage of MARS as the surrogate model is its robustness to

the false structures caused by noise for small samples in high dimensions. The

MARS forward selection and backward elimination procedures make the model

parsimonious based on the important variables. Since MARS is a regression-based

approach it is able to cancel out the noise effect by passing among the points and

minimizing errors.

In this study, a new version of Multivariate Adaptive Regression Splines, Tree-

Knot MARS (TK-MARS), is developed specifically for surrogate optimization

. We modified the MARS knot selection algorithm by using Classification And

Regression Trees (CART). TK-MARS focuses on improving the accuracy in the

promising regions. It is able to identify peaks and valleys where potential opti-

mum solutions lie. The proposed eligible knot selection technique improves the

flexibility of MARS as well as adds promising candidate points to the data set

simultaneously.

Compared to existing surrogate optimization approaches, the presented ap-

proach can handle simulators with a large number of inputs and performance
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uncertainties. TK-MARS is able to identify important inputs of the black-box

function. Centroids from TK-MARS are used to develop Dynamic Pool Genera-

tion.

In addition, to improve the selection of simulator runs in each iteration, we

employ a Pareto approach to balance exploration and exploitation. An Exploration

and Exploitation Pareto Approach, EEPA [14] finds the best candidate points to

be added in each iteration. Further, we modify EEPA to incorporate TK-MARS

and a standardized Cosine similarity metric.

A new measure of performance is proposed to evaluate the different approaches.

Maximal True Function Area Under the Curve (MTFAUC) is a proper metric for

stochastic black-box functions in which the algorithm BSMS convergence pattern

is unstable in early iterations. MTFAUC quantifies the stability and robustness of

the algorithm, simultaneously.

In the end, different replication strategies are proposed to handle the uncer-

tainties associated with black-box functions.

1.5 Organization

Chapter 2, introduces surrogate optimization algorithms and related work in the

literature to highlight the gaps that are not investigated properly. It provides a

background on MARS and RBF methods as well as the candidate selection ap-

proach that is applied in our study. Chapter 3 describes the contributions of our

study to the surrogate optimization algorithm and concentrates on the proposed
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TK-MARS method. The concept of unimportant variables in the context of surro-

gate optimization is explained in this section. Furthermore, the proposed replica-

tion strategies to handle the uncertainties associated with the black-box systems

are presented as well as a new measure of performance. Chapter 4 demonstrates

the results of the performance of TK-MARS and also the performance of the pro-

posed approaches in deterministic and stochastic cases. Finally, Chapter 5 lists

potential future directions of this study.
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Chapter 2

Background on Surrogate

Optimization

Surrogate optimization represents a framework in a class of derivate-free opti-

mization methodologies, which has been applied for expensive black-box func-

tions. It is a sequential adaptive approach to discover the solution space, and find

a global optimum. Surrogate models are response surface models, which esti-

mate the underlying behavior of black-box functions. It is worth mentioning that,

unlike black-box functions, the surrogate models are inexpensive functions to ex-

ecute. We refer to the output of the black-box function as the actual objective

value.

In this chapter, we present a background on the surrogate optimization frame-

work and details of different steps. Figure 2.1 shows the general overview of a

generic surrogate optimization algorithm.
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Figure 2.1: Surrogate Optimization Framework Illustration

There are specific steps in all surrogate optimization approaches. First of all,

a small set of data points are initialized to be evaluated by the black-box function.

Next is the metamodeling step, which fits a response surface model to the initial

data set; in Figure 2.1 we use a cubic splines interpolation method. The following

step is to apply an optimizer, which determines new candidate points by solving

an auxiliary optimization problem.

Ideally, surrogate optimization attempts to find a global optimum of the surro-

gate model and evaluate it with the black-box function to get the actual objective

value for it and add the newly evaluated point to the initial data set. Algorithm 1

is an overview of a generic surrogate optimization algorithm for black-box func-
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tions.

The algorithm iterates until a stopping criterion is satisfied. The stopping cri-

teria can either be a maximum number of costly black-box function evaluations

or the expected improvement of the best sampled mean solution (BSMS).

Algorithm 1 Surrogate Optimization
1: Sample initial design space I = {xi ∈ Rd | ∀i = 1, · · · , N}
2: Evaluate initial data set I , f(xi),∀xi ∈ I
3: while Termination criteria not satisfied do
4: Construct a surrogate model on |I| evaluated points, f̂
5: Optimizer (search for new candidate points based upon f̂ and I), P
6: Evaluate selected candidate points, P , f(xk),∀xk ∈ P
7: Update the collection of already evaluated data points, I = I ∪ P
8: end while
9: Return the BSMS, x ∈ argminx∈I f(x)

The remainder of this chapter, describes surrogate optimization steps in detail.

We review different metamodeling techniques and different optimizers that are

used in the literature.

2.1 Initialization

The problem description is presented in Section 1.1. The feasible solution space

is defined as D where D = {x ∈ Rd|a ≤ xj ≤ b, ∀j = 1, · · · , d}. Due to

the high cost of function evaluations of f(x), the algorithm samples a limited

number of feasible initial points using design of experiments methods (DOE).

Space filling sequences, including Latin Hypercube Design (LHD), Sobol [15,16],

10



and Orthogonal Arrays (OA) [17], represent the solution space well. The size of

the initial data set is |I| ≥ d+ 1.

Figures 2.2a and 2.2b are schematics of 35 sample points chosen by Latin

hypercube sampling (a) and Sobol (b) for a 2-D problem.
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Figure 2.2: Design of Experiment methods for initialization

2.2 Function Evaluation

After choosing the initial candidate points, the algorithm needs to find the actual

objective values by executing the expensive black-box function. Later, every sam-

ple point that is selected by the optimizer is evaluated, sequentially. We want to

emphasis that one of the goals is to evaluate as few sample points as possible to

evaluate.
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2.3 Surrogate Model Construction

Choosing an appropriate surrogate model highly depends upon the performance of

different metamodeling techniques under different circumstances. There are sev-

eral metamodeling techniques that are used in the surrogate optimization context.

Surrogate models are classified into either interpolating (kriging [6], RBF [7],

etc.) or non-interpolating (polynomial regression models [18], multivariate adap-

tive regression spline [9], etc.).

2.3.1 Non-Interpolating Models

Non-interpolating surrogate models are mainly based on the least squared error of

some predetermined functional form. Unlike interpolating surrogate models, they

do not necessarily pass through all the data points to capture the exact behavior

of the function. In terms of bias-variance trade off, non-interpolating surrogate

models may have higher bias and lower variance than interpolating surrogates.

Therefore, in highly noisy systems, non-interpolating models are preferred in or-

der to avoid oscillations of the fitted surface.

2.3.1.1 Polynomial Regression Models

Polynomial regression models have been used for decades in black-box optimiza-

tion [19–22]. Regression models are based on the relationships between factors

that are suspected to have an influence on the response. The mathematical for-

mulation is commonly expressed as y = f̂(x) + ε, where x is a vector of one or

12



more factors, and ε is a random error. Different regression models are introduced

regarding their functional form. In polynomial regression, the response variable y

is modeled as an mth degree polynomial in x, and is of the form given by Equa-

tion 2.1. This model is able to smooth noisy functions.

y = β0 + β1x+ β2x
2 + · · ·+ βmx

m + ε, (2.1)

where β0 is the intercept, and βj is the coefficient for the jth dependent variable

∀j = 1, · · · ,m.

2.3.1.2 Multivariate Adaptive Regression Splines (MARS)

Friedman [9] develops the original version of MARS. MARS is a non-parametric

regression-based surrogate model. The advantages of MARS over other statisti-

cal models, such as linear regression models lie in its ability to handle curvature

in high-dimensional space and produce easier-to-interpret models. Furthermore,

the MARS algorithm includes forward selection and backward elimination pro-

cedures. In the forward selection procedure, MARS adds basis functions in pairs

for different dimensions that give the maximum reduction in the sum of squares

error, until the maximum number of basis functions is reached. The backward

elimination procedure prevents overfitting by deleting the least effective term at

each step.

Therefore, MARS is intended to be parsimonious. Basically, it has a built-in

dimension reduction technique, which is very beneficial for black-box optimiza-

13



tion where there is no prior knowledge of input variables and their effect on the

response. As a result, it keeps the most significant variables in the final model.

The structure of MARS model is based on basis functions. The MARS al-

gorithm uses splines to construct a piecewise continuous function to model the

dependent variable. The basis functions are either univariate truncated linear

functions or the product of different truncated linear functions for interaction

terms. The truncated linear functions also called hinge functions are of the form

b+(x; k) = [x − k]+ or b−(x; k) = [k − x]+, where [q]+ = max{0, q}, x is a

single independent variable, and k is the corresponding univariate knot, where the

approximation bends to capture curvature of the black-box function. A knot is

the location of an intersection between two splines and therefore is an important

concept associated with MARS. The eligible knot locations are selected from the

set of training points. Each dimension value of the training data set is an eligible

knot for the corresponding independent variable {x1, . . . , xN}.

The MARS approximation has the form:

f̂(x, β) = β0 +
Mmax∑
m=1

βmBm(x), (2.2)

where x is an n-dimensional vector of input variables, β0 is the intercept coeffi-

cient, Mmax is the maximum number of linearly independent basis functions, βm

is the coefficient for the mth basis function, and Bm(x) is a basis function that

is either univariate or multivariate interaction terms. The interaction terms are

14



presented in the form of:

Bm(x) =
Lm∏
l=1

[sml(xv(m,l) − kml)]+, (2.3)

where Lm is the number of interaction terms in the mth basis function, xv(m,l) is

the vth dependent variable corresponding to the lth truncated linear function in the

mth basis function, and kml is the knot value corresponding to xv(m,l). The value

sml is the direction that the truncated linear basis function can take, either +1 or

-1.

A good value for the maximum number of basis function parameter of MARS,

Mmax , is usually obtained through trial and error. However, a basic modeling

concept is that as sample size increases, the model complexity can be increased.

Using a small Mmax when the number of data points are limited, is reasonable.

Sahu [23] recommends Mmax =
[
2n+c
2+c

]
, where c is a penalty, which the default is

3.

The maximum number of knots, the minimum number of observations be-

tween knots, and the highest order of interaction terms should be predetermined

in the original MARS algorithm. The MARS approximation procedure employs a

forward selection and a backward elimination procedure to choose a small subset

of appropriate basis functions. The basis functions are defined by the eligible knot

locations that minimize the lack of fitness. Equation 2.4 shows the LOF criterion

used by MARS for parameter optimization.
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LOF =
N∑
i=1

[yi − f̂(xi, β)]2, (2.4)

where f̂(x, β), is the approximation of MARS as in Equation 2.2 and Equa-

tion 2.3. To find the best set of parameters β, MARS minimizes theLOF function.

In the forward selection procedure, MARS starts with only the intercept term,

and repeatedly adds pairs of basis functions, which minimize the LOF the most,

to the model. The forward selection procedure is a greedy approach may add too

many basis functions that may lead to overfitting. In order to prevent overfitting,

the backward elimination procedure is designed to eliminate less effective basis

functions. The number and the location of knots are important parameters of the

MARS algorithm. In the conventional MARS, all data points are considered in

order to find a subset of promising knot locations.

Calculating the averaged squared residuals over all possible locations for knots

is computationally difficult, especially when the number of eligible knots and ba-

sis functions is unknown in advance. Highly noisy data can lead to high local

variances in function estimation. In addition, when there are a large number of

eligible knots to be selected, a multicollinearity issue occurs between the basis

functions with knots that are close to each other.

To solve local variance and multicollinearity issues, eligible knot selection

techniques are developed. One of the simplest methods considers evenly spaced

eligible knot locations chosen to be equally spaced in a certain interval within

the range of the input data [24–27]. Evenly-spaced knots may not capture true
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patterns in the data, and a small number of knots may result in underfitting. Fried-

man [9] proposes the minimum span (MinSpan) approach to minimize the local

variability. In the MinSpan approach, for each independent variable, a local search

around its current knot location is designed to reduce the number of eligible knot

locations. Miyata [28] presents a simulated annealing approach to choose eligible

knot locations. Recently Koc [29] develops a mapping strategy by transforming

the original data into a network of nodes through a nonlinear mapping. Each node

has a specific topological position in the lattice and is represented by a p + 1-

dimensional weight vector. The nodes in the mapped network are basically a

reference for choosing the new candidate knots. The size and structure of the grid

are preset in advance. The nodes are located with equal space on the grid. The

grid size and a threshold value are self-organized mapping parameters, which have

an impact on the accuracy and time efficiency of the model. Decreasing the grid

size and increasing the threshold value lead to fewer candidate knot locations and

decrease CPU time and model accuracy. Hence, the mapping parameters need to

be optimized beforehand.

Tsai and Chen [30] propose a robust version of MARS, which tends to choose

lower order interaction terms. Robust MARS decreases the sensitivity of MARS

to extreme points, preferring lower order interaction terms to higher order terms

by weighting the lower order terms. Univariate basis functions and interaction

basis functions could be highly correlated, so robust MARS chooses the lower

interaction terms in the range of a tolerance, to handle the multicollinearity issue.

Robust MARS is only relevant if interactions are allowed in the model.
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Instead ofMmax , an alternative stopping rule, Automatic Stopping Rule (ASR),

criteria based on the coefficient of determination, R2, is implemented to select the

appropriateMmax . TheMmax should be pre-specified; however, an improper value

of Mmax leads to underfitting or overfitting issues. ASR provides an approach to

use the optimum number of basis functions in the model to avoid unnecessary

computations of a large Mmax .

Crino [31] presents a combination of MARS and Response Surface Method-

ology (RSM). MARS is employed to select the initial metamodel. Regarding the

variable reduction ability of MARS, the underlying function can be approximated

by using an RSM with fewer variables. The proposed method is applied to low-

dimensional test functions. Costas [32] employs MARS for a real-world finite

element model and compares it with Kriging, quadratic, and cubic polynomials.

MARS outperforms other methods due to its ability to model slope discontinuities

and to filter almost all numerical noise.

2.3.2 Interpolating Models

Applying interpolating surrogate models are common in surrogate optimization

literature. Interpolating models pass through all of the data points and consider

the exact information of the function value in the approximation. Although this

can help to determine the underlying behavior of the black-box function more

accurately, the quality of model generalization depends on the size of the data set

I .
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2.3.2.1 Kriging

Kriging is an interpolating surrogate model that has been applied in black-box

optimization, widely. Kriging provides an estimation of a black-box function

minimizing squared error [6]. It has been typically utilized in surrogate opti-

mization literature for low-dimensional problems since its computational time for

large-scale problems makes it inefficient [33, 34]. Kriging models consist of two

components. The first component is a model that captures the trend in the data,

whereas the second component measures the deviation between the trend model

and the true function value. The Kriging model structure is given by the following

equation.

f̂(x) =
n∑
i=1

βiyi + Z(x), (2.5)

where Z(x) is a correlation function and is assumed to be an uncertainty estimate.

βi is the coefficient for the response value of observation i. The most common

correlation function is the Gaussian correlation function [33].

2.3.2.2 Radial Basis Function

RBF is another common type of surrogate model [7]. Assuming n distinct already

evaluated points, x1, x2, · · · , xn ∈ Rd, the RBF interpolant is of the form, f̂(x) =∑n
i=1 λ

iB(||x − xi||) + p(x), x ∈ Rd where ||.|| refers to the L2 norm, and B(x)

is the basis function of the following forms:

• A linear basis function is B(r) = r
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• A cubic basis function is B(r) = r3

• A thin plate spline basis function is B(r) = r2log(r)

• A Gaussian basis function is B(r) = e
−r2
ω2 where ω is a positive constant.

• A multi-quadric basis function is B(r) =
√
r2 + ω2

• An inverse multi-quadric basis function is B(r) = 1√
r2+ω2

For multiquadric and Gaussian basis functions, a unique interpolant is guar-

anteed when solving the RBF equation. However, for cubic and thin plate spline,

the matrix of basis values might be singular. Rocha [35] adds a low degree poly-

nomial, p(x), to RBF interpolations to avoid singularity.

The most common types of basis functions are Multiquadric (MQ), Gaussian

(G), Cubic (C), and Thin Plate Splines (TPS). The multiquadric version of RBF

is continuously differentiable. The shape parameter ω and the number of points

affect the accuracy and stability of RBF (a larger shape parameter makes the func-

tion flatter). It is worth mentioning that MQ guarantees non-singularity [36].

2.4 Optimizer: Candidate Selection

The optimizer procedure in surrogate optimization is crucial due to the expensive

function evaluations of black-box systems. The goal is to select the next sample

point so that it finds an optimum solution in a few function evaluations. Explo-

ration involves discovering unexplored regions of interest, and exploitation digs

into the identified regions of interest where the optimum solution probably lies.

As a result, a balance between exploration and exploitation must be satisfied for
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candidate selection.

To determine the next sample point, different strategies are proposed in the

literature. Moore [21] introduces a new candidate selection approach for black-

box optimization. The proposed algorithm, Q − 2 identifies the neighborhood

of the optimum solution by capturing the size and shape of the zone of possible

optimum locations. After evaluating each of the data points, it finds the point

that has the worst prediction value and cuts the space using a half-plane ROI2 =

ROI1 ∩ {x | (x − xk(1) · d1 ≥ 0} using the direction of the steepest gradient of

the estimated y. xk(1) is the point with the worst predicted value (using quadratic

regression) and d1 = 5ŷ. After finding the ROI , xopt is identified. The next

sample point is either: 1) the xopt location, (2) a random point within the ROI ,

(3) the point in ROI that is predicted to reduce the uncertainty the most, (4) the

point in the ROI that keeps the regression as orthogonal as possible, or (5) the

point in the ROI as far away from previously evaluated points in or out of the

ROI . Q − 2 is not functional for larger than 10 dimensions, and it can only find

local optima.

Regis [37] proposes a candidate selection method for costly function evalua-

tion minimizing the response surface model subject to distance constraints. The

method is tested on low-dimensional test problems, and the disadvantage of the

method is adding a single solution each time. Gautman [38] solves an auxiliary

optimization problem to find the candidate points, as well.

Regis [39–41] applies a random sampling strategy for candidate selection. The

proposed approach is based on a random pool that is dynamically generated in

21



each iteration by adding normal perturbations to the current best point. The fea-

sibility of the candidate point is checked with the number of predicted constraint

violations. A weighting approach on the distance measure and response surface is

applied to satisfy the exploration-exploitation balance of the next candidate point.

The proposed algorithm focuses more on finding good local solutions from a given

feasible starting point, and it reduces exploration (localized search). In addition,

a single candidate point is selected in each iteration.

Regis [42,43], and Dong [44] propose an evolutionary approach for generating

candidate points. A large number of trial offspring are generated by using Gaus-

sian mutations in each iteration. RBF is used for objective and constraint functions

to identify the most promising feasible offspring that has the best-predicted value

and least constraint violations. The selected offspring becomes the actual can-

didate point that is evaluated by the true expensive black-box function. A Pareto

approach is employed to evaluate a set of offspring in each iteration. The proposed

method in [43] is tested on low-dimensional test problems, and it adds one single

sample point in each iteration. Both [42,43] are evolutionary-based methods, and

like other evolutionary approaches, there is no guarantee in convergence to the

optimal solution. The approach is sensitive to prediction accuracy (quality of the

approximation).

Jones [45] and Knowles [46] apply Expected Improvement (EI) in the objec-

tive function to select the next candidate point. The point with the highest EI

is selected. EI is maximized to search the feasible space globally. An Efficient

Global Optimization (EGO) algorithm balances exploitation and exploration by
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minimizing prediction cost and error. Knowles [46] extends the EGO algorithm

for multiobjective optimization problems. ParEGO embeds a genetic algorithm

to visit the next candidate point, which maximizes EI. Dong presents a Kriging-

based balance between exploitation and exploration in [44].

A Pareto non-dominated sorting technique has been recently taken into con-

sideration to select multiple sample points at a time [14, 47, 48]. Dickson [14]

presents the idea of using a Pareto frontier for the exploration-exploitation trade-

off for the first time. EEPA is a sampling technique for surrogate optimization,

which combines an exploration metric (a distance metric) with an exploitation

metric (predicted objective value). Dickson [14] designs a fixed random pool to

search for the Pareto frontier.

Krityakierne [48] generates a random pool repeatedly in each iteration by per-

turbations around some center points. The centers are the points, which have the

best objective values and maximum distance from the already evaluated points

to balance between exploration and exploitation. To find many points for simu-

lataneous evaluation, parallel processors are considered. Consequently, using a

Pareto approach, a set of centers are identified for each processor, which repre-

sents the center of the random pool to be generated. Consequently, parallel pools

are evaluated to find new samples for the next generation.

Bischl [47] develops a Pareto frontier approach as a multi-objective solution

to trade off between exploration and exploitation criteria. Different objectives are

employed to find the Pareto set of sample points by using evolutionary algorithms

(EA). These criteria include mean model prediction, standard error (model un-
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certainty), Expected Improvement, distance to the nearest neighbor in the current

population, and distance to the nearest better neighbor.

2.4.1 EEPA: Exploration-Exploitation Pareto Approach

EEPA [14] is an exploration-exploitation algorithm that creates a Pareto frontier

on the estimated function value from the surrogate model, as one dimension, and

the distance of the candidate points from the already evaluated points, as the sec-

ond dimension. The first dimension exploits the interesting regions around the

minimum function value area, and the second dimension explores the undiscov-

ered regions. The exploration metric is δ(x) = minx̃∈I ‖x − x̃‖, and the ex-

ploitation metric is the fitted function value f̂(x). The first metric needs to be

maximized, while the second should be minimized. Hence the Pareto set is the set

of non-dominated solutions given by F = {x ∈ R | @x̃ ∈ R, f̂(x̃) ≤ f̂(x), δ(x̃) ≥

δ(x)}, where R is a fixed random pool of sample points.

Algorithm 2 shows EEPA for surrogate optimization. It starts with designing

an initial data set I and a set of random points R from which candidate points will

be selected. In step 3 the computer model is executed to obtain the actual function

values. The next step is to fit a metamodel to the data set. In steps 5 and 6, the

two criteria, distance and the predicted objective value, are calculated to find the

non-dominated Pareto set in step 7. There might be candidate points on the Pareto

set that are close to each other. The final step is to find the winning candidate

points from the Pareto set to add to the set I using maximin exploration technique.

Dickson [14] shows that EEPA outperforms pure exploration and exploitation
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Algorithm 2 EEPA, [14]
1: I is the initial set, R is the random data set
2: For each x ∈ I , determine f(x)
3: while Termination criteria is not satisfied do
4: Construct a metamodel f̂ using (x, f(x)), x ∈ I
5: For each x ∈ R, determine f̂(x)
6: For each x ∈ R, determine δ(x) = minx̃∈I ||x− x̃||
7: Determine F = {x ∈ R | @x̃ ∈ R, f̂(x̃) ≤ f̂(x), δ(x̃) ≥ δ(x)}
8: Set P = ∅; k′ = 1
9: Determine x′ ∈ arg min{f̂(x)|x ∈ F}

10: P = P ∪ x′
11: while k′ ≤ K ′ and P ⊂ F do
12: For each x ∈ F , determine δ′(x) = minx̃∈A∪P ||x− x̃||
13: Determine P = P ∪ {x}, x ∈ arg max{δ′(x)|x ∈ P}
14: k′ = k′ + 1
15: end while
16: For each x ∈ P , determine f(x)
17: I = I ∪ P
18: R = R \ P
19: end while
20: Return x∗ ∈ arg min{f(x)|x ∈ A}

methods. However, EEPA and the quality of BSMS found by EEPA depends on

the fixed random data set R.

2.5 Measure of Performance

To evaluate the performance of surrogate optimization algorithms either on a test

function or a real black-box simulation model, several performance measures can

be found in literature. Gutmann [38] and Jakobsson [49] employ the relative error,

Equation 2.5, for deterministic functions.
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ei =
|f(xoi)− f ∗|
|f ∗|

,∀i = 1, · · · , |I|. (2.6)

where f ∗ denotes the global minimum of the function value and xoi is the min-

imum proposed by the algorithm, BSMS, after i function evaluations. The algo-

rithms are terminated when the relative error after i function evaluations ei reaches

below a threshold e.g. 1%, or when the number of function evaluations exceeds

some fixed number (representing the available budget), whichever comes first.

Besides, a graphical illustration of the differences between the performance of the

algorithms is also a valuable tool that has been utilized in the literature to show

convergence and the capability of the algorithms.

There is little research that consider uncertainties related to black-box sys-

tems [49,50]. For non-deterministic cases, a performance measure of convergence

that is applied is presented in Equation 2.7.

Gi =
fxin − f(xoi)

fxin − f ∗
, (2.7)

where xoi is the minimum proposed by the algorithm, BSMS, after i function

evaluations, and f is the true function. The point xin is the median initial point

xin ∈ arg medianx∈If(x), where I is the set of initial points. The measure is

constructed such that Gi ≤ 1 for all i. Reaching Gi = 1 means that the global

minimum is found.
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2.6 Research Gap

Above, we explain surrogate optimization algorithms and related research in the

literature. To summarize, there are different surrogate metamodeling techniques

that can be classified as interpolating or non-interpolating. Figure 2.3 shows

different metamodels in the literature in chronological order. Regression and

MARS as non-interpolating and RBF and Kriging as interpolating surrogates are

the most common metamodeling techniques. Among these, [14, 21, 31, 32] use

non-interpolating models such as MARS and polynomial regression. The rest are

focused on interpolating surrogates considering all the variables important. Every

variable being important is the weakest part of the surrogate optimization litera-

ture. Crino [31] shows MARS is able to screen variables and reduce dimensions.

Using the parsimonious nature of MARS, we develop TK-MARS that is able to

identify the important variables.

• MARS
• RBF
• Kriging
• Regression

2000 2005 2010 2015

[Crino, 2007] [Dickson, 2014]

[Regis, 2014b]

[Akhtar, 2015]

[Datta, 2016]

[Regis, 2011] [Regis, 2014a]

[Müller, 2014]

[Müller, 2015]

[Dong, 2015]

[Costas, 2014]

[Huang, 2006][Jones, 1998]

[Moore, 2000]

[Simpson, 1998]

[Sacks, 1989]

[Jackobson, 2010]

[Picheny, 2013]

Figure 2.3: Metamodeling Literature
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From all the research displayed in Figure 2.3, [13, 31, 32, 49, 50] consider un-

certainty components in metamodeling. Kriging and RBF, the two most common

surrogate models, do not inherently handle uncertainty, and some modifications

are required while MARS and regression require no revision to handle uncertainty.

Huang [50] develops a Kriging-based surrogate optimization approach and

applies it to low-dimensional test problems including low-level noise. The cost

of fitting Kriging increases by the number of samples as it leads to impractical

higher dimensional problems. The proposed method under higher levels of noise

for very bumpy objective functions needs further investigation.

Picheny [51] adds Gaussian noise with a fixed independent variance from the

response and performs it on low-dimensional optimization test problems. The re-

sults show the relative poor modeling performance of Kriging. A large part of the

variability that cannot be explained by the model is due to the observation noise

during optimization. Further, analysis of variance of modeling parameters is pre-

sented to show the significance of the modeling parameters, such as initial design,

different infill criteria, the noise level of test functions, and covariance kernel.

Jakabsson [49] and Picheny [13] apply RBF and Kriging based surrogates, respec-

tively. However, the proposed methods are performed only on low-dimensional

test problems that include low levels of uncertainty.

[13, 31, 32, 49, 50] propose metamodels that are able to handle uncertainty,

even though they do not study the effect of the noise. Costas [32] shows MARS is

preferable in real-world applications due to slope discontinuities and uncertainties.

We show TK-MARS is able to handle uncertainties associated with the black-box
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systems.

Figure 2.4 represents some of the surrogate optimization research that are

mainly focused on developing an efficient optimizer. We categorize them based

on the different candidate selection approaches.

• Optimization-based
• Evolutionary-based
• Random perturbation
• Pareto-based

2000 2005 2010 2015

[Moore, 2000] [Regis, 2005]
[Knowles, 2006]

[Müller, 2017]

[Regis, 2014b]

[Akhtar, 2015]

[Datta, 2016]

[Regis, 2011]
[Regis, 2014a]

[Müller, 2014]
[Müller, 2015]

[Dickson, 2013]

[Bischl, 2014] [Dong, 2015]

[Krityakierne, 2016]

Figure 2.4: Surrogate Optimization Literature

The Pareto-based candidate selection approach has been recently taken into

consideration to select multiple sample points at a time [14, 44, 47, 48]. We apply

EEPA [14] in this research and modify it to incorporate TK-MARS and a stan-

dardized Cosine metric.
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Chapter 3

TK-MARS-based Surrogate

Optimization Approach for

Deterministic and Stochastic

Black-Box Functions

In Chapter 2, we describe the generic surrogate optimization procedure, alterna-

tive surrogate models, and candidate search methodologies that are common in the

literature. In this section, we present the proposed surrogate model that is specif-

ically designed for surrogate optimization of black-box functions. Furthermore,

a centroid-based dynamic pool generation approach is developed to improve the

candidate selection procedure. In this research, we propose an alternative ap-

proach to identify subregions of interest, which nicely surround promising points
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for subsequent function evaluations. We introduce uncertainty associated with the

black-box functions and propose effective strategies to handle it in the surrogate

optimization procedure.

In Section 3.1, we describe details of the surrogate model that is specifically

designed for surrogate optimization of expensive black-box functions. In Sec-

tion 3.2, we discuss the concept of unimportant variables in surrogate optimiza-

tion. Further, we propose a new convergence approach in Section 3.3. To han-

dle uncertainties associated with black-box functions, we propose different ap-

proaches in Section 3.6.

Next, in Chapter 4, we present computational experiments on problem and

algorithm parameters to study the performance of the proposed approaches. We

also study the impact of different parameter values on the performance.

3.1 Tree-based Eligible Knot Selection Approach: TK-

MARS

We introduce Multivariate Adaptive Regression Splines (MARS) in Section 2.3

as a non-interpolating surrogate model. In this section, we develop a modified

version of MARS for surrogate optimization. As we discuss, the MARS structure

is based on basis functions, which include knots where the approximation bends.

In MARS, all the distinct data points are considered as eligible knot locations.

Adding more data points increases the size of eligible knot locations. As the num-

ber of eligible knots increases, MARS interpolates the data points and loses its
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flexibility. Interpolating may cause difficulties for the surrogate optimization pro-

cedure in the presence of uncertainty. Interpolating a limited data set early when

there is not enough information collected leads to a false estimation of function

behavior that causes several local optima. The fact that MARS does not interpo-

late but finds the general structure of the function is the major reason for applying

MARS to surrogate optimization. Considering too many eligible knots for MARS

results in including all basis functions, which yields a poor approximation and

overfitting. By choosing a subset of eligible knot locations for the first set of

basis functions and slowly allowing MARS to add more knots as the set of train-

ing points increases, the complexity of MARS is restricted, and the flexibility is

escalated. For highly noisy data, considering all the data points as eligible knot

locations leads to high local variance in function estimation [29]. Further, when

a large number of eligible knots are selected, multicollinearity can occur between

basis functions with knots that are close to each other. There are few approaches

in the literature that are proposed for eligible knot selection as we discuss in Sec-

tion 2.3.1.2.

The idea behind the proposed modified MARS is to fit MARS accurately

around potential optimum points. The proposed approach considers identifying

the new eligible knot locations plus sampling the new candidate points, simul-

taneously. Along these lines, appropriate eligible knot locations are identified,

and the approximation model is constructed gradually as more data are collected.

Therefore, there is no need for many basis function evaluations and costly function

evaluations.
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A MARS-based surrogate optimization approach is proposed in this study.

The initial data points are generated by a Design of Experiments method (DOE).

The size of the initial data set is limited in black-box optimization due to the

high cost of function evaluations. All the initial data points are evaluated by the

black-box function to find the actual function values. The proposed approach,

which is called Tree-Knot MARS or briefly TK-MARS, captures the structure of

the function in the solution space using a partitioning technique. Classification

and Regression Tree, CART [8] (CART) is a binary decision tree, which splits the

set of data points on the input variables until a suitable tree is constructed. As

the data set is updated dynamically over time, more information from the black-

box function structure is available. The partitions discover the structure of the

unknown function over time.

Before going to the details of the TK-MARS procedure, consider the following

high-level example of TK-MARS. Suppose we have a noisy data set (adding a

random error to the function value) for f(x) = sin(x) + ε, where ε is a noise term

with a mean of 0, as in Figure 3.1a. Consequently, E[f(x)] = sin(x). CART

splits the existing data points into four partitions, as in Figure 3.1b. Note that

CART is capable of identifying the structure of the underlying sin function. The

vertical blue lines show the partition borders, and the horizontal red lines show the

estimated average function value in each partition. Next, we identify the centroid

of each partition, and we select the nearest points to the centroids as eligible knot

locations. The green lines are the centroids as in Figure 3.1d. We would like to

highlight that the centroids are close to peaks and valleys. Since any optimization
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approach looks into the peaks and valleys where optima lie, focusing on the peaks

and valleys facilitates the optimization process, as well as, identifies the function

structure.

The TK-MARS model construction is based on the function structure, which

is obtained through the partitioning strategy. The breaking points of TK-MARS

are the nearest points to the peaks (valleys) of the function (the centroids of the

terminal nodes) as in Figure 3.1d. As a result, an appropriate and efficient MARS

model for surrogate optimization is developed to find the overall pattern of the

underlying function.

TK-MARS has a new efficient, eligible knot selection approach that is pro-

posed for the purpose of surrogate optimization in this study. Regarding the

forward-backward procedure, MARS tends to have more knots where we have

more information (dense regions) by minimizing the LOF. As a result, it captures

the function structure defining more knots in dense regions. Consequently, parti-

tioning the data set in a way that captures the structure of the underlying function

also finds promising eligible knot locations for MARS.
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Figure 3.1: TK-MARS approach
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Now consider the TK-MARS algorithm.

CART is a non-parametric decision tree and nonlinear predictive modeling

method [8]. CART partitions the space into smaller sub-regions, recursively, so

that the interactions are manageable. It is a classification method when the re-

sponse variable is categorical, and in the case of having a continuous numerical

response variable, CART predicts the response value in each terminal node. For

regression predictive modeling problems, CART chooses binary splits by mini-

mizing the sum of the squared error across all data points that fall within each

partition. Specifically, the least squares error is given by Equation 3.1.

LSE =
1

N

∑
v∈V

Kv∑
k=1

(ykv − ȳv)2, (3.1)

where V is the set of terminal nodes, Kv is the number of observations in node

v, and ȳv represents the average of the actual response values for the points in

terminal v.

The advantages of using a regression tree for partitioning data are: (1) CART

finds unbiased splits, (2) CART identifies the significant variables, and (3) CART

identifies the interactions. For classification, CART chooses the split positions

based on either the Gini index or log-likelihood function.

Partitioning the data set by using CART, we are able to prioritize the eligible

knot locations. The data set is limited in the first iteration where there is not

enough knowledge about eligible knot locations. Updating the initial data set by

36



adding more candidate points over time, the number of eligible knot locations

increases. TK-MARS starts with a small set of eligible knot locations and slowly

grows as the size of the data sets grows. This yields a more stable MARS model.

The training data set is updated gradually. As a result, the dense regions, where

we have more information about the function, are identified by partitioning, and

the structure of the underlying black-box function can be recognized.

The representatives of each partition are considered as a reference point for an

eligible knot location. CART partitions the data set based on the structure of the

response function. Hence, there are more partitions in highly structured regions.

The peaks and valleys of the black-box function are often in the middle of the

space defined by the tree logic at the terminal nodes rather than the edges since

CART splits where the response values change, significantly. Hence, the centroids

as calculated by Equation 3.2, are appropriate locations for the eligible knots.

cvj =
1

Kv

Kv∑
k=1

xkj ∀v = 1, · · · , V, j = 1, · · · , d, (3.2)

where cvj is the centroid of terminal v for dimension j, and xkj is the jth dimension

of observations in terminal v.

Knots in MARS are in one-dimensional space, i.e., each independent variable

has its own possible values for the eligible knot locations. The centroids of ter-

minal nodes are in multidimensional space. As a result, a transformation from

multi-dimensional to one-dimensional space is required. Equation 3.3 represents
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a transformation function. For each dimension, the eligible knot location is the

nearest point to the centroid of terminal v in the same dimension.

tvj ∈ arg min
k=1,··· ,Kv

|xkj − cvj | ∀j = 1, · · · , d (3.3)

tvj is the index of the observation in the initial data set that is the nearest to the

centroids of each terminal nodes for each independent variable. tvj returns the

smallest index if there are ties.

To minimize the least square error cost function, CART splits more where

the function structure changes. As a result, more knots are identified in highly

structured regions, and CART does not split where there are no significant changes

in the response. In the beginning, the density is equal in each of the terminal

nodes since we start with a limited designed set of initial points that are uniformly

scattered in the domain. However, as we add more points in the promising regions,

the density changes across terminal nodes.

Algorithm 3, presents our TK-MARS framework.

Algorithm 3 TK-MARS
1: Construct CART on data set;
I = {(xi1, . . . , xid, yi)|∀i = 1, · · · , N}

2: Find the centroids for each v ∈ V the set of terminal nodes
cvj = 1

Kv

∑Kv
k=1 x

k
j ∀v = 1, · · · , V, j = 1, · · · , d

3: Determine the index of the closest point to centroids in each dimension;
tvj ∈ argmink=1,··· ,Kv |xkj − cvj | ∀v = 1, · · · , V, j = 1, · · · , d
(in the case of having ties randomly select one; smallest index)

4: Fit MARS using eligible knot locations x
tvj
j ,∀v = 1, . . . , V, j = 1, . . . , d.
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The proposed eligible knot location approach is customized to locate knots

for the optimization purpose by capturing peaks and valleys beside obtaining op-

timized MARS with fewer basis functions. Locating knots, where the response

changes more frequently or faster, identifies an optimal solution faster without

focusing on the overall accuracy of the function estimation. TK-MARS does not

necessarily focus on function behavior but an optimum point. In addition, MARS

is sensitive to the order of the data points. Consequently, the regression tree helps

to bring in the near optimal data points earlier, and that accelerates the perfor-

mance of MARS.

3.2 Unimportant Variables

In this research, we introduce a new paradigm in black-box optimization by con-

sidering the significance of the input parameters. In real-world simulations, a

large percentage of the input variables are unimportant. Pilla et. al. [12] shows

that only 42 out of 1264 variables in a fleet assignment case study remain signif-

icant. In black-box simulators, there is a large set of input variables that may not

be important to the output. Since we have no prior knowledge about the com-

puter experiment and the underlying model, it is unknown whether a variable is

important or not a priori.

In this research, we demonstrate the ability of the proposed method in identify-

ing important variables. TK-MARS is a MARS-based non-interpolating surrogate

model that constructs a parsimonious model using the forward selection and the
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backward elimination procedures of MARS.

As we discussed in Section 2.3.1.2, the forward selection and the backward

elimination procedures of MARS tend to choose a small subset of appropriate

basis functions, which are defined by the eligible knot locations in different di-

mensions and minimize the lack of fitness. Hence, MARS is able to identify

significant variables regarding the basis function selection procedures. This is

practical for black-box functions in which not all input variables are important

and are unknown a priori.

In Chapter 4, we conduct a set of experiments in order to show that the pro-

posed approach has the ability to weed out unimportant variables of the black-box

function and drop them automatically. We compare the results with RBF, the most

common interpolation surrogate model in the literature, which considers all of the

variables. Upon conducting the test, we ignore a fraction of variables in function

evaluation and consider the remaining as important variables for computer exper-

iments. In this way, the actual objective value is based on a fraction of important

variables, not all of them. We expect TK-MARS to determine the important vari-

ables and to drop the unimportant ones.

Identifying unimportant variables is vital to black-box optimization, since, de-

spite a large number of input parameters, only a small subset of those might affect

the black-box funciton. Constructing an approach that can identify the significant

variables, reduces the complexity of the surrogate model and, as a result, improves

the optimization process.
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3.3 Centroid-Based Dynamic Pool Generation

Candidate selection is an important step in the surrogate optimization Algorithm 1,

as explained in Chapter 2. In this study, we apply an exploration-exploitation

method to find the new candidate points, in order to update the data set until a

predetermined maximum number of function evaluations is exhausted.

There are several candidate selection algorithms for surrogate optimization.

EEPA [14] has the advantage of simultaneously finding the non-dominated candi-

dates from the constructed pool and trading off the exploration of the uncovered

regions and the exploitation of the regions of interest. We employ EEPA [14] for

the candidate selection procedure for the following reasons:

• Adding multiple points at a time: EEPA selects multiple samples at a time to

be added to the initial data set.

• Representing extreme points that are multi-objective: EEPA represents all

the non-dominated points considering the exploration and exploitation as the

two objectives of the Pareto frontier.

• Identifying the uninteresting regions: EEPA ignores the set of dominated

points by pruning the regions that are worse both in exploration and exploitation

from selected candidate points (Pareto frontier).

EEPA is explained precisely in Section 2.4.1.

Since the variables domain D = {x ∈ Rd : a ≤ xj ≤ b,∀j = 1, · · · , d}

is a continuous space, finding candidate points first requires a discretization ap-

proach. Therefore, a fixed pool construction is necessary to generate feasible data
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points for the future candidate selection procedure. In this study, we propose a

novel dynamic pool construction approach and some modifications to the distance

measure in order to improve the overall performance of EEPA.

The standard EEPA algorithm applies a fixed random pool of points in the

domain of the input space. However, generating a fixed set of random points

cannot cover the space perfectly. As a result, it needs a large pool, which makes

the surrogate optimization procedure inefficient as more exploration is needed .

Further, in the presence of noise, even a large pool may not be sufficient. As a

result, a dynamic pool construction that synthesizes the sample points as needed

can facilitate the candidate selection procedure.

We assume a global optimum is in the feasible domain D.

On the other hand, the optimum of the black-box function is unknown. Given

a fixed number of function evaluations, BSMS may not be a global optimum.

Using the information about the function structure in each iteration helps with

the gradual evolution of the pool, such that the pool converges to a global optimal

solution. The convergence and the quality of the BSMS depend on the uncertainty

level of the system and the available budget.

Consider a set of N uniformly distributed points, R, spread in the parameters’

feasible domain. The selected new candidate points P are added to the pool R,

repeatedly. We propose a novel approach in order to achieve a good representation

of the solution space and converge to a global minimum, effectively. Regarding

the first step of TK-MARS, fitting CART on the already evaluated points, we have

the set of terminal nodes V (representing the partitions).
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These terminal nodes represent different regions of the solution space, where

the underlying function has different structures. Consider the centroid cv of each

partition v ∈ V . The quality of these centroids from the TK-MARS knot selection

procedure is discussed in Section 3.1, as a result of the regression tree logic. Fig-

ure 3.2 shows the TK-MARS centroids that we use for dynamic pool generation.
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Figure 3.2: TK-MARS Centroids for Dynamic Pool Generation

Since the centroids of the terminal nodes are close to peaks and valleys of the

underlying black-box function, they can be good candidates to be added to the

fixed random pool generated, repeatedly. At the end of each iteration, the solution

space is defined as R = R∪C where R is the fixed random pool, and C is the set

of centroids of the terminal nodes – |C| = |V |.
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The pre-initialized fixed random pool R and the newly added points C result

in an exploration-exploitation balance for the solution space discovery, as well

as convergence to a global optimum. While the initial random points in the pool

serve as the exploration, dynamically added points around the interesting regions

is exploitation. As more information is obtained from the structure of the function

and the feasible space, this strategy increases the chance of generating candidate

points in different partitions of the solution space. Here the exploration finds

points from a discretized continuous space. Any points can be selected for the ex-

ploration part. However, having a large pool decreases the probability of choosing

the centroids (the set of promising points) as the next candidates. Considering a

reasonable initial pool size allows the approach to add effective points later. A

larger initial pool assigns more weight on exploration.

Over time, the centroids effectively move in the solution space. We add more

points near BSMS using the tree logic, instead of using a large fixed random

pool representing the whole feasible region. As a result, the candidate points are

effectively near potential optima.

There are candidate selection techniques in the literature as we discussed in

Section 2.4 that generally either solve an optimization subproblem or generate

data points based on random perturbations around a potential optimum. Those,

however, might not work well for noisy data sets. Our dynamic pool generation

strategy is not random as it follows the pattern of the function fluctuations more

intelligent than random perturbation. Note that the centroids are not necessarily

in the pool, even though they could be close to the promising points. As a result,
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some of the centroids lie around the BSMS. Consequently, adding centroids may

be similar to perturbation around BSMS [41]; however, it is not probabilistic.

3.4 Cosine Similarity Exploration Metric

In Section 2.4.1, we describe the candidate selection algorithm we apply in this

study. EEPA is an exploration-exploitation Pareto approach for finding the best

candidate points. To identify the non-dominated set of solutions, EEPA defines

a distance metric for exploration and uses estimated objective value for exploita-

tion. Different distance metrics can be applied in EEPA, such as Euclidean and

Cosine similarity. Cosine similarity calculates the Cosine of the angle between

two vectors by using inner product space cos(X, X̂) = 1− X
‖X‖ .

X̂

‖X̂‖ . Cosine pro-

vides information about the alternative directions. To find the perfect right angle

of a direction, the Cosine measure needs to be zero.

A perpendicular direction of the points to the already evaluated points gives

more information on the unexplored regions. The key challenge is that the Cosine

similarity metric cannot be calculated for points but vectors. We have a set of

already evaluated points I and a random pool R from which the next candidate

points are selected. To calculate the Cosine distance of the potential candidates

from the already evaluated points, we need to consider the points as origin-starting

vectors, and then calculate the angle between the vectors. Hypothetically, the

origin can be anywhere in the space. However, to find the right angle, we consider

the center of the feasible domain as the origin.

45



As a result, a standardization procedure is required to calculate the Cosine

metric, as given by Algorithm 4.

Algorithm 4 Cosine Pseudocode

1: X = {a ≤ xij ≤ b | j = 1, · · · , d , i = 1, · · · , N}
2: X̂ = {a ≤ x̂ij ≤ b | j = 1, · · · , d , i = 1, · · · , |R|}
3: Oj = b−a

2
∀j = 1, · · · , d

4: xij = xij − oj : ∀j = 1, · · · , d , i = 1, · · · , N
5: x̂ij = x̂ij − oj : ∀j = 1, · · · , d , i = 1, · · · , |R|
6: cos(X, X̂) = 1− X

‖X‖ .
X̂

‖X̂‖

7: return cos(X, X̂)

Algorithm 4, calculates the Cosine angle between the vectors originated from

the center of the space.

In this research, we use the standardized Cosine similarity as the exploration

metric in EEPA. We believe that the standardized Cosine is better at discovering

unexplored regions than the regular Euclidean distance. The standardized Cosine

discovers the candidates that are uniformly scattered in the domain. Consider-

ing the center of the space as the origin helps the exploration, as it maintains its

knowledge about the different part of the space as in Figure 3.3.
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Figure 3.3: Cosine Similarity with Center of the Space as the Origin

Considering 0 as the origin when the domain is not symmetric, the selected

candidate points are not chosen equally around the domain as in Figure 3.4.
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Figure 3.4: Cosine Similarity with 0 as the Origin
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3.5 Deterministic Black-Box Systems

In this section, we present our surrogate optimization algorithm for expensive

black-box functions, Algorithm 5, following the proposed contributions we de-

scribed previously in this chapter. Aggregating the concepts in this dissertation,

Algorithm 5 demonstrates our proposed surrogate optimization for deterministic

black-box functions.

We assume the black-box function is noise-free, i.e., if we execute a single

input several times, we will get the same output.

Algorithm 5 Deterministic Approach
1: Sample initial design space I = {xij ∈ D | ∀j = 1, · · · , d, i = 1, · · · , N}
2: Randomly generate m uniform random points in the box region;
R = {uij | a ≤ uij ≤ b, ∀ j = 1, · · · , d, i = 1, · · · ,m}

3: Evaluate initial data set I , f(xi),∀xi ∈ I
4: while Termination criteria is not satisfied do
5: Construct CART on initial data set I
6: Find the centroids for terminal nodes

cvj = 1
Kv

∑Kv
k=1 x

k
j ,∀v = 1, · · · , V , j = 1, · · · , d

7: Construct a surrogate model on I (TK-MARS/RBF)
8: Add centroids to the R; R = R ∪ C where C = {cv | ∀v ∈ V }
9: Optimizer on R to determine new candidate set of points P

10: Evaluate new selected candidate points ∀x ∈ P to find f(x)
11: Update initial data set I = I ∪ P
12: Find BSMS
13: end while

In step 1,N points are designed in the feasible solution space to spread through-

out the domain [a, b]. Next, the objective value is evaluated for the N initial data

points. N equals to d + 1 at the beginning. In this research, we employ Latin

Hypercube Design for the initialization of the input space, which is considered
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as a low-discrepancy sequence but not typically orthogonal, and Sobol, which is

a quasi-random low-discrepancy sequence with uniformity properties. The type

of design of experiment method we use for initialization is one of the algorithm

parameters, which has two levels of OA and Sobol design. In step 5, the algo-

rithm applies CART partitioning strategy to partition the solution space based on

the function structure in Section 3.1. Following the partitioning step, a surrogate

model has to be fitted. In this study, we focus on MARS and present a modified

version of it, TK-MARS, by developing a new knot-selection approach employing

the centroids of the partitions obtained in step 6. In step 2, to discretize the solu-

tion space, the algorithm generates a fixed number of random points first and in

step 8 dynamically improves the representation of the feasible domain by adding

the centroids from step 6. This novel approach provides more information around

the promising neighborhood of potential optima. In step 9, we apply EEPA on the

generated pool to select the best subset of candidate points in order to add to the

set I . We repeat all the steps until the maximum number of function evaluations

is exhausted.

3.6 Uncertainty in Black-Box Systems

In Section 3.5, we assume that the system is noise-free. However, this assumption

is not valid in many real-world applications. In some expensive computer simu-

lations, there is inherent noise associated with the system. Most of the existing

methods cannot handle uncertainty [21, 52, 53].
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We relax the noise-free assumption in this section, hence, the response ob-

tained from simulation contains uncertainty. f̃(x) = f(x) + ε where f̃(x) is the

output of the black-box system that contains uncertainty.

This means the output of the simulation is a stochastic function, which dif-

fers from the true function value. Every time a point is evaluated it comes out

with a new response. Consequently, we have different outputs for a single simu-

lation. The goal still is to minimize the true objective function as in Equation 3.4;

however, only the simulated noisy function values (actual objective value) are

available.

min f(x) (3.4)

s.t.

a ≤ x ≤ b,∀x ∈ Rd. (3.5)

f(x) is the true objective value. We assume that the feasible region, D, D = {x ∈

Rd : a ≤ xj ≤ b, j = 1, · · · , d}, is continuous. In addition, we assume that

the uncertainty or noise are independent identically distributed with mean 0 and

variance of σ2, f̃(x) ∼ (f(x), σ2), following an unknown distribution. Stochastic

black-box systems are rarely addressed in surrogate optimization literature as we

discussed in Section 2.6.

As we discussed earlier in Section 2.3, different types of surrogate models can

be chosen for surrogate optimization. Interpolating methods need more points in
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order to estimate a more accurate model and are commonly used for the deter-

ministic situations. Since interpolation-based models pass through all the points

and need the exact true value for each point, they may result in a highly oscil-

lating surrogate model for noisy systems. However, non-interpolating methods

pass among all the points and do not necessarily need exact values of the points.

They minimize the average error of the estimated values. These models are good

options, especially when the objective function contains noise.

Jones [45] shows that non-interpolating surfaces, such as quadratic surfaces,

can be unreliable as they do not capture the shape of the function. However, he

does not study the stochastic situation and focuses only on deterministic black-box

functions.

In highly noisy systems, a non-interpolating approach is usually preferred to

avoid oscillations of the fitted surface, when an interpolating approach is forced to

go through all data points. Differences between interpolating and non-interpolating

models are investigated in this research, too.

In Figure 3.5, we show how an interpolating model, as in Figure 3.5c, and a

non-interpolating model, as in Figure 3.5b, perform for a simple sin function with

noise and recognize the true underlying behavior under uncertainty.

As we mention earlier, we develop a new version of Multivariate Adaptive

Regression Splines, TK-MARS, for the purpose of surrogate optimization of ex-

pensive black-box functions. However, in order to analyze the performance of the

proposed method, different variants of RBF modeling, as an interpolating surro-

gate, are employed in the implemented surrogate optimization algorithm. For de-
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Figure 3.5: Interpolating versus non-Interpolating models for noisy sin function

terministic black-box systems, our proposed TK-MARS is competitive with RBF,

as the fraction of significant variables decreases.

We employ TK-MARS in a surrogate optimization algorithm with a Pareto-

based optimizer as in Algorithm 5. In this section, we study different scenarios

for black-box systems with uncertainties. The proposed algorithm implements a

new way of handling noise in the objective function. If no noise is present in the

objective function, an interpolation is a good choice as a surrogate model. In order
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to capture the single simulation with two or more different outputs, the interpola-

tion method needs to pass through all the points with a large slope. Consequently,

interpolation-based surrogate models may result in highly fluctuated approxima-

tions for data points include uncertainty. The TK-MARS approximation becomes

less oscillating than the interpolation-based RBF. It resembles the true function

behavior better than the interpolation. Furthermore, because of the less oscillat-

ing behavior of TK-MARS, tracking the minimum of the approximation is often

easier for TK-MARS than for an interpolation-based surrogate model.

Consequently, we expect TK-MARS to be more capable of handling the stochas-

tic black-box functions as a non-interpolating method, which mainly focuses on

optimizing the promising regions. However, we propose three different approaches

to reduce the uncertainty associated with the black-box functions, by either using a

non-interpolation or by an interpolation-based surrogate model. The first approach

is to employ the deterministic surrogate optimization approach Algorithm 5 intro-

duced in Section 3.5. An alternative approach to cancel out the uncertainty effect

is replicating the function evaluation for each point.

Evaluating a point once with a stochastic black-box function may not be re-

liable and accurate. Hence, doing more than one evaluation for the same point

gives more accurate information about the true objective value. We propose two

different replication strategies as the alternative approaches for stochastic black-

box optimization, in order to minimize the output uncertainty. Based on the level

of uncertainty and the maximum number of function evaluations, one may move

along between exploring more points with single evaluation and exploiting a few
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points by replicating more than once.

Although with replication, the effect of noise decreases and the sampled mean

converges to the true function value, it requires more function evaluations when

the uncertainty level is high. As a result, the replication effect is not significant;

exploration, on the other hand, is more effective.

We assume that the actual objective function of the black-box is f̃(x) where

f̃(x) ∼ N(f(x), σ2). Suppose the number of replication is r. Let f̄(x) be the

sample mean of f̃(x) after r replications. That is, f̃(xi) = f(xi) + ε, ∀i =

1, · · · , |I|.

f̄(xi) = f(xi) +

∑
xj=xi
j≤ i

ε(xj)

∑
xj=xi
j≤ i

(xj = xi)
, ∀ i = 1, · · · , |I| (3.6)

f̄(x) in Equation 3.6 follows N(f(x), σ
2
√
r
) based on the central limit theorem.

ε(xj) is the uncertainty component of f̄(xj). The second component in Equa-

tion 3.6 corresponds to the mean of replications’ uncertainties for a sample point.

(xj = xi) is an indicator function that counts the number of replications for a

single point. Hence, when the uncertainty level is high, the replication does not

reduce the variance significantly. As a result, exploring more single evaluated

points will be a better option.

Next, in Sections 3.6.1, 3.6.2, and 3.6.3, we explain three approaches for

black-box optimization in noisy applications.
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3.6.1 Deterministic Approach: No-Replication

In this section, relaxing the no-noise assumption, we apply the proposed determin-

istic approach, Algorithm 5, and adapt it for stochastic systems. In this approach,

we use one evaluation for each sample point. The No-Replication Algorithm 5

exhausts the function evaluation limit for exploring different points and having a

single evaluation for each of them.

Since the data points include uncertainties associated with the black-box func-

tion, a single evaluation may not be reliable and does not show the true output

value of the black-box function. Consequently, the deterministic approach may

not be adequate to handle the uncertainty effect and, as a result, mislead the opti-

mization process.

Adding noise may yield a false function value; hence, the BSMS is different

from a true optimal. The challenge is the model might get trapped in the artificial

optima.

This approach is sufficient for the systems with a low level of uncertainty and

cannot handle a higher level of uncertainties. The deterministic approach may not

be robust to the uncertainties associated with the black-box system.

3.6.2 Fixed-Replication Approach

The No-Replication approach uses a single evaluation of each point. The other

extreme is to evaluate the selected points multiple times. In this scenario, each

sample point is evaluated a fixed number of times r, where r > 1.
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Replication mitigates the noise effect. Based on the central limit theorem, the

average of r random values ε, distributed with mean 0 and standard deviation of σ,

follows a normal distribution of N(0, σ
2
√
r
). That is, the variance of the average is

smaller than that of a single sampled random variable. Consequently, replication

and averaging over the replicated function values is a good estimation of the mean

of a noisy function.

Let us define r as r =
∑

xj=xi
j≤ i

(xj = xi), ∀i = 1, · · · , |I|. In other words, r is

the number of equal pair of sample points from the set of already evaluated points,

I .

Algorithm 6 represents the Fixed-Replication approach.

Algorithm 6 Fixed-Replication Approach
1: Sample initial design space I = {xij ∈ D | ∀j = 1, · · · , d, i = 1, · · · , N}
2: Randomly generate m uniform random points in the box region;
R = {uij | a ≤ uij ≤ b, ∀ j = 1, · · · , d, i = 1, · · · ,M}

3: while Termination criteria is not satisfied do
4: Evaluate initial data points each r times to find f̄(x),∀x ∈ I
5: Construct CART on initial data set I
6: Find the centroids for terminal nodes

cvj = 1
Kv

∑Kv
k=1 x

k
j , ∀v = 1, · · · , V, j = 1, · · · , d

7: Construct a surrogate model on I (TK-MARS/RBF)
8: Add centroids to R; R = R ∪ C where C = {cv | ∀v ∈ V }
9: Optimizer (EEPA) on R to determine new candidate set of points P

10: Evaluate new selected candidate points each r times to find
f1(x), · · · , fr(x), ∀x ∈ P

11: Update initial data set I = I ∪ P
12: Find BSMS
13: t := t+ 1
14: end while

In steps 4 and 10, either each replicated point can be considered as a new sam-
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ple point, or the average of r replications can be taken as a single point. However,

interpolation-based surrogate models cannot handle a point with multiple different

objective values due to the singularity issue. On the other hand, non-interpolating

models, such as MARS, can consider the same point with different response val-

ues. As a regression-based model, MARS does not necessarily pass through all

the points but rather tends to minimize the error. In the experiments in Chapter

4, we consider the average value over replications for interpolating models. For

non-interpolating models, we study the average of replications (TK-MARS-Avrg)

and also consider all the replications as new sample points (TK-MARS-Keepall).

Replicating all candidate points a fixed number of times is not efficient and

wastes function evaluations. That is because all of the already evaluated points, no

matter if promising or not, are replicated r times. The Fixed-Replication approach

is sufficient for systems with a higher level of uncertainty and wastes unnecessary

function evaluations when the uncertainty level is low. In the Fixed-Replication

approach, the algorithm exhausts the function evaluations faster having multiple

evaluations at a time. Consequently, it leads to less exploration and more reliabil-

ity.

In the presence of noise, the Fixed-Replication approach is more robust in

comparison with the deterministic approach. However, the number of replica-

tions, r, has to be predetermined. It is always hard to choose the optimum number

of replications, as it depends on the noise level and the underlying function char-

acteristics.
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3.6.3 Smart-Replication Approach

So far, we explained No-Replication and Fixed-Replication approaches. A smarter

strategy, in between, is to replicate not all of the candidate points but only the

promising points for optimization. Following this strategy, in this section, we

propose an approach for replication, using a hypothesis testing based on confi-

dence intervals. In this approach, the promising points, close to the best sampled

mean solution, are replicated. The number of replications is determined by the

algorithm itself, following the hypothesis rule. Smart-Replication automatically

decides the number of replications for each selected candidate point.

Assume that the current BSMS is xo. For each selected candidate point xi,

Smart-Replication considers the following null hypothesis and stops replicating

xi, if it can reject the null hypothesis.

Ho: if f̄(xo) < f̄(xi), where xi 6= xo, ∀i = 1, · · · , |I|, then f(xo) >

f(xi).

H1: if f̄(xo) < f̄(xi), where xi 6= xo, ∀i = 1, · · · , |I|, then f(xo) <

f(xi).

Decision rule: if CIlow(f(xi)) ≥ CIup(f(xo)),∀xi ∈ I , Reject Ho.

Conclusion: Even though the objective value of BSMS, f̄(xo), is smaller

than the objective value of xi, f̄(xi), the true objective value of xi, f(xi),

is smaller than the true objective value of xo, f(xo). Hence, we are (1 −

α)% confident that more replications are required for xi.

For each point that is evaluated ri times, ri ≥ 2, we calculate the standard
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deviation and the confidence interval with a significance level of α.

std(xi) =

√√√√ 1

ri − 1

ri∑
k=1

(f̃(xk)− µ)2

where µ = 1
ri

∑ri

k=1 f̃(xk).

Now, we calculate the confidence interval, CI(xi) = (µ ∓ tα
2

std(xi)√
ri

),∀i =

1, · · · , |I|. To select the promising points, we prune the candidate points based on

the lower bound of the confidence interval CIlow. If CIlow of a point is less than

the threshold, i.e. threshold = CIup(BSMS), it is selected as a promising point

to be replicated. The promising points are the candidate points that are close to the

current BSMS, i.e., below the threshold, Figure 3.6. Since the number of function

evaluations is limited, and the experiments are costly, we consider a maximum

number of replications for the promising points rmax .

The smart approach behaves similar to the deterministic, No-Replication, ap-

proach when the uncertainty level is low and similar to the Fixed-Replication ap-

proach when the uncertainty level is high. For a higher noise level, the variance

is larger. It makes the condition of CI ineffective, and, as a result, more replica-

tions are required. However, it can replicate points up to the maximum number of

replications rmax , which needs to be large and determined in advance.

Consequently, Smart-Replication is efficient in both ways, i.e. low/high noise.

That is because it recognizes if the system is deterministic or stochastic, and de-

cides about replications automatically.

59



BKS

Threshold (𝑪𝑰𝒖𝒑𝑩𝑲𝑺)Tr
ue

O
bj

ec
tiv

e
V

al
ue

Number of Function Evaluation

Figure 3.6: Smart-Replication Approach Illustration

3.7 Measure of Performance

In this section, we propose two measures of performance for deterministic and

stochastic systems. since the function evaluations are expensive, the number of

function evaluations before finding an optimal solution is a good metric for mea-

suring the performance of an algorithm. However, obtaining a global optimum

cannot be guaranteed. A metric that can quantify the convergence pattern of an

algorithm is more plausible in the context of black-box optimization.

3.7.1 Area Under the Curve: AUC

First, we propose the area under the curve (AUC) metric in Definition 1.

Definition 1 (Area Under the Curve – AUC). Given the best sampled mean solu-
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Algorithm 7 Smart-Replication Approach
1: Sample initial design space I = {xij ∈ D | ∀i = 1, · · · , d, j = 1, · · · , N}
2: Randomly generate m uniform random points in the box region;
R = {uij | a ≤ uij ≤ b, ∀ j = 1, · · · , d, i = 1, · · · ,M}

3: while Termination criteria is not satisfied do
4: µi = 1

ri

∑ri

k=1 x
k

5: std(xi) =
√

1
ri−1

∑ri

k=1(x
k − µi)2

6: CI(xi) = (µ ∓ tα
2

std(xi)√
ri

),∀i = 1, · · · ,M
7: while CIlow(f(xi)) ≥ CIup(f(xo)) & ri ≤ rmax do
8: Evaluate xi, ri = ri + 1
9: Update std(xi), µi, CI(xi),

10: end while
11: Construct CART on initial data set I
12: Find the centroids for terminal nodes

cvj = 1
Kv

∑Kv
k=1 x

k
j , ∀v = 1, · · · , V, j = 1, · · · , d

13: Construct a surrogate model on I (TK-MARS/RBF)
14: Add centroids to the R; R = R ∪ C where C = {cv | ∀v ∈ V }
15: Optimizer (EEPA) on R to determine new candidate set of points P
16: Update initial data set I = I ∪ P
17: Find BSMS, (xo, f(xo))
18: t:=t+1
19: end while

tion (BSMS) found by an algorithm after each function evaluation. Let f(xoi) be

the true objective value of BSMS, where xoi is the BSMS after i function evalua-

tions. Let fmin = mini=1,...|I|(f(xoi)) and fmax = maxi=1,...|I|(f(xoi)). Using the

normalized objective value of BSMS:

f(xoi) =
f(xoi)− fmin

fmax − fmin
∀i = 1, · · · , |I|,
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the AUC is

AUC =
∑

i=1,··· ,|I|

f(xoi) (3.7)

AUC comprises both the quality of BSMS, as well as the time that the algo-

rithm finds it.

AUC works well for the deterministic cases, as the objective value of the

BSMS monotonically decreases over time. However, this may not hold for stochas-

tic black-box systems, as the curve consists of jumps. In these cases, the stability

of BSMS represents the robustness. Even though the jumps in early iterations are

tolerable, we expect a stable behavior towards the end of the evaluation. There-

fore, next, we propose a metric for stochastic black-box systems that is able to

monitor the stability and jump locations across the number of function evalua-

tions. A good algorithm is the one with fewer and shorter jumps, in which after a

reasonable number of function evaluations, the results are reliable.

3.7.2 Maximal True Function Area Under the Curve: MTFAUC

In this section, we propose a new performance measure for stochastic black-box

optimization. To consider the instability in the metric, we consider the maximum

objective value of BSMS obtained among all BSMS found forward. Subsequently,

we define the maximal true function area under the curve (MTFAUC) as follow-

ing:

Definition 2 (Maximal True Function Area Under the Curve – MTFAUC). Given
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the best sampled mean solution (BSMS) found by an algorithm after each func-

tion evaluation. Let f(xoi) be the true objective value of BSMS, where xoi is

the BSMS after i function evaluations. Let a = mini=1,...|I|(f(xoi)) and b =

maxi=1,...|I|(f(xoi)). Using the normalized objective value of BSMS

f(xoi) =
f(xoi)− a
b− a

∀i = 1, · · · , |I|,

f̄(x) (Equation 3.6) is the sample mean of the observed objective value after r

replications. Let xoi = argminj=1,··· ,i f̄(xj) be the BSMS after i number of func-

tion evaluations and f̄(xoi) be its estimated objective value. Consider ĵ(i) as the

maximum objective value of BSMS obtained among all BSMS found forward:

ĵ(i) ∈ argmax
j=i,··· ,|I|

f(xoj) (3.8)

The MTFAUC is

MTFAUC =

|I|∑
i=1

f(xĵ(i)) + f(xĵ(i−1))

2
(3.9)

MTFAUC comprises the instability, by using ĵ(i) to penalize the jumps. Hence,

MTFAUC deteriorates if the convergence pattern highly fluctuates. A more stable

algorithm towards uncertainty has a lower MTFAUC value.
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Chapter 4

Computational Experiments

4.1 Implementation

The proposed methods are implemented in R1. The original version of MARS is

in C. The proposed knot preprocessing approach for MARS is part of an R code.

We use RBF toolbox for MATLAB/OCTAVE [54].

4.2 BBOB Test Functions

We compare the performance of the proposed algorithms on four test problems,

taken from a collection of well-known global optimization test functions [55,56].

In this study, we first evaluate the deterministic black-box functions, and then,

examine the performance of the proposed algorithms under uncertainty. Table 4.1

1https://www.r-project.org/
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describes the characteristics of the selected test functions.

• Rosenbrock: non-convex uni-modal with interactions

• Rastrigin: non-convex multi-modal well-structured for the placement of the

optima

• Sphere: unimodal convex

• Levy: non-convex multi-modal

Table 4.1: Test Functions Definition

Function Formulation Range Global Min

Rosenbrock Fig. 4.1 f(x) =
∑d−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2] [-5,10] f(x∗) = 0
x∗ = (1, · · · , 1)

Rastrigin Fig. 4.2 f(x) = 10d+
∑d

i=1[x
2
i − 10cos(2πxi)] [-5.12,5.12]f(x∗) = 0

x∗ = (0, · · · , 0)

Sphere Fig. 4.3 f(x) =
∑d

i=1 x
2
i [-5.12,5.12]f(x∗) = 0

x∗ = (0, · · · , 0)

Levy Fig. 4.4 f(x) = sin2(πw1) [-10,10] f(x∗) = 0

+
∑d−1

i=1 (wi − 1)[1 + 10 sin2(πwi = 1)] x∗ = (1, · · · , 1)
+(wd − 1)2[1 + sin2(2πwd)]

4.3 TK-MARS Study

We start by comparing the proposed TK-MARS surrogate model with the original

MARS, which uses the evenly-spaced knot selection approach [9].
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Figure 4.2: Rastrigin Function
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Figure 4.3: Sphere Function

0
10

20

40

5 10

60

5

80

0
0

100

-5
-5

-10 -10
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4.4 Parameters Setting

The input parameters of the MARS are presented in Table 4.2. We consider all

different combinations of these parameters for the four test functions.

Table 4.2: MARS Parameters

Parameters
d = Number of X variables
T = Number of knots in each dimension
|I| = Number of initial observations
maxIA = maximum number of interaction terms per basis function
(1: no interaction, 2: two way interactions, 3: three way interactions)
Mmax = maximum Number of MARS basis functions in approximation
Alg3 = 0 do not run Algorithm 3 (Backwards Deletion) of MARS
Alg3 = 1 do run Algorithm 3
Robust = 0 do not implement robust selection
Robust = 1 implement robust selection
TOL = tolerance (typically .1-.5)

The parameters of RBF are: (1) the type of the basis functions (Multiquadric

(MQ), Gaussian (G), Cubic (C), Thin Plate Spline (TPS)), (2) the positive constant

parameter ω value, and (3) a binary flag poly to indicate whether or not the poly-

nomial term needs to be added. Table 4.3 shows different values of the parameters

to be studied in the experiments.

The initial set I of 35 points with d = 27 independent variables, is designed

for a single black-box objective function, using a Latin Hypercube Design (LHD)

low discrepancy method. The optimization problem is box-constrained; the model

is presented in Equation 1.2. A uniform Random pool of 1000 points is designed

for the candidate selection procedure, corresponding to the range of each test func-
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Table 4.3: RBF parameters

RBF Type Poly ω

MQ 0 2
G 0 2
C 1 2
TPS 1 2

tion.

4.4.1 TK-MARS VS. Original MARS

First, we compare the original MARS with the proposed TK-MARS to show the

advantage of the new knot preprocessing approach for surrogate optimization.

The number of eligible knot locations in each dimension T is usually preset to

a static value in MARS. The optimum value of T cannot be determined in ad-

vance, hence, we study the results for a small T = 10, a medium T = 20 and

a large T = 50. To ensure a fair comparison between the original MARS and

TK-MARS, we consider a dynamic number of eligible knot locations T for the

original MARS. Specifically, after each iteration of the original MARS, we con-

struct a tree using CART, as also done in TK-MARS. Then, we set T to be the

number of terminal nodes, leaves, in this tree. Having both the original MARS

and TK-MARS dynamically set T based upon the number of leaves from CART

is more appropriate for comparing the two algorithms.

Finally, we perform TK-MARS on the test functions in order to show the

improvement in identifying promising knot locations. The results are provided
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in Figures 4.5-4.8. As one can see, the tree-based knots approach improves the

optimization process, significantly.

To clarify, T = 10 is adequate for MARS in early iterations to capture the data

structure. However as the number of sample points increases, T = 10 is insuf-

ficient and ultimately underfits the underlying function. On the other hand, with

T = 50 MARS becomes more complex and overparameterized in early iterations.

As a result, the optimization becomes worse and converges slower. In the case of

T being set to the number of terminal nodes in CART, both TK-MARS and the

original MARS have the same number of knots but in different locations. From the

figures, TK-MARS lands the knots in the promising locations, using CART. As

a result, TK-MARS properly captures the peaks and valleys, so the optimization

converges faster.
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Figure 4.5: TK-MARS vs. Original MARS with different number
of eligible knot locations – Rosenbrock function
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Figure 4.6: TK-MARS vs. Original MARS with different number
of eligible knot locations – Rastrigin function
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Figure 4.7: TK-MARS vs. Original MARS with different number
of eligible knot locations – Sphere function
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Figure 4.8: TK-MARS vs. Original MARS with different number
of eligible knot locations – Levy function
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4.4.2 TK-MARS vs. RBF

In this section, our focus is to study the capability of TK-MARS in identifying the

unimportant variables with different parameter settings. We compare the perfor-

mance of TK-MARS versus RBF using different numbers of important variables

in the underlying black-box function. We consider four levels, 1, 3
4
, 1
2
, and 1

4
, for

the fraction of important variables, which we will denote as fiv .

We perform two separate full factorial designs; one on three the parameters of

TK-MARS in Table 4.2, maxIA, Alg3 , and, Robust , and the other on the settings

of RBF presented in Table 4.3. The results are in Tables 4.4 and 4.5. In Table 4.4,

the first three columns correspond to important parameters of MARS: Maximum

number interactions allowed (1, 2 and 3), the robust MARS option (1: on, 0:

off), and the backward elimination option (1: on, 0: off). The remaining columns

denote the fraction of important variables considered in computer experiments

(recall from Section 3.2). Under each level of the fraction of important variables,

we see two cells. The first one corresponds to Area Under the Curve (AUC)

and the second value shows the total number of function evaluations before the

optimum solution is found. For this set of experiments, we intentionally add the

global optimum of the test functions in the fixed pool R to study the performance

of TK-MARS in identifying it. Later, in the comprehensive study, Section 4.5, we

use a dynamic pool generation to converge to a global optimum.

In Table 4.5, the columns show the fraction of important variables considered

in computer experiments. We perform the experiments for different RBF settings

and different test functions as in Table 4.5.
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Table 4.4: TK-MARS Results

maxIA Robust Alg3 1 3/4 1/2 1/4

Rosenbrock

1 1 1 0.0203 59 0.0145 53 0.0229 62 0.0162 323

1 1 0 0.0203 59 0.0251 64 0.0116 50 0.0204 65

1 0 1

NA1 0 0

3 1 1 0.1071 149 0.0772 118 0.0652 110 0.0273 209

3 1 0 0.0927 134 0.0763 117 0.0505 91 0.0160 119

3 0 1 0.0289 77 0.1062 148 0.0396 79 0.0198 119

3 0 0 0.0261 65 0.0589 99 0.0666 107 0.0098 70

Rastrigin

1 1 1 0.0376 77 0.0415 81 0.0087 47 0.0522 93

1 1 0 0.0145 53 0.0029 41 0.0372 83 0.0338 73

1 0 1

NA1 0 0

3 1 1 0.1476 193 0.2178 266 0.1535 197 0.1014 146

3 1 0 0.2398 288 0.0888 130 0.0550 95 0.1464 198

3 0 1 0.4497 518 0.1998 245 0.0309 165 0.1260 171

3 0 0 0.3407 391 0.3069 356 0.3875 469 0.5818 708

Sphere

1 1 1 0.0193 59 0.0203 59 0.0076 47 0.0087 47

1 1 0 0.0087 47 0.0087 47 0.0076 47 0.0067 47

1 0 1

NA1 0 0

3 1 1 0.0135 52 0.0193 58 0.0368 77 0.0087 47

3 1 0 0.0145 53 0.0350 77 0.0068 45 0.0029 41

3 0 1 0.0203 59 0.0434 83 0.0453 87 0.0125 51

3 0 0 0.0295 71 0.0669 122 0.0607 103 0.0125 51

Levy

1 1 1 0.0248 65 0.0460 95 0.0087 47 0.0345 97

1 1 0 0.0145 53 0.0248 68 0.0162 55 0.0135 52

1 0 1

NA1 0 0

3 1 1 0.0774 125 0.1500 238 0.0275 104 0.0235 65

3 1 0 0.1640 217 0.1236 166 0.0148 55 0.0145 53

3 0 1 0.0647 105 0.1665 241 0.0916 151 0.0222 61

3 0 0 0.0029 41 0.2932 424 0.1719 274 0.0145 53
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Table 4.5: RBF Results

MQ-0

1 3/4 1/2 1/4

Rosenbrock 0.0087 47 0.0077 46 0.0126 52 0.0203 131

Rastrigin 0.0087 47 0.0087 47 0.0145 53 0.0666 107

Sphere 0.0087 47 0.0087 47 0.0079 47 0.0203 59

Levy 0.0145 53 0.0145 53 0.0203 59 0.0366 83

G-0

1 3/4 1/2 1/4

Rosenbrock 0.7376 895 0.7156 895 0.4293 895 0.2935 896

Rastrigin 0.0087 47 0.0087 47 0.0087 47 0.0087 47

Sphere 0.0083 47 0.0074 47 0.0087 47 0.0145 53

Levy 0.8338 1035 0.8350 1035 0.6128 1035 0.4628 1035

C-1

1 3/4 1/2 1/4

Rosenbrock 0.0183 57 0.0219 65 0.0287 69 0.0434 309

Rastrigin 0.0241 63 0.0319 71 0.0550 95 0.3304 397

Sphere 0.0193 58 0.0183 57 0.0203 59 0.0376 77

Levy 0.0241 63 0.0261 65 0.0425 82 0.0531 93

TPS-1

1 3/4 1/2 1/4

Rosenbrock 0.0225 62 0.0219 65 0.0361 78 0.0245 171

Rastrigin 0.0245 61 0.0261 65 0.0290 68 0.0705 111

Sphere 0.0241 63 0.0241 63 0.0193 58 0.0319 71

Levy 0.0357 75 0.0424 83 0.0338 73 0.0666 107
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For instance, in Table 4.4, the first row corresponds to the result of TK-MARS

on the Rosenbrock function with no interactions (maxIA = 1), using the robust

version (Robust = 1) and backward elimination (Alg3 = 1). Looking at the

first column where all of the variables are important, 0.0203 and 59 denote the

AUC measure and the total number of function evaluations before the optimum

solution found, respectively. Generally, a smaller AUC and a smaller number of

function evaluations are of interest. The explained cell can be compared with the

counterpart cells in Table 4.5; the first row in each stack shows different settings

of RBF. For MQ-0, the corresponding values for Rosenbrock function with all

variables being important are 0.0087 and 47, for G-0, they are 0.7376 and 895, for

C-1, they are 0.0183 and 57, and for TPS-1, they are 0.0225 and 62. In this specific

case, we can say TK-MARS with no interaction (maxIA = 1) outperforms RBF

with Gaussian and Thin Plate Spline bases.

For simplicity, let us consider the TK-MARS setting in the form of a vec-

tor (maxIA, Robust , Alg3 ). For instance, (3,0,1) corresponds to maxIA = 3,

Robust = 1 (on) and Alg3 = 0 (off). For the fraction of important variables, we

will continue with fiv = 1 when all of the variables are important and fiv = 3
4
,

fiv = 1
2
, and fiv = 1

4
for the other levels. Below, we discuss the conclusion from

the experiments for each of the test functions across different levels of the fraction

of important variables.

Rosenbrock: From Table 4.4, note that the best result for fiv = 1, corre-

sponds to (1, 1, 1) and (1, 1, 0) with 59 total number of function evaluations and

AUC = 0.0203. Rosenbrock has interactions, however, TK-MARS finds the opti-
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mum faster considering no interactions. That is because the Rosenbrock function

only contains xi+1x
2
i interaction terms which are relatively small to be captured,

as in Table 4.1-Row 1. We can justify this by the unnecessary interaction basis

functions that appear when interactions are allowed in MARS. Hence, TK-MARS

is overparameterized for Rosenbrock, which worsens the optimization results.

Dropping the number of considered important variables to 20 (3
4
∗27 = 20), the

best result goes to (1, 1, 0) again with 53 total number of function evaluations. In

this case, we can say TK-MARS is successful in identifying the unimportant vari-

ables and determines the structure of the underlying function to find the optimum

very well. For fiv = 1
2

and fiv = 1
4
, the performance of TK-MARS maintains

strong with the selected setting of (1, 1, 0).

Rastrigin: The best result corresponds to (1, 1, 0) with the total number of

function evaluations equaling 53 and AUC = 0.0145. The Rastrigin function has

multiple local optima. However, TK-MARS (a regressive model) is successful

in capturing the overall pattern. This function does not have any interactions.

Consequently, TK-MARS with no interactions performs better. Decreasing fiv ,

the quality of the performance of TK-MARS maintains strong with (1, 1, 0) as the

selected set of parameters.

Sphere: The best result corresponds to (1, 1, 0) with the total number of func-

tion evaluations equals to 47 and AUC = 0.0087. The Sphere function is a well-

structured function without any interactions. For the Sphere function the perfor-

mance of TK-MARS for optimization is notable. However, the best performing

set of parameters changes from (1, 1, 0) to (3, 1, 0) for fiv = 1
2

and fiv = 1
4
, re-
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spectively. It is worth mentioning that the performance of the (1, 1, 0) setting is

slightly worse than other settings but is still a good set of parameters for optimiza-

tion.

Levy: The best result corresponds to (3, 0, 0) with the number of evaluations

equals to 41. The Levy function has multiple local optima and is highly nonconvex

without any prevailing shape. Although, it does not have any interactions, TK-

MARS tries to capture the structure of Levy, including the interaction terms and

no backward elimination. As a result, TK-MARS brings in as many effective basis

functions as it can to find the optimum faster. Hence, (3, 0, 0) is selected. It has

not escaped our notice that the performance of (1, 1, 0) setting of TK-MARS is

slightly worse than (3, 0, 0) and can be chosen as a good setting for Levy function.

We can say that TK-MARS works remarkably better for the Levy function

when there are fewer important variables. The best setting of parameters are

(1, 1, 0) for fiv = 1
2

and (1, 1, 1) for fiv = 1
4
. However, for this case, (1, 1, 0)

can be considered as a good setting as well.

In general, the selected parameter setting for the black-box optimization with

TK-MARS is chosen to be (1, 1, 0). This means that TK-MARS without any

complex structure and overparameterizing can find the prevailing shape of the

underlying function appropriately for optimization. Researchers are very focused

on interpolation in the surrogate optimization literature, which may in fact be

inferior to non-interpolating methods.

We can conclude that TK-MARS is competitive with RBF as in Figures 4.9-

4.24. TK-MARS outperforms RBF with TPS basis in all of the test functions.
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RBF with Cubic and Multiquadric basis, outperforms TK-MARS for Rosenbrock

and Rastrigin. Besides, RBF with Gausian basis slightly outperforms TK-MARS

for the Rastrigin function. Please note that the results are provided for a single run,

as our objective is to find the best setting. Later in Section 4.5 we shall provide a

comprehensive comparison for multiple runs.

Another aspect of the results in Figures 4.9-4.24 is the consistent quality of

the performance of TK-MARS maintains through different levels of fiv . How-

ever, it is not the case for RBF. The performance of RBF for optimization decays

as the number of considered important variables decays. Generally speaking, TK-

MARS is more successful in identifying the important variables than RBF. As

the number of important variables decreases TK-MARS outperforms RBF, signif-

icantly.
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Figure 4.9: Tree-based MARS Versus
RBF for Rosenbrock Function with all
variables important
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Figure 4.13: Tree-based MARS Ver-
sus RBF for Rastrigin Function with all
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RBF for Rastrigin Function with 1
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of

variables important
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Figure 4.17: Tree-based MARS Versus
RBF for Sphere Function with all vari-
ables important
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Figure 4.18: Tree-based MARS Ver-
sus RBF for Sphere Function with 3
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Figure 4.19: Tree-based MARS Ver-
sus RBF for Sphere Function with 1

2
of

variables important
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Figure 4.20: Tree-based MARS Ver-
sus RBF for Sphere Function with 1

4
of

variables important
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Figure 4.21: Tree-based MARS Versus
RBF for Levy Function with all vari-
ables important
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Figure 4.22: Tree-based MARS Versus
RBF for Levy Function with 3

4
of vari-

ables important
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Figure 4.23: Tree-based MARS Versus
RBF for Levy Function with 2

4
of vari-

ables important
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Figure 4.24: Tree-based MARS Versus
RBF for Levy Function with 1

4
of vari-

ables important

4.5 Comprehensive Study

In this section, we present a comprehensive study of the performance of the pro-

posed algorithms on a new class of test functions that include unimportant vari-

ables and uncertainty. Different problem setting parameters may affect the perfor-
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mance of the proposed methods. In addition, each algorithm has its own parame-

ters that needs to be tuned. A comprehensive study requires considering different

combinations of the parameters.

4.5.1 Problem setting parameters

In this research, we study a set of well-known test problems to see the performance

of the proposed algorithm, especially in high-dimensional space. However, we

believe that the existing test functions that are designed for global optimization,

are different from the less-symmetric and less-structured real-world applications.

Hence, we design a new class of test functions that mimic the real-world problems

in the context of surrogate optimization [57–59].

To design a new class of test functions, we consider two major factors of real-

world black-box functions, (1) fraction of important variables and (2) uncertain-

ties associated with the black-box systems. For the first factor, in order to show

that the proposed method is able to recognize the important variables among all

the input variable set, the function evaluation is based on a fraction of input vari-

ables, not all of them. In addition, to represent stochastic black-box systems, an

uncertainty component is added to the true objective value for each function eval-

uation. An initial experiment is presented in this study by adding a Gaussian noise

f̃(x) = f(x)+ε, where ε ∼ N(f(x), np∗range(f(xx∈Io))), where np is the noise

percentage level.
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4.5.2 Algorithm parameters

Some of the parameters related to the method proposed in Chapter 3 might have

a significant effect on the performance of the algorithm. In addition to the prob-

lem setting parameters, we consider these parameters for computational experi-

ments, as well. In each experiment, we indicate the algorithm-related parameters

and their different levels to be studied. The measure of performance applied is

MTFAUC introduced in Section 3.7.2. Besides, some parameters related to the

methods are fixed for the experimental runs.

4.5.3 Design of Experiments

To investigate the effect of the parameters on the performance of the algorithm,

we need to determine a Design of Experiments (DOE) to execute organized and

effective sets of experiments and collect a comprehensive set of observations. A

proper design of experiments helps to determine the variations of the response

caused by the key parameters. To determine the significant parameters and their

impacts, an efficient design of experiments is required to collect the data. Con-

ducting Analysis of Variance (ANOVA), we can potentially uncover the variability

that is explained with different types of parameters. We can recommend a solu-

tion or an approach regarding the overall investigation based on a reliable DOE

observation.
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4.5.3.1 Orthogonal Array

A full factorial analysis may not be a reasonable design regarding a large set of pa-

rameters. Considering a subset of combinations of multiple parameters at multiple

levels, a specific type of design that ensures all levels of all factors are considered

equally is important. One of the modern types of fractional factorial design is

Orthogonal Arrays (OA), which distributes design points uniformly in the design

region. There are several techniques to construct orthogonal arrays with multiple

factor levels [60,61]. OA designs are common for design of experiments in indus-

tries where there is a large number of factors to be studied but only a few of them

effect the output. OA designs save runs and are flexible for combinations of fac-

tor levels. SAS provides a complete library of Orthogonal Arrays with different

numbers of runs, factors, and levels [62].

In this research, we apply OA design to recognize the main effects of the prob-

lem setting parameters and algorithm-related parameters. There are two separate

OA designs; one for the deterministic approach (no-replication) and one for the

stochastic approach.

4.5.3.1.1 No-Replication Results

To examine the main effects of the parameters on the performance of the deter-

ministic algorithm and the effect of different models, an OA design is considered

on the set of parameters presented in Table 4.6. Appendix Table 1 shows the OA

design that is chosen for this study.
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Table 4.6: No-Replication parameters and levels for OA design

Problem Parameters levels

Test function Rosenbrock, Rastrigin, Levy
Dimension 10, 20, 30
Fraction of important variables 0.25, 0.50, 0.75, 1
Noise level (%) 0, 10, 25

Algorithm Parameters levels

Initial pool size d+ 1, 2(d+ 1)
DOE method LHD, Sobol
EEPA distance Euclidean, Cosine
EEPA # candidates 3, 6
Model RBF, TK-MARS

Conducting an analysis of variance (ANOVA) in R, the hypothesis of varia-

tions caused by different factors is tested. In ANOVA, the reference population

is the first level of each factor. From the results in Table 4.7, observe that the

fraction of important variables and noise level are statistically significant param-

eters. Consequently, we compare each level with the reference level. The results

indicate that the noise effect cannot be handled by the deterministic approach and

has a significant effect on the MTFAUC value. Further, from the model factor,

observe that TK-MARS is slightly better than RBF. A more precise analysis of

the performance of RBF and TK-MARS is presented later with a Full-Factorial

analysis in Section 4.5.3.2.

As a result of the conducted ANOVA, the deterministic approach is not able

to handle the noise effect and an alternative approach should be considered to

mitigate it.
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Table 4.7: No-Replication ANOVA table

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0213 0.06535 0.326 0.745659
fiv=0.75 0.12197 0.04773 2.556 0.013294 *
fiv=0.50 0.22659 0.04773 4.748 1.43E-05 ***
fiv=0.25 0.30299 0.04773 6.348 3.84E-08 ***
noise level=10% 0.14558 0.04133 3.522 0.000851 ***
noise level=25% 0.23302 0.04133 5.638 5.59E-07 ***
Rastrigin 0.33031 0.04133 7.991 7.10E-11 ***
Levy -0.02759 0.04133 -0.667 0.507163
dimension=20 -0.06038 0.04133 -1.461 0.149573
dimension=30 0.01005 0.04133 0.243 0.808709
poolSize=2(d+1) 0.01179 0.03375 0.35 0.728
DOE=Sobol -0.02552 0.03375 -0.756 0.452732
EEPA distance=Cosine 0.01675 0.03375 0.496 0.62165
EEPA number of candidates=6 0.0452 0.03375 1.339 0.185774
model=TK-MARS -0.01327 0.03375 -0.393 0.695633

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

4.5.3.1.2 Replication Results

In this section, we consider the proposed replication strategies to mitigate the

noise effect. An analysis of variance is conducted on a set of parameters shown

in Table 4.8 with MTFAUC as the response variable. We consider two replication

types of fixedrep and smartrep with two different replication numbers of 5 and

10. For fixedrep the replication number is the fixed number of replications for

each candidate points, however, for smartrep the replication number is the max-

imum number of replications. We use fixedrep, 5, fixedrep, 10, smartrep, 5, and

smartrep, 10 for different replication types with different number of replications.

The OA design chosen for this study is presented in Appendix Table 2.

From Table 4.9, observe that the noise parameter is not significant anymore,

which indicates that replication helps to cancel out the noise effect. TK-MARS is
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Table 4.8: W/Replication parameters and levels for OA design

Problem Parameters levels

Test function Rosenbrock, Rastrigin, Levy
Dimension 10, 20, 30
Fraction of important variables 0.25, 0.50, 0.75, 1
Noise level (%) 5, 10, 25

Algorithm Parameters levels

Initial pool size d+ 1, 2(d+ 1)
DOE method LHD, sobol
EEPA distance Euclidean, Cosine
EEPA # candidates 3, 6
Replication type fixed_rep, smart_rep
Replication # 5, 10
Model RBF_avrg, TK-MARS_avrg, TK-MARS_keepall

marginally significant. It is worth mentioning that the Smart-Replication strategy

is statistically better than Fixed-Replication, which is consistent with our expecta-

tion. Using smart replication saves function evaluations and reduces the MTFAUC

in the noisy situation.

Table 4.9: Replication ANOVA table

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.250806 0.086891 2.886 0.005626 **
fiv=0.75 0.07965 0.056382 1.413 0.163596
fiv=0.50 0.207822 0.056382 3.686 0.000537 ***
fiv=0.25 0.132775 0.056382 2.355 0.022263 *
model=TK-MARS_avrg -0.04463 0.048828 -0.914 0.364833
model=TK-MARS_keepall 0.113446 0.048828 2.323 0.024028 *
noise level=10% 0.004939 0.048828 0.101 0.91982
noise level=25% 0.009702 0.048828 0.199 0.843259
smart_rep -0.09262 0.039868 -2.323 0.02404 *
Rastrigin 0.344011 0.048828 7.045 3.81E-09 ***
Levy 0.045359 0.048828 0.929 0.357128
dimension=20 0.073677 0.048828 1.509 0.137262
dimension=30 0.051091 0.048828 1.046 0.300151
Replication \#=10 0.146338 0.048828 2.997 0.004142 **
poolSize=2(d+1) 0.016954 0.039868 0.425 0.67238
DOE=Sobol -0.00669 0.039868 -0.168 0.867332
EEPA distance=Cosine -0.01711 0.039868 -0.429 0.669465
EEPA number of candidates=6 -0.02138 0.039868 -0.536 0.594059

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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4.5.3.2 Full Factorial

Identifying the key parameters of the OA design results from Section 4.5.3.1.2, we

study a full model analysis on the significant problem and algorithm parameters

including the main effects and the interaction effects.

Similar to the OA design, we have two separate designs for No-Replication

and Replication strategies. Looking at the ANOVA tables from the OA design,

Tables 4.6 and 4.8, we drop the unimportant parameters to investigate the varia-

tion caused by important parameters on the MTFAUC. As a consequence, dimen-

sion, initial pool size, the DOE method used to design the initial pool, the EEPA

distance metric, and the EEPA number of candidate points factors are not statisti-

cally significant. Hence, to conduct a Full-Factorial design, these parameters are

fixed to the significant level based on OA ANOVA. We will continue with TK-

MARS with averaging over replicated points and ignore the version that keeps all

the replicated points since ANOVA shows there is no advantage in using the latter.

4.5.3.2.1 No-Replication Results

In this section, we study the effect of different surrogate models employed

and the fraction of important variables. From the ANOVA on the OA design,

Table 4.6, TK-MARS is not statistically but slightly significant. A Full-Factorial

design focusing on the surrogate model used determines the impact of the models

applied to the response. Table 4.10 represents the parameters to be studied and the

fixed parameters for collecting the observations of Full-Factorial design.
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Table 4.10: No-Replication parameters and levels for Full-Factorial design

Problem Parameter levels

Test function Rosenbrock, Rastrigin, Levy
Dimension fixed=30
Fraction of important variables 0.25, 0.50, 0.75, 1
Noise level (%) 0, 25

Algorithm Parameters levels

Initial pool size fixed=d+1
DOE method fixed=LHD
EEPA distance fixed=Euclidean
EEPA # candidates fixed=3
Model RBF, TK-MARS

Before conducting an ANOVA, looking into the plots of different models used

and their impact under different noise levels and fraction of important variables is

worthwhile. Figures 4.25a-4.27b correspond to each test functions in two different

cases: (a) no noise and (b) high noise.
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Figure 4.25: TK-MARS vs. RBF performance for Rosenbrock function
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Figure 4.26: TK-MARS vs. RBF performance for Rastrigin function
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Figure 4.27: TK-MARS vs. RBF performance for Levy function

Note that as the fraction of important variables decreases, MTFAUC increases.

It is harder for the algorithm to identify important variables when fewer variables

are used to evaluate the output.

From Table ??, based on the additive model, TK-MARS statistically outper-

forms RBF at the significance level of α = 0.1. We see that the noise effect has
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not been mitigated in this approach. These results are consistent with the results

of No-Replication in the OA design, Table 4.7.

model∗fraction interaction effect is not significant in the full model ANOVA,

Table 4.12. This is also consistent with our observations in the plots, Figures 4.25a-

4.27b. However, there is a slight noise ∗ fraction interaction. This shows that

the effect of noise differs, depending on the fraction of important variables. In

the plots, we see that moving from no noise (Figure 4.27a) to high noise (Fig-

ure 4.27b), there is a slight shift in the patterns.

Table 4.11: No-Replication ANOVA additive model on Full-Factorial design

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.34955 0.04634 7.543 3.32E-09 ***
Rastrigin 0.45076 0.04013 11.232 6.10E-14 ***
Rlevy 0.06121 0.04013 1.525 0.13507
noise level=25% 0.18583 0.03277 5.671 1.37E-06 ***
fiv=0.50 -0.18157 0.04634 -3.918 0.00034 ***
fiv=0.75 -0.26667 0.04634 -5.755 1.05E-06 ***
fiv=1 -0.3306 0.04634 -7.134 1.22E-08 ***
model=TK-MARS -0.05796 0.03277 -1.769 0.08453 .

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.12: No-Replication ANOVA full model on full-factorial design

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.35733 0.05643 6.332 2.23E-07 ***
Rastrigin 0.45076 0.04168 10.815 5.20E-13 ***
Rlevy 0.06121 0.04168 1.469 0.1504
noise level=25% 0.18583 0.03403 5.46 3.38E-06 ***
fiv=0.50 -0.18905 0.06806 -2.778 0.008547 **
fiv=0.75 -0.27718 0.06806 -4.072 0.000236 ***
fiv=1 -0.34372 0.06806 -5.05 1.21E-05 ***
model=TK-MARS -0.07352 0.06806 -1.08 0.287057
fiv=0.50:model=TK-MARS 0.01497 0.09626 0.155 0.877273
fiv=0.75:model=TK-MARS 0.02102 0.09626 0.218 0.828312
fiv=1:model=TK-MARS 0.02624 0.09626 0.273 0.78669

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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4.5.3.2.2 Replication Results

In this section, we study the effect of different approaches proposed in this

research at different noise levels. A Full-Factorial design focusing on the proposed

methods is considered. Table 4.13 represents the parameters to be studied and the

fixed parameters for collecting the observations of the Full-Factorial design. In

this design, the replication type and replication number construct 3× 2 = 6 levels

for a single repType factor in order to study the No-replication approach together

with replication approaches. The test function is the blocking variable. Four

different noise levels are investigated for a comprehensive study.

The fraction of important variables is statistically significant in almost all of

the analysis. However, for simplicity and focusing on the noise levels, we continue

with the fixed fiv = 0.5, which is the most significant level based on Table 4.9.

Just to focus on the different approaches for handling the uncertainty effect, we

separate out the TK-MARS results from the RBF results. From No-Replication,

we conclude that TK-MARS is statistically better than RBF at the significance

level of α = 0.1. Now, we study how interpolating and non-interpolating models

cope with replications.

• TK-MARS: Non-Interpolating Model

Figures 4.28, 4.31, and 4.34 show the performance of different approaches

across different noise levels for different test functions. In these plots and the cor-

responding ANOVA, Tables 4.14-4.15, the surrogate model applied is TK-MARS.

We shall later show the results for RBF as well. The plots in Figures 4.28, 4.31,

94



Table 4.13: W/Replication parameters and levels for Full-Factorial design

Problem Parameters levels

Test function Rosenbrock, Rastrigin, Levy
Dimension fixed=30
Fraction of important variables fixed=0.5
Noise level (%) 0, 5, 10, 25

Algorithm Parameters levels

Initial pool size fixed=d+1
DOE method fixed=LHD
EEPA distance fixed=Euclidean
EEPA # candidates fixed=3
Replication Type norepl, fixed_rep, smart_rep
Replication # 5, 10
Model RBF_avrg, TK-MARS_avrg

and 4.34 show that No-Replication outperforms the Replication approaches. Ob-

serve that, Smart-Replication outperforms Fixed-Replication approaches. As the

noise level increases, the MTFAUC increases as expected.

Figure 4.29, shows the box-plot of the MTFAUC values for 30 different runs

on different noise levels with different methods, Figures 4.29a-4.29e. From Fig-

ure 4.28, No-Replication outperforms Replication approaches. However, look-

ing at Figure 4.29c (fixedrep, 10) and Figure 4.29c (smartrep, 10), we confirm

that the MTFAUC variance is more reasonable than norepl , Figure 4.29a. As

in Figures 4.29d and 4.29e, in lower levels of noise, Smart-Replication have the

shortest box and are competitive with the No-Replication approach, which indi-

cates the robustness of the Smart-Replication approach to randomness. Although,

fixedrep, 10 is robust to different noise levels and there is no significant differ-

ence in the means across the noise levels, the overall average MTFAUC is larger

in lower noise levels compare to norepl and smartrep. This is because of un-

necessary function evaluations are done by the Fixed-Replication approach. In
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Figure 4.28: MTFAUC of different strategies with TK-MARS across different
noise levels

addition, from the box-plots, note that as the level of noise increases, the variance

of the No-Replication’s MTFAUC based on different pools increases.

From Figures 4.30, we see the variance of the objective values of BSMS after

1000 function evaluations for 30 different runs at each considered noise level. As

shown in the Figure, in the no-noise case, smartrep is competitive with norepl

and they have the shortest boxes, comparatively. fixedrep, 10 and smartrep = 10

are robust to different noise levels since the means are closer compared to norepl .

In the highest level of noise, smartrep, 10 has the shortest box, indicating that
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Figure 4.29: MTFAUC box-plots of Full-Factorial design results for Rosenbrock
function with TK-MARS
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smartrep, 10 is more robust to randomness and is more reliable for the Rosen-

brock function.

Looking into the results on the Rastrigin function, Figure 4.31, we can see

that there is a small difference between the different methods. The reason can be

justified by the highly fluctuating behavior of the Rastrigin function with several

local optima, and as the noise level added to the function increases, the optimum

is harder to obtain.

Figure 4.32 shows the box-plot of the MTFAUC values for 30 different runs on

different noise levels with different methods, Figures 4.32a-4.32e. For the Rastri-

gin function, which is a highly fluctuating function, note that fixedrep, 10, which is

the full replication approach, has the shortest box and is the most robust approach

to randomness and across different noise levels. However, in lower noise levels,

fixeedrep, 10 has slightly higher average MTFAUC. This shows that replication

helps to mitigate the fluctuations and uncertainties associated with the black-box

function.

From Figures 4.33, we see the variance of the BSMS after 1000 function

evaluations for 30 different runs at each considered noise level. As we can see,

frixedrep, 10 has the shortest box comparatively; however, it has a larger BSMS.

norepl finds better BSMS at the end of 1000 function evaluations when the un-

certainty level is low. However, smartrep, 10 finds better BSMS at the highest

noise level. We can see there are several outliers shown in the plots, which can be

justified by the highly fluctuating behavior of the Rastrigin function.

For the Levy function, No-Replication clearly outperforms the replication ap-
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Figure 4.30: Final BSMS box-plots of Full-Factorial design results for Rosen-
brock function
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Figure 4.31: MTFAUC of different strategies with TK-MARS across different
noise levels

proaches in almost every case (Figure 4.34). Although, we can see that Smart-

Replication is doing well too.

Figure 4.35 shows the box-plot of the MTFAUC values for 30 different runs

on different noise levels with different methods (Figures 4.35a-4.35e). From Fig-

ure 4.28, No-Replication outperforms Replication approaches. However, smartrep, 10

(Figure 4.29e box-plot) has comparatively short box at the higher level of noise.

Overall, No-Replication has the lower average MTFAUC, but smartrep is quite

competitive.
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Figure 4.32: MTFAUC box-plots of Full-Factorial design results for Rastrigin
function
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Figure 4.33: Final BSMS box-plots of Full-Factorial design results for Rastrigin
function
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Figure 4.34: MTFAUC of different strategies with TK-MARS across different
noise levels

It is worth mentioning that, fixedrep has the highest robustness (shortest boxes)

across different noise levels, although it is outperformed by norepl and smartrep

in most of the cases.

The variance of the BSMS after 1000 function evaluations for 30 different

runs at each considered noise level is presented in Figure 4.36. As we can see,

No-Replication outperforms in almost all of the cases in terms of the BSMS after

1000 evaluation for the Levy function.

From Table 4.14 and Table 4.15, based on the additive model, the No-Replication
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Figure 4.35: MTFAUC box-plots of Full-Factorial design results for Levy func-
tion
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Figure 4.36: Final BSMS box-plots of Full-Factorial design results for Levy func-
tion
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approach (reference population) statistically outperforms all the other approaches

in MTFAUC. We see the noise effect has not been mitigated and is influential on

the response, overall. Note that we have No-Replication approach in this analy-

sis besides the Replication approaches. In the OA design, we analyzed the No-

Replication and Replication approaches separately (Table 4.7 and Table 4.9). We

observe that the No-Replication is not robust to the noise effect and Replication

approaches are. Hence, the reason that the highest level of noise factor is signifi-

cant in this section might be due to No-Replication’s non-robustness in handling

the noise effect. From Table 4.15, there is a significant noise∗repType interaction

effect. This shows that the effect of noise on the response differs depending on

the method applied (norepl , fixedrep, 5, fixedrep, 10, smartrep, 5, smartrep, 10).

Table 4.14: ANOVA additive model on full-factorial design with TK-MARS

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.24003 0.03582 6.701 1.76E-08 ***
Rastrigin 0.49064 0.02774 17.684 < 2.00E-16 ***
Levy -0.03802 0.02774 -1.37 0.1767
noise level=5% -0.01862 0.03204 -0.581 0.5637
noise level=10% 0.03634 0.03204 1.134 0.262
noise level=25% 0.18894 0.03204 5.898 3.16E-07 ***
fixedrep,5 0.17057 0.03582 4.762 1.68E-05 ***
fixedrep,10 0.30211 0.03582 8.435 3.56E-11 ***
smartrep,5 0.0854 0.03582 2.384 0.0209 *
smartep,10 0.08592 0.03582 2.399 0.0202 *

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 4.15: ANOVA full model on full-factorial design with TK-MARS

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.22553 0.055318 4.077 0.000225 ***
Rastrigin 0.490643 0.028889 16.984 < 2.00E-16 ***
Levy -0.038023 0.028889 -1.316 0.195997
noise level=5% -0.007883 0.07459 -0.106 0.91639
noise level=10% 0.048207 0.07459 0.646 0.521973
noise level=25% 0.224359 0.07459 3.008 0.004648 **
fixedrep,5 0.210508 0.07459 2.822 0.007547 **
fixedrep,10 0.377491 0.07459 5.061 1.10E-05 ***
smartrep,5 0.064265 0.07459 0.862 0.394328
smartep,10 0.064265 0.07459 0.862 0.394328
noise=0.05:fixedrep,5 -0.030229 0.105486 -0.287 0.775998
noise=0.1:fixedrep,5 -0.05072 0.105486 -0.481 0.633399
noise=0.25:fixedrep,5 -0.078798 0.105486 -0.747 0.459663
noise=0.05:fixedrep,10 -0.032925 0.105486 -0.312 0.756651
noise=0.1:fixedrep,10 -0.085798 0.105486 -0.813 0.421079
noise=0.25:fixedrep,10 -0.182784 0.105486 -1.733 0.091245 .
noise=0.05:smartrep,5 -0.003959 0.105486 -0.038 0.970256
noise=0.1:smartrep,5 0.033177 0.105486 0.315 0.75485
noise=0.25:smartrep,5 0.055323 0.105486 0.524 0.603005
noise=0.05:smartrep,10 0.01343 0.105486 0.127 0.89936
noise=0.1:smartrep,10 0.044018 0.105486 0.417 0.678819
noise=0.25:smartrep,10 0.029177 0.105486 0.277 0.783592

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• RBF: Interpolating Model

Figures 4.37, 4.40 and 4.43 show the performance of the algorithm using dif-

ferent approaches across different noise levels for different test functions. In these

plots and the corresponding ANOVA, Tables 4.16-4.17, the surrogate model ap-

plied is RBF.

The plots in Figure 4.37 confirm that the deterministic situation, No-Replication,

is the best option. However, as the noise level increases, smartrep, 10 outper-

forms norepl . We can see that smartrep, 10 is more competitive when we use

the interpolating model, RBF for the Rosenbrock function. Furthermore, look-

ing closer into the plots, one can observe that under the highest uncertainty level
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fixedrep, 10’s performance becomes close to smartrep, 10, but, overall, Smart-

Replication outperforms the Fixed-Replication approach.
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Figure 4.37: MTFAUC of different strategies with RBF across different noise
levels

From Figure 4.38, we can see the box-plots of the MTFAUC values for 30 dif-

ferent runs on different noise levels with different methods, Figures 4.38a-4.38e.

One can verify that smartrep, 10 is the most robust approach to the uncertainty

level and randomness since it has the shortest box as the noise level increases.

smartrep, 10 has the lowest MTFAUC on average, as well. fixedrep, 10 is com-

petitive under a higher level of uncertainty and is even more robust to different
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noise levels. This makes sense, as replicating cancels out noise effects if it does

not exceed the maximum number of function evaluations. Clearly, norepl is the

best option in the no-noise case since replication wastes function evaluations when

there is no noise associated with the black-box function.

From Figures 4.39, observe that the variance of BSMS after 1000 function

evaluations for 30 different runs at each considered noise level. As is observed,

smartrep, 10 comparatively outperforms in terms of the BSMS at the end. fixedrep, 10

and smartrep, 10 are robust to different noise levels in terms of finding the BSMS.

Looking into the Rastrigin function, Figure 4.40, we can see that there is a

small difference between different methods, especially at the highest level of un-

certainty. Because of the highly fluctuating behavior of the Rastrigin function

with several local optima, we cannot make a conclusion from the experiment.

No-replication slightly outperforms all the other methods, since exploration over-

comes the replication in the case of having a complicated function like Rastrigin.

It can be seen that Replication approaches with 5 replications are slightly compet-

itive with No-Replication at a very high level of noise. In addition, as the noise

level increases, an optimum is harder to obtain.

Figure 4.41, shows the box-plot of the MTFAUC values for 30 different runs

on different noise levels with different methods, Figures 4.41a-4.41e. For the Ras-

trigin function, which is a highly fluctuating function, note that fixedrep, 10, has

the shortest box and is the most robust approach to randomness and also to differ-

ent noise levels; no difference in the means across noise levels is observed. How-

ever, in lower noise levels, fixeedrep, 10 has slightly higher average MTFAUC.
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Figure 4.38: MTFAUC box-plots of Full-Factorial design results for Rosenbrock
function with RBF
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Figure 4.39: Final BSMS box-plots of Full-Factorial design results for Rosen-
brock function
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Figure 4.40: MTFAUC of different strategies with RBF across different noise
levels

This shows that replication helps to mitigate the fluctuations and uncertainties

associated with the black-box function.

Figures 4.42 shows the variance of the BSMS after 1000 function evaluations

for 30 different runs at each considered noise level. Note that frixedrep, 10

has the shortest box comparatively; however, it has larger BSMS, comparatively.

norepl finds better BSMS at the end of 1000 function evaluations when the uncer-

tainty level is low, as we expected. In this case, fixedrep, 5 finds better BSMS at

the highest noise level.
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Figure 4.41: MTFAUC box-plots of Full-Factorial design results for Rastrigin
function
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Figure 4.42: Final BSMS box-plots of Full-Factorial design results for Rastrigin
function
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Looking at Figure 4.43, note that smartrep, 5 outperforms other methods un-

der the highest level of uncertainty. fixedrep, 5 is competitive, as well. Being a

little bit smart helps the optimization process for Levy as the noise level increases.
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Figure 4.43: MTFAUC of different strategies with RBF across different noise
levels

Figure 4.44, shows the box-plot of the MTFAUC values for 30 different runs

on different noise levels with different methods, Figures 4.44a-4.44e. One can

clearly verify that smartrep, 5 has the shortest box overall, except for the no-

noise case, which No-replication has the lower MTFAUC on average. However,
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in terms of robustness to randomness and the different level of noise, smartrep, 5

and fixedrep, 10 are competitive. However, the MTFAUC is lower for smartrep, 5.

Figures 4.45 show the variance of the BSMS after 1000 function evaluations

for 30 different runs at each considered noise level. We can see that fixedrep, 10

is the most robust approach to randomness across different noise levels. However,

smartrep, 5 has higher quality BSMS.

From the ANOVA on Full Factorial design observations with RBF model (Ta-

ble 4.16), the No-Replication approach (reference population) statistically outper-

forms Fixed-Replication. However, Smart-Replication is not significantly differ-

ent from the No-Replication approach, from the MTFAUC standpoint.

We see that the noise effect has not been mitigated and is influential in the

response. This means that for RBF, the algorithm is not robust across different

noise levels; we see that a significant interaction between noise level and the ap-

proaches. Recall that we have the No-Replication approach in this analysis be-

sides the Replication approaches. In the OA design, we analyze No-Replication

and Replication approaches, separately in Tables 4.7 and 4.9. We observe that

the No-Replication is not robust across noise levels, but Replication approaches

are. Hence, the reason that the highest level of noise factor is significant in this

section might be due to No-Replication’s non-robustness to the noise effect. From

Table 4.17, there is a significant noise ∗ repType interaction. This shows the

effect of noise on the response differs depending on the method applied (norepl ,

fixedrep, 5, fixedrep, 10, smartrep, 5, smartrep, 10); this is consistent with our

finding in the plots explained above.
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Figure 4.44: MTFAUC box-plots of Full-Factorial design results for Levy func-
tion
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Figure 4.45: Final BSMS box-plots of Full-Factorial design results for Levy func-
tion
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Table 4.16: ANOVA additive model on full-factorial design with RBF

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.33403 0.02905 11.498 1.19E-15 ***
Rastrigin 0.52317 0.0225 23.249 <2.00E-16 ***
Levy 0.01209 0.0225 0.537 0.5933
noise level=5% -0.03754 0.02598 -1.445 0.1548
noise level=10% 0.01329 0.02598 0.511 0.6114
noise level=25% 0.13677 0.02598 5.264 2.97E-06 ***
fixedrep,5 0.07325 0.02905 2.521 0.0149 *
fixedrep,10 0.16155 0.02905 5.561 1.05E-06 ***
smartrep,5 0.0205 0.02905 0.706 0.4836
smartep,10 0.02688 0.02905 0.925 0.3593

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.17: ANOVA full model on full-factorial design with RBF

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.26822 0.04215 6.364 1.8E-07 ***
Rastrigin 0.52317 0.02201 23.769 < 2.00E-16 ***
Levy 0.01209 0.02201 0.55 0.58587
noise level=5% 0.01956 0.05683 0.344 0.73261
noise level=10% 0.10382 0.05683 1.827 0.07557 .
noise level=25% 0.25237 0.05683 4.441 7.5E-05 ***
fixedrep,5 0.17237 0.05683 3.033 0.00435 **
fixedrep,10 0.2826 0.05683 4.973 1.45E-05 ***
smartrep,5 0.07812 0.05683 1.375 0.17729
smartep,10 0.07812 0.05683 1.375 0.17729
noise=0.05:fixedrep,5 -0.08312 0.08037 -1.034 0.30756
noise=0.1:fixedrep,5 -0.13308 0.08037 -1.656 0.10599
noise=0.25:fixedrep,5 -0.18028 0.08037 -2.243 0.0308 *
noise=0.05:fixedrep,10 -0.07026 0.08037 -0.874 0.3875
noise=0.1:fixedrep,10 -0.17072 0.08037 -2.124 0.04023 *
noise=0.25:fixedrep,10 -0.24324 0.08037 -3.026 0.00442 **
noise=0.05:smartrep,5 -0.07082 0.08037 -0.881 0.38374
noise=0.1:smartrep,5 -0.07902 0.08037 -0.983 0.33174
noise=0.25:smartrep,5 -0.08063 0.08037 -1.003 0.32209
noise=0.05:smartrep,10 -0.06127 0.08037 -0.762 0.45055
noise=0.1:smartrep,10 -0.06988 0.08037 -0.87 0.39001
noise=0.25:smartrep,10 -0.07382 0.08037 -0.918 0.36417

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Now, it is worth discussing Smart-Replication and the maximum number of

replications parameter (rmax ) using TK-MARS and RBF. Smart-Replication fo-
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cuses on replicating not all the candidate points but a subset of interesting points,

which are probabilistically closer to the BSMS. Since TK-MARS has a better im-

age of the underlying function behavior, it suggests more interesting points for

the Smart-Replication rule. Looking into the replication number that each point

has had after 1000 function evaluations, there are more points that hit the rmax in

Smart-Replication using TK-MARS than RBF. TK-MARS makes fewer mistakes

in choosing promising candidate points, unlike RBF, which passes through all the

points and does not have a good view of the underlying function behavior. RBF

then chooses some candidates that might not be interesting after some replications

and wastes function evaluations. Consequently, we do not see that many points

hitting the rmax in Smart-Replication with RBF.

4.6 Conclusion

Regarding the analysis that is presented in this section, TK-MARS outperforms

RBF, which is the leading surrogate optimization method in the literature. TK-

MARS demonstrates great improvement over RBF in handling unimportant in-

puts.

Further, we can conclude that using TK-MARS, No-Replication approach out-

performs replication approaches in terms of average MTFAUC, which means the

area under the curve is smaller. However, Smart-Replication is competitive with

No-Replication in terms of robustness to randomness and to different noise levels.

For RBF, more replications help robustness in uncertain situations, and Smart-
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Replication approach outperforms No-Replication.

TK-MARS is a regression-based model, which does not pass through all the

points and fits a surface that minimizes the error based on the distance of the

actual values to the fitted line. These models consider the error to predict the

future points more accurately. As a result, regression-based models help to have a

better approximation for noisy data sets. On the other hand, the goal of replication

is to minimize the error for an uncertain point. The gain obtained from replication

does not improve the regression-based approximation, since, it has the same effect

of replication by passing among the points. As a result, an algorithm that uses

TK-MARS, a regression-based model, needs to explore more points rather than

replicating fewer points and reduce their error (exploration versus exploitation).

By contrast, interpolating models pass through all the points and capture the

noise, as well. For noisy functions, interpolating may be misleading. In this

case, replication is very constructive to minimize the error and make the surro-

gate model more intelligent by giving more information about the underlying true

function by averaging over replicated noisy data. We observe that replications

improve the performance of an algorithm when we apply RBF in comparison to

TK-MARS, which mitigates the noise effect itself and needs more exploration

instead.
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Chapter 5

Future Work

In this section, we describe the future directions of this research. In Chapter 1

we assumed that the black-box functions considered in this research are box-

constrained; however, there might be other constraints, which are black-box, as

well. Constrained black-box optimization approaches have been studied in the lit-

erature [39,41]. One direction for future study of the current research is to perform

the TK-MARS based surrogate optimization approach on constrained black-box

optimization problems and measure the performance of the proposed algorithm.

Further, we considered a single objective optimization problem. Employing

the TK-MARS based approach and adapt it for the multi-objective black-box op-

timization problems is worthwhile in order to study the capability of the proposed

method for different optimization purposes.

In this research, we focused on the continuous space, and show the results

in Chapter 4. To consider categorical variables as well as numerical variables
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and investigate the performance of the proposed approach is very functional for

the real-world problems, which mostly contain categorical variables. We believe

TK-MARS is very capable of handling a mixed categorical/numerical space.

Finally, developing dynamic stopping criteria based on a convergence tech-

nique would save function evaluations by automatically stopping as soon the al-

gorithm found a high-quality solution.
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Table 1: OA Design for No-Replication Study

Fraction of
Significant
Variables

Noise Level Test Func-
tion

Dimesnison Pool Size DOE EEPA-
Distance

EEPA-
Number of
Candidates

Model

1 0 2 10 22 2 1 2 2
1 0 1 20 21 1 2 5 1
1 0.1 1 20 42 2 2 5 1
1 0.1 2 10 11 1 1 2 2
1 0.25 1 30 62 1 1 5 2
1 0.25 3 10 11 2 2 2 1

0.75 0 3 10 22 1 2 2 2
0.75 0 1 30 31 2 1 5 1
0.75 0.1 1 10 11 1 1 2 1
0.75 0.1 3 30 62 2 2 5 2
0.75 0.25 3 30 31 2 2 2 2
0.75 0.25 1 10 22 1 1 5 1
0.5 0 1 20 21 1 1 5 2
0.5 0 2 10 22 2 2 2 1
0.5 0.1 2 10 22 1 2 5 1
0.5 0.1 1 20 21 2 1 2 2
0.5 0.25 1 20 21 2 1 5 1
0.5 0.25 2 10 22 1 2 2 2

0.25 0 2 10 11 1 2 2 1
0.25 0 1 20 42 2 1 5 2
0.25 0.1 1 10 22 2 1 2 1
0.25 0.1 3 30 31 1 2 5 2
0.25 0.25 3 30 31 2 2 5 2
0.25 0.25 1 10 22 1 1 2 1

1 0 3 20 42 2 1 2 2
1 0 2 30 31 1 2 5 1
1 0.1 2 30 62 2 2 5 1
1 0.1 3 20 21 1 1 2 2
1 0.25 2 10 22 1 1 5 2
1 0.25 1 20 21 2 2 2 1

0.75 0 1 20 42 1 2 2 2
0.75 0 2 10 11 2 1 5 1
0.75 0.1 2 20 21 1 1 2 1
0.75 0.1 1 10 22 2 2 5 2
0.75 0.25 1 10 11 2 2 2 2
0.75 0.25 2 20 42 1 1 5 1
0.5 0 2 30 31 1 1 5 2
0.5 0 3 20 42 2 2 2 1
0.5 0.1 3 20 42 1 2 5 1
0.5 0.1 2 30 31 2 1 2 2
0.5 0.25 2 30 31 2 1 5 1
0.5 0.25 3 20 42 1 2 2 2

0.25 0 3 20 21 1 2 2 1
0.25 0 2 30 62 2 1 5 2
0.25 0.1 2 20 42 2 1 2 1
0.25 0.1 1 10 11 1 2 5 2
0.25 0.25 1 10 11 2 2 5 2
0.25 0.25 2 20 42 1 1 2 1

1 0 1 30 62 2 1 2 2
1 0 3 10 11 1 2 5 1
1 0.1 3 10 22 2 2 5 1
1 0.1 1 30 31 1 1 2 2
1 0.25 3 20 42 1 1 5 2
1 0.25 2 30 31 2 2 2 1

0.75 0 2 30 62 1 2 2 2
0.75 0 3 20 21 2 1 5 1
0.75 0.1 3 30 31 1 1 2 1
0.75 0.1 2 20 42 2 2 5 2
0.75 0.25 2 20 21 2 2 2 2
0.75 0.25 3 30 62 1 1 5 1
0.5 0 3 10 11 1 1 5 2
0.5 0 1 30 62 2 2 2 1
0.5 0.1 1 30 62 1 2 5 1
0.5 0.1 3 10 11 2 1 2 2
0.5 0.25 3 10 11 2 1 5 1
0.5 0.25 1 30 62 1 2 2 2

0.25 0 1 30 31 1 2 2 1
0.25 0 3 10 22 2 1 5 2
0.25 0.1 3 30 62 2 1 2 1
0.25 0.1 2 20 21 1 2 5 2
0.25 0.25 2 20 21 2 2 5 2
0.25 0.25 3 30 62 1 1 2 1

1 0 1 30 31 1 1 1 1
1 0.05 1 30 31 1 1 1 1
1 0.1 1 30 31 1 1 1 1
1 0.25 1 30 31 1 1 1 1
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Table 2: OA Design for With-Replication Study

Fraction of
Significant
Variables

Noise Level Test Func-
tion

Dimension Model Number of
Replication

Pool Size DOE EEPA-
distance

EEPA-
Number of
candidates

Replication
Type

1 0.05 3 10 2 4 22 1 2 5 1
1 0.05 1 30 2 2 31 2 1 2 2
1 0.1 3 10 3 2 22 2 2 5 2
1 0.1 1 30 3 4 31 1 1 2 1
1 0.25 1 10 2 2 22 2 1 2 2
1 0.25 2 20 2 9 21 1 2 5 1

0.75 0.05 1 10 3 9 22 1 1 5 1
0.75 0.05 2 20 3 2 21 2 2 2 2
0.75 0.1 1 10 3 2 11 1 1 2 1
0.75 0.1 3 20 3 9 42 2 2 5 2
0.75 0.25 1 10 1 9 11 2 2 2 1
0.75 0.25 3 20 1 2 42 1 1 5 2
0.5 0.05 2 10 3 2 11 2 1 5 2
0.5 0.05 1 30 3 4 62 1 2 2 1
0.5 0.1 2 10 1 4 22 1 1 2 2
0.5 0.1 1 30 1 2 31 2 2 5 1
0.5 0.25 1 20 1 2 21 1 2 5 2
0.5 0.25 3 10 1 4 22 2 1 2 1

0.25 0.05 1 20 2 4 21 2 1 5 1
0.25 0.05 3 10 2 2 22 1 2 2 2
0.25 0.1 2 30 1 2 62 2 2 2 1
0.25 0.1 1 10 1 9 11 1 1 5 2
0.25 0.25 2 30 2 9 31 1 2 2 2
0.25 0.25 1 10 2 2 22 2 1 5 1

1 0.05 1 20 3 9 42 1 2 5 1
1 0.05 2 10 3 4 11 2 1 2 2
1 0.1 1 20 1 4 42 2 2 5 2
1 0.1 2 10 1 9 11 1 1 2 1
1 0.25 2 20 3 4 42 2 1 2 2
1 0.25 3 30 3 2 31 1 2 5 1

0.75 0.05 2 20 1 2 42 1 1 5 1
0.75 0.05 3 30 1 4 31 2 2 2 2
0.75 0.1 2 20 1 4 21 1 1 2 1
0.75 0.1 1 30 1 2 62 2 2 5 2
0.75 0.25 2 20 2 2 21 2 2 2 1
0.75 0.25 1 30 2 4 62 1 1 5 2
0.5 0.05 3 20 1 4 21 2 1 5 2
0.5 0.05 2 10 1 9 22 1 2 2 1
0.5 0.1 3 20 2 9 42 1 1 2 2
0.5 0.1 2 10 2 4 11 2 2 5 1
0.5 0.25 2 30 2 4 31 1 2 5 2
0.5 0.25 1 20 2 9 42 2 1 2 1

0.25 0.05 2 30 3 9 31 2 1 5 1
0.25 0.05 1 20 3 4 42 1 2 2 2
0.25 0.1 3 10 2 4 22 2 2 2 1
0.25 0.1 2 20 2 2 21 1 1 5 2
0.25 0.25 3 10 3 2 11 1 2 2 2
0.25 0.25 2 20 3 4 42 2 1 5 1

1 0.05 2 30 1 2 62 1 2 5 1
1 0.05 3 20 1 9 21 2 1 2 2
1 0.1 2 30 2 9 62 2 2 5 2
1 0.1 3 20 2 2 21 1 1 2 1
1 0.25 3 30 1 9 62 2 1 2 2
1 0.25 1 10 1 4 11 1 2 5 1

0.75 0.05 3 30 2 4 62 1 1 5 1
0.75 0.05 1 10 2 9 11 2 2 2 2
0.75 0.1 3 30 2 9 31 1 1 2 1
0.75 0.1 2 10 2 4 22 2 2 5 2
0.75 0.25 3 30 3 4 31 2 2 2 1
0.75 0.25 2 10 3 9 22 1 1 5 2
0.5 0.05 1 30 2 9 31 2 1 5 2
0.5 0.05 3 20 2 2 42 1 2 2 1
0.5 0.1 1 30 3 2 62 1 1 2 2
0.5 0.1 3 20 3 9 21 2 2 5 1
0.5 0.25 3 10 3 9 11 1 2 5 2
0.5 0.25 2 30 3 2 62 2 1 2 1

0.25 0.05 3 10 1 2 11 2 1 5 1
0.25 0.05 2 30 1 9 62 1 2 2 2
0.25 0.1 1 20 3 9 42 2 2 2 1
0.25 0.1 3 30 3 4 31 1 1 5 2
0.25 0.25 1 20 1 4 21 1 2 2 2
0.25 0.25 3 30 1 9 62 2 1 5 1

1 0 1 30 1 4 31 1 1 1 2
1 0.05 1 30 1 4 31 1 1 1 2
1 0.1 1 30 1 4 31 1 1 1 2
1 0.25 1 30 1 4 31 1 1 1 2
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